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In this dissertation we consider numerical methods for a problem in each of numerical linear

algebra, digital signal processing, and image processing for super-resolution fluorescence microscopy.

We consider first a fast, randomized mixing operation applied to the unpivoted Householder QR

factorization. The method is an adaptation of a slower randomized operation that is known to

provide a rank-revealing factorization with high probability. We perform a number of experiments

to highlight possible uses of our method and give evidence that our algorithm likely also provides

a rank-revealing factorization with high probability.

In the next chapter we develop fast algorithms for computing the discrete, narrowband cross-

ambiguity function (CAF) on a downsampled grid of delay values for the purpose of quickly de-

tecting the location of peaks in the CAF surface. Due to the likelihood of missing a narrow peak

on a downsampled grid of delay values, we propose methods to make our algorithms robust against

missing peaks. To identify peak locations to high accuracy, we propose a two-step approach: first

identify a coarse peak location using one of our delay-decimated CAF algorithms, then compute

the CAF on a fine, but very small, grid around the peak to find its precise location. Runtime ex-

periments with our C++ implementations show that our delay-decimated algorithms can give more

than an order of magnitude improvement in overall runtime to detect peaks in the CAF surface

when compared against standard CAF algorithms.

In the final chapter we study non-negative least-squares (NNLS) problems arising from a

new technique in super-resolution fluorescence microscopy. The image formation task involves

solving many tens of thousands of NNLS problems, each using the same matrix, but different right-

hand sides. We take advantage of this special structure by adapting an optimal first-order method

to efficiently solve many NNLS problems simultaneously. Our NNLS problems are extremely ill-
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conditioned, so we also experiment with using a block-diagonal preconditioner and the alternating

direction method of multipliers (ADMM) to improve convergence speed. We also develop a safe

feature elimination strategy for general NNLS problems. It eliminates features only when they are

guaranteed to have weight zero at an optimal point. Our strategy is inspired by recent works in the

literature for `1-regularized least-squares, but a notable exception is that we develop our method to

use an inexact, but feasible, primal-dual point pair. This allows us to use feature elimination reliably

on the extremely ill-conditioned NNLS problems from our microscopy application. For an example

image reconstruction, we use our feature elimination strategy to certify that the reconstructed

super-resolved image is unique.
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Chapter 1

URV Factorization with Random Orthogonal System Mixing

The unpivoted and pivoted Householder QR factorizations are ubiquitous in numerical linear

algebra. A difficulty with pivoted Householder QR is the communication bottleneck introduced by

pivoting. In this chapter we propose using random orthogonal systems to quickly mix together the

columns of a matrix before computing an unpivoted QR factorization. This method computes a

URV factorization which forgoes expensive pivoted QR steps in exchange for mixing in advance,

followed by a cheaper, unpivoted QR factorization. The mixing step typically reduces the variability

of the column norms, and in certain experiments, allows us to compute an accurate factorization

where a plain, unpivoted QR performs poorly. We experiment with linear least-squares, rank-

revealing factorizations, and the QLP approximation, and conclude that our randomized URV

factorization behaves comparably to a similar randomized rank-revealing URV factorization, but

at a fraction of the computational cost. Our experiments provide evidence that our proposed

factorization might be rank-revealing with high probability.

1.1 Introduction

The QR factorization of a matrix A ∈ Rm×n is a widely used decomposition, with applications

in least-squares solutions to linear systems of equations, eigenvalue and singular value problems,

and identification of an orthonormal basis of the range of A. The form of the decomposition is

A = QR, where Q is m×m and orthogonal and R is m×n and upper triangular. When A is dense

and has no special structure, Householder reflections are often preferred to Gram-Schmidt (and its
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variants) and Givens rotations, due to their precise orthogonality and computational efficiency via

the (compact) WY representation [42, 14, 80], which can utilize level-3 BLAS. Indeed, Householder

QR with a compact WY representation is implemented in the LAPACK routine _geqrf [5] (we use

the prefix _ to denote one of s, d, etc.).

A common variant of the QR factorization is column pivoted QR, which computes the fac-

torization AΠ = QR, where Π is a permutation matrix. At the ith stage of the decomposition,

the column of the submatrix A(i:m, i:n) (in matlab notation) with the largest norm is permuted

to the leading position of A(i:m, i:n) and then a standard QR step is taken. The LAPACK rou-

tine _geqp3 implements column pivoted Householder QR using level-3 BLAS [5]. However, it is

typically much slower than the unpivoted _geqrf, as _geqp3 still suffers from high communica-

tion costs [28] and cannot be cast entirely in level-3 operations [65]. We refer to Householder QR

without pivoting as unpivoted QR (QR), and Householder QR with column pivoting as QRCP.

Improving on QRCP, recent works have used random projections to select blocks of pivots,

emulating the behavior of QRCP, while more fully utilizing level-3 BLAS [64, 65, 34]. Indeed, this

approach is quite efficient on modern computer architectures; for example, it is implemented in El-

emental, a framework for distributed memory dense matrix computations [79]. Another approach

uses so called “tournament pivoting” to select blocks of pivots and is shown to minimize commu-

nication up to polylogarithmic factors [28]. In each of these cases, a pivoted QR factorization is

produced.

URV factorizations decompose A as A = URV , where U and V have orthonormal columns

and R is upper triangular. One can think of URV factorizations as a relaxation of the SVD, where

instead of a diagonal singular value matrix, we require only that R is upper-triangular. Similarly,

QRCP can be thought of as a URV factorization where V is a permutation matrix, a special case of

an orthogonal matrix. In Section 1.3 we discuss how URV factorizations can be used to solve linear

least-squares problems in much the same manner as QR factorizations or the SVD.

For another example, let V be a random orthogonal matrix sampled from the Haar distribu-

tion on orthogonal matrices. The matrices U and R are computed with an unpivoted QR factor-
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ization of Â = AV T , and the resulting URV factorization is a strong rank-revealing factorization

with high probability (see Subsection 1.2.1) [25]; we call this randomized factorization RURV_Haar.

This demonstrates that one can forego column pivoting at the cost of mixing together the columns

of A and still have a safe factorization. However, taking V to be a random, dense orthogonal ma-

trix is rather computationally expensive, as V is generated with an n× n unpivoted QR and must

be applied with dense matrix multiplication.

We instead propose mixing with an alternating product of orthogonal Fourier-like matrices

(e.g., discrete cosine, Hadamard, or Hartley transforms) and diagonal matrices with random ±1

entries, forming a so-called random orthogonal system (ROS) [1, 95, 60, 68]. This provides mixing,

but with a fast transform, as V is never formed explicitly and can be applied with the FFT, or

FFT-style algorithms (see Subsection 1.2.2). We call this randomized URV factorization with ROS

mixing RURV_ROS.

Numerical experiments with our implementation of RURV_ROS demonstrate that for large

enough matrices (i.e., where communication is the bottleneck of QRCP), RURV_ROS runs only slightly

slower than _geqrf, but significantly faster than _geqp3. Figure 1.1 shows the average performance

of dgeqrf, dgeqp3, and RURV_ROS, computed as mn2 divided by the runtime in seconds (and further

divided by 109, to be analogous to GFLOP/second). Note that each algorithm performs a different

number of floating point operations, but computing performance as mn2 divided by runtime treats

each algorithm fairly at each matrix size. Indeed it is valid to directly compare the performance of

the algorithms with each other.

We used MATLAB’s LAPACK [66] and the reference FFTW [37] with 1 and 8 threads on a

desktop workstation with two Intel® Xeon® E5-2630 v3 CPUs running at 2.4 GHz. See Subsection

1.2.2 for more details on our implementation of RURV_ROS.

Around n = 1000, we begin to see a sharp increase in the runtime of dgeqp3, owing to the

communication bottleneck of column pivoting. In this region, dgeqp3 with 8 threads does not see

an appreciable improvement over running just a single thread. In contrast, dgeqrf parallelizes

much more nicely, as we can see an order of magnitude improvement in runtime when using 8
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threads. When using RURV_ROS, we also see a noticeable improvement in runtime when using 8

threads versus 1 thread.

We also run timing and accuracy experiments on over- and underdetermined linear least-

squares problems in Section 1.3. In Subsection 1.4.1 we sample the rank-revealing conditions

of [45, 44] for a variety of QR and URV factorizations, which suggest that RURV_ROS behaves

similarly to RURV_Haar. This provides evidence suggesting that RURV_ROS is rank-revealing with

high probability. We also examine using RURV_Haar and RURV_ROS in a QLP approximation to the

SVD in Subsection 1.4.3.
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DGEQRF - 8 threads

DGEQP3 - 8 threads

RURV_ROS - 8 threads

DGEQRF - 1 thread

DGEQP3 - 1 thread

RURV_ROS - 1 thread

Figure 1.1: Average performance over five runs of dgeqrf, dgeqp3, and RURV_ROS on slightly tall-
skinny matrices (n = m/2). Note that we do not include the time to generate the orthogonal
factor Q (labeled U for RURV_ROS), as all routines would use dorgqr. For the run with 8 threads,
the sharp decrease in performance beginning around size 2000× 1000 matrices corresponds to the
beginning of the regime where communication is the bottleneck of QRCP.

1.2 Randomized URV Factorization

1.2.1 Randomized URV Factorization via Haar Random Orthogonal Mixing

Demmel et al. proposed in [25] a randomized URV factorization (RURV), which we call

RURV_Haar, to use as part of eigenvalue and singular value decompositions. Their RURV of an
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m × n matrix A is based on sampling from the Haar distribution on the set of orthogonal (or

unitary) matrices [69], using that sampled matrix to mix the columns of A, and then performing

an unpivoted QR on the mixed A, resulting in the factorization A = URV .

Algorithm 1 RURV_Haar - Randomized URV with Haar mixing from [25]
Input: A ∈ Rm×n

Output: U, R, V
1: Generate a random n× n matrix B whose entries are i.i.d. N(0, 1).
2: [V, R̂] = qr(B) . V is Haar distributed; R̂ is unused
3: Â = AV T

4: [U, R] = qr(Â)

Haar orthogonal matrices are known to smooth the entries of the vectors on which they

operate. By multiplying A on the right by a Haar orthogonal matrix V T , we can mix together

the columns of A, and reduce the variance of the column norms (see Figure 1.2). The intuition

behind the mixing is that by reducing the variance of the column norms, we reduce the effect

that column pivoting would have, and can get away with unpivoted QR. Indeed, in [25] it is

shown that Algorithm 1 produces a rank-revealing factorization with high probability, and can be

used for eigenvalue and SVD problems. It was further shown that Algorithm 1 produces a strong

rank-revealing factorization in [9]. Criteria for a (strong) rank-revealing factorization of the form

A = URV are as follows (taken from [45, 44], but slightly weaker conditions were used in [9]):

(1) U and V are orthogonal and R =

R11 R12

0 R22

 is upper-triangular, with R11 k× k and R22

(n− k)× (n− k);

(2) For any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k,

1 ≤ σi(A)
σi(R11) ,

σj(R22)
σk+j(A) ≤ q(k, n), (1.1)

where q(k, n) is a low-degree polynomial in k and n.

(3) In addition, if

‖R−1
11 R12‖2 (1.2)
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is bounded by a low-degree polynomial in n, then the rank-revealing factorization is called

strong.

These conditions state that the singular values of R11 and R12 are not too far away from the

respective singular values of A. Thus, by performing a rank-revealing factorization instead of an

expensive SVD, we can still gain insight into the singular values of A.

Both QR factorizations in Algorithm 1 are unpivoted, and thus can be considerably cheaper

than the standard column-pivoted Householder QR, QRCP. However, a major drawback is the ex-

pense of generating and applying the random matrix V . To sample an n × n matrix V from the

Haar distribution on orthogonal matrices, we take the Q factor from an unpivoted QR factorization

of an n×n matrix B whose entries are i.i.d. N(0, 1) [69]. The dominant cost of this computation is

the unpivoted QR factorization, which requires O(n3) FLOPs. We then compute Â = AV T , which

requires O(mn2) FLOPs, followed by the unpivoted QR factorization to find U and R, which costs

O(mn2) FLOPs. To reduce the cost of forming and applying V , we propose replacing V with a

product of random orthogonal systems, which can each be applied implicitly and quickly, although

providing slightly worse mixing.

1.2.2 Randomized URV Factorization via Fast Random Orthogonal Mixing

Consider a real m× n matrix A and a product of random orthogonal systems (ROS) of the

form

V = Π
[

N∏
i=1

FDi

]
, (1.3)

where each Di is a diagonal matrix of independent, uniformly random ±1 and F is an orthogonal

Fourier-like matrix with a fast transform. Just like in RURV_Haar, we mix together the columns of

A as Â = AV T . The matrix Π is a permutation matrix chosen so ÂΠT sorts the columns of Â in

order of decreasing norm. Replacing the Haar matrix V in Algorithm 1 with the ROS based V in

(1.3) yields the new algorithm we call RURV_ROS, shown in Algorithm 2.
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Algorithm 2 RURV_ROS - Randomized URV with ROS mixing
Input: A ∈ Rm×n, number of mixing steps N , {Di}Ni=1 diagonal ±1 matrices
Output: U, R . The V matrix is not output because it is never explicitly formed

1: Â = A
∏1

i=N (DiF
T )

2: Â = ÂΠT . Sort the columns of Â so they are in order of decreasing `2 norm.
3: [U, R] = qr(Â)
4: V = Π∏N

i=1 FDi

Each product FDi is referred to as a random orthogonal system (ROS) [1, 95, 60, 68].

Examples of real-to-real, orthogonal Fourier-like transforms are the discrete cosine transform (e.g.,

DCT-II and DCT-III), the discrete Hartley transform, and the discrete Hadamard transform. The

Fourier-like matrix is never explicitly constructed, but rather is only used as an operator, for which

we use a fast transform. This brings the FLOP count for computing AV T from O(mn2, n3) to

O(mn log n). In our experiments, we use the DCT-II and DCT-III for F and F T , as implemented

in FFTW [37].

Figure 1.2 shows the effect of mixing with Haar matrices and ROS on the column norms of

a random 250× 250 matrix A, formed in matlab with A = bsxfun(@times, randn(m,n)+

exp(10*rand(m,n)), exp(2*rand(1,n))), followed by A = A/mean(sqrt(sum(A.*A))), so that

the mean column norm is one. The variance of the column norms is clearly decreased by the mixing,

and notably, Haar and ROS (with N = 1) affect the distribution of column norms in a similar

manner. A theme of this chapter is that RURV_ROS behaves similarly to RURV_Haar, which likely

stems from their similar effect on the distribution of column norms.

To mix together the columns of A, we compute Â = A
∏1

i=N (DiF
T ). The permutation/pre-

sort matrix Π is chosen so the columns of ÂΠT are sorted in decreasing order of column norm. The

pre-sort is included to potentially enhance the accuracy and stability of RURV_ROS. Note that the

cost of this one-time sort is much smaller than the cost of the repeated column pivots in QRCP.

A matlab implementation of RURV_ROS with F taken to be the DCT-II is shown in Listing

1.1. For in-core computations, it is sometimes more efficient to compute the mixing on left of AT
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Figure 1.2: Mixing columns of A together with Haar orthogonal matrices and ROS reduces the
variance of column norms, while keeping the mean column norm about the same.

via:

AV T = (V AT )T =
(

Π
N∏

i=1
(FDi) AT

)T

.

This “transpose trick” is used in Listing 1.1 for efficiency, and also to cleanly interface with matlab’s

dct function, which applies the transform to the columns of its input. Listing 1.1 explicitly returns

U and R from the factorization, but returns function handles for V and V T , which can be used to

apply V and V T , respectively, to the left side of their input.

The implementation used for our experiments is similar, but has performance-critical sections

written in C using matlab’s MEX interface. The mixing step is performed in C using FFTW and

the unpivoted QR is performed in C using LAPACK routines from matlab’s LAPACK [37, 5, 66].

The use of FFTW gives us great control over how the transform is applied (e.g., in blocks, multi-

threaded, perhaps not utilizing the “transpose trick”, etc.). More details on the use of FFTW for

mixing are given in Subsection 1.3.2.

Listing 1.1: A matlab implementation of RURV_ROS

1 function [U,R,V,Vt] = RURV_ROS(A, n_its)

2 % RURV_ROS RURV with ROS mixing for real matrices

3
4 [m,n] = size(A);

5 D_diags = sign(rand(n,n_its)−0.5); % diagonals of D_i; i.i.d. uniform +− 1
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6
7 % ROS mixing Ahat = A*V' using transpose trick

8 Ahat = apply_V(A',D_diags)';

9
10 % pre−sort
11 nrms = sqrt(sum(Ahat.^2,1));

12 [nrms,p] = sort(nrms, 2, 'descend');

13 p_inv(p) = 1:numel(p);

14 Ahat = Ahat(:,p);

15
16 % unpivoted QR factorization

17 [U,R] = qr(Ahat,0);

18
19 % Return function handles to apply V and V^T on the left

20 V = @(A) apply_V(A,D_diags,p);

21 Vt = @(A) apply_Vt(A,D_diags,p_inv);

22 end

23
24 function [Ahat] = apply_V(A, D_diags, p)

25 % apply_V Apply ROS mixing: V*A

26 Ahat = A;

27 for i=1:size(D_diags,2)

28 Ahat = bsxfun(@times, Ahat, D_diags(:,i)); % Ahat = D_i*Ahat

29 Ahat = dct(Ahat); % Ahat = F*Ahat;

30 end

31 if nargin == 3 % apply sorting

32 Ahat = Ahat(p,:);

33 end

34 end

35
36 function [Ahat] = apply_Vt(A, D_diags, p_inv)

37 % apply_Vt Apply transpose ROS mixing: V^T*A

38 if nargin == 3 % apply sorting

39 Ahat = A(p_inv,:);

40 else

41 Ahat = A;

42 end

43 for i=size(D_diags,2):−1:1
44 Ahat = idct(Ahat); % Ahat = F^T*Ahat;

45 Ahat = bsxfun(@times, Ahat, D_diags(:,i)); % Ahat = D_i*Ahat

46 end

47 end
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1.3 Applications to Least-Squares Problems

1.3.1 Solving Least-Squares Problems with a URV Factorization

A URV factorization can be used to solve least-squares problems in much the same manner

as a QR factorization. Throughout this subsection we assume that A is m × n and full-rank. We

are interested in finding a solution to

min
x
‖Ax− b‖2

for both the overdetermined case m ≥ n and the underdetermined case m < n.

1.3.1.1 Overdetermined Systems

Consider first the case when A is overdetermined. To find the least-squares solution with a

QR factorization, we only need a thin QR factorization, where Q is m × n and R is n × n [42].

Similarly, the internal QR factorization in RURV_ROS can be a thin QR. By computing A = URV

and using that U has orthonormal columns,

min
x
‖Ax− b‖2 = min

x
‖URV x− b‖2 = min

x
‖RV x− UT b‖.

The least-squares problem reduces to the non-singular n×n upper-triangular system Ry = UT b in

the auxiliary variable y = V x. The system Ry = UT b is solved for y with backward substitution,

and then the least-squares solution is found with x = V T y.

Note that we do not need to explicitly form U to apply UT to b. When we call LAPACK’s

_geqrf on Â = AV T , the routine overwrites the upper-triangular part of Â with R and the

Householder reflectors in the strictly lower triangular part of Â. By feeding the Householder

reflectors into _ormqr, we can implicitly compute UT b in O(mn) FLOPs without ever accumulating

U [5].

The dominant cost of using RURV_Haar to compute least-squares solutions is a mix of gener-

ating V , computing Â = AV T , and the thin QR to find U and R. The latter two operations cost

O(mn2) FLOPs. The dominant cost of using RURV_ROS is also O(mn2), but the leading cost term
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only comes from the unpivoted, thin QR to form U , as the mixing Â = AV T is faster, taking only

O(mn log n) FLOPs.

1.3.1.2 Underdetermined Systems

Now consider the underdetermined case. A full URV factorization A = URV is of the follow-

ing form:

n[ ]
m A

=
m

m U

m n−m[ ]
R11 R12

n

V. n
(1.4)

Since A is assumed to be full-rank, minx ‖Ax − b‖2 = 0 and we seek to solve Ax = b. As in the

overdetermined case, make the change of variable y = V x; we now consider solving the upper-

trapezoidal system Ry = UT b. Partitioning y into m×1 and (n−m)×1 blocks results in the block

system [
R11 R12

] y1

y2

 = UT b,

where R11 is upper-triangular and full-rank. A particularly simple solution is found by setting

y2 = 0 and performing backward substitution to find y1. Following [42], we call this the basic

solution. Note that the basic solution has m−n zeros in y, but after unmixing to find xbasic = V T y,

the zeros in y2 are mixed with the non-zeros in y1, destroying the sparsity of xbasic. While this

is less than ideal, mixing and unmixing is fast, and sparsity in the mixed domain might still be

applicable in certain applications.

Notice that R12 is not used to compute the basic solution. Since R is computed from Â =

AV T , which mixes all the columns of A together, we may compute U and R11 from the QR

factorization of Â(:, 1:m) (in matlab notation). This avoids the computation of R12, leading to

a faster solution. Mixing to find Â = AV T costs O(mn log n); computing R11 costs O(m3); and

applying UT b, backward substitution to find y = R−1
11 UT b, and unmixing to find xbasic = V T y all

cost a negligible amount for large m and n. This brings the total cost to compute the basic solution

to O(m3, mn log n) FLOPs.
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Another common solution is the minimum norm solution. Since the solution set X =

{x ∈ Rn |Ax = b} is closed and convex, there exists a unique minimum norm solution, which is a

principal attraction to the minimum norm solution (a similar statement holds even when A is rank

deficient). Finding the minimum norm solution can be expressed as the problem

min ‖x‖2

s.t. Ax = b.

Let L(x, ν) = xT x + νT (Ax − b) be the Lagrangian function. Slater’s condition for this problem

is simply that the problem is feasible, which is of course satisfied since we assume A is full-rank.

Therefore, strong duality holds and the KKT conditions,

∇xL = 2x + AT ν = 0, Ax− b = 0,

give necessary and sufficient conditions for the solution [17]. Solving the KKT conditions gives

xmn = AT (AAT )−1b = A†b, where A† is the (right) pseudoinverse of A. To use this closed-form

solution efficiently, it is convenient to perform a QR factorization of AT . Specifically, if we let

AT = QR, then xmn = QR−T b, where R−T b is computed implicitly with forward substitution.

To find the minimum norm solution with mixing, we should mix the columns of AT in

preparation for the unpivoted QR of ÂT . Let ÂT = AT V T (which we may compute via Â = V A)

and compute ÂT = UT LT via unpivoted QR. We then have the factorization A = V T LU , where V

is our fast ROS mixing matrix, L is m×m lower triangular, and U is m×n with orthonormal rows

(i.e., UT is orthonormal). We call the algorithm to compute A = V T LU RVLU_ROS in analogy with

RURV_ROS. By multiplying Ax = b on the left by V , we find Âx = V b, and from the discussion above,

the minimum norm solution is xmn = UT L−1V b. Again note that L−1 is applied implicitly using

forward substitution. The dominant cost of this approach is again the unpivoted QR factorization

of ÂT , which costs O(mn2) FLOPs, which can be significantly higher than the O(m3, mn log n)

FLOPs for the basic solution.
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1.3.2 Timing Experiments

Solving least-squares problems with RURV_ROS or RVLU_ROS factorizations will be slightly

slower than using unpivoted QR; the additional cost comes almost entirely from the mixing steps

in Algorithm 2. In our code, we use the DCT-II and DCT-III, as implemented in FFTW [37].

For improved performance, we cache FFTW “wisdom” in a file and load it the next time it is

applicable. Finding the solution proceeds in three stages: mixing to find Â, performing unpivoted

QR factorization of Â or ÂT , and computing the final solution vector, which may involve mixing

a single vector. For moderately large overdetermined problems, mixing to find Â takes about 25%

of the total runtime; unpivoted QR factorization 75% of the total time; and solving/mixing takes

a negligible amount of time, since it is applied to only a single vector.

We compare with BLENDENPIK, which uses mixing across rows and row sampling to find

a good preconditioner for LSQR [8, 77]. The authors wrote most of their code in C for efficiency,

calling LAPACK and FFTW libraries and providing their own implementation of LSQR. In the

underdetermined case, BLENDENPIK computes the minimum norm solution. We use DCT mixing

and adjust the size of the preconditioner to balance the cost of building the preconditioner with the

cost of LSQR iterations. We otherwise use the default parameters provided in BLENDENPIK’s

interface.

It is worth noting that the well-known backslash (\) operator in matlab solves (rectangular)

linear systems in the least-squares sense using a QR-based approach. matlab’s \ operator tends

to be significantly slower than BLENDENPIK and RURV_ROS, but \ also supports the case of

rank-deficient matrices [66]. LAPACK has a variety of least-squares routines, and can handle

full-rank and rank-deficient matrices. The LAPACK routine _gels uses a simple rescaling and

unpivoted QR or LQ to solve full-rank least-squares problems [5]. For highly overdetermined

systems, BLENDENPIK is reported to beat QR-based solvers, including _gels, by large factors

[8].

For the following timing experiments, we take A to be a random matrix constructed by
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A = UΣV T where U and V are random orthogonal matrices and Σ is a diagonal matrix of singular

values such that κ2(A) = 106 (κ2(A) = ‖A‖2‖A−1‖2 is the spectral condition number of A). We

take a single random right-hand side vector b with entries sampled from N(0, 1) and solve the

problem minx ‖Ax − b‖2. We link BLENDENPIK and our code against matlab’s LAPACK and

the standard FFTW library. For timing results, we run each routine a number of times to “warm-

up” any JIT-compiled matlab code and then run a number of timed samples.

Our code is designed to scale up to multiple threads on a single machine, using multi-threaded

versions of LAPACK and FFTW, but BLENDENPIK currently uses only a single thread for their

FFTW calls. We note that it would be straightforward to extend BLENDENPIK to use multi-

threaded FFTW calls, but mixing is hardly the dominant cost of BLENDENPIK, so one would

not expect see a large improvement in runtimes. Nevertheless, we perform the following timing

experiments using only a single thread in order to compare BLENDENPIK and RURV_ROS fairly.

Figures 1.3 and 1.4 show the average runtime for random A with κ2(A) = 106 of various

sizes. We consider quite underdetermined, slightly underdetermined, slightly overdetermined, and

quite overdetermined examples. For underdetermined systems, computing the basic solution with

RURV_ROS is slightly faster than BLENDENPIK, which computes the minimum norm solution.

Using RVLU_ROS to compute the minimum norm solution is moderately slower than BLENDENPIK.

Note that error bars showing the minimum and maximum runtime in the sample are used in Figures

1.3 and 1.4. Since the variance in runtime is so low, the error bars are barely visible, but this also

means that the differences in runtime between methods is significant,

Figure 1.5 shows the ratio of the runtimes for RURV_ROS and RVLU_ROS for both 1 and 8

threads. For slightly underdetermined systems, the speedup factor approaches 4 (i.e., for large m,

using 8 threads runs about 4 times faster than using only 1 thread). For slightly overdetermined

systems, the speedup factor approaches 4. Although we see speedup factors of less than the ideal

factor of 8, our implementation does parallelize nicely. The speedup factors may very well continue

to increase outside of the range of matrices we tested, which was limited by having only 32 GB of

RAM on the machine.
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Figure 1.3: Average runtime for BLENDENPIK, RURV_ROS, and RVLU_ROS approaches on un-
derdetermined systems. The RVLU_ROS based minimum norm solution is eventually slower than
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with RURV_ROS, being simpler to compute, is a consistently faster than the RVLU_ROS based mini-
mum norm solution.

10
2

10
3

10
4

m

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
v
e

ra
g

e
 r

u
n

ti
m

e
 (

s
)

Average runtime for m/n = 2.00 for 3 runs (1 thread)

BLENDENPIK

RURV_ROS

10
2

10
3

10
4

m

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
v
e

ra
g

e
 r

u
n

ti
m

e
 (

s
)

Average runtime for m/n = 20.00 for 3 runs (1 thread)

BLENDENPIK

RURV_ROS
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Before we continue with our discussion of our experiments, we make a brief note on im-

plementing RURV_ROS on a distributed memory machine. The two major steps of RURV_ROS are

mixing and the unpivoted QR factorization, which can be handled by FFTW and ScaLAPACK,

respectively. FFTW has a distributed memory implementation using MPI, and the interface is very

similar to the shared memory interface. ScaLAPACK’s routine p_geqrf performs unpivoted House-

holder QR, but uses a suboptimal amount of communication. In [26] communication-avoiding

QR (CAQR) was introduced. CAQR sends a factor of O(
√

mn/P ) fewer messages than p_geqrf
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and overdetermined systems using 1 and 8 threads. We plot the ratio of the runtime using 1 thread
over the runtime using 8 threads, so speedup factors greater than 1 correspond to an improvement
when running in parallel.

(where P is the total number of processors in the grid), and achieves the optimal amount of com-

munication (up to polylogarithmic factors). The reduction in communication is predicted to result

in significantly faster factorization runtimes. Using FFTW, ScaLAPACK, or other, existing codes

as building blocks, we expect that RURV_ROS can be implemented efficiently and straightforwardly

for distributed memory environments.

1.3.3 Example - Correlated Columns and the Basic Solution

The dominant cost of using a URV factorization to compute the basic solution to an under-

determined m×n system (m < n) is computing a QR factorization of Â(:, 1:m). Thus, it is asymp-

totically cheaper than the minimum norm solution, which uses an LQ factorization of the full Â.

Specifically, computing the basic solution costs O(m3, mn log n) FLOPs, while computing the min-

imum norm solution costs O(m2n) FLOPs [42]. We have seen in Figure 1.3 that computing the

basic solution is significantly faster than computing the minimum norm solution with RURV_ROS,

and even slightly faster than BLENDENPIK, which also computes the minimum norm solution.

The following simple example shows that finding the basic solution using unpivoted QR is
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numerically unstable for some least-squares problems. Consider

A =


1 0 0 0

0 1 1 1

0 0 ε 1

 ,

with ε � 1 and consider solving minx ‖Ax − b‖2. Note that A is full-rank and that it can be

analytically verified that κ2(A) ∼ 1 +
√

2 as ε → 0, so A is very well conditioned for ε � 1.

However, columns 2 and 3 are increasingly correlated as ε→ 0. Since A is already upper trapezoidal,

an unpivoted QR factorization does not change A when finding R. When finding the basic least-

squares solution in this manner, it transpires that we solve the linear system

R11x1 =


1 0 0

0 1 1

0 0 ε




x1,1

x1,2

x1,3

 = QT b = b =


b1

b2

b3

 .

However, this system has κ2(R11) ∼ 2/ε as ε → 0, and so becomes ill-conditioned as columns 2

and 3 become more correlated. Even for this small system, finding the basic solution x̂ with an

unpivoted QR factorization leads to a large residual ‖Ax̂− b‖2.

This can be fixed by using QRCP on all of A instead of unpivoted QR on A(:, 1:m). Note that

using QRCP on A(:, 1:m) will encounter similar ill-conditioning problems, as doing so will not allow

QRCP to pivot in column 4. Using a URV factorization which mixes in column 4 of A also leads

to a much better conditioned R11, alleviating the issue of correlated columns when using the basic

solution. This simple example can be extended to larger matrices, as we show next.

Consider an m× (n− p) matrix A with m < n such that each element of A is sampled from

N(0, 1). We augment A by adding p randomly selected columns of A to the end of A, making A

m×n. The augmented A has p perfectly correlated columns, so we add a small amount of N(0, σ2)

noise to the augmented A so the correlation is not perfect. We then randomly shuffle the columns.

Listing 1.2 gives matlab code to generate such a matrix, which tends to be well-conditioned. If the

final permutation places a pair of highly correlated columns in the first m columns of A, finding the
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basic solution x̂ with unpivoted QR will produce an ill-conditioned R11, leading to a large residual

‖Ax̂ − b‖2. This can be solved by mixing with RURV_Haar or RURV_ROS, or computing the (more

costly) minimum norm solution.

Listing 1.2: matlab code to generate a matrix with a few correlated columns
1 m = 1000; n = 1500;

2 p = 10; sigma = 1e−4;
3
4 A = randn(m,n−p);
5 perm = randperm(n−p,p);
6 A = [A A(:,perm)];

7 perm = randperm(n);

8 A = A(:,perm) + sigma*randn(m,n);

Table 1.1 shows the residuals and runtimes on a matrix generated with Listing 1.2. We tested

unpivoted QR, QRCP, BLENDENPIK, RURV_Haar, and RURV_ROS. We use unpivoted QR on only the

first m columns of A, so it produces a significantly larger residual than the other methods. Note

that BLENDENPIK actually computes the minimum norm solution and is included for reference.

RURV_Haar and RURV_ROS both compute basic solutions with acceptably small residuals. As ex-

pected, RURV_ROS is considerably faster than RURV_Haar, but slightly slower than plain, unpivoted

QR.

It is interesting to note that the norm of the mixed basic solution is considerably smaller than

the unmixed basic solution. Table 1.2 shows the same comparison for p = 0 correlated columns,

where we see that the mixed and unmixed basic solutions have norms that are not unreasonably

large. The norms of the mixed basic solutions are on the same order for the cases of p = 10 and

p = 0 correlated columns, unlike QR and QRCP.

1.4 Experimental Comparison of RURV_Haar and RURV_ROS

In this section we experiment with a variety of QR and URV factorizations, some of which

are known to be rank-revealing. In Subsection 1.4.1 we experiment with how the rank-revealing

conditions (1.1) and (1.2) scale with increasing n. Our chief interest here is the comparison of
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Method Residual - ‖Ax̂− b‖2 Norm - ‖x̂‖2 Time (s)
QR 3.0× 10−9 1.3× 105 0.04
QRCP 2.5× 10−13 5.8× 100 0.19
BLENDENPIK 1.4× 10−13 1.4× 100 0.16
RURV_Haar 5.8× 10−12 1.5× 102 0.52
RURV_ROS 1.4× 10−12 4.3× 101 0.10

Table 1.1: Comparison of basic solution residuals for the 1000× 1500 matrix from Listing 1.2 with
p = 10 correlated columns. As expected, unpivoted QR has a relatively large residual, while the
other methods perform better. Note that BLENDENPIK computes the minimum norm solution.

RURV_Haar and RURV_ROS, to determine whether RURV_ROS may potentially be rank revealing.

