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Two Essays on Options Market

Thesis directed by Dr. Garland B. Durham

Essay I: The Roles of Short-Run and Long-Run Volatility Factors in Options Market:
A Term Structure Perspective

This paper examines the option pricing implications of short-run and long-run volatility fac-
tors, which are assumed to be driven by short-run and long-run news events, respectively. Us-
ing a comprehensive dataset of S&P 500 index options over 1993-2008, I find that the proposed
two-factor volatility models have two desirable properties that help capture the term structures of
option-implied volatility and skewness. First, the options data show evidence of time-variation in
the long-run expectation of volatility, which may be caused by long-run news events. While this
feature is inconsistent with a single-factor volatility assumption, the two-factor volatility models
do a good job of matching the entire term structure of implied volatility. Second, the options data
reveal that the term structure of implied skewness is nearly flat on average. This feature is hard
to reconcile with single-factor volatility models and jumps in returns. In contrast, I find that the
two-factor volatility models can generate flat term structures much like those seen in the data. In
particular, the short-run volatility factor is dominant in generating short-term skewness, while the
long-run volatility factor plays a pivotal role in generating long-term skewness.

Essay II: Beyond Stochastic Volatility and Jumps in Returns and Volatility

While a great deal of attention has been focused on stochastic volatility in stock returns, there
is strong evidence suggesting that return distributions have time-varying skewness and kurtosis as
well. This can be seen, for example, from variation across time in the shape of Black-Scholes
implied volatility smiles. This paper investigates model characteristics that are consistent with
variation in the shape of return distributions using a standard stochastic volatility model with a
regime-switching feature to allow for random changes in the parameters governing volatility of
volatility and leverage effect. The analysis consists of two steps. First, the models are estimated
using only information from observed returns and option-implied volatility. Standard model as-
sessment tools indicate a strong preference in favor of the proposed models. Since the information
from option-implied skewness and kurtosis is not used in fitting the models, it is available for
diagnostic purposes. In the second step of the analysis, regressions of option-implied skewness
and kurtosis on the filtered state variables (and some controls) suggest that the models have strong
explanatory power. This is important because it suggests that variation in the shape of risk-neutral
return distributions (and of the Black-Scholes implied volatility smile) is not just due, for example,
to changes in risk premia, but is associated with changes in related characteristics of the physical
dynamics.
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Chapter 1

The Roles of Short-Run and Long-Run Volatility Factors in Options Market:

A Term Structure Perspective

1.1 Introduction

The discounted cash flow model predicts that the volatility of a financial asset should be

linked to uncertainty over the future cash flows and discount rate of that asset. In this framework,

volatility changes are driven by arrivals of new information pertaining to uncertainty over the cash

flows and discount rate, including macroeconomic news events, market microstructure shocks, and

firm-specific shocks. Schwert (1989) studies the relation of stock market volatility with macroeco-

nomic volatility, stock market activity, and financial leverage. Every news event may have a distinct

term structure effect on volatility, depending on the market’s perception of the persistence of the

news event along a horizon. Macroeconomic news events tend to have more persistent effects on

volatility than market microstructure ones. Adrian and Rosenberg (2008) link short-run volatility

to the tightness of financial constraints and long-run volatility to business cycle risk. Therefore,

volatility is comprised of multiple components, each of which has its distinct term structure effect

on volatility according to its economic nature.

The fact that volatility consists of multiple components has important implications particu-

larly for the options market, as opposed to the stock market. Since there are options with different

investment horizons on any given day, the term structure of volatility is observable in the options

market. The option-implied volatility reflects the day’s market expectation of future volatility. The

dynamics of the term structure of implied volatility are then determined by the market’s perception
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of the term structure effect of each news event on volatility. If a news event is considered as short-

run (or temporary), long-term implied volatility will not be affected as much as short-term implied

volatility. In contrast, if a news event is interpreted as long-run (or permanent), short-term and

long-term implied volatilities are likely to move in lockstep. Therefore, the options market will

show various movements in the term structure of volatility, depending on the size and persistence

of an arriving news event.

The objective of this article is to investigate the option pricing implications of short-run and

long-run volatility factors, which are assumed to be directed by short-run and long-run news events,

respectively. There is a related literature. Bates (2000), Christoffersen, Heston, and Jacobs (2009),

and Christoffersen, Jacobs, Ornthanalai, and Wang (2008), among others, study option pricing by

using two-factor volatility models. However, all of these papers are based on a narrow class of

affine models. Although the affine models are econometrically convenient due to the existence

of closed-form option pricing formulas, they have trouble fitting the returns and options data in

practice. First of all, the affine models do a poor job of capturing the time-series dynamics of

returns relative to non-affine models (see, e.g., Ait-Sahalia and Kimmel 2007, Jones 2003, and

Durham 2008). More importantly, Christoffersen, Jacobs, and Mimouni (2010) compare several

single-factor stochastic volatility models in terms of option pricing performance and find that the

CEV model with elasticity of variance equal to 1 (hereafter, the ONE model) performs better than

the affine model. To the best of my knowledge, a study of non-affine option pricing models with

multiple stochastic volatility factors is still lacking.

In response, this paper develops a family of log volatility models with short-run and long-

run volatility factors. The short-run (long-run) factor controls short-term (long-term) trends and

fluctuations in volatility. In addition, I augment the two-factor log volatility model by including

jumps in both returns and the short-run volatility factor. The log stochastic volatility framework

can be translated into the ONE model with a nonlinear drift using Ito’s Lemma. To the extent

that nonlinearity in the drift is insignificant, the models in this paper can be regarded as two-factor

extensions of the ONE model.
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Although the log stochastic volatility models under consideration offer more realistic return

dynamics than the affine models, a great deal of econometric challenge arises. It does not seem

feasible to estimate the log volatility models by minimizing the sum of option pricing errors for a

long panel dataset of options, because there is no closed-form option pricing formula. To address

this issue, I develop a computationally efficient two-step procedure. In the first step, I pin down

two latent volatility factors from a pair of model-free implied volatilities on each day; and in the

second step, I apply an implied-state maximum likelihood estimation by treating those volatility

factors as observable. Joint analysis of this kind using information on both returns and options has

been used by Chernov and Ghysels (2000), Jones (2003), Ait-Sahalia and Kimmel (2007), and Pan

(2002), among others.

The focus of my analysis is on why two-factor volatility models perform better in explaining

option prices than one-factor volatility models. In particular, I find it very informative to compare

the term structures of option-implied volatility and skewness to their model-implied counterparts.

Comparing the term structures of volatility and skewness makes it easy to identify the sources of

misspecification in the models, because each stochastic factor has its own term structure signature

that allows it to be distinguished from other factors. For example, a misfitting in skewness implied

by options with short times to maturity is more likely to be associated with the short-run volatility

factor (and possibly a jump process), while a misfitting in skewness implied by options with longer

times to maturity is most likely to be associated with the long-run volatility factor. Similarly,

a misfitting in short-term (long-term) volatility is likely to be related to the short-run (long-run)

volatility factor.

First, I investigate whether the two-factor volatility models are capable of capturing the entire

term structure of model-free implied volatility. The model-free implied volatilities are computed

using the approach of Carr and Wu (2009) during the sample period 1993-2008. For an intuitive

exposition, I provide evidence that it is often possible that (i) when short-term implied volatility

is low (high), the term structure is downward (upward) sloping, and (ii) short- and long-term

volatilities do not always move in lockstep. Such empirical features are suggestive of a time-
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varying long-run expectation of volatility, which is probably caused by long-run news events.

Single-factor volatility models, which assume constancy in the long-run volatility level, are clearly

deficient for the purpose of option pricing. My results show that the two-factor volatility models do

a good job of capturing the entire term structure of implied volatility, as opposed to the one-factor

volatility models. In particular, the inclusion of a long-run volatility factor is critical in capturing

levels of and changes in long-term implied volatility.

Second, I look at the effect of short-run and long-run volatility factors on the term structure

of skewness. Since the 1987 market crash, options markets have exhibited an empirical regular-

ity commonly referred to as the “volatility smirk": out-of-the-money puts (in-the-money calls)

have higher Black-Scholes implied volatilities than in-the-money puts (out-of-the-money calls).

Although there has been abundant research on negative skewness (or volatility smirk), little is

known about the term structure of negative skewness. Do short-term options have more or less

left-skewed return distributions than long-term options? To see this, I calculate implied skewness

via the model-free approach of Bakshi, Kapadia, and Madan (2003) and find that the term structure

of implied skewness is nearly flat on average. Simply put, long-dated skewness is as low (negative)

as short-dated skewness. This empirical regularity is associated with the finding of Carr and Wu

(2003) that volatility smirks are parallel across different terms to maturity when a standard mea-

sure of moneyness is used. To address this issue, they introduce a log stable Levy process with

maximum negative skewness that deliberately violates the central limit theorem.

Alternatively, I find that the two-factor volatility models are capable of imitating the flat

term structure of implied skewness, at least qualitatively. The reason is as follows. While it is

well-known that a leverage effect can generate negative skewness, it is not the only variable to do

this. There are two more parameters that are relevant for skewness: the persistence of volatility

and the volatility of volatility. The persistence of volatility determines how long the leverage effect

will hold up along an increasing horizon. For example, if a volatility factor is weakly persistent,

the leverage effect (and thus the generated skewness) disappears relatively quickly as a horizon

increases. The volatility of volatility is a key variable in determining the level of skewness as well.
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With the leverage effect equal, a high level of volatility of volatility will generate more left-skewed

return distributions than a low one.

According to my estimation results, the short-run and long-run factors involve very different

levels of the skewness-related parameters. The short-run factor is characterized by weak persis-

tence and high volatility of volatility, while the long-run factor is characterized by strong persis-

tence and low volatility of volatility. Because of these differences, the two factors have opposing

impacts on the term structure of skewness. The short-run factor can generate a large amount of

negative skewness at short horizons thanks to the high volatility of volatility, but the skewness dis-

sipates quickly along an increasing horizon due to the weak persistence. In contrast, the long-run

factor can generate only a small amount of negative skewness at short horizons due to the low

volatility of volatility, but the leverage effect holds up until a longer horizon due to the strong

persistence. That is, while the short-run factor is dominant in generating short-term skewness, the

long-run factor plays a pivotal role in generating long-term skewness. The different yet comple-

mentary roles played by the two volatility factors can produce flat term structures qualitatively.

However, the two-factor volatility models fall short of matching observed option-implied

skewness precisely; specifically, model-implied skewness is higher (less negative) than option-

implied skewness. This undesirable consequence will yield underpricings of out-of-the-money

(OTM) puts and overpricings of OTM calls. This problem is not unique to this paper but has

been widely reported in the existing option pricing literature (e.g., Bakshi, Cao, and Chen 1997;

Christoffersen, Jacobs, and Mimouni 2010; Christoffersen, Jacobs, Ornthanalai, and Wang 2008).

It is also in line with the empirical finding of Bakshi, Cao, and Chen (1997) and Bates (2000) that

the volatility of volatility and the absolute value of leverage effect implied by option prices are

implausibly large relative to their time-series-based counterparts. My estimates for the volatility of

volatility and the absolute value of the leverage effect may not be sufficiently large to rationalize

the levels of skewness implicit in option prices.1

1Since the maximum likelihood estimation used in this paper optimizes the models’ one-step forecasting ability,
my estimates are time-series estimates.
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Having examined the term structures of volatility and skewness, I have done most of the

work actually. In line with the preceding results, the two-factor volatility models enhance option

pricing performance over the one-factor volatility models, mainly because they are able to fit the

term structure of volatility much better. I also compare the proposed two-factor volatility models

to the two-factor GARCH model of Christoffersen, Jacobs, Ornthanalai, and Wang (2008) and find

that the former outperform the latter by 66.2% in terms of the root mean squared errors of the

Black-Scholes implied volatilities. This improvement occurs largely because the former generates

a more realistic term structure of skewness than the latter.

At last, I discuss a possible misspecification in (multifactor) stochastic volatility models.

While stochastic volatility models have been successful in capturing time-variation in volatility,

they can explain little of the variation in skewness that is a prominent feature of the options data.

My investigation shows that the level of volatility is weakly correlated with the level of skewness,

and that changes in volatility have little correlation with changes in skewness. This evidence

suggests that the dynamics of skewness are very different from those of volatility. It may be

necessary to introduce a novel skewness factor that is associated with the time-varying skewness,

in addition to multiple volatility factors.2

The estimation strategy used in this paper makes it possible to identify skewness factors by

analyzing option pricing errors. While I force the models to fit the observed term structure of

volatility, the term structure of skewness remains unfit. As a result, a large fraction of option pric-

ing errors occur along the moneyness dimension (for example, when the option market implies

more negative skewness, pricing errors are typically larger). For this reason, I run regressions of

option pricing errors on three potential skewness factors: stochastic volatility of volatility, stochas-

tic leverage effect, and stochastic jumps. The regression results show that a large fraction of the

option pricing errors can be explained by the skewness factors (with other control variables) and

that the stochastic volatility of volatility is the most promising skewness factor among the variables

2A multifactor affine or CEV model is capable of generating some of time-variation in skewness. However, this
model would be imperfect in fitting the stochastic skewness because the dynamics of volatility are loosely related to
those of skewness.
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considered in this paper. The results indicate that one potential extension of the two-factor volatil-

ity models would be to randomize the volatility of volatility in order to capture time-variation in

skewness.

The rest of the paper is organized as follows. Section 1.2 clarifies the motivation of the paper,

focusing on the empirical regularities of the options market. In Section 1.3, I describe the one- and

two-factor volatility models under consideration. Section 1.4 develops the estimation strategy,

focusing on how to handle unobservable volatility factors. The data are described in Section 1.5.

The empirical results are provided in Section 1.6. Finally, Section 1.7 concludes and discusses

possible directions for future work.

1.2 Empirical features of options data

I start my analysis by exploring the empirical features of option prices that are inconsistent

with the implications of one-factor volatility models. In particular, I look at the term structures of

volatility and skewness, as implied by the option market. This work is facilitated by the recently

developed model-free approaches to implied volatility and skewness.

1.2.1 Term structure of implied volatility

The issue of whether a long-run volatility factor is necessary in describing the behavior of

implied volatility dates back to as early as the overreaction puzzle introduced by Stein (1989).

Stein finds that long-dated implied volatility changes more in response to changes in short-dated

implied volatility than in response to those implied by the one-factor volatility model. The subse-

quent papers such as those of Diz and Finucane (1993) and Xu and Taylor (1994) argue that the

overreaction puzzle is suggestive of time-variation in the long-run expectation of volatility.

The term structure of volatility will react in various ways according to the size and persis-

tence of an arriving news event. Single-factor volatility models may be too restrictive to capture

the dynamics of the term structure of implied volatility. To see this, assume the one-factor CEV
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model (encompassing the affine model) under a risk-neutral Q-measure:

dht = κ(h−ht)dt +σhγ

t dWQ
t , (1.1)

where ht is a volatility state; κ is the persistence of volatility; h is the long-run mean; σ is volatility

of volatility; γ is the elasticity of volatility; and WQ
t refers to the standard Brownian motion under

the Q-measure.

Under the one-factor CEV specification, the model-implied volatility IV2
t,τ can be derived as

a linear function of ht :3

IV2
t,τ ≡

1
τ

EQ
t

[∫ t+τ

t
hsds

]
= β(τ)ht +(1−β(τ))h,

(1.2)

where β(τ) = 1−e−κτ

κτ
.

Under the single-factor volatility assumption, the state ht will determine all implied volatil-

ities at time t with different terms to maturity. In particular, equation (1.2) implies the following

linear relation between short-term implied volatility and the term premium of implied volatility:

IV2
t,τ2
− IV2

t,τ1
=

β(τ1)−β(τ2)

β(τ1)

(
h− IV2

t,τ1

)
, (1.3)

where IV2
t,τ2
− IV2

t,τ1
measures the term premium of implied volatility between a long horizon τ2

and a short horizon τ1. β(τ1)> β(τ2) since τ2 > τ1. This equation implies that the term premium is

positive (negative) when the short-term implied volatility IV2
t,τ1

is lower (higher) than the long-run

mean h. That is, the term structure of implied volatility should be upward (downward) sloping

when the short-term implied volatility is historically low (high). Furthermore, the relation should

be deterministically linear up to measurement errors.

The strict relation above is often in contrast to the actual relation between implied volatili-

ties. To see this, I extract model-free implied volatilities, following the approach of Carr and Wu

3With a slight abuse of terminology, IVt,τ and IV2
t,τ are both referred to as implied volatility in this paper.
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(2009).4 I then compute constant-maturity implied volatilities by interpolating/extrapolating two

surrounding implied volatilities for each of 1, 2, 3, 6, 9, and 12 months to maturity. The top panel

of Figure 1.1 presents a scatter plot between the term premium and the one-month implied volatil-

ity. The plot shows that the actual relation is far from a linear relation. In particular, the bottom-left

(top-right) quadrant of the plot corresponds to the cases in which the term structures are downward

(upward) sloping when short-term implied volatilities are historically low (high).

Another examination of the options data concerns changes in implied volatilities. Equation

(1.2) implies the linear relation between changes in long- and short-term implied volatilities up to

measurement errors:

dIV2
t,τ2

=
β(τ2)

β(τ1)
dIV2

t,τ1
. (1.4)

The bottom panel of Figure 1.1 presents a scatter plot between changes in one-year and one-month

implied volatilities. There is considerable deviation from a linear relation. Besides, short- and

long-term volatilities do not always move in lockstep; the top-left and bottom-right quadrants of

the plot correspond to the cases in which short- and long-term volatilities move in the opposite

directions.

As is seen in the above, the single-factor volatility assumption is too restrictive to describe

the term structure of implied volatility. An approach to addressing this issue is to recalibrate

structural parameters on a daily basis (e.g., Bakshi, Cao, and Chen 1997; Duffie, Pan, and Singleton

2000; Barone-Adesi, Engle, and Mancini 2008). The recalibration, however, makes it difficult to

understand the true data generating process (or the stochastic factors implicit in option prices)

because it does not exploit any time series property of returns and implied volatility. In fact, when

recalibrated, a dynamic model for option pricing loses its dynamic appeal, becoming close to the

spirit of the local volatility model of Derman and Kani (1994) and Dupire (1994) and the implicit

volatility function of Dumas, Fleming, and Whaley (1998).

Alternatively, the above empirical features can be reconciled with the existence of multiple

4Alternative approaches to model-free implied volatility have been developed by Neuberger (1994), Carr and
Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999), and Britten-Jones and Neuberger (2000), among oth-
ers.



10

volatility factors, each of which has a distinct term structure effect according to its economic

nature.5 For this reason, I adopt a class of stochastic volatility models with short-run and long-run

volatility factors, which are assumed to be directed by short-run and long-run news events. I then

test their option pricing performance with a single set of parameters without recalibration.

For now, a question arises: is a third volatility factor necessary? To see this, I apply a

principal component analysis of constant-maturity implied volatilities. Table 1.1 shows that the

first two principal components combined explain 99.8% of variations in implied volitilities. The

first and second components are associated with the level and the slope effects, respectively. The

curvature effect of the third component appears to be trivial (at least up to the one-year horizon).6

This result is consistent with the arguement of Li and Zhang (2010) that the two-factor structure

proxied by short- and long-term implied volatilities is good enough to fit options data.

1.2.2 Term structure of implied skewness

Since the 1987 market crash, options markets have exhibited an empirical regularity com-

monly referred to as the “volatility smirk": out-of-the-money puts (in-the-money calls) have higher

Black-Scholes implied volatilities than in-the-money puts (out-of-the-money calls). A commonly

used approach to addressing this pricing bias is to introduce a stochastic volatility factor with a

leverage effect or superimpose a jump process on top of a diffusive process.

Although a great deal of attention has been focused on understanding negative skewness,

few studies have investigated the term structure of negative skewness. In this subsection, I fill this

void by looking at the term structure of implied skewness. To do this, I compute the model-free

skewness of Bakshi, Kapadia, and Madan (2003) and then run a kernel regression of the model-free

skewness against term to maturity. The top panel of Figure 1.2 shows the regression result with a

Gaussian kernel and a manually chosen bandwidth. Interestingly, the term structure of skewness

5The multifactor volatility models have been used to describe physical return dynamics (e.g., Gallant, Hsu, and
Tauchen 1999; Chacko and Viceira 2003; Durham 2006).

