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Abstract 10 
 Low-cost air quality sensors can help increase spatial and temporal resolution of air 11 
pollution exposure measurements. These sensors, however, most often produce data of lower 12 
accuracy than higher-end instruments. In this study, we investigated linear and random forest 13 
models to correct PM2.5 measurements from the Denver Department of Public Health and 14 
Environment (DDPHE)’s network of low-cost sensors against measurements from co-located U.S. 15 
Environmental Protection Agency Federal Equivalence Method (FEM) monitors. Our training set 16 
included data from five DDPHE sensors from August 2018 through May 2019. Our testing set 17 
included data from two newly deployed DDPHE sensors from September 2019 through mid-18 
December 2019. In addition to PM2.5, temperature, and relative humidity from the low-cost 19 
sensors, we explored using additional temporal and spatial variables to capture unexplained 20 
variability in sensor measurements. We evaluated results using spatial and temporal cross-21 
validation techniques. For the long-term dataset, a random forest model with all time-varying 22 
covariates and length of arterial roads within 500 meters was the most accurate (testing RMSE = 23 
2.9 µg/m3 and R2 = 0.75; leave-one-location-out (LOLO)-validation metrics on the training set: 24 
RMSE = 2.2 µg/m3 and R2 = 0.93). For on-the-fly correction, we found that a multiple linear 25 
regression model using the past eight weeks of low-cost sensor PM2.5, temperature, and humidity 26 
data plus a near-highway indicator predicted each new week of data best (testing RMSE = 3.1 27 
µg/m3 and R2 = 0.78; LOLO-validation metrics on the training set: RMSE = 2.3 µg/m3 and R2 = 28 
0.90). The statistical methods detailed here will be used to correct low-cost sensor measurements 29 
to better understand PM2.5 pollution within the city of Denver. This work can also guide similar 30 
implementations in other municipalities by highlighting the improved accuracy from inclusion of 31 
variables other than temperature and relative humidity to improve accuracy of low-cost sensor 32 
PM2.5 data.  33 
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1. Introduction 37 
 Low spatial coverage of air pollution monitors is a major barrier to quantifying the air 38 
pollution to which people are exposed and investigating the health impacts of this exposure. In 39 
2019, the global mean population distance to the nearest PM2.5 (atmospheric particulate matter 40 
with aerodynamic diameter of less than 2.5 µm) monitor was 220 km (Martin et al., 2019). In the 41 
U.S., more than 70% of counties do not have regulatory PM2.5 monitoring (Bi et al., 2020). This 42 
shortage of air quality measurements prevents accurate exposure assessment for epidemiological 43 
studies of the health impacts of air pollution.  44 

 Low-cost sensors allow for a higher density network of air quality monitors to be deployed 45 
across a city, assuming the same municipal air quality monitoring budget. In addition to 46 
community education and hazard warning systems (Kumar et al., 2015), deploying such a network 47 
creates opportunities for detection of air pollution hotspots or high-pollution sources, reactive 48 
(“smart city”) systems (such as dynamic traffic controls based on pollution levels), and improved 49 
environmental health research (Budde et al., 2014). The downside of low-cost sensors is that they 50 
most often produce data of lower accuracy (in terms of bias, noise, etc.) than federal reference 51 
method (FRM) or federal equivalence method (FEM) monitors (Cromar et al., 2019; Bi et al., 52 
2020).  53 

 One remedy for low-cost sensors’ inaccuracy is the development of statistical models to 54 
correct measurements from low-cost sensors to measurements from a collocated FRM or FEM 55 
monitor. Many commercial sensors are nominally corrected (calibrated) in laboratory settings but 56 
training the correction model on field data is generally more accurate because then the sensor 57 
experiences more realistic meteorological and air pollution conditions (Kumar et al., 2015; Castell 58 
et al., 2017). Correction or calibration models for air pollution sensors can be characterized by the 59 
extent to which they are based on known physical properties of the atmosphere and sensors and/or 60 
based on empirical observations from the sensors. In this paper, we focus on the latter type of 61 
correction model, which Malings et al. (2019b) showed tend to be as accurate as correction models 62 
based on physical properties. For low-cost particulate matter sensors, recent studies have used 63 
linear regression (Holstius et al., 2014; Magi et al., 2020; Zusman et al., 2020) and higher-order 64 
polynomial regression (Gao et al., 2015; Malings et al., 2019b) and machine learning algorithms 65 
such as extreme gradient boosting (Si et al., 2020) and artificial neural networks (Badura et al., 66 
2019; Si et al., 2020). Researchers have also found that a blend of statistical models, for example 67 
linear regression with different coefficients above a threshold (Malings et al., 2019b) and gaussian 68 
process regression (kriging) combined with linear regression (Zheng et al., 2019) can help to 69 
capture nonlinear sensor response.  70 

 Because many air quality sensors’ readings are influenced by temperature and humidity, 71 
measurements of these variables are often taken on site and can be used in correction models 72 
(Holstius et al., 2014; Malings et al., 2019b; Zusman et al., 2020). Otherwise, low-cost air pollution 73 
sensor correction studies tend to avoid incorporating external parameters into their models. As 74 
Hagler et al. (2018) argue, it is critical that corrections of sensor data are transparent and do not 75 
pull too far away from the original (“ground truth”) data by using needlessly complex algorithms. 76 
However, large seasonal variations in accuracy have been reported in studies which do not take 77 
time into account (Malings et al., 2019b; Sahayi et al., 2019). Some researchers attempt to address 78 
this issue by calculating different regression coefficients for different seasons (Zheng et al., 2018; 79 
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Malings et al., 2019b), however, it is possible that use of temporal terms in the model could achieve 80 
similar adjustment for seasonal or other temporal variation in correction accuracy. 81 