We can use RURV_ROS to form low-rank approximations by performing the mixing and pre-

sort as usual, but only performing k steps of the QR factorization, yielding a rank-k approximation.

The mixing step costs O(mn log n) FLOPs as usual, but now the partial QR factorization costs

only O(mnk) FLOPs. In Subsection 1.4.3, we investigate pairing QR and URV factorizations with

Stewart’s QLP approximation to the SVD [86]. One can use the QLP approximation to obtain an

improved rank-k approximation by truncating the L factor.

1.4.1 Scaling of Rank-Revealing Conditions

It was shown in [25, 9] that RURV_Haar produces a strong rank-revealing factorization with

high probability. RURV_ROS simply replaces Haar mixing with ROS mixing and adds a pre-sort

before the unpivoted QR factorization, so we expect RURV_ROS to behave similarly to RURV_Haar.

Specifically, we hope that RURV_ROS obeys the strong rank-revealing conditions (1.1) and (1.2) in a

manner similar to RURV_Haar.

We experimentally test the scaling of the ratios σi(A)/σi(R11), σj(R22)/σk+j(A), and the

norm ‖R−1
11 R12‖ to determine if they appear to be bounded above by a slowly-growing polynomial.

In Figure 1.6 we take A to be a random m×m matrix of rank k ≈ m/2. The matrix A is formed

as A = UΣV T , where U and V are Haar random orthogonal matrices, Σ = diag(σ1, ..., σm), and

the σi decay slowly until σm/2, where there is a gap of about 10−10, after which the σi decay

slowly again. We sample sizes m from 10 to 1000; for each m, we generate five instantiations
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Method Residual - ‖Ax̂− b‖2 Norm - ‖x̂‖2 Time (s)
QR 5.4× 10−13 1.8× 101 0.04
QRCP 2.5× 10−13 6.1× 100 0.20
BLENDENPIK 1.3× 10−13 1.4× 100 0.15
RURV_Haar 4.8× 10−12 1.2× 102 0.52
RURV_ROS 1.3× 10−12 3.9× 101 0.10

Table 1.2: Comparison of basic solution residuals for the 1000× 1500 matrix from Listing 1.2 with
p = 0 correlated columns. All methods perform well, and that the two URV-based methods compute
mixed basic solutions with norms on the same order as in the previous case with correlated columns.

of the matrix A, perform a variety of factorizations for each A, and compute the conditions (1.1)

and (1.2) for each factorization. For plotting, we plot the maximum over the five instantiations of

maxi σi(A)/σi(R11), maxj σj(R22)/σk+j(A), and ‖R−1
11 R12‖.

We use the LAPACK routine dgejsv to compute singular values of the test matrices (when the

exact singular values are unknown) and in the computation of the ratios (1.1). dgejsv implements

a preconditioned Jacobi SVD algorithm, which can be more accurate for small singular values

[27, 32, 33]. Specifically, if A = DY (or A = Y D), where D is a diagonal weighting matrix and Y

is reasonably well-conditioned, dgejsv is guaranteed to achieve high accuracy. The relative error

of the singular values computed with the preconditioned Jacobi method are O(ε)κ2(Y ), whereas

the relative errors as computed with a QR-iteration based SVD are O(ε)κ2(A) [32, 28]. This fact is

particularly relevant when we test with the Kahan matrix, which is discussed later in the section.

Even when A is not of the form A = DY , A = Y D, or even A = D1Y D2, it is expected that

dgejsv returns singular values at least as accurate as a QR-iteration based SVD.

We test QRCP, RURV_Haar, RURV_ROS, HQRRP from [65], which uses random projections to select

blocks of pivots, and DGEQPX from [15], which is known to be a rank-revealing QR. Note that HQRRP

is intended to efficiently produce a column-pivoted Householder QR; it is not a rank-revealing QR,

but it tends to be rank-revealing in practice, like QRCP.

Figure 1.6 shows the rank-revealing conditions for A a random m×m matrix of rank k ≈ m/2.

The three QR factorizations we test, QRCP, HQRRP, and DGEQPX, perform very well, meaning that the

sampled rank-revealing conditions appear to be bounded above by a slowly growing polynomial.
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Note that Figure 1.6 uses a log-log scale, on which polynomial growth appears linear. As we expect,

RURV_ROS performs about as well as RURV_Haar. With the exception of a few points, RURV_Haar and

RURV_ROS appear to be bounded above by a slowly growing polynomial, albeit a significantly larger

polynomial than for the three QR factorizations. The exceptions may very well be points where

RURV_Haar or RURV_ROS failed to produce a rank-revealing factorization for at least one of the five

sampled A matrices.
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Figure 1.6: Maximum of the sampled values of the rank-revealing conditions from Subsection
1.2.1 for five random m × m matrices of numerical rank m/2. The three QR factorizations ex-
hibit growth that is clearly bounded by a slowly growing polynomial (linear in a log-log plot).
RURV_Haar and RURV_ROS also appear to exhibit bounded growth, with only a few exceptions;
recall that RURV_Haar produces a strong rank-revealing factorization with high probability, not
deterministically.

Figure 1.7 shows the rank-revealing conditions with A the m×m Kahan matrix and k chosen

to be m−1. The Kahan matrix is a well-known counterexample on which QRCP performs no pivoting

in exact arithmetic [31]. We use the Kahan matrix (with perturbation) as described in [28]. The
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m×m Kahan matrix is formed as

A =



1 0 0 · · · · · · 0

0 s 0 · · · · · · 0

0 0 s2 . . . · · · 0
...

... . . . . . . . . . ...
...

... · · · . . . . . . 0

0 0 0 · · · 0 sm−1





1 −c −c · · · · · · −c

0 1 −c · · · · · · −c

0 0 1 . . . · · · −c

...
... . . . . . . . . . ...

...
... · · · . . . . . . −c

0 0 0 · · · 0 1



, (1.5)

where s2 + c2 = 1 and s, c ≥ 0. When using QRCP to compute the factorization

AΠ = QR = Q

R11 R12

R12

 , R11 ∈ Rk×k, R12 ∈ Rk×(m−k), R22 ∈ R(m−k)×(m−k),

it is known that σk(A)/σk(R11) ≥ 1
2c3(1+c)m−4/s for k = m−1, and σk(R11) can be much smaller

than σk(A) [45]. That is, QRCP does not compute a rank-revealing factorization, as the first ratio in

(1.1) grows exponentially for i = k = m− 1. To prevent QRCP from pivoting on the Kahan matrix

in finite arithmetic, we multiply the jth column by (1 − τ)j−1, with 1 � τ � ε [31, 28]. In our

tests, we pick c = 0.1 and τ = 10−7.

The most apparent feature of Figure 1.7 is that the rank-revealing conditions for QRCP grow

exponentially. This is a known feature of the Kahan matrix, and shows that QRCP is not strictly

speaking a rank-revealing QR (in practice, however, it is still used as a rank-revealing factoriza-

tion). Moreover, the Kahan matrix is so bad for QRCP, we believe dgejsv cannot accurately compute

the singular values in the ratios σi(A)/σi(R11) and σj(R22)/σk+j(A). As m grows, the right-hand

matrix in (1.5) becomes increasingly ill-conditioned, and we see the exponential growth in Figure

1.7 stop around m = 103. In infinite precision arithmetic, the exponential growth should continue,

so we stop testing at m ≈ 400. As expected, the rank-revealing conditions for RURV_ROS scale in

the same manner as RURV_Haar, giving credence to our thought that RURV_ROS is rank-revealing

with high probability.
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Figure 1.7: Maximum of the sampled values of the rank-revealing conditions from Subsection 1.2.1
on the m×m Kahan matrix. As expected, QRCP performs very poorly, with all conditions scaling
exponentially. Again, we see that RURV_Haar and RURV_ROS behave similarly.

1.4.2 Accuracy of R-Values

Another test we perform involves the accuracy of |R(i, i)| in predicting σi(R) (R(i, i) is the

ith diagonal element of the upper-triangular factor from a QR or URV factorization). Following

[28], we call the |R(i, i)| R-values. The R-values can be used as a rough estimate of the singular

values. A better approximation is to use Stewart’s QLP factorization [86], which we discuss in

Subsection 1.4.3. Nevertheless, it is beneficial to investigate the behavior of the R-values.

We test QRCP, RURV_Haar, and RURV_ROS on the first 18 test matrices from Table 2 of [28]

(most matrices are from [49, 45]). In Figure 1.8, we plot the minimum, median, and maximum

of the ratios |R(i, i)|/σi for the 18 test matrices. For each matrix, we let r and s be the vectors

of R-values and singular values, respectively; we plot min(r./s), median(r./s), and max(r./s)

(using matlab syntax). We see that QRCP produces ratios that are at most just over an order of

magnitude away from one. RURV_Haar produces slightly worse ratios, which seem to be spread over

about two orders of magnitude away from one. RURV_ROS with one mixing iteration produces ratios

comparable to RURV_Haar, with the exception of matrix 15, SPIKES. For matrix 15, the extreme
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ratios are significantly larger than on the rest of the test set. Adding a second mixing iteration

brings the ratios back down to a couple orders of magnitude away from one, but does not improve

the ratios for the other matrices beyond what is accomplished with a single mixing. We can also

find a bound for the ratios obtained with QR and URV factorizations.
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Figure 1.8: Ratios of |R(i, i)|/σi(R) for the 18 matrices in Table 2 of [28]. The abscissa is the index
of the matrix in the test set. For matrix 15 (SPIKES), RURV_Haar produces ratios on par with the
rest of the test set. For RURV_ROS, however, using only 1 mixing step produces very bad max/min
ratios; using two two mixing steps produces better ratios, but more mixing steps doesn’t appear to
yield further improvements. For the other 17 matrices, RURV_ROS produces ratios comparable with
RURV_Haar.

Let D be the diagonal part of R obtained from a QR or URV factorization, and define Y

via R = DY T . This results in the factorization AΠ = QDY T for QRCP and A = UDY T V for

RURV_Haar and RURV_ROS. For QRCP, the diagonal elements of R are non-negative and sorted in

decreasing order; this is not guaranteed for RURV_Haar or RURV_ROS. It follows from the Courant-

Fischer minimax theorem [42] that QRCP has the bounds

1
‖Y ‖

≤ R(i, i)
σi

≤ ‖Y −1‖. (1.6)

For RURV_Haar and RURV_ROS, let ρi be the ith largest (in absolute value) diagonal element of R.
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For RURV_Haar and RURV_ROS, we have the bounds

1
‖Y ‖

≤ |ρi|
σi
≤ ‖Y −1‖.

In addition to the minimum, median, and maximum values of |R(i, i)|/σi for each matrix, we

plot the bounds (1.6) for both QRCP and the two RURV factorizations. Even though the two RURV

factorizations are not guaranteed to be bound by (1.6), since it is a strong rank-revealing URV, we

expect the R-values to somewhat closely approximate the singular values and approximately obey

the QRCP bounds. With the exception of matrix 12, formed as A=2*rand(n)-1 in matlab, we see

this behavior in Figure 1.8, and we again see RURV_ROS behaving similarly to RURV_Haar.

1.4.3 Experiments With the QLP Approximation

The QLP factorization was introduced by G.W. Stewart as an approximation to the SVD in

[86]. The idea of the pivoted QLP factorization is to use QRCP to find R-values, and then improve

the accuracy (by a surprising amount) by performing another QRCP on RT . This results in a

factorization of the form A = Q1Π2LQT
2 Π1, where L is lower triangular. Following [28], we call the

diagonal elements of the L matrix L-values. In Stewart’s original experiments, it was found that

L-values approximate the singular values significantly more accurately than the R-values. Also, the

accuracy seemed intimately tied to using QRCP for the first factorization, but that unpivoted QR

could be used in the second QR factorization with only cosmetic differences. It was later shown

that the QLP factorization can be interpreted as the first two steps of a QR-style SVD algorithm

[53].

We experiment with QLP-style factorizations by performing QR, QRCP, RURV_Haar, or RURV_ROS,

and following up with an unpivoted QR to compute the L-values. We denote such a factorization

as {factorization}+QLP (e.g., QRCP+QLP). For the RURV factorizations, this QLP-style factoriza-

tion is of the form A = ULQT V . Figure 1.9 shows the singular values and L-values for a random

matrix of the form A = UΣV T , where U, V are Haar random orthogonal, and the singular values

are chosen to decay slowly, have a gap of approximate width 10−1, and decay slowly again. We see
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that all QLP-style factorizations, including QR+QLP, identify both the location and magnitude of

the gap quite accurately.

Also shown in Figure 1.9 are the L-values for the Devil’s stairs matrix, which is a particularly

difficult example for rank-revealing factorizations. The Devil’s stairs matrix is discussed in [86, 28],

and is formed with A = UΣV T , with U, V Haar random orthogonal and Σ controlling the stair-

step behavior. Of all the factorizations, QRCP+QLP performs the best, accurately identifying the

location and size of the singular value gaps. QR+QLP, RURV_Haar+QLP, and RURV_ROS+QLP all

provide evidence for the existence of singular value gaps, but none is able to identify the precise

location and size of the gaps.
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Figure 1.9: L-values from various QLP factorizations on a random 128 × 128 matrix with slowly
decaying singular values and a small gap of approximate size 10−1 and the Devil’s stairs with gaps
of approximate size 10−1. In each case, the legend name is of the form {factorization}+QLP, where
the second factorization is always unpivoted QR.

Figure 1.10 shows the minimum, median, and maximum L-values for 25 realizations of the

Devil’s stairs matrix. We again use QR, QRCP, RURV_Haar, and RURV_ROS, followed by QR to form

the QLP factorization. It is clear that QRCP+QLP produces the best L-values; RURV_Haar+QLP

and RURV_ROS+QLP generate L-values visually similar to those produced with QR+QLP. The L-

values are smeared around the jumps for QR and the two RURV factorizations, but the L-values

have a lower variance around the middle of the flat stairs. The variance of the L-values around the

gaps appears visually similar for QR+QLP, RURV_Haar+QLP, and RURV_ROS+QLP. For QR+QLP,

the variance is explained only by the Haar random orthogonal matrices used to construct the
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Devil’s stairs matrix; for RURV_Haar+QLP and RURV_ROS+QLP, the variance is a combination of

the random Devil’s stairs matrix and the random mixing.
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Figure 1.10: Min/Median/Max L-values for 25 runs of a randomly generated 128×128 Devil’s stairs
matrix with jumps of approximate size 10−1. QR, RURV_Haar, and RURV_ROS appear to predictably
show the presence and approximate location of the gaps, but are not accurate enough to estimate
the size of the gaps. QRCP performs very well, and accurately shows the location and size of the
gaps.

1.5 Summary

We have modified RURV_Haar, a strong rank-revealing factorization with high probability,

to use random orthogonal mixing (ROS) instead of Haar orthogonal matrix mixing. The new

algorithm, RURV_ROS, applies the mixing matrix implicitly and quickly, as opposed to RURV_Haar,

where the mixing matrix is generated with an unpivoted QR and applied with dense matrix-matrix

multiplication. With both randomized URV factorizations, one of the principal attractions is the

use of cheaper, unpivoted QR, instead of relying on the more expensive QRCP. The ansatz is that

mixing reduces the variance of the column norms, reducing the effect that column pivoting would

have, and so we can forgo pivoting and use a cheaper, unpivoted QR. A URV factorization can be
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used in many applications that call for a QR, and since the dominant asymptotic cost of RURV_ROS is

the same as unpivoted QR, RURV_ROS has the potential to be used as a safer alternative to unpivoted

QR. We have considered only real matrices, but the extension to complex matrices and transforms

is natural.

We experiment with using RURV_ROS to solve over- and underdetermined least-squares prob-

lems. Using a URV factorization to solve least-squares is very similar to using a QR factorization.

Our implementation of RURV_ROS even performs comparably to BLENDENPIK, which uses mixing

and row sampling to create a preconditioner for LSQR.

When one wants a solution to an underdetermined system, but does not need the minimum

norm solution, RURV_ROS can be used to find a basic solution slightly faster than BLENDENPIK,

which computes the minimum norm solution. Additionally, if even a few of the columns of the A

matrix are highly correlated, using unpivoted QR, or QRCP on the first m columns, can lead to an

inaccurate basic solution; using RURV_ROS computes a mixed basic solution with an accurate residual

and for which the norm of the solution is only an order of magnitude larger than the minimum

norm solution.

Finally, we experiment with the possible rank-revealing nature of RURV_ROS. We test the

scaling of the rank-revealing conditions (1.1) and (1.2) for RURV_Haar, RURV_ROS, and a few other

QR factorizations, one of which is rank-revealing. The prominent feature of the scaling tests is that

RURV_ROS behaves very similarly to RURV_Haar, which leads us to suspect that RURV_ROS produces

a strong rank-revealing factorization with high probability. We plan to investigate theoretically the

apparent rank-revealing nature of RURV_ROS.



Chapter 2

Delay-Decimated Cross-Ambiguity Functions

In this chapter we present new algorithms for computing the discrete, narrowband cross-

ambiguity function (CAF) on a downsampled grid of delay values for the purpose of quickly de-

tecting the location of peaks in the CAF surface. Due to the likelihood of missing a narrow peak

on a downsampled grid of delay values, we propose methods to make our algorithms robust against

missing peaks. To identify peak locations to high accuracy, we propose a two-step approach: first

identify a coarse peak location using one of our delay-decimated CAF algorithms, then compute

the CAF on a fine, but very small, grid around the peak to find its precise location. Runtime ex-

periments with our C++ implementations show that our delay-decimated algorithms can give more

than an order of magnitude improvement in overall runtime to detect peaks in the CAF surface

when compared against standard CAF algorithms.

2.1 Introduction

Let x(t) and y(t) be two complex baseband signals that share a common, but unknown, signal

in the presence of additive noise. It is well know that that if there is no relative frequency shift of

the common signal in x(t) and y(t), a relative delay between x(t) and y(t) can be found via the

cross-correlation function

r(τ) =
∫ T

0
x(t)y(t + τ)∗dt,

where τ is a relative delay and T is the integration time. To find potential relative delays between

x(t) and y(t), one computes |r(τ)| over a suitable range of τ and searches for peaks.
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When there is a non-zero relative frequency shift of the common signal in x(t) and y(t),

the cross-correlation function may no longer produce a peak at a valid relative delay of x(t) and

y(t). Under a narrowband signal model [97], the relative frequency shift can be compensated for by

shifting the spectrum of y(t) followed by performing the above correlation processing. However, the

relative frequency shift is often unknown and must be estimated jointly with the relative time delay,

as argued in [85]. A natural generalization of the cross-correlation function for jointly estimating

relative delay and relative frequency shift is the cross-ambiguity function (CAF)

A(τ, f) =
∫ T

0
x(t)y(t + τ)∗e−2πiftdt,

where f parameterizes a relative frequency shift between x(t) and y(t). To find candidate rela-

tive delays and relative frequency shifts, one computes |A(τ, f)| over a suitable range of τ and f

and searches for peaks. Note that A(τ, f) can be interpreted as the cross-correlation of x(t) and

y(t)e2πift.

We will work entirely with sampled data, and therefore use a discrete analogue to A(τ, f).

Let x[k] and y[k] be samples, taken at sample rate fs, of the complex baseband signals x(t) and

y(t), respectively. Following [92], we define the discrete, narrowband CAF as

A[j, n] =
K−1∑
k=0

x[k]y[k + j]∗e−2πi kn
K , (2.1)

where j represents a relative delay and n represents a relative frequency shift. Note that for any

fixed j, A[j, n] can be thought of as the discrete Fourier transform of x[k]y[k + j]∗. Indeed, the

relative frequency shifts n are computed on the standard DFT grid with spacing fs/K. Note also

that the relative delays j are computed at the input sample rate fs. For convenience, we will refer

to the discrete, narrowband CAF as simply the CAF and drop the word “relative” from relative

delay and relative frequency shift when the usage is clear from the context.

When computing the CAF for the purpose of identifying relative delays and frequency shifts

between x[k] and y[k], it is wasteful to compute values of the CAF outside the range of plausible

values of the relative delay and frequency shift. In typical scenarios, the integration time is often
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quite large compared to the delay search range, as is the signal bandwidth compared to the frequency

shift search range [85]. Therefore we are interested in computing A[j, n] over a somewhat short

range of j and a narrow range of n (the shape of the array A[j, n] is usually “tall-skinny”).

The standard CAF algorithm for this scenario was originally described heuristically by Stein

in [85], and later derived more precisely by Tolimieri and Winograd in [92], where it is called the

“Transform Method”. It computes A[j, n] precisely under the assumption that the plausible range

of n is small compared to the number of integration samples K. We review the derivation of this

algorithm in Section 2.2, as we use this method as the standard for comparison and as the basis

for our delay-decimated CAF algorithms. Due to the data flow in the algorithm (it effectively uses

a matrix transpose operation), it is sometimes referred to as the corner-turn CAF algorithm, a

term we adopt as well.

The corner-turn CAF algorithm computes values of A[j, n] on the grid on which it is defined

in (2.1): the delay dimension has spacing 1/fs and the frequency shift dimension has spacing fs/K.

This allows one to directly determine fine estimates of the delay and frequency shift of a detected

peak. Furthermore, it can typically provide multiple samples around the sides of the peak that can

be used to interpolate the peak location to sub-grid precision.

2.1.1 A Two-Step Strategy for Peak Detection

Peaks in the CAF typically occupy a small portion of the grid on which the CAF is computed.

The work spent computing the CAF in bins not nearby the peak is therefore wasted. To reduce

the burden of identifying peak locations, we propose a two-step strategy:

(1) Identify peaks via a CAF computed on a grid that has been downsampled in the delay

dimension. We refer to such a CAF as a delay-downsampled CAF.

(2) For each peak identified, compute a small portion of the non-delay-downsampled CAF on

a fine grid around those peaks, providing more precise peak locations.

For this strategy to be useful, the first step cannot miss peaks that the CAF on fine grid
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would not miss. Of course, it must also provide computational savings over computing the CAF

on the fine grid of the same extent. Computing the first step is the subject of Sections 2.3 and 2.4,

where new algorithms are derived that efficiently compute the CAF on a delay-downsampled grid

while maintaining a measure of safety to missing peaks.

Note that we cannot necessarily decimate x[k] and y[k] to a lower rate, which would serve to

downsample the delay dimension of the CAF. We assume that x[k] and y[k] are sampled at a rate

commensurate with their bandwidths (i.e., at least satisfying the Nyquist criterion [59]). Were we

to lowpass filter and downsample x[k] and y[k], we would lose energy in their spectra that would

otherwise correlate and provide useful integration gain. Once a coarse peak location is identified,

it is relatively inexpensive to compute a very small CAF (e.g., via the corner-turn algorithm) on a

fine grid in order to produce a precise estimate of the peak location. An example will be given in

Section 2.5 that shows the cost of such a small CAF on a fine grid is quite inexpensive.

2.1.2 Related Work

One simple way to coarsen the frequency shift grid is to simply integrate over a shorter time

period. This decreases the effective processing gain, so this can be undesirable. In [85], Stein

proposed forming a coherent sum of short-integration CAFs, which has the effect of coarsening the

frequency shift grid while using the same total integration time. This maintains the variance of the

delay estimate, but has the side-effect of increasing the variance of the frequency shift estimate. The

idea was later expanded upon in [96] to approximate the discrete, wideband CAF. This coherent

sum idea can combined with our delay-decimated CAF algorithms, resulting in a coarsened delay

and frequency shift grid.

Stein proposed a coarse mode and fine/tracking mode in [85]. The coarse mode processing

uses a short integration in order to ease the computational burden when searching for the general

location of the peak. The fine mode then dramatically increases the integration time and uses a

corner-turn-like algorithm to produce fine estimates of the peak location. Our delay-decimated

CAF algorithms can cheaply utilize the full integration time one would use for the fine mode,
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which gives our algorithms an improvement in SNR over using a shorter integration time.

Auslander and Tolimieri proposed methods for computing decimated CAFs in [6]. Their

methods compute CAFs that are decimated in both the delay and frequency shift dimensions,

and they propose a procedure that allows for different decimation factors for both the delay and

frequency shift dimension. However, a major downside of their algorithms (when used in typical

scenarios) is that they compute delays and frequency shifts over the full range of possible values

(i.e., all K possible frequency shifts). Since we focus on the scenario of a relatively narrow frequency

shift range, we do not consider their method further in this chapter.

2.1.3 Organization and Notation

The remainder of the chapter is devoted to the description of the corner-turn CAF algorithm

and our two new algorithms. In Section 2.2 we describe the corner-turn CAF algorithm, which

we call TransformCAF, as it is called the “Transform Method” in [92]. In Section 2.3 we describe

one of our new algorithms, TransformCAF(delay_dec=P), which is based on the corner-turn CAF

algorithm. We also discuss a simple, but effective, trick to reduce the likelihood of missing a peak

caused by computing the CAF on a delay-downsampled grid. When using this trick, or another

strategy to increase the robustness of a delay-downsampled CAF, we refer to the CAF as a delay-

decimated CAF. In Section 2.4 we propose TransformCAF(delay_comp=P, gamma=γ), which uses

a more sophisticated, but costly, method to prevent missing peaks. Finally, Section 2.5 presents a

brief runtime experiment with our C++ implementations and some future directions of research.

Throughout the chapter, we will use the notation u[k] to represent a sampled data signal.

We overload the notation u[k] to mean both the single element of the signal at sample k and also

the vector of data {u[k]}0≤k≤K−1. The particular meaning used should be clear from the context

of the usage. Similarly, for two-dimensional arrays, such as u[j, k], we use u[j, k] to refer to either

the single element of the array at position (j, k) or the full two-dimensional array.

We will also be slightly lazy with the bounds of the index k, allowing it to be negative or

greater than K − 1. In such a case, we take u[k] = 0, effectively zero-padded u[k] appropriately.
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For example, the convolution (with both initial and final transients)

v[k] =
M−1∑
m=0

h[m]u[k −m], for 0 ≤ k ≤ K + M − 1

uses this implicit zero padding on both the beginning and end of u[k].

We denote delay-downsampled CAFs as A[j′P, n], where P is the delay-downsampling factor

and A[j, n] is the full CAF with all rows computed. We use this notation to keep track of the delay-

downsampling factor in a concise manner, instead of introducing a separate notation to keep track

of P . It should be noted that when we compute a delay-downsampled CAF A[j′P, n], we don’t

actually compute the rows between j′P and (j′ +1)P . Assuming A[j, n] has J rows, we occasionally

refer to A[j′P, n] as having J/P rows and reference the row indexed by j′P as row j′ of A[j′P, n]

(cf. the end of Subsection 2.4.1).

2.2 The Corner-Turn CAF Algorithm

In this section we repeat the derivation of Tolimieri and Winograd’s “Transform Method”

from [92], also known as the corner-turn CAF. To simplify the derivation, we make minimal as-

sumptions about the lowpass filter h[m] and drop the filter passband correction from the derivation

(though we include it in our C++ implementation).

Let us first be more precise about the definition of the CAF and the range of delays and

frequency shifts of interest. We seek to compute

A[j, n] def=
K−1∑
k=0

x[k]y[k + j]∗e−2πi kn
K (2.2)

over the range of delays 0 ≤ j ≤ J and frequency shifts −N ≤ n ≤ N . We seek to compute fre-

quency shifts only over a narrow band relative to the integration time, meaning N � K.

Taking the DFT interpretation of A[j, n], we see that we seek only the “central” 2N + 1 bins

of the DFT. The remaining bins, of the K total, are discarded. Since N � K, we are keeping a

small minority of the K bins, so naïvely computing length-K DFTs is very wasteful.
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2.2.1 The Zoom FFT

The zoom FFT (also known as the limited range DFT [22], zoom transform, or spectral

vernier) is a technique to compute a subset of contiguous bins of a large DFT [59]. Due to our

use in Section 2.3 of another algorithm that we call the algebraic zoom FFT, we call this zoom

FFT the “filter-based” zoom FFT.

Suppose we have complex samples u[k], for 0 ≤ k ≤ K − 1, and are interested in bins −N ≤

n ≤ N of the length-K DFT

U [n] =
K−1∑
k=0

u[k]e−2πi kn
K .

The zoom FFT proceeds by lowpass anti-alias filtering u[k], downsampling the filtered samples,

and performing a shorter FFT, which results in the approximate values of U [n] for the bins of

interest. The downsampling operation zooms in on the spectrum of u[k] centered on the bin n = 0

(hence the name zoom FFT). Without the lowpass anti-alias filter, downsampling would in general

produce significant aliasing errors. Finally, the short FFT brings the processed time-domain signal

into the frequency domain, giving us the approximate values of U [n]. Note that this procedure

gives approximate values for U [n] at the exact grid points of the original DFT.

Let us suppose that K = LR with L, R ∈ N, where the decimation factor L is chosen such

that R ≥ 2N + 1. Let h[m], 0 ≤ m ≤M − 1, be a lowpass FIR filter with cutoff frequency greater

than or equal to 1/L (in normalized frequency units from −1 to 1) and unit gain at 0Hz. We form

the filtered signal

ũ[k] = {h ∗ u}[k] =
M−1∑
m=0

h[m]u[k −m], 0 ≤ k ≤ K − 1.

We then downsample the filtered signal to form the filtered-and-downsampled signal

v[r] = ũ[rL] =
M−1∑
m=0

h[m]u[rL−m], 0 ≤ r ≤ R− 1.

We now have that the bins −N ≤ n ≤ N of the length-R DFT of v[r] are approximately equal to

the corresponding bins of U [n] (with an appropriate scaling factor):

U [n] ≈ LV [n] = L
R−1∑
r=0

v[r]e−2πi rn
R for −N ≤ n ≤ N.
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The approximations involved here are that h[m] is not an ideal lowpass filter and that there are

transients involved when forming ũ[k].

Forming all K samples of ũ[k] just to then downsample by a factor of L when forming

v[r] = ũ[rL] is itself quite wasteful. As is typical, we implement the filter-and-downsample operation

jointly with a polyphase implementation. See [59] and [78] for an introduction to polyphase filtering.

If L is sufficiently large or M sufficiently small (certainly if L ≥ M), computing v[r] directly may

also be efficient.

Depending on the requirements of the lowpass filter, the computational complexity of the

zoom FFT can be substantially lower than the full length-K DFT. The cost of the naïve, length-K

DFT approach is O(K log K) FLOPs. The cost of the zoom FFT approach is the cost of the

filter-and-downsample operation plus the O(R log R) FLOPs for the length-R DFT. For instance,

a direct implementation of the filter-and-downsample operation uses O(RM) FLOPs.

2.2.2 Using the Zoom FFT to Compute the CAF

Let us now use the zoom FFT to compute the CAF over the desired range of frequency shifts

−N ≤ n ≤ N . We first define the mixing product

u[j, k] def= x[k]y[k + j]∗, 0 ≤ j ≤ J, 0 ≤ k ≤ K − 1.

As mentioned previously, we can form row j of the CAF by taking the length-K DFT of row

j of the mixing product and extracting bins −N ≤ n ≤ N . It should be noted, however, that

the mixing produce matrix is of size (J + 1) × K, which can be enormous for the large K of

typical scenarios. Therefore we would never explicitly form the full mixing product matrix in an

implementation. The CAF is of size (J + 1) × (2N + 1) which can still be large, but is roughly a

factor of L smaller than the mixing product matrix.

As with the zoom FFT, we assume K = LR, with the decimation factor L chosen such that

R ≥ 2N + 1. We interpret L as controlling the width of the frequency shift search range; larger L

results in a narrower search range. The condition R ≥ 2N + 1 states that L must be sufficiently
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small as to capture the desired range of frequency shifts; typically L is chosen just small enough to

satisfy this condition, in which case R ≈ 2N + 1.

Let h[m], 0 ≤ m ≤M − 1, be an appropriate lowpass FIR filter. We form the filtered and

downsampled mixing product

v[j, r] =
M−1∑
m=0

h[m]u[j, rL−m], 0 ≤ j ≤ J, 0 ≤ r ≤ R− 1. (2.3)

The filter-and-downsample operation is applied to each row of the mixing product. We finish the

computation by computing length-R DFTs across the rows of v[j, r], taking the central bins and

multiplying by the appropriate scaling factor:

A[j, n] ≈ L
R−1∑
r=0

v[j, r]e−2πi rn
R , 0 ≤ j ≤ J, −N ≤ n ≤ N.

Before we proceed, let us consider the computational cost of this approach. Consider the

case when the filter length M is smaller than L. Since M < L, we need not compute all entries of

the mixing product u[j, k] in order to compute v[j, r]. Computing just the required entries costs

O(JRM) FLOPs. Filtering and downsampling, implemented directly, costs a further O(JRM)

FLOPs. The final FFT across the rows of v[j, r] costs O(JR log R) FLOPs, bringing the total cost

to

O(JRM) +O(JRM) +O(JR log R) FLOPS. (2.4)

If the filter length M is at least L, then we require all elements of u[j, k], which costs O(JK)

FLOPs to compute. Of course, the filter-and-downsample operation is increasingly costly as M in-

creases, and we may prefer a polyphase implementation with each polyphase component convolved

using overlap-scrap convolution [59]. In this case the filter h[m] is split into L polyphase compo-

nents, each of size approximately M/L. Each component is then used to filter a downsampled ver-

sion of u[j, k], each of size K/L, starting with one of L offsets. Implementing each filter operation

with overlap-scrap convolution will cost about O(K/L log(4M/L)) FLOPs per polyphase compo-

nent when using the advice given in Section 13.10 of [59]. To populate v[j, r] with this approach
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costs

O(JK) +O
(

JL
K

L
log(4M/L)

)
= O(JK) +O(JK log(4M/L)) FLOPs.

By way of comparison, the naïve strategy of computing length-K DFTs over the rows of

the mixing product u[j, k] costs O(JK log K) FLOPs. Thus the use of the zoom FFT can yield a

significant speedup, particularly if M is small. While an improvement over the naïve strategy, a

closer examination of (2.3) finds a further improvement.

2.2.3 TransformCAF - The Corner Turn

If we write the mixing product in (2.3) in terms of x[k] and y[k], we find

v[j, r] =
M−1∑
m=0

h[m]u[j, rL−m]

=
M−1∑
m=0

(h[m]x[rL−m]) (y[rL−m + j]∗) .

We can instead interpret this as populating the columns of v[j, r] via a length-M , un-downsampled

convolution of auxiliary vectors. Let us define two sets of R auxiliary vectors, indexed by r ∈

{0, . . . , R− 1}:

fr[m] def= h[m]x[rL−m], 0 ≤ m ≤M − 1;

gr[j] def= y[rL− j]∗, 0 ≤ j ≤ J.

