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Abstract
Wedemonstrate an ultralow-noisemicrorod-resonator based laser that oscillates on the gain supplied
by the stimulated Brillouin scattering optical nonlinearity.Microresonator Brillouin lasers are known
to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations.
Here, we show experimental evidence that thermal effects also dominate the close-to-carrier
frequency fluctuations. The 6mmdiametermicrorod resonator used in our experiments has a large
opticalmode area of∼100 μm2, and hence its 10ms thermal time constantfilters the close-to-carrier
optical frequency noise. The result is an absolute laser linewidth of 240Hzwith a corresponding
white-frequency noise floor of 0.1 Hz2 Hz−1.We explain the steady-state performance of this laser by
measurements of its operation state and of itsmode detuning and lineshape. Our results highlight a
mechanism for noise that is common tomanymicroresonator devices due to the inherent coupling
between intracavity power andmode frequency.We demonstrate the ability to reduce this noise
through a feedback loop that stabilizes the intracavity power.

1. Introduction

Whispering gallerymodemicroresonators have emerged as a system that can couple light andmatter at
extremely low levels of loss [1–6]. In recent years, this technology has evolved to the point where intrinsic quality
factors (Q) of 109 can be achieved in a size scale of a fewmillimeters or less. The highQ of these resonators
significantly enhances the optical power that circulates within the cavity and thus provides a path for realizing
low-power nonlinear optics in a compact form.With the recent advances inmicroresonator technology, optical
frequency combs based on the four-wavemixing process [7–11] and low-noise lasers based on injection locking
[12] or the stimulated Brillouin [13–15] and stimulated Raman [16] processes have become a reality.

Traditionally, the stimulated Brillouin scattering (SBS) process [17] has been utilized as ameans to generate
low-noise lasing in bulk-fiber ring cavities [18–21]. These Brillouin lasers take advantage of the low optical losses
in opticalfiber and the narrow bandwidth of the SBS gain to achieve single-mode lasingwith exceptionally high
levels of spectral purity [22, 23]. Recently, the development of ultra-highQmicrocavities has enabled a new
regime of low intracavity loss capable of supporting the generation of nonlinear optics at optical pump powers
below 1 mW.Thesemicrocavity SBS lasers operate with ultra-narrow linewidths based on their ability to
simultaneously achieve low levels of thermally excited noise while stillmaintaining large signal powers, thus
yielding the largest ratios of signal to noise in any laser.With the use of centimeter-scalemicroresonators, the
Brillouin laser currently achieves linewidths as low as a few kilohertz [15]; however further researchmay
eventually enable linewidths that reach the fundamental Schawlow–Townes limit of<1 Hz. Such lasers are
expected tofind application inminiaturizing systems for low-noise optical frequency division [24], ultra-stable
optical atomic clocks [25], precision spectroscopy [26], and high-resolution interferometry [27].

The narrowest linewidth so far in Brillouinmicrocavity lasers of<90 Hzwas achieved in a silicamicrodisk
SBS laser by frequency stabilizing the SBS laser output to a high-Q fused silicamicrorod reference cavity [15].
The largemode volume of themicrorod reference cavity reduced thermorefractive noise at low offset
frequencies, while for higher frequencies, the intrinsic noise of the SBS process resulted in a low value of
1 Hz2 Hz−1 for the broadbandwhite-noisefloor.When operated in combination, the system exhibited lownoise
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across the entire range of the lasing spectrum, at a level 2–3 orders ofmagnitude below that of commercial Er
fiber lasers. This approachmimics the traditional route to achieving narrow linewidth lasers inwhich the active
laser is separate from its optical reference.

The goal of this work is to understand and control the underlying noise limitations in order to achieve ultra-
narrow linewidth SBS lasingwithout the aid of an external optical referencemicrocavity. Toward this goal, in the
following sections we present both theory and experiment to analyze the operation state of a Brillouin
microcavity laser. Our experimental results show that the SBS laser’s amplitude fluctuations become coupled to
its frequency fluctuations through the thermal response of themicrocavity. A different formof this coupling
governing the interaction between the frequency of the pump laser and themicrocavity temperature was also the
subject of a previous study in [28]. Thesemeasurements suggest that the use of a large opticalmode volume
microresonator, such as our silicamicrorod, would increase the cavity’s thermal time constant and offer
reduction in the SBS laser’s noise. By generating SBS lasing in amicrorod resonator, which has amode area of
approximately 100 μm2, we demonstrate two orders ofmagnitude reduction in close-to-carrier frequency noise
compared to a silicamicrodisk resonator [15], thus reaching linewidths of<240 Hz. As a point of comparison,
the lasing linewidth of our centimeter-scale SBS laser is at least 10–100 times smaller thanwhat is typically
achieved in the lowest-noisefiber, diode and solid state lasers [29]. In addition, we utilize the coupling between
amplitude and frequency as ameans to stabilize the SBS laser frequency based on ameasurement of intensity
noise. This servo further reduces our laser noise by 10 dB and correspondingly decreases the laser linewidth to
225 Hz.