6The curvature effect might be important if option-implied volatilities with more than one year to maturity were
included.
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is nearly flat on average. Simply put, long-dated skewness is as low (negative) as short-dated

skewness.

The above empirical pattern is rather challenging from a modeling perspective. It cannot be

explained by jumps in returns because the effect of the jumps on skewness dissipates quickly due

to the central limit theorem; recall that jumps contribute to multihorizon return distributions in an

independent fashion. A short-run volatility factor is also hard to reconcile with this feature because

its weak persistence dissipates the leverage effect quickly as a horizon increases.7 I find, on the

other hand, that a long-run volatility factor can generate a significant amount of negative skewness

at long horizons because its strong persistence delays the dissipation of the leverage effect along

an increasing horizon.

In fact, the flat term structure of skewness is related to the finding of Carr and Wu (2003) that

slopes of volatility smirks are almost the same across different times to maturity when a standard

measure of moneyness is used. Similarly, I also look at slopes of volatility smirks with different

times to maturity but with a new measure of moneyness:

d =
log(K/Ft,τ)

IVt,τ
√

τ
, (1.5)

where IVt,τ and Ft,τ refer to the model-free implied volatility and the implied future price at time t

with time to maturity τ, respectively.8 Notice that the moneyness is divided by the corresponding

implied volatility in order to account for time-variation in volatility during a long sample period;

unlike this moneyness measure, the moneyness measure of Carr and Wu (2003) does not account

for time-varying volatility by using the all-time average of Black-Scholes implied volatilities in the

denominator. An OTM put (call) option with a moneyness d will become exactly-at-the-money if

the log future price decreases (increases) by d times the corresponding implied volatility.

Now, I obtain the average volatility surface over d and τ by using a kernel regression with

7For example, in the affine stochastic volatility model, the absolute value of skewness is proportional to the recip-
rocal of κ

√
τ as τ goes to infinity, where κ is the persistence of volatility.

8Ft,τ is calculated from the put-call parity relation using at-the-money call and put options for a given time to
maturity (see Ait-Sahalia and Lo 1998; Ait-Sahalia and Lo 2000).
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a Gaussian kernel and a manually chosen bandwidth. The bottom panel of Figure 1.2 shows an

array of volatility smirks that are generated by slicing the volatility surface along 1, 3, 6, 9, and 12

months to maturity. Interestingly, the volatility smirks with different times to maturity not only are

parallel, but also collapse into a single line. As is mentioned previously, this similarity of volatility

smirks is related to the fact that the term structure of skewness is nearly flat on average.

1.2.3 Stochastic skewness

While the preceding subsection 1.2.2 concerns the average term structure of skewness, this

subsection discusses variation over time in skewness. The options data show that implied skew-

ness is time-varying like implied volatility. The variation in skewness is potentially affected by a

combination of multiple stochastic factors. Durham and Park (2010) find that stochastic volatil-

ity of volatility and a stochastic leverage effect are both associated with time-variation in implied

skewness. Moreover, jumps are probably related to variation in implied skewness (at least at short

horizons). Carr and Wu (2007) propose a stochastic skew model for foreign exchange rates with

positive and negative jumps driven by independent Levy processes.

While most of the literature on option pricing focuses on modeling stochastic volatility,

the stochastic volatility is unlikely to address stochastic skewness. The top panel of Figure 1.3

presents a scatter plot of implied skewness against implied volatility. The plot suggests that implied

volatility is weakly related to implied skewness. The bottom panel of Figure 1.3 displays a scatter

plot of changes in implied skewness against changes in implied volatility. The plot shows that there

is little correlation between changes in volatility and changes in skewness. In sum, the dynamics

of skewness are different from those of volatility, so that modeling stochastic volatility appears to

have little chance of success in fully capturing stochastic skewness.

What causes skewness to change? The answer to this question will guide a further extension

of the existing two-factor volatility models. Recall that while I force the models to fit the term

structure of implied volatility, I do not use any information on skewness in estimation. As a result,

option pricing errors should be associated with stochastic skewness. By analyzing option pricing
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errors, I can identify skewness factors that are responsible for variation in implied skewness.9

How many skewness factors are necessary to describe the term structure of implied skew-

ness? To see this, I calculate constant-maturity implied skewness for each of 1, 2, 3, 6, 9, and

12 months to maturity and run a principal component analysis of the implied skewness. Table 1.2

shows that the level effect (first principal component) and the slope effect (second principal com-

ponent) can explain 77% and 13% of variation in skewness, respectively. Even the curvature effect

(third principal component) is not trivial, explaining 4.6% of variation in skewness. Clearly, there

are multiple skewness factors that drive the evolution of the term structure of skewness.

1.3 Models

The modeling framework in this paper is based on a log stochastic volatility model with

short-run and long-run volatility factors. Each of the two volatility factors is assumed to follow the

Ornstein-Uhlenbeck process. The short-run (long-run) factor determines short-term (long-term)

trends and fluctuations in volatility. This form is sometimes referred to as the volatility component

model (e.g., Lu and Zhu 2010). An alternative approach to constructing a multifactor volatility

model is the stochastic long-run mean model in which the long-run mean of volatility is random-

ized (e.g., Duffie, Pan, and Singleton 2000; Egloff, Leippold, and Wu 2010; Christoffersen, Jacobs,

Ornthanalai, and Wang 2008). These two forms of multifactor volatility models are equivalent

within the log volatility framework.10

A large body of literature documents the significance of jumps in returns and volatilities (e.g.,

Eraker, Johannes, and Polson 2003; Bates 2000; Pan 2002; Andersen, Benzoni, and Lund 2002).

In particular, the addition of jumps helps to generate a significant amount of negative skewness

at a very short horizon by making conditional distributions non-normal. Accordingly, I augment

the underlying two-factor log volatility model by incorporating jumps in returns and the short-run

factor.
9I use the term skewness factor to refer to the stochastic factor associated with time-variation in option-implied

skewness.
10This is not the case for the affine and CEV frameworks.
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Given a probability space (Ω,F ,P) and information filtration {Ft}, the ex-dividend log stock

price, yt , is assumed to evolve as

dyt =
[
µ− 1

2
ht −λµ1J

]
dt +

√
ht

[
dW1t + J1tdNt

]
dvt =−κvvtdt +σv

[
dW2t + J2tdNt −λµ2Jdt

]
dut =−κuutdt +σudW3t

ht = exp(α+ vt +ut),

(1.6)

where vt and ut indicate the short-run and long-run volatility factors, respectively; ht is a volatility

state; µ means the drift rate of the stock price; W1t , W2t , and W3t are the standard Brownian motions

under the P-measure, with corr(W1t ,W2t) = ρv, corr(W1t ,W3t) = ρu, and corr(W2t ,W3t) = 0.

Notice that the two volatility factors have their own persistence κv and κu, their own volatility

of volatility σv and σu, and their own leverage effects ρv and ρu. While both vt and ut are set to

have the long-run mean of zero under the P-measure, the long-run mean of ht is captured through

α under the P-measure.

The jump structures are modeled as low-frequency compound Poisson processes. I posit that

jumps in yt and vt are contemporaneously driven by a common Poisson process Nt with intensity

λ. (J1t ,J2t) are bivariate normal with J1t ∼ N
(
µ1J,σ

2
1J
)
, J2t ∼ N

(
µ2J,σ

2
2J
)
, and corr(J1t ,J2t) = ρJ .

Notice that the final jump distribution in yt is
√

htJ1t . Durham and Park (2010) find that this form

of jumps fits the data better than the identically distributed jump structure used by Bakshi, Cao,

and Chen (1997), Bates (2000), and Broadie, Chernov, and Johannes (2007). The volatility-scaled

jump form offers more realistic dynamics by allowing for larger (smaller) jumps in higher (lower)

volatility states. The terms λµ1J and λµ2J are jump compensators for yt and vt , respectively, where

µ1Jt = Et(e
√

htJ1t −1) is time-varying.

There are several differences between two-factor affine and log volatility models from a

modeling perspective. The two-factor affine model is able to produce a stochastic volatility of

volatility and a stochastic leverage effect, determined by relative levels of the two volatility factors.

In contrast, the two-factor log volatility model has a constant volatility of volatility and a constant



15

leverage effect. To see this, let me define volatility of volatility as the variance of a rate of changes

in volatility per a unit time, var(dht/ht)/dt, and the leverage effect as the correlation between

changes in yt and ht , corr(dyt ,dht). Using Ito’s lemma, these variables are readily derived in the

case without jumps
var(dht/ht)

dt
=
(

σ
2
v +σ

2
u

)
corr(dyt ,dht) =

ρvσv +ρuσu

σ2
v +σ2

u
.

(1.7)

While the observed time series data are driven by the above model under the P-measure,

options are priced under a risk-neutral Q-measure. Under the Q-measure, the stock price dynamics

take the following form:

dyt =
[
rt −qt −

1
2

ht −λµQ1J

]
dt +

√
ht

[
dWQ

1t + JQ1t dNt

]
dvt = (−κvvt −ηv)dt +σv

[
dWQ

2t + J2tdNt −λµ2Jdt
]

dut = (−κuut −ηu)dt +σudWQ
3t

ht = exp(α+ vt +ut),

(1.8)

where rt and qt denote the risk-free rate and the dividend rate, respectively. WQ
1t , WQ

2t , and WQ
3t are

the standard Brownian motions under the Q-measure, with the same correlations as those under

the P-measure.

Any discrepancy in the stock price dynamics between the P- and Q-measures is attributed to

risk premiums. I account for two types of risk premiums: variance and jump risk premiums. The

variance risk premium is captured through the parameters ηv and ηu in equation (1.8). Based on

the intuition of intertemporal asset pricing framework, the existing papers often assume a linear

function of the volatility state as a specification of the variance risk premium in the affine stochastic

volatility models (e.g., Heston 1993; Bollerslev, Gibson, and Zhou 2011). However, the form of a

variance risk premium is not unambiguously defined because the market is incomplete under the

existence of a stochastic volatility factor; there can be an infinite number of equivalent martingale

measures in this case. My empirical tests show that the variance risk premium form adopted in



16

this paper fits the data better than a linear function of the volatility state. I also consider a jump

risk premium by assuming JQ1t 6= J1t . Specifically, following the approach of Pan (2002), I posit

that the whole jump risk premium is absorbed through the different mean jump sizes between the

P- and Q-measures. That is, JQ1t is assumed to follow a normal distribution with mean µ∗1J 6= µ1J

and variance σ1J . Nt and J2t are assumed to be identical between the P- and Q-measures. The

correlation between JQ1t and J2t is the same as that between J1t and J2t .

Unfortunately, I cannot estimate the variance and jump risk premiums simultaneously. It is

hard to disentangle the two types of risk premiums when the models are estimated by using the

information on implied volatilities only. A difficulty of this kind is noted by Pan (2002). In fact, the

jump risk premium is more likely to be implied by the prices of deep OTM put options or implied

skewness (rather than the term structure of implied volatility). Through an array of empirical tests,

I seek to decide which of the risk premiums to include in my applications. I consider the jump risk

premium in the one-factor volatility models, as in Pan (2002), while I account for the variance risk

premium in the two-factor volatility models.11

Finally, in my empirical work, I will apply an Euler scheme approximation to the above

continuous-time model. For the physical model (and analogously for the risk-neutral model), the

approximation is given by

yt+1 = yt +µ− 1
2

ht −λµ1Jt +
√

ht

[
ε1,t+1 +

Nt+1

∑
j>Nt

ξ1 j

]

vt+1 = vt −κvvt +σv

[
ε2,t+1 +

Nt+1

∑
j>Nt

ξ2 j−λµ2J

]

ut+1 = ut −κuut +σuε3,t+1,

(1.9)

where ε1,t+1, ε2,t+1, and ε3,t+1 are standard normals with corr(ε1,t+1,ε2,t+1)= ρv, corr(ε1,t+1,ε3,t+1)=

ρu, and corr(ε2,t+1,ε3,t+1)= 0. ξ1 j and ξ2 j have the same distribution as the jumps in the continuous-

time model as well. For computational purposes, I limit the maximum number of jumps occurring

11I find that accounting for the variance risk premium is more important in the two-factor volatility models than
accounting for the jump risk premium.
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on a single trading day to three. Given my estimate for jump intensity, this constraint does not

affect the empirical results.

The model described above nests a range of model specifications with different parsimonies,

including the Black-Scholes model. Model specifications used in this paper are described in Table

1.3.

1.4 Estimation Strategy

Unlike the GARCH option pricing models (e.g., Duan 1995; Heston and Nandi 2000), op-

tion pricing models with stochastic volatility pose a great deal of econometric challenge because

volatility is unobservable. To address this issue, the existing papers in the option pricing litera-

ture often apply two-step procedures (e.g., Huang and Wu 2004; Broadie, Chernov, and Johannes

2007; Christoffersen, Heston, and Jacobs 2009). The idea of the two-step procedures is to estimate

volatility factor(s) on each day using the day’s cross-sectional option prices in the first step and to

minimize the sum of option pricing errors over structural parameters by using the volatility fac-

tor(s) obtained in the first step. However, the methods are computationally unfeasible for the log

volatility framework because there is no closed-form option pricing expression. While adopting a

two-step procedure, I need to make a compromise. In the first step, I back out the short-run and

long-run volatility factors on each day such that the models fit a pair of option-implied volatilities

instead of a full cross-section of option prices; and in the second step, optimize the log likelihood

using the returns and volatilities obtained in the first step. A detailed description of each step of

the estimation follows.

1.4.1 Extracting the volatility factors

I estimate the physical and risk-neutral dynamics simultaneously by using the joint time

series of returns and option-implied volatilities, building on the work of Chernov and Ghysels

(2000), Pan (2002), and Ait-Sahalia and Kimmel (2007). The joint estimation is supported by

empirical evidence that option-implied volatility is more informative than realized (or historical)
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volatility in forecasting a future volatility of an underlying asset (e.g., Blair, Poon, and Taylor 2001;

Christensen and Prabhala 1998; Fleming 1998; Jiang and Tian 2005). Besides, the physical and

risk-neutral models should, in theory, be linked by sharing common parameters such as volatility

of volatility and the leverage effect. In what follows, I provide a detailed description of this step

for the two-factor volatility models.

The estimation starts by pinning down the two volatility factors on each day by matching two

option-implied volatilities to their model-implied counterparts. Specifically, I use the time series

of one- and three-month implied volatilities. For now, the problem at hand is interpreted as solving

a system of two equations:

Find (vt ,ut) such that IVt,τ1 = IVM
t,τ1

and IVt,τ2 = IVM
t,τ2

, t = 1, . . . ,N, (1.10)

where IVt,τ and IVM
t,τ refer to the option-implied and model-implied volatilities, respectively.

While IVt,τ can be computed via the approach of Carr and Wu (2009), IVM
t,τ can be obtained

by integrating the quadratic variation of the log stock price, given a risk-neutral model and two

volatility factors.12 For the models with jumps in returns, for example, I get

IVM
t,τ =

√
1
τ

EQ
t

{∫ t+τ

t
hω

[
1+λ(µ2

1J +σ2
1J)
]

dω

}
.

The expectation in the above expression can be computed by means of Monte Carlo simulations.

For the models with jumps in returns, for example, I get

IVM
t,τ =

√√√√ 1
τS

S

∑
s=1

{∫ t+τ

t
h(s)ω

[
1+λ(µ2

1J +σ2
1J)
]

dω

}
, (1.11)

where for each s, h(s)ω is obtained by simulating a path from the risk-neutral analog of equation

(1.9) for t < τ≤ t + τ, and S denotes the number of simulation paths.

12In the two-factor affine or CEV models, IVM
t,τ can be expressed as a bilinear function of the two volatility states,

so that equation (1.10) can be easily solved. However, this is not the case for the two-factor log volatility model.
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Given the observed IVt,τ and the simulated IVM
t,τ , it is possible, in principle, to solve equation

(1.10) for vt and ut . However, it is still computationally too intensive to repeat the work on each

date in the entire sample. I address this obstacle by introducing a computationally manageable

algorithm. Equation (1.11) implies that there exists the mapping Γ = (γ1,γ2) : R2→ R2 from the

volatility factors to the log implied volatilities:

Γ : (vt ,ut)→ (logIVM
t,τ1

, logIVM
t,τ2

).

Γ relies on a set of parameters θ and a model M , although θ and M are suppressed from the

notation of Γ. As long as the mapping is one-to-one, there exists the implicit inverse mapping

Γ−1 = (γ−1
1 ,γ−1

2 ) : R2→ R2 from the log implied volatilities to the volatility factors:

Γ
−1 : (logIVM

t,τ1
, logIVM

t,τ2
)→ (vt ,ut).

The idea of a computationally efficient technique is to approximate the inverse mapping Γ−1

via a curve fitting technique. In particular, I posit that each of γ
−1
1 and γ

−1
2 is a bicubic polynomial

function of (logIVM
t,τ1

, logIVM
t,τ2

). The detailed procedure is as follows.

Grid generation: It starts by generating a two-dimensional grid over vt and ut . Let {v̂g, ûg}G
g=1

be the grid, where G is the number of grid points and I use hats to indicate that these are

grid points rather than data.

Simulation: For each g = 1, . . . ,G, then evaluate (log ÎV
M
g,τ1

, log ÎV
M
g,τ2

) using Monte Carlo meth-

ods as described above. Now I have {log ÎV
M
g,τ1

, log ÎV
M
g,τ2
}G

g=1, which correspond to

{v̂g, ûg}G
g=1. I use these collections of pairs as the basis for finding the approximate inverse

mapping Γ̂−1 = (̂γ−1
1 , γ̂−1

2 ).

Regression: Find γ̂
−1
1 by running a bicubic polynomial regression of {v̂g}G

g=1 on {log ÎV
M
g,τ1

, log ÎV
M
g,τ2
}G

g=1.

Repeat a similar procedure to find γ̂
−1
2 .
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In principle, there are many curve fitting schemes one could use. However, since I am using

a gradient in a numerical optimization, it is best if the scheme results in smooth derivatives. I have

empirically found that simply using bicubic polynomials works well; approximation errors are

reasonably small. Once I have obtained Γ̂−1, the hard work is done. Now, solving Equation (1.10)

boils down to evaluating the approximating mapping Γ̂−1 at a pair of option-implied volatilities

(logIVt,τ1, logIVt,τ2). Repeat this for each t = 1, . . . ,N. The important thing to notice here is that

computing Γ̂−1, which is the costly step, needs to be done only once (for each set of candidate

parameter values).

1.4.2 Maximum likelihood estimation

Having backed out the volatility factors {vt ,ut}N
t=1, we can apply an implied-state maximum

likelihood estimation by treating those factors as observable. It is straightforward to compute the

log likelihood for a set of parameters θ:

logL({yt , IVt,τ1 , IVt,τ2}N
t=1;θ)≈

N−1

∑
t=1

[
log p(yt+1,vt+1,ut+1|yt ,vt ,ut)+ log |Jt+1|

]
, (1.12)

where |Jt+1| is the determinant of the Jacobian matrix Jt+1 =
∂(vt+1,ut+1)

∂(IVt+1,τ1 ,IVt+1,τ2)
and N is the number

of business days. I make use of the approximating mapping Γ̂−1 when calculating Jt+1. Since I

allow for the possibility of multiple jumps a day, the local likelihood p(yt+1,vt+1,ut+1|yt ,vt ,ut)

can be computed by applying the law of total probability over the number of potential jumps:

p(yt+1,vt+1,ut+1|yt ,vt ,ut) =
∞

∑
i=0

p(yt+1,vt+1,ut+1|yt ,vt ,ut ,∆Nt+1 = i)p(∆Nt+1 = i), (1.13)

where ∆Nt+1 = Nt+1−Nt . In practice, I limit the maximum number of jumps on a single trading

day to three. The term p(∆Nt+1 = i) is given by the Poisson density function with intensity λ.