 One challenge in accurately correcting a low-cost air pollution sensor network is that the 82 
accuracy (at least the bias) of many low-cost sensors (for both airborne particulate matter and 83 
gases) has been shown to degrade (or “drift”) over time (Kumar et al., 2015; Budde et al., 2014; 84 
Malings et al., 2019b; Sayahi et al., 2019; Delaine et al., 2019) -- regularly updating the correction 85 
model is recommended. For low-cost particulate matter sensors, several different techniques have 86 
been proposed to counter the effects of sensor degradation. One approach is to estimate the bias of 87 
a low-cost sensor compared to a reference monitor and then simply adjust the constant term (the 88 
bias) in the correction equation over time (Malings et al. 2019b). Another approach is to regularly 89 
re-run the whole regression for the correction model. A benefit of the latter approach is that it can 90 
address the possibility that aspects of the correction other than the bias (constant) change over 91 
time. However, while the latter approach has been shown to help maintain low-cost air pollution 92 
sensor correction accuracy over time (Zheng et al., 2019; Zimmerman et al., 2018), it also 93 
introduces the added complexity of needing to decide how much data (or how long a “lookback”) 94 
to use to train the correction model each time it is run.  95 

 Another major challenge in low-cost sensor correction is that it is necessary to develop a 96 
generalized model that works without having to collocate every low-cost sensor with an FRM or 97 
FEM monitor, but it is unknown how many collocations are needed within an urban area. Because 98 
statistical models are likely to perform worse on new data than on data used to train the models, 99 
many studies have utilized cross-validation methods to evaluate the accuracy of their correction 100 
strategies on new data (Badura et al., 2019; Zheng et al., 2019; Magi et al., 2020). Recent studies 101 
have highlighted the importance of spatial and temporal cross-validation (Malings et al., 2019b; 102 
Zusman et al. 2020). Specifically, Zusman et al. (2020) concluded that leave-one-location-out 103 
(LOLO) cross-validation is more accurate when three or more collocation sites are in use, while 104 
10-fold cross-validation by week is more accurate when only one or two sites are in use.  105 

 Denver, Colorado was one of nine cities across the U.S. to win the 2018 Bloomberg 106 
Philanthropies’ Mayors Challenge. The Mayors Challenge encourages cities to develop innovative 107 
programs which increase sustainability and equity, and which ultimately can be scaled to other 108 
cities after proof of concept. Denver is using its $1 million award to install a system of low-cost 109 
air quality monitors at public schools across the city (targeting schools with high asthma rates and 110 
in lower-income neighborhoods), build an online platform for real-time reporting of air quality, 111 
and engage in community education about air quality and environmental health. This program, 112 
managed by the Denver Department of Public Health & Environment (DDPHE), is called the Love 113 
My Air program (formerly the Air Quality Community Action Network, or AQ-CAN).  114 

In this study, we develop statistical correction for the Denver Love My Air sensors. Our 115 
study is novel in several ways. First, we develop two different models to correct data from low-116 
cost particulate matter sensors: a long-term model to correct archived data and an on-the-fly model 117 
to correct data in real time. Second, we employ robust spatial and temporal cross-validation 118 
techniques to test the performance of our models on data from new locations and time periods. 119 
Third, we explore the inclusion of temporal and landcover variables. Finally, this was a direct 120 
partnership between academics and the DDPHE, ensuring that our models will be incorporated 121 
into the Denver system, helping to correct air quality data and inform public warning systems.  122 
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2. Methods 123 
2.1 Data Sources 124 
 Between August 2018 and May 2019 (one academic year), Denver Love My Air collected 125 
data from five low-cost PM2.5 sensors in stable locations, collocated with U.S. EPA FEM monitors. 126 
There were three different sites (National Jewish Hospital, La Casa, and I25-Globeville); three 127 
sensors were collocated at the I25-Globeville location. In fall 2019, two additional Love My Air 128 
sensors were stationed at the CAMP and I25-Denver FEM locations (see Figure 1 for a map of 129 
these locations). This work is in line with the conclusion of Zusman et al. (2020), that thoughtful 130 
placement of at least three collocation sites is preferable for this kind of correction. More Love My 131 
Air sensors have been deployed across the city.  132 

 The Love My Air sensors are Canary-S models equipped with a Plantower 5003, made by 133 
Lunar Outpost. The Canary-S sensors detect PM2.5, temperature, and humidity, and upload minute-134 
resolution measurements to an online platform via cellular data. We obtained hourly PM2.5 135 
measurements from the three FEM monitors and hourly averages from the five Canary-S sensors 136 
between August 20, 2018 and May 30, 2019. After removing missing values in the PM2.5, 137 
temperature and humidity data (coded as either NA or -1) and PM2.5 values above 1,500 µg/m3 138 
(unrealistically high concentrations) from the Canary-S sensors (Nmissing = 4,313, Nhigh = 2), we 139 
were left with 29,770 hourly observations. Time series of the measurements from each sensor are 140 
shown in Figure S1. These time series plots illustrate that there is reasonable overall agreement 141 
between the measurements from the reference monitors and low-cost sensors, but that the low-cost 142 
sensors tend to overestimate PM2.5, especially at high concentrations.  143 

 Because of daily, weekly, and seasonal variation in PM2.5 that may be due to factors beyond 144 
temperature and relative humidity, we extracted hour, weekend, and month variables from the 145 
Canary-S sensors and converted hour and month into cyclic values by taking the cosine and sine 146 
of hour*2π/24 and month*2π/12. Sinusoidal correction for season has been shown to improve 147 
accuracy of PM2.5 measurements (Eberly et al., 2002).  148 