2. Results

2.1. SBS laser setup
The configuration of our SBSmicrocavity laser is illustrated infigure 1(a) and consists of a commercial
integrated planar external-cavity diode laser (pump) that supplies optical power to amicrorod resonator via the
evanescent field coupling of a tapered fiber. Themicrorodwas fabricated via CO2 lasermachining [5, 6]with the
resonator diameter carefully trimmed to∼6 mmso that the cavity free spectral range can effectively phase-
match the pump and stokes waves. The resulting generated SBSwave is collected through a circulator in the
counter-propagating direction. A semiconductor optical amplifier (SOA) is used for the dual purpose of
amplifying the pumppower to 70.8 mWand for allowing independent control of the pump amplitude with
100 kHz bandwidth. The electro-optic phasemodulator combinedwith the photodetector (PD) provides the
ability to Pound–Drever–Hall lock our pump laser to the cavity resonancewhile simultaneously granting access
to the pump laser phase. Although the total pumppower supplied is 70.8 mW, the optical power delivered to the
tapered fiber input is 11.7 mW, due to both the losses in the system and to the output couplers required for signal
monitoring.With 11.7 mW input, the generated SBS signal reaches a level of 3.7 mW in the steady state. The
corresponding spectrumof the SBS signal is shown infigure 1(b) operated at a center wavelength of 1550 nm.
A small amount of backscattered pump power is also apparent infigure 1(b) separated from the SBS signal by

Figure 1. SBSmicrorod laser. (a)Configuration of the SBS laser that employs a commercial integrated planar external-cavity diode
laser to pump a high-Qmicrorod cavity. (b)The output optical spectrumof the SBS laser exhibiting 3.7 mWpower at 1550 nm
wavelength.
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11.2 GHz, and can be removed through the use of additionalfiltering if necessary.We found this level of
backscattered pump to be above the residual reflections of the systemobtained by removing themicroresonator
from the setup.

2.2. SBS gain andmicrocavity characterization
Knowledge of the SBS laser operation state equips uswith the ability to understand and diagnose the laser’s
performance.We characterize the operation of the SBS laser throughmeasurements of the linewidth and
detuning for both the pump and SBSmodes. Ourmeasurements are performed in conjunctionwith the SBS
signal generation process so that we effectivelymeasure the laser operation under conditions when the cavity is
loaded. A diagramof ourmeasurement setup is shown infigure 2(a). The pump laser is stabilized onto the cavity
resonance peak for the generation of SBS, while a tunable probe laser is sent in the backwards direction to
measure the cavity lineshape.Weminimize the power in the counterpropagating probe signal in order to
minimize the influence of the probe on the resonator’s operation. The scan over the pumpmode is provided in
figure 2(b) and depicts both the cavity resonance and also a residual undulation due to the beating of the probe
laserwith the stray reflected pump light [30]. As can be observed infigure 2(b), the beat frequency approaches
zero near the peak of the resonance, verifying that our pump laser is locked to themicrocavity with nearly zero
detuning. A Lorentzian fit to themeasuredmode profile yields a corresponding linewidth of 2.0 MHz.Note that
we calibrate the frequency axis offigure 2(b) by phasemodulating the probe laser at 10 MHz and subsequently
matching the resulting separation of the sidebands when swept over themode asmeasured by an oscilloscope to
the known frequency spacing of the sidebands.