The term p(yt+1,vt+1,ut+1|yt ,vt ,ut ,∆Nt+1 = i) is trivariate normal with mean and variance given

by summing the means and variances of the diffusive and jump parts of the process, according to

equation (1.9).
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Parameter estimates, θ̂, are obtained by using a BHHH optimizer (Berndt, Hall, Hall, and

Hausman 1974),

θ̂ = argmaxlogL({yt , IVt,τ1, IVt,τ2}
N
t=1;θ).

1.5 Data

The application uses daily S&P 500 index options data from January 1, 1993 through De-

cember 31, 2008 (N = 4029). These data were obtained directly from the CBOE. The CBOE

option market closes 15 minutes later than the S&P 500 index market. To address the issue of

nonsynchronous trading hours, I make use of the spot and future prices computed using the put-

call parity based on closing prices for at-the-money options (see, e.g., Ait-Sahalia and Lo 1998;

Ait-Sahalia and Lo 2000). Options are European, so there is no issue regarding early exercise pre-

mium. Option prices are taken from the bid-ask midpoint on each day’s close of the option market.

Options with zero bid/ask prices or where the bid-ask midpoint is less than 0.125 are discarded. I

also eliminate options violating the usual lower bound constraints. That is, I require

C(t,τ,K)≥max(0,St,τ exp(−qtτ)−K exp(−rtτ))

P(t,τ,K)≥max(0,K exp(−rtτ)−St,τ exp(−qtτ)),

where C(t,τ,K) and P(t,τ,K) are the time t prices of call and put options with time to maturity τ

and strike price K, St,τ is the time t implied spot price of the S&P 500 index with time to maturity

τ, qt is the dividend payout rate, and rt is the risk-free rate. Treasury bill rates (obtained from the

Federal Reserve website) are interpolated to match options’ times-to-maturity as a proxy for the

risk-free rate. Dividend rates are obtained from Standard and Poor’s information bulletin.

When extracting model-free volatility and skewness, I discard options with terms-to-maturity

of less than eight calendar days, as in the calculation of the VIX index. Jiang and Tian (2007) report

the possibility of large truncation and discretization errors in the VIX index. To reduce such errors,

I use the scheme of interpolating/extrapolating the Black Scholes implied volatilities on a fine grid
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across moneyness, similar to that of Carr and Wu (2009). Additionally, I require that valid prices

exist for at least one (two) observation(s) for each of the OTM call and put options in calculating

the implied volatility (skewness). Figure 1.4 plots the time series of returns, implied volatility, the

term premium of implied volatility, and implied skewness.

Option prices can be decomposed into intrinsic and time values. Only the time value is

affected by the (mis-)specification of option pricing models, so that I use OTM call and put options

in testing option pricing performance. Besides, OTM options are more liquid than in-the-money

options. However, extremely deep OTM options may not contain accurate pricing information

because they are not actively traded and their prices are too small relative to bid-ask spreads. For

these reasons, I consider OTM options with moneyness ranging between −3.0 < d < 1.5, where d

is defined in Equation (1.5). This restraint eliminates 13% of OTM put options and 7% of OTM call

options. Although it seems tight, the constraint is less strict than those used by Dumas, Fleming,

and Whaley (1998) and Huang and Wu (2004). I require that term to maturity be between 10

calendar days and one year. Table 1.4 presents the summary statistics of options across different

maturity bins. I split the sample into short-term (less than two months), mid-term (two to six

months), and long-term (six to twelve months) options along the maturity dimension.

When performing a pricing error analysis, I make use of the high-frequency-based realized

volatility and jump variation. The high-frequency data were obtained from TickData.com. Follow-

ing Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys

(2003), and Barndorff-Nielsen and Shephard (2002), I obtain daily realized volatility by summing

the squared intraday returns over each day,

RV(d)
t ≡

1/∆

∑
j=1

(
yt−1+ j∆− yt−1+( j−1)∆

)2

where ∆ is the sampling interval for the intraday data (I use five minute intervals). Monthly realized
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volatility is obtained by summing the daily realized volatilities over the previous month,

RVt ≡
21

∑
i=0

RV(d)
t−i.

Following Carr and Wu (2009), I define the variance risk premium as the log difference

between monthly realized variance and option-implied variance,

VRPt ≡ log
(
RVt/VIX2

t
)
,

where VIXt is the VIX index, divided by
√

12 to get a monthly volatility measure comparable to

RVt . I use the log difference because I find that it provides a better measure than the difference in

levels.

A measure of jump risk is obtained by using the approach of Barndorff-Nielsen and Shephard

(2004). The bipower variation is given by

BV(d)
t ≡

π

2

1/∆

∑
j=2

(
yt−1+ j∆− yt−1+( j−1)∆

)(
yt−1+( j−1)∆− yt−1+( j−2)∆

)
.

The daily jump variation is defined by subtracting the daily bipower variation from the daily real-

ized volatility,

JV(d)
t ≡max(RV(d)

t −BV(d)
t ,0).

And, finally, the monthly jump variation is obtained by summing the daily jump variations over

the previous month,

JVt ≡
21

∑
i=0

JV(d)
t−i.

I typically refer to RVt and JVt as the realized volatility and jump variation hereafter (omit-

ting the “monthly" specifier). Note that these variables are defined by using information available

at time t.
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1.6 Empirical results

Subsection 1.6.1 tests the models’ ability to fit the term structure of model-free implied

volatility. Subsection 1.6.2 investigates whether the models are capable of matching the term

structure of implied skewness. These two preceding results imply option pricing performance,

which is discussed in subsection 1.6.3. Lastly, in subsection 1.6.4, I analyze option pricing errors

to identify the skewness factors implicit in option prices.

1.6.1 Term structure of volatility

While the two-factor volatility models are forced to fit two implied volatilities, more than

two implied volatilities are observable on each day. The S&P 500 index option maturities have

three near-term months followed by three additional months based on the March quarterly cycle.

The daily average number of implied volatilities with less than one year to maturity is 5.83. Thus,

the options market will show various movements in the term structure of volatility according to

the economic nature of an arriving news event. This subsection examines whether the two-factor

volatility models in question are good enough to capture the entire term structure of implied volatil-

ity.

I begin by investigating whether the two-factor (SV2) model provides flexibility in fitting the

term structure of implied volatility. Figure 1.5 plots the term structure of model-implied volatility

computed by means of Monte Carlo simulations, with some hypothetical values of vt and ut . The

top panel is a representative case in which ht is low (vt and ut are set in such a way that ht is

10%). Notice that the SV2 model allows for the various term structures of volatility, depending

on a combination of vt and ut . The figure shows that when ht is low, the SV2 model is capable of

generating both the increasing and decreasing term structures, while the one-factor (JYV1) model

can generate only the increasing term structure. Similarly, the bottom panel is a representative

case in which ht is high (vt and ut are set in such a way that ht is 30%). The SV2 model is able

to produce both the increasing and decreasing term structures when ht is high, as opposed to the
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one-factor (JYV1) model.

Figure 1.6 exhibits actual fits in the term structure of volatility for two chosen days. The top

panel is a case in which the term structure is sharply declining, even though short-term implied

volatility is low. On the other hand, the bottom panel is a case in which the term structure is

rapidly increasing, even though short-term implied volatility is high. The one-factor volatility

models are, of course, unable to fit the data for these days. The figure exhibits that the SV2 (solid

line), JY2 (dashed line), and JYV2 (dash-dot line) models are all good at capturing the observed

term structures (marked cross).

Now I introduce the two metrics for evaluating the models’ fit in the term structure of implied

volatility:

IV-RMSE =

√
1

∑
N
t=1 NVt

N

∑
t=1

NVt

∑
τ=1

(
IVM

t,τ − IVt,τ

)2

RIV-RMSE = 100×

√√√√ 1

∑
N
t=1 NVt

N

∑
t=1

NVt

∑
τ=1

(
IVM

t,τ − IVt,τ

IVt,τ

)2

,

(1.14)

where N stands for the total number of business days and NVt is the number of model-free implied

volatilities at time t with less than one year to maturity. While IV-RMSE measures the root mean

squared fitting errors in implied volatility, RIV-RMSE does this in a relative sense by accounting

for levels of implied volatility.

The top panel of Table 1.6 reports the aggregate results of IV-RMSE and RIV-RMSE across

the different models. First of all, the SV1 model badly mis-fits the term structure of implied

volatility, with a IV-RMSE of 34.73% and a RIV-RMSE of 176.25%, because it generates the

unrealistically increasing term structure of volatility. This undesirable result has also been found

by Jones (2003), Pan (2002), and Chourdakis and Dotsis (2009), among others. This problem can

be addressed by accounting for jumps in returns, as argued by Pan (2002). As in Pan’s result, the

JV1 model markedly improves the fitting errors in implied volatility over the SV1 model. In the

JY1 model, IV-RMSE and RIV-RMSE are 2.73% and 15.37%, respectively. The JYV1 model is

able to make a little bit more of improvement over the JV1 model. In the JYV1 model, IV-RMSE

and RIV-RMSE are 2.48% and 13.58%, respectively.
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All two-factor volatility models offer substantial improvements over any of the one-factor

volatility models. In the two-factor volatility models, IV-RMSEs fall between 0.81% and 1.19%,

depending on whether jumps in returns and volatility are included. The within-two-factor rankings

are SV2 > JY2 >JYV2. The best performing SV2 model gives a IV-RMSE of 0.81% and a RIV-

RMSE of 3.46%. This size of errors should not be interpreted as disappointing, since I attempt

to fit a long panel dataset of 16 years containing various volatility ups and downs with a single

parameterization.

The bottom panel of Table 1.6 tabulates the disaggregate results of IV-RMSE and RIV-RMSE

along varying levels of volatility. In the table, I define the low, mid, and high volatilities as days

when the day’s average implied volatility is less than 0.25 quantile, between 0.25 and 0.75 quantile,

and larger than 0.75 quantile. IV-RMSE and RIV-RMSE are both large in periods of high volatility.

There has been debate on the appropriate number of volatility factors to describe option

prices. The related literature includes Li and Zhang (2010), Lu and Zhu (2010), and Bondarenko

(2007), among others. While the introduction of a third volatility factor can potentially reduce

fitting errors in implied volatility, my empirical results imply that the improvement would not be

large. Besides, the benefit of a third volatility factor comes at the cost of greater econometric

complexity. Accordingly, I view two-factor volatility models as a reasonable compromise that

attains both econometric convenience and tolerable accuracy.

1.6.2 Term structure of skewness

Section 1.2.2 shows that the term structure of skewness implicit in the option market is

nearly flat on average. This stylized fact is associated with the similarity of volatility smirks. This

subsection discusses whether the two-factor volatility models are capable of matching the option-

implied skewness.

As far as a diffusive volatility process is concerned, three parameters are central for gen-

erating negative skewness: the leverage effect, the persistence of volatility, and the volatility of

volatility. It is crucial to understand the role played by each of these parameters in generating
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negative skewness.

Leverage effect: The leverage effect is widely recognized as one of the main mechanisms that are

able to generate left-skewed return distributions. Let me clarify how the leverage effect is

capable of generating such negative skewness in the case of discrete-time models. Under

the existence of the leverage effect, the volatility of tomorrow’s return depends on the

realization of today’s return. For example, if today’s realized return is negative (positive),

tomorrow’s return will have higher (lower) volatility than today’s return. This asymmetric

response of tomorrow’s volatility to today’s return generates left-skewed return distribu-

tions over multiple horizons (even though the one-step return distribution is normal). With

everything else equal, a stronger leverage effect will generate more left-skewed return dis-

tributions than a weaker one. For example, it is possible to derive an analytical form of

skewness in the affine stochastic volatility model (see Das and Sundaram 1999). In this

case, the skewness is proportional to the leverage effect.

Persistence of volatility: While the leverage effect generates negative skewness, it is not the only

important variable to do this. Notice that the persistence of volatility determines how

long the asymmetric response will hold up along an increasing horizon. If a volatility

factor is weakly persistent, the weak persistence will dissipate the leverage effect (and

thus the generated skewness) quickly along an increasing horizon. In contrast, a strongly

persistent volatility factor delays the dissipation of the leverage effect along an increasing

horizon, allowing for a substantial amount of negative skewness until a longer horizon.

For example, in the affine stochastic volatility model, the absolute value of the skewness

is proportional to the reciprocal of the persistence, as time to maturity approaches infinity.

Volatility of volatility: Little is known about how volatility of volatility is related to skewness.

Volatility of volatility cannot generate negative skewness in the absence of a leverage ef-

fect but is a key variable in determining the degree of negative skewness in the presence of

a leverage effect. Given a level of the leverage effect, a high level of volatility of volatility
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will generate more left-skewed return distributions than a low one. For example, in the

affine stochastic volatility model, the skewness is (negatively) proportional to volatility of

volatility.

Interestingly, short-run and long-run volatility factors play very different roles in generating

the term structure of skewness. Table 1.5 shows the parameter estimates. Note that there are

large differences in the persistence of volatility and volatility of volatility across the two volatility

factors. For example, in the SV2 model, the short-run factor has κv = 0.0938 and σv = 0.264, while

the long-run factor has κu = 0.004 and σu = 0.075. The values of κv and κu correspond to half-lives

of 7.4 and 173 business days, respectively. The volatility of the short-run factor, σv, is 3.5 times

larger than that of the long-run factor, σu. Because of these differences, the two volatility factors

have opposing effects on skewness. The short-run factor can generate a large amount of negative

skewness at short horizons thanks to the high volatility of volatility, but the leverage effect (and

thus the skewness) dissipates quickly along an increasing horizon due to the weak persistence.

In contrast, the long-run factor can generate only a small amount of negative skewness at short

horizons due to the low volatility of volatility, but the leverage effect (and thus the skewness) holds

up until a longer horizon due to the strong persistence.

To clarify the above, I look at the stand-alone effect of each volatility factor on skewness

by simulating the term structures of skewness in three different ways; (i) simulate the stand-alone

effect of the short-run factor on skewness with the long-run factor set at zero; (ii) simulate the

stand-alone effect of the long-run factor on skewness with the short-run factor set at zero; (iii) sim-

ulate the combined effect of the both factors on skewness.13 Figure 1.7 shows the term structures

of the simulated skewness for the SV2 model. The short-run-only case (solid line) shows that the

short-run factor is capable of generating a large amount of negative skewness at short horizons, but

the skewness begins to disappear after the one-month horizon. In contrast, the long-run-only case

(dashed line) shows that the long-run factor generates only a small amount of negative skewness at

13A simulation of this kind is feasible because I model the short-run and long-run factors as pure fluctuations around
zero (under the P-measure).
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short horizons, but the skewness continues to decline with an increasing horizon (at least until the

one-year horizon). The dash-dot line shows the combined effect of the two volatility factors.

While it is possible to compute the root mean squared fitting errors in skewness, I find it

more informative to compare the average term structure of option-implied skewness to its model-

implied counterpart. The average term structure of option-implied skewness is obtained by the

kernel regression as shown in Figure 1.2. To compute the model-implied counterpart, I simulate

the term structure of skewness by Monte Carlo methods on each day and take the average of those

term structures over the entire sample period. The top panel of Figure 1.8 shows that all two-factor

volatility models produce flat term structures much like those seen in the option market. The two

volatility factors play different roles in generating flat patterns much like those observed in the data.

The short-run factor is dominant in generating short-term skewness, while the long-run factor is

dominant in generating long-term skewness.

However, all two-factor volatility models fall short of matching the observed term structure

of skewness precisely. This mismatch will yield mispricings of OTM options, especially under-

pricings of OTM puts and overpricings of OTM calls. In fact, this problem is not unique to this

paper but has been widely reported in the existing option pricing literature. For example, Bakshi,

Cao, and Chen (1997) and Christoffersen, Jacobs, and Mimouni (2010) exhibit similar problems,

even though they estimate the models by minimizing option pricing errors. I now compare the

proposed two-factor volatility models to the two-factor GARCH model of Christoffersen, Jacobs,

Ornthanalai, and Wang (2008) (hereafter, GARCH2).14 The physical GARCH2 model is estimated

as

yt+1 = yt + r−d +1.32ht+1 +
√

ht+1zt+1

ht+1 = qt+1 +0.728(ht −qt)+8.26×10−7v1,t

qt+1 = 8.95×10−7 +0.990qt +2.64×10−6v2,t ,

(1.15)

14I re-estimate the GARCH2 model by using the time series of returns over the period from July 1962 to December
2008, as Christoffersen, Jacobs, Ornthanalai, and Wang (2008) use the period from July 1962 to December 2001 in
their estimation.
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where v1,t = (z2
t −1)−2×748

√
htzt and v2,t = (z2

t −1)−2×69.7
√

htzt . In the GARCH2 model,

qt governs the (time-varying) long-run mean of volatility. The top panel of Figure 1.8 shows the

average term structure of skewness generated by the risk-neutral GARCH2 model. Notice that all

of the proposed two-factor volatility models do much better in fitting the term structure of skewness

than the GARCH2 model, even though, like the GARCH2 model, they do not use any information

on skewness in estimation.

It is rather puzzling that all models under consideration have trouble matching option-implied

skewness. This problem is related to the empirical results of Bakshi, Cao, and Chen (1997) and

Bates (2000) that the volatility of volatility and the absolute value of the leverage effect implied

from option prices are unrealistically high relative to their time-series-based counterparts. Since

the maximum likelihood estimation used in this paper optimizes the models’ one-step forecasting

ability, my estimates for the volatility of volatility and the absolute value of the leverage effect may

not be large enough to rationalize the levels of skewness implicit in option prices.

One may think that this predicament can be solved by accounting for a jump risk premium

(e.g., µ∗1J 6= µ1J). While a jump risk premium might be able to correct for the mis-fitting in short-

term skewness, the mis-fitting in long-term skewness would remain as a puzzle because the jump

effect on skewness dissipates quickly. To confirm this, I estimate the two-factor volatility models

with a jump risk premium only (although not reported in this paper) and find that most of the jump

effect on skewness disappears before the one-month horizon (at least in my application).

I now turn my analysis to the one-factor volatility models. The bottom panel of Figure 1.8

exhibits the average term structures of skewness for the one-factor volatility models. Unexpect-

edly, the term structures continue to decline with an increasing horizon. This feature stands out

most for the SV1 model. This seemingly odd result arises because the joint estimation of the phys-

ical and risk-neutral one-factor volatility models produces a strong persistence rather than a weak

persistence. In Table 1.5, the parameter κv is estimated as 0.0065 (SV1), 0.0086 (JY1), and 0.0081

(JYV1). These values correspond to half-lives of 107, 81, and 86 business days, respectively. This

empirical result is consistent with the previous finding that a strongly persistent volatility factor
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can generate more realistic levels of skewness at medium-to-long horizons.

In fact, other one-factor volatility models in the finance literature often produce a weak

persistence of volatility rather than a strong persistence. As an example, I re-estimate the GARCH

option pricing model of Heston and Nandi (2000) (hereafter, GARCH1) by using the time series

of returns over the period from July 1962 to December 2008. The physical GARCH1 model is

estimated as

yt+1 = yt + r−d +1.34ht+1 +
√

ht+1zt+1

ht+1 = w+0.890ht +3.32×10−6(zt −145
√

ht)
2,

(1.16)

where w is set at a small positive value to keep ht from being negative, as in Christoffersen, Ja-

cobs, Dorion, and Wang (2010). The half-life of ht is − log(2)
log(0.890+3.32×10−6×1452)

= 17 business days.

The weak persistence of the GARCH1 model makes the skewness decay rather quickly along an

increasing horizon, as is shown in the bottom panel of Figure 1.8.

The options data show that long-term skewness is as low as short-term skewness. While

a jump process and a short-run factor have difficulty fitting this pattern of the data, a long-run

volatility factor helps to generate more realistic levels of long-term skewness. Interestingly, the

importance of a long-run volatility factor is consistent with the well-known empirical finding that

stock returns have a long memory property (e.g., Ding, Granger, and Engle 1993; Bollerslev and

Mikkelsen 1996; Baillie 1996; Gallant, Hsu, and Tauchen 1999). Studying option pricing mod-

els with the long memory property would be a promising research direction, especially for those

who are interested in pricing long-term options including LEAPS (Long-term Equity AnticiPation

Securities).