 Along with adjusting for variability in time, we investigated variability in space. The 149 
position of an air quality sensor within a city, especially relative to known sources of pollution 150 
such as highways, is likely to affect the characteristics of the air pollution in that area: the type and 151 
size of particulates, timing of fluctuations in air pollution, etc. We investigated including two 152 
different kinds of landcover variables: a binary variable indicating whether a monitor was near or 153 
far from a highway (based on local knowledge, I-25-Globeville and I-25 Denver were classified 154 
as near-highway and NJH, La Casa, and CAMP were not) and the lengths of different sizes of 155 
roads within a certain distance from a monitor. To derive the latter, we used a road dataset from 156 
the City of Denver Open Data Catalog (see Figure 1) and calculated the lengths of arterial, collector 157 
and local (large, medium, and small) roads within circular buffers surrounding each monitor 158 
location. We considered buffers of radius 50, 100, 250 and 500 meters. Preliminary testing showed 159 
that five of the road variables – arterial roads within 500 and 50 meters and local roads within 250, 160 
100, and 50 meters - were the most important. We used these in the rest of the analyses. The values 161 
of these road length variables are shown in Table S1.  162 
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2.2 Statistical Modeling 163 
 We developed two correction models: one for archived data and one for on-the-fly data. 164 
Archived data can be used for long-term evaluations including environmental public health 165 
research, while real-time data can be used to warn people about hazardous air quality conditions. 166 
The reason for doing two different types of correction is that while long-term models tend to be 167 
more accurate over the entire spatiotemporal data set, it is inefficient to re-run large models 168 
frequently (incorporating new data). Also, on-the-fly correction can help characterize short-term 169 
variation in air pollution and sensor characteristics, improving public health warnings. Both types 170 
of correction allow for use of low-cost sensors to inform air quality monitoring at finer spatial and 171 
temporal scales than is possible using only FRM or FEM monitors, given the few FRM and FEM 172 
monitoring sites in the U.S., particularly in the western states (Martin et al., 2019).  173 

2.2.1 Modeling: Long-Term Correction 174 
  The goal of this correction is to predict, as accurately as possible, the “true” PM2.5 175 
concentration at a location given the PM2.5 measurement from a Canary-S sensor at that location. 176 
Thus, the EPA FEM PM2.5 measurements, which we take to be the “true” concentration of PM2.5 177 
at that location, are the dependent variable in the correction models that will then be predicted by 178 
the correction model at locations without an FEM monitor.  179 

 We tested simple and multiple linear models, mixed effects linear models (otherwise 180 
known as random effects models or hierarchical linear models), and random forest models. Mixed 181 
effects models can help account for the violation of independence between repeated measurements 182 
from each monitor by specifying a random effect term in the model to account for variation in the 183 
correction at different measurement locations. Unlike including a near-highway indicator or a 184 
road-length variable in the model, however, using a random effect for the monitoring location in 185 
the model does not allow us to account for location-dependent variability in the 186 
prediction/correction step, only in the training step. Random forest is a decision-tree-based 187 
machine learning algorithm that can capture more complicated nonlinear effects (for instance, 188 
unknown relationships between additional spatial and temporal variables) and tends to perform 189 
well in air quality prediction (Malings et al., 2019a; Zimmerman et al., 2018; Xu et al., 2018). We 190 
used a random forest algorithm called ranger using the R package caret (Kuhn, 2008).  191 

 When selecting and evaluating our models, we used root-mean squared error (RMSE) and 192 
the correlation coefficient R2 as performance metrics. Lower RMSE values and higher R2 values 193 
indicate more accurate models. With such a large sample size, we found that our R2 values were 194 
numerically equivalent to adjusted R2 values. In terms of variable selection, we only kept terms 195 
that appeared to improve the results in the validation step. For the linear models, this included a 196 
preliminary investigation of using higher-order polynomial terms and transformations such as 197 
logarithms, but none of these significantly improved the predictions. Before training the random 198 
forest models, we tuned the hyperparameters for the ranger algorithm using a random subset of the 199 
training data. The first random forest model we trained used all available data from the 2018-2019 200 
academic year (our entire training/validation data set from the original five collocated sensors, 201 
including all the time-varying and road length covariates). 202 

 During model development, we used a LOLO cross-validation strategy (as explained in 203 
Zusman et al., 2020) to validate the model results. For further evaluation, we tested our final 204 
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models on completely held-out data from the CAMP and I-25 Denver reference monitors 205 
(deployed in early fall 2019) for testing to obtain our final performance metrics. Having the 206 
completely held-out data from the CAMP and I-25 Denver monitors in the testing set is especially 207 
helpful because CAMP is in the middle of downtown Denver and I-25 Denver is next to an 208 
Interstate highway, providing us with test metrics reflecting different environments. These test set 209 
data spanned September 2019 through mid-December 2019. However, the EPA FEM monitor at 210 
CAMP shut off during mid-October, leaving much less test set data for that monitor than for the 211 
I-25 Denver monitor. After removing missing values and values where the reference monitor 212 
reported exactly zero, we were left with 3,011 hourly observations in the test set. 213 

2.2.2 Modeling: On-the-Fly Correction 214 
 The analysis described above was backward correction: we used all the data, including 215 
the most recent, to correct all the data, which is the best choice for correcting long-term archived 216 
data. Hasenfrantz et al. (2012) found that backward correction reduced measurement error from 217 
forward correction by a factor of two. However, due to data availability, Love My Air’s real-time 218 
air quality reporting must rely on forward correction: using past data to correct new data which 219 
was not included in the correction model.  220 