Figure 2(c) shows the profile of themicroresonatormode used for the generation of SBS alongwith the
position of the SBS signal relative to themode resonance. Unlike the case of the pumpmode scan in figure 2(b),
the strength of the counter-propagating SBS signal ismuch larger in the backwards direction, and the

Figure 2.Measurement of the SBS laser operating parameters. (a)Configuration of themeasurement setup used to determine the
loadedQ of themicrorod. (b)Profile of the pumpmode illustrating zero cavity detuning and also a 2.0 MHzLorentzianwidth.
(c)Profile of the SBSmode illustrating a SBS detuning of 810 kHz.
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corresponding beatingwith the probe signal would dominate the scan over the SBSmode. For this reason, we
instead phasemodulate our pump laser to create sidebands at 11.2 GHz and sweep themodulation sidebands
over the SBSmode in the forward-propagating direction. Since the dispersion in themicrorod cavity generally
shifts the resonances by only a few kilohertz per cavitymode, the scan of themodulation sidebands over the SBS
mode inevitably averages over the profile of themode on the opposite side of the pump.However, since all the
modes are within the samemode family and are closely spaced in frequency, we do not expect significant
distortion in themeasurement of the SBSmode. In addition tomeasuring themode profile, we also combine our
forward- and reverse-propagating paths on a photodetector and use the resulting beating tomeasure the
separation of the SBS signal from the pump. Putting thesemeasurements together, wefind the SBS signal to be
blue-detuned by 810 kHz compared to the cavity resonance. Note that the asymmetry observed in themode
profile of figure 2(b) is due to the presence of higher-ordermicrorod spatialmodes near the SBS resonance.

Themeasurements of linewidth and detuning for the pump and SBSmodes yield considerable insight
regarding the operating state of the SBS laser [23, 31, 32].We nowuse thesemeasurements to obtain information
regarding the SBS gain bandwidth and detuning as well as the lifetime and relative phase of the photons in the
microcavity. This knowledge provides the foundation for understanding the performance of the SBS laser in
terms of its output power, noise, and linewidth. From the necessity to satisfy energy andmomentum
conservation, the steady-state operation of the laser enforces that the pump, SBS, and phononmode detuning
are related by [23]
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In equation (1), Fs and Bs represent the detuning of the pump and SBSwaves from their respective cavity
modes, bG is the loss rate of the phononmode, Bt is the lifetime of the SBSmode, and 2b

2 2W - W W( ) represents
the detuning of the density wave W( ) from the acousticmode bW( ) that arises from energy andmomentum
conservation constraints. sr represents the additional detuning of the density wave due to the need to balance
the detuning of the pump and SBSwaves in the steady state. As can be verified from equation (1), energy
conservation enforces that themode detunings satisfy .B Fs s s+ =r Formally, equation (1) states that the
detunings of the SBS and density waves arise due to a combination of the pumpdetuning ( Fs ) and also the phase
shifts induced by operating off the SBS gain resonance 2 .b

2 2W - W W[( ) ] However, note that the detunings of sr
and Bs are asymmetric depending on the response rates of the SBS ( Bt ) and phonon ( bG )modes.

From themeasurements offigure 2, wefind that 0Fs = and 2 8.1 10B
5s p= ´ ´ rad s−1. Furthermore,

since the transfer of pump frequency noise to the SBS frequency noise depends on the response rates of the SBS
and phononmodes to the pump perturbation governed by 1 1 b B

2t+ G( ) [13, 31], ourmeasurements of this
noise transfer determine the operation state of the SBS laser in equation (1). In our experiment, wefind the SBS
fluctuations to be reduced by a factor of 330 compared to the pumpfluctuations, and thuswe determine that
1 18.2.b Bt+ G = Thismeasurement was performed by phasemodulating the pumpwith a constant tone at
higher frequencies beyond the system’s thermal response (50 kHz) andmeasuring the resulting frequency noise
on both the pump and SBS signals. From thefirst equation of equation (1), this yields a detuning of the phonon
modewith respect to the SBS gainmaximumof 14.7 MHz towards the lower frequency side. Finally, from the
second equation of equation (1), we find the density wave is detuned by 810 kHz to the red of the SBS gain
maximumand is detuned by 13.9 MHz to the blue side of the phononmode. Beyond the detuning of the phonon
wave, we can also calculate the linewidth of the phononmode using both the noise transfer ratio and the
measurement of the SBSmode linewidth. Fromfigures 2(b) and (c), we determine the SBSmode linewidth to be
∼2MHz, and thus calculate that 80 ns.Bt = Using this information, we find the phononmode linewidth to be

2 34 10b
6pG = ´ ´ rad s−1 or 34 MHz, which agrees with othermeasurements of the phononmode linewidth

found in [22]. Lastly, because of the phase coherence intrinsic to the SBS nonlinearity, the phases of the pump
,Ff( ) SBS ,Bf( ) and phonon fr( )waves all share a direct phase relationwith one another.When the SBS gain is

maximum, 2,F Bf f f p- - =r andwhen the SBS gain is all consumed to generate phase rotation (zero
gain), 0F Bf f f- - =r or .p Using the relation tan 1 2F B B Bf f f s t- - = -r( ) [23], wefind

2.25F Bf f f- - =r thus indicating that a fraction of the SBS nonlinearity is used to compensate for phase
rotations ormode detuning in our system. This detailed analysis of the SBS laser equips uswith the foundation
necessary for future studies of the relation between SBS laser noise andmicroresonator detuning.