1.6.3 Option pricing performance

This subsection examines option pricing performance across the different models. The ex-

isting papers often use relatively short sample periods due to computational burden or econometric

limitation. However, since a volatility surface varies over time, any empirical research on option
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pricing can be dependent on the sample period used. For example, the empirical results obtained

when a volatility smirk is steep may not be applicable to days when it is flat. In contrast, since my

empirical results are based on a large-scale dataset of options, they are relatively robust to sample-

specificity. Besides, the option pricing tests in this paper are effectively out-of-sample because I

use only one or two constant-maturity implied volatilities on each day in estimation.

I use the following three metrics for measuring option pricing performance:

BS-RMSE =

√√√√ 1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

(
σM

i −σBS
i )2

DL-RMSE =

√√√√ 1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

(
OM

i −Oi)2

FREQ =
1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

1OM
i >Oi

,

(1.17)

where σM
i and σBS

i refer to the modeled and observed Black-Scholes implied volatilities; OM
i and

Oi denote the modeled and observed option prices; and NOt indicates the number of options at

time t. BS-RMSE measures the root mean squared pricing errors in the Black-Scholes implied

volatilities, which should be distinguished from IV-RMSE in subsection 1.6.1. DL-RMSE mea-

sures the root mean squared pricing errors in dollar option prices. FREQ computes how often a

model overprices the observed option prices.

Table 1.7 reports option pricing performance across the different models. All of the two-

factor volatility models produce smaller option pricing errors than any of the one-factor volatility

models. For exposition, let me compare the best performing one-factor (JYV1) model to the best

performing two-factor (JYV2) model. The JYV1 model yields a BS-RMSE of 2.32% and a DL-

RMSE of $4.08, while the JYV2 model gives a BS-RMSE of 1.96% and a DL-RMSE of $2.95.

These numbers imply that the JYV2 model improves the JYV1 model by 15.5% in BS-RMSE

and 27.7% in DL-RMSE. The improvement is mainly due to the fact that the two-factor volatility

models better fit the term structure of implied volatility (see subsection 1.6.1). However, the im-

provement is smaller than I expected, because the one-factor volatility models (especially, the JY1
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and JYV1 models) can generate more realistic levels of skewness at medium-to-long horizons than

the two-factor volatility models (see Figure 1.8).

In the preceding subsection, I find that all two-factor volatility models generate higher skew-

ness than those observed in the option market. This undesirable result leads to underpricings of

OTM puts and overpricings of OTM calls. To confirm this, I look at the frequency of overpricings

and underpricings by using the metric FREQ. If FREQ is larger (smaller) than one-half, it means

that the model tends to overprice (underprice) options. The two-factor volatility models have

FREQs of 0.303-0.432 for OTM puts, implying that the models underprice the OTM puts more

often than not. In contrast, FREQs fall between 0.914 and 0.936 for OTM calls in the two-factor

volatility models, implying that the models overprice the OTM calls most of the time.

Now, let me compare the proposed two-factor volatility models to the competing GARCH2

model. The SV2 model gives a BS-RMSE of 2.18% and a DL-RMSE of $3.08, while the GARCH2

model gives a BS-RMSE of 6.44% and a DL-RMSE of $8.80. These numbers imply that the SV2

model outperforms the GARCH2 model by 66.2% in BS-RMSE and 65.0% in DL-RMSE. Of

course, it may not be fair to compare the SV2 model to the GARCH2 model because while the

former makes use of two implied volatilities in estimation, the latter does not. However, such a

difference is not the only reason for the huge improvement. The preceding subsection shows that

the two-factor volatility models do much better in fitting the term structure of skewness than the

GARCH2 model (see the top panel of Figure 1.8).

1.6.4 Pricing error analysis

The remaining issue is associated with stochastic skewness. The options data have time-

variation in skewness. It may be necessary to introduce a stochastic factor that is associated with

negative skewness.15 If a continuous diffusive process is important, one can think of randomizing

15An alternative approach to generating stochastic skewness is to adopt a two-factor affine or CEV model. Christof-
fersen, Jacobs, Ornthanalai, and Wang (2008) and Christoffersen, Heston, and Jacobs (2009) argue that the stochastic
correlation implied by the two-factor affine model helps to improve option pricing performance. However, the two-
factor volatility model would be imperfect in fitting the time-varying skewness because the dynamics of skewness are
fundamentally different from those of volatility (see subsection 1.2.3).
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the leverage effect or volatility of volatility. On the other hand, if a jump process is important, one

may randomize the jump-related parameters such as a mean jump size or jump intensity. However,

we do not know a priori which of these variables are associated with time-variation in skewness.

Accordingly, the goal of this subsection is to test the possibility of each of the variables as a

skewness factor.

The estimation strategy used in this paper makes it possible to identify skewness factors by

analyzing option pricing errors. While I force the models to fit the term structure of volatility, the

term structure of skewness remains unfit. As a result, a large fraction of option pricing errors occur

along the moneyness dimension, implying that those errors should be associated with time-varying

skewness factors. The filtered volatility of volatility, VOVt , is used as a proxy for stochastic

volatility of volatility, and the filtered leverage effect, LEVt , is used as a proxy for stochastic

leverage effect. These variables are obtained from Durham and Park (2010). I use the jump

variation, JVt , as a proxy for a jump-related parameter. Table 1.8 summarizes the theoretical

predictions of the skewness factors on option pricing errors. Bearing this table in mind, I run

regressions of the option pricing errors on the skewness factors:

BS-RMSEt = β0 +βVOV VOVt +βLEVLEVt +βJV logJVt

+βRV logRVt +βCRSPCRSPt +βTMSPTMSPt + εt ,

(1.18)

where BS-RMSEt refers to the root mean squared pricing errors in Black-Scholes implied volatil-

ities at time t. As control variables, I add the realized volatility RVt , the credit spread CRSPt

(difference between 10-year AAA and BAA corporate yields), and the term spread of interest rates

TMSPt (difference between 10-year and 3-month Treasury yields). The correlations among the

explanatory variables are provided in Table 1.9.

Table 1.10 reports the regression results, with Newey-West robust t-statistics over eight lags

(Newey and West 1987) and adjusted R2. I run the regressions on the control variables alone (top

panel), the skewness factors alone (middle), and both (bottom). I first discuss the effects of the

control variables on the pricing errors when all explanatory variables are included. The realized
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volatility has statistically significant and positive coefficients with t-statistics of 6.77-6.91, with the

implication that the pricing errors become larger in periods of higher volatility. The coefficients

on the credit spread are marginally significant and positive with t-statistics of 1.92-2.48, implying

that the pricing errors are large when credit risk is high.

The filtered volatility of volatility is significantly associated with the pricing errors, with the

expected direction. This result is valid regardless of whether the control variables are included.

When the control variables are included, the coefficients βVOV fall between 1.59 and 1.70 with t-

statistics of 12.9-13.5. Consistent with the theoretical implication of the volatility of volatility, the

positivity of the coefficients indicates that the pricing errors are larger when volatility of volatility is

higher. The reason is that the two-factor volatility models can reflect the fact that the option market

tends to have more left-skewed return distributions in periods of high volatility of volatility. This

variable is most significant among the variables considered in this paper. For robustness check, I

also use the one-sided, rolling-based estimates for volatility of volatility, using the VIX index, and

find that the results are qualitatively similar.

The filtered leverage effect is also significantly associated with the pricing errors, with the ex-

pected direction. This result is valid regardless of whether the control variables are included. When

the control variables are included, the coefficients βLEV range from 0.37 to 0.49 with t-statistics of

2.87-3.49. Consistent with the theoretical implication of the leverage effect, the positivity of the

coefficients implies that the pricing errors are larger as the leverage effect gets stronger (more neg-

ative). The reason is that the two-factor volatility models can accommodate the fact that the option

market tends to have more left-skewed return distributions as the leverage effect get stronger. For

robustness check, I also use the one-sided, rolling-based estimate for the leverage effect, using the

S&P 500 index and the VIX index, and find that the results are qualitatively similar.

However, evidence on jump risk is not decisive. The jump variation is significant without

the control variables, but insignificant with the control variables. The realized volatility is highly

correlated with the jump variation, with the correlation of 0.949 (see Table 1.9). The jump variation

does not seem to deliver additional information on the pricing errors beyond the realized volatility.
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The explanatory variables can account for a large fraction of variation in the pricing errors.

The control variables alone are responsible for 32-36% of variation in the pricing errors. The

regressions with the skewness factors alone yield adjusted R2 of 47-49%. The explanatory variables

all together can explain a significant portion of variation in the pricing errors, with adjusted R2 of

54-56%. This high explanatory power suggests that the stochastic volatility models should be

augmented with some skewness factors associated with time-variation in skewness. I therefore

conclude that stochastic volatility of volatility is the most promising candidate as a skewness factor,

while a stochastic leverage effect remains as a potential candidate.

1.7 Conclusion and future work

News events about a firm’s future prospects have different term structure effects on volatility,

depending on the market’s perception of the persistence of each news event. This fact has important

implications particularly for the options market because the term structure of volatility will react

in various ways according to the economic nature of an arriving news event. The objective of this

paper is, therefore, to examine the option pricing implications of short-run and long-run volatility

factors, which are assumed to be driven by the short-run and long-run news events. To this end,

I develop a class of log stochastic volatility models with short-run and long-run volatility factors,

and then perform a term-structure-based analysis using an extensive dataset of S&P 500 index

options over 1993-2008.

I find that the proposed two-factor volatility models have two desirable properties that help

capture the term structures of option-implied volatility and skewness. First, the option data show

evidence of time-variation in the long-run expectation of volatility, which may be caused by long-

run news events. This evidence suggests that single-factor volatility models, which assume con-

stancy in the long-run level of volatility, are clearly deficient for the purpose of option pricing.

My empirical results demonstrate that the proposed two-factor volatility models excel at fitting the

entire term structure of implied volatility, as opposed to single-factor volatility models. In particu-

lar, the inclusion of a long-run volatility factor is necessary to capture the dynamics of long-term
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implied volatility. Because of this nice property, the two-factor volatility models improve option

pricing performance over the one-factor volatility models.

Second, the option data reveal that the term structure of implied skewness is nearly flat

on average. This feature is hard to reconcile with single-factor volatility models and jumps in

returns. Single-factor volatility models are able to produce either a decreasing or an increasing

term structure of skewness up to the one-year horizon, depending on the persistence of volatility,

but not a flat term structure of skewness. Jumps in returns can be effective in producing short-

term skewness but not long-term. But I find that the two-factor volatility models can generate flat

term structures, as the two volatility factors involve very different levels of the skewness-related

parameters. Specifically, while the short-run factor is dominant in generating short-term skewness,

the long-run factor plays a pivotal role in generating long-term skewness. Besides, the proposed

two-factor volatility models can generate far more realistic levels of skewness than the two-factor

GARCH model of Christoffersen, Jacobs, Ornthanalai, and Wang (2008).

However, I find that the two-factor volatility models are still mis-specified in two dimen-

sions. First, in accord with many of the prior studies, the two-factor volatility models fall short of

matching the option-implied skewness precisely, causing underpricings of OTM puts and overpric-

ings of OTM calls. Is this problem unique to the S&P index option market? A relevant research

direction would be to apply the models and techniques developed in this paper to individual stock

options and currency options that have less of volatility smirk. Second, I argue that any multi-

factor stochastic volatility models including mine would be imperfect in capturing time-variation

in skewness because the dynamics of skewness are loosely related to those of volatility. My in-

vestigation indicates that one potential extension of the two-factor volatility models would be to

randomize the volatility of volatility in order to capture time-variation in skewness.
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Table 1.3: Model specifications.

Model # of factors Jumps Variance risk premium Jump risk premium
SV1 One No jumps Yes N/A
JY1 One Jumps in yt No Yes
JYV1 One Jumps in yt and vt No Yes
SV2 Two No jumps Yes N/A
JY2 Two Jumps in yt Yes No
JYV2 Two Jumps in yt and vt Yes No
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Table 1.4: Summary statistics for options data.

The option pricing test in this paper considers out-of-the-money (OTM) put and call options. Moneyness
d is defined as d =

log(K/Ft,τ)

IVt,τ
√

τ
, where IVt,τ and Ft,τ refer to the model-free implied volatility and the implied

future price at time t with time to maturity τ. BSIV stands for the Black-Scholes implied volatility

Months-to-maturity
< 2M 2M-6M 6M-12M Total

All OTM options # of Options 197,631 199,170 177,005 573,806
(−3.0 < d < 1.5) Average Price ($) 9.13 16.28 27.43 17.26

Average BSIV (%) 21.67 21.44 21.37 21.50

OTM puts # of Options 119,265 120,296 107,148 346,709
(−3.0 < d < 0) Average Price ($) 8.92 15.81 26.41 16.71

Average BSIV (%) 24.14 23.86 23.78 23.93

OTM calls # of Options 78,366 78,874 69,857 227,097
(0 < d < 1.5) Average Price ($) 9.47 17.00 28.98 18.09

Average BSIV (%) 17.91 17.73 17.68 17.78
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Table 1.5: Parameter Estimates.

The sample period covers January 1993 through December 2008 (N = 4029). Standard errors are in paren-
theses. Time is measured in business days.

One-factor Two-factor
SV1 JY1 JYV1 SV2 JY2 JYV2

µ×104 4.06 2.03 2.84 0.38 -1.61 -2.57
(1.13) (1.27) (1.27) (0.93) (0.92) (1.02)

κv×102 0.65 0.86 0.81 9.38 9.37 8.84
(0.13) (0.13) (0.14) (0.18) (0.19) (0.21)

κu×102 0.40 0.34 0.41
(0.03) (0.04) (0.04)

ηv×102 -3.02 -1.77 -1.06 1.02
(0.23) (0.45) (0.47) (0.83)

ηu×103 4.72 4.92 3.74
(1.00) (0.99) (1.48)

σv×101 1.33 1.35 0.97 2.64 2.63 1.89
(0.02) (0.02) (0.03) (0.03) (0.03) (0.05)

σu×101 0.75 0.73 0.76
(0.01) (0.01) (0.01)

ρv -0.74 -0.84 -0.77 -0.51 -0.58 -0.44
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ρu -0.58 -0.63 -0.71
(0.01) (0.01) (0.01)

α -9.49 -9.35 -9.84 -8.56 -8.33 -8.32
(0.29) (0.23) (0.27) (0.18) (0.21) (0.20)

λ 0.35 0.39 0.28 0.21
(0.08) (0.05) (0.06) (0.03)

µ1J 0.38 -0.04 0.31 -0.11
(0.06) (0.08) (0.06) (0.07)

µ∗1J -1.12 -1.30
(0.13) (0.08)

σ1J 0.78 1.35 0.82 1.42
(0.05) (0.08) (0.06) (0.09)

µ2J 0.45 0.74
(0.08) (0.11)

σ2J 1.47 1.88
(0.07) (0.11)

ρJ -0.73 -0.73
(0.03) (0.03)

log(L) 38,426 38,587 38,782 67,117 67,263 67,528
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Table 1.6: Fitting errors in implied volatility across different models

I use the two metrics for evaluating the models’ fit in the term structure of implied volatility:

IV-RMSE =

√
1

∑
N
t=1 NVt

N

∑
t=1

NVt

∑
τ=1

(
IVM

t,τ − IVt,τ

)2

RIV-RMSE = 100×

√√√√ 1

∑
N
t=1 NVt

N

∑
t=1

NVt

∑
τ=1

(
IVM

t,τ − IVt,τ

IVt,τ

)2

,

(1.19)

where N stands for the total number of business days; NVt is the number of model-free implied
volatilities at time t with times-to-maturity of less than one year; IVt,τ and IVM

t,τ refer to the option-
implied and model-implied volatilities, respectively. While IV-RMSE measures the root mean
squared fitting errors in implied volatility, RIV-RMSE does this in a relative sense by accounting
for levels of implied volatility.

Aggregate results

IV-RMSE RIV-RMSE
Months-to-maturity Months-to-maturity

< 2M 2M-6M 6M-12M Total < 2M 2M-6M 6M-12M Total

SV1 2.18 14.53 56.69 34.73 9.82 70.05 288.63 176.25
JY1 0.79 2.20 3.98 2.73 3.38 10.72 23.38 15.37
JYV1 0.74 2.03 3.60 2.48 3.04 9.33 20.73 13.58
SV2 0.63 0.69 1.03 0.81 2.74 2.62 4.55 3.46
JY2 0.55 0.68 1.22 0.88 2.52 2.61 5.46 3.84
JYV2 0.55 0.83 1.75 1.19 2.29 3.31 8.82 5.73

Disaggregate results by levels of implied volatility

IV-RMSE RIV-RMSE
Months-to-maturity Months-to-maturity

Volatility < 2M 2M-6M 6M-12M Total < 2M 2M-6M 6M-12M Total

Low SV1 1.10 8.99 44.47 21.39 9.62 70.21 320.43 159.07
JY1 0.39 1.60 4.49 2.40 3.40 12.66 32.64 18.10
JYV1 0.33 1.33 3.92 2.08 2.93 10.46 28.49 15.64
SV2 0.31 0.25 0.56 0.35 2.83 1.98 3.99 2.76
JY2 0.32 0.24 0.66 0.38 2.92 1.93 4.75 2.99
JYV2 0.26 0.32 1.33 0.65 2.35 2.52 9.57 4.91

Mid SV1 1.72 13.47 55.61 35.51 9.65 71.82 292.12 194.30
JY1 0.56 1.78 3.92 2.77 3.15 9.97 21.93 16.13
JYV1 0.50 1.53 3.48 2.44 2.79 8.50 19.44 14.18
SV2 0.49 0.47 0.79 0.62 2.66 2.37 4.16 3.31
JY2 0.44 0.47 1.01 0.72 2.42 2.41 5.35 3.89
JYV2 0.39 0.62 1.68 1.13 2.15 3.21 9.01 6.26

High SV1 3.42 20.02 68.50 42.82 10.35 66.21 244.71 152.79
JY1 1.31 3.23 3.54 2.95 3.77 10.03 12.63 9.91
JYV1 1.25 3.17 3.49 2.90 3.56 9.72 12.29 9.61
SV2 1.01 1.19 1.63 1.32 2.82 3.52 5.68 4.26
JY2 0.83 1.16 1.85 1.37 2.31 3.46 6.27 4.45
JYV2 0.91 1.38 2.19 1.62 2.48 4.12 7.58 5.34
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Table 1.7: Option pricing performance across different models.

I use the following three metrics for measuring option pricing performance:

BS-RMSE =

√√√√ 1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

(
σM

i −σBS
i )2

DL-RMSE =

√√√√ 1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

(
OM

i −Oi)2

FREQ =
1

∑
N
t=1 NOt

N

∑
t=1

NOt

∑
i=1

1OM
i >Oi

,

(1.20)

where σM
i and σBS

i refer to the modeled and observed Black-Scholes implied volatilities; OM
i and

Oi denote the modeled and observed option prices; and NOt indicates the number of options at
time t. BS-RMSE measures the root mean squared pricing errors in the Black-Scholes implied
volatilities. DL-RMSE measures the root mean squared pricing errors in dollar option prices.
FREQ computes how often a model overprices the observed option prices.