 An important question is how many days/weeks of past data are needed to get an accurate 221 
on-the-fly correction model to predict forward and how far into the future such a model can 222 
accurately predict. In addition to accuracy, however, we must consider practical constraints, such 223 
as how often an on-the-fly correction model can be run because of computational limitations. With 224 
too little training data (such as weeks when there are a lot of missing observations), some linear 225 
regressions will not converge, and random forest models with too little data are likely to overfit. 226 
We assessed the performance of all possible combinations of 1-8 weeks of training data 227 
(lookbacks) with 1 or 2 weeks of testing data (predictions) for several linear models, mixed effects 228 
models, and random forest models. Each model was tested on held-out data from La Casa because, 229 
of the original five low-cost sensors in the training set, its data displayed average performance in 230 
the data summary statistics and long-term data correction models.  231 

Here is a repository with the R code used in these analyses: 232 
https://github.com/EllenConsidine/Love_My_Air/tree/master/R 233 

To facilitate discussion about models tested in both the archived and on-the-fly analyses, we use 234 
the following model-naming conventions: A = archived, O = on-the-fly; LR = linear regression, 235 
ME = mixed effects linear regression, and RF = random forest.  236 

3. Results 237 
3.1 Data Summary 238 

The summary statistics in Table 1 provide context for the performance of the 239 
training/validation and testing set monitors. In the training/validation set, we observe that both the 240 
FEM (AirNow) monitors and the Canary-S sensors measure lower PM2.5 at the National Jewish 241 
Hospital monitor and higher PM2.5 at the I-25 Globeville monitor. This is expected given that the 242 
National Jewish Hospital monitor is not directly next to a highway, while the I-25 Globeville 243 
monitor is. Also, the National Jewish Hospital FEM monitor is a Teledyne T640 while all the other 244 

https://github.com/EllenConsidine/Love_My_Air/tree/master/R
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FEM sites use GRIMM EDM 180 monitors. The La Casa monitor PM2.5 levels were in the middle 245 
for these monitors, with an average of 10.4 µg/m3.  246 

In the test set (CAMP and I-25 Denver), we observe lower PM2.5 at the CAMP monitor 247 
than at the I-25 Denver location, which again is expected given CAMP’s location far from a 248 
highway and I-25 Denver’s location next to an Interstate highway. We also note that the 249 
measurements from the CAMP monitor have much lower variance than the other monitors, likely 250 
due to its much shorter period of reporting data before shutting down.  251 

For comparison, prior to correction, the raw low-cost sensor measurements in the 252 
training/validation set had RMSE = 5.5 µg/m3 and R2 = 0.81 compared to the reference 253 
measurements. The raw testing set had RMSE = 7.1 µg/m3 and R2 = 0.73. 254 

Table S2 provides descriptive statistics for the environmental variables (temperature and 255 
relative humidity). In general, the temperatures in the testing set are higher than those in the 256 
training/validation set. Specifically, the CAMP sensor reported high temperatures, in part because 257 
it shut off in mid-fall. By contrast, both testing set sensors measured much lower values of relative 258 
humidity, while the third low-cost sensor at the I-25 Globeville location reported much higher 259 
values of relative humidity.  260 

3.2 Long-Term Correction 261 
 Table 2 displays the training/validation and testing set RMSE values of the linear, linear 262 
mixed effects, and random forest models (R2 values are in Table S3). In general, the more complex 263 
models tend to do better in the LOLO cross-validation (training). However, there is not such a 264 
clear pattern for the test set. The CAMP results from linear models including Aroad_500 illustrate 265 
the danger of using a continuous variable like road length with relatively few observations to 266 
extrapolate to new locations: clearly whatever linear relationship is specified in the training does 267 
not apply to CAMP. Interestingly, the random forest models with Aroad_500 do not have this 268 
problem when testing on CAMP, indicating that the relationship is likely nonlinear.  269 

 Based on both the training/validation and the testing results, the best models were A.RF.4 270 
and A.RF.5, the random forest models with PM2.5, temperature, humidity, month, time, weekend, 271 
and one or more road length variables. We observed an improvement from the inclusion of multiple 272 
road variables (A.RF.5), but it was sufficiently small that it may be overlooked in the interests of 273 
model simplicity. Figure 2 illustrates the relationship between the reference data and the corrected 274 
low-cost sensor data. Based on only the training/validation results, we would have selected 275 
A.RF.3, the random forest model with PM2.5, temperature, humidity, month, time, weekend, and 276 
the near-highway indicator. However, the testing results for I-25 Denver were much worse for this 277 
model. Thus, A.RF.4 (a random forest model with PM2.5, temperature, humidity, month, time, 278 
weekend, and the length of arterial roads within 500 meters of the monitor location) is our final 279 
selection.  280 

 When we calculated variable importance in the random forest models using the 281 
permutation method, we found that all of the temporally-dependent variables (PM2.5 from the low-282 
cost sensors, temperature, relative humidity, and time) were more important than the stationary 283 
variables. We note that while multicollinearity between the predictors does not impair the 284 
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predictive accuracy of the random forest models, it does make the variable importance scores 285 
inexact (Gregorutti et al., 2017).  286 

3.3 On-the-Fly Correction 287 
 Table 3 displays the on-the-fly correction results from the best model for each algorithm 288 
regarding which training and testing timespans yielded the lowest RMSE value when tested on the 289 
data from the La Casa monitor, which was left out of the trainings for these models. 290 

 In this table, we see that O.LR.3, the multiple linear regression model with temperature, 291 
humidity, and the near-highway indicator, had the lowest RMSE values compared to the other 292 
model types (algorithm plus subsets of covariates). In general, random forest models perform 293 
better on larger datasets than the on-the-fly corrections and thus in this analysis yielded less 294 
accurate results than the linear models.  295 