To clarify the notation, we note that there are R vectors fr[m], each of length M , and R vectors

gr[j], each of length J + 1. In terms of fr[m] and gr[j],

v[j, r] =
M−1∑
m=0

fr[m]gr[j −m], (2.5)

which we view as populating the rth column of v[j, r] with the (truncated) output of the convolution

of fr[m] with gr[j].

Now that we have v[j, r], we again finish the computation by computing FFTs over the rows

of v[j, r], giving

A[j, r] ≈ L
R−1∑
r=0

v[j, r]e−2πi rn
R , 0 ≤ j ≤ J,−N ≤ n ≤ N.
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The array v[j, r] is populated in a column-wise fashion, and then A[j, n] is populated in a row-wise

fashion. The data flow is sometimes said to have “turned the corner”, when reading from v[j, r]

into A[j, n], hence why this approach is called the corner-turn algorithm.

In Tolimieri and Winograd’s original derivation, standard FFT-based convolution is used to

compute the R convolutions in (2.5). When both M and J are comparable, this is likely the best

way to compute the J + 1 values of the convolution forming each column of v[j, r]. However, when

J is significantly larger than M , it is often preferable to implement the convolution using overlap-

scrap [59]. Indeed, we take this approach for our implementation. Again using the advice given

in Section 13.10 of [59], computing each column costs O(J log(4M)) FLOPs. Computing the CAF

costs

O(JR log(4M)) +O(JR log R) FLOPs. (2.6)

In practice L is usually chosen just small enough to ensure R ≥ 2N +1, so R is approximately

equal to 2N + 1 and there are approximately JR elements in the CAF. Recall that there are

approximately JK elements in the mixing product array, which is roughly L times more than

the CAF. Comparing the computational costs for the direct zoom FFT approach and the corner-

turn approach, we see that the corner-turn approach is preferable. It is remarkable to see that the

corner-turn CAF algorithm computes an array with about JR elements using only JR times log

factors amount of work.

We summarize the computations performed by the corner-turn CAF algorithm in Algorithm

3. Since the algorithm is referred to as the “Transform Method” in [92], we call this algorithm

TransformCAF.

Figure 2.1 shows a zoomed-in view of an example CAF computed with TransformCAF. The

two signals used are synthetic examples with realistic, but otherwise arbitrary, parameters. Each

signal is polluted with AWGN to an SNR of 10dB. The CAF was computed over a delay search range

of ±0.005s and a frequency shift range of ±10kHz, which encompasses the true peak location at

(0.001234s,−5678.9Hz). We note that the zoomed-in view that we show in the figure is significantly
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smaller than the full extent of the CAF that has been computed.

Algorithm 3 TransformCAF (The “Transform Method” of [92])
Input: Max delay J , max frequency shift N , integration time K = LR, where L, R are integers

such that R ≥ 2N +1, complex baseband signals x[k], y[k] of sufficient length, lowpass filter h[m]
of length M

Output: A[j, n] for 0 ≤ j ≤ J, −N ≤ n ≤ N

. Compute v[j, r]
for r = 0, . . . , R− 1 do

fr[m] = h[m]x[rL−m] for 0 ≤ m ≤M − 1
gr[j] = y[rL + j]∗ for 0 ≤ j ≤ J

v[j, r] =
M−1∑
m=0

fr[m]gr[j −m] for 0 ≤ j ≤ J . Use overlap-scrap convolution

end for

. Approximate A[j, n] with DFT over rows of v[j, r]
for j = 0, . . . , J do

A[j, n] ≈ L
R−1∑
r=0

v[j, r]e−2πi rn
R for −N ≤ n ≤ N

end for
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Figure 2.1: An example of a CAF computed with TransformCAF.



41

2.3 Delay-Decimated CAF

In this section we present two algorithms for computing the CAF on a downsampled grid of

delays. That is, given some integer delay-downsampling factor P , we seek to compute A[j′P, n]

for 0 ≤ j′ ≤ J/P . Since naïvely downsampling A[j, n] in the delay dimension has a likelihood

of missing narrow peaks in the CAF, we also propose a simple, but effective, trick to make the

delay-downsampled CAF more robust to missing peaks. When computed with this trick, we call

the delay-downsampled CAF a delay-decimated CAF to allude to its safety compared to naïvely

downsampling.

2.3.1 Algebraic Zoom FFT

Before we proceed with the discussion of our first new algorithm, we first present an alter-

native method of computing the DFT on a small set of contiguous bins as described in [78]. We

presented the filter-based zoom FFT in Subsection 2.2.1 as an efficient method for this task. While

the zoom FFT can be quite efficient, it still involves approximations. The algebraic zoom FFT, as

we will call it, is an efficient procedure for computing the exact DFT on a small set of contiguous

bins (it is also known as a pruned FFT [63]). As we will see, the algebraic zoom FFT is basically

a single step of a Cooley-Tukey decomposition [23]

Again suppose we have a signal u[k], 0 ≤ k ≤ K − 1, and are interested in bins −N ≤ n ≤ N

of the length-K DFT

U [n] =
K−1∑
k=0

u[k]e−2πi kn
K .

As with the filter-based zoom FFT, assume that K = LR with R ≥ 2N + 1. We can decompose

the length-K sum into a length-L sum and a length-R sum:

U [n] =
K−1∑
k=0

u[k]e−2πi kn
K

=
L−1∑
l=0

R−1∑
r=0

u[rL + l]e−2πi ln
K e−2πi rn

R .
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After rearranging terms, we find

U [n] =
L−1∑
l=0

e−2πi ln
K

(
R−1∑
r=0

u[rL + l]e−2πi rn
R

)
. (2.7)

Since n is limited to the range −N ≤ n ≤ N , we recognize the term inside the parentheses

as a length-R DFT of the downsampled sequence u[rL + l] (where we view l as fixed). From this

we see that we can compute bins −N ≤ n ≤ N of u[n] in two steps. First, compute the L length-R

DFTs of the downsampled sequences u[rL + l]. Then combine the outputs of the L length-R DFTs

using the twiddle factors e−2πi ln
K according to (2.7). As Porat notes in [78], the second step cannot

be done with an FFT.

The first major difference between the algebraic zoom FFT and filter-based zoom FFT is

that the algebraic zoom FFT is exact. The price one pays for this, however, is that the algebraic

zoom FFT is typically more expensive than the filter-based zoom FFT. We compute L length-R

DFTs via the FFT at a cost of O(LR log R) FLOPs, and then combine bins to form U [n] at a cost

of O(LN) FLOPs. The dominant cost is due to the FFTs, so the total cost is O(K log R), which

is still a gain over the naïve O(K log K). Recall from Subsection 2.2.1 that the filter-based zoom

FFT computes a single length-R DFT, instead of the L required for the algebraic zoom FFT.

Even though the algebraic zoom FFT appears more expensive than the filter-based zoom

FFT, let us look at how the algebraic zoom FFT can be used to compute the CAF.

2.3.2 Using the Algebraic Zoom FFT to Compute the CAF

We begin in much the same manner as Subsection 2.2.2, where we used the filter-based zoom

FFT to compute the CAF. Recall that the CAF is defined as

A[j, n] =
K−1∑
k=0

x[k]y[k + j]∗e−2πi kn
K ,

and we will work on the mixing product

u[j, k] = x[k]y[k + j]∗.
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In terms of the mixing product, the CAF is

A[j, n] =
K−1∑
k=0

u[j, k]e−2πi kn
K ,

Assume K = LR and let us begin to apply the algebraic zoom FFT to the CAF by splitting

the length-K sum into two sums:

A[j, n] =
L−1∑
l=0

e−2πi ln
K

(
R−1∑
r=0

u[j, rL + l]e−2πi rn
R

)
. (2.8)

Note that this gives the CAF exactly; there are no approximations used in this approach. We can

interpret (2.8) as forming the desired CAF plane as a weighted sum of L CAFs computed using

downsampled mixing products and the shorter integration R. However, this approach is more costly

than the corner-turn CAF.

To see this we can switch the order of summation in (2.8):

A[j, n] =
R−1∑
r=0

(
L−1∑
l=0

e−2πi ln
K u[j, rL + l]

)
e−2πi rn

R .

We interpret this as a filter-and-downsample operation on the rows of u[j, k] with filter hn[l] =

e−2πiln/K , followed by a length-R DFT of the rows. Compared to the filter-based zoom FFT CAF

described in Subsection 2.2.2, this approach is nearly identical. The only difference is that there is

a different filter used for each n. When n = 0, h0[l] = 1 for 0 ≤ l ≤ L− 1, and we recognize the

filter as a simple, ones-based lowpass filter. When n 6= 0, the filter is a ones-based bandpass filter

centered on the frequency nfs/K.

Since the filters hn[l] are ones-based, they have somewhat slow roll-off from their center

frequency. Depending on the particular values, the magnitude of the frequency response of hn[l]

at its center frequency nfs/K is not substantially far above the response of h0[l] at nfs/K. Put

another way, the filter impulse response phases −2πiln/K are very slowly varying over the range of l

and n used in (2.8), so we can make the approximation e−2πiln/K ≈ 1. Therefore let us approximate

A[j, n] by using just the ones filter h0[l] instead of using the filter prescribed by the algebraic zoom

FFT:

A[j, n] ≈
R−1∑
r=0

(
L−1∑
l=0

u[j, rL + l]
)

e−2πi rn
R . (2.9)
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Comparing to Subsection 2.2.2, we see that this is just a special case of the filter-based zoom

FFT applied to the CAF. In particular, the case when a length-L ones filter is used as the lowpass

filter. We could once again use the corner-turn approach to find a more efficient algorithm, and it

would also result in a special case of the corner-turn CAF.

2.3.3 AlgebraicCAF - Delay-Downsampling

Let us now use the algebraic zoom FFT as a basis for computing a delay-downsampled CAF.

We start from (2.8), writing the downsampled mixing product in terms of x[k] and y[k]:

A[j, n] =
L−1∑
l=0

e−2πi ln
K

(
R−1∑
r=0

x[rL + l]y[rL + l + j]∗e−2πi rn
R

)
.

Assume that J is divisible by L (we could compute either more or fewer delays if needed). Then

we can compute every Lth row of the CAF as

A[j′L, n] =
L−1∑
l=0

e−2πi ln
K

(
R−1∑
r=0

x[rL + l]y[(r + j′)L + l]∗e−2πi rn
R

)
, (2.10)

where the index j′ runs from 0 to J/L.

To understand what (2.10) is doing, let us define the L downsampled mixing products

ul[j′, r] def= x[rL + l]y[(r + j′)L + l]∗, 0 ≤ j′ ≤ L, 0 ≤ r ≤ R− 1,

each of which is a (J/L + 1)×R array. Then term inside the parentheses of (2.10) is just

R−1∑
r=0

ul[j′, r]e−2πi rn
R ,

which is the length-R DFT of the rows of ul. As mentioned in the previous subsection, this can be

interpreted as forming L CAF planes with a short integration for a particular input. Finally, we

combine the L short-integration CAF planes, forming

A[j′L, r] =
L−1∑
l=0

e−2πi ln
K

(
R−1∑
r=0

ul[j′, r]e−2πi rn
R

)
.

We therefore have an exact, delay-downsampled CAF. Like (2.8), which computes the CAF exactly,

this approach is relatively costly, even though we compute L times fewer rows.
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Computing all downsampled mixing products ul[j′, r] directly costs O(JR) FLOPs. Perform-

ing row-wise DFTs over each ul[j′, r] is a further O(JR log R) FLOPs. Finally, combining all of the

short-integration CAFs costs about O(JR) FLOPs, assuming 2N + 1 ≈ R. This brings the total

cost to

O(JR) +O(JR log R) +O(JR) FLOPs,

which is on par with the cost of the full corner-turn CAF. Since this computes an array of size about

(J/L + 1) × R, this cost is difficult to justify, unless the exact values of the delay-downsampled

CAF are required.

To speed up this algorithm, we can again use the approximation e−2πiln/K ≈ 1 as discussed

previously. Doing so yields

A[j′L, r] ≈
R−1∑
r=0

(
L−1∑
l=0

ul[j′, r]
)

e−2πi rn
R .

In using this approximation, we can now bring the “twiddle factor” sum inside the DFT. We still

compute all L downsampled mixing products, but now there is a single row-wise DFT. The cost

for this algorithm, which we call AlgebraicCAF, is

O(JR) +O
(

JR

L
log R

)
FLOPs,

which is improved, considering we compute about JR/L total elements in the delay-downsampled

CAF. We summarize AlgebraicCAF in Algorithm 4.

We mention briefly that AlgebraicCAF is merely a special case of what would result if we

modified the zoom FFT approach of Subsection 2.2.2 to compute every Lth row of the CAF. Since

the zoom FFT approach computes v[j, r] in a row-wise manner, it is simple to modify it to compute

just v[j′L, r] for 0 ≤ j′ ≤ J/L. This yields a very similar algorithm, with a similar FLOP count.

Further, there is no reason to tie the delay-downsampling factor to the “main” decimation factor

L; we could instead compute every P th row of the CAF, for some integer P . We propose doing this

with a modification of the corner-turn algorithm in Subsection 2.3.5, and yield a faster algorithm

than AlgebraicCAF.
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Algorithm 4 AlgebraicCAF
Input: Max delay J (divisible by L), max frequency shift N , integration time K = LR, where

L, R are integers such that R ≥ 2N + 1, complex baseband signals x[k], y[k] of sufficient length
Output: A[j′L, n] for 0 ≤ j′ ≤ J/L, −N ≤ n ≤ N

. Directly compute sum of downsampled mixing products

u[j′, r] def=
L−1∑
l=0

x[rL + l]y[(r + j′)L + l]∗

. Approximate A[j′L, n] with DFT over rows of u[j′, r]
for j′ = 0, . . . , J/L do

A[j′L, n] ≈
R−1∑
r=0

u[j′, r]e−2πi rn
R for −N ≤ n ≤ N

end for

2.3.4 The Ones Filter Trick

As written, AlgebraicCAF approximates every Lth row of the CAF. Let us be more general

(in anticipation of Subsection 2.3.5) and suppose we have computed every P th row of the CAF. For

even moderate values of P (say, about 50), the risk of missing a narrow peak in the CAF between

rows that get selected in a delay-downsampled CAF is large.

One way to ameliorate this problem is to average P rows before downsampling. That is, we

compute the averaged CAF

A[j, n] def= 1
P

P −1∑
p=0

A[j + p, n],

and then delay-downsample by a factor of P . This can be interpreted as treating the CAF surface

as an image and performing a ones filter along the delay dimension.

As written, this requires first computing the full CAF A[j, n], then filtering, and then throwing

away most of the data. This precludes us from using a delay-downsampled CAF. There is a trick,
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however. Note that

A[j, n] = 1
P

P −1∑
p=0

A[j + p, n]

= 1
P

P −1∑
p=0

K−1∑
k=0

x[k]y[k + j + p]∗e−2πi kn
K

=
K−1∑
k=0

x[k]

 1
P

P −1∑
p=0

y[k + j + p]

∗

e−2πi kn
K .

If we define

y[k] def= 1
P

P −1∑
p=0

y[k + p],

we see that A[j, n] is just the CAF of x[k] and y[k]. Therefore we can implicitly compute the

averaged CAF A[j, n] without first forming the (unaveraged) CAF A[j, n] and then averaging.

Merely averaging the second signal input to an ordinary CAF algorithm results in the output being

averaged.

In the case of a delay-downsampled CAF, this then has the effect of implicitly averaging

the full CAF and taking every P th row of the averaged CAF without actually computing the

extra rows. This affords us an inexpensive measure of robustness to missing peaks when using

delay-downsampled CAFs, and is the final ingredient needed to make them useful for fast, reliable

detection.

We note that the trick is not limited to a ones filter. If b[m], 0 ≤ m ≤M − 1 is a preferable

filter (where M is not necessarily equal to P ), one can implicitly compute

M−1∑
m=0

b[m]A[j + m, n]

by using the signals x[k] and
M−1∑
m=0

b[m]y[j + m]

as the inputs to a CAF algorithm. This of course works with both ordinary and delay-downsampled

CAF algorithms.
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2.3.5 TransformCAF - Adding Delay-Downsampling

We have seen how AlgebraicCAF computes the delay-downsampled CAF A[j′L, n]. Together

with the ones filter trick, it is a useful tool to quickly detect coarse locations of peaks in the CAF. As

written, however, the delay decimation is tied to the “main” decimation factor L, which controls the

width of the frequency shift search range. Furthermore, it can be viewed as a delay-downsampled

version of the zoom FFT CAF algorithm from Subsection 2.2.2. From the FLOP counts of the

zoom FFT CAF and corner-turn CAF (see Subsection 2.2.3), we expect that adapting the corner-

turn CAF algorithm to handle delay-decimation is the preferable approach.

We propose here to add delay-downsampling by an integer factor P , not necessarily equal to

L, to the corner-turn CAF algorithm. We will work with x[k] and y[k], the ones filtered version of

y[k], so that we compute a delay-decimated CAF that is robust to missing peaks. The main change

is that we now compute the delay-downsampled, filtered and downsampled mixing product

v[j′P, r] =
M−1∑
m=0

h[m]x[rL−m]y[rL−m + j′P ]∗.

Following the corner-turn approach, we define the auxiliary sequences fr[m] and gr[j] as

in Subsection 2.2.3 (using y[k] in place of y[k]). For each r, the original corner-turn algorithm

computes J + 1 outputs of the convolution

M−1∑
m=0

fr[m]gr[j −m]

at the input sample rate fs. Instead, we will compute J/P + 1 outputs at the decimated rate of

fs/P :

v[j′P, r] =
M−1∑
m=0

fr[m]gr[j′P −m].

This can be done in a number of ways, such as directly or with a polyphase implemen-

tation. If the decimation factor P is relatively large compared to the filter length M , we may

prefer a direct implementation, in which case populating v[j′P, r] will cost O(JRM/P ) FLOPs. A

polyphase implementation with each component computed using overlap-scrap convolution will use

O(JR
P log(4M)) FLOPs if we continue to follow the advice given in [59].
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To finish up, we compute length-R DFTs over the rows of v[j′P, r]. This costs O(JR
P log R)

FLOPs, since there are J/P + 1 rows. Using a direct implementation of computing v[j′P, r], the

delay-decimated CAF has a total cost of

O
(

JR

P
(M + log R)

)
FLOPs,

while using a polyphase implementation costs

O
(

JR

P
(log(4M) + log R)

)
FLOPs,

Since we are computing an array with approximately JR/P elements, these costs show that

the performance improvement of the corner-turn algorithm over the direct zoom FFT CAF algo-

rithm remains when adding delay-decimation. That is to say, the cost of the algorithm is nearly

linear in the number of elements computed. Algorithm 5 summarizes the approach, which we call

TransformCAF(delay_dec=P).

Algorithm 5 TransformCAF(delay_dec=P)
Input: Max delay J , max frequency shift N , integration time K = LR, where L, R are integers

such that R ≥ 2N +1, delay-decimation factor P , complex baseband signals x[k], y[k] of sufficient
length, lowpass filter h[m] of length M

Output: A[j′P, n] for 0 ≤ j′ ≤ J/P , −N ≤ n ≤ N

. Use the ones filter trick to implicitly average rows of A[j, r]

y[k] = 1
P

P −1∑
p=0

y[k + p]

. Compute v[j′P, r] via the downsampled corner-turn approach
for r = 0, . . . , R− 1 do

fr[m] = h[m]x[rL−m] for 0 ≤ m ≤M − 1
gr[j] = y[rL + j]∗ for 0 ≤ j ≤ J

v[j′P, r] =
M−1∑
m=0

fr[m]gr[j′P −m] for 0 ≤ j′ ≤ J/P . Direct or polyphase implementation

end for

. Approximate A[j′P, n] with DFT over rows of v[j′P, r]
for j′ = 0, . . . , J/P do

A[j′P, n] ≈ L
R−1∑
r=0

v[j′P, r]e−2πi rn
R for −N ≤ n ≤ N

end for
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Figure 2.2 shows a zoomed-in view of an example CAF computed with TransformCAF(

delay_dec=250), where P = 250 is chosen to be equal to the “main” decimation factor L = 250.

The CAF was computed using the same signals as in Figure 2.1 and zoomed in to the same region.

The peak is clearly visible, even though we have used the relatively large delay-decimation factor

of P = 250.
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Figure 2.2: An example of a CAF computed with TransformCAF(delay_dec=250).

2.4 Delay-Compressed CAF

We saw in Subsection 2.3.4 a simple, inexpensive trick to allow our delay-downsampled CAF

algorithms to be more robust to missing peaks between the rows they compute. In our experiments,

only one representative example of which is shown in this chapter, the ones filter trick is quite effec-

tive. Since the ones filter trick averages complex samples of the CAF A[j, n], there is a possibility

for catastrophic deconstructive interference to occur, causing the peak to be greatly attenuated.

Therefore we seek a more robust method to increase the safety of a delay-downsampled CAF.

To remove the possibility of the phase cancellation problem of the ones filter, we can average

samples of the magnitude-squared CAF |A[j, n]|2 before delay-downsampling. In terms of our
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notation, we seek to compute

Amag2[j′P, n] def= 1
P

P −1∑
p=0
|A[j′P + p, n]|2. (2.11)

Even with averaging magnitude-squared bins of the CAF, there is still a potential reduction in

SNR of the peak due to averaging “noisy”, or non-peak, bins together with the peak bins. The

possible reduction in SNR in this approach is gradual, however, and so it is preferable to the possible

catastrophic interference in the ones filter approach. The average of magnitude-squared approach

is be more robust than the worst case of the ones filter trick.

The average of magnitude-squared CAF (2.11) is very similar to a standard way of computing

spectrograms using the short-time Fourier transform (also known as the time-dependent Fourier

transform [76]). Before we study how to cheaply approximate (2.11) by “compressing” the average

of magnitude-squared operation, we first study how to compute a “compressed” spectrogram. After

discussing how to compute a compressed spectrogram, we will adapt the ideas to form a delay-

compressed CAF.

2.4.1 The Short-Time Fourier Transform

Consider a single complex signal x[k]. From x[k], we first produce an array s[j, r] of size

J ×R of overlapped segments of x[k] via the overlapping procedure described by the matlab code

in Listing 2.1. The size R will be the size of the DFT, and J will be the total number of overlapped

segments. We assume that x[k] is sufficiently long for this purpose (we could also zero pad the tail

of x[k]).

In Listing 2.1, the parameter overlap ∈ (−∞, 1) controls how much overlap there is between

the segments taken from x[k]. In particular, the closer overlap is to 1, the more overlap there is

in the rows of s[j, r]. overlap can also be negative, in which case samples are skipped/dropped

when forming s[j, r].
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Listing 2.1: Overlapping Procedure (matlab notation)
1 % How many samples to advance to the next segment

2 n_advance = round( (1 − overlap) * R);

3
4 s = zeros(J,R);

5 for j=0:J−1
6 i0 = j*n_advance + 1;

7 i1 = j*n_advance + R;

8
9 s(j+1,:) = x(i0:i1);

10 end

Once s[j, r] has been populated, we compute the (unaveraged) complex spectrogram S[j, n]

as the length-R DFT of the rows of s[j, r]:

S[j, n] def=
R−1∑
r=0

w[r]s[j, r]e−2πi rn
R , (2.12)

where w[r] is an appropriately sized window function (e.g., a Hann window). Finally, we choose a

block size P over which to average rows of |S[j, n]|2 (for simplicity, assume that J is divisible by P ).

It is typical to average blocks of rows of |S[j, n]|2 into a single row of the averaged spectrogram. This

serves to decrease the amount of memory used by the spectrogram and allow for faster exploration

of its content. In terms of S[j, n], this approach computes the “averaged magnitude-squared”

spectrogram

Smag2[j′P, n] def= 1
P

P −1∑
p=0
|S[j′P + p, n]|2. (2.13)

Figure 2.3 shows Smag2[j′P, n] for a synthetic signal. The signal is constructed as a complex

exponential with sinusoidally changing frequency plus AWGN to achieve an SNR of 10dB. We have

used blocks of size P = 16 for this figure and the spectrogram figures that follow.

For spectrograms, we view (2.13) as the reference equation that we seek to approximate and

find a faster algorithm. The procedure for computing Smag2[j′P, n] can be summarized as follows:

(1) Copy overlapping segments of x[k] into rows of the array s[j, r] as in Listing 2.1.

(2) Compute the length-R DFT of each row of w[r]s[j, r], producing S[j, n].
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Spectrogram - Reference
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Figure 2.3: Spectrogram of a synthetic signal computed using the reference approach, (2.13).

(3) Average rows j′P to j′P + P − 1 of |S[j, n]|2 into row j′ of Smag2[j′P, n].

2.4.2 Implicit Sum Spectrogram

The magnitude-squared operation used in (2.13) prohibits us from directly using the ones

filter trick of Subsection 2.3.4. Let us explore what happens if we simply “force it”, by computing

the sum before taking the magnitude-squared. That is, we compute

Smag2,IS[j′P, n] def= 1
P

∣∣∣∣∣∣
P −1∑
p=0

S[j′P + p, n]

∣∣∣∣∣∣
2

.

Defining Smag2,IS[j′P, n] as such allows us to switch the order of the average and DFT:

Smag2,IS[j′P, n] = 1
P

∣∣∣∣∣∣
P −1∑
p=0

R−1∑
r=0

w[r]s[j′P + p, r]e−2πi rn
R

∣∣∣∣∣∣
2

= 1
P

∣∣∣∣∣∣
R−1∑
r=0

P −1∑
p=0

w[r]s[j′P + p, r]

 e−2πi rn
R

∣∣∣∣∣∣
2

.

To take advantage of this (i.e., to realize a computational benefit), we define

s̃IS[j′P, r] =
P −1∑
p=0

w[r]s[j′P + p, r].
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We can then compute Smag2,IS[j′P, n] as the length-R DFT of the rows of s̃IS followed by an element-

wise magnitude-squared and scaling by 1/P . An example of this is shown in Figure 2.4. Note that

there are significant artifacts due to phase interference.
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Figure 2.4: Spectrogram of a synthetic signal computed using the implicit sum approach.

This procedure allows us to see a moderate computational benefit over computing the stan-

dard averaged spectrogram. Computing s̃IS[j′P, r] takes roughly the same amount of FLOPs as

preparing w[r]s[j, r] for step 2 of the standard averaged spectrogram computation. But now com-

puting Smag2,IS[j′P, n] requires a factor of P fewer DFTs, which can yield a significant speedup.

However, to achieve this speedup over the standard method, we have made a crude approximation.

2.4.3 A Compressed Spectrogram

A more principled approach is as follows. We treat (2.13) as computing (scaled) column-wise

`2 norms of the appropriate blocks of S[j, n]. That is to say, we treat the average of magnitude-

squared samples as the (scaled) `2 norm squared of a length-P vector. We seek to compress these

norm computations in a manner that will allow us to compute fewer row-wise DFTs, yielding a

computational benefit.
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To perform the compression, we seek a low-distortion mapping from CP to CP ′ , where we

choose a compression factor γ ∈ (0, 1] and take P ′ = dγP e. That such a low-distortion mapping, for

a finite set of points, can be chosen to be a particular random linear projection was shown in [54].

The embedding can be represented as a matrix Φ ∈ CP ′×P constructed as follows. Let U ∈ CP ×P

be a random unitary matrix sampled from the Haar distribution on U(P ), unitary group. Such a

matrix U can be generated as described in [69]; note that the procedure for unitary matrices has

one extra step from the procedure for orthogonal matrices. The P ′ rows of Φ are then taken as the

first P ′ columns of U .

Let Bj′ [p, n] def= S[j′P + p, n], 0 ≤ p ≤ P − 1, be the j′th block of S[j, n]. The standard

averaged spectrogram algorithm would take the magnitude-squared of Bj′ [p, n] and average down

the columns, producing a single row of Smag2[j′P, n]. We will instead compress the columns of this

matrix using Φ:

B̃j′ = ΦBj′ ,

where B̃j′ [p′, n], 0 ≤ p′ ≤ P ′ − 1, is the j′th compressed block. To compute the “compressed”

spectrogram, we average the columns of each |B̃j′ [p′, n]|2:

Smag2,CN[j′P, n] = 1
P

P ′−1∑
p′=0

P

P ′

∣∣∣B̃j′ [p′, n]
∣∣∣2 .

The factor P/P ′ is to account for changing the dimension of the `2 norm. This final computation

is nearly identical to the final computation of the standard approach. The difference is that each

block has been compressed by a factor P ′/P ≈ γ, so the `2 norms are computed on shorter vectors.

Since we have compressed the blocks after computing the row-wise DFT (of which we are

trying to reduce the number), we see no real computational benefit from the compression. But let

us look more closely. Let bj′ [p, r] def= s[j′P + p, r] be the j′th block of s[j, n] (i.e., Bj′ [p, r] before

the row-wise DFT). Since the DFTs are taken over the rows of the matrix bj′ , we can relate the

matrices Bj′ and bj′ as Bj′ = bj′FR, where FR is the length-R DFT matrix. Due to the associativity

of the matrix product, we have

B̃j′ = ΦBj′ = Φ(bj′FR) = (Φbj′)FR.
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This says that we can compress the columns of bj′ and then take the row-wise DFTs. In other

words, we can now use only P ′ length-R DFTs instead of the original P DFTs.

We have achieved our goal of decreasing the number of row-wise DFTs while maintaining a

degree of accuracy compared to the standard averaged spectrogram. However, applying Φ requires

a dense matrix-matrix multiply, requiring O(P ′PR) FLOPs to compress each block. Unless γ is

tiny (which shrinks P ′, increasing the error of the compression), this may be too expensive for our

purposes.

2.4.4 A Practical Compressed Spectrogram

Instead of using a dense Φ, let us take a sparse, structured Φ. Ailon and Chazelle in [2]

proposed the so-called fast Johnson-Lindenstrauss transform (FJLT), which dramatically improves

the speed of applying a compression matrix Φ while maintaining desirable guarantees. Let us now

adapt the FJLT into our compressed spectrogram algorithm.

One particular instance of an FJLT-like transform takes Φ of the form

Φ = ΠFP D,

where Π is a permutation/subsampling matrix, FP is the length-P DFT matrix, and D is a diagonal

matrix of random complex numbers sampled uniformly from the unit circle. This choice of FP D is

inspired by [8], which uses FP D to lower the coherence of the product FP DB (for some matrix B)

in order to “precondition” random uniform row subsampling. Indeed, picking Π to be the first P ′

rows of a random permutation matrix will perform uniform row subsampling. One might call this

choice of Φ a subsampled randomized Fourier transform (SRFT) [83].

If we apply Φ, as written, to a block B of size P × R, it would cost O(PR log P ) FLOPs to

compress the block. This cost is independent of P ′ because, in the direct application of Φ, we form

the full length-P DFT just to subsample P ′ of the outputs. For small values of P ′, this may be

more expensive than the Haar-based approach in the previous subsection.

By sacrificing the randomness in the subsampling matrix Π, we can improve this runtime.
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We can construct a deterministic Π to subsample P ′ contiguous rows from the output of the

DFT. Strictly speaking, Φ will no longer be an SRFT as defined in [83], since Π is no longer

random. For simplicity, we will refer to it as an SRFT nonetheless. Due to this simplification, we

can now compute just the required output bins with the zoom FFT (see Subsection 2.2.1), instead

of computing the full DFT and then subsampling.

For example, let us choose Π to take the rows corresponding to the lowest P ′ frequencies

(in absolute value) from the length-P DFT. To compute just these P ′ lowest frequency bins with

the zoom FFT, we first lowpass filter and decimate the input and then take a length-P ′ DFT. In

our implementation, we choose a length-dP/P ′e ones filter and use a direct implementation, which

crudely accounts for the fact that we are not decimating by an integer factor. This leads to a cost

of approximately O(PR) FLOPs for the filter-and-decimate operation and O(P ′R log P ′) FLOPs

for the DFT, and can give a significant savings over the direct approach.

An alternative strategy is to compute the required DFT bins directly using the definition

of the DFT. For this to be practical, the number of compressed bins, P ′, must be sufficiently

small. This has the added benefit of allowing for arbitrary subsampling, instead of the contiguous

subsampling required by the zoom FFT, and so Φ could form a proper SRFT. Of course, if P ′ is

so small, then using the Haar-based Φ of Subsection 2.4.3 may also be practical.

Figure 2.5 shows the example spectrogram using the zoom FFT approach, with P = 16 and

γ = −10dB = 0.1. When compared to Figure 2.4, we see reduced (but not eliminated) errors. In

our implementation, we used a different random diagonal matrix D for each block bj′ .

2.4.5 A Practical Delay-Compressed CAF

We have seen thus far in this section how to approximate and speed up the computation

of averaged magnitude-squared spectrograms. Let us now apply these ideas to the CAF. Exactly

as in the case of the spectrograms, we seek to approximate (2.11) and allow us to compute fewer

row-wise DFTs. Let us recall the CAF written in terms of the filtered and downsampled mixing
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Figure 2.5: Spectrogram of a synthetic signal computed using the compressed norm approach (via
the zoom-FFT-based SRFT projection matrix).

product v[j, r]:

A[j, n] ≈ L
R−1∑
r=0

v[j, r]e−2πi rn
R .

The unaveraged spectrogram (2.12) and the above formula for the CAF are nearly identical. The

CAF merely omits the window function (or has an implicit ones window, if you prefer).

Therefore, once we have the filtered and downsampled mixing product v[j, r], computed with

the corner-turn algorithm, we can efficiently compute a delay-compressed CAF using the ideas

of the previous section. The j′th row of the output will be an approximation to Amag2[j′P, n],

and so we may call it a delay-decimated CAF. We instead prefer the term delay-compressed to

emphasize the FJLT ideas involved, with the understanding that the output is directly comparable

to the output of TransformCAF(delay_dec=P), for example.

Algorithm 6 summarizes the procedure for computing the delay-compressed CAF based on the

corner-turn algorithm and zoom-FFT-based SRFT. Note that the delay-compressed CAF must still

compute the full filtered-and-downsampled mixing product v[j, r]. This is still a costly procedure,

but the delay-compression will allow us to compute far fewer row-wise DFTs, which are also an
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asymptotically dominant expense. Delay compression still yields a significant speedup over the

corner-turn CAF, though not as much as TransformCAF(delay_dec=P) with the ones filter trick.