BS-RMSE DL-RMSE FREQ
Months-to-maturity Months-to-maturity Months-to-maturity

< 2M 2M-6M 6M-12M Total < 2M 2M-6M 6M-12M Total < 2M 2M-6M 6M-12M Total

All OTM options (−3.0 < d < 1.5)
SV1 3.71 11.50 32.45 19.38 3.77 23.73 107.10 61.15 0.679 0.995 1.000 0.888
JY1 2.88 2.66 2.84 2.79 2.43 4.04 7.38 4.95 0.655 0.730 0.806 0.728
JYV1 2.36 2.20 2.40 2.32 1.99 3.28 6.13 4.08 0.643 0.639 0.704 0.660
SV2 2.53 1.97 1.98 2.18 2.06 2.57 4.32 3.08 0.634 0.567 0.421 0.545
JY2 2.56 2.05 1.87 2.19 1.94 2.61 3.98 2.92 0.611 0.590 0.514 0.574
JYV2 2.29 1.76 1.79 1.96 1.76 2.35 4.29 2.95 0.630 0.615 0.653 0.632
GARCH2 7.15 6.29 5.75 6.44 4.83 7.66 12.60 8.80 0.212 0.180 0.190 0.194

OTM puts (−3.0 < d < 0)
SV1 2.84 10.69 32.05 18.97 2.48 21.12 98.15 55.98 0.494 0.992 1.000 0.823
JY1 2.23 2.09 2.78 2.37 1.50 2.99 6.56 4.14 0.446 0.588 0.745 0.587
JYV1 1.84 1.95 2.55 2.12 1.29 2.75 5.98 3.77 0.460 0.535 0.689 0.557
SV2 1.79 1.56 2.14 1.83 1.11 1.63 4.49 2.75 0.426 0.316 0.153 0.303
JY2 1.97 1.64 1.77 1.80 1.20 1.66 3.60 2.33 0.393 0.349 0.280 0.343
JYV2 1.66 1.33 1.51 1.51 1.08 1.49 3.25 2.11 0.436 0.409 0.455 0.432
GARCH2 8.51 7.61 6.95 7.74 5.25 8.51 13.98 9.75 0.087 0.060 0.083 0.077

OTM calls (0 < d < 1.5)
SV1 4.74 12.64 33.05 19.98 5.13 27.23 119.54 68.28 0.961 1.000 1.000 0.987
JY1 3.66 3.34 2.92 3.34 3.39 5.26 8.48 5.98 0.974 0.948 0.898 0.942
JYV1 2.97 2.53 2.13 2.58 2.73 3.94 6.34 4.51 0.920 0.797 0.728 0.818
SV2 3.36 2.48 1.72 2.63 2.96 3.55 4.06 3.53 0.952 0.949 0.831 0.914
JY2 3.25 2.55 2.01 2.67 2.71 3.60 4.50 3.64 0.943 0.958 0.873 0.927
JYV2 3.00 2.26 2.14 2.51 2.46 3.25 5.52 3.89 0.925 0.930 0.955 0.936
GARCH2 4.33 3.38 3.10 3.66 4.11 6.15 10.11 7.10 0.401 0.364 0.353 0.373
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Table 1.9: Summary statistics for explanatory variables.

The sample period covers January 1993 to December 2008. VOVt and LEVt refer to the filtered
volatility of volatility and filtered leverage effect obtained from Durham and Park (2010). JVt and
RVt are the jump variation and realized volatility calculated using the five-minute high-frequency
data over the past 22 business days. CRSPt is the corporate credit spread (difference between
10-year AAA and BAA corporate yields). TMSPt is the term spread of interest rates (difference
between 10-year and 3-month Treasury yields).

Summary statistics

VOVt LEVt JVt (%2) RVt (%2) CRSPt (%) TMSPt (%)

Mean 0.26 0.71 3.33 21.79 0.88 1.50
Min 0.01 0.03 0.12 1.58 0.50 -0.95
Max 0.97 0.99 83.09 457.27 3.50 3.85
STD 0.26 0.27 6.89 40.45 0.36 1.19
Skewness 1.16 -0.88 7.19 6.72 3.78 0.10
Kurtosis 3.06 2.50 67.06 57.28 23.55 1.82
AR(1) 0.92 0.96 0.99 1.00 0.99 1.00
AR(5) 0.67 0.82 0.95 0.97 0.96 0.99
AR(22) 0.29 0.46 0.65 0.68 0.81 0.95

Correlation matrix

VOVt LEVt JVt (%2) RVt (%2) CRSPt (%) TMSPt (%)

VOVt 1.000 -0.122 0.187 0.216 0.037 -0.098
LEVt 1.000 0.034 0.062 0.183 -0.076
JVt (%2) 1.000 0.949 0.762 0.168
RVt (%2) 1.000 0.769 0.133
CRSPt (%2) 1.000 0.290
TMSPt (%) 1.000
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Figure 1.1: Scatter plots between option-implied volatilities.

The top panel is a scatter plot of the term premium (difference between one-year and one-month
volatilities) against the short-term (one-month) implied volatility. The bottom panel is a scatter plot
of changes in one-year implied volatility against changes in one-month implied volatility. Some
outliers are deleted to take a closer look at the center of the scatter plots.
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Figure 1.2: Term structure of skewness and the similarity of volatility smirks.

In the top panel, the thick solid line is the kernel regression of skewness on term to maturity with
a Gaussian kernel and a manually chosen bandwidth. In the bottom panel, I compute the average
volatility surface by running a kernel regression of Black-Scholes implied volatilities on term to
maturity τ and moneyness d as defined in equation (1.5), and then obtain an array of volatility
smirks by slicing the volatility surface at several times to maturity.



50

Figure 1.3: Scatter plots of option-implied skewness against option-implied volatility.

The top panel is a scatter plot of average implied skewness against average implied volatility, while
the bottom panel is a scatter plot of changes in average implied skewness versus changes in average
implied volatility. The averages are taken for options with less than one year to maturity.
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Figure 1.4: Time series of S&P 500 returns, average option-implied volatility, the term premium
of option volatility, and average option-implied skewness.
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Figure 1.5: Term structures of implied volatility for the JYV1 and SV2 models.

The top panel represents a low volatility scenario with the instantaneous volatility set at 10%. The
bottom panel represents a high volatility scenario with the instantaneous volatility set at 30%.
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Figure 1.6: Actual fits in the term structure of implied volatility for the different two-factor volatil-
ity models.

The top panel is the term structure of implied volatility on January 29, 1999, when the term struc-
ture is declining even though short-term volatility is low. The bottom panel is the term structure
of implied volatility on January 9, 1996, when the term structure is rising even though short-term
volatility is high. Of course, the one-factor volatility models are unable to fit the data for these
days.
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Figure 1.7: The stand-alone effect of each volatility factor on skewness.

I compute the term structure of skewness in three different ways for the SV2 model. The solid line
is the term structure of skewness generated by the short-run factor only, with the long-run factor
set at zero; the dashed line is the term structure of skewness generated by the long-run factor only,
with the short-run factor set at zero; the dash-dot line is the term structure of skewness generated
by the both factors.
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Figure 1.8: Comparison of the average term structures of skewness.

The top (bottom) panel shows the average term structures of skewness generated by the two-factor
(one-factor) models, along with the observed average term structure of skewness (thick solid line).



Chapter 2

Beyond Stochastic Volatility and Jumps in Returns and Volatility

2.1 Introduction

Understanding volatility dynamics and improving option pricing have long been of interest

to practitioners and academics. It is well-known that the volatility of many financial assets is

time-varying, and an enormous amount of research has been devoted to studying this feature of

financial data. But, there is strong empirical evidence suggesting that return distributions have

time-varying skewness and kurtosis as well. For example, stochastic skewness in risk-neutral

return distributions is implied by variation across time in the slope of the Black-Scholes implied

volatility surface. Stochastic kurtosis is related to variation across time in the curvature of the

Black-Scholes implied volatility surface. These are important features of observed option prices

and are only weakly correlated with variation in option-implied volatility. Yet, modelling efforts

that attempt to fit both physical and risk-neutral models simultaneously in a time-consistent manner

typically include only a single state variable, volatility, and are thus capable of capturing little of the

variation in implied skewness and kurtosis of returns that is observed in the data. Understanding

variation in the shape of return distributions (and the shape of the implied volatility smile) is

important in many applications, such as hedging and risk management. Any option pricing model

that is unable to explain this feature of the data is clearly deficient.

The objective of this paper is to investigate model characteristics that are consistent with

time-varying skewness and kurtosis in return distributions as is observed empirically in the option

market. In particular, we look at models that allow for time-variation in volatility of volatility and
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correlation between innovations in prices and volatility (leverage effect), both of which are able to

generate variation in the shape of return distributions. We find strong evidence in favor of these

features under the physical measure. An important aspect of our analysis is that the models are

estimated using returns and implied volatility, but additional information about the shape of the

return distribution embedded in option prices (i.e., under the risk-neutral measure) is not used in

fitting them. By withholding this information from the model estimation, we are able to use it

for diagnostic purposes. Toward this end, we look at some regressions to examine whether the

implied state variables have explanatory power for option-implied skewness and kurtosis and find

strong evidence that they do. That is, we find that information about the volatility of volatility

and leverage effect extracted from the physical dynamics of returns and volatility has explanatory

power for time-variation in the shape of returns distributions implied by option prices under the

risk-neutral measure. This is important because it suggests that variation in the shape of risk-

neutral return distributions (and of the Black-Scholes implied volatility smile) is not just due, for

example, to changes in risk premia, but is associated with changes in related characteristics of the

physical dynamics.

This paper adds to the existing literature on option-implied skewness. Dennis and Mayhew

(2002) investigate the relation between option-implied skewness and firm characteristics, such

as firm size, trading volume, and leverage. Han (2008) finds that market sentiment has some

explanatory power for option-implied skewness. Harvey and Siddique (2000) look at asset pricing

models that incorporate conditional skewness. They find that skewness has significant explanatory

power for cross-sectional variation in expected returns across assets. Xing, Zhang, and Zhao (2007)

find that option-implied skewness may be predictive of future returns. Bollen and Whaley (2004)

look at the effect of net buying pressure in options markets on the shape of implied volatility smiles.

More closely related to this paper, there has also been work focused on understanding the

relationship between option-implied skewness and the dynamics of the underlying asset price pro-

cess. Das and Sundaram (1999) show that both volatility of volatility and correlation between the

innovations in an asset’s price and its volatility (leverage effect) affect the shape of the volatility
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smirk and are thus possible candidates (see also Jones 2003). They show that the size and intensity

of jumps in returns are also possibilities, though mostly affecting option-implied skewness at short

terms to maturities. There has been some work toward implementing these ideas. For example,

the two-factor stochastic volatility model of Christoffersen, Heston, and Jacobs (2009) is able to

generate time-varying correlation, while Santa-Clara and Yan (2010) allow the jump intensity to be

stochastic. In each of these papers, the authors find that option pricing performance is significantly

improved.

Carr and Wu (2007) propose a stochastic skew model for foreign exchange rates with positive

and negative jumps driven by independent Levy processes. Johnson (2002) looks at a stochastic

volatility model with time-varying correlation between return and volatility innovations and shows

that the model implies time-series variation in the shape of the implied-volatility smile. Jones

(2003) proposes a constant elasticity of variance model that incorporates a time-varying leverage

effect. Harvey and Siddique (1999) look at GARCH models that incorporate time-varying skew-

ness.

In this paper, the underlying modelling framework is based on a standard single-factor

stochastic volatility model. Although models of the affine (or affine-jump) class are often used

in work of this kind due to their analytical tractability, these models have trouble fitting the data

(e.g., Jones 2003, Ait-Sahalia and Kimmel 2007, Christoffersen, Jacobs, and Mimouni 2010). But

since the techniques applied in this paper do not rely upon the analytical tractability of the affine

models, we are able to choose among classes of models based on performance instead. We have

found that log volatility models provide a useful starting point. We allow for contemporaneous

jumps in both returns and volatility. We build on this framework by adding a regime-switching

feature for the parameters corresponding to volatility of volatility and leverage effect. This idea is

motivated by the fact that changes in either of these two variables, at least under the risk-neutral

measure, are capable of generating variation in the shape of the Black-Scholes implied volatility

smirk.

As pointed out by Das and Sundaram (1999), time-varying jump dynamics provide another
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possible mechanism for generating variation in the shape of return distributions. Although we

tested models including regime-switching in jump parameters, such models did not turn out to be

empirically useful. We do not report the results for these experiments to keep the presentation

manageable.

We make no effort to attach a particular economic interpretation to the regime states. We

regard this modelling framework simply as a convenient way of generating a flexible family of

models that is capable of behavior that captures an important feature of the data that we are inter-

ested in.

The regime-switching framework is useful because it is the simplest possible approach that

incorporates time-variation in the parameters of interest. Our empirical results demonstrate that

it is also sufficient to capture the essential characteristics of observed behavior that are of interest

here. More sophisticated approaches involving continuous state spaces are of course possible.

However, such models require additional assumptions not needed here regarding the form of the

processes describing the evolution of the states. The analysis is also substantially less transparent.

Our empirical work uses S&P 500 index (SPX) option data. Option-implied volatility, skew-

ness, and kurtosis are estimated using the model-free approach of Bakshi, Kapadia, and Madan

(2003). Figure 2.1 shows the time-series plots of option-implied volatility, skewness, and kurtosis.

Figure 2.2 shows the scatter plots of option-implied skewness and kurtosis versus volatility. It is

evident from these plots that there are substantial and persistent variations in skewness and kurto-

sis, and that these variations are weakly correlated with the level of volatility. Models with only a

single volatility state are hard to reconcile with the empirical features of these data. In particular,

any option pricing model with only a single state variable implies that skewness and kurtosis are

perfectly correlated with volatility, in stark contrast to the data.

Jones (2003) looks at a CEV model with different elasticity parameters for the parts of

volatility innovations that are correlated/uncorrelated with price innovations. In this model, the

strength of the leverage effect depends upon the level of the volatility state. Jones argues that this

helps to capture time variation in the shape of return distributions. Pan (2002) includes a time-
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varying jump risk premium that is proportional to the level of the volatility state. Both papers find

that option-pricing performance is significantly improved. But, these papers include only a single

state variable, volatility, which means that they are able to capture only a small part of the time

variation in option-implied skewness and kurtosis.

One approach toward resolving this shortcoming is to recalibrate the model parameters on a

daily basis using the observed panel of option prices with varying moneyness and time to maturity

(e.g., Rubinstein 1994; Bakshi, Cao, and Chen 1997; Duffie, Pan, and Singleton 2000). However,

this approach is not time-consistent and does not provide much help in understanding the dynamics

of the underlying asset price nor the relationship between these dynamics and observed option

prices.

An alternative approach is to include in the model an additional stochastic factor that is

related to skewness and kurtosis (e.g., Christoffersen, Heston, and Jacobs 2009 and Santa-Clara

and Yan 2010). This is the basic approach used in this paper. But, unlike Christoffersen, Heston,

and Jacobs (2009) and Santa-Clara and Yan (2010), we do not use cross-sectional option prices or

option-implied skewness and kurtosis in the estimation step. Given observations of option-implied

volatility and skewness (or kurtosis), it is generally easy for any two-factor model to match both

exactly, even if the model is badly misspecified. With this procedure, however, it is unclear if the

implied dynamics of the states are actually present under the physical measure or are just artifacts

of forcing the model to match the shape of the volatility smile. Differences between physical and

risk-neutral dynamics are typically attributed to risk-premia. But, if the model is misspecified,

these are also likely to be artifacts.

Our study takes a somewhat different task. While we match option-implied volatility, we

do not force the model to match option-implied skewness or kurtosis exactly. We also do not

look for risk premia which cause the models to fit the shape of the implied volatility smirk on

average. Rather, we fit the models using only information from returns and implied volatility.

By then regressing option-implied skewness and kurtosis on the implied states (and some control

variables), we are able to draw useful conclusions about the extent to which the implied states are
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informative about variation across time in the shape of the risk-neutral return distribution.

We also examine two different specifications for the jump structure, depending on whether

jumps are scaled by the volatility state or not. The unscaled jump models (UJ) assume that jumps

innovations are identically distributed across time. This form has been commonly used in the

existing literature (e.g., Eraker, Johannes, and Polson 2003; Eraker 2004; Broadie, Chernov, and

Johannes 2007). In the scaled jump models, on the other hand, jumps are larger on average when

the volatility state is higher. Such models are potentially able to generate dynamics that more

realistically reflect the data. Our results indicate a strong preference for the scaled jump form.

We do not demonstrate potential improvements in fitting observed option prices by using

models such as those proposed in this paper. If one were actually interested in fitting observed

option prices, it would be desirable to use the full panel of option prices observed each day to

back out implied states. The model would be able to match perfectly on a day-by-day basis both

the volatility and skewness of the risk-neutral distribution implied by observed option prices (cor-

responding roughly to the level and slope of the Black-Scholes implied-volatility smile), with an

accompanying improvement in fit to the option prices themselves. But, as described above, this is

not the purpose of the paper.

To summarize, the analysis is comprised of two main parts. First, we fit the models using

SPX prices and option-implied volatility. We compare models based on log likelihoods and other

diagnostics. The second step involves testing the explanatory power of the implied regime states for

option-implied skewness and kurtosis. Critically, information about the shape of the risk-neutral

distribution is not used in the estimation step, which makes this diagnostic useful.

Regarding the first step of the analysis (model estimation), including jumps in the model

(whether scaled or unscaled) provides a huge improvement relative to the base model with no

jumps. The log likelihood increases by over 300 points. Other diagnostics of model fit are also

greatly improved. The models with scaled jumps heavily dominate those with unscaled jumps. For

the models without regime-switching, the difference is over 40 points in log likelihood.

Including the regime-switching feature provides additional improvements that are highly
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significant. The model with regime switching in volatility of volatility and scaled jumps provides

an increase of 110 point in log likelihood relative to the model without regime switching, with

improvements in the other diagnostics of model fit as well. The regime switching model nests the

model without regime switching and includes four additional parameters. A standard likelihood

ratio test indicates that a difference of 110 points in log likelihood corresponds to a p-value of

around 10−22. These results provide overwhelming evidence against models in which volatility of

volatility and leverage effect are constant.

In the second step of the analysis, regressions testing whether the implied states have ex-

planatory power for option-implied skewness and kurtosis are also decisive. The slope coefficients

are strongly significant and in the expected directions. Option-implied skewness tends to be more

negative when volatility of volatility is high or the leverage effect is more pronounced (more neg-

ative correlation between price and volatility innovations). Option-implied kurtosis tends to be

more positive when volatility of volatility is high or the leverage effect is more pronounced. We

also include several control variables that could be related to variation in the shape of return dis-

tributions. The VIX index is included to control for correlation between option-implied volatility

and option-implied skewness and kurtosis. We also include a nonparametric measure of the vari-

ance risk premium (VRP) based on the difference between the VIX index and realized volatility

(Bollerslev, Gibson, and Zhou 2011, Carr and Wu 2009). Finally, the jump variation (JV) measure

of Barndorff-Nielsen and Shephard (2004) is used as a proxy for jump risk. Our regression results

are robust to inclusion of these control variables.

As in the estimation step, models with scaled jumps always dominate models with unscaled

jumps. For option-implied skewness, the regression on the three control variables alone gives an

adjusted R2 of only 9.2%. VIX and JV are significant, but not VRP. The best regression model

includes both volatility of volatility and leverage states (in addition to the control variables). This

model has an R2 of over 32% and slope coefficients for the states have t-statistics with absolute

value greater than 11 (corresponding to p-values of less than 10−27). Results for the implied

kurtosis regressions are qualitatively similar (though weaker).
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The remainder of the paper is organized as follows. Section 2.2 describes the models under

consideration. In Section 2.3, we develop the estimation strategy, focusing on how to deal with the

unobservable volatility and regime states. Model estimates and diagnostics are presented in Section

2.4. Section 2.5 investigates the explanatory power of implied regime states from the models for

risk-neutral implied-skewness and kurtosis. And, Section 2.6 concludes.

2.2 Models

The modeling framework used in this paper is based on a standard stochastic volatility model,

variants of which have appeared frequently in the existing literature. We simultaneously fit both

physical and risk-neutral models. Although affine models are often used in work of this kind

due to their analytical tractability, these models have trouble fitting the data. However, since the

techniques applied in this paper do not rely upon the nice analytical features of the affine models,

we are able to consider other possibilities. We have found that log volatility models work well and

use these as the basis for our modelling framework.

A large body of literature documents the significance of jumps in returns and volatilities.

Bakshi, Cao, and Chen (1997), Bates (2000), Pan (2002), and Andersen, Benzoni, and Lund (2002)

find jumps in returns to be important. Duffie, Pan, and Singleton (2000), Eraker, Johannes, and

Polson (2003), Eraker (2004), and Broadie, Chernov, and Johannes (2007) argue in favor of in-

cluding jumps in volatility as well. In light of this evidence, we allow for jumps in both prices and

volatility.