4. Discussion 296 
 We found that using a random forest model accounting for temperature, humidity, month, 297 
hour, and road lengths within 500 meters was the most accurate in correcting long-term (archived) 298 
PM2.5 measurements from the Canary-S sensors to the EPA FEM monitor measurements, using 299 
data from five monitors from the 2018-2019 academic year and two additional monitors from fall 300 
2019. We note that using a time-invariant land cover variable in this machine learning model is 301 
akin to using a random effect in mixed effects linear models in terms of capturing sensor- or 302 
location-specific characteristics that could influence the correction. The average LOLO 303 
performance metrics for the validation set were RMSE = 2.2 µg/m3 and R2 = 0.93. The average 304 
performance metrics for the testing set were RMSE = 2.6 µg/m3 and R2 = 0.76. Weighting the test 305 
set performance metrics to account for the number of observations from each test monitor (CAMP 306 
= 25%, I-25 Denver = 75%) yielded RMSE = 2.9 µg/m3 and R2 = 0.75.  307 
 We found the higher computational cost of random forest (in exchange for higher accuracy 308 
compared to linear regression models) to be worthwhile for applications which require the 309 
correction of archived data sets, such as long-term environmental health research studies. Other 310 
nonlinear models, such as generalized additive models (GAMs), might also be employed for this 311 
purpose. However, the improvement from random forest over linear regression for the archived 312 
data was modest. Compared to the best multiple linear regression model, the best random forest 313 
model reduced the RMSE by about 1 µg/m3. For ease of comparison, Table 2 details the accuracy 314 
of all our linear regression, linear mixed effects regression, and random forest models.  315 
 For on-the-fly correction, we found that the most accurate approach was using a multiple 316 
linear regression with the past eight weeks of training data to correct each new week of data with 317 
the following predictor variables: Canary-S PM2.5, temperature, humidity, and a near-highway 318 
indicator. The performance metrics for the validation set (data from the La Casa monitor) were 319 
RMSE = 2.3 µg/m3 and R2 = 0.90. The performance metrics for the testing set (just I-25 Denver 320 
due to lack of data from CAMP) were RMSE = 3.5 µg/m3 and R2 = 0.77. For comparison’s sake: 321 
if we were to use a lookback of 3 weeks with this model, the CAMP testing results would be RMSE 322 
= 1.8 µg/m3 and R2 = 0.79. Weighting the test set performance metrics to account for the number 323 
of observations from each test monitor would yield RMSE = 3.1 µg/m3 and R2 = 0.78. 324 
 Of the five comparable studies to ours that we found, which used statistical techniques to 325 
correct hourly data from low-cost PM2.5 sensors in regions with relatively low ambient air pollution 326 
(and which reported the magnitudes of their error as opposed to just R2), four achieved RMSEs 327 
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between 3.4 and 4.2 µg/m3 (Holstius et al., 2014; Badura et al., 2019; Magi et al., 2020; Si et al., 328 
2020) and one achieved an average (across testing sites) MAE (mean absolute error) of 2.3 µg/m3 329 
(Malings et al., 2019b). While these last results are impressive, it is important to keep in mind that 330 
RMSE is always greater than or equal to MAE; squaring the errors before averaging penalizes 331 
variance (Chai and Draxler, 2014). Also, when we consider only Malings et al.’s (2019b) results 332 
that used Plantower sensors like ours, their MAE was 2.7 µg/m3.  333 

 Another factor frustrating direct comparison between these studies and ours is different 334 
pre-processing. Some studies removed values for which the low-cost sensors measured beyond 335 
certain thresholds, for instance over 50 µg/m3 (Magi et al., 2020) or under 1 µg/m3 (Sayahi et al. 336 
2019). Malings et al. (2019b) averaged the values from the two sensors within the Plantower 337 
device. Zusman et al. (2020) removed unusually high values from time periods with fireworks and 338 
wildfires and then averaged the values from the two sensors. Compared to these previous studies, 339 
our study differs by correcting both archived and on-the-fly data, investigating inclusion of 340 
variables to capture variation in time and space beyond temperature and relative humidity, and 341 
using spatiotemporal cross-validation strategies for model evaluation, which can cause worse 342 
performance metrics than plain cross-validation (Zusman et al., 2020). 343 

 To contextualize our results, we refer to low-cost PM2.5 sensor accuracy standards proposed 344 
by multiple groups. Malings et al. (2019b) assert that determining whether regulatory standards 345 
are being met necessitates accuracy around ±10% of the average air pollution levels in an area; 346 
mapping spatial gradients and monitoring microenvironments (e.g. for environmental health 347 
studies) could be done with ±25% accuracy, while ±50% accuracy is still useful for tracking large 348 
sources of air pollution and informing the public about which areas of a city are more polluted or 349 
less polluted. Williams et al. (2018) reviewed standards from multiple countries and concluded 350 
that for decision support applications, including regulatory monitoring, ±25% accuracy in 24h 351 
averages or R2 ≥ 0.72 is acceptable. All our training and testing R2 values were ≥ 0.75. For our 352 
archived model, the ratio of RMSE to average PM2.5 for our validation set was 23% and for our 353 
(weighted) testing set was 30%. For our on-the-fly model, the ratio of RMSE to average PM2.5 for 354 
our validation set was 22% and for our (weighted) testing set was 32%. Given that our testing set 355 
measurements were taken nearly half a year after our training set measurements and at new 356 
locations, we interpret these results to mean that our models are in line with these proposed 357 
standards. We also note that these standards or accuracy percentages or R2 thresholds that were all 358 
made for 24h-average measurements of air pollution may not be the right standards to use for 359 
hourly-average measurements, as we have used in this study. Averaging across 24 hours likely 360 
increases accuracy, therefore we would expect to get worse accuracy metrics using hourly data.  361 