Algorithm 6 TransformCAF(delay_comp=P, gamma=γ)
Input: Max delay J , max frequency shift N , integration time K = LR, where L, R are integers

such that R ≥ 2N +1, delay-decimation factor P , compression factor γ, complex baseband signals
x[k], y[k] of sufficient length, lowpass filter h[m] of length M

Output: Amag2[j′P, n] for 0 ≤ j′ ≤ J/P , −N ≤ n ≤ N

. Compute v[j, r] via the corner-turn approach
for r = 0, . . . , R− 1 do

fr[m] = h[m]x[rL−m] for 0 ≤ m ≤M − 1
gr[j] = y[rL + j]∗ for 0 ≤ j ≤ J

v[j, r] =
M−1∑
m=0

fr[m]gr[j −m] for 0 ≤ j ≤ J . Use overlap-scrap convolution

end for

. Compute the compressed blocks B̃j′

P ′ = dγP e
for j′ = 0, . . . , J/P do

bj′ [p, r] = v[j′P + p, r] for 0 ≤ p ≤ P − 1, 0 ≤ r ≤ R− 1.
b̃j′ = Φbj′ . Compress columns of bj′

B̃j′ [p′, n] =
R−1∑
r=0

b̃j′ [p′, r]e−2πi rn
R . P ′ row-wise DFTs

end for

. Approximate Amag2[j′P, n] by computing column-wise norms of B̃j′

for j′ = 0, . . . , J/P do

Amag2[j′P, n] ≈ L2

P ′

P ′−1∑
p′=0

∣∣∣B̃j′ [p′, n]
∣∣∣2 for −N ≤ n ≤ N .

end for

Figure 2.6 shows a zoomed-in view of an example CAF computed with the delay-compressed

CAF (using the zoom-FFT-based SRFT projection matrix). The CAF was computed using the

same signals as in Figure 2.1 and zoomed in to the same region. We also took the elementwise

square-root of the CAF to make the plot comparable to the other CAF figures. In order to allow

the comparison of Figures 2.6 and 2.2, we again choose P = 250. The compression factor γ is set

to −15dB ≈ 0.03.
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Figure 2.6: An example of a CAF computed with TransformCAF(delay_comp=250,
gamma=−15dB).

2.5 Discussion

2.5.1 A Runtime Experiment

A substantial part of this project was the construction of C++ implementations of the algo-

rithms discussed in this chapter. We created a simple vector operations library for computations

such as multiplying two complex vectors. The library is written to directly utilize SIMD intrin-

sics, though not necessarily optimally for any particular CPU or sequence of instructions. We use

OpenMP to parallelize various outer loops in our codes, for example the two main loops in Algo-

rithm 3. FFTs are computed either with FFTW3 [37] or Intel’s MKL (using the FFTW3 interface).

Table 2.1 shows the runtime of the algorithms used to generate the three example CAFs

shown in Figures 2.1, 2.2, and 2.6. As one can clearly see, the delay-decimated CAFs run substan-

tially faster than the standard corner-turn CAF, TransformCAF. TransformCAF(delay_dec=250)

runs about 35 times faster than the corner-turn CAF, which is a massive speedup. The delay-

compressed algorithm, TransformCAF(delay_comp=250, gamma=−15dB) also sees a significant

speedup, though not as dramatic. For comparison, we also show the runtime of AlgebraicCAF,
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which has a fixed delay-decimation factor of P = L = 250, and TransformCAF(delay_dec=25),

which uses P = 25.

Algorithm (Figure Number) Runtime (seconds)
TransformCAF (2.1) 3.49
TransformCAF(delay_dec=250) (2.2) 0.10
TransformCAF(delay_comp=250, gamma=−15dB) (2.6) 1.32
AlgebraicCAF 0.56
TransformCAF(delay_dec=25) 0.82

Table 2.1: Runtime to compute example CAFs

TransformCAF(delay_dec=P) reduces the cost of TransformCAF in two interconnected ways.

First, it reduces the number of rows of the filtered-and-downsampled mixing product that need

to be computed. Second, since there are fewer rows, the work spent computing row-wise DFTs is

reduced. When increasing the delay-decimation factor P , the amount of work is reduced for both

portions of the computation.

TransformCAF(delay_comp=P, gamma=γ), on the other hand, computes the full filtered and

downsampled mixing product, regardless of P . It then does a bit more work to compress blocks of

the mixing product. The number of row-wise DFTs is then reduced, which is the primary manner

in which the amount of work is reduced (there are also fewer magnitude-squared computations, but

that is insignificant compared to the DFTs). That is, when increasing the delay-decimation factor

P , the amount of work is only reduced for the row-wise DFT computation. So while the algorithm

is effective, the speedup is limited.

The CAF peak is clearly visible for all examples, so we expect that a peak detection algorithm

will correctly identify the presence and coarse location of the peak in all cases. To find a more precise

peak location, we run the standard corner-turn CAF algorithm over a small region enclosing the

peak. For example, a region of size 2× 10−4s by ±20Hz, with FFT-based interpolation to decrease

the frequency shift grid spacing to less than 0.01Hz, runs in 0.018s (not counting the cost of time

shifting and mixing the input signals). As long as there are not a large number of peaks in the

CAF that each require fine location estimates, the costs of computing fine peak locations should
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not pose too great a burden.

These simple runtime experiments show that our delay-decimated CAF algorithms bring a

potentially large speedup to the problem of CAF peak detection. Our algorithms give a massive

speed up by computing a coarse peak location, which can then be refined for a small additional

cost. The simple ones filter trick and delay-compression proved to be effective for the synthetic

example shown in this chapter and also for many other examples not shown here.

2.5.2 Future Directions

One expectation of the averaged magnitude-squared spectrogram (2.13) is the reduction in

noise variance as P , the length of the average, increases. This has the benefit of possibly increasing

the SNR of the spectrogram by a small amount. Indeed, we observe this in exploratory experiments.

We also see that the compressed spectrogram also enjoys an increase in SNR, though by a slightly

smaller amount. The implicit sum spectrogram sees a decrease in SNR, as one might expect from the

crude approximation used. Characterizing the SNR improvement for the compressed spectrogram,

and also for the CAF, could be useful.

It would also be beneficial to understand when the ones filter trick will fail. Clearly, if

TransformCAF(delay_dec=P) fails to produce a peak when TransformCAF does, then it cannot

be used for coarse peak detection. For instance, suppose cancellation occurs for a particular value

of P . Does decreasing the delay decimation factor mitigate the cancellation? What role does the

SNR of the input signals play?

We have worked exclusively with the narrowband CAF in this chapter. Adapting our ideas

to algorithms for the wideband CAF would be valuable as well. One straightforward approach is

to use sums of short-time, narrowband CAFs as in [96].

Our definition of Amag2 in (2.11) set us up to use FJLT-like ideas to compress the `2 norm.

It may be preferable to use the `∞ norm instead, in which case we would compute

Amax[j′P, n] = max
0≤p≤P −1

|A[j′P + p, n]|.
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Can we modify the delay-compressed CAF to allow for use of the `∞ norm?

Our implementation TransformCAF(delay_dec=P) saw a large speedup over TransformCAF,

but the improvement is actually not optimal. Recalling the FLOP counts in Subsection 2.2.3

and 2.3.5, we should see a reduction in runtime that scales with 1/P . Almost all of the runtime

taken by TransformCAF(delay_dec=P) is spent computing v[j′P, r] with a filter-and-downsample

subroutine, so future work to speed up the implementation should begin there.
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Chapter 3

Algorithms for Focused-Spot Fluorescence Microscopy

In this chapter we study non-negative least-squares (NNLS) problems arising from a new

technique in super-resolution fluorescence microscopy. Our technique involves scanning a focused

illumination spot across the object and collecting an image for each illumination spot. To form a

super-resolved image, we solve an NNLS problem for each collected image to recover intensities of

atoms in a dictionary of point spread functions (PSF). The recovered intensities are then assembled

into the final super-resolved image. Details on the specifics of the fluorescence microscope our

collaborators built, as well as experiments on how and when this method achieves super-resolution,

are in our paper [98].

The image formation process results in a large number of moderate-sized NNLS problems,

each with the same PSF dictionary. We take advantage of this special structure by adapting an

optimal first-order method to efficiently solve many NNLS problems simultaneously. The PSF dic-

tionary matrix is extremely ill-conditioned, so we also experiment with using a block-diagonal pre-

conditioner and the alternating direction method of multipliers (ADMM) to improve convergence.

With the goal of certifying the uniqueness of the recovered PSF intensities from the NNLS

problems, we develop a safe feature elimination strategy for NNLS problems that eliminates PSFs

from the solution that are guaranteed to have zero intensity at an optimal point. If sufficiently

many PSFs are eliminated, this allows us to certify the uniqueness of the solution to the original

NNLS problem. We take inspiration from recent works in the literature for `1-regularized least-

squares (e.g, safe feature elimination for LASSO [38]), though our method instead uses an inexact,
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but accurate, primal-dual point pair, making it more robust and able to be used on our extremely

ill-conditioned NNLS problems.

Though we focus on our microscopy application, our strategy is applicable to general NNLS

problems and has applications beyond certification of solution uniqueness. For example, our method

can always give a certificate of how far away the objective value is from the optimal value, by

providing a duality gap estimate. When we have certified a solution as being unique, we can

also bound the distance away from the optimal solution. The method can be extended to other

problems with a non-negativity constraint; for example, we sketch how to extend the method to

Poisson maximum likelihood.

3.1 Introduction

3.1.1 Super-Resolution Fluorescence Microscopy

Fluorescence microscopy is a technique in optical microscopy that uses fluorescence instead

of the reflection/absorption of the illumination light to create images. In short, a fluorescence

microscope works by exciting fluorophores with higher-frequency excitation light, filtering out the

excitation light, and detecting the lower-frequency light emitted by the fluorophores. To image

a (biological) sample with fluorescence microscopy, the sample is treated with fluorescent stains

which bind to certain parts of the sample. This allows researchers to image specific portions (e.g.,

actin filaments, DNA in cell nuclei) of the sample with minimal interference from reflected light

from other parts of the sample.

A useful resolution limit for incoherent imaging is the Rayleigh distance

dR ≈
0.6λ

NA ,

where λ is the wavelength of light and NA is the numerical aperture, a dimensionless measure of

angles at which the microscope objective lens can gather light. Note that the numerical aperture

NA = n sin(α), where n is the index of refraction of the medium surrounding the lens and α is

the lens central half-angle. For example, a lens working in air has n ≈ 1 and a lens working in an
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immersion oil has n ≈ 1.5 for the optical wavelengths we consider. There are practical limits on

increasing the lens numerical aperture, so NA ≤ 1.5 is reasonable upper bound.

The Rayleigh criterion states that two point sources of equal intensity are just resolved when

the maximum of the point spread function of one source is aligned with the first minimum of

the other. This is quantified by dR: two point sources are just resolved if they are separated

by a distance dR. While the Rayleigh limit is a useful estimate of the resolution of an incoherent

imaging system, it can be broken under certain circumstances. Indeed, the 2014 Nobel Prize in

Chemistry was awarded “for the development of super-resolved fluorescence microscopy” [75].

Almost all current techniques in super-resolution fluorescence microscopy utilize properties

of special fluorophores to limit the size of the emitting region or otherwise induce sparsity in the

imaged object. Notable examples of this include fluorescence stimulated emission depletion [51] and

fluorescing state transitions [12]. Stimulated emission depletion artificially creates much smaller

region of emitted light, even though both the illumination spot and detector system are diffraction

limited. Through knowledge of the location of this smaller region (it is in the center of the original

illumination spot), super-resolution is achieved.

The main exception to the trend of using special fluorophore properties is structured illumi-

nation [48], where mixing between periodic illumination patterns directly gives an up-to two-fold

increase in resolution. To surpass the two-fold increase with structured illumination, fluorescing

state transitions have been used [81].

Donoho argues in [30] that spatial extent/sparsity of the imaged object (“near blackness”)

as well as non-negativity are crucial to achieving super-resolution in the presence of noise. In

fluorescence microscopy, it is not the full spatial extent of the object that is important; rather, it is

the spatial extent of the region that is emitting light. Previous works like [51] can be interpreted

as using fluorophore properties to artificially limit the spatial extent of the object.
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3.1.2 Focused-Spot Illumination Microscopy

We propose in [98] a different route to limit the spatial extent of the imaged object and

achieve super-resolution. In widefield fluorescence microscopy, the entire sample is illuminated by

a widefield excitation light source. Instead, we artificially limit the spatial extent of the object by

focusing the excitation light down to a single, diffraction-limited illumination spot. To cover the

entire field of view of the camera, the focused-spot is scanned (with overlap) across the object and

an image is collected for each location of the illumination spot. Since the illumination spot is quite

small relative to the camera’s field of view, almost all of the image is nearly black. Therefore we

crop each image around the illumination spot, producing a “subimage” for each illumination spot

center position.

We numerically model point spread functions (PSFs) of the microscope for points on a 2D

grid that spans the center of a subimage. The grid is constructed to be an integer factor finer than

the effective camera pixel size, which is typically a bit smaller than the Rayleigh limit. We call the

collection of all the modeled PSF the PSF dictionary. Figure 3.1 shows a diagram of this setup

for a grid that is two-times finer than the effective camera pixel size. Note that the PSF grid is

truncated outside a circle, since the illumination intensity decreases away from the center of the

illumination spot.

Once we have scanned the illumination spot over the sample and collected all subimages,

we then solve an optimization problem for each subimage to recover the intensity associated with

each PSF in the dictionary. In the example shown in Figure 3.2, there are 40000 such optimization

problems. This then gives us the location and intensity of point sources on the fine grid used to the

construct the PSF dictionary. These intensities are then shifted according to the scanning pattern

and summed to form the image of the full object on the fine grid of PSF center locations. Note

that we use the same PSF dictionary for each optimization problem; this is a key structure

that we exploit in Section 3.2 to create fast solvers.

For the remainder of the chapter, we focus on the subimage optimization problem. Define
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Figure 3.1: Example PSF dictionary grid. PSFs are centered on grid points.

the PSF dictionary matrix A ∈ Rm×n where each column is a “vectorized” PSF from the PSF

dictionary. PSFs in the dictionary are originally formed as
√

m ×
√

m matrices, where
√

m is the

number of camera pixels in a subimage; these matrices are then unrolled into the columns of A.

Note that the PSF is the magnitude of the complex PSF, not the complex PSF itself, hence we

cannot write A as a convolution. Doing this for all n PSFs in the dictionary gives us A.

To recover the intensities of each PSF in a single subimage b (appropriately vectorized), we

solve the following non-negative least-squares (NNLS) problem:

minx
1
2‖Ax− b‖2

s.t. x ≥ 0.

(3.1)

The NNLS problem seeks to reconstruct the subimage b by finding non-negative intensities x for

the PSFs in the dictionary (i.e., the columns of A). The final image is formed by solving (3.1) for

each subimage, and then shifting and summing the recovered intensities appropriately. Note again

the key structure that the same PSF matrix A is used for each NNLS problem; only the collected

subimage b changes.

Figure 3.2 shows the result of one such recovery as well as two reference images. Figure 3.2a

shows an effective widefield illumination image with a 0.5NA lens. The effective widefield image is



69

a control image formed by directly summing all the focused-spot illumination subimages, without

solving any of the PSF intensity recovery problems. Figure 3.2c shows the widefield image using a

1.4NA lens; one can see a large resolution improvement, in accordance with the Rayleigh criterion.

Note that 0.5NA effective widefield image is more “pixelated” because the effective camera pixel

size is approximately three times larger than with the 1.4NA objective. What we view in Figures

3.2a and 3.2c is effectively what the camera would collect in a widefield illumination setup.

Figure 3.2b shows the result of focused-spot illumination and NNLS-based PSF intensity

recovery (FS-NNLS). What we view in the figure is the result of assembling all of the recovered

PSF intensities from the NNLS problems, not the view from the camera pixels, as was the case in

Figures 3.2a and 3.2c. There is a clear improvement in resolution compared to the 0.5NA effective

widefield image.

In fact, the details in Figure 3.2b are comparable to, if not better than, those in Figure 3.2c,

which uses a 1.4NA objective (vs. the 0.5NA objective used in Figure 3.2b). An example where our

approach is better than the 1.4NA objective is the triangular structure in the bottom right. Since

the 1.4NA objective has a shallow depth of field, the object appears blurry. The 0.5NA objective

used for the FS-NNLS image formation has a much longer depth of field, and FS-NNLS appears to

have resolved the structure cleanly, whereas the 1.4NA objective does not.
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Figure 3.2: Example 0.5NA effective widefield image, 0.5NA focused-spot NNLS recovery, and
1.4NA widefield image. Our NNLS post-processing is applied only to Figure 3.2b, not Figures 3.2a
and 3.2c.
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Figure 3.2b uses a PSF dictionary grid spacing three times finer than the camera pixel size.

This results in A ∈ Rm×n of size m = 1681 and n = 1010 (i.e., 1010 PSFs of size 41 × 41).

There are 40000 subimages collected, so we must solve the NNLS problem (3.1) with the same

A for 40000 different right-hand sides (RHSs). In other scenarios, we use an even finer PSF grid

spacing, upwards of 12 times finer, which results in an “underdetermined” A, where m < n. In

all cases, PSF dictionary matrix is extremely ill-conditioned (e.g., κ2(A) ≈ 1020), a complicating

factor which motivates much of our work. Table 3.1 shows the sizes and condition numbers of some

of our PSF dictionary matrices (condition numbers are computed using dgesvj compiled to use

quadruple precision [5]).

PSF Grid Spacing Size of A (# Camera Pixels × # PSFs) κ2(A)
1× finer 1681× 114 2.1× 105

2× finer 1681× 442 7.6× 1016

3× finer 1681× 1010 1.1× 1020

4× finer 1681× 1794 2.3× 1021

5× finer 1681× 2822 2.4× 1020

Table 3.1: Sizes and condition numbers of PSF dictionaries.

Our paper [98] has many more details on the operation of the microscope, as well as further

experiments and simulations.

3.1.3 Contributions

In this chapter we focus on quickly and reliably solving the NNLS problem (3.1) with the

same A for many RHS b. To solve the problems quickly, we adapt an accelerated first-order method

from [7] with improvements from TFOCS [11] to run more effectively on blocks of many RHS. Since

first-order methods for NNLS use A as a linear operator (e.g., computing matrix-vector products

Ax and AT r), we implement the method on a GPU, which gives much improved performance.

We also explore using a block diagonal preconditioner with accelerated first-order methods and

implementing ADMM efficiently for our highly ill-conditioned NNLS problems.

It is natural to ask whether the PSF intensities recovered by NNLS are unique. Motivated by
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this question, we develop a safe feature elimination strategy for a general NNLS problem. Inspired

by safe feature elimination (SAFE) for LASSO [38], we construct a method that safely eliminates

features/columns/PSFs from A when the corresponding intensity xi = 0 at an optimal point. The

method is safe in the sense that it will only eliminate a column of A if the intensity xi is certified

to be zero at any optimal point. We make a number of departures from SAFE for LASSO, in part

due to the differences in the dual geometries of LASSO and NNLS. Perhaps the most significant

is that our strategy uses an inexact primal-dual point pair, making it robust enough to be used

for our highly ill-conditioned NNLS problems. Under reasonable assumptions, we prove that our

feature elimination strategy will eventually eliminate all zero features from the problem.

If we eliminate sufficiently many features from an underdetermined NNLS problem, we can

form a reduced problem (i.e., an NNLS problem with just the non-eliminated columns) that is

overdetermined. If the problem has full-rank, then by strong convexity it has a unique optimal

point. Since our feature elimination strategy is safe, this implies that the original underdetermined

NNLS problem also has a unique optimal point. When used on the image reconstruction problem

for Figure 3.2b, for example, we certify that all 40000 NNLS problems have a unique solution,

meaning that the reconstructed image is unique.

Our feature elimination strategy has applications beyond our FS-NNLS problems, as it is

applicable to general NNLS problems. For any NNLS problem, we can bound the objective sub-

optimality, f(x̂) − f(x∗), for some feasible point x̂ ≥ 0. If we have reduced an underdetermined

NNLS problem to a strongly-convex reduced NNLS problem, we can also bound the distance from

x̂ to the unique optimal point x∗, which is a much stronger guarantee. We also give a short discus-

sion on how our strategy can be incorporated into first-order and active set methods to improve

convergence speed (see Subsection 3.5.3).

3.1.4 Organization and Notation

In Section 3.2 we discuss various methods to solve our moderately sized NNLS problem for

a large number of RHS. We first explore accelerated first-order methods in Section 3.2.1. We then
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introduce a block diagonal preconditioner in Section 3.2.2, though it has limitations. In Section

3.2.3 we describe issues encountered when implementing ADMM for our highly ill-conditioned

NNLS problems.

We introduce a basic version of our safe feature elimination procedure for NNLS problems

in Section 3.3. We prove various properties of the method, notably that it will “eventually work”,

in a certain sense to be made precise later. We discuss strengthened versions of the procedure in

Section 3.4, as well as certifying the uniqueness of all NNLS problems in an example focused-spot

illumination problem.

In Section 3.5 we offer a discussion of the optimization methods we studied. We discuss

further applications of our safe feature elimination strategy beyond the certification of unique

solutions. Finally, we offer a number of future directions, including extending the strategy to other

non-negativity constrained optimization problems.

We denote the ith column of the matrix A by ai. For a subset I ⊆ {1, . . . , n}, we let AI

denote the matrix formed by the columns ai for i ∈ I. For all other vectors, we use xi to denote the

ith element of the vector. We use 〈x, y〉 and xT y to denote the Euclidean inner product, and ‖x‖

to denote the Euclidean norm. We will typically use λ, ν to represent dual variables/vectors/points

and x∗ to denote the value of the quantity x at an optimal point. In particular, we denote the

primal optimal value of a problem by p∗ and the dual optimal value by d∗.

3.1.5 Optimization Background

In this subsection we given an overview of the standard definitions and results of convex

analysis and optimization that we will use in this chapter. See the popular text [17] or Beck’s text

[10] for a detailed presentation.

We will work entirely in the Euclidean space Rn equipped with the standard inner product

〈x, y〉 def= ∑n
i=1 xiyi = xT y and the usual induced norm ‖ · ‖. A set C is said to be convex if for all

x, y ∈ C and t ∈ [0, 1], it holds that tx + (1− t)y ∈ C. Two examples of convex sets:
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• The halfspace {x : 〈a, x〉 ≥ b} for fixed a ∈ Rn, b ∈ R. A halfspace is the set of all points

on one side of the plane 〈a, x〉 = b, including the plane itself.

• The non-negative orthant Rn
+

def= {x : x ≥ 0} is the set of all points with non-negative

entries.

An extended real-valued function is a function that can take on any real value as well as the

infinite values −∞ and ∞. The domain of a function f is the set dom(f) def= {x : f(x) <∞}. We

adopt the convention that f(x) =∞ for x outside of dom(f). The indicator function of a set C is

ιC(x) def=


0 x ∈ C

∞ x 6∈ C.

The epigraph of an extended real-valued function is defined by

epi(f) def= {(x, p) : f(x) ≤ p, x ∈ Rn, p ∈ R}.

Note that epi(f) is a subset of Rn × R. A function is said to be proper if it does not attain the

value −∞ and there exists an x ∈ Rn such that f(x) < ∞. A function is said to be closed if its

epigraph is a closed set; equivalently, a function is closed iff it is lower semicontinuous.

A function is defined to be convex if its epigraph is a convex set. For a proper function f

with convex domain, convexity is equivalent to the usual inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) ∀x, y ∈ dom(f), ∀t ∈ [0, 1].

We will mainly consider continuously differentiable functions, specifically functions with L-Lipschitz

continuous gradients:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ dom(f).

We use the subdifferential ∂f(x) in a non-essential manner in Subsection 3.2.3, so we simply point

the reader to either of [10, 82] for its definition and properties.

A function is said to be µ-strongly convex (µ > 0) if f(·) − µ/2‖ · ‖2 is convex. This states

that the function minus a scaled quadratic remains convex, and is a stronger form of convexity, as
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the name implies. If f is twice continuously differentiable, then f is µ-strongly convex if ∇2f − µI

is positive semidefinite. An important property of a strongly convex function is that it has a unique

minimizer and the strong convexity constant µ gives a bound on how far away a point is from the

optimal point:

Theorem 1 (Theorem 5.25 of [10]): Let f be a proper, closed, and µ-strongly convex function. Then

(1) f has a unique minimizer x∗,

(2) µ
2‖x− x∗‖2 ≤ f(x)− f(x∗) for all x ∈ dom(f).

Our safe feature elimination strategy for NNLS makes use of Theorem 1, as well as Lagrangian

duality, which we discuss next. All of the duality material comes from [17], where it is discussed in

more detail. Consider the general convex problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . , m

aT
i x = bi, i = 1, . . . , l,

(3.2)

where fi(x), i = 0, . . . , m, are convex and the equality constraints aT
i x = bi, i = 1, . . . , l are affine.

Note that we use ai to represent the ith equality constraint vector, not the ith element of the vector

a. Let D be the intersection of the domains of all the fi; we assume D is non-empty and f0 is

proper so the problem is feasible. Let p∗ be the optimal value.

The Lagrangian function is defined as

L(x, λ, ν) def= f0(x) +
m∑

i=1
λifi(x) +

l∑
i=1

νi(aT
i x− bi).

The Lagrangian can be interpreted as an augmented form of the objective f0(x) that takes into

account the constraints. The vectors λ and ν are called dual variables. The dual function is defined

as the infimum of the Lagrangian over x:

g(λ, ν) def= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
l∑

i=1
νi(aT

i x− bi)
)

.
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Note that the dual function is always concave, since it is the pointwise infimum of a family of affine

functions of (λ, ν).

An important property of the dual function is that it provides a lower bound for the primal

optimal value p∗:

g(λ, ν) ≤ p∗ ∀λ ≥ 0, ∀ν.

The Lagrange dual problem seeks the best such lower bound:

max g(λ, ν)

s.t. λ ≥ 0.

(3.3)

A pair (λ, ν) where λ ≥ 0 and g(λ, ν) > −∞ is called dual feasible. Note that the dual problem is

(equivalent to) a convex problem, since the dual objective g(λ, ν) is always concave and the dual

feasible set is convex.

Let d∗ be the dual optimal value (i.e., the optimal value of (3.3)). Since g(λ, ν) ≤ p∗ for all

dual feasible (λ, ν), we have the inequality

d∗ ≤ p∗.

This important relation is called weak duality. If the equality d∗ = p∗ holds, it is said that strong

duality holds. Note that strong duality does not always hold, though weak duality always holds.

There are many results that establish conditions on the primal problem, called constraint

qualifications, under which strong duality holds. Slater’s condition is one simple constraint quali-

fication: if the primal problem (3.2) is convex and there exists an x ∈ relintD such that

fi(x) < 0 ∀i = 1, . . . , m (3.4)

aT
i x = bi ∀i = 1, . . . , l, (3.5)

then strong duality holds (see Section 2.1.3 of [17] for the definition of relint, the relative interior

of a set) and a dual optimal point exists, meaning that the dual optimal value is achieved. Such a

point x is called strictly feasible. Slater’s constraint qualification can be relaxed to change (3.4) to

fi(x) ≤ 0 for any i for which fi(x) is affine.
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Let x be a primal feasible point, (λ, ν) be a dual feasible pair, and assume strong duality

holds. Without knowledge of the value of p∗, we can bound how far f0(x) is from p∗ via

f0(x)− p∗ ≤ f0(x)− g(λ, ν),

where the quantity f0(x)−g(λ, ν) is called the duality gap. The duality gap is often used in stopping

criteria for optimization algorithms. We will use it in our safe feature elimination strategy.

Let us now assume that the objective f0 and constraint functions f1, . . . , fm are differentiable.

Let x∗ and (λ∗, ν∗) be any primal and dual optimal points with zero duality gap (so strong duality

holds). The Karush-Kuhn-Tucker (KKT) conditions are

∇f0(x∗) +
m∑

i=1
λ∗

i∇fi(x∗) +
l∑

i=1
ν∗

i ai = 0

fi(x∗) ≤ 0, i = 1, . . . m

aT
i x∗ = bi, i = 1, . . . l

λ∗
i ≥ 0, i = 1, . . . , m

λ∗
i fi(x∗) = 0, i = 1, . . . , m.

In order, the constraints are first-order optimality of x∗ minimizing L(x, λ∗, ν∗) over x ∈ D, primal

feasibility, dual feasibility, and complementary-slackness. The KKT conditions are necessary for x∗

and (λ∗, ν∗) to be primal and dual optimal with zero duality gap. For convex problems, the KKT

conditions are also sufficient to show optimality with zero duality gap. That is, for fi convex, if x

and (λ, ν) satisfy the KKT conditions, then they are primal and dual optimal with zero duality gap.

If Slater’s condition holds, then strong duality holds, the dual maximum is attained, and the KKT

conditions are necessary and sufficient for x and (λ, ν) to be optimal. Note that Slater’s condition

holding for the primal problem does not imply that the primal optimal value is attained; for that,

we must have Slater’s condition holding for both the primal and dual problems.
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3.2 Optimization Methods

A major part of the image formation process in our approach is the solution of many moderate-

sized NNLS problems. When using a single illumination spot, collecting all subimages takes ap-

proximately 100 seconds. By using multiple, well-separated illumination spots, the full sample can

be scanned in just a few seconds. Rapidly solving the NNLS problem for each subimage is of great

importance, as it will allow users of the microscope to effectively explore many samples.

As Figure 3.3 shows, there are significant differences between a “low” and “high” accuracy

solution. The “low” accuracy (which was also used in Figure 3.2) is visually smoother, though still

super-resolved; the “high” accuracy solution appears more crisp. However, the “high” accuracy

solution does appear to have artificial sparsity, which is an artifact of the NNLS model, not an

inaccurate solution. So we must have both fast and accurate solutions to our thousands of NNLS

problems.
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Figure 3.3: A higher accuracy solution appears more sharp than a lower accuracy solution.

Interior point methods (IPM), a generalization of Newton’s method to inequality constrained

problems, are both fast and accurate [17]. Internally, IPMs must solve a linear system of equations
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at each step of the iteration. This linear system changes at each iteration and is different for each

RHS, so IPMs are limited to working on a single problem/RHS at a time. But our 40000 NNLS

problems are completely independent of each other, giving us an “embarrassingly parallel” situation.

For example, we can spread the problems over a large number of nodes in a supercomputer. To give

a concrete example, consider the 3× oversampled PSF dictionary matrix A, which is 1681× 1010.

Solving each of the 40000 NNLS problems with matlab’s quadprog, which uses an interior point

method, requires 90 core hours on one of our workstation computers (dual socket Intel® Xeon™

E5-2630).

But recall that the PSF dictionary A is identical for all the NNLS problems; only the right-

hand side (RHS) b changes between problems. This is a special structure that we can exploit using

first-order methods, which can be adapted to efficiently work on multiple RHS simultaneously. In

a sense, implementations of first-order methods are actually more computationally efficient when

working on multiple RHS, as it amortizes costs associated with applying A as a linear operator

on multiple vectors. Our GPU implementation of an accelerated projected gradient method solves

the same 40000 problems in 26 minutes on a single NVIDIA K40c GPU installed on the same

workstation computer. While certainly much slower than the few seconds it takes to collect the

subimages, this is a massive speedup over the interior point method.

In Subsection 3.2.1 we adapt an accelerated first-order method from [7] with the adaptive

step size scheme and a few other improvements from [11] to run efficiently on multiple RHS simul-

taneously. The dominant cost of the method involves matrix-matrix products, for which the paral-

lelism of GPUs is particularly well-suited. We discuss implementing the method on a GPU, which

yields a major improvement in runtime in our experiments. In Subsection 3.2.2 we explore using

a block diagonal preconditioner with first-order methods to improve runtime for ill-conditioned

problems. In Subsection 3.2.3 we discuss implementing the alternating directions method of multi-

pliers (ADMM), which brings in second-order information in an inexpensive manner that extends

to multiple RHS. ADMM can also be easily implemented on a GPU, and in our experiments, it can

converge slightly faster than accelerated first-order methods.
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3.2.1 Accelerated First-Order Methods

3.2.1.1 Projected Gradient Method

The projected gradient method (PGM) is the archetypal first-order method one can use to

solve NNLS. The essential idea of projected gradient is to take a step to decrease the objective

function (i.e., a step in the negative gradient direction) and then project onto the feasible set, as

the gradient step may have gone outside the feasible set. This produces the iteration

xk+1 = PC

(
xk − tk∇f(xk)

)
,

where PC is orthogonal projection onto the feasible set C, tk is a step size, and ∇f(x) is the

gradient of the objective function f(x). Note that we use tk to denote the scalar step size at the

kth iteration, not the k element of a vector. In NNLS, the feasible set is the non-negative orthant

C = Rn
+

def= {x ∈ Rn : x ≥ 0}, in which case the projection operator is

PC(x) = max{0, x},

with the max performed elementwise. Of course, if x is already feasible (i.e., x ∈ C = Rn
+), the

projection returns x: PC(x) = x.

Note that PGM requires computing the projection operation at every iteration. In order for

PGM to run quickly, the projection operation must be relatively inexpensive to compute. For NNLS,

the projection operation is nearly trivial, so PGM is a good candidate; for problems where the

projection is expensive to compute, other methods may be preferred (e.g., interior point methods,

which handle the constraint differently).

An important consideration when using PGM is the choice of step size tk, which must be

chosen in order to guarantee convergence, but also produce large enough steps to make substantial

progress. If ∇f(x) is globally Lipschitz continuous with constant L, tk = 1/L is typically used (in

convergence analysis, at least), though any tk < 2/L will do [10]. Because L is the global Lipschitz

constant, if there is a smaller L that applies in a local region, using tk = 1/L is overly conservative.

We will return shortly to selecting step sizes in practice.
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A standard result is that PGM produces a sequence with O(1/k) convergence in function

value for a wide class of convex problems.

Theorem 2 (Theorem 10.21 of [10]): Assume the following:

• f is proper, closed, has L-Lipschitz continuous gradient, and C ⊂ dom(f),

• C is convex and non-empty,

• the optimal set X∗ is non-empty, and the optimal value is p∗.

Assume further that f is convex. Let xk be the sequence of points produced by PGM using

step size tk = 1/L. Then for any optimal point x∗ ∈ X∗ and k ≥ 0,

f(xk)− p∗ ≤ L

2k
‖x0 − x∗‖2.