Given a probability space (Ω,F ,P) and information filtration {Ft}, the ex-dividend stock

price, xt , is assumed to evolve as

dxt/xt =
[
µ−µ1Jtλ1

]
dt + exp(vt/2)dW1t +(eJ1t −1)dN1t

dvt =
[
κ(v− vt)−µ2Jtλ1

]
dt +σ(st)dW2t + J2tdN1t

dst = (1−2st)dN2t

(2.1)

where vt and st are the volatility state and the regime state, respectively. The regime state is either
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0 or 1. W1t and W2t are standard Brownian motions with regime-dependent correlation ρ(st). N1t

and N2t are Poisson processes with intensity λ1 and λ2(st), respectively.

We consider two different forms for the jump structure, depending upon whether jumps

are scaled by the same factor as the Brownian motion or unscaled. The unscaled model (UJ)

assumes that jump innovations are identically distributed across time. In this case, the jumps are

bivariate normal with J1t ∼ N
(
µ1J,σ

2
1J
)
, J2t ∼ N

(
µ2J,σ

2
2J
)
, and corr(J1t ,J2t) = ρJ . This form has

been commonly used in the existing literature (e.g., Eraker, Johannes, and Polson 2003; Eraker

2004; Broadie, Chernov, and Johannes 2007). In contrast, the scaled model (SJ) assumes that

jumps scale in proportion to the volatility of the diffusion component of the process. That is,

J1t and J2t are bivariate normal with J1t/exp(vt/2) ∼ N
(
µ1J,σ

2
1J
)
, J2t/σ(st) ∼ N

(
µ2J,σ

2
2J
)
, and

corr(J1t ,J2t) = ρJ . By generating larger jumps when volatility is higher, the SJ model is potentially

capable of providing more realistic dynamics (this hypothesis is indeed confirmed in the empirical

section). Let µ1Jt = E(eJ1t −1) and µ2Jt = E(J2t) denote the mean jump sizes (note that these are

time-varying for the SJ models).

The regime-dependent parameters, σ and ρ, allow for variation across time in the volatility

of volatility and leverage effect. These are the mechanisms by which it is possible to generate time-

varying skewness and kurtosis. The regime-dependence of λ2 lets the regimes differ in persistence.

For simplicity, we only look at models with two possible regimes, although extending our

techniques to more regimes is straightforward (at the cost of more free parameters to estimate). The

regime state process is the continuous-time analog of a discrete-time Markov switching model in

which the probability of switching from state s to state 1− s is λ2(s)∆t (s = 0,1). If the discretiza-

tion interval is short relative to the intensity of the Poisson process, the discrete-time approximation

will be good. This is the case for all of the models estimated in this paper.
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It is often useful to transform the model into log prices, y(t) = log(xt),

dyt =
[
µ−µ1Jtλ1−

1
2

exp(vt)
]
dt + exp(vt/2)dW1t + J1tdN1t

dvt =
[
κ(v− vt)−µ2Jtλ1

]
dt +σ(st)dW2t + J2tdN1t

dst = (1−2st)dN2t .

(2.2)

While the dynamics of the underlying asset are described by the above model, options are

priced according to a risk-neutral measure, Q. We assume that under this measure the model takes

the form
dyt =

[
rt −qt −µ1Jtλ1−

1
2

exp(vt)
]
dt + exp(vt/2)dWQ

1t + JQ1t dNQ
1t

dvt =
[
κ(v− vt)−η(st)vt −µ2Jtλ1

]
dt +σ(st)dWQ

2t + JQ2t dNQ
1t

dst = (1−2st)dNQ
2t

(2.3)

where rt and qt denote the risk-free rate and the dividend rate, respectively. WQ
1t and WQ

2t are stan-

dard Brownian motions with regime-dependent correlation ρ(st) under the risk-neutral measure.

Jump parameters are the same under physical and risk neutral measures. In other words, we

do not attempt to identify any jump risk premia. This is because the models and data used in this

paper have limited power to separately identify jump risk premium and diffusive volatility premia.

As is well-known, option-implied volatility provides a biased estimate of the volatility of observed

returns. Jump risk and diffusive volatility premia are two possible mechanisms for accounting

for this difference. The effects of these can be disentangled either by looking at cross-sections of

option prices across moneyness or by looking at options with varying times to maturity (see Pan

2002 for a detailed discussion of this issue). Studying the characteristics of jump risk premia is

certainly an interesting issue, and has been looked at by Pan (2002) and Broadie, Chernov, and

Johannes (2007) among others. However, it is not the topic of this paper, and our models and

data choices were made to address other issues. We identify a volatility risk premium, η, which

accounts for the difference between physical and option-implied volatility, absorbing any potential

jump risk premium as well.
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The market variance risk premium is generally found to be negative (e.g., Bakshi and Kapa-

dia 2003; Coval and Shumway 2001; Carr and Wu 2009). This finding can be understood in the

framework of classic capital asset pricing theory (e.g., Heston 1993; Bakshi and Kapadia 2003;

Bollerslev, Gibson, and Zhou 2011). But, according to theory, the variance risk premium should

be dependent on the volatility of volatility and the leverage effect (correlation between returns

and changes in volatility state). For example, the variance risk premium should be more nega-

tively priced as the volatility of volatility increases or the correlation decreases. We allow for this

possibility by letting the volatility risk premium parameter η(st) be regime-dependent.

In the application, we look at several variants of this model:

SV Stochastic volatility, no jumps, no regime switching.

SJ Stochastic volatility, volatility-scaled jumps, no regime switching.

UJ Stochastic volatility, volatility-unscaled jumps, no regime switching.

SJ-RV Stochastic volatility, volatility-scaled jumps, regime switching for σ.

UJ-RV Stochastic volatility, volatility-unscaled jumps, regime switching for σ.

SJ-RL Stochastic volatility, volatility-scaled jumps, regime switching for ρ.

UJ-RL Stochastic volatility, volatility-unscaled jumps, regime switching for ρ.

SJ-RVL Stochastic volatility, volatility-scaled jumps, regime switching for both σ and ρ.

UJ-RVL Stochastic volatility, volatility-unscaled jumps, regime switching for both σ and ρ.

And finally, in our empirical work, we use an Euler scheme approximation to the model. For

the physical model (and analogously for the risk-neutral model), the approximation is given by

yt+1 = yt +µ−µ1Jtλ1−
1
2

exp(vt)+ exp(vt/2)ε1,t+1 +
N1,t+1

∑
j>N1,t

ξ1 j

vt+1 = vt +κ(v− vt)−µ2Jtλ1 +σ(st)ε2,t+1 +
N1,t+1

∑
j>N1,t

ξ2 j

(2.4)
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where ε1,t+1 and ε2,t+1 are standard normals with correlation ρ(st), and ξ1 j and ξ2 j have the same

distribution as the jumps in the continuous-time model. The regime state, st , follows the discrete-

time Markov process with p(st+1 = i|st = j) = Pi j, corresponding to the transition matrix

P =

 π0 1−π1

1−π0 π1

 .

For computational purposes, we need to set some upper bound for the maximum number of jumps

possible in a single day. In our application we set this upper bound to five jumps. Given our

estimates for jump intensity, the approximation error due to imposing this constraint is negligible.

2.3 Methodology

The introduction of the regime-switching feature means that the models used in this paper

require the development of new estimation techniques. While the estimation strategies used in

similar work often rely heavily on computationally costly simulation methods, the approach we

propose in this paper can be executed in several minutes on a typical desktop PC. Our approach

consists of three steps: (1) back out volatility states from observed option prices, (2) filter regime

states using a Bayesian recursive filter, and (3) optimize the likelihood function using the volatility

and regime states obtained in the previous two steps. As a by-product of the algorithm, we obtain a

series of generalized residuals which we make use of for model diagnostics. A detailed description

of each step of the procedure is provided below.

2.3.1 Extracting the volatility states

Building on the work of Chernov and Ghysels (2000), Pan (2002), Ait-Sahalia and Kimmel

(2007), and others, we make use of observed option prices in addition to the price of the underlying

asset to estimate the model. The panel of option prices observed on any particular day implies a

risk-neutral distribution of returns for the underlying asset (see, e.g., Derman and Kani 1994,
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Dupire 1994, Rubinstein 1994, and Ait-Sahalia and Lo 1998). Neuberger (1994) and Carr and

Madan (1998) provide a model-free approach to estimating the integrated variance of returns under

the risk-neutral measure using observed option prices (see also Demeterfi, Derman, Kamal, and

Zou 1999 and Carr and Wu 2009). Bakshi, Kapadia, and Madan (2003) build on this work and

extend it to higher moments.

Given estimates for the risk-neutral variance it is possible to back out spot volatility and

regime states. The idea of using model-free estimates of option-implied volatility in this manner

has been used in similar applications by Jones (2003), Duan and Yeh (2007), and Ait-Sahalia and

Kimmel (2007), among others.

Volatility can also be estimated using high-frequency data or based on returns data alone.

However, Blair, Poon, and Taylor (2001), Christensen and Prabhala (1998), and Fleming (1998)

argue that, at least for the S&P 100 index, option prices are more informative than realized volatility

in forecasting future volatility. Jiang and Tian (2005) find that the model-free implied volatility

offers the most efficient information for volatility forecasting, and that it subsumes the information

contained in the Black-Scholes implied volatility and the realized volatility.

The problem of how to back out the corresponding volatility and regime states remains.

Following Bakshi, Kapadia, and Madan (2003), let IVT
t denote the square root of the variance

of log returns on the interval (t,T ] under the risk-neutral measure. Given a risk-neutral model

for stock price dynamics and values for the volatility and regime states, IVT
t can be obtained by

integrating the quadratic variation of the log stock price. For the SJ models, for example, we get

IVT
t =

√
1

T − t
EQ

t

{∫ T

t
evτ

[
1+λ1(µ2

1J +σ2
1J)
]

dτ

}
.

The expectation in the above expression can be computed by means of Monte Carlo simulations.
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For the SJ models, for example, we get

IVT
t =

√√√√ 1
(T − t)S

S

∑
s=1

{∫ T

t
ev(s)τ

[
1+λ1(µ2

1J +σ2
1J)
]
dτ

}
, (2.5)

where for each s, v(s)τ is obtained by simulating a path from the risk-neutral analog of Equation

(2.4) for t < τ≤ T , and S denotes the number of simulation paths.

However, we actually want to go in the reverse direction. That is, observed values for IV T
t

are available and we need to obtain the corresponding volatility and regime states, vt and st , by

inverting Equation (2.5). We begin by showing how to do this conditional on the regime state (the

issue of backing out the regime state is addressed in the next subsection).

Given an initial value for the regime state, st = i, the first step is to obtain an approximation

to the mapping from spot to integrated volatility,

Γi : SV−→ IV,

where SV denotes the spot volatility, i.e., SVt = exp(vt/2), and the subscript i denotes the con-

ditioning on initial regime state. The simplest way to do this is to evaluate (2.5) on some grid

of initial values for SV and then use some curve fitting technique to approximate Γi. That is, let

ŜV1 < ŜV2 < · · ·< ŜVG be the grid, where G is the number of grid points and we use hats to indi-

cate that these are grid points rather than data. For each g = 1, . . . ,G, evaluate ÎVg = Γi(ŜVg) using

Monte Carlo methods as described above (note that while the initial regime state is given, it evolves

randomly thereafter). Then approximate Γi based on the collection of pairs {(ŜVg, ÎVg)}G
g=1.

As long as this mapping is monotonic, it is equally straightforward to approximate the inverse,

Γ
−1
i : IV−→ SV , which is what we are really interested in. Let Γ̂

−1
i denote the approximation.

In principle, there are many curve fitting schemes one could use. However, since we are

using the result in a numerical optimization, it is best if the scheme results in smooth derivatives.

We have found that simply fitting a cubic polynomial to the collection {(ŜVg, ÎVg)}G
g=1 using
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nonlinear least squares works well. For all of the models used in this paper, Γi is close to linear, so

a cubic polynomial gives plenty of flexibility. We also tried higher order polynomials, splines, and

various other interpolation schemes, but none provided noticeable improvements. Approximation

errors are negligible for any reasonable scheme.

Once we have obtained Γ̂
−1
i , the hard work is done. Given an observed value for option-

implied integrated volatility, IVt and assuming st = i, evaluate Γ̂
−1
i to obtain SVt . Then, the

volatility state itself is given by vt = 2log(SVt). Repeat this for each t = 1, . . . ,n. The impor-

tant thing to notice here is that computing Γ̂i, which is the costly step, need only be done once (for

each set of candidate parameter values). Once this is accomplished, the evaluation step is fast.

2.3.2 Filtering the regime states

Given an observed value of IVt , we now have two possible values for SVt (and vt), one for

each regime state. Let v j
t denote the volatility state corresponding to regime j. The second step of

the estimation involves applying a filter to compute p j
t = p(st = j|Ft) = p(vt = v j

t |Ft).

The filter is constructed recursively using standard techniques. Let pt = (p0
t , p1

t )
′ for each

t = 0, . . . ,n, and initialize the filter by setting p j
0 equal to the marginal probability of state j ( j =

0,1). Now, suppose that pt is known. The problem is to compute pt+1. This is given by

p j
t+1 =

∑
1
i=0 p(yt+1,v

j
t+1|yt ,vi

t ,st = i) · p(st+1 = j|st = i) · pi
t

∑
1
k=0 ∑

1
i=0 p(yt+1,vk

t+1|yt ,vi
t ,st = i) · p(st+1 = k|st = i) · pi

t
, j = 0,1.

The third factor in the summand is known from the previous step of the recursion. The second fac-

tor is determined by the Markov transition matrix of the regime state process. But, some attention

is required in computing the first factor. Since we allow for the possibility of more than a single

jump per day, it is necessary to sum over the potential number of jumps,

p(yt+1,v
j
t+1|yt ,vi

t ,st = i) =
NJmax

∑
k=0

p(yt+1,v
j
t+1|yt ,vi

t ,st = i,NJt = k)p(NJt = k)
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where NJt is the number of potential jumps on day t, NJmax is the maximum number of allowable

jumps in a single day, and p(NJt = k) = [λ1]
k e−λ1/k! is given by the Poisson distribution with

intensity λ1. The distribution of
(
yt+1,v

j
t+1|yt ,vi

t ,st = i,NJt = k
)

is bivariate normal with mean

and variance given by summing the means and variances of the diffusive part of the process and k

jumps, according to the equation (2.4).

It is sometimes useful to speak of the filtered regime state. By this we mean the expected

value of st conditional on information available at time t,

ŝt = Et(st) = p0
t ·0+ p1

t ·1 = p1
t .

2.3.3 Maximum likelihood estimation

Having backed out volatility states and computed filtered regime state probabilities, comput-

ing the log likelihood is straightforward:

logL({yt}n
t=1,{IVt}n

t=1;θ)≈
n−1

∑
t=1

1

∑
i=0

1

∑
j=0

[
log p(yt+1,v

j
t+1|yt ,vi

t ,st = i)+ log p(st+1 = j|st = i)

+ log p(st = i)+ logJ j
t+1

]
,

(2.6)

where J j
t+1 =

∣∣∣dv j
t+1/dIVt+1

∣∣∣ is the Jacobian corresponding to regime state j. Recall that the

mapping from volatility state, v j
t , to IVt is given by IVt = Γ j[exp(v j

t /2)]. The Jacobian is obtained

from the derivative of the inverse of this. As in the preceding subsection, p(yt+1,v
j
t+1|yt ,vi

t ,st = i)

must be computed by summing across the number of potential jumps.

Parameter estimates are obtained by numerical optimization,

θ̂ = argmaxlogL({yt}n
t=1,{IVt}n

t=1;θ).

We use a BHHH optimizer (Berndt, Hall, Hall, and Hausman 1974), but the criterion function is

well-behaved and nearly any optimizer will work fine.
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2.3.4 Specification Tests

Our diagnostic tests are based on the idea of generalized residuals (Bai 2003, Duan 2003, and

others). Let {zt}n
t=1 be a sequence of random vectors where zt has distribution Gt(z|Ft−1). Let ut =

Gt(zt |Ft−1) (t = 1, . . . ,n). If the model is correctly specified, {ut} should be i.i.d. uniform(0,1).

The hypothesis that {Gt(zt |Ft−1;θ)} is the true data generating process for {zt} can be tested by

performing diagnostics on {ut}.

But, it is often more useful to instead perform diagnostics on

ũt = Φ
−1(ut), t = 1, . . . ,n (2.7)

where Φ is the standard normal distribution function. In this case, the transformed residuals {ũt}

should be i.i.d. standard normal under the hypothesis of correct model specification. It is these that

we shall refer to as generalized residuals.

For the models in this paper, the generalized residuals are computed in a manner similar to

equation (2.6),

ut+1 =
1

∑
i=0

1

∑
j=0

P(yt+1,v
j
t+1|yt ,vi

t ,st = i) · p(st+1 = j|st = i) · pi
t ,

where P(·) denotes a cdf. As before, this cdf must be computed by summing across the number of

potential jumps,

P(yt+1,v
j
t+1|yt ,vi

t ,st = i) =
NJmax

∑
k=0

P(yt+1,v
j
t+1|yt ,vi

t ,st = i,NJt = k)p(NJt = k).

These residuals correspond to the joint distribution of price and volatility innovations. Although

one could certainly study these, we have found it more useful to study marginal residuals corre-
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sponding to price and volatility innovations separately,

uy,t+1 =
1

∑
i=0

P(yt+1|yt ,vi
t ,st = i) · p(st = i)

uv,t+1 =
1

∑
i=0

1

∑
j=0

P(v j
t+1|yt ,vi

t ,st = i) · p(st+1 = j|st = i) · p(st = i).

In the diagnostics reported in our application, we always use the generalized residuals obtained by

applying the inverse normal cdf to these, ũy,t = Φ−1(uy,t) and ũv,t = Φ−1(uv,t).

Having constructed these generalized residuals, testing can proceed using standard time se-

ries techniques. There is a wide variety of techniques available to test that the residuals are inde-

pendent and normally distributed. In this paper, we look at Jarque-Bera tests and normal-quantile

plots to test normality, and Ljung-Box tests and correlograms to test for autocorrelation. We look

at Ljung-Box tests and correlograms for both the residuals as well as squared residuals. Tests

based on the squared residuals allow us to look for unexplained stochastic volatility in returns and

stochastic volatility of volatility. We have found these diagnostics to be helpful.

2.4 Empirical results

2.4.1 Data

The application uses daily S&P 500 index (SPX) option data from Jan 1, 1993 through Dec

31, 2008 (N = 4025). These data were obtained directly from the CBOE. To address the issue of

nonsynchronous closing times for the SPX index and option markets, SPX close prices are com-

puted using put-call parity based on closing prices for at-the-money options (see, e.g., Ait-Sahalia

and Lo 1998). Option prices are taken from the bid-ask midpoint at each day’s close. Options

with zero bid/ask prices or where the the bid-ask midpoint is less than 0.125 are discarded. We

also eliminate options violating the usual lower bound constraints. That is, we require C(t,τ,K)≥

max(0,xt exp(−qtτ)−K exp(−rtτ)) and P(t,τ,K) ≥ max(0,K exp(−rtτ)− xt exp(−qtτ)) where

C(t,τ,K) and P(t,τ,K) are the time t prices of call and put options with time-to-maturity τ and
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strike price K, x is the index price, q is the dividend payout rate, and r is the risk-free rate. Finally,

we require that valid prices exist for at least two out-of-the-money call and put options for each

day. Options are European, so there is no issue regarding early exercise premium.

Time-series of one-month risk-neutral volatility, skewness, and kurtosis are computed using

SPX option prices following the model-free approach of Bakshi, Kapadia, and Madan (2003).

Following Carr and Wu (2009), we use the two closest times to maturity greater than eight days

and linearly interpolate to construct 30 day constant maturity series. Jiang and Tian (2007) report

the possibility of large truncation and discretization errors in the VIX index. To reduce such errors,

we follow the approach of Carr and Wu (2009) in interpolating/extrapolating option prices on a

fine grid across moneyness.

Five-minute intraday S&P 500 index returns are used to compute measures of the variance

risk premium and jump risk. Since these variables are possibly related to option-implied skewness

and kurtosis, we include them as control variables in the regressions of option-implied skewness

and kurtosis on the regime state (Section 2.5). The high-frequency data were obtained from Tick-

Data.com.