 Another way to evaluate our model performance is to view the plots of the corrected 362 
measurements versus reference measurements (Figure 2). In addition to the general shape around 363 
the one-to-one line, an eye-catching feature of these plots is the set of roughly half a dozen outlier 364 
points. Early in this project, we experimented with creating an outlier detection algorithm to 365 
identify the combination of large jumps between sequential measurements and large discrepancies 366 
between the two sensors within each Plantower device. Further investigation revealed that these 367 
points were all on days with low temperature and high humidity, specifically days right around 368 
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when it snowed in Denver. However, some of the snow day points (especially in the test set) went 369 
undetected by this algorithm. Several papers have reviewed outlier detection algorithms for this 370 
kind of application (Zhang et al., 2010; van Zoest et al., 2018; Ottosen and Kumar, 2019; Delaine 371 
et al., 2019), however more work needs to be done to ensure that measurements from true high air 372 
pollution events, which are extremely important for health impact studies, are not being classified 373 
as low-cost sensor malfunctioning. This assertion is in line with the findings of Williams et al. 374 
(2018), that more studies using non-regulatory air pollution sensors need to explicitly address 375 
treatment of erroneous data. We decided against removing the suspected outlier points for the 376 
analysis, even though removing them would slightly improve our RMSE and R2 values.  377 

Overall, the instances of discrepancy between temperature and relative humidity 378 
measurements within the training and testing sets indicates a potential limitation of using 379 
measurements of environmental variables from low-cost sensors. For instance, there is reason to 380 
suspect that the highest humidity measurements in our training set indicate sensor malfunction 381 
because 100% humidity in Colorado is quite rare. If the temperature and relative humidity sensors 382 
are inaccurate, this will interfere with statistical corrections which use these variables. Even if the 383 
environmental measurements were accurate in our study, the fact that they were noticeably 384 
different overall between the training/validation and testing sets means that our testing set results 385 
may show the correction models to be worse than they actually are. In general, these kinds of 386 
correction models are likely to perform worse on domains they were not trained on, including 387 
extreme meteorological conditions, new peak air pollution events, and different geographic regions 388 
(Zusman et al., 2020). This highlights the importance of having a large training set and checking 389 
the accuracy of the correction model(s) over the domain to which they are being applied. 390 

 Another limitation of this study is that the National Jewish Hospital FEM monitor is a 391 
Teledyne T640 while all the other FEM sites use GRIMM EDM180 monitors. We observed that 392 
the PM2.5 measurements from the National Jewish Hospital reference monitor had lower variance 393 
than those from the other reference monitors. If this was in part due to the instrumentation as 394 
opposed to only the location by National Jewish Hospital, then this may have interfered with our 395 
exploration of including additional spatial/landcover terms in the models. For reference, a GRIMM 396 
and a T640 monitor were collocated for two weeks in September 2019 in Denver. The R2 between 397 
the measurements from these two monitors was 0.82. A time series of the measurements of these 398 
two monitors, along with the measurements from a collocated BAM monitor, is shown in Figure 399 
S2.  400 

 Regarding our accounting for additional spatiotemporal variation in the models: for the 401 
archived-data correction, we found that including additional temporal variables (a weekend 402 
indicator and cyclic versions of time and month) was generally unhelpful when using linear or 403 
mixed linear models. For the random forest models, including additional temporal variables was 404 
most helpful when paired with additional spatial variables; the two different kinds of spatial 405 
variables performed roughly the same in the validation, but the road length variables performed 406 
better in the testing. For the linear models, including an additional spatial variable often appeared 407 
to help in the validation but not in the testing. In general, the mixed effect models did not 408 
outperform their plain linear counterparts. For the on-the-fly correction, including additional 409 
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temporal variables did not appear to be helpful, but including an additional spatial variable did. 410 
Here, the near-highway variable slightly outperformed the arterial road length variable. For 411 
comparison: when we ran a random forest regression on our archived training / validation set 412 
(without cross-validation) not including low-cost sensor PM2.5 but including temperature, relative 413 
humidity, month, time, a weekend indicator, and the length of arterial roads within 500 meters, we 414 
got an RMSE of 5.3 µg/m3 and an R2 of 0.52; under the same conditions (without cross-validation) 415 
but including low-cost sensor PM2.5, we got an RMSE of 2.1 µg/m3 and an R2 of 0.93. This 416 
indicates that, at least with a “greedy” algorithm such as random forest which can capture nonlinear 417 
effects, a lot of the variation in PM2.5 can be explained by these spatiotemporal factors, but the 418 
low-cost PM2.5 measurements are still very important. The results of our exploration suggest that 419 
future low-cost air pollution sensor correction studies may want to investigate including additional 420 
temporal and spatial variables in their correction models, for correction of both archived and on-421 
the-fly data. A couple of limitations of the land cover variables in this study are that we are 422 
assuming any variability in sensor performance due to location can be explained by proximity to 423 
roadways, and that creating something like the near-highway indicator relies on local knowledge. 424 
There may be location-dependent variability that could be explained, at least in part, by other land 425 
cover variables. Future studies might also consider incorporating traffic count data if such data are 426 
available.  427 

 We have also identified several other directions for future study: (1) working more on 428 
outlier detection; (2) determining whether imputing missing data points from low-cost airborne 429 
particulate matter sensors is useful, and if so, how it should be done; (3) optimizing the number 430 
and relative placement of collocation sites within a city or region (Zheng et al., 2019 investigated 431 
the optimal number for a large air pollution monitoring network in Delhi via simulation, but similar 432 
work remains to be done for smaller-scale municipalities with lower ambient air pollution); (4) 433 
determining whether and how to adjust for different types of FEM monitors when doing similar 434 
corrections (along the lines of work by Zheng et al., 2018); (5) investigating how effectively low-435 
cost sensor correction models can be transferred between networks, cities, or regions (Zusman et 436 
al. 2020); (6) optimizing the timespan after which a long-term correction model should be updated, 437 
which is likely dependent on the monitoring network (e.g. sensor type and environmental 438 
characteristics of the city).  439 