The gradient of the NNLS objective f(x) = 1
2‖Ax− b‖2 is

∇f(x) = AT (Ax− b).

Combined with the projection onto the non-negative orthant, the PGM iteration for NNLS is

xk+1 = max{0, xk − tkAT (Axk − b)}. (3.6)

The computational burden of this iteration is in computing the matrix-vector products Ax and

AT r, where r = Ax− b.

Recall that we have many NNLS problems with the same A but a different RHS for each

problem. This allows us to group multiple gradient evaluations together to utilize matrix-matrix

products with A and AT . To do this, we group a number of RHS as columns of the matrix B and

group the corresponding block of PSF intensity vectors into the matrix X. We can then evaluate

the gradient for all columns in X efficiently via

AT (AX −B),

which involves the matrix-matrix products AX and AT R, where R = AX −B.
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On modern computer architectures with a hierarchical memory architecture, a high-performance

matrix-matrix product implementation is generally much faster than repeated use of a matrix-vector

product implementation. For example, see Figure 3.4, which shows the runtime of evaluating

the NNLS gradient with many matrix-vector products versus using matrix-matrix products for

1681 × 2822 A. When using a block of 1000 RHS (so X is 2822 × 1000), computing the gradi-

ent using matrix-matrix products is nearly 9 times faster than using many matrix-vector products.

The reason for the speedup is the more efficient memory access pattern of the matrix-matrix prod-

uct implementation. We refer the reader to [42] for a brief discussion of blocking matrix-matrix

multiplication.
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Figure 3.4: Cost of evaluating the NNLS gradient for multiple RHS by utilizing many matrix-vector
products or matrix-matrix products.

Projection onto the non-negative orthant Rn
+ trivially extends to a block of columns, as the
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operation is elementwise separable. In terms of these matrix variables, the PGM iteration for NNLS

is

Xk+1 = max{0, Xk − tkAT (AXk −B)},

which is, of course, very similar to the single RHS iteration (3.6). Additionally, the objective values

for each column in X can be easily computed from R = AX −B, which is computed as part of the

gradient computation.

3.2.1.2 An Accelerated Projected Gradient Method

We have seen that the PGM offers a computationally efficient method to solve in parallel

many NNLS problems with the same A but different RHS. In the past few decades, a great deal of

research has been performed on so-called optimal first-order methods. The first such method was

discovered by Nesterov in 1983 [72], where it was shown that, for a large class of convex problems,

the objective values f(xk) converge to the optimal value p∗ with rate O(1/k2). The projected

gradient method exhibits O(1/k) convergence, hence Nesterov’s and the many subsequent methods

are called accelerated first-order methods. Prior work showed that the optimal rate is O(1/k2) [71],

hence Nesterov’s method is called optimal. For more details on the sense in which such methods are

optimal, see the text [73]; Section 5.2 of [11] lists a number of popular optimal first-order methods

in a common format that allows for easy comparison of the methods.

That accelerated first-order methods are optimal is itself remarkable. More interesting is the

fact that many optimal methods utilize a single gradient evaluation and projection operation per

iteration, just like PGM. Indeed, it is typical that the cost of accelerated methods is only slightly

higher than PGM, making them generally preferable in practice.

To be concrete, an accelerated method from [7], which we will abbreviate AT, is shown in

Algorithm 7. The method introduces auxiliary sequences, giving the iteration a particular form of

momentum. The gradient and projection are evaluated using the auxiliary sequences. The role that

momentum plays in accelerating convergence is explored in [40]. We can see that the computational

expense of AT is very similar to PGM: there is a single gradient and projection computation per
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iteration, with just two additional convex combinations.

Algorithm 7 AT: Accelerated Projected Gradient Method from [7]
Require: Starting point x0 ∈ dom f

z0 ← x0, θ0 = 1
for k = 0, 1, 2, . . . do

yk ← (1− θk)xk + θkzk

zk+1 ← PC

(
zk − tk

θk
∇f(yk)

)
xk+1 ← (1− θk)xk + θkzk+1

θk+1 ←
2

1 +
√

1 + 4/θ2
k

end for

The choice of step size is of critical importance to both PGM and accelerated methods.

While the constant step size tk = 1/L is used often in theory, as it guarantees convergence for

functions with L-Lipschitz continuous gradient, the steps it produces are often too conservative as

the iterates approach an optimal point. In other words, the Lipschitz bound

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ dom f

is no longer tight when x, y are near an optimal point x∗. Taking larger steps by increasing tk can

improve performance considerably, though care must be taken to ensure convergence.

3.2.1.3 Improvements from TFOCS

It is customary to use a backtracking line search accomplish this. We use the hybrid back-

tracking line search with local Lipschitz constant estimation from TFOCS [11], which takes steps

tk = 1/Lk, where Lk is a local Lipschitz estimate at step k. The condition used to ensure conver-

gence is

f(xk+1) ≤ f(yk) +
〈
∇f(yk), xk+1 − yk

〉
+ Lk

2 ‖x
k+1 − yk‖2. (3.7)

With standard backtracking, we would iteratively increase Lk (equivalently, we decrease tk) until

the condition (3.7) is satisfied. This can be done by updating Lk ← 2Lk, for example, then

recomputing xk+1 and checking the condition. Once the condition is satisfied, we accept the step,

giving us the values zk+1 and xk+1, and move on to the next iteration.
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TFOCS uses the hybrid strategy taking Lk ← max{2Lk, L̂}, where L̂ is the smallest value

of Lk that satisfies (3.7). It is noted that the condition (3.7) exhibits cancellation errors when

f(xk+1) ≈ f(yk), which occurs as the iteration converges. To avoid these errors, TFOCS uses the

alternate condition

∣∣∣〈xk+1 − yk,∇f(xk+1)−∇f(yk)
〉∣∣∣ ≤ Lk

2 ‖x
k+1 − yk‖2 (3.8)

when f(yk) − f(xk+1) ≥ γf(xk+1), where γ is a small positive constant. Additionally, a slight

correction to the θk sequence is used to account for the changing step size.

One final improvement implemented in TFOCS to make efficient use of applications of the

linear operator A. To highlight how A is used, let us reformulate NNLS slightly. Define the function

f(z) def= 1
2‖z − b‖2.

Using f , we can write NNLS as

min f(Ax)

s.t. x ≥ 0.

The gradient of the original NNLS objective is ∇f(x) = AT (Ax− b) = AT∇f(Ax). The gradient

∇f(z) = z − b is much cheaper to compute (given z) than ∇f(x) = AT (Ax− b) (given x). By

defining the auxiliary sequences xk
A = Axk and zk

A = Azk, we can form yk
A = Ayk without actu-

ally computing Ayk. This allows us to save a matrix multiply when computing the gradient:

∇f(yk) = AT∇f(Ayk) = AT∇f(yk
A). Furthermore, the auxiliary sequences allow us to evaluate

the convergence condition (3.8) without forming the full gradient ∇f(xk+1). By using definition of

the adjoint operator, an identical condition is

∣∣∣〈xk+1
A − yk

A,∇f(xk+1
A )−∇f(yk

A)
〉∣∣∣ ≤ Lk

2 ‖x
k+1 − yk‖2.

Algorithm 8 lists the accelerated projected gradient method AT (see Algorithm 7) with all

of these improvements. Note that there is a single application of AT , PC , and A per iteration

of the backtracking loop. In our experiments, it is typical that more than 90% of backtracking

iterations are accepted, resulting in few wasted applications of A and AT . If we were to forego
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the modification of θk when Lk is changed, the computation of gy could be moved outside the

backtracking loop; in such a case, there would be a single application of AT per “main” iteration,

and one each of PC and A per backtracking iteration. However, our experiments reveal that the

θk modification is quite worthwhile, resulting in fewer iterations and less work overall than would

be saved by undoing the θk modification and moving the AT application outside the backtracking

loop.

Algorithm 8 AT: Algorithm 7 with Improvements from TFOCS [11]
Require: Starting point x0 ∈ dom f , α ∈ (0, 1], β ∈ (0, 1), L̂ > 0

z0 ← x0, x0
A ← Ax0, z0

A ← Ax0, L−1 = L̂, θ−1 =∞
for k = 0, 1, 2, . . . do

Lk = αLk−1
loop

θk ←
2

1 +
√

1 + 4Lk/θ2
k−1Lk−1

. (θ0
def= 1)

yk ← (1− θk)xk + θkzk

yk
A ← (1− θk)xk

A + θkzk
A

gy ← AT∇f(yk
A)

zk+1 ← PC

(
zk − 1

θkLk
gy

)
zk+1

A ← Azk+1

xk+1 ← (1− θk)xk + θkzk+1

xk+1
A ← (1− θk)xk

A + θkzk+1
A

L̂← 2
∣∣∣〈xk+1

A − yk
A,∇f(xk+1

A )−∇f(yk
A)
〉∣∣∣/‖xk+1 − yk‖2

if Lk ≥ L̂ then
break

end if
Lk ← max{Lk/β, L̂}

end loop
end for

3.2.1.4 Modifications to Better Support Multiple RHS

We initially used TFOCS [11] to solve the many NNLS problems arising from our microscopy

application. While TFOCS gives an improvement over using an interior point method for each

problem individually, there are a couple drawbacks when used for our specific scenario. The first is

the manner in which TFOCS handles solving multiple NNLS problems. When an NNLS problem is
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solved individually, the step sizes are adjusted for that specific problem. When working on multiple

RHS, TFOCS treats a block of columns as a matrix variable and performs a single Lipschitz estimate

for the block, not the individual columns. This results in a single step sized being used for all

columns of the matrix, which unnecessarily slows convergence.

Our implementation fixes this by computing function values and gradients, performing the

backtracking line search, Lipschitz estimation, and checks for convergence on a per-column basis.

The major computational benefit of using matrix-matrix products instead of multiple matrix-vector

products is retained by grouping most operations into large array operations (e.g., we still compute

the gradients via AT (AX−B)). This allows us not only to use a different step size for each column,

which speeds convergence, but furthermore to prune columns that have already converged. The

column pruning allows us to remove columns that have met a convergence criterion from the block

of columns, which decreases the cost of subsequent iterations. All of these improvements come at

a measurable overhead cost, but we have found a significant net speedup when they are used.

The second downside is that TFOCS is designed for the CPU only. We have access to

an NVIDIA K40c GPU, which can greatly speed up the computation of the moderately sized

matrix-matrix products AX and AT R used in the gradient computation. However, there are

other operations (e.g., convergence checks, step size adaptation) that are rather costly on the GPU.

By using matlab’s Parallel Computing toolbox, our implementation can carefully blend GPU and

CPU operations to see a further improvement in runtime over CPU-only operation.

Specifically, the iteration variables xk, xk
A, etc. are held on the GPU, where the large array

operations are performed. The Lipschitz estimation procedure requires a significant amount of

branching (when both Lipschitz estimates are computed with various checks for numerical round

off), so various quantities are computed on the GPU and then transferred to the CPU, where

branching is less costly, for final computation of the Lipschitz estimate. The step size decisions and

convergence checks are then transferred to the GPU for use in the next iteration.
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3.2.1.5 Warm Starting

When using a first-order algorithm, or any algorithm that allows one to specify the initial

iterate x0, the choice of starting point x0 can be used to our advantage. If we have an x̂ that is

nearby an optimal point, we can “warm start” the solver with x0 = x̂ to reach an optimal point in

fewer iterations. To see this, recall the convergence bound for PGM from Theorem 2:

f(xk)− p∗ ≤ L

2k
‖x0 − x∗‖2,

for any optimal x∗. Warm starting seeks to shrink ‖x0 − x∗‖2 by picking a more accurate x0.

Since we have control over the construction of the PSF dictionary, we use the following warm

start procedure. We first construct a PSF dictionary on a coarse grid, say A1/3 which uses 3×

oversampling relative to the effective camera pixel size. This results in A1/3 of size 1681 × 1010.

We start with a generic initial guess, such as x0
1/3 = 0 or x0

1/3 = max{0, (AT A)−1AT b}, the least-

squares solution projected onto Rn
+. We then solve the NNLS problem to a low accuracy, giving

x̂1/3. We then construct a finer PSF dictionary, say A1/5 of size 1681×2822, and interpolate x̂1/3 to

the new PSF grid and use the interpolated values as the initial guess x0
1/5. If A1/5 is the final PSF

grid we are interested in using, we then solve high accuracy; otherwise we solve to low accuracy

and interpolate the solution to the next PSF grid and repeat the process.

This warm start procedure allows us to compute a coarse solution on a smaller PSF dictionary,

where gradient evaluations are cheaper and the objective has nicer curvature properties (for small

enough dictionaries, the PSF dictionary matrix is strongly convex). We then transfer the coarse

solution up to a finer grid, where gradient evaluations are more expensive and convergence is slower.

Using this warm start allows allows us to save a small number of iterations on the finer PSF

dictionary, speeding up the runtime to reach high accuracy on fine PSF dictionaries.

3.2.1.6 Convergence for a Strongly Convex Objective Function

There are two significant differences between “overdetermined” NNLS (m ≥ n) and “un-

derdetermined” NNLS (m < n). The first is that, in the overdetermined case, we can rewrite
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an overdetermined NNLS problem as a quadratic program (QP) for cheaper gradient evaluations.

Define the n× n matrix P = AT A, the vector q = −AT b, and the scalar s = 1
2‖b‖

2. The quadratic

program

min 1
2〈x, Px〉+ 〈q, x〉+ s

s.t. x ≥ 0,

(3.9)

is equivalent to NNLS. Note that in the gradient computation for NNLS, we compute the matrix-

vector products Ax and AT r, each at a cost of O(mn) FLOPs. In the QP formulation, the gradient

is

∇f(x) = Px + q,

which costs O(n2) FLOPs. When m ≥ n/2, in particular when A is overdetermined, we see that the

QP formulation reduces the cost of each gradient computation. The cost of computing P = AT A,

q = −AT b, and s = 1
2‖b‖

2 is not considered, since the cost of repeated gradient evaluations typically

outweighs this initialization cost by a large factor, especially when working on multiple RHS. Note

that the QP formulation, by explicitly forming P = AT A, has worse ill-conditioning and may be

less accurate than the natural NNLS formulation that uses Ax and AT r.

The second difference in the overdetermined, full-rank case is that the NNLS objective is

strongly convex. Theorem 2 showed that PGM converges with rate O(1/k) in function value. For

a µ-strongly convex function, this rate bound can be improved. We repeat the following theorem

from [10].

Theorem 3 (Theorem 10.29 of [10]): Suppose f satisfies the conditions of Theorem 2 and is also

µ-strongly convex (µ > 0). Let xk be the sequence generated by PGM with constant step size

tk = 1/L. Then for all k ≥ 0,

f(xk+1)− p∗ ≤ L

2

(
1− µ

L

)k+1
‖x0 − x∗‖2.

The quantity L/µ is called the condition number of the problem, as it controls the rate of conver-

gence of PGM. For NNLS, the condition number L/µ = κ2(AT A) = σmax(AT A)/σmin(AT A), the

usual condition number from numerical linear algebra. Theorem 3 shows that PGM achieves linear
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convergence for strongly convex problems. Furthermore, there is no change to the method required

to achieve such convergence; the improved convergence comes automatically in the presence of

strong convexity. Note that if the condition number L/µ is very large, the convergence bound

given by Theorem 3 may be weaker for a given k than the O(1/k) bound given by Theorem 2.

Theorem 2 still applies, so convergence will be bounded by whichever bound is tighter.

Accelerated methods, such as AT (see Algorithms 7 and 8), require modification to achieve

linear convergence. There is a variant of FISTA, another popular accelerated first-order method,

that achieves accelerated linear convergence with improved rate O((1−
√

µ/L)k) [10]. Unlike PGM,

however, this variant does not automatically achieve linear convergence, as it requires knowledge

of the strong convexity constant µ.

The strong convexity constant can be difficult to estimate in practice. A popular approach

that also can give accelerated linear convergence is to iteratively restart the acceleration of an

accelerated first-order method (i.e., set θk = 1 every Kth iteration). The number K is typically

manually tuned to the problem at hand, a process which does not require knowledge of the strong

convexity constant. It is typical that iteratively restarted accelerated methods with tuned K

achieve improved linear convergence compared to PGM. Optimal values of K are known for certain

methods, though they require the strong convexity constant [10, 46].

3.2.2 Block Diagonal Preconditioner

In this subsection we consider overdetermined, full-rank NNLS problems, which have a

strongly convex objective function. Our PSF dictionary matrices are full-rank and overdetermined

for grid spacing 1× to 3× finer than the camera pixel sizes. The matrix sizes and condition num-

bers are given in Table 3.1. The associated NNLS problems have condition number L/µ = κ2(AT A).

As long as the condition number is not too high, we expect to see linear convergence for PGM

and AT (with tuned iterative restarts) with rate depending on κ2(AT A). Through the use of a

preconditioner to decrease κ2(AT A), we seek to improve the speed of linear convergence.

Remark: Our PSF dictionaries are extremely ill-conditioned (κ2(A) ≈ 1020), and so we expect the
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convergence of PGM and AT to follow the O(1/k) and O(1/k2) rates, respectively. Nevertheless,

we explore preconditioned first-order methods applied to the QP (3.9) with “random” ill-conditioned

problems with more moderate condition numbers.

For our real PSF dictionaries, we noticed that the NNLS Hessian P = AT A concentrates

along the main diagonal. This is due to PSFs with nearby centers having larger inner products

than PSFs that are further separated. The concentration along the main diagonal can be further

strengthened by a permutation ΠPΠT that organizes PSFs with nearby grid centers to have similar

indexes in A. Such a permutation simply amounts to re-indexing the columns of A and elements

of x, which does not change the NNLS problem, but can allow us to find a stronger preconditioner.

For the remainder of this subsection, we will consider the permutation to have been applied.

Let M be the preconditioner, which of course must be invertible. In order to guide the

construction of M , let first see how to use it to precondition NNLS. We insert M into NNLS by

performing a change of variables:

min 1
2‖Ax− b‖2

s.t. x ≥ 0
⇐⇒

min 1
2‖AMM−1x− b‖2

s.t. x ≥ 0
⇐⇒

min 1
2‖AMz − b‖2

s.t. Mz ≥ 0

The Hessian of the rightmost problem is MT AT AM , but note that the constraint is now Mz ≥ 0.

We will solve the rightmost problem with PGM or AT, which requires that we project onto the set

{z : Mz ≥ 0}. This projection returns the (unique) optimal value of

min 1
2‖ζ − z‖2

s.t. Mζ ≥ 0.

After the change of variables Mζ = ξ, the problem is

min 1
2‖M

−1ξ − z‖2

s.t. ξ ≥ 0.

(3.10)

This projection subproblem is itself an NNLS problem of of size n × n, which is comparable in

size to the original NNLS problem. We must therefore pick M with some structure that allows for

quickly computing the projection, otherwise the cost of projection may outweigh the reduction in
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iterations granted by improving the conditioning of the original NNLS problem. We discuss these

and other structural constraints in Subsection 3.5.1.

A simple choice of M is a diagonal matrix, which is considered in [74]. For diagonal M , the

projection subproblem (3.10) can be solved in closed form:

ξi = max{0, Miizi},

from which we find ζi = ξi/Mii. While this allows for fast projection, the improvement in condi-

tioning is nearly negligible in our experiments.

We instead consider a block diagonal preconditioner to increase the improvement in condi-

tioning, while allowing the projection subproblem (3.10) to be block-separable, which aids in its

fast solution. We will use square blocks of size N × N , where we assume for simplicity that n is

divisible by N . In practice, we can account for blocks of different sizes and this does not adversely

affect the improvement in conditioning.

In order to decrease the condition number κ2(MT AT AM), we populate blocks of M with

the inverse matrix square root of the corresponding block of AT A. See Figure 3.5 for an example

of AT A and a sketch of how we form M . Increasing the block size N will generally decrease

κ2(MT AT AM), leading to fewer iterations of the first-order method.

Figure 3.5: Forming the block diagonal preconditioner M from the NNLS Hessian P = AT A.
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To solve the projection subproblem (3.10), we use that the problem is block separable. Let

Mi be the ith block of M , zi the ith block of z, and ξi the ith block of ξ. We can project the ith

block independently from the other blocks with the block subproblem

min 1
2‖M

−1
i ξi − zi‖2

s.t. ξi ≥ 0,

which is itself a smaller, N ×N NNLS problem. To project z onto {z : Mz ≥ 0}, we solve all block

subproblems and then assemble the blocks, giving us the projection.

Since the block subproblem is small, active set and interior point methods are computationally

efficient. We use SPAMS [61], which provides a fast implementation of LARS [35], which can

be used to solve NNLS problems. The complexity of LARS for an N × N NNLS problem is

roughly O(N3) FLOPs, depending on the solution path (see [62] for a discussion of this, where it

is shown that the solution path has exponentially many segments in the worst case). There are

dn/Ne blocks, so the total cost of projecting z onto {z : Mz ≥ 0} is roughly O(nN2). Thus we

see that increasing the block size leads to increased projection costs when using the preconditioner.

There is therefore a trade-off between increasing the block size N to improve the problem condition

number and decreasing the block size to speed up each iteration.

We run a simple experiment to test this trade-off on synthetic problems with a more moderate

condition number. We generate a random matrix A = QΣ1/2, where Q ∈ Rm×n is a random

orthogonal matrix [69] and Σ ∈ Rn×n is a random “covariance” matrix with entries

Σij = e−γ|i−j|.

This particular choice of A and Σ is meant to concentrate larger values along the diagonal of AT A.

The parameter γ is chosen so that κ2(A) = 106.

We pick a random RHS b and find an optimal point using lsqnonneg in matlab, which

implements an active-set method from [57]. Alternatively, we can generate a random NNLS solution

by first picking a solution x∗ ∈ Rn; for example, we could populate x∗ with standard normal entries

and then threshold x∗ ← max{0, x∗}. We can then find an RHS b that will result in x∗ being an
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NNLS solution according to Appendix C. Once we have the NNLS problem with known solution, we

then run AT with and without preconditioning until (f(xk)− f(x∗))/f(x∗) ≤ 5× 10−4, measuring

the runtime in each case.

Figure 3.6 shows the runtime of preconditioned AT relative to the runtime of AT without the

preconditioner for two problems. There is a strong dependence on block size, which is indicative

of the trade-off between improving problem conditioning and the cost of the projection. We do see

an improvement in runtime at the best block size, although it is rather mild.
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Figure 3.6: Relative runtime versus number of blocks in preconditioner (number of blocks = n/N).

There is room for possible improvement in this preconditioned approach. The discussion

in Subsection 3.5.1 highlights a more effective way to construct a block diagonal preconditioner.

Note that this discussion is limited to running on a CPU since we use SPAMS, which is limited to

the CPU. As it currently stands, the improvement gained by running unpreconditioned AT on the

GPU far outweighs preconditioned AT on the CPU. To efficiently utilize a GPU, we need to avoid

communicating between the GPU and host as much as possible. For this reason we would likely

need to implement LARS, or another fast solver for small NNLS problems, on the GPU.
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3.2.3 Alternating Direction Method of Multipliers

First-order methods, like those discussed in Subsection 3.2.1, by definition are limited to us-

ing only up to first-order information. The use of a block diagonal preconditioner can be though of

as introducing second-order information (i.e., information related to the Hessian AT A) in a some-

what inexpensive manner. However, introducing the preconditioner adversely affects the projection

subproblem, ultimately limiting the performance of the method.

Interior-point methods utilize the Hessian directly by solving a saddle-point system of linear

equations at each iteration. Note that this linear system depends on the current iterate, say xk,

and thus changes at each iteration (and per RHS). While very efficient for finding a high-accuracy

solution for a relatively small number of RHS, the costs associated with solving many different

saddle-point systems becomes very costly. Indeed, this is why we do not consider interior-point

methods for solving the large number of NNLS problems arising from our microscopy application.

The alternating direction method of multipliers (ADMM) when applied to NNLS offers a

simple method that efficiently utilizes a simple form of second-order information. The review

article [16] provides a nice introduction and survey for those readers unfamiliar with ADMM.

3.2.3.1 The Basic Version of ADMM

To begin, we define the following problem:

minx,y
1
2‖Ay − b‖2 + ρ

2‖x− y‖2

s.t. x ≥ 0

x = y,

(3.11)

where ρ > 0 is a penalty parameter. Note that (3.11) is equivalent to NNLS, due to the constraint

x = y and ρ > 0. The motivation behind using this objective is that we have separated the least-

squares objective (notice that it is now in terms of y) from the non-negativity constraint x ≥ 0.

The augmentation ρ
2‖x− y‖2 serves to penalize x 6= y, and can be thought of as a remnant of the

augmented Lagrangian method applied to NNLS; see [16] or [10] to see how ADMM comes from
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the augmented Lagrangian method.

The ADMM iteration for (3.11) is as follows.

xk+1 = argminx≥0
1
2‖Ayk − b‖2 + ρ

2‖x− yk‖2 − 〈λk, x− yk〉

yk+1 = argminy
1
2‖Ay − b‖2 + ρ

2‖x
k+1 − y‖2 − 〈λk, xk+1 − y〉

λk+1 = λk − ρ(xk+1 − yk+1).

The variables λk can be interpreted as dual variables. With ADMM’s connection to the augmented

Lagrangian method and dual ascent, we can interpret ρ as a step size [16]. Note that the update

for yk+1 involves the updated variable xk+1, akin to Gauss-Seidel for solving linear systems of

equations [42].

The subproblem for computing xk+1 is equivalent to

min
x

ιRn
+

(x) + ρ

2‖x− yk‖2 − 〈λk, x− yk〉.

The optimum of this ρ-strongly convex (but not differentiable) problem satisfies

0 ∈ ∂

(
ιRn

+
(x) + ρ

2‖x− yk‖2 − 〈λk, x− yk〉
)

,

By Theorem 3.40 of [10] (on when the subdifferential distributes across addition), this condition

simplifies to

0 ∈ ∂ιRn
+

(x) + ρ(x− yk)− λk.

From this, we see that the solution is

xk+1 = max
{

0, yk + 1
ρ

λk
}

.

The subproblem for computing yk+1 is unconstrained and smooth, so we use the first-order

optimality conditions

0 = AT (Ay − b)− ρ(xk+1 − y) + λk.

Solving for y, we have the update

yk+1 = (AT A + ρI)−1(AT b + ρxk+1 − λk).
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Algorithm 9 shows the two updates together, along with the update for λk. We typically

choose y0 ← x0 and λ0 ← 0 to initialize the algorithm. Of course, we are not the first to apply

ADMM to NNLS: see [13, 87] for some recent examples. There is also an accelerated version

of ADMM [41], which is based on accelerated first-order methods. In our experiments, it offers a

modest improvement without much additional computation, as is typically the case with accelerated

first-order methods.

Algorithm 9 ADMM for NNLS (3.11)
Require: Initial points x0, y0, λ0, step size ρ > 0.

1: for k = 0, 1, 2, . . . do
2: xk+1 ← max

{
0, yk + 1

ρλk
}

3: yk+1 ←
(
AT A + ρI

)−1 (
AT b + ρxk+1 − λk

)
4: λk+1 ← λk − ρ(xk+1 − yk+1)
5: end for

Lines 2 and 4 of Algorithm 9 are very cheap to compute. The second step involves (AT A +

ρI)−1, which is the simple form of second-order information to which we have previously alluded. As

written, Algorithm 9 uses a fixed parameter ρ for all iterations. Therefore we need only “precompute

(AT A + ρI)−1” at the start of the algorithm, and can “multiply by the inverse” at each iteration.

The final new ingredient for ADMM is the choice of the step size ρ. There are strategies for

varying ρ, for example the simple scheme described in Section 3.4.1 of [16], originally from [50]. In

practice, we find that a manually tuned, fixed ρ can often yield much faster convergence than the

simple varying scheme.

3.2.3.2 Cholesky Variant

In order to implement Algorithm 9, we need to apply (AT A + ρI)−1 as a linear operator.

Naïvely, one could precompute the inverse matrix (AT A + ρI)−1 and use matrix-vector products.

We instead solve the linear system

(
AT A + ρI

)
yk+1 = w, where w

def= AT b + ρxk+1 − λk.
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This provides a more numerically stable implementation of the inverse operator [42, 52]. Further-

more, this leads to relatively cheap iterations, as we can precompute a factorization of AT A + ρI

in order to implement the linear system solve.

Suppose A is overdetermined (m ≥ n). We compute the Cholesky factorization of AT A + ρI,

which is guaranteed (in infinite precision arithmetic) to be positive definite since ρ > 0. That is,

we compute the factorization AT A + ρI = RT R, with R upper triangular. The linear system solve

(i.e., the update for yk+1) is then

yk+1 = R−1R−T w, (3.12)

where R−T and R−1 are applied using forward/backward substitution.

In the underdetermined case, AT A + ρI is n× n and may be quite large compared to A. We

can avoid computing this product by using the matrix inversion lemma [52]:

(
AT A + ρI

)−1
= 1

ρ
I − 1

ρ
AT

(
AAT + ρI

)−1
A, (3.13)

where AAT + ρI is m × m, which is smaller than AT A + ρI. We then compute the Cholesky

factorization AAT + ρI = RT R, giving the update

yk+1 = 1
ρ

w − 1
ρ

AT R−1R−T Aw. (3.14)

Note that in both the over- and underdetermined cases, we can apply ADMM to a block

of RHS simultaneously. Just like the discussion in Subsection 3.2.1.1, this allows us to use more

efficient matrix-matrix operations, ultimately speeding up runtime by a significant factor. We can

also move the computations onto a GPU for further improved performance.

Unlike Algorithm 8 however, Algorithm 9 does not adjust the step size ρ either per RHS or

as the iteration proceeds. If we were to change ρ, we would find that ρ is embedded in the Cholesky

factor R, and a new Cholesky factorization would need to be computed in order to change the step

size. We return to this topic in Subsection 3.2.3.4.
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3.2.3.3 Comparison with Accelerated First-Order Method

Here we compare the performance of Algorithm 8, an accelerated projected gradient method

with improvements from TFOCS, versus Algorithm 9, ADMM. We test the methods on A ∈

R1681×1010, which uses 3× oversampling relative to the camera pixel size, and run on a block of 50

RHS. Note that this problem is strongly convex, so we use Algorithm 8 with iterative restarts at

every 500 iterations. Algorithm 8 uses per-RHS step sizes that are adjusted with the backtracking

line search. In contrast, Algorithm 9 uses a fixed step size ρ that was manually tuned to achieve

the fastest convergence for the entire block of RHS; for this example, we use ρ = 2× 10−5 (with A

normalized to have ‖A‖2 = 1). ADMM uses the yk+1 update with (3.12).

Figure 3.7 shows the convergence of each algorithm. Note that the quantity labeled as

“Relative Norm of Gradient” uses the norm using only the indexes where the constraint x ≥ 0 is

inactive. The sharp jumps downward for AT occur when the acceleration is restarted. We see that

ADMM initially converges slower than AT, but eventually overtakes AT and ends up with more

than an order of magnitude more accuracy after 25000 iterations.
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Figure 3.7: AT (Algorithm 8) with per-RHS variable step sizes and iterative restarts vs. ADMM
(Algorithm 9) with a manually tuned, fixed ρ.
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Note that Figure 3.7 shows convergence based on iteration number, so we calculate the per-

iteration cost of each method to show that for NNLS, a single step of AT is comparable to a single

step of ADMM. In AT, the dominant costs is the matrix-matrix product with P = AT A (with P

precomputed in the QP-formulation; see (3.9)). In ADMM for overdetermined problems with the

Cholesky-based update (3.12), the dominant cost is forward-backward substitution with R−1R−T .

With A of size 1681× 1010, we find that a step of ADMM is very nearly the same cost as a step of

AT when using our GPU implementations. Therefore, comparing by iteration count is fair for this

case, and we see that ADMM with a manually tuned ρ is preferable to AT if we need a relative

norm of the gradient less than, say, 10−7.

For ADMM with underdetermined A, the Cholesky-based update (3.14) is more expensive

than a step of AT. A step of AT costs O(2mn) FLOPs whereas the Cholesky-based update (3.14)

costs O(2mn + m2) FLOPs. Notice that for large n, the difference is less severe. In our GPU

implementation, the 5× oversampled PSF dictionary matrix of size 1681×2822, a step of ADMM is

roughly 1.5 times as expensive as a step of AT. Unlike the overdetermined, strongly convex example

shown in Figure 3.7, the convergence of ADMM is on par with AT, even with a tuned ρ. Thus the

added cost of ADMM with update (3.14) is not justified for our underdetermined NNLS problems.

However, the update (3.14) is not the only way to implement the operation (AT A + ρI)−1w, as we

explore in the next subsection.

3.2.3.4 SVD Variant

We saw in Subsection 3.2.3.2 how to use the Cholesky factorization and matrix inversion

lemma to implement the solution to

(
AT A + ρI

)
y = w.

There are a few disadvantages with this approach. One we have already seen is that for an under-

determined NNLS problem, an iteration of ADMM (see (3.14)) is more expensive than an iteration

of AT. We could precompute the product AT R−1R−T A, or just R−T A, from (3.14), but we expect
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this to incur worse round off errors than applying each operation in order from right to left [52].

Another possible issue is that the numerical round off error in the Cholesky factorization

scales with κ2(AT A + ρI) (for the overdetermined case) [52]. Though ρ does serve to regularize

the system AT A + ρI, we tune ρ to achieve fast convergence of ADMM, not necessarily to ease

the ill-conditioning of AT A + ρI. Therefore in the process of tuning ρ, we may inadvertently make

the condition number quite large (e.g., if ρ is small), leading to an inaccurate implementation of

(AT A + ρI)−1w. Moreover, the Cholesky factorization might even fail. The tuned value of ρ in our

practical problems usually results in moderate conditioning, e.g. κ2(AT A + ρI) = 105. In synthetic

ill-conditioned problems the tuned value of ρ typically results in poor conditioning of AT A + ρI,

however; we discuss this further in Subsection 3.2.3.5.

Finally, the step size ρ is embedded in the Cholesky factorizations used in (3.12) and (3.14).

If we wanted to change ρ, we would need to recompute the factorization. This also impedes us from

using a different ρ for each RHS, as we would need a different factorization for each ρ we want to

use.

An alternative approach is to precompute the “thin” singular value decomposition A = UΣV T .

