
1 
 

 

 

Vesicle-associated membrane protein (VAMP)/synaptobrevin-2 

protein mutants functionality test in synaptic vesicle fusion 

 

Sophia Praggastis 

 

 

Committee Members: 

Dr. Jingshi Shen, MCDB, Thesis Advisor 

Dr. Xuedong Liu, CHEM 

Dr. Jerry Rudy, PSYCH 

Dr. Ravinder Singh, MCDB 

 

 

University of Colorado at Boulder 

Department of Molecular, Cellular, and Developmental Biology 

April 2nd 2014 

 

 

 



2 
 

I. Abstract  

Release of neurotransmitters to complete synaptic transmission is dependent upon the concerted 

action of the SNARE and SM (Sec1/Munc18) protein families. The SNARE complex, formed 

during synaptic vesicle fusion, is made up of syntaxin-1, SNAP-25, and synaptobrevin/VAMP. 

This process is catalyzed by the SM protein Munc18. We are interested in determining how the 

SNARE complex and VAMP2 are involved in the fusion of synaptic vesicles during the process 

of synaptic transmission, as little about these mechanisms is known. Previous studies suggested 

that without functional VAMP2 protein Munc-18 is no longer capable of stimulating the trans-

SNARE complex. Based upon this previous research two motifs within VAMP2 were targeted 

and a series of mutants designed, upon which functionality screens were performed. Our results 

show that nonfunctional VAMP2 mutants impair both endocytosis and exocytosis of 

neurotransmitters. Nonfunctional VAMP2 greatly reduces the frequency of spontaneous 

neurotransmitter release, and greatly reduces the amplitude of evoked neurotransmitter release.  
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II. Introduction 

In order to function successfully, neurons must pass signals