Following Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold,

and Labys (2003), and Barndorff-Nielsen and Shephard (2002), daily realized volatility is obtained

by summing the squared intraday returns over each day,

RV(d)
t ≡

1/∆

∑
j=1

(
yt−1+ j∆− yt−1+( j−1)∆

)2

where ∆ is the sampling interval for the intraday data (we use five minute intervals). Monthly

realized volatility is obtained by summing the daily realized volatilities over the previous month,

RVt ≡
21

∑
i=0

RV(d)
t−i.

Following Carr and Wu (2009), we define the variance risk premium as the log difference
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between monthly realized variance and option-implied variance,

VRPt ≡ log
(
RVt/VIX2

t
)
,

where VIXt is the VIX index, divided by
√

12 to get a monthly volatility measure comparable to

RVt . We use the log difference because we find that it provides a better measure than the difference

in levels.

A measure of jump risk is obtained using the approach of Barndorff-Nielsen and Shephard

(2004). The bipower variation is given by

BV(d)
t ≡

π

2

1/∆

∑
j=2

(
yt−1+ j∆− yt−1+( j−1)∆

)(
yt−1+( j−1)∆− yt−1+( j−2)∆

)
.

The daily jump variation is defined by subtracting the daily bipower variation from the daily real-

ized volatility,

JV(d)
t ≡max(RV(d)

t −BV(d)
t ,0).

And, finally, the monthly jump variation is obtained by summing the the daily jump variations over

the previous month,

JVt ≡
21

∑
i=0

JV(d)
t−i.

We shall typically refer to RVt and JVt as the realized volatility and jump variation here-

after (omitting the “monthly" specifier). Note that these variables are defined using information

available at time t.

One- and three-month Treasury bill rates (obtained from the Federal Reserve website), in-

terpolated to match option maturity, are used as a proxy for the risk-free rate. Dividend rates are

obtained from the Standard and Poor’s information bulletin. Actual dividend payouts are used as a

proxy for expected payouts.

Throughout, time is measured in trading days. SPX returns and option-implied moments
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are plotted in Figure 2.1. Figure 2.2 shows scatter plots of option-implied skewness and kurtosis

versus option-implied volatility. Summary statistics are reported in Table 2.1.

2.4.2 Parameter estimates and model comparisons

Parameter estimates and log likelihoods for all of the models under consideration are shown

in Table 2.2. As found in previous work, including jumps in returns and volatility gives a large

improvement in log likelihood relative to a model with no jumps (over 300 points in log likelihood).

The SJ model (jumps scaled by volatility state) is strongly preferred over the UJ model (unscaled

jumps). The improvement is over 40 points in log likelihood with the same number of parameters.

In the scaled jump model, jumps are larger on average when overall volatility is high. In the

unscaled jump model, in contrast, jump sizes are identically distributed across time and unaffected

by the volatility state. Although models with unscaled jumps have been commonly used in previous

work, (e.g., Pan 2002; Eraker, Johannes, and Polson 2003; Broadie, Chernov, and Johannes 2007),

this form is not consistent with the data.

Including regime switching provides additional large improvements over the models with no

regime switching. The SJ model with regime switching in volatility of volatility (SJ-RV) offers an

improvement of 110 points in log likelihood relative to the corresponding model without regime

switching (SJ) at the cost of four additional parameters. Including regime switching in leverage

effect (SJ-RL) provides less of a gain, but still gives an improvement of 32 points in log likelihood

relative to the model without regime switching (SJ) at the cost of four additional parameters. In-

cluding regime-switching in both volatility of volatility and leverage effect (SJ-RVL) does slightly

better than either alone, with an improvement of 118 points in log likelihood relative to the SJ

model and five additional parameters.

To the extent that the models are nested, comparisons can be done by standard likelihood

ratio tests. For example, the following models nest: SJ-RVL > SJ-RV > SJ > SV. In pairwise

comparisons among these models, the larger model always rejects the smaller model, with p-values

ranging between .0001 and 10−153. The overall preferred model, SJ-RVL, rejects its non-regime-
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switching counterpart, SJ, with a p-value of about 10−48. This would typically be regarded as

convincing evidence. Note that while SJ does not include regime switching, it does include jumps

and is itself vastly better than the models with unscaled jumps (or no jumps at all) commonly used

in the existing literature.

A potentially more useful way to compare models is by using some form of information

criterion. Akaike and Schwarz information criteria are common choices. These are based on

comparison of log likelihood minus some penalty based on the number of free parameters in the

model. The Akaike information criterion uses a penalty equal to the number of free parameters,

while the Schwarz criterion (also known as the Bayesian information criterion) uses a penalty

equal to the number of free parameters times ln(n)/2, where n is the number of observations. For

either of these, the results are the same: SJ models are always preferred over their UJ counterparts.

Among SJ models, the ranking is SJ-RVL > SJ-RV > SJ-RL > SJ. The rankings are all decisive.

Our joint analysis of the physical and risk-neutral models allows us to estimate the parametric

variance risk premium. Since the variance risk premium may be dependent on regime states, we

allow the parameter that determines this premium, η, to be regime-dependent. For the SJ model

with regime switching in volatility of volatility (SJ-RV), η is larger in the high volatility of volatility

state than in the low one, i.e., η1 > η0. Since log volatility, vt , is always negative, this implies that

η1vt < η0vt . That is, higher volatility of volatility corresonds to a more negative variance risk

premium. This is consistent with theory (Bollerslev, Gibson, and Zhou 2011). Similarly, in the

models with regime switching in leverage effect (both SJ-RL and UJ-RL), the stronger leverage

effect state (more negative correlation between returns and volatility innovations) corresponds to a

more negative variance risk premium. This is also consistent with theory.

Time series plots of filtered values for the regime-dependent parameters in several models

are shown in Figure 2.3. For the models with regime switching in volatility of volatility, for ex-

ample, σt takes on two possible values (σ0 or σ1). The filter described in Section 2.3.2 provides

probabilities for each state conditional on available information, p j
t = p(st = j|Ft). Filtered esti-

mates of σt are thus given by σ̂t = Et [σ(st)] = p0
t σ0+ p1

t σ1 (t = 1, . . . ,n). An analogous procedure
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is used to compute ρ̂t (t = 1, . . . ,n) for the models with regime-switching leverage effect.

The jump models can be thought of as special cases of the regime-switching model where

the regime state (jump or no jump) does not depend on past information (i.e., the state variable

is i.i.d.). In our regime-switching models, in contrast, the state is quite persistent. Indeed, it is

precisely this persistence that accounts for the large improvements in log likelihood. With SJ-RV,

for example, the estimated persistence parameters are π0 = .98 and π1 = .94 (the probability of

staying in regime 0 or regime 1, respectively, from one day to the next). The expected duration of

stays is 50 days for regime 0 and 17 days for regime 1. By not accounting for persistence in the

state, the jump models leave a great deal of information on the table.

Expectations of future volatility of volatility and leverage effect are dramatically different

depending on the current regime. The estimated volatility of volatility parameters are 0.084 for

state 0 versus 0.133 for state 1 in the SJ-RV model. The estimated leverage parameters are -0.53

for state 0 versus -0.82 for state 1 in the SJ-RL model. Because of the high degree of persistence

in regime states, these differences remain even over relatively long time horizons. This is not

of purely theoretical interest. Any investors interested in the dynamics of volatility will find this

information useful. For example, volatility options and swaps are highly dependent on the volatility

of volatility. As discussed below, these persistent differences also affect the shape of the volatility

smirk.

2.4.3 Diagnostics

QQ-plots for return and volatility residuals are shown for several models in Figures 2.4 and

2.5. Correlograms are shown in Figure 2.6. Jarque-Bera and Ljung-Box statistics are shown in

Table 2.3.

Beginning with the qq-plots and Jarque-Bera statistics, including jumps in the model pro-

vides an enormous improvement over the model with no jumps, consistent with the previous lit-

erature. This is true regardless of the form of the jumps (SJ or UJ). However, the scaled jump

models (SJ) do much better than those with unscaled jumps (UJ), suggesting that the SJ models
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do a much better job of capturing non-normality in return and volatility innovations. For the SJ

models, including regime switching provides additional small improvements (for the UJ models,

only regime switching in leverage effect helps). The outperformance of the SJ models over the UJ

models is maintained even when the regime switching feature is added.

In any event, all of the models are rejected by the Jarque-Bera test at conventional signifi-

cance levels. Standard jump models, even with the addition of the regime switching feature, are

simply not flexible enough to capture accurately the true shape of the distribution of innovations.

Perhaps models with multiple jump processes might do better. Possible alternatives might be to

try using more flexible regime-switching models or modeling the bivariate distribution of return-

volatility innovations using mixtures of normals.

Turning now to the correlograms, all of the models do relatively well at eliminating autocor-

relation in return residuals. On the other hand, all of the models fail with respect to the volatility

residuals, which show significant negative autocorrelation for the first several lags. This is sug-

gestive of the existence of a second volatility factor omitted by the model (e.g., Gallant, Hsu, and

Tauchen 1999; Chacko and Viceira 2003; Christoffersen, Heston, and Jacobs 2009).

All of the models except those with regime switching in volatility of volatility also show a

large amount of unexplained autocorrelation in squared volatility residuals. This is suggestive of

stochastic volatility of volatility. Although the regime-switching model implements a very simple

form of stochastic volatility of volatility, it is a substantial improvement over the other models.

The fact that none of the models are able to pass the full set of diagnostics may seem disap-

pointing, but should not really be viewed as such. The models proposed in this paper still perform

dramatically better than other commonly-used models. The data set is very rich, with 4025 ob-

servations on both price and volatility. The idea that one might fully capture the behavior of this

data in a model with just a dozen or so parameters is highly optimistic. Furthermore, the diag-

nostics provide useful information on failure modes which can help to direct future work. Strong

diagnostics are a good thing, not a bad thing.
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2.5 Explanatory power for option-implied skewness and kurtosis

Sections 2.4.2 and 2.4.3 show that the regime switching models provide dramatic improve-

ments in fitting the joint dynamics of returns and the volatility state. Both time-varying leverage

effect and stochastic volatility of volatility are important. Furthermore, the regimes corresponding

to high and low states of both variables are highly persistent, implying that there is considerable

predictability regarding future regime states. In addition, each of these variables has a direct effect

on the shape of return distributions. As noted by Das and Sundaram (1999), standard jump models

can add skewness and kurtosis to the distribution of returns, but primarily at short horizons. The

effect dissipates relatively quickly. Increasing either the correlation between return and volatility

innovations (leverage effect) or volatility of volatility also adds skewness and kurtosis to return

distributions. The effects of these variables are weaker at short horizons but more persistent.

Option prices provide an alternative source of information about the distribution of returns

at various horizons, but under the risk-neutral rather than physical measure. Features of these

distributions that are of potential interest include variance, skewness, and kurtosis, as well as the

term structure of variance. These characteristics all exhibit considerable variation across time. A

great deal of attention has been devoted to models that describe time-variation in the variance in

returns, but less attention has been paid to the other features.

The issue of interest here is whether time-varying characteristics of the physical dynamics of

returns have explanatory power for time-variation in the shape of the risk-neutral distribution (or

equivalently, in the shape of the volatility smirk). An alternative explanation is that time-variation

in the shape of the risk-neutral distribution is due largely or entirely to changes in risk premia.

Based on observed data, option-implied skewness and kurtosis are related to the level of the

volatility state, but the relationship is weak. This suggests that models with volatility as the only

state variable will be able to explain only a small part of the time-variation exhibited by the shape

of the risk-neutral distribution (or equivalently, the implied volatility smirk). Including jumps

and jump risk premia in various configurations can help match the average shape of the implied
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volatility smirk, but will never be able to explain time variation that is independent of the volatility

state unless an additional state variable is introduced.

In this section, we examine whether the regime states implied by our regime-switching mod-

els have any explanatory power for the shape of the risk neutral distribution. Recall that option-

implied skewness and kurtosis are not used in the estimation, which makes this diagnostic mean-

ingful.

Given a model for the price of an asset and values for any relevant state variables, one can

easily obtain the model-implied distribution of returns at any horizon using Monte Carlo methods.

We will refer to these as model-implied skewness and kurtosis. Given time series for option-

implied volatility and skewness (or kurtosis) and a model with two state variables (such as our

regime-switching models), it is not difficult to find model parameters and values for the state

variables such that model-implied and option-implied characteristics match exactly. To the extent

that implied physical and risk-neutral model parameters differ, these differences would typically be

attributed to risk premia. However, since this approach confounds the information from physical

dynamics and option prices, it is difficult to tell if the implied variation in states (e.g., leverage

effect or volatility of volatility) is truly evident in the physical model or just an artifact of trying to

match the shape of the volatility smile. The problem here is a pervasive one in the option-pricing

literature. It is possible to fit even a badly misspecified model to the data. The fitted model is

likely to generate spurious risk premia, but the exact source and extent of the misspecification are

difficult to diagnose.

The approach that we take in this paper is different. While we match option-implied volatility

exactly, we do not use the information on option-implied skewness and kurtosis in the estimation.

In particular, we make no effort to use the information in option prices to come up with model

parameters and regime states such that option-implied and model-implied skewness or kurtosis

match exactly. We also do not look for risk premia which cause the models to fit the shape of the

implied volatility smirk on average. Rather, we fit the models using only information from returns

and implied volatility. We are then able to make a clear and unambiguous examination of the extent
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to which the implied states are informative about variation across time in observed option-implied

skewness and kurtosis.

One possible hypothesis is that time variation in the shape of the risk-neutral distribution is

due exclusively to time-varying risk premia. We are able to reject this hypothesis decisively.

The idea is to regress option-implied skewness and kurtosis on the regime state, controlling

for other possible determinants. As described in Section 2.3, it is not possible based on observed

data to determine the regime state conclusively. The available information consists of filtered

probabilities, p j
t = p(st = j|Ft) ( j = 0,1). The operational regression equations are thus

SKEWt = β0 +βRVŝRV
t +βRLŝRL

t +βVIX logVIXt +βJV logJVt +βVRPVRPt + εt

KURTt = β0 +βRVŝRV
t +βRLŝRL

t +βVIX logVIXt +βJV logJVt +βVRPVRPt + εt

(2.8)

where ŝRV
t denotes the filtered state under the models with regime switching in volatility of volatil-

ity and ŝRL
t denotes the filtered state under the models with regime switching in leverage effect

(as described in Section 2.3.2). We also include several control variables. VIXt is the VIX index,

which serves as a proxy for the volatility state. VRPt is the variance risk premium, which Boller-

slev, Gibson, and Zhou (2011) argue reflects information on variation across time in investors’ risk

aversion. Option-implied skewness and kurtosis may also be affected by the market expectation of

jump risk. We proxy for this by using the past one-month jump variation, JVt . A more detailed

description of these variables may be found in Section 2.4.1. We first run the regressions on the

control variables alone, and then add the regime states to the regressions to see if there is a sig-

nificant increase in explanatory power. We report Newey-West robust t-statistics over eight lags

(Newey and West 1987) and adjusted R2. For completeness, results are reported for the regressions

based on filtered regime states from both SJ and UJ models.

Table 2.4 shows the regressions for option-implied skewness. We first discuss the contri-

butions of the control variables toward explaining option-implied skewness. The volatility state

(VIX) is highly significant for all models and regardless of whether the regime state is included in

the regression. The coefficient is always positive, meaning that low volatility states are associated
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with more left-skewed return distributions. This is consistent with Dennis and Mayhew (2002),

who report a similar finding for individual stocks. Jump risk (JV) is also highly significant for all

models. The coefficient is always negative, suggesting that greater jump risk is associated with

more left-skewed return distributions under the risk-neutral measure. This is consistent with intu-

ition. In contrast, we do not find the variance risk premium (VRP) to be significant when the other

control variables are included.

Although the volatility state is highly significant, it has relatively low explanatory power for

option-implied skewness, with an adjusted R2 of 7.6%. All of the control variables together are

able to explain only 9.2% of the time-variation in option-implied skewness. This low explanatory

power suggests that models with only a single state variable (volatility) will not be able to match

time-varying patterns in the Black-Scholes volatility smirk realistically.

Including the filtered regime state in the regressions provides a dramatic improvement in ex-

planatory power. This is true regardless of the particular model used. SJ models always outperform

the corresponding UJ models. Including the regime state from the models with regime-switching

in volatility of volatility (SJ-RV and UJ-RV) is slightly better than including the regime state from

the models with regime-switching in leverage effect (SJ-RL and UJ-RL). But the clear winner is

the model which includes regime states from both regime switching models (RV and RL). The

states corresponding to volatility of volatility and regime switching each have substantial explana-

tory power when included in the regression alone. But, these two variables serve as complementary

sources of information. For the regressions using states generated from the SJ models (together

with all control variables), the R2 is 18-19% when either the RV or RL states are included indi-

vidually, but jumps to over 32% when both are included. The rankings here are consistent with

those implied by the model comparisons described in Sections 2.4.2 and 2.4.3. But, it is important

to recognize that this result is not necessarily expected a priori since the dependent variable here,

implied skewness, was not involved in fitting those models. The entire point of performing the

study in this manner is to enable regressions such as those under examination in this section as

meaningful diagnostics.
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For the SJ-RV model (regime-switching in volatility of volatility), the coefficient on the

regime state is highly significant and in the expected direction. For the full regression (including

regime state and all control variables), the estimated slope coefficient for the regime state is -0.61,

indicating that a change from state 0 to state 1 is associated with a 0.61 decrease in skewness (i.e.,

the distibution is substantially more left skewed in the high volatility of volatility state). The t-

statistic is -9.95, corresponding to a p-value of around 10−22. This model has good explanatory

power, with an adjusted R2 of 19.0% (versus 9.2% for the control variables alone). These results

are both statistically and economically significant.

The SJ-RL model (regime switching in leverage effect) provides comparable performance.

The coefficient on the regime state is highly significant and in the expected direction. For the

full regression (including regime state and all control variables), the estimated slope coefficient is

-0.60, indicating that a change from state 0 to state 1 is associated with a 0.60 decrease in skewness

(i.e., the distibution becomes substantially more left skewed in the state with the stronger leverage

effect). The t-statistic is -7.17, corresponding to a p-value of around 10−15. This model has an

adjusted R2 of 18.3%.

We also ran the regression using regime states from the models with regime switching in both

volatility of volatility and leverage effect (SJ-RVL and UJ-RVL), but do not report the results in

the table out of space considerations. For the SJ-RVL regression (including all control variables),

the slope coefficient for the regime state is -0.65 with a t-statistic of -11.50, indicating a slightly

stronger effect than in the other models. The adjusted R2 is 23.0%, which indicates slightly better

explanatory power than the more constrained models.

But the regressions including regime states from both RV and RL models do substantially

better than any of those which include only a single regime state. It is important to understand the

difference between these regression and the ones involving regime states from the RVL models. In

the RVL models, both volatility of volatility and leverage effect are state dependent, but there is

only a single state variable controlling both. In the regression including regime states from both

RV and RL models, there are two different regime state variables involved. A priori, it is unknown
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whether the two states contain largely the same or significantly different information. It turns out

that the states provide different information. The slope coefficients change little when both states

are included in the model (relative to including them individually), they are even more significant

(based on t-statistics), and the increase in explanatory power is substantial.

Table 2.5 shows analagous regressions for option-implied kurtosis. The results are qualita-

tively similar to those for option-implied skewness. The volatility state (VIX) is highly significant

for all models and regardless of whether the regime state is included in the regression. The coef-

ficient is negative, implying that low volatility states are associated with fatter-tailed return distri-

butions. Jump risk (JV) is positively related to kurtosis. That is, the risk-neutral distribution tends

to be more fat-tailed when jump risk is high, consistent with intuition. Although the variance risk

premium (VRP) is highly significant when jump risk is omitted from the regression, it has little

explanatory power when jump risk is included.

Including the regime state in the regression provides additional improvement in explanatory

power. As with option-implied skewness, SJ models always outperform the corresponding UJ

models. Slope coefficients for the regime state have the expected signs. That is, higher volatility of

volatility and stronger leverage effect are both associated with more kurtotic return distributions.