2.3. SBSmicrocavity thermal response
The absorption of light coupled into amicroresonator results in the generation of heat, which induces a shift in
the cavity resonances through both the thermal expansion of the cavity and also through the temperature
dependence of the refractive index. This dependence on temperature connects the pump intensity to the
frequency of the opticalmode and, as wewill see later, represents themajor source of amplitude to frequency
noise conversion in the SBS laser. Thermorefractive noise [33, 34] is another noise source that becomes
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dominant at low frequencies, inwhich fundamental temperature fluctuations inducefluctuations in the
resonance frequencies.We are interested inminimizing both of these pathways for noise through the use of a
fused-silicamicrorod resonator, which exhibits larger opticalmode volume compared to conventional
integrated silica [14] or silicon nitride [3]microresonators. The largermode volume increases the thermal time
constant of the system to the point where the cavity can no longer respond to faster noise fluctuations. This
process then causes the thermally driven noise to average down and to decrease in value.

Figure 3(a) shows themeasured thermal response of themicrorod resonator. Themeasurement was
performed by first stabilizing the pump laser to the cavity resonance and then subsequentlymodulating the
amplitude of the signal coupled into the resonator via the SOAoffigure 1(a). By comparing the resulting
frequency fluctuations (referenced against an independent 1 Hz linewidth cavity-stabilized laser) to the
amplitudemodulated input, we determine the underlying thermal response governing the coupling of pump
intensity tomode frequency. Themeasurement of figure 3(a) indicates a thermal time constant of 18 Hz and is
nearly two orders ofmagnitude slower than the thermal time constant of the silicamicrodisk resonators used in
[15]. Beyond 10 kHz offset frequency, themeasured thermal response becomes limited by the noise of our
reference cavity-stabilized laser. The corresponding photograph of themicrorod is shown infigure 3(b).We
estimate themicrorod’smode-field diameter to be in the range of 100 μm.

2.4. SBS laser noise
The long thermal time constant of themicrorod resonator combinedwith its low optical loss enable the
microrod to support the generation of nonlinear optics with exceptional noise properties and low requirements
for pumppower. However, since the SBS generation process is dependent on the intracavity intensity, there
exists a limit as to how large themode volume can bemade before the laser can no longer reach threshold. For
our SBS laser, the threshold for lasing is reachedwith 6.3 mWof pumppower at the tapered fiber input.
However, at our operating point, the pumppower is 11.7 mWwhich yields an SBS output power of 3.7 mW.
Thus, approximating the SBS laser output power to be linear, we determine the laser’s slope efficiency to be 69%.

In order to assess the performance of ourmicrorod SBS laser, wemeasure its noise in terms offluctuations in
both intensity and frequency. Figure 4(a) shows the relative intensity noise (RIN) of the pump and SBS lasers.We
find the SBSRIN (red) to be above that of the pump laser at themicroresonator input (blue). For frequencies
larger than 1 kHz, the SBSRIN iswhite and dominated by the intrinsic noise generated by the SBS gain process.
At lower frequencies, we believe the SBSRIN to be dominated by technical or excess noise, while at higher
frequencies beyond 1.3 MHz, the RIN rolls off with the cavity response.We note that although themeasured SBS
RIN is above that of the pump laser, this RIN can be readily reduced to levels below the pumpRINusing the
combination of a saturated optical amplifier and/or an intensity servo [15]. Figure 4(a) also shows the SBSRIN
when intensity noise is intentionally injected onto the pump throughmodulation of the SOApower at the
microresonator input. Since the intracavity pumppower becomes clamped at threshold, themodulated power is
transferred over to the SBS power as intensity noise. This noise has a bandwidth of 100 kHz due to limitations in
the SOAmodulation response andwill be important for our discussion later whenwe analyze the fundamental
performance limitations of the SBS laser.