For an overdetermined problem, can straightforwardly find the update

yk+1 = V
(
Σ2 + ρI

)−1
V T w. (3.15)

Note that Σ2 + ρI is diagonal, so implementing the inverse operation is trivial. Moreover, since ρ

is not coupled to the factorization, this allows us to change ρ as we please, perhaps even using a

different ρ for each RHS. Observe that the Cholesky-based update (3.12) is approximately one half

the cost of the SVD-based update (3.15), since R is n× n triangular and V is n× n dense.

In the underdermined case, we must take note that U is orthogonal but V is only orthonormal,

so V T V = I but V V T 6= I. Using the matrix inversion lemma (3.13), we have the update

yk+1 = 1
ρ

w − 1
ρ2 V

(
Σ2 + 1

ρ
I

)−1
V T w (3.16)

This update can also be used with a changing ρ. The dominant operations in this update are the
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multiplications by V T and V , which means that this update is cheaper than the Cholesky-based

update (3.14).

In fact, the cost of this update is asymptotically equal to the cost of evaluating the NNLS

gradient. In a sense, ADMM allows us to use second-order information for free, compared to

gradient-based methods. Indeed, in our GPU implementation of ADMM with this update, a single

iteration takes the same amount of time as an iteration of Algorithm 8 implemented on the GPU.

However, recall that the convergence of ADMM is not that much faster than AT for our problems,

as shown in Figure 3.7. Since we manually tune the step size ρ, we generally prefer Algorithm 8,

with its automatic step size selection.

One lingering detail is the accuracy of computing the SVD of A. With the Cholesky variant,

we computed the Cholesky factorization of AT A + ρI. For our NNLS problems (with very ill-

conditioned A), the step size ρ was such that the condition of AT A + ρI was quite moderate,

making the Cholesky factorization quite accurate. However, for the SVD variant just discussed,

we have no such regularization and must pay “full freight” on the conditioning of A. For our

microscopy NNLS problems, the SVD variant still allows us to achieve sufficiently high accuracy

solutions, even though κ2(A) is very large.

In experiments with random ill-conditioned matrices, however, both the Cholesky variant and

the SVD variant were not accurate enough to produce very high accuracy solutions. In the next

subsection we explore a ways to increase the accuracy of the updates, thereby allowing ADMM to

achieve very high accuracy.

3.2.3.5 Iterative Refinement

In this subsection we consider using ADMM to achieve very high accuracy on an underde-

termined, random, ill-conditioned NNLS problem. We take A ∈ R100×150 formed as

A = UΣV T

where U is a random 100 × 100 orthogonal matrix (i.e., sampled from the Haar distribution on
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orthogonal matrices [69]) and V is a random 150 × 150 orthogonal matrix. The singular value

matrix Σ = diag(1, σ1, . . . , σ99) is chosen so κ2(A) = 106. This gives us a random ill-conditioned A.

We generate a random solution x with half of its entries equal to 0 and the other half sampled from

the standard normal distribution. The RHS b is generated according to the procedure in Appendix

C.

Figure 3.8 shows the convergence of AT, ADMM, and ADMM with iterative refinement (to

be described shortly; see Algorithm 10). We plot the relative norm of the gradient on the set of

indices where the constraint x ≥ 0 is inactive. Note that we use a combined linear and logarithmic

scale, with the transition between scales occurring at iteration 5000.

AT and ADMM both converge rapidly for the first 1000 iterations, but then AT slows dra-

matically. ADMM continues converging rapidly, until around iteration 2000 when it stops converg-

ing abruptly and makes no further progress. With iterative refinement, ADMM continues its fast

convergence past iteration 2000, stopping around iteration 4000 at a relative norm of 10−11, which

corresponds to about 16 orders of magnitude improvement in the relative norm of the gradient.
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Figure 3.8: AT (Algorithm 8), ADMM (Algorithm 9), and ADMM with iterative refinement. Note
the combined linear and logarithmic scales.

It is clear that ADMM converges significantly faster than AT for this synthetic problem. What



103

limits ADMM’s convergence after 2000 iterations is numerical round off in the implementation of

the yk+1 update. For the underdetermined problem we consider, we manually tuned the step size,

finding ρ = 0.1 to be the best. We can use either the Cholesky update (3.14) or the SVD update

(3.16). In the example, we use the SVD update, as the relevant condition number κ2(A) = 106 is

lower than the relevant condition number κ2(AT A + ρI) = 107 for the Cholesky update. Indeed,

using the Cholesky update causes the convergence floor for ADMM to rise from 10−3 (SVD update)

to 10−1 (Cholesky update).

To increase the accuracy, we could compute all steps of ADMM in extended precision, but that

would likely be extremely slow. An alternative approach is to precompute the required factorization

(either Cholesky or SVD) in extended precision, cast the factors back to double precision, and

carry out the ADMM iterations in double precision. This uses extended precision quite sparingly,

as the factorization is computed only once, at the start of the algorithm. An alternative method to

possibly achieve a higher accuracy SVD using double precision is to use a Jacobi SVD algorithm,

e.g. dgesvj in LAPACK [5]. dgesvj is sometimes able to compute small singular values and vectors

more accurately than algorithms which first tridiagonalize A [27].

To test this, we cast A to 128-bit floats, compute the SVD with dgesvj compiled to use

128-bit floats instead of double precision (64-bit floats), and then cast the results back to double

precision for use with the double precision ADMM iterations. We run the SVD variant and observe

the convergence floor drops from 10−3 to 10−4. So simply increasing accuracy of the factorization

in this manner is not enough to fix the convergence floor.

Iterative refinement is a simple technique to enhance the accuracy of a linear system solve,

like those used in the yk+1 updates. Fixed precision iterative refinement for a system Rx = b,

where R is some non-singular matrix, is as follows [42]:

1: Solve Rx̂ = b for x̂
2: Compute the residual r ← b−Rx̂
3: Solve Rδ = r for δ
4: Update x̂← x̂ + δ

Steps 2 to 4 can be repeated to possibly improve accuracy further. Note that all steps are carried out
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in a fixed precision (e.g., double precision). In our experiments, fixed precision iterative refinement

using double precision did not improve convergence.

A more accurate approach is to use extended precision for the residual computation. This is

called mixed precision iterative refinement:

1: Solve Rx̂ = b for x̂
2: Compute the residual r ← b−Rx̂ . Compute in extended precision
3: Solve Rδ = r for δ
4: Update x̂← x̂ + δ

Note that only step 2 is computed using extended precision. Specifically, the quantities b, R, and

x̂ are cast to an extended precision, the computation is carried out, and the result is cast back to

standard precision, giving r. The mixed precision version is typically slower than the fixed precision

version, due to the use of extended precision computations.

We implement this strategy for the SVD update (3.16) in Algorithm 10. We use 64-bit

floats as the standard precision (double precision) and 128-bit floats as the extended precision

(quadruple precision). We denote extended precision quantities with a subscript 128, and denote

casting between standard and extended precision quantities through the subscript. Note that we

write the algorithm to use a single iteration of iterative refinement, as only a single iteration was

needed for our experiments. Steps 10-14 could be repeated (with minor modification) to perform

multiple iterations.

Algorithm 10 was used to achieve high accuracy in Figure 3.8. ADMM without iterative

refinement takes about 0.2 seconds to run 5000 iterations. ADMM with mixed precision iterative

refinement takes about 7.2 seconds to run 5000 iterations. While that is certainly an increase in

runtime, it is still much better than attempting to reach the same accuracy with AT. In comparison,

AT takes 20 minutes to run 10 million iterations, and only achieves an accuracy of 10−4.

In Algorithm 10, each one of the extended precision computations are actually necessary to

achieve very high accuracy. If any extended precision step is removed, the convergence floor is

raised by many orders of magnitude. Note in particular that we compute the “right-hand side”
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Algorithm 10 ADMM with Iterative Refinement for Underdetermined NNLS
Require: Initial points x0, y0, λ0, step size ρ > 0.

1: Cast A128 ← A, b128 ← b . Cast to extended precision
2: Compute SVD A128 = U128Σ128V T

128 . Compute in extended precision
3: Cast U ← U128, Σ← Σ128, V ← V128 . Cast to standard precision
4: for k = 0, 1, 2, . . . do
5: xk+1 ← max{0, yk + 1

ρλk}

6: Cast xk+1
128 ← xk+1, λk

128 ← λk

7: w128 ← AT
128b128 + ρxk+1

128 − λk
128 . Precompute AT

128b128
8: Cast w ← w128

9: ŷ ← 1
ρw − 1

ρ2 V
(
Σ2 + 1

ρI
)−1

V T w

10: Cast ŷ128 ← ŷ
11: r128 ← w128 −AT

128A128ŷ128 − ρŷ128
12: Cast r ← r128

13: δ ← 1
ρr − 1

ρ2 V
(
Σ2 + 1

ρI
)−1

V T r

14: yk+1 ← ŷ + δ
15: λk+1 ← λk − ρ(xk+1 − yk+1)
16: end for

w128 in extended precision in step 7. The standard precision quantity (cast down from extended

precision) is used in the linear system solve in step 9, but the original extended precision quantity

is used to compute the residual in step 11. If we compute w in standard precision or use w instead

of w128 in step 11, we do not achieve very high accuracy.

3.3 Safe Feature Elimination for NNLS - Theory

El Ghaoui et al. in [38] proposed the safe feature elimination (SAFE) method to safely

eliminate features from the `1-regularized least-squares problem

min
x

1
2‖Ax− b‖2 + µ‖x‖1. (3.17)

In [38], they call SAFE applied to the above problem SAFE for LASSO. The salient feature of

SAFE for LASSO is that the eliminated features (i.e., columns of A) are guaranteed to not be

present in a solution. This is unlike other feature elimination strategies, e.g., [89] which have more

aggressive feature elimination criteria, but at the cost of potentially eliminating a feature that

should be present in a true solution. Inspired by ideas from SAFE for LASSO, we formulate a safe
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feature elimination strategy for NNLS problems.

One of our ultimate goals of using feature elimination is to certify the uniqueness of an NNLS

solution. NNLS problems with overdetermined, full-rank A are strongly convex and therefore

have a unique solution. For NNLS problems with underdetermined A, we have no such guarantee.

Eliminating features from an underdetermined NNLS problem allows us to form a reduced problem

involving Ared with fewer columns. If the reduced problem forms an overdetermined, full-rank

NNLS problem, then the reduced problem is strongly convex and has a unique solution. Since

the feature elimination strategy is safe, this then implies that the original, underdetermined NNLS

problem also has a unique solution.

3.3.1 NNLS Dual Problem and Primal KKT Conditions

Before we proceed with our discussion of feature elimination, let us derive an NNLS dual

problem and KKT conditions for the primal problem. To derive a dual, let us introduce the

auxiliary variable z = Ax− b and work with the equivalent problem

min 1
2 ‖z‖

2

s.t. z = Ax− b

x ≥ 0.

The Lagrangian function for this equivalent problem is

L(x, z, λ, ν) = 1
2 ‖z‖

2 − 〈λ, x〉+ 〈ν, Ax− b− z〉 .

The Lagrange dual problem is defined to be the infimum over x, z of the Lagrangian function:

g(λ, ν) def= inf
x,z
L(x, z, λ, ν).

The Lagrangian is minimized over x ∈ Rm, z ∈ Rm when

∇x,zL =

−λ + AT ν

z − ν

 = 0.
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Using z − ν = 0, we find that the dual objective is

g(λ, ν) = −1
2 ‖ν‖

2 − 〈ν, b〉 .

We can eliminate λ by using λ = AT ν, but we must still enforce λ ≥ 0. Thus the dual problem is

max −1
2 ‖ν‖

2 − 〈ν, b〉

s.t. AT ν ≥ 0.

(3.18)

The dual objective g(ν) = −1
2‖ν‖

2 − 〈ν, b〉 is 1-strongly concave, and so the dual problem has a

unique optimal point (note that the constraint set {ν : AT ν ≥ 0} is non-empty for any A, so the

optimal point always exists).

Observe that Slater’s condition holds for both the NNLS primal problem (3.1) and the dual

problem (3.18). Slater’s condition holding for the primal implies that the dual optimal value is

attained, meaning that ν∗ exists (which we knew from above). Slater’s condition holding for the

dual implies that the primal optimal value is attained, meaning that x∗ exists.

Let x∗ be any primal optimal point and ν∗ be the unique dual optimal point. The KKT

conditions for the NNLS primal problem (3.1) are

AT (Ax∗ − b)−AT ν∗ = 0 (3.19)

x∗ ≥ 0 (3.20)

AT ν∗ ≥ 0 (3.21)

x∗
i

{
AT ν∗

}
i

= 0, ∀i = 1, . . . , n. (3.22)

Since Slater’s condition holds for both the NNLS primal and dual, the KKT conditions are both

necessary and sufficient for optimality: if x and ν satisfy (3.19)-(3.22), then they are optimal with

zero duality gap [17].
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It is occasionally more convenient to use the KKT conditions written in terms of λ∗ = AT ν∗:

AT (Ax∗ − b)− λ∗ = 0

x∗ ≥ 0

λ∗ ≥ 0

x∗
i λ∗

i = 0, ∀i = 1, . . . , n.

3.3.2 Safe Feature Elimination With an Inexact Solution

In Appendix A we adapt SAFE for LASSO somewhat directly to NNLS problems. Like SAFE

for LASSO, the feature elimination problem assumes knowledge of an exact NNLS solution. Having

knowledge of an exact solution is reasonable for SAFE for LASSO, due to the way it takes advantage

of LASSO’s regularization path. But the assumption of having an exact solution is quite fragile

for our highly ill-conditioned microscopy problems. Even when using an extremely high accuracy

solution, the feature elimination strategy of Appendix A proved to be too weak to eliminate many

features in our experiments. In this subsection we take a different approach in order to relax the

assumption of having access to an exact NNLS solution. We will instead use a feasible point that

is accurate, but not necessarily exactly optimal.

Let f(x) = 1
2‖Ax− b‖2 be the primal objective and p∗ = f(x∗) be the primal optimal value.

We let ai denote the ith column of A. As noted previously, strong duality holds for all primal-dual

optimal pairs: d∗ def= g(ν∗) = −1
2‖ν

∗‖2 − 〈ν∗, b〉 = p∗. Assume we solve the primal NNLS problem

(3.1) inexactly, giving the primal feasible point x̂, which is not necessarily optimal. Let us further

assume we have access to a dual feasible ν̂, also not necessarily optimal. This gives us the duality

gap ε = f(x̂) − g(ν̂) ≥ 0. Note that ν̂ = Ax̂ − b is not necessarily dual feasible, though this will

be the case if x̂ is primal optimal. The important problem of constructing a suitable ν̂ from the

inexact primal point x̂ will be discussed in Subsection 3.3.3.

Just like in SAFE for LASSO, we will use complementary slackness (3.22) to determine if

x∗
i = 0. Specifically, if {AT ν∗}i = 〈ai, ν∗〉 > 0, then complementary slackness implies x∗

i = 0. Of



109

course, we do not have access to ν∗, only an accurate, dual feasible point ν̂. But if we can bound

〈ai, ν∗〉 to be strictly greater than 0, then we can still guarantee x∗
i = 0.

We will use ν̂ to construct a set N of dual points that is guaranteed to contain the dual

optimal point ν∗. We then solve the feature elimination subproblem

minν 〈ai, ν〉

s.t. ν ∈ N.

(3.23)

If the optimal value of this subproblem is strictly positive, we have guaranteed that 〈ai, ν∗〉 = λ∗
i > 0

and thus x∗
i = 0 by complementary slackness. If the lower bound is not strictly positive, then the

search is inconclusive and we could have either x∗
i = 0 or x∗

i > 0. To find features to eliminate, we

solve this subproblem for each column ai of A.

Let us derive a simple set N for use in this section; in Section 3.4 we will describe additional

constructions of N that lead to stronger subproblems. Define the dual feasible setN = {ν : AT ν ≥ 0}.

Note that N is convex and non-empty, as ν = 0 is feasible for any A. Define

g̃(ν) def= g(ν)− ιN (ν) = −1
2‖ν‖

2 − 〈ν, b〉 − ιN (ν),

where ιN (ν) is the indicator function for the set N :

ιN (ν) =


0 ν ∈ N

∞ otherwise.

Since −1
2‖ν‖

2−〈ν, b〉 is 1-strongly concave and −ιN (ν) is concave, g̃(ν) is 1-strongly concave. Since

ν∗ and ν̂ are both dual feasible, g(ν∗) = g̃(ν∗) and g(ν̂) = g̃(ν̂). By Theorem 5.25 of [10], we have

g̃(ν∗)− g̃(ν̂) ≥ 1
2‖ν̂ − ν∗‖2. We can then conclude

g(ν∗)− g(ν̂) ≥ 1
2‖ν̂ − ν∗‖2. (3.24)

Since strong duality holds, g(ν∗) = f(x∗) ≤ f(x̂), so g(ν∗) − g(ν̂) ≤ ε. We therefore define

the search set

N
def=
{

ν : ‖ν − ν̂‖2 ≤ 2ε
}

,
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which comes from the inequality (3.24) and the duality gap. The set N is guaranteed to contain

the optimal point ν∗, so the feature elimination subproblem (3.23) using this search set is safe.

Written out, this feature elimination subproblem is

minν 〈ai, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε.

(3.25)

This problem minimizes a linear objective over a ball, which means it is convex. The closed-form

solution is easily found (see Subsection 3.4.1), giving the optimal value

〈ai, ν̂〉 −
√

2ε‖ai‖.

If this value is strictly positive, then we can certify that x∗
i = 0 and the feature ai can be eliminated

from the problem. Note that given x̂ and ν̂, it is easy to compute ε by evaluating the primal and

dual objectives. The simple form of the close-form solution allows us to quickly test for elimination

of features.

3.3.3 Finding an Accurate, Dual Feasible ν̂ From an Accurate, Primal Feasible x̂

In order to use lower-bound subproblem (3.25), we must have a primal feasible x̂ and a

dual feasible ν̂ that achieve a reasonably small duality gap ε = f(x̂) − g(ν̂). When using first-

order methods, we typically only have access to a primal feasible variable x̂. To use our feature

elimination strategy, we need to find an accurate, dual feasible ν̂ from the accurate, primal feasible

x̂ given by a first-order solver.

To leverage the accuracy of x̂, we form ν ′ = Ax̂− b, since if x̂ were optimal, then Ax̂−b would

be the dual optimal point. But note that ν ′ is not guaranteed to be dual feasible (i.e., AT ν ′ 6≥ 0

is possible), since x̂ is not necessarily optimal. To fix this, perhaps the “best” approach is to solve

the orthogonal projection problem

minν̂
1
2‖ν̂ − ν ′‖2

s.t. AT ν̂ ≥ 0,

which finds ν̂ that is dual feasible point that is closest to ν ′. This projection subproblem is essentially

the same as solving the NNLS dual problem (3.18), and is therefore just as difficult to solve as
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the dual problem. Using a first-order method to solve the problem is unlikely to be fast, since

projecting onto the dual feasible set is expensive. If we had fewer RHS, the use of an interior point

method for this task would be more practical.

Instead, let us assume we have access to a strictly dual feasible point ν̃. We will give a few

simple methods to find such a strictly dual feasible ν̃ in Subsection 3.3.3.1, and in Subsection 3.3.3.2

we will show that ν̃ being strictly dual feasible (instead of just dual feasible) is necessary for our

feature elimination problem to work as we desire. We can use ν̃ to construct ν̂ nearby ν ′ that is

also dual feasible using a simple line search. Specifically, we find the closest point to ν ′ along the

line segment between ν ′ and ν̃ via the dual line search

min t

s.t. AT ((1− t)ν ′ + tν̃) ≥ 0

0 ≤ t ≤ 1.

Once we have solved the line search, we form ν̂ = (1− t∗)ν ′ + t∗ν̃. We can view this line search as

a not-necessarily-orthogonal projection onto the dual feasible set.

See Figure 3.9 for a diagram of this line search in two dimensions. The coordinate axes are

the first and second elements of the dual variable ν. The boundary of the dual feasible set is given

by two hyperplanes 〈a1, ν〉 = 0 and 〈a2, ν〉 = 0. We can see 〈a2, ν ′〉 < 0, so ν ′ is not dual feasible.

The dashed circle is the level curve of the dual objective at the optimal value: {ν : g(ν) = g(ν∗)}.

The constraint t ≥ 0 is used in the line search only so that ν̂ = ν ′ in the case when ν ′ is

already dual feasible. Additionally, the optimal value is never greater than 1, since the point ν̃ is

assumed to be dual feasible. By precomputing AT ν ′ and AT ν̃, the optimal value of the line search

and the resulting dual feasible point ν̂ can be found in closed form, which is given in the next

subsection.

When A is elementwise non-negative, i.e. Aij ≥ 0, as is the case for our microscopy problems,

there is a simple way of generating a dual feasible ν̃ from ν ′. We project ν ′ into the non-negative

orthant, forming

ν̃ = max{0, ν ′}.
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Figure 3.9: Finding ν̂ from ν ′ and ν̃ via a line search.

Since Aij ≥ 0, we then have that AT ν̃ ≥ 0 so ν̃ is guaranteed to be dual feasible. In our microscopy

problems A is elementwise positive, and ν̃ = max{0, ν ′} is almost always strictly dual feasible. Since

ν̃ may be rather far from ν ′, we still use the line search to find a point closer to ν ′. This approach

typically achieves ν̂ with tighter duality gaps than when using the dual line search with a fixed

strictly dual feasible point.

3.3.3.1 Finding a Strictly Dual Feasible ν̃

For a given A, we can search for a strictly dual feasible point ν̃ via the linear program

maxν̃,t t

s.t. AT ν̃ ≥ t

1
T AT ν̃ = 1.

(3.26)

This problem maximizes the entries of AT ν̃ while the constraint 1
T AT ν̃ = 1 serves to keep ν̃

bounded. Note that this linear program may fail to find a strictly dual feasible ν̃. But it will do

so only when A does not admit any strictly feasible points (e.g., A = 0 does not does not admit

any strictly dual feasible points). The cost of this LP is not a concern, as it needs to be solved just

once to find ν̃; once we have a strictly dual feasible ν̃, we can use it for any NNLS problem with

the same A, regardless of the RHS b.
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If the sum of each row of A is positive, the point ν̃ = 1 is strictly dual feasible. In particular,

if A is elementwise positive (as is the case in our microscopy problems), ν̃ = 1 is strictly dual

feasible. Furthermore, if ν̃ = max{0, ν ′} has at least one positive entry, it is strictly dual feasible

for A elementwise positive. In our microscopy problems, A is elementwise positive and we find in

our experiments that using ν̃ = max{0, ν ′} quite reliably produces strictly dual feasible points (see

Subsections 3.4.2 and 3.4.3). We use ν̃ = 1 only if ν̃ = max{0, ν ′} is not strictly dual feasible.

3.3.3.2 When is the Dual Line Search Continuous?

In Subsection 3.3.4 we will show how ν̂ from the dual line search converges to the dual optimal

point ν∗ as x̂ from a first-order solver converges to a primal optimal point. This will then be used to

show that, under reasonable conditions, our dual line search and feature elimination strategy will

eventually eliminate all zero features from the problem. This means that if we perform sufficiently

many iterations of PGM/AT, we can eliminate all zero features from the problem. To enable that

analysis, we find a closed-form solution to the line search and prove a lemma on the continuity of

the mapping from ν ′ = Ax̂− b to ν̂ found via the line search.

We find the closed-form solution to the line search by identifying two cases:

(1) If ν ′ is dual feasible, t = 0 is the minimum feasible value, which leads to ν̂ = ν ′.

(2) Otherwise, there is at least one index i such that 〈ai, ν ′〉 = {AT ν ′}i < 0. In this case, we

must increase t until the all coordinates of AT ((1− t)ν ′ + tν̃) are non-negative.

Let I def=
{

i : aT
i ν ′ < 0

}
be the set of all indices causing ν ′ to be dual infeasible. The feasible

values of t for which aT
i ((1− t)ν ′ + tν̃) ≥ 0, i ∈ I, are

max
{

0,
aT

i ν ′

aT
i ν ′ − aT

i ν̃

}
≤ t ≤ 1.

Since all coordinates of aT
i ((1− t)ν ′ + tν̃) must be non-negative, we have
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t∗ = max
{

0, max
i∈I

aT
i ν ′

aT
i ν ′ − aT

i ν̃

}
.

We then form ν̂ = (1− t∗)ν ′ + t∗ν̃.

Note that there appears to be a pathological case if there is an i such that aT
i ν ′ − aT

i ν̃ = 0.

If this were to occur, then any value of t would produce a point where the ith coordinate

is zero, i.e. aT
i ((1− t)ν + tν̃) = 0. Geometrically, the condition aT

i ν ′ − aT
i ν̃ = 0 states that

the vector ai is orthogonal to ν ′ − ν̃, indicating that the line segment between ν ′ and ν̃ is

contained in the hyperplane {ν : aT
i ν = 0}. From this we see that i 6∈ I by construction,

since aT
i ν ′ = 0, and such a pathological case is avoided.

Let us reformulate the expression for t∗ slightly. Define λ′ = AT ν ′ and λ̃ = AT ν̃. Then

t∗ = max
i


0 λ′

i ≥ 0
λ′

i

λ′
i − λ̃i

λ′
i < 0.

If we define the function

t(λ′
i; λ̃i)

def=


0 λ′

i ≥ 0
λ′

i

λ′
i − λ̃i

λ′
i < 0,

we can write

t∗ = max
i

t(λ′
i; λ̃i).

We again have ν̂ = (1− t∗)ν ′ + t∗ν̃.

In Section 3.3.4, we will use the fact that this mapping from ν ′ to ν̂ is continuous in ν ′ when

ν̃ is strictly dual feasible.

Lemma 4: If ν̃ is strictly dual feasible (i.e., AT ν̃ > 0), then the dual line search mapping ν ′ to ν̂

is continuous in ν ′.

Proof. In terms of λ̃, the strict dual feasibility assumption states that λ̃i > 0 for each i. The dual

line search produces the point

ν̂ = (1− t∗)ν ′ + t∗ν̃.
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To show continuity of the mapping ν ′ 7→ ν̂, it is sufficient to show t∗ is continuous in ν ′. Since we

have assumed λ̃i > 0 for each i,

t(λ′
i; λ̃i) =


0 λ′

i ≥ 0
λ′

i

λ′
i − λ̃i

λ′
i < 0,

is continuous in λ′
i for each i (the only point of concern is λ′

i = 0; see Figure 3.10 for an illustration).

Finally, t∗ = maxi t(λ′
i; λ̃i) is therefore continuous in λ′ = AT ν ′, and so the dual line search mapping

ν ′ to ν̂ is continuous in ν ′.

Figure 3.10: t(λ′
i; λ̃i) is not continuous at λ′

i = 0 when λ̃i = 0.

The strict dual feasibility assumption in Lemma 4 is necessary for the continuity of the

mapping. To see this, assume ν ′ and ν̃ are such that λ′
i = aT

i ν ′ < 0 and λ̃i = aT
i ν̃ = 0 for some

ai. This means that ν ′ is not dual feasible and ν̃ is dual feasible, but not strictly. Since ν ′

is dual infeasible, so we must use the line search to find a dual feasible point. The function

t(λ′
i; λ̃i) = t(λ′

i; 0) is discontinuous at λ′
i = 0, which causes the mapping ν ′ 7→ ν̂ to be discontinuous.

Requiring ν̃ to be strictly dual feasible, so λ̃i = aT
i ν̃ > 0 for all i prevents this discontinuity.

Let us now look at the dual geometry when ν̃ is not strictly dual feasible. The non-strictly

dual feasible point ν̃ is on the boundary of the dual feasible set, since it satisfies aT
i ν̃ = 0. When ν ′

is not dual feasible, the only dual feasible point on the line segment between ν ′ and ν̃ is ν̃, so the
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dual line search returns ν̂ = ν̃. Thus, when ν̃ is not strictly dual feasible, the dual line search will

return one of two values: when ν ′ is not feasible, the line search returns ν̃; when ν ′ is feasible, the

line search returns ν ′.

Figure 3.11 illustrates what would happen if ν ′ converges to ν∗ while remaining dual infeasible.

The line search is “stuck”, returning ν̂ = ν̃ for all ν ′. So as ν ′ → ν∗, ν̂ = ν̃ is “stuck” and does not

converge to ν∗. Picking ν̃ to be strictly dual feasible “unsticks” the dual line search, allowing the

returned value ν̂ to converge to ν∗ as ν ′ → ν∗.

Figure 3.11: Pathological case for the continuity of the dual line search when ν̃ is on the boundary
of the dual feasible set (i.e., not strictly dual feasible).

3.3.4 Convergence of Dual Sequence Given Primal Sequence

Using a first-order method to solve NNLS typically provides a sequence xk of primal feasible

points that converge to a primal optimal point x∗ (which may not be unique). For example,

Theorem 10.24 of [10] shows that the proximal gradient method produces such a sequence. In

Subsection 3.3.3, we discussed a dual line search that allows us to produce a dual feasible point ν̂k

from ν ′k def= Axk − b and a separate dual feasible point ν̃.

In Subsection 3.3.2 we saw a simple feature elimination subproblem (3.25) that utilized an

accurate, but inexact primal-dual pair. The strength of the subproblem depends on the size of

the duality gap ε. In other words, as the duality gap shrinks, the lower bound produced by the

subproblem increases, possibly eliminating the feature. In order for the duality gap ε to shrink to
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zero as xk converges, we must also have that the dual line search produces ν̂k that converges to

the dual optimal point ν∗. If ν̃ is strictly dual feasible, we will see that ν̂k → ν∗ as xk → x∗, thus

giving ε→ 0 as desired.

First, we give a lemma that states ν∗ = Ax∗− b for any primal optimal x∗. This comes from

the KKT conditions for the dual problem.

Lemma 5: Let x∗ be a primal optimal point. Then ν = Ax∗ − b is the unique dual optimal point.

Proof. We first write the dual problem (3.18) as a minimization problem:

min 1
2‖ν‖

2 + 〈ν, b〉

s.t. AT ν ≥ 0.

The KKT conditions for this problem are

ν∗ + b−Aξ∗ = 0

ξ∗ ≥ 0

AT ν∗ ≥ 0

{ξ∗}i{AT ν∗}i = 0 ∀i = 1, . . . , n,

where ξ∗ are the variables associated with the constraint AT ν ≥ 0.

By comparison with the primal KKT conditions (3.19)-(3.22), we can see that if we define

ν = Ax∗−b, then ν∗ = ν and ξ∗ = x∗ will satisfy the KKT conditions. Since the constraint AT ν ≥ 0

is linear, strong duality holds and satisfying the KKT conditions implies optimality. Therefore

ν = Ax∗ − b is dual optimal. Since the dual objective 1
2‖ν‖

2 + 〈ν, b〉 is strongly convex, the dual

optimal point is unique. Therefore we have that ν = Ax∗− b is the unique dual optimal point.

Now we show that if ν̃ is strictly dual feasible, then ν̂k → ν∗ as the sequence xk of primal

feasible points converge to a primal optimal point x∗.

Theorem 6: Let xk be a sequence of primal feasible points that converge to a primal optimal point

x∗, and let ν̃ be a strictly dual feasible point (i.e., AT ν̃ > 0). For each k, define the dual feasible
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point ν̂k by performing the dual line search of Subsection 3.3.3.2 using ν ′k = Axk − b and ν̃. Then

the sequence ν̂k of dual feasible points converges to the unique dual optimal point ν∗.

Proof. Note that the affine map xk 7→ ν ′k = Axk − b is continuous. By continuity and Lemma 5,

we have that ν ′k → ν∗ as xk → x∗. We seek to show that the dual feasible sequence ν̂k → ν∗ as

xk → x∗. Note that

‖ν̂k − ν∗‖ ≤ ‖ν̂k − ν ′k‖+ ‖ν ′k − ν∗‖

by the triangle inequality. We already have that ‖ν ′k−ν∗‖ → 0, so to complete the proof it remains

to show ‖ν̂k − ν ′k‖ → 0.

Since ν̂k is computed using the dual line search using ν ′k and ν̃, we have that

‖ν̂k − ν ′k‖ = ‖(1− tk)ν ′k + tkν̃ − ν ′k‖ = tk‖ν ′k − ν̃‖,

where tk is the optimal value of t from the dual line search for that particular ν ′k. Since ν ′k → ν∗,

we know that ‖ν ′k− ν̃‖ is eventually bounded above by a constant. Therefore, we just need to show

tk → 0.

Since ν ′k → ν∗, we see that ν ′k converges to a dual feasible point. The proof of Lemma 4

shows that tk is continuous in ν ′k. As ν ′k approaches a dual feasible point, tk approaches zero

continuously, since the line search returns a point closer to ν ′k as ν ′k becomes closer to being

dual feasible. Therefore we have that tk → 0 as ν ′k converges, which shows that ‖ν̂k − ν ′k‖ → 0,

completing the proof.

3.3.5 When Will the Screening Rule Eliminate all Zero Features?

Here we show that the feature elimination subproblem (3.25) will, under certain assumptions

and with sufficiently small duality gap ε, eliminate all zero features from the solution. Coupled

with the use of a first-order method and the dual line search of Subsection 3.3.3, this means that

our feature elimination strategy will eventually eliminate all features that can be eliminated.
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Theorem 7: Assume there exists a unique NNLS solution x∗ and that strict complementary slack-

ness holds (i.e., x∗
i = 0 iff 〈ai, ν∗〉 > 0). Define I def= {i : 〈ai, ν∗〉 > 0} to be the indexes of zero

features. Let the pair x̂, ν̂ produce a duality gap estimate ε such that

√
ε <

1
2
√

2
min
i∈I

〈ai, ν∗〉
‖ai‖

.

Then the feature elimination problem (3.25) will eliminate all zero features.

Proof. Since we have assumed strict complementary slackness, a zero feature x∗
i = 0 correspond to

the dual variable 〈ai, ν∗〉 > 0. If we assumed non-strict complementary slackness, then a zero feature

x∗
i = 0 may be associated with 〈ai, ν∗〉 = 0, which could not be eliminated by the subproblem

(3.25). Therefore strict complementary slackness implies that all zero features are associated with

a strictly positive dual variable, and we must show that the subproblem produces a strictly positive

lower bound for 〈ai, ν∗〉 for each i ∈ I.