Including the regime state corresponding to regime switching in leverage effect does better

here than including the regime state corresponding to regime switching in volatility of volatility

(adjusted R2 of 22.9% for SJ-RL versus 18.1% for SJ-RV). As is the case with implied skewness,

including both regime states in the regression is better yet, with an R2 of 25.8%. In the full model,

slope coefficients are 3.11 and 5.19 (with t-statistics of 5.52 and 8.66) for the SJ-RV and SJ-RL

states respectively. These are both economically and statistically significant.

Pan (2002) and Broadie, Chernov, and Johannes (2007) argue that the existence of a jump

risk premium could have a significant effect on the shape of the volatility smirk. However, their

models include only a single state variable and are not able to fit time variation in the shape of the

volatility smirk that is independent of the volatility state. The goal of this paper is very different

from those. In particular, our objective is to identify model characteristics that could be responsible
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for time variation in the shape of the volatility smirk. Also, whereas those papers rely substantially

on risk premia in jump sizes to fit the smirk, our focus is on whether there is information present

in the physical measure that is related to changes in the shape of the smirk. The issue of whether

information exists in the physical measure that is related to features of observed option prices

is important. Any differences between the dynamics implied by the physical measure and those

implied by option prices will be ascribed to risk premia. But if models are misspecified, then the

risk premia “discovered" in this way are likely to be just artifacts.

On the other hand, we make no effort to investigate factors underlying the average shape of

the smirk, and thus have nothing to say about the issue of whether the smirk is, on average, due to

jumps or some other factor. Among other things, the relative importance of various potential factors

toward explaining the shape of the smirk will depend on the time-horizon under consideration. As

pointed out by Das and Sundaram (1999), jumps can have a large effect on the skewness of return

distributions over short horizons, but the effects dissipate relatively quickly. The leverage effect

and volatility of volatility have less of an effect at short horizons, but the effects are more persistent.

Sorting out the relative importance of these factors would require looking at the term structure of

the smirk (which this paper makes no attempt to do).

We did, nonetheless, investigate models with regime switching in jump intensity, but did not

find such models to be useful for the purposes of this paper. These models were heavily domi-

nated by the other regime switching models in terms of log likelihood and the model diagnostics

discussed in Sections 2.4.2 and 2.4.3. They also did not prove informative in terms of explanatory

power for option-implied skewness or kurtosis, as discussed in this section. On the other hand, our

regression results do include the jump variation variable (JV) as a control. We find this variable to

have useful explanatory power.

In a nutshell, we find that the regime states corresponding to both volatility of volatility and

leverage effect have strong explanatory power for option-implied return distributions. Models used

in simultaneous estimation of physical and risk-neutral measures typically use only a single state

variable, volatility. While there is some linkage between the volatility state and the shape of the
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implied-volatility smirk, the relationship is relatively weak. If such models are taken seriously,

one must conclude that most of the time-variation in the shape of the implied-volatility smirk

is due to unmodelled changes in risk premia. The results of this study are important because

they demonstrate a model in which observable phenomena in the physical measure have strong

explanatory power for time-variation in the shape of the implied-volatility smirk.

2.6 Conclusion

This paper proposes a new class of models that layer regime switching on top of a standard

stochastic volatility model with jumps in both returns and volatility. Motivated by the time-varying

nature of option-implied skewness and kurtosis that is a prominent feature of observed data, we al-

low for regime switching in two parameters of the basic model: volatility of volatility and leverage

effect. Both parameters play important roles in determining the skewness and kurtosis of returns.

The regime-switching framework is useful because it is the simplest possible approach that in-

corporates time-variation in the parameters of interest. We make no effort to attach a particular

meaning to the regime states, but regard this simply as a convenient framework for generating a

flexible family of models capable of capturing features of the data that are of interest.

The application looks at SPX index and option data. In the first step of the analysis, we

estimate the models relying only upon observations of the index price and option-implied volatil-

ity. This allows us to use observations on option-implied skewness and kurtosis for diagnostic

purposes.

The models with regime switching fit the data dramatically better than those without regime

switching. Accounting for time-variation in the volatility of volatility or leverage effect not only

increases log likelihood significantly, but also provides improvements in other diagnostics of model

fit. The best model in this dimension is the one with regime-switching in both the volatility of

volatility and leverage effect.

While this first step of the analysis provides strong evidence of time-variation in model

characteristics that are related to the shape of return distributions under the physical measure,
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the second step investigates the relationship between these characteristics and the skewness and

kurtosis of returns under the risk-neutral measure (i.e, implied by observed option prices). This

part of the study is carried out by running regressions of option-implied skewness and kurtosis on

the regime states extracted in the estimation step (and several control variables).

We find that the models have strong explanatory power. In other words, there is a strong

relationship between model characteristics related to the shape of return distributions under the

physical measure and the skewness and kurtosis of return distributions implied by option prices.

Although commonly-used models in the existing literature include volatility as the only state vari-

able, this variable has an adjusted R2 of only 7.6% for option-implied skewness. Other control

variables that we look at include nonparametric measures of jump risk and volatility risk premium.

These are both obtained from high-frequency data (5 minute intraday returns). All of the control

variables together explain only 9.2% of the variation in implied skewness. In contrast, regressions

that include either the regime state corresponding to volatility of volatility or leverage effect (to-

gether with the control variables) have an adjusted R2 of 18-19%. When both states are included

in the regression, the adjusted R2 is over 32%. Slope coefficients on the regime states are highly

significant and in the expected direction. For example, t-statistics are greater than 11 (in absolute

value) for the regression of implied skewness on both regime states and all of the control variables

(SJ form of jumps). Option-implied return distributions tend to be more left-skewed and leptokur-

tic when volatility of volatility is high or leverage effect is strong (i.e., correlation between returns

and volatility innovations is more negative). Results for option-implied kurtosis are qualitatively

similar though weaker.

We also find that the specification of jump form is important both in fitting the time-series

data of returns and volatility as well as in explaining variation in option-implied skewness and

kurtosis. Volatility-scaled jumps (SJ) outperform unscaled jumps (UJ) in both respects.
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Table 2.1: Summary statistics.

The sample period covers January 1993 to December 2008. ∆ log(SPXt) refers to S&P 500 index log
returns. VIXt is the VIX index, divided by

√
12 to get a monthly volatility measure for comparison. IVt ,

SKEWt , and KURTt denote the one-month option-implied volatility, skewness, and kurtosis, computed
using the model-free approach of Bakshi, Kapadia, and Madan (2003). RVt and JVt are the realized volatility
and the jump variation, calculated using five-minute high-frequency data over the past 22 trading days.
VRPt ≡ log(RVt/VIX2

t ) denotes the variance risk premium. AR(i) means the i-lagged autocorrelation.

Mean Min Max STD Skewness Kurtosis AR(1) AR(5) AR(22)
∆ log(SPXt) 0.00 -0.09 0.11 0.01 -0.24 13.11 -0.06 -0.04 0.05
VIXt (%) 5.73 2.69 23.34 2.40 2.23 11.91 0.98 0.94 0.78
IVt (%) 5.62 2.22 24.46 2.55 2.26 12.31 0.98 0.94 0.79
SKEWt -1.69 -3.75 -0.41 0.49 -0.54 3.25 0.90 0.80 0.63
KURTt 9.55 3.34 34.94 4.56 1.62 6.22 0.83 0.73 0.57
RVt (%2) 21.79 1.58 457.27 40.45 6.72 57.28 1.00 0.97 0.68
JVt (%2) 3.33 0.12 83.09 6.89 7.19 67.06 0.99 0.95 0.65
VRPt -0.88 -2.16 0.82 0.42 0.16 3.07 0.96 0.83 0.50
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Table 2.2: Parameter Estimates.

The sample period covers January 1993 through December 2008 (N = 4025). Standard errors are in paren-
theses. Time is measured in trading days.

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

µ×104 4.69 3.70 3.08 3.03 2.07 3.42 3.08 3.00 2.08
(1.27) (1.28) (1.25) (1.25) (1.25) (1.26) (1.23) (1.25) (1.25)

κ×103 4.29 6.00 6.69 6.34 11.07 7.48 7.36 6.27 11.04
(1.29) (1.35) (1.33) (1.32) (1.28) (1.35) (1.34) (1.32) (1.28)

v -9.71 -10.03 -9.70 -10.06 -9.63 -10.00 -9.80 -9.98 -9.63
(0.55) (0.38) (0.36) (0.32) (0.20) (0.32) (0.33) (0.33) (0.20)

η0×103 3.01 2.84 3.84 2.86 4.18 2.49 2.72 3.01 4.20
(0.25) (0.36) (0.35) (0.42) (0.36) (0.47) (0.44) (0.37) (0.36)

η1×103 2.97 2.46 3.39 4.27 2.66 2.46
(0.59) (0.41) (0.40) (0.38) (0.54) (0.42)

σ0×101 1.32 0.91 1.23 0.84 1.18 0.99 1.25 0.85 1.18
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

σ1×101 1.33 2.12 1.33 2.12
(0.06) (0.06) (0.05) (0.06)

ρ0 -0.74 -0.78 -0.82 -0.81 -0.91 -0.53 -0.61 -0.77 -0.91
(0.01) (0.01) (0.01) (0.01) (0.01) (0.04) (0.03) (0.01) (0.01)

ρ1 -0.82 -0.85 -0.87 -0.91
(0.01) (0.01) (0.02) (0.01)

ρJ -0.71 -0.53 -0.70 -0.05 -0.77 -0.72 -0.69 -0.04
(0.03) (0.04) (0.03) (0.10) (0.03) (0.04) (0.03) (0.10)

λ 0.47 0.33 0.55 1.08 0.30 0.15 0.46 1.08
(0.06) (0.04) (0.09) (0.14) (0.04) (0.02) (0.07) (0.15)

µ1J×102 -1.13 0.05 -4.52 0.08 -11.90 -0.05 -3.78 0.08
(6.59) (0.04) (6.38) (0.02) (8.78) (0.07) (6.98) (0.02)

σ1J×101 12.94 0.06 12.44 0.03 13.42 0.08 12.30 0.03
(0.75) (0.00) (0.77) (0.00) (0.85) (0.01) (0.77) (0.00)

µ2J×101 2.79 0.24 3.39 0.09 3.59 0.44 3.04 0.08
(0.69) (0.07) (0.66) (0.04) (0.95) (0.13) (0.70) (0.04)

σ2J 1.54 0.15 1.15 0.05 1.72 0.21 1.25 0.05
(0.07) (0.01) (0.07) (0.01) (0.09) (0.01) (0.07) (0.01)

π0 0.98 0.98 0.97 0.96 0.99 0.98
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

π1 0.94 0.94 0.99 0.98 0.96 0.94
(0.01) (0.01) (0.00) (0.01) (0.01) (0.01)

log(L) 38,491 38,851 38,810 38,961 38,960 38,883 38,858 38,969 38,960
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Table 2.3: Diagnostic tests for generalized residuals.

Test statistics are shown with p-values in parentheses.

Jarque-Bera Test

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

Return 445 20 113 17 245 10 50 19 246
(0.000) (0.000) (0.000) (0.000) (0.000) (0.006) (0.000) (0.000) (0.000)

Volatility 2,367 22 121 20 318 8 30 15 320
(0.000) (0.000) (0.000) (0.000) (0.000) (0.018) (0.000) (0.001) (0.000)

Ljung-Box Test (with 20 lags)

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

Return 43 41 41 41 40 41 40 41 40
(0.002) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

Volatility 116 118 116 115 100 115 114 116 100
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Squared Vol. 419 552 424 128 74 559 446 118 74
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)



92

Table 2.4: Regressions for option-implied skewness.

The table reports the results of the following regression,

SKEWt = β0 +βRVŝRV
t +βRLŝRL

t +βVIX logVIXt ++βJV logJVt +βVRPVRPt + εt .

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period covers January
1993 to December 2008. SKEWt denotes the one-month option-implied skewness. Filtered regime states
are ŝRV

t and ŝRL
t for volatility of volatility and leverage effect respectively. The control variables are the VIX

index, jump variation (JV), and variance risk premium (VRP). Results are shown for filtered states from
both SJ (scaled jumps) and UJ (unscaled jumps) models.

Constant ŝRV
t ŝRL

t logVIXt logJVt VRPt Adj. R2

coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat

Control variables only
-2.78 (-16.43) 0.37 (6.53) 7.6%
-3.38 (-12.02) 0.60 (5.94) -0.10 (-3.21) 9.2%
-2.75 (-13.84) 0.36 (4.97) 0.000 (-0.32) 7.6%
-3.39 (-11.76) 0.60 (5.37) -0.10 (-2.19) 0.008 (0.11) 9.2%

Control variables plus filtered states from SJ models
-2.82 (-18.07) -0.56 (-9.02) 0.44 (8.48) 16.2%
-3.63 (-14.57) -0.61 (-9.98) 0.74 (8.42) -0.13 (-5.01) 19.0%
-3.17 (-16.19) -0.59 (-9.62) 0.51 (8.87) -0.167 (-3.73) 17.9%
-3.62 (-14.45) -0.61 (-9.95) 0.74 (7.72) -0.12 (-3.18) -0.007 (-0.11) 19.0%

-2.82 (-15.39) -0.62 (-7.37) 0.54 (7.15) 17.5%
-3.25 (-12.37) -0.60 (-7.17) 0.69 (7.10) -0.07 (-2.23) 18.3%
-3.01 (-15.20) -0.61 (-7.31) 0.57 (7.87) -0.092 (-1.91) 18.0%
-3.25 (-11.86) -0.60 (-7.17) 0.69 (6.18) -0.07 (-1.45) -0.007 (-0.10) 18.3%

-2.87 (-18.05) -0.71 (-11.53) -0.76 (-10.66) 0.65 (10.36) 30.6%
-3.52 (-16.28) -0.74 (-12.04) -0.74 (-10.77) 0.89 (11.23) -0.10 (-4.02) 32.3%
-3.17 (-18.84) -0.73 (-11.88) -0.75 (-10.90) 0.71 (12.00) -0.143 (-3.35) 31.8%
-3.50 (-15.73) -0.74 (-12.03) -0.74 (-10.77) 0.87 (9.82) -0.09 (-2.40) -0.028 (-0.45) 32.3%

Control variables plus filtered states from UJ models
-2.62 (-16.06) -0.44 (-7.48) 0.36 (6.81) 14.2%
-3.41 (-13.30) -0.48 (-8.59) 0.66 (7.33) -0.13 (-4.97) 17.0%
-2.96 (-14.77) -0.47 (-8.14) 0.43 (7.36) -0.168 (-3.68) 15.9%
-3.41 (-13.12) -0.48 (-8.56) 0.66 (6.65) -0.13 (-3.14) -0.007 (-0.10) 17.0%

-2.93 (-15.91) -0.50 (-6.57) 0.53 (7.43) 14.0%
-3.45 (-12.68) -0.48 (-6.56) 0.73 (7.19) -0.08 (-2.77) 15.2%
-3.16 (-15.27) -0.49 (-6.61) 0.58 (8.05) -0.110 (-2.32) 14.8%
-3.45 (-12.27) -0.48 (-6.55) 0.72 (6.39) -0.08 (-1.82) -0.005 (-0.07) 15.2%

-2.76 (-16.64) -0.57 (-10.09) -0.65 (-9.82) 0.56 (9.35) 24.7%
-3.52 (-15.05) -0.61 (-11.07) -0.64 (-10.25) 0.85 (10.04) -0.12 (-4.79) 27.2%
-3.11 (-17.14) -0.60 (-10.71) -0.65 (-10.21) 0.64 (10.76) -0.169 (-3.88) 26.4%
-3.50 (-14.63) -0.62 (-11.03) -0.64 (-10.22) 0.83 (8.92) -0.11 (-2.91) -0.028 (-0.44) 27.2%
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Table 2.5: Regressions for option-implied kurtosis.

The table reports the results of the following regression,

KURTt = β0 +βRVŝRV
t +βRLŝRL

t +βVIX logVIXt +βJV logJVt +βVRPVRPt + εt .

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period covers January
1993 to December 2008. KURTt denotes the one-month option-implied kurtosis. Filtered regime states are
ŝRV

t and ŝRL
t for volatility of volatility and leverage effect respectively. The control variables are the VIX

index, jump variation (JV), and variance risk premium (VRP). Results are shown for filtered states from
both SJ (scaled jumps) and UJ (unscaled jumps) models.

Constant ŝRV
t ŝRL

t logVIXt logJVt VRPt Adj. R2

coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat

Control variables only
20.22 (12.46) -3.66 (-6.96) 8.4%
32.99 (13.34) -8.40 (-9.68) 2.02 (8.02) 16.6%
19.23 (11.34) -3.21 (-5.64) 0.02 (2.22) 8.7%
32.49 (13.23) -7.98 (-8.74) 1.72 (4.94) 0.65 (1.08) 16.7%

Control variables plus filtered states from SJ models
20.31 (12.67) 1.44 (2.44) -3.81 (-7.45) 9.0%
33.86 (14.27) 2.18 (3.90) -8.91 (-10.83) 2.14 (8.93) 18.0%
26.82 (14.40) 1.99 (3.49) -5.18 (-9.70) 3.03 (7.22) 15.5%
33.33 (14.19) 2.19 (3.93) -8.46 (-9.80) 1.82 (5.38) 0.70 (1.18) 18.1%

20.51 (12.11) 5.14 (7.03) -5.00 (-7.57) 16.2%
31.98 (13.75) 4.60 (7.13) -9.14 (-10.79) 1.82 (7.12) 22.8%
26.15 (14.73) 4.84 (7.30) -6.06 (-10.03) 2.65 (6.33) 21.2%
31.39 (13.39) 4.62 (7.16) -8.65 (-9.55) 1.47 (4.20) 0.76 (1.33) 22.9%

20.69 (12.63) 2.50 (4.31) 5.63 (8.11) -5.40 (-8.68) 18.0%
33.09 (15.13) 3.09 (5.47) 5.17 (8.60) -9.95 (-12.69) 1.96 (8.16) 25.6%
26.81 (15.80) 2.97 (5.22) 5.40 (8.74) -6.62 (-11.87) 2.86 (7.03) 23.8%
32.44 (14.75) 3.11 (5.52) 5.19 (8.66) -9.41 (-11.24) 1.57 (4.71) 0.85 (1.51) 25.8%

Control variables plus filtered states from UJ models
20.00 (12.07) 0.59 (1.07) -3.64 (-6.94) 8.5%
33.07 (13.62) 1.34 (2.64) -8.58 (-10.20) 2.12 (8.74) 17.3%
26.18 (13.80) 1.14 (2.19) -4.91 (-9.05) 2.99 (7.06) 14.8%
32.55 (13.52) 1.36 (2.68) -8.13 (-9.20) 1.80 (5.28) 0.69 (1.15) 17.4%

21.47 (12.52) 4.21 (6.24) -5.00 (-7.85) 13.7%
33.56 (13.99) 3.91 (6.57) -9.43 (-10.79) 1.93 (7.63) 21.1%
27.40 (14.89) 4.08 (6.64) -6.16 (-10.24) 2.80 (6.73) 19.3%
32.99 (13.74) 3.93 (6.59) -8.95 (-9.73) 1.58 (4.56) 0.75 (1.32) 21.3%

21.01 (12.26) 1.54 (2.88) 4.63 (7.10) -5.09 (-8.34) 14.6%
33.79 (14.66) 2.25 (4.48) 4.49 (7.87) -9.89 (-12.00) 2.07 (8.58) 23.0%
27.21 (15.19) 2.10 (4.10) 4.64 (7.87) -6.36 (-11.31) 3.00 (7.33) 20.9%
33.16 (14.40) 2.27 (4.54) 4.52 (7.90) -9.35 (-10.81) 1.69 (5.06) 0.84 (1.48) 23.2%
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Figure 2.1: Time series of S&P 500 returns, option-implied volatility, option-implied skewness,
and option-implied kurtosis.
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Figure 2.2: Scatter plots of option-implied skewness and kurtosis against option-implied volatility.
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Figure 2.4: QQ plots for generalized residuals, SV and SJ models.
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Figure 2.5: QQ plots for generalized residuals, SJ-RV and SJ-RL models.
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Figure 2.6: Correlograms for SJ and SJ-RV models.

Dotted lines show the 95% confidence band.
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