5. Conclusion 440 
In this study, we investigated both on-the-fly and archived data correction, exploring the 441 

use of additional temporal and spatial variables to capture variation not explained by temperature 442 
and relative humidity, and employing extensive cross-validation to evaluate our correction models’ 443 
performance in space and time. For the long-term dataset, a random forest model with all the time-444 
varying covariates and the length of arterial roads within 500 meters was the most accurate. For 445 
the on-the-fly correction for each new week of data, we found that a multiple linear regression 446 
using the past eight weeks of low-cost sensor PM2.5, temperature, and humidity data plus a near-447 
highway indicator performed best. This work was the result of a direct partnership between 448 
academics and the DDPHE. Our correction models will be incorporated into the Love My Air 449 
platform for all sensors in this network, ultimately helping to communicate PM2.5 levels to the 450 
public in Denver and inform future environmental health studies at local schools. Key directions 451 
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for future study include developing methods for dealing with outliers and missing data, informing 452 
best practices in the deployment of collocated low-cost sensor and reference monitor pairs at the 453 
municipal level, and further exploring the inclusion of covariates to explicitly capture variability 454 
over time and space, as this study suggests these can help to improve low-cost sensor correction.  455 

6. Figures and Tables 456 
 457 

 458 

Figure 1: Map of collocated monitor locations and roads. Map of Denver County’s U.S. EPA PM2.5 FEM 459 
monitors at which Canary-S sensors have been collocated (red points), as well as arterial roads 460 

(orange), collector roads (green), and local roads (purple) in Denver (truncated to exclude the 461 
airport area in which there were no monitors). Note: I-25 Globeville has three collocated Canary-S 462 

sensors. 463 
 464 

 465 

Table 1: Summary statistics of observations from the training/validation and testing sets 466 

  Canary-S  AirNow 
Monitor Mean Median IQR SD Max. Mean Median IQR SD Max. 
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NJH 7.7 4.0 (1.2, 9.8) 10.1 91.8 7.7 5.8 (3.8, 8.9) 6.7 74.2 
La Casa 10.4 6.4 (2.4, 13.5) 11.9 104.0 8.2 6.2 (4.0, 10.1) 7.1 76.5 
I-25 
Globeville 
1 

12.2 8.1 (3.5, 16.1) 12.7 170.7 11.0 8.8 (5.3, 14.1) 8.5 72.8 

I-25 
Globeville 
2 

9.1 6.4 (2.7, 12.3) 9.1 75.1 10.4 8.6 (5.3, 13.6) 7.0 54.1 

I-25 
Globeville 
3 

10.9 7.1 (3.0, 14.0) 11.7 99.0 11.0 8.8 (5.3, 14.1) 8.4 72.8 

CAMP 5.5 4.1 (2.1, 7.3) 4.9 30.9 6.3 5.5 (3.8, 7.9) 3.6 27.2 
I-25 
Denver 

11.2 7.3 (3.5, 14.1) 11.6 68.9 7.8 6.4 (3.9, 9.9) 5.7 56.2 

 467 

 468 

Table 2: Root Mean Square Error (RMSE) values in µg/m3 for the training/validation set monitors for 469 
specific models using LOLO cross-validation where the metric provided is for when that monitor is the left 470 
out monitor, and RMSE in µg/m3 for the test set monitors by comparing the prediction value from the 471 
training model on the testing data that was completely held out of the training.  472 

Statistical 
Model 

Variables and CV folds (if 
applicable) 

LOLO Training/Validation 
RMSE (µg/m3) 

Testing RMSE 
(µg/m3) 

NJH La 
Casa 

I25.1 I25.2 I25.3 CAMP I25 
Denver 

A.LR.1 PM2.5 2.3 3.2 4.0 3.7 3.7 1.6 4.5 
A.LR.2 PM2.5, Temperature, Humidity 2.5 3.1 3.9 3.7 3.7 1.8 4.9 
A.LR.3 PM2.5, Temperature, Humidity, 

Near_hwy 2.3 2.5 4.0 3.4 3.5 1.8 5.6 

A.LR.4 PM2.5, Temperature, Humidity, 
Aroad_500 3.0 2.7 3.9 3.4 3.5 17.3 3.8 

A.LR.5 PM2.5, Temperature, Humidity, 
Month, Time, Weekend 2.6 3.2 3.7 3.4 3.5 1.9 4.6 

A.LR.6 PM2.5, Temperature, Humidity, 
Month, Time, Weekend, Near_hwy 2.6 2.6 3.9 3.2 3.3 2.0 5.2 

A.LR.7 PM2.5, Temperature, Humidity, 
Month, Time, Weekend, Aroad_500 3.3 2.8 3.8 3.2 3.3 16.1 3.8 

A.ME.1 Fixed = PM2.5, Temperature, 
Humidity; Random = Intercept 2.4 2.8 3.8 3.5 3.6 1.8 5.0 

A.ME.2 Fixed = PM2.5, Temperature, 
Humidity; Random = Intercept, PM2.5 2.4 2.8 3.9 3.5 3.6 1.8 5.0 
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A.ME.3 Fixed = PM2.5, Temperature, 
Humidity, Month, Time, Weekend; 
Random = Intercept, PM2.5 

2.4 2.9 3.7 3.3 3.4 1.8 5.0 

A.RF.1 PM2.5, Temperature, Humidity 
2.7 3.1 3.4 3.6 3.3 1.8 4.8 

A.RF.2 PM2.5, Temperature, Humidity, 
Month, Time, Weekend 2.3 2.9 2.5 2.8 2.3 1.7 3.9 