Figure 3.Thermal properties of the SBSmicroresonator. (a)Thermal response of the SBSmicrorod indicating a 3 dB bandwidth of
18 Hz. (b)Photograph of the SBSmicrorod resonator having a fabricated resonatorminor diameter of 170 μm.
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Wenextmeasure the frequency noise performance of the SBS laser (figure 4(b)) alongwith the noise of the
integrated planar external-cavity diode laser that we use as the pump.We perform thismeasurement using a
combination of techniques that captures the noise across both low and high offset frequencies. At lowoffset
frequencies, we directly heterodyne our SBSmicrorod laser with a 1 Hz linewidth cavity-stabilized fiber laser and
detect the resulting frequency fluctuations using a frequency-to-voltage converter. However, at higher offset
frequencies where the cavity-stabilized laser exhibits larger noise due to limitations in the locking bandwidth, we
instead use aMach–Zehnder interferometer [35] as a frequency discriminator with delay lengths ranging from
60 to 550 m.Wefind the pump frequency noise to be 10–30 dB above the SBS noise across the entire range of the
measured spectrum. At 10 Hz, the SBS frequency noise reaches 2×104 Hz2 Hz−1 and is nearly two orders of
magnitude below that of the pump laser and also that of the SBSmicrodisk laser [15]. This improvement is a
direct result of themicrorod’s longer thermal time constant (figure 3(a)) in comparison to that of themicrodisk,
which results in an averaging over the thermal fluctuations of the system. The SBS frequency noise reaches a
floor of 0.1 Hz2 Hz−1 beyond 300 kHz offset, which is below theMach–Zehndermeasurement sensitivity for
delay lengths below 60 m.Note that the spurs near 3.5 and 7MHz are due to the transfer function of theMach–
Zehndermeasurement for∼60 moffiber delay. As in the case of [15], we find the contribution of the optical
amplifier noise to be negligible to the SBS laser noise here.

To assess the limitations in the SBS laser’s performance, we again intentionally inject the same amount of
intensity noise as in the case offigure 4(a) via the SOA andmonitor the response of the frequency noise. Note
that since the noise bandwidth is 100 kHz, the corresponding noise beyond 100 kHz infigure 4(b)when noise is
intentionally injected (gray curve) is due to a combination of the servo peak of the 1 Hz linewidth cavity-
stabilized laser at 150 kHz, the relaxation oscillation of the cavity-stabilized laser at 1.4 MHz, and the rolloff of
the frequency-to-voltage converter beyond 5MHz. The ratio of themeasured noise spectra characterizes the

Figure 4. SBSMicrorod laser noise characteristics. (a)RINof the pump laser (blue), the SBS laser (red), and the SBS laser injectedwith
broadbandwhite noise (dark gray). (b) Frequency noise corresponding to the same laser configurations. The noise conversion from
SBS laser RIN to SBS frequency noise is also provided (black). (c)RF spectrumof the pump and SBS lasersmeasured by a cavity-
stabilized laser showing a SBS laser linewidth of 240 Hz. The resolution and video bandwidthwere 100 Hz and 50 Hz, respectively.

6

New J. Phys. 18 (2016) 045001 WLoh et al



conversion of amplitude noise to frequency noise in the SBS laser and follows the shape of the cavity thermal
response (figure 3(a)), as onewould expect.Wemultiply this ratio across frequencywith themeasuredRINof
the SBS laser andfind the resulting noise to be nearly identical to the frequency noise of the SBS laser. The
similarity between the two provides strong evidence that the current limitations of the SBS laser stem from
fluctuations in amplitude.

The RF spectrumof the beat note between the SBS laser and the cavity-stabilized laser (figure 4(c)) provides
an additional independentmeasure of the overall noise performance of the SBS laser. For thismeasurement, we
used a resolution bandwidth of 100 Hzwith a corresponding analyzer sweep time of 0.028 s. The spectrumof the
pump laser is provided infigure 4(c) for reference. Since the cavity-stabilized laser’s linewidth ismuch narrower
than that of the SBS laser, the resulting spectrum is a truemeasure of the SBS laser’s lineshape. By integrating the
powerwithin the SBS laser lineshape, we determine its half-power linewidth to be 240 Hz. This agrees closely
with the linewidth found from integrating the frequency noise of the SBS laser infigure 4(b) [36], whichwe also
determine to be 240 Hz. The corresponding half-power linewidth of the pump is 7.9 kHz and is thusmuch larger
than that of the SBS laser, as onewould expect from the frequency noise spectra offigure 4(b).