For the subproblem to produce a strictly positive bound for the ith feature, the search set

N must be contained strictly in the interior of the halfspace 〈ai, ν〉 ≥ 0. The search set N is a

(closed) ball of radius
√

2ε centered at ν̂. From the 1-strong concavity of the dual objective g(ν),

we know that ‖ν̂ − ν∗‖ ≤
√

2ε. Therefore the closest point in N to the hyperplane 〈ai, ν〉 = 0 (i.e.,

the optimal point of the subproblem) satisfies

‖ν̂ − ν∗‖+
√

2ε ≤ 2
√

2ε.

Figure 3.12 illustrates this geometry.

We require that this distance is strictly less than the distance from ν∗ to the hyperplane,

so that N is strictly separated from the hyperplane. By strict complementary slackness, we know

that ν∗ is strictly separated from the hyperplane, with signed distance 〈ai, ν∗〉/‖ai‖. Therefore we

must have

2
√

2ε <
〈ai, ν∗〉
‖ai‖

.

By assumption, ε is small enough to satisfy this condition for each i ∈ I, so we have that (3.25)

will eliminate all zero features.
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Figure 3.12: The duality gap ε must be less than half the distance from ν∗ to the nearest hyperplane
corresponding to a zero feature. The figure is drawn such that x∗

1 = 0 and x∗
2 > 0.

Note that Theorem 7 requires knowledge of the true dual optimal point ν∗, though its use

in the index set I and the bound on ε. The following theorem modifies the proof of Theorem 7 to

give a bound on ε that involves ν̂ instead of ν∗. Note that the bound still uses knowledge of ν∗,

but now only through the index set I.

Theorem 8: Assume there exists a unique NNLS solution x∗ and that strict complementary slack-

ness holds (i.e., x∗
i = 0 iff 〈ai, ν∗〉 > 0). Define I def= {i : 〈ai, ν∗〉 > 0} to be the indexes of zero

features. Let the pair x̂, ν̂ produce a duality gap estimate ε such that

√
ε <

1√
2

min
i∈I

〈ai, ν̂〉
‖ai‖

.

Then the feature elimination problem (3.25) will eliminate all zero features.

Proof. The proof is a modification of the proof of Theorem 7, so we discuss only the required

modification. The proof of Theorem 7 shows that ε sufficiently small ensures that the search set

N is strictly separated from each hyperplane 〈ai, ν〉 = 0 for each i ∈ I by using the fact that ν∗

is strictly separated from those hyperplanes. We can instead show that ε sufficiently small ensures

that the optimal value of the feature elimination subproblem (3.25) is strictly positive for each i ∈ I.
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Recall from Subsection 3.3.2 that the optimal value is 〈ai, ν̂〉 −
√

2ε‖ai‖ for the ith feature.

Up to a scaling factor, the subproblem finds the minimum distance between the search set N and

the hyperplane 〈ai, ν〉 = 0. Therefore the search set N is strictly separated from the hyperplane

precisely when the optimal value is strictly positive:

〈ai, ν̂〉 −
√

2ε‖ai‖ > 0⇐⇒
√

ε <
1√
2
〈ai, ν̂〉
‖ai‖

.

By assumption on the size of ε, this condition is satisfied for each i ∈ I, so feature elimination will

again eliminate all zero features.

Theorem 7 and 8 show that, under certain conditions and if the duality gap ε is sufficiently

small, then feature elimination will eliminate all zero features from the problem. We used knowledge

of the the exact dual optimal point to quantify how small ε must be in order to imply that feature

elimination will work. But even without knowledge of the dual optimal point, we still know that if

ε is sufficiently small, then feature elimination will have worked. Indeed, by combining Theorems

6 and 7, we have the following:

Corollary 9: Assume there exists a unique NNLS solution x∗ and that strict complementary slack-

ness holds (i.e., x∗
i = 0 iff 〈ai, ν∗〉 > 0). Let xk be a sequence of primal feasible points that converges

to x∗ (e.g., from PGM/AT) and let ν̂k be the sequence of dual feasible points produced as in The-

orem 6. Then the duality gap ε = f(xk) − g(ν̂k) → 0 as k → ∞ and Theorem 7 will eventually

apply. This means that the feature elimination subproblem (3.25) will eventually eliminate all zero

features.

This tells us that if we do enough iterations of PGM/AT, perform the dual line search, and

then do feature elimination, we will eliminate all possible features. But we don’t know how many

iterations are sufficient (without knowledge of the dual optimal point, that is). Nevertheless, we can

still use feature elimination very effectively in practice, including certifying that underdetermined

NNLS problems have unique solutions.
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3.4 Safe Feature Elimination for NNLS - Use in Practice

In Section 3.3 we analyzed safe feature elimination for NNLS. The feature elimination sub-

problem (3.25), though simple, is strong enough to provably eliminate all zero features (under

certain conditions). In experiments, we use a first-order method to find an accurate x̂ and use

the dual line search to find an accurate ν̂. Though the subproblem (3.25) will eventually work, a

stronger subproblem may allow us to expend less work increasing the accuracy of x̂. We begin this

section by deriving a few stronger, but still safe, feature elimination subproblems.

In the beginning of Section 3.3, we motivated feature elimination by discussing its use in cer-

tifying the uniqueness of NNLS solutions. We use our strengthened feature elimination subproblems

to successfully certify uniqueness of solutions to an example microscopy problem in Subsection 3.4.3.

We also discuss an alternative approach to certifying uniqueness of NNLS solutions. The

alternative approach is simpler, in a sense, though it relies on strong assumptions on A that can

be infeasible to check in practice. Furthermore the alternative approach only certifies uniqueness,

unlike feature elimination which guarantees features to be zero, which is useful in its own right.

3.4.1 Stronger Feature Elimination Subproblems

In this subsection we strengthen the basic feature elimination subproblem (3.25). While

(3.25) does have theoretical guarantees (see Theorem 7 and 8), a stronger subproblem is desirable

in practice, as it the potential to eliminate features at a larger value of the duality gap ε, for

example. Subproblem strength cannot come at the cost of safety, however, so we still require that

the subproblems do not eliminate non-zero features.

3.4.1.1 Strong Concavity

We begin with a discussion of (3.25), the basic subproblem used for Section 3.3. This sub-

problem is based on the 1-strong concavity of the dual objective:

g(ν∗)− g(ν̂) ≥ 1
2‖ν̂ − ν∗‖2.
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From the pair x̂, ν̂ we have the duality gap ε = f(x̂)− g(ν̂) and the bound g(ν∗)− g(ν̂) ≤ ε. This

gives rise to the subproblem

minν 〈ai, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε,

(3.27)

which is of course identical to (3.25). The search set N = {ν : ‖ν − ν̂‖2 ≤ 2ε} is a ball of radius
√

2ε centered at ν̂. Since ν∗ ∈ N (by construction), this subproblem is guaranteed to be safe.

The unique (if ai 6= 0) solution to this subproblem is

ν̂ −
√

2ε
ai

‖ai‖
,

and the optimal value is

〈ai, ν̂〉 −
√

2ε‖ai‖.

3.4.1.2 Strong Concavity and Dual Objective Constraint

Define N1 to be the strong concavity search set from the previous subsection:

N1 = {ν : ‖ν − ν̂‖2 ≤ 2ε}.

We will form the search set N = N1∩N2 to shrink the search set, resulting in a stronger subproblem.

Note that N must contain the dual optimal point ν∗ in order to remain safe.

Let d̂
def= g(ν̂) = −1

2‖ν̂‖
2−〈ν̂, b〉 be the dual objective at the point ν̂. Since ν̂ is not necessarily

dual optimal, we have that g(ν∗) ≥ g(ν̂) = d̂. After simplification, this becomes

‖ν∗ + b‖2 ≤ ‖b‖2 − 2d̂.

We therefore define the set

N2 =
{

ν : ‖ν + b‖2 ≤ ‖b‖2 − 2d̂
}

.

By construction, we have ν∗ ∈ N2, so using N = N1 ∩N2 is safe.

We now have the feature elimination subproblem

minν 〈a, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε

‖ν + b‖2 ≤ ‖b‖2 − 2d̂.

(3.28)



124

Figure 3.13 shows the dual geometry for the subproblem (3.28) when the duality gap estimate

ε is too large to eliminate a1. The black, dashed circle is the level curve of the dual objective at

the optimal value: {ν : g(ν) = g(ν∗) = d∗}. The red, dotted circle is the boundary of the region

of the first constraint (strong concavity); the blue, dotted circle is the boundary of the region of

the second constraint (dual objective). The shaded region is the search set N = N1 ∩ N2 for the

subproblem; note that it extends past the halfspace given by 〈a1, ν〉 ≥ 0 so the subproblem fails to

eliminate the feature a1. But 〈a1, ν∗〉 > 0, so for ε sufficiently small, the subproblem will eliminate

a1. Note also that ν̂ is contained in the hyperplane given by 〈a2, ν〉 = 0, so a2 is also not eliminated.

This is to be expected (under strict complementarity), since 〈a2, ν∗〉 = 0 and so a2 will never be

eliminated from the problem, as x∗
2 > 0.

Figure 3.13: Feature elimination with subproblem (3.28) doesn’t work with a too large duality gap
bound ε.

Figure 3.14 shows the dual geometry when the duality gap estimate ε is sufficiently small to
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eliminate the feature a1. Note that the search set is contained in the interior of the halfspace given

by 〈a1, ν〉 ≥ 0, so the subproblem eliminates a1. Again a2 is not, and never will be, eliminated.

Figure 3.14: Feature elimination with subproblem (3.28) eliminates the feature a1 when the duality
gap bound ε is sufficiently small.

3.4.1.3 Strong Concavity and Weak Duality

Note that Figure 3.14 is drawn with A ≥ 0 and b ≥ 0, which is the case for our microscopy

problems. The dual objective constraint cuts off the “top right” (towards the non-negative orthant)

of the strong duality constraint ball. However, we really want to cut off the “bottom left” (towards

the non-positive orthant) of the ball, as that side is closest to the boundary of the hyperplane

defined by a1 when A ≥ 0. By adding a weak duality constraint, we can cut off the “bottom left”

part of the strong concavity ball.

Define p̂
def= f(x̂) and note that weak duality states that p̂ ≥ g(ν̂). Writing out this inequality
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yields ‖ν̂ +b‖2 ≥ ‖b‖2−2p̂. Since ν∗ must also satisfy this inequality, we can use this as a constraint

on ν in a feature elimination subproblem:

‖ν + b‖2 ≥ ‖b‖2 − 2p̂.

Note that this says that ν must be outside the interior of the ball centered at −b with radius

‖b‖2 − 2p̂. The dual objective constraint stated that ν must be inside a ball of slightly larger

radius.

This leads us to the subproblem based on both the strong concavity constraint and this weak

duality constraint:

minν 〈a, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε

‖ν + b‖2 ≥ ‖b‖2 − 2p̂.

(3.29)

The feasible set of this subproblem is the intersection of a ball and the (closure of) the outside of

a ball. Thus, the problem is non-convex in general.

Figure 3.15 shows the dual geometry for the subproblem (3.29). We can see that the weak

duality constraint does indeed clip off the “bottom left” of the strong concavity constraint ball.

A relaxation of the subproblem (3.29) relaxes the feasible set to its convex hull, thus resulting

in a convex problem. The convex hull is equivalently formed as the intersection of the strong

duality ball and the halfspace that contains the intersection of the two spheres. The boundary of

the halfspace (a hyperplane) is given by

‖ν − ν̂‖2 − 2ε = ‖ν + b‖2 − ‖b‖2 + 2p̂,

which, after simplification, is equivalent to

〈ν, ν̂ + b〉 = 1
2‖ν̂‖

2 − ε− p̂.

This leads to the “dome subproblem”

minν 〈a, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε

〈ν, ν̂ + b〉 ≥ 1
2‖ν̂‖

2 − ε− p̂,

(3.30)
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Figure 3.15: Feature elimination with subproblem (3.29) eliminates the feature a1 when the duality
gap bound ε is sufficiently small.

where the search set is the intersection of a ball and a halfspace (i.e., a dome).

In our microscopy problems, b represents photon counts, and so ‖b‖ is usually quite large

relative to ε. Thus the curvature of the weak duality sphere is small and the halfspace approximation

is good. Moreover, “dome subproblems” are convex and have a closed-form solution, which we

derive in Appendix B.

3.4.1.4 Strong Concavity and Partial Dual Feasibility

Another way to remove parts of the strong duality constraint ball, thereby strengthening

the subproblem, is to enforce dual feasibility for a select few columns of A. That is, we add the

constraints 〈aj , ν〉 ≥ 0 for j ∈ J , where J is a set of indexes for the columns of A. One possible

way to construct J is J = {j : 〈aj , ν̂〉 ≤ tolerance}, the intuition being that these constraints are
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active (or nearly active) near ν̂, where the strong duality constraint ball is centered.

This results in the subproblem

minν 〈a, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε

〈aj , ν〉 ≥ 0 ∀j ∈ J .

(3.31)

This subproblem is convex, since the objective is linear and the feasible set is the intersection of a

ball and multiple halfspaces. This can be considered a generalization of a “dome subproblem”, like

(3.30). However, finding a closed-form solution seems difficult.

To solve (3.31) efficiently, IPMs are a natural choice. Specifically, CVXGEN [67] produces

an optimized IPM for a specific, fixed problem structure (which must be transformable to a QP).

The IPM that it generates can be re-used to rapidly solve the problem for different problem data.

Still, we must solve the problem a very large number of times, which could become impractical.

Since a simple closed-form solution is preferred from a practical standpoint, we choose to

relax (3.31). What is preventing us from finding a closed-form solution is enforcing 〈aj , ν〉 ≥ 0

jointly for all j ∈ J . Let us relax the problem by splitting those |J | halfspace constraints into |J |

problems with a single halfspace constraint and then take the maximum optimal value of the split

problems:

maxj∈J minν 〈ai, ν〉

s.t. ‖ν − ν̂‖2 ≤ 2ε

〈aj , ν〉 ≥ 0.

(3.32)

We recognize the inner problem as a dome subproblem, for which we derive a closed-form solution

in Appendix B. To solve (3.32), we call the dome subproblem solution |J | times, recording the

optimal value for each subproblem. We then take the best (i.e., maximum) optimal value to use as

the lower bound for 〈ai, ν∗〉.

Another choice of the index set J is to simply take J = {1, . . . , n}, so that we enforce dual

feasibility, but only one feature at a time. Doing so for each feature ai of A will require the use of

the dome subproblem solution n2 times. This can be made much more efficient by precomputing all
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the required dot products and norms used by the closed-form solution, Algorithm 11, in Appendix

B. We discuss this further in Subsection 3.5.3.

3.4.2 An Additional Dual Line Search

In Subsection 3.3.3 we described two dual line search methods that allow us to find an

accurate, dual feasible ν̂ from an accurate, primal feasible x̂. The first dual line search relied on

a fixed, strictly dual feasible point ν̃. While we have guarantees that this line search is sufficient

(i.e., will enable feature elimination to work eventually), we desire a strengthened dual line search

to use in practice.

One approach for elementwise non-negative A was also proposed in Subsection 3.3.3. It uses

ν̃ = max{0, ν ′}, where ν ′ = Ax̂ − b, which is not necessarily strictly dual feasible, and so is not

guaranteed to be safe. However, we can compute this point and check if it is strictly dual feasible,

a computation that merely amounts to checking if AT ν̃ > 0. If ν̃ is strictly dual feasible, we use

ν̃ in a line search; if not, then we revert to a precomputed, strictly dual feasible point to use in

the line search (see Subsection 3.3.3.1). In experiments, we find that using ν̃ = max{0, ν ′} almost

always results in a strictly dual feasible point, and when it does, it results in ν̂ with tighter duality

gap estimates than using a fixed ν̃.

Here we describe an additional approach that can work for a general A. We note that the

gradient ∇g(ν ′) may point toward the dual feasible set. We can then find a dual feasible point by

searching along the line starting from ν ′ in the direction of ∇g(ν ′). Figure 3.16 shows a diagram

of this line search. This line search tries to find a scalar t ≥ 0 such that the point

ν ′ + t∇g(ν ′)

is dual feasible, meaning

AT (ν ′ + t∇g(ν ′)) ≥ 0.

Noting that ∇g(ν ′) = ν ′ + b, we find that AT∇g(ν ′) = AT (ν ′ + b) > 0 ensures that we can find

such a t ≥ 0. But note that this is not a necessary condition: we may still find a suitable t if
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AT∇g(ν ′) 6> 0, but such a t is not guaranteed to exist.

Figure 3.16: Dual line search to find ν̂ based on ∇g(ν ′).

As with the line search based on ν̃ = max{0, ν ′} for elementwise non-negative A, if this line

search fails, we merely revert to the line search based on a fixed, strictly dual feasible ν̃. If we have

multiple successful line searches, we will have multiple candidate points ν̂ to use. To select just

one, we pick the point that produces the smallest duality gap ε, thereby strengthening the feature

elimination subproblems.

3.4.3 Example - Certifying Uniqueness of a Super-Resolved Image

Here we consider certifying the uniqueness of the recovered PSF intensities for an instance

of the focused-spot NNLS problem discussed in Section 3.1. If A is overdetermined and full-rank,

the NNLS objective is strongly convex, and so has a unique optimal point by the standard result

Theorem 1. We therefore only consider the case of underdetermined A.

In this example, we consider the data used to reconstruct the image in Figure 3.2b. Note

that Figure 3.2b uses a PSF grid spacing that is 3× finer than the effective camera pixel size. From

Table 3.1, that PSF dictionary is overdetermined and full-rank, so the recovered image is unique.

We consider here the 5× finer PSF grid, where the matrix A is of size 1681 × 2822, which
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is underdetermined. The matrix A is strictly positive: A > 0. There are 40000 right-hand sides

b, with entries corresponding to subimage pixel values measured by the camera. While the matrix

A is full-rank, the condition number κ2(A) = 2.4× 1020 (computed using dgesvj compiled to use

quadruple precision [5]). We rescale the problem data so that ‖A‖2 = 1; the scaling is reversed

after running the optimization method.

We solve the primal NNLS problems with our GPU implementation of Algorithm 8, the ac-

celerated projected gradient method discussed in Subsection 3.2.1. Each RHS uses its own back-

tracking line search loop and local Lipschitz constant estimation. Computations are carried out in

double precision, with a majority of the work (e.g., large matrix-matrix multiplies) performed on

an NVIDIA K40c GPU. For this experiment, we run a fixed number of iterations instead of using

more sophisticated stopping criteria.

For a given number of iterations, once we have all 40000 primal feasible points x̂, we then

must find a strictly dual-feasible point ν̂ for each x̂. Since A is elementwise positive, we can use

ν̃ = max{0, ν ′}, with ν ′ = Ax̂− b, with the dual line search of Subsection 3.3.3. In experiments, we

find that ν̃ constructed in this manner is always strictly dual feasible. We also compute a second

(likely) dual feasible point using the additional line search described in Subsection 3.4.2.

For each line search, we require that AT ν̂ ≥ 10−14 to give a measure of robustness to finite-

precision arithmetic. After computing the dual feasible point ν̂ for all RHS, we estimate the duality

gap ε = f(x̂) − g(ν̂). We find that the second line search typically produces tighter duality gaps,

except for very high accuracy x̂. In either case, we use the point with the tightest duality gap for

feature elimination.

By eliminating features, we can form the reduced NNLS problem

min 1
2‖Aredxred − b‖2

s.t. xred ≥ 0,

where Ared contains the columns of A that have not been eliminated. The reduced problem is

strongly convex (and therefore has a unique optimal point) if Ared is overdetermined and full-

rank. Since our feature elimination procedure is safe, there is a direct correspondence between the
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solution of the reduced problem and the original NNLS problem. This correspondence means that

uniqueness of the solution to the reduced problem implies uniqueness of the solution to the original

problem. Therefore to certify uniqueness of a solution we must eliminate at least 2822−1681 = 1141

features and verify that the reduced matrix Ared is full-rank.

Failure to eliminate sufficiently many features can come in many forms. If the problem

does have a unique solution that is sufficiently sparse but x̂, ν̂ do not produce a tight enough

duality gap ε, we need only increase the accuracy of x̂ and ν̂ to certify uniqueness. The solution

could be sparse enough but not satisfy strict complementary slackness, so the feature elimination

problems will not eliminate the zero features associated with zero dual variables. The problem may

also have a solution (possibly unique) that is simply not sparse enough to certify uniqueness via

feature elimination. Even if we had access to the exact points x∗ and ν∗, feature elimination would

not eliminate sufficiently many features. In such a case, the alternative method in Subsection 3.4.4

may be used, assuming the strong condition on A is satisfied. And of course, we cannot certify

uniqueness if the problem does not have a unique solution.

Table 3.2 shows the results of using the strong concavity subproblem (3.27). We show the

number of iterations of AT (Algorithm 8), the total number of solutions certified to be unique,

and the average number of features eliminated across all NNLS problems. There are 40000 NNLS

problems, each with 2822 features, giving approximately 113 million total features. As the accuracy

of the primal feasible point x̂ increases, the duality gap closes and more features are eliminated

from the problem. Even at 500K iterations, not all problems are certified to have a unique solution.

Iterations Number Certified Unique Average Features Eliminated
10000 7237 20.0%
50000 18339 46.2%
100000 23512 57.9%
500000 34462 81.6%

Table 3.2: Feature elimination using the strong concavity subproblem (3.27).

Table 3.3 shows the analogous results when using the strong concavity and partial dual
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feasibility subproblem (3.32). We see a marked improvement in the number of solutions certified

to be unique, though we still fall a bit short of certifying uniqueness for all 40000 problems. This

appears to be due to a few particularly slow-to-converge problems where the accuracy of x̂ is still

quite low. We fix this by computing a high-accuracy solution for the remaining 1996 problems

using matlab’s lsqnonneg, which implements an active set method from [57]. This results in a

sufficiently accurate x̂ and we certify the remaining problems as having unique solutions. Thus we

have successfully used feature elimination to certify that all 40000 problems have unique solutions

in one of our microscopy scenarios.

Iterations Number Certified Unique Average Features Eliminated
10000 9510 24.8%
50000 23174 56.9%
100000 28826 68.3%
500000 38094 87.8%
500000 + lsqnonneg 40000 91.0%

Table 3.3: Feature elimination using the strong concavity subproblem with partial dual feasibility
(3.32).

3.4.4 An Alternative Method to Certify Uniqueness

We have seen how to use feature elimination for NNLS problems to certify uniqueness of

solutions by eliminating sufficiently many features from the solution. Our microscopy problems

exhibit quite sparse solutions, which allows us to certify uniqueness for all 40000 subimages. If

the solution is not sufficiently sparse, however, the feature elimination strategy will fail to certify

uniqueness.

Slawski and Hein, as part of their analysis of NNLS problems in [84], prove a lemma on the

uniqueness of NNLS solutions. The lemma relies on a strong assumption on the columns of A, but

provides a simple condition to certify uniqueness of a solution. We discuss this condition first, state

their lemma, and finally discuss how to use their lemma to certify uniqueness in practice.

The columns of the matrix A ∈ Rm×n are said to be in general linear position (GLP) in
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Rm if the following condition holds:

∀J ⊆ {1, . . . , n}, |J | = min{m, n}, ∀x ∈ R|J |, AJ x = 0 =⇒ x = 0. (3.33)

In other words, every subset of min{m, n} columns is linearly-independent. For brevity, we will

say “A is in GLP” to mean “the columns of A are in GLP”. It is easy to see that A in GLP

implies that A is full-rank, but the converse is not true; GLP is strictly a stronger criterion than

full-rank. A being in GLP is also related to the spark of A, where spark(A) is defined in [29] to be

minimum number of columns that form a linearly dependent set. If m < n, then A is in GLP iff

spark(A) = m + 1.

Unlike the rank of a matrix, determining the spark of A and determining if A is in GLP

may be prohibitively difficult in the worst case. The straightforward computation to determine

if A is in GLP requires computing combinatorially many determinants. In [55] it is shown that

determining if A is not in GLP is NP-complete. Determining if A is in GLP (equivalently, if

spark(A) = m + 1) is coNP-complete [3, 91]. Computing spark(A) is NP-hard in general [91].

So computationally verifying that A is in GLP is likely intractable.

Note that these are worst-case results, and there are matrices that are known to be in GLP or

have known spark. For example, take A ∈ Rm×n with each entry drawn from the standard normal

distribution (i.e., A is taken from the Gaussian ensemble). Then A is in GLP with probability one

(proof comes from the union bound and non-singularity of the Gaussian ensemble). Though it is

complex, another example is A =
[
In Fn

]
where In is the n × n identity matrix and Fn is the

n × n discrete Fourier transform matrix. When n is a perfect square, the spark is known to be

exactly 2
√

n [29].

There are also lower bounds for spark(A) [29, 93]. One such bound is spark(A) > 1/µ(A),

where

µ(A) = max
i 6=j

|〈ai, aj〉|
‖ai‖‖aj‖

is called the coherence parameter of A. For our A ∈ R1681×2822, we have µ(A) ≈ 0.99 which gives

the uninformative bound spark(A) ≥ 2.
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Assuming we know that A is in GLP, the following lemma from [84] gives a simple condition

implying the uniqueness of the NNLS solution. The result is akin to a result on the uniqueness of

the solution to `1-regularized least-squares [90].

Lemma 10 (Lemma 5 from [84]): Let the columns of A ∈ Rm×n, m < n, be in GLP. If the NNLS

optimal value is strictly positive,

p∗ = min
x≥0

1
2‖Ax− b‖2 > 0,

then the NNLS problem has a unique solution.

For underdetermined NNLS problems with A in GLP, we can certify uniqueness simply by certifying

p∗ > 0. Assuming we know that A is in GLP, this is simple to check in practice. We can produce

a dual feasible point ν̂ from a primal feasible point x̂ as in Subsection 3.3.3 or in Subsection 3.4.3.

If we have that g(ν̂) > 0, then p∗ > 0 by weak duality and the solution is certified to be unique.

Note that this method can certify uniqueness even if the NNLS solution is not sufficiently

sparse to produced an overdetermined reduced problem. That is to say, this can be used even when

certifying uniqueness via feature elimination fails. However, we must know that A is in GLP, which

may be infeasible to check directly. When feature elimination fails to certify uniqueness, it still

provides certificates that features are not present in the solution. This is a positive result, whereas

the Lemma 10 approach provides no additional benefit when it fails to certify uniqueness.

3.5 Discussion

We have seen a number of interesting challenges presented by focused-spot illumination mi-

croscopy. Each individual NNLS problem involved in image formation is moderately sized, and so

is individually a good candidate for an IPM or active-set method. However, the sheer number of

NNLS problems, all with the same A, is more efficiently solved by first-order methods, which can

naturally be adapted to work on multiple RHS simultaneously.

The PSF dictionary used in our examples is extremely ill-conditioned (κ2(A) ≈ 1020), though

we still see acceptable performance from AT (Algorithm 8) in practice. We have seen that only a few
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thousands of iterations of AT are required to give lower accuracy images (see Figure 3.3). On our

NVIDIA K40c GPU, running AT until all 40000 RHS have a relative norm of the gradient less than

10−5 takes about an hour to run. However, this is quite slow compared to the, say, 100 seconds

taken for image acquisition. There is obviously the desire for further improvements in runtime.

Preconditioning AT offers one practical way forward on this front. We discuss fundamental

obstacles when using preconditioners with projected/proximal methods and a possible way to im-

prove our results in Subsection 3.5.1. ADMM offers another route to improved runtime by bringing

in second-order information in an inexpensive manner.

3.5.1 Discussion of Preconditioning

The obstacles faced when preconditioning first-order methods applied to NNLS are not spe-

cific to NNLS. Since projected gradient methods are typically used when the projection operator

can be applied quickly, introducing a preconditioner must not interfere too severely with the pro-

jection. This notion generalizes directly to proximal gradient methods.

If the proximal function is separable, a diagonal preconditioner is a natural choice that will

not interfere with the application of the proximal operator. However, a diagonal preconditioner

offers negligible improvement in problem conditioning for our microscopy problems. If MMT = αI

with α > 0, then, in a sense, M and the proximal function commute (see Proposition 11 of [20] or

Table 1 of [21]). However, such an M has κ2(M) = 1 and may not improve conditioning.

In [70], a graph-based approach is used to build a block diagonal preconditioner for the

primal-dual hybrid gradient method. The structure of a block diagonal preconditioner, together

with its graph-based construction, allows for a fast solution of the proximal subproblem.

Giselsson and Boyd in [39] use preconditioning to tremendous effect for a model predictive

control problem. While extremely effective, they were able to construct a preconditioner with

minimal structural constraints due to their particular problem. However, they offer a fairly general

approach to constructing preconditioners. Adapted to the QP (3.9), we could construct M by
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solving the problem

min σmax(MT AT AM)
σmin>0(MT AT AM)

s.t. M ∈M,

where M is a structure imposing set. This problem can be cast as a semi-definite program and

solved for moderate sized A [39].

While this may be expensive, it is a one-time cost for our NNLS problems, as the PSF

dictionary is the same for all subimages (and any further subimages, as long as the optical system

is not changed). We could use this approach with M designed to restrict M to be block diagonal,

which results in the same cost of solving the projection subproblem (3.10). Moreover constructing

M by minimizing the condition number should result in a more effective preconditioner than the

block inverse matrix square-root we used in Subsection 3.2.2.

3.5.2 Discussion of ADMM

ADMM offers an inexpensive way of bringing in second-order information to a simple iterative

method. The dominant cost of ADMM (Algorithm 9) is the application of (AT A + ρI)−1 to a

vector. We offer both a Cholesky-based and an SVD-based implementation of this operation. For

overdetermined problems, the Cholesky-based approach is the cheapest, being on par with the cost

of AT using the QP formulation (3.9). However, the step size ρ is embedded in the Cholesky factor;

to change ρ, the Cholesky factorization must be recomputed. The SVD-based approach allows for

changing the step size ρ at-will. Moreover, for underdetermined problems, the cost of an iteration

of ADMM with the SVD-based implementation is the same as a step of AT.

We saw in Figure 3.7 that ADMM with a manually tuned ρ can converge faster than AT

for our NNLS problems arising from our microscopy application. We also tried the automatic ρ

adaptation strategy from [16], but it did not produce convergence nearly as fast as the manually

tuned, fixed ρ. Since manually tuning ρ is a somewhat crude, interactive procedure, we have

generally preferred AT, due to its automatic step size selection.

In experiments with a random ill-conditioned A (Subsection 3.2.3.5), we saw that ADMM
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with a manually tuned ρ could achieve convergence that is much faster than AT. It is unclear

why ADMM with a random NNLS problem achieves such fast convergence, while ADMM with

our microscopy NNLS problems is only slightly faster than AT. One possible explanation is that

convergence depends not just on the structure and conditioning of A (e.g., as used in Theorem 3

for PGM), but also on the RHS b. That is to say, convergence bounds based solely on the condition

number of A are overly pessimistic compared to the convergence we see in practice. It is possible

that the random RHS for a random problem results in an “easier” problem for ADMM than the

real-data NNLS problems from our microscopy application.

It was shown in [24] that the Douglas-Rachford (DR) splitting for basis pursuit eventually

exhibits linear convergence, with rate depending on the principal angle between the nullspace of

A and a subspace depending on zeros in the solution. This rate is notably independent of the

condition number of A. Since ADMM is a special case of the DR splitting [16], it may be possible

to find a similar theoretical explanation for the convergence of ADMM for NNLS problems.

3.5.3 Discussion of Safe Feature Elimination

In Sections 3.3 and 3.4 we developed a new safe feature elimination strategy for NNLS

problems. Our strategy is applicable to any NNLS problem, though we do make a few (optional)

adaptations for the NNLS problems arising our microscopy application. We showed how to use the

strategy to certify the uniqueness of solutions for underdetermined NNLS problems.

Let us discuss briefly some further applications of our dual line search and feature elimination

strategies. Let us suppose we have performed some number of iterations of a first-order NNLS

solver, giving us a primal feasible point x̂. Using x̂, we we can perform our dual line search (in

closed-form) to find a dual feasible ν̂. The duality gap ε = f(x̂) − g(x̂) directly gives us a bound

on how far away the objective value is from the optimal value:

f(x̂)− f(x∗) ≤ ε.

Once we have x̂ and ν̂, we can then compute the solution to a number of feature elimination
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subproblems to eliminate features from the problem. Doing so will then allow us to form a reduced

matrix, Ared, with fewer columns. This has the benefits of a faster gradient computation and

possibly accelerated convergence (e.g., by decreasing κ2(A)).

We saw in Subsection 3.4.3, that if Ared was underdetermined and full-rank, we can certify

that the solution to the original NNLS problem is unique. In such a case, the reduced objective

is σmin(A)2-strongly convex. We can use this to bound the distance between x̂ and the unique

optimal point x∗, using Theorem 1. Let fred(xred) = 1
2‖Aredxred − b‖2 and x̂red, x∗

red be equal to x̂,

x∗, respectively, with the eliminated coordinates removed. We then have that

σmin(A)2

2 ‖x̂− x∗‖2 = σmin(A)2

2 ‖x̂red − x∗
red‖2 ≤ fred(x̂red)− fred(x∗

red) = f(x̂)− f(x∗) ≤ ε,

allowing us to bound the distance from x̂ to x∗ in terms of the duality gap ε.

Performing the dual line search with a fixed, strictly dual feasible ν̃ requires only a single

matrix-vector product AT ν̂. When using ν̃ = max{0, ν ′} (for A elementwise non-negative) or

ν̃ = ν ′ + t∇g(ν ′), we must check that AT ν̃ > 0, which requires a matrix-vector product. The

computation of the optimal value of the basic feature elimination subproblem (3.25) for all columns

of A can re-use AT ν̂. Roughly speaking, this means that feature elimination costs on the order

of a gradient evaluation. It is therefore rather inexpensive to stop a first-order method to try to

eliminate features.

Using the stronger subproblem (3.32), for instance, is more expensive than the basic sub-

problem (3.25). However, many of the required values in the closed-form solution are independent

of b and ν̂ and can be precomputed. The “dome subproblem” closed-form solution, Algorithm 11,

uses these values plus O(1) additional work per use. So, it costs roughly a gradient evaluation plus

constant-time additional work.

Note that this pruning technique may not apply so well to the scenario arising from our

microscopy application. We have many medium-sized NNLS problems with the same A, but each

with different RHS b. The features eliminated from each problem are generally different, with a

limited number of shared eliminated features. Therefore, the reduced A for each problem may be
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quite different, and we can no longer compute many gradients simultaneously using matrix-matrix

products (as was the case with A fixed for all RHS). The gain from using a smaller A for each

problem may be offset by the increased cost of computing gradients using matrix-vector products

instead of a matrix-matrix product.