A.RF.3 PM2.5, Temperature, Humidity, 
Month, Time, Weekend, Near_hwy 2.2 2.2 2.5 2.2 1.9 1.7 4.5 

A.RF.4 PM2.5, Temperature, Humidity, 
Month, Time, Weekend, Aroad_500 2.2 2.3 2.5 2.2 1.9 1.8 3.3 

A.RF.5 PM2.5, Temperature, Humidity, 
Month, Time, Weekend, Aroad_500, 
Lroad_100, Aroad_50, Lroad_250, 
Lroad_50 

2.2 2.2 2.6 2.2 1.9 1.7 3.4 

In the statistical model column: A = archived data (as opposed to on-the-fly); LR = linear regression; 473 
ME = mixed effect linear regression; RF = random forest. In the variable column: Aroad = arterial road; 474 
Lroad = local road; the number following is the radial buffer size in meters within which the length of 475 
that type of road is being totaled. Near_hwy = near-highway indicator. 476 

 Note that “Time” and “Month” are the sinusoidal (cyclic) versions. Preliminary testing 477 
showed that including both sine and cosine of the hour of day did not improve performance in 478 
the linear models, and that including both sine and cosine of the month led to model non-479 
convergence in the linear mixed effect models. Thus, for the linear and linear mixed effect 480 
models, “Time” refers only to cosine of hour of day; for the linear mixed effect models, “Month” 481 
refers only to cosine of month. All other references to “Time” and “Month” imply the inclusion 482 
of both sine and cosine. 483 
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 484 

 485 

Figure 2: Visual representation of the performance of the model for correcting archived data. Fitted 486 
(predicted) versus observed PM2.5 values (µg/m3) using the A.RF.4 model. 487 

 488 

Table 3: RMSE (µg/m3) values for the best model of each type (optimal training set time span out of all 489 
tested (1 – 8 weeks) and optimal testing set time span out of all tested (1 or 2 weeks)). Grayed text 490 
indicates a rank-deficient fit reported in R for 11 out of the 41 weeks in the training set, where there was 491 
insufficient data. Blank cells indicate lack of sufficient training data from that monitor to train on the 492 
optimal time span (for example: the CAMP monitor shut off one week into October, thus we were unable 493 
to train a model on 8 weeks of data, as was selected to be optimal by the O.LR.3 model).  494 

Statistical 
Model 

Variables and CV 
folds (if 
applicable) 

Optimal 
Training 
Set Size 
(weeks 
prior to 
prediction) 

Optimal 
Testing 
Set Size 
(prediction 
weeks) 

La Casa 
Testing 
(RMSE 
in 
µg/m3, 
R2) 

CAMP 
Testing 
(RMSE 
in 
µg/m3, 
R2) 

I25-
Denver 
Testing 
(RMSE 
in 
µg/m3, 
R2) 

O.LR.1 PM2.5 3 1 3.1, 0.88 1.7, 0.83 3.7, 0.69 
O.LR.2  PM2.5, Temperature, 

Humidity 
3 1 3.1, 0.89 1.8, 0.79 3.6, 0.69 

O.LR.3 PM2.5, Temperature, 
Humidity, Near_hw
y 

8 1 2.3, 0.90 ----- 3.5, 0.77 

O.LR.4 PM2.5, Temperature, 
Humidity, Aroad_5
00 

8 1 2.6, 0.91 ----- 3.5, 0.77 
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O.LR.5 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend 

3 1 3.2, 0.88 1.8, 0.78 3.7, 0.68 

O.LR.6 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend, 
Near_hwy 

8 1 2.5, 0.89 ----- 3.7, 0.74 

O.LR.7 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend, 
Aroad_500 

8 1 2.7, 0.89 ----- 3.7, 0.74 

O.ME.1 Fixed = PM2.5, 
Temperature, 
Humidity, Time, 
Weekend; Random 
= Intercept, PM2.5 

3 1 3.1, 0.89 1.8, 0.79  3.6, 0.70 

O.ME.2 Fixed = PM2.5, 
Temperature, 
Humidity, Time, 
Weekend, 
Near_hwy; Random 
= Intercept 

8 1 2.4, 0.90 ----- 3.5, 0.77 

O.RF.1 PM2.5, Temperature, 
Humidity 

3 1 3.5, 0.80 2.0, 0.75 3.7, 0.64 

O.RF.2 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend 

3 2 4.0, 0.72 2.1, 0.77 4.0, 0.61 

O.RF.3 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend, 
Near_hwy 

7 2 3.3, 0.80 ----- 4.1, 0.66 

O.RF.4 PM2.5, Temperature, 
Humidity, Month, 
Time, Weekend, 
Aroad_500 

7 2 3.5, 0.80 ----- 4.1, 0.66 

In the statistical model column: O =on-the-fly data (as opposed to archived); LR = linear regression; ME 495 
= mixed effect linear regression; RF = random forest. In the variable column: Aroad = arterial road; 496 
Lroad = local road; the number following is the radial buffer size in meters within which the length of 497 
that type of road is being totaled. Near_hwy = near-highway indicator. 498 

 Note that “Time” and “Month” are the sinusoidal (cyclic) versions. Preliminary testing 499 
showed that including both sine and cosine of the hour of day did not improve performance in 500 
the linear models, and that including both sine and cosine of the month led to model non-501 
convergence in the linear mixed effect models. Thus, for the linear and linear mixed effect 502 
models, “Time” refers only to cosine of hour of day; for the linear mixed effect models, “Month” 503 
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refers only to cosine of month. All other references to “Time” and “Month” imply the inclusion 504 
of both sine and cosine. 505 
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