Infigures 4(a) and (b), the coupling between amplitude and frequency through themicroresonator’s
thermal response provides insight regarding the fundamental noise limitations of the SBS laser. Here, a
fluctuation in the intracavity power produces a change in the resonator’s intensity absorption and thus
ultimately results in afluctuation of the system’s internal temperature. This change in temperature shifts the
modes of the resonator, thus provoking a frequency shift in response to the fluctuations of amplitude. The
conversion of amplitude noise to frequency noise is captured by themicroresonator’s thermal response in
figure 3(a) and also by the response of the injected noise infigures 4(a) and (b). To show the correlation between
the two,we provide themeasured frequency response between the SBS laser RIN and frequency noise in
figure 5(a) alongside the cavity thermal response. Themagnitude of this response falls off near 10 Hz offset
frequency, in exact agreement with the thermal time constant of themicrorod. Furthermore, the phase of the

Figure 5. SBSmicrorod laser noise feedback. (a) Frequency response between SBSRIN and SBS frequency noise indicating a rolloff
thatmatches themicrorod thermal response. (b)RINof the SBS laser showing 10–20 dBnoise improvement upon servo control of the
SBS intensity fluctuations. (c) SBS laser frequency noise showing an improvement at low offset frequencies as a result of the RIN servo.
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response decreases steadily with offset frequency and is non-random, thus indicating that the SBS intensity and
frequency are correlated over the spectrum.

The correspondence between SBS intensity and frequency fluctuations enables us to correct for frequency
jitter through a servo of the intensity noise.We showhere the results of our noise correction schemewhich
utilizes the detection of the SBS laser RIN as a feedback signal to control the SOAoutput power before the
microresonator. Since the intracavity pumppower is nominally clamped at the SBS lasing threshold [23], the
changes in the pumppower all go towards canceling the fluctuations in the SBS laser intensity. In addition to
reducing the SBS frequency noise, the servo has the added benefit of simultaneously suppressing the SBS laser
intensityfluctuations. The resulting SBSRIN after servoing the laser intensity noise is shown infigure 5(b). In
comparison to the uncorrected RIN, the servo improves the SBS laser’s intensity fluctuations by 10–20 dBup to
offset frequencies of a few kilohertz.

Figure 5(c) shows the improvement in the SBS laser’s frequency noise due to feedback provided by the RIN
servo. At lower offset frequencies near∼1 Hz, the frequency noise improves by an order ofmagnitude, while at
higher frequencies near 100 kHz, the frequency noise increases slightly. Fromour tests, this increase in noise
appears to be due to the interplay between slight changes of our cavitymode/SBS laser state and the
microresonator Pound–Drever–Hall servo operation rather than to the addition of the RIN servo. This can be
readily verified by removing the RIN servo and observing the resulting SBS laser noise level. Finally, the residual
spur at 5.7 MHz is again due to an artifact of ourMach–Zehndermeasurement performedwith a delay length of
35 m. By integrating the spectrumof the frequency noise, we determine that the SBS laser linewidth improves
slightly with servo feedback down to a linewidth of 225 Hz. As can be observed from figure 5,most of the
improvement in noise occurs for offset frequencies below 100 Hz and thus contributes negligibly to the spectral
width at the 3 dB point.

3. Summary

We showed that the thermal fluctuation of amicroresonator, which is an important source of noise at low
frequencies for allmicrocavity devices, becomes averaged and reduced by the thermal response of the system.
For this reason, we explore the use of amicrorod resonatorwith a thermal bandwidth of 18 Hz as amedium for
ultralownoise lasing via the SBS optical nonlinearity. The SBSmicrorod laser demonstrates two orders of
magnitude lower noise compared to similar SBS lasers that use a chip-integrated resonator platform and exhibits
ameasured half-power linewidth of 240 Hz. At this level, we determine frommeasurements of the noise
correlation that our SBS laser noise is still limited by the conversion of intensity noise to frequency noise through
the thermal response of themicrorod. This coupling between amplitude and frequency sheds light on the
intrinsic noise limits ofmicroresonator devices and provides a pathway to use simplemeasurements of intensity
as themeans to correct forfluctuations in frequency. The techniques that we demonstrated have the advantage
of avoiding the necessity for ultrastable frequency references that would otherwise complicate the system and/or
increase its size, weight, and power consumption.
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