For a single very large-scale NNLS problem, the pruning technique is likely advantageous.

First-order methods also enjoy an advantage due to their use of simple matrix-vector operations. At

this scale, matrix-vector products are expensive due to the sheer size of A. Using feature elimination

to reduce the problem size as a first-order solver progresses offers a way to decrease the cost of the

gradient computation for all future iterations.

Though we have focused on first-order methods, safe feature elimination can be applied to

other methods. For instance, one could incorporate our strategy into an active set method to certify

coordinates will be zero at a solution and can therefore be removed from further consideration by

the solver.

3.5.4 Future Directions

Here we list a few assorted further directions for our work.

• NNLS uses a Gaussian noise model, though a Poisson noise model is more appropriate. We

sketch the Poisson maximum likelihood problem and how safe feature elimination can be

adapted in Subsection 3.5.5.

• In Appendix A.2 we show that NNLS can be thought of as an extremal case of a regularized

least-squares problem. This may allow us to derive a homotopy method for solving NNLS,

akin to LARS for LASSO [35]. The regularization path would start with penalty µ = 0,

which results in the ordinary least-squares solution, and increase µ until an NNLS solution

is reached.

• Suppose we construct a random NNLS problem with underdetermined A ∈ Rm×n and

b ∈ Rm, each filled standard normal entires. In preliminary numerical experiments, it
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appears that if m > n/2, then the NNLS solution is unique with high probability as

m, n → ∞. Conversely, if m < n/2, then the NNLS solution is non-unique with high

probability as m, n → ∞. It would be interesting to quantify when such a random NNLS

problem has a unique solution. Work in this direction would likely utilize previous work

from [4, 18].

3.5.5 Safe Feature Elimination for Poisson Maximum Likelihood

A Gaussian noise model, which is implicit in the formulation of NNLS, is an approximation

to the noise the camera actually detects. Nevertheless, NNLS provides a useful model, in particular

because it is convex with (globally) Lipschitz continuous gradient. It is more accurate to model

the camera pixel counts with a Poisson distribution. In terms of the PSF dictionary matrix A and

PSF intensities x, we expect the camera pixel values to follow

p(bi|x) = {Ax}bi
i e−{Ax}i

bi!
,

where {·}i denotes the ith element of a vector. Note that the camera pixel values are photon counts

(i.e., integers), though the “rate” {Ax}i need only be positive. We assume that the elements of b

are conditionally independent given x, so

p(b|x) =
m∏

i=1
p(bi|x)

The negative log-likelihood of the PSF intensities x, after some simplification, is,

−〈log(Ax), b〉+ 〈Ax + log(b!),1〉,

where the log and factorial are taken elementwise and 1 is the vector of all ones. The maximum

likelihood estimate of the non-negative PSF intensities is then

min −〈log(Ax), b〉+ 〈Ax + log(b!),1〉

s.t. x ≥ 0.

(3.34)

Note that the Poisson ML objective does not have a globally Lipschitz continuous gradient;

as an element of ν approaches 1 from the left, the gradient blows up.
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After finding an appropriate introduction of a variable (akin to that used in Subsection 3.3.1),

we find that a dual to Poisson ML is

max −
〈

b
1−ν , b

〉
+ 〈b + log(b!),1〉

s.t. AT ν ≥ 0.

(3.35)

Note that there is the implicit constraint ν ≤ 1, which comes from the domain of the log in the

Poisson ML primal problem. Otherwise, the dual constraint AT ν ≥ 0 is identical to the NNLS

dual (3.18). The dual objective is not globally strongly concave, which is in accordance with

the conjugate correspondence theorem (Theorem 5.26 of [10]). That means we cannot directly use

strong-concavity-based feature elimination subproblems, like those discussed Subsection 3.4.1.

However, there appears to be an alternate approach. In our initial experiments the dual

feasible set

N = {ν : ν ≤ 1, AT ν ≥ 0}

is bounded, a property of the PSF dictionary matrix A and does not depend on the RHS b. If we

have a dual feasible point ν̂ (e.g., from a primal feasible point x̂), this allows us to bound the dual

optimal point according to g(ν∗) ≥ g(ν̂), which in turn allows us to bound ν∗ away from 1. The

bounded dual feasible set that is also bounded away from ν = 1 then gives us a locally strongly

convex dual objective. If we can find the local strong convexity constant on this bounded domain

(which must contain the dual optimal point ν∗), we can then use feature elimination as we have

for NNLS.
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Appendix A

Directly Adapting SAFE to NNLS

In this appendix we construct a somewhat direct adaptation of SAFE for LASSO to NNLS

problems. Just like SAFE for LASSO, the strategy we find depends on knowledge of an exact

solution. However, the NNLS problems considered in Chapter 3 are highly ill-conditioned and even

the use of high-accuracy solutions proved to be problematic in experiments. Though we ultimately

opted for the use of inexact solutions in Subsection 3.3.2, the feature elimination strategy discussed

in this appendix could be useful for more well-conditioned problems.

In A.1 we summarize the basic feature elimination procedure in SAFE for LASSO from [38].

Section A.2 presents a regularized least-squares problem that provably recovers the NNLS solution

for sufficiently strong regularization. Finally, Section A.3 presents the exact-solution based safe

feature elimination strategy for NNLS problems.

A.1 Summary of SAFE for LASSO

Consider the `1-regularized LS problem

min 1
2‖Ax− b‖2 + µ‖x‖1. (A.1)

This problem is sometimes called LASSO, though the lasso, as introduced in [88], is an `1-

constrained LS problem. Nevertheless, we will still call (A.1) LASSO to follow [38].
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A dual problem corresponding to (A.1) is

max g(ν)

s.t. |〈ai, ν〉| ≤ µ, i = 1, ..., n,

where

g(ν) = −1
2‖ν + b‖2 + 1

2‖b‖
2.

Note that this dual problem is a strongly convex problem, so the solution is unique. For convenience,

define λ∗
i = {AT ν∗}i = 〈ai, ν∗〉. By observing the complementary slackness condition for the dual

problem at the optimal point, we see that if |〈ai, ν∗〉| < µ for some coordinate i, then x∗
i = 0. We

can therefore eliminate xi from the problem.

At a high level, SAFE for LASSO constructs a set N of dual points that is guaranteed to

contain the dual optimal point ν∗. If |〈ai, ν〉| < µ for all ν ∈ N , then we can conclude that

|〈ai, ν∗〉| < µ and therefore x∗
i = 0. To determine if |〈ai, ν〉| < µ for all ν ∈ N , we can solve

max |〈ai, ν〉|

s.t. ν ∈ N.

To remove the non-linearity in the objective, we solve

max 〈a, ν〉

s.t. ν ∈ N.

(A.2)

twice: once for a = ai and once more for a = −ai. This then allows us to find the maximum value

of |〈ai, ν〉| over ν ∈ N , which is an upper bound on |〈ai, ν∗〉|. If this upper bound is strictly less

than µ, we can eliminate the ith feature. The rest of the derivation of SAFE for LASSO involves

the construction of the set N and solving the above upper bound subproblem.

Assume we have access to an exact solution x∗
0 for some µ0 ≥ µ (in this subsection we use

the subscript “0” to indicate a variable corresponds to penalty parameter µ0). For instance, we

may take µ0 sufficiently large that x∗
0 = 0. It is well known that this is possible, and a sufficient

condition for µ0 is given in [56].
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The search space N is constructed as the intersection of two sets, N = N1 ∩N2. For N1, we

use the fact that the dual feasible set for penalty parameter µ0 ≥ µ is a superset of the dual feasible

set with penalty parameter µ. In other words, |〈ai, ν〉| ≤ µ implies |〈ai, ν〉| ≤ µ0 when µ0 ≥ µ.

Since the dual objective does not depend on µ, we have that g(ν∗) ≥ g(ν∗
0), where ν∗

0 = Ax∗
0 − b.

Since we know ν∗
0 exactly, we have a computable lower bound on g(ν∗):

g(ν∗) = −1
2‖ν

∗ + b‖2 + 1
2‖b‖

2 ≥ g(ν∗
0) = −1

2‖ν
∗
0 + b‖2 + 1

2‖b‖
2.

If we define γ0 = g(ν∗
0), this inequality reduces to ‖ν∗ + b‖2 ≤ ‖b‖2 − 2γ0. Thus, we define

N1
def=
{

ν : ‖ν + b‖2 ≤ ‖b‖2 − 2γ0
}

.

For N2, we use a first-order characterization of the optimality of ν∗
0 : ν∗

0 is optimal iff ν∗
0 is

dual feasible and 〈∇g(ν∗
0), ν0 − ν∗

0〉 ≤ 0 for all dual feasible ν0 (see Section 4.2.3 of [17], noting that

g(ν) is concave). This states that +∇g(ν∗
0) defines a supporting hyperplane to the dual feasible

set at ν∗
0 . The dual optimal point ν∗ for penalty parameter µ ≤ µ0 is dual feasible for penalty

parameter µ0, therefore it too must be supported by the hyperplane. Thus, we define

N2
def= {ν : 〈−ν∗

0 − b, ν − ν∗
0〉 ≤ 0} .

With these definitions of N = N1 ∩N2, the upper bound subproblem (A.2) becomes

max 〈a, ν〉

s.t. ‖ν + b‖2 ≤ ‖b‖2 − 2γ0

〈−ν∗
0 − b, ν − ν∗

0〉 ≤ 0.

(A.3)

The feasible set for this problem is the intersection of a ball and a halfspace. A closed-form solution

to this “dome subproblem” is given in Appendix B.

We solve the upper bound subproblem (A.3) for a = ai and a = −ai, for each column ai of

A. For each column where where the optimal value is strictly less than µ, we conclude that x∗
i = 0

and that ai can be eliminated from the problem. We can then form and solve the reduced problem,

giving us another exact solution. We may then repeat the feature elimination problem for a lower

value of the penalty parameter. See [38] for applications of this iterative procedure.
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A.2 NNLS Through Regularization

SAFE for LASSO uses two values of the penalty parameter µ to construct nested dual feasible

sets. The dual feasible set for some penalty parameter µ0 satisfying µ0 ≥ µ is a superset of the

dual feasible set for penalty µ. This fact is used in the construction of the search set N = N1 ∩N2.

To adapt SAFE to NNLS, we first derive a regularized least-squares problem that recovers

NNLS for sufficiently strong regularization. Specifically, we consider the problem

min
x

1
2‖Ax− b‖2 + µ

n∑
i=1

max{0,−xi}, (A.4)

with penalty parameter µ ≥ 0. In this subsection we show that for µ sufficiently large, the “max-

regularized” least-squares problem recovers the NNLS solution (i.e., a solution of one problem is a

solution of the other).

The non-differentiable penalty term

max{0,−xi} =


−xi xi < 0

0 xi ≥ 0

serves to penalize negative xi. The intuition behind this formulation is that the regularizer penalizes

xi that are negative, while not penalizing those xi that are non-negative. When µ = 0, the problem

becomes ordinary least-squares. As µ increases from 0, the problem increasingly penalizes negative

xi. Note that ‖x‖1 = ∑n
i=1 max{xi,−xi}. With this in mind, it is reasonable to expect (A.4) to

have properties analogous to the `1-regularized least-squares problem (A.1).

Recall that we derived the primal KKT conditions for NNLS in Subsection 3.3.1. The KKT

conditions apply to problems with differentiable objective and constraint functions, which is not

the case for (A.4). We can still derive a first-order optimality condition, however.

Define f(x) = 1
2‖Ax − b‖2 and h(x) = ∑n

i=1 max{0,−xi}. Since f(x) + µh(x) is a proper,

convex function with full domain,

0 ∈ AT (Ax∗
µ − b) + µ∂h(x∗

µ) (A.5)
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gives a first-order condition for optimality for x∗
µ to be a solution to (A.4) [10]. The subdifferential

of h(x) is given elementwise by

{∂h(x)}i ∈


{0} xi > 0

{−µ} xi < 0

[−µ, 0] xi = 0.

We can identify conditions on µ under which a solution to NNLS is a solution to the regularized

problem (A.4). These conditions are a special case of Theorem 3.72 of [10], for instance, and are

simple enough that we prove them directly here.

Lemma 11: Let x∗ be a solution to the NNLS problem (3.1) and µ ≥ ‖AT (Ax∗ − b)‖∞. Then x∗

also solves the regularized problem (A.4).

Proof. From the NNLS first-order optimality condition (3.19), we know that λ∗ = AT (Ax∗ − b).

For x∗, λ∗ to satisfy the first-order optimality conditions (A.5) for the regularized problem (A.4),

we must have

λ∗
i ∈


{0} x∗

i > 0

{−µ} x∗
i < 0

[−µ, 0] x∗
i = 0.

By complementary slackness (3.22), the first case is satisfied. The second case will not occur

for optimal x∗
i , since x∗ ≥ 0. Again by complementary slackness, the third case is satisfied if µ ≥ λ∗

i ,

which occurs by assumption since λ∗
i ≤ ‖λ∗‖∞ = ‖AT (Ax∗ − b)‖∞ ≤ µ.

From this we have that it is necessary (we don’t yet know if it is sufficient) that

µ ≥ ‖AT (Ax∗ − b)‖∞ for a solution to the max-regularized least-squares (A.4) to solve NNLS (3.1).

Analogously to the previous lemma, we can determine conditions under which a solution x∗
µ of the

regularized problem (A.4) is a solution to NNLS (3.1).

Lemma 12: Let x∗
µ be an optimal point of the regularized problem (A.4). If x∗

µ ≥ 0, then it is an

optimal point of NNLS.
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Proof. Define λ = AT (Ax∗
µ − b). From the first-order conditions (A.5) we know that

−λi ∈


{0} {x∗

µ}i > 0

{−µ} {x∗
µ}i < 0

[−µ, 0] {x∗
µ}i = 0.

Since {x∗
µ}i ≥ 0 ∀i = 1, ..., n, we see that complementary slackness (3.22) is satisfied and

that λ is dual feasible. Therefore x∗
µ and λ satisfy the KKT conditions and, since strong duality

holds for NNLS, are primal and dual optimal points, respectively.

The above lemma gives a condition under which we can determine if a given solution x∗
µ is

an NNLS solution. We would prefer a condition on µ that implies the solution x∗
µ is an NNLS

solution. Another “implicit” condition is given next.

Lemma 13: Let x∗
µ be a solution to the regularized problem (A.4). If it so happens that

‖AT (Ax∗
µ − b)‖∞ < µ, then x∗

µ ≥ 0.

Proof. This follows immediately from the first-order conditions (A.5). Note that x∗
µ also solves

NNLS, by Lemma 12.

Note that Lemma 13 doesn’t allow us to a priori determine µ such that x∗
µ ≥ 0. To make

this lemma more useful, we seek an upper bound on ‖AT (Ax∗
µ − b)‖∞ that is independent of x∗

µ.

To do this, we first find a Lagrangian dual problem to the regularized least-squares problem (A.4).

An equivalent primal problem is

min 1
2‖z‖

2 + µh(x)

s.t. z = Ax− b,

which has Lagrangian

Lµ(x, z, ν) = 1
2‖z‖

2 + µh(x) + 〈ν, Ax− b− z〉 .
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The dual objective is given by gµ(ν) = infx,z Lµ(x, z, ν), which occurs when

z = ν, {−AT ν}i ∈ µ{∂h(x)}i =


{0} xi > 0

{−µ} xi < 0

[−µ, 0] xi = 0.

From this we see that if any {AT ν}i < 0 or {AT ν}i > µ, then Lµ is not bounded below and

gµ(ν) = −∞. We are therefore interested in the case when 0 ≤ AT ν ≤ µ. In this case, the dual

objective is

gµ(ν) = inf
x
Lµ(x, ν, ν)

= inf
x

1
2‖ν‖

2 + µh(x) + 〈ν, Ax− b− ν〉

= −1
2‖ν‖

2 − 〈ν, b〉+ inf
x

(
µh(x) + 〈AT ν, x〉

)
The term inside the infimum is

µh(x) = 〈AT ν, x〉 =
n∑

i=1

(
µ max{0,−xi}+ {AT ν}ixi

)
.

If 0 ≤ AT ν ≤ µ, then AT ν ∈ µ∂h(x) and the ith term in the sum is

µ max{0,−xi}+ {AT ν}ixi =



0 +�����: 0
{AT ν}ixi xi > 0

−µxi +�����:µ
{AT ν}ixi xi < 0

0 + 0 xi = 0

= 0.

We therefore have the dual function

gµ(ν) =


−1

2‖ν‖
2 − 〈ν, b〉 0 ≤ AT ν ≤ µ

−∞ otherwise.

Finally, a Lagrangian dual to the regularized least-squares problem (A.4) is

max −1
2‖ν‖

2 − 〈ν, b〉

s.t. 0 ≤ AT ν ≤ µ.

(A.6)
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Note that this dual is very similar to the NNLS dual problem (3.18). Using this dual problem

and strong duality, we can find an upper bound on ‖AT (Ax∗
µ − b)‖∞. Our bound uses the (2,∞)

operator norm from [94], which is defined as

‖A‖2,∞ = sup
x

‖Ax‖∞
‖x‖2

.

Thankfully, ‖A‖2,∞ is easily determined to be the maximum `2 norm of the rows of A.

Theorem 14: Let x∗ be a solution to NNLS and µ > ‖AT ‖2,∞‖Ax∗ − b‖. Let x∗
µ solve the regu-

larized problem (A.4). Then x∗
µ also solves NNLS.

Proof. It is sufficient to show that µ > ‖AT (Ax∗
µ − b)‖∞, because Lemmas 13 and 12 then imply

that x∗
µ solves NNLS (3.1).

Note that strong duality holds for both NNLS and its dual (3.18), and the regularized problem

(A.4) and its dual (A.6), since all problems are convex, feasible, and involve only affine constraints (if

present) [17, 10]. Let x∗, ν∗ be primal and dual optimal points for NNLS and its dual. Define

p∗ = 1
2‖Ax∗ − b‖2 and d∗ = −1

2‖ν
∗‖2 − 〈ν∗, b〉 to be the primal and dual optimal values. Since

strong duality holds, p∗ = d∗. Observe that ‖Ax∗ − b‖ =
√

2p∗.

Let x∗
µ be a solution to the regularized problem (A.4) and define

p∗
µ = 1

2‖Ax∗
µ − b‖2 + µ

n∑
i=1

max{0,−{x∗
µ}i}

to be the primal optimal value. Observe that ‖Ax∗
µ − b‖ ≤

√
2p∗

µ. Since strong duality holds,

p∗
µ = d∗

µ, where d∗
µ is the optimal value for the dual (A.6). Furthermore, the dual optimal value

d∗
µ ≤ d∗, since the dual feasible set for the regularized problem is a subset of the dual feasible set

for NNLS: {
ν : 0 ≤ AT ν ≤ µ

}
⊆
{

ν : 0 ≤ AT ν
}

.

Now let us begin assembling inequalities to arrive at the desired bound ‖AT (Ax∗
µ−b)‖∞ < µ.

Using the definition of the (2,∞) operator norm of AT , we can bound

‖AT (Ax∗
µ − b)‖∞ ≤ ‖AT ‖2,∞‖Ax∗

µ − b‖,
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Using a few of the previously mentioned relations, we have

‖Ax∗
µ − b‖ ≤

√
2p∗

µ =
√

2d∗
µ ≤
√

2d∗ =
√

2p∗ = ‖Ax∗ − b‖.

Chaining everything together, we have

‖AT (Ax∗
µ − b)‖∞ ≤ ‖AT ‖2,∞‖Ax∗ − b‖.

Since we assumed µ satisfies ‖AT ‖2,∞‖Ax∗− b‖ < µ, we have ‖AT (Ax∗
µ− b)‖∞ < µ as desired.

Finally, we have a simple method to select a suitable µ that will ensure that x∗
µ also solves

NNLS.

Corollary 15: Given any x ≥ 0, µ > ‖AT ‖2,∞‖Ax− b‖, a solution x∗
µ to the regularized problem

(A.4) also solves the NNLS problem (3.1).

Proof. Let x∗ be an optimal point of NNLS. Since x ≥ 0 is primal feasible, but not necessarily

optimal,

‖Ax− b‖ ≥ ‖Ax∗ − b‖.

This then implies that µ > ‖AT ‖2,∞‖Ax∗ − b‖ and so Theorem 14 can be invoked.

A.3 SAFE for NNLS

We now have a regularized least-squares problem that recovers an NNLS solution when the

penalty parameter µ is sufficiently large. This is analogous to LASSO, which has the zero solution

for sufficiently large penalty parameter. SAFE for LASSO uses the fact that the dual feasible set for

penalty parameter µ0, with µ0 ≥ µ, is a superset of the dual feasible set for penalty µ. Let us now

adapt SAFE to max-regularized least-squares (A.4). When the penalty parameter µ is sufficiently

large (see Corollary 15), we will have SAFE for NNLS, instead of SAFE for max-regularized least-

squares (A.4).

Define the dual feasible set for NNLS to be

N def=
{

ν : 0 ≤ AT ν
}

,
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and the dual feasible set for the max-regularized LS problem, parameterized by penalty parameter

µ, to be

N (µ) def=
{

ν : 0 ≤ AT ν ≤ µ
}

.

Let µ be sufficiently large so that Theorem 14 applies. Assume we have an exact primal-dual

solution pair x∗
0, ν∗

0 to the max-regularized problem (A.4) for some µ0 ≤ µ. We will use this

solution at penalty µ0 to eliminate features for the problem with penalty µ.

Just like in SAFE for NNLS as described in Section 3.3, we want to solve the lower bound

subproblem

min 〈ai, ν〉

s.t. ν ∈ N,

for some search set N that is guaranteed to contain the dual optimal point ν∗. We again form N

as the intersection of two sets, N = N1 ∩N2.

For N1, we follow SAFE for LASSO and use a relation between the dual optimal value at

penalty parameters µ0 and µ. Specifically, we have µ0 ≤ µ, where µ was chosen sufficiently large

that a dual optimal point of the max-regularized least-squares problem is dual optimal for the

NNLS dual problem (3.18). This implies that N (µ0) ⊆ N (µ). Therefore, we know g(ν∗
0) ≤ g(ν∗),

where g(ν) = −1
2‖ν‖

2 − 〈ν, b〉 is the dual objective. Defining γ0 = g(ν∗
0), we define

N1
def= {ν : g(ν) ≥ g(ν∗

0)} =
{

ν : ‖ν + b‖2 ≤ ‖b‖2 − 2γ0
}

.

This is the same as in SAFE for LASSO (Section A.1), since the dual objectives are the same in

both cases.

For N2 we must deviate slightly from SAFE for LASSO. We again use the first-order char-

acterization of optimality that ν∗
0 is dual optimal iff ν∗

0 is dual feasible and 〈∇g(ν∗
0), ν0 − ν∗

0〉 ≤ 0

for all dual feasible ν0. If ∇g(ν∗
0) 6= 0, this can be understood to mean ∇g(ν∗

0) defines a supporting

hyperplane to the dual feasible set at ν∗
0 .

In SAFE for LASSO, the dual feasible set for penalty µ0 is a superset of the dual feasible set

at penalty µ (since µ ≤ µ0). Thus the hyperplane defined by ∇g(ν∗
0) at ν∗

0 also supports the dual
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feasible set at penalty parameter µ. For NNLS however, we pick µ0 ≤ µ and have that N (µ0) is a

subset of N (µ). This means that the hyperplane defined by ∇g(ν∗) at ν∗ supports N (µ0). Writing

this out, we have 〈∇g(ν∗), ν0 − ν∗〉 ≤ 0 for all ν0 in N (µ0). We use this condition to build a set

that must contain ν∗:

ν∗ ∈ {ν : 〈∇g(ν), ν0 − ν〉 ∀ν0 ∈ N (µ0)}.

It is impractical to test all ν0 ∈ N (µ0), so we instead test just ν∗
0 ∈ N (µ0). Accordingly, we define

the search set

N2
def= {ν : 〈−ν − b, ν∗

0 − ν〉 ≤ 0} .

The lower bound subproblem for λ∗
i is

min 〈ai, ν〉

s.t. ‖ν + b‖2 ≤ ‖b‖2 − 2γ0

〈∇g(ν), ν∗
0 − ν〉 ≤ 0.

In experiments with both rand/randn problems and for our PSF dictionaries, this test did not

perform very well. We took µ such that Theorem 14 applies and µ0 = µ/10. We solve the

regularized problem at level µ0 with CVX [43] to get a high-accuracy, but not exact, solution.

Unfortunately, it was almost always the case for the 2D PSF dictionaries that the lower bound

subproblem produced negative lower bounds, which does not allow us to eliminate many features.



Appendix B

Dome Subproblem - Closed-Form Solution

Here we follow [38] to derive a closed-form solution to the generic “dome subproblem”

minν 〈a, ν〉

s.t. ‖ν − ν̂‖2 ≤ δ

〈ν, b〉 ≥ γ.

(B.1)

Breaking our usual convention, we treat (B.1) as the primal problem and will find its optimal value

via its dual. Here ν will be a primal point and λ1, λ2 will be dual variables associated with the two

constraints.

We assume that δ > 0, so the constraint ‖ν− ν̂‖2 ≤ δ can be satisfied strictly (e.g., by ν = ν̂).

The constraint 〈ν, b〉 ≥ γ is affine. We can therefore apply Slater’s condition, which implies that

strong duality holds [17]. Hence we will find the primal optimal value (e.g., the bound used for

feature elimination) by computing the dual optimal value.

The Lagrangian for (B.1) is

L(ν, λ1, λ2) = 〈a, ν〉+ λ1
(
‖ν − ν̂‖2 − δ

)
+ λ2 (γ − 〈ν, b〉) .

Assuming λ1 > 0, infν L is attained when

∇νL = a + 2λ1(ν − ν̂)− λ2b = 0.

which occurs when

ν = ν̂ + λ2
2λ1

b− 1
2λ1

a. (B.2)
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After simplifying, the dual objective is

g(λ1, λ2) = inf
ν
L = 〈a, ν̂〉 − λ1δ + λ2γ − λ2〈ν̂, b〉 − 1

4λ1
‖λ2b− a‖2 if λ1 > 0.

If λ1 = 0, we must have a = λ2b to have a finite infν L. In this case, infν L = λ2γ. If λ1 = 0 and

a 6= λ2b, then infν L = −∞. The dual objective is therefore

g(λ1, λ2) =



〈a, ν̂〉 − λ1δ + λ2γ − λ2〈ν̂, b〉 − 1
4λ1
‖λ2b− a‖2 λ1 > 0

λ2γ λ1 = 0, a = λ2b

−∞ λ1 = 0, a 6= λ2b.

Let us work with the branch λ1 > 0. We have

∂g

∂λ2
= γ − 〈ν̂, b〉 − 1

2λ1
〈λ2b− a, b〉.

Setting ∂g/∂λ2 = 0 and solving for λ2 ≥ 0, we find

λ2 = max
{

0,
〈a, b〉
‖b‖2

+ 2λ1
‖b‖2

(γ − 〈ν̂, b〉)
}

.

If λ2 = 0, then

g(λ1, 0) = 〈a, ν̂〉 − λ1δ − 1
4λ1
‖a‖2

is minimized when ∂g/∂λ1
∣∣
λ2=0 = 0, which occurs when λ1 = ‖a‖/(2

√
δ). We use this value of λ1

to check if λ2 = 0: λ2 = 0 if
〈a, b〉
‖b‖2

+ 2
‖b‖2

‖a‖
2
√

δ
(γ − 〈ν̂, b〉) ≤ 0

and λ2 > 0 otherwise.

In the case that λ2 = 0, it is simple to find the optimal value d∗ and to compute ν∗ via (B.2).

In the case that λ2 > 0, we know from above that

λ2 = 〈a, b〉
‖b‖2

+ 2λ1
‖b‖2

(γ − 〈ν̂, b〉) .

To find λ1, we substitute the above expression for λ2 into

∂g

∂λ1
= −δ + 1

4λ2
1
‖λ2b− a‖2 = 0.
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and solve for λ1 ≥ 0 After simplifying the resulting equation for λ1, we define

τ
def=

〈a, b〉2

‖b‖2
− ‖a‖2

4 (γ − 〈ν̂, b〉)2

‖b‖2
− 4δ

.

If τ > 0, we have λ1 =
√

τ > 0, and we again find ν∗ via (B.2) and d∗ via g(λ1, λ2). If τ ≤ 0,

we set λ1 = 0 and λ2 = 〈a, b〉/‖b‖2. If a = λ2b, we can find an optimal ν∗ (since we assumed

〈ν̂, b〉 > γ) by projecting ν̂ onto the plane 〈ν, b〉 = γ:

ν∗ = ν̂ − 〈ν̂, b〉 − γ

‖b‖2
b.

The optimal value in this case is d∗ = λ2γ. If a 6= λ2b, then the optimal value is d∗ = −∞.

We summarize the above solution in Algorithm 11.

In our implementation of Algorithm 11, we make a couple simplifications. First, if 〈ν̂, b〉 ≤ γ,

we simply report the bound d∗ = −∞. The dome subproblem (B.1) may in actuality be feasible

or infeasible, but we report d∗ = −∞ for convenience. Second, if τ ≤ 0, we again report d∗ = −∞

instead of checking if a = λ2b. These simplifications are merely for convenience, and they still

result in correct bounds on the optimal value (i.e., they are safe to use with feature elimination).
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Algorithm 11 Solution to Dome Subproblem (B.1)
Given 0 6= a ∈ Rm, 0 6= b ∈ Rm, ν̂ ∈ Rm, δ > 0, γ ∈ R such that 〈ν̂, b〉 > γ.
if 〈a, b〉
‖b‖2

+ 2
‖b‖2

‖a‖
2
√

δ
(γ − 〈ν̂, b〉) > 0 then

τ =
(
〈a, b〉2

‖b‖2
− ‖a‖2

)/(
4 (γ − 〈ν̂, b〉)2

‖b‖2
− 4δ

)
.

if τ ≤ 0 then
λ∗

1 = 0.

λ∗
2 = 〈a, b〉

‖b‖2
.

if a = λ2b then
ν∗ = ν̂ − 〈ν̂, b〉 − γ

‖b‖2
b . Projection of ν̂ onto the plane 〈ν, b〉 = γ

d∗ = 〈a, b〉
‖b‖2

γ.
else

d∗ = −∞.
end if

else
λ∗

1 =
√

τ

λ∗
2 = 〈a, b〉

‖b‖2
+ 2λ∗

1
‖b‖2

(γ − 〈ν̂, b〉) .

ν∗ = ν̂ + λ∗
2

2λ∗
1
b− 1

2λ∗
1
a.

d∗ = 〈a, ν̂〉 − λ∗
1δ + λ∗

2γ − λ∗
2〈ν̂, b〉 − 1

4λ∗
1
‖λ∗

2b− a‖2 .

end if
else

λ∗
1 = ‖a‖

2
√

δ
.

λ∗
2 = 0.

ν∗ = ν̂ −
√

δ
a

‖a‖
.

d∗ = 〈a, ν̂〉 − ‖a‖
√

δ.

end if



Appendix C

Generating NNLS Problems With a Known Solution

We discuss here how to generate RHSs for NNLS problems given a matrix A and desired

exact solution x∗. The methods are inspired by [58, 36].

Strictly Overdetermined Problems

We consider first A ∈ Rm×n that is strictly overdetermined (i.e., where m > n). The KKT

conditions for NNLS are

AT (Ax∗ − b)− λ∗ = 0

x∗ ≥ 0

λ∗ ≥ 0

x∗
i λ∗

i = 0, ∀i = 1, ..., n.

We can generate an NNLS problem given A and x∗ by forming b = Ax∗. However, this RHS

doesn’t have any noise, which is likely undesirable. From the KKT conditions, we see that if we

form b̂ = b + y where AT y = 0, the new NNLS problem (A, b̂) has x∗ as a solution.

For full-rank, strictly-overdetermined problems, ker(AT ) is non-trivial, so it is sufficient to

select any y ∈ ker(AT ) with the desired noise level. We can generate such a y with `2 noise level

noise with the following matlab code.



166

Listing C.1: Strictly-Overdetermined NNLS RHS Generation
1 [Q,R] = qr(A,0);

2 y = randn(m,1);

3 y = y − Q*(Q'*y);

4 y = noise*y/norm(y);

5 b_hat = A*x + y;

One downside to this approach is that λ∗ = AT (Ax∗− b) = 0, so complementary slackness is

not satisfied strictly.

Square and Underdetermined Problems

The above approach does not work for square or underdetermined full-rank problems, as

ker(AT ) is trivial. We again desire to form b̂ = b + y without changing x∗ an optimal solution. The

first-order conditions with RHS b̂ are AT (Ax∗ − b) − AT y − λ∗ = 0. We therefore must find a y

such that AT y results in a valid λ̂∗ = λ∗ + AT y, which means it must be non-negative and satisfy

complementary-slackness.

We therefore want to find a vector v ∈ ran(AT ) ∩ I, where I is defined via

v ∈ I ⇔


vi = 0 xi > 0

vi ≤ 0 xi = 0.

To do this, we can use projection onto convex sets (POCS) [19, 47]. The idea is to alternatingly

project onto ran(AT ) and I. To project onto ran(AT ), we form AT = QR and compute w =

Q(QT v). To project onto I, we set vi = 0 if xi = 0 or wi > 0, and vi = wi otherwise. Note that

this can be quite slow to converge, so [58] proposes a QP as an alternative formulation (for basis

pursuit denoising problems).

Once we have v ∈ ran(AT )∩ I, we find y by solving AT y = v. Note that the overdetermined

system AT y = v does have an exact solution, as v is in the range of AT . Listing C.2 shows a simple

implementation of this procedure.
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Listing C.2: Underdetermined NNLS RHS Generation
1 [Q,R] = qr(A',0);

2 v = randn(n,1);

3 w = zeros(n,1);

4 atol = 1e−14;
5
6 % Find v in ran(A') \cap I with POCS

7 while true

8 w_old = w;

9
10 % Project onto ran(A')

11 w = Q*(Q'*v);

12
13 % Project onto inequality set

14 v = w .* (x == 0);

15 v(v>0) = 0;

16
17 % Check for convergence

18 adiff = max(norm(v − w_old), norm(v − w));

19 if adiff < atol

20 break

21 end

22 end

23
24 % Find y s.t. v = A'*y

25 y = A'\v;

26 b_hat = A*x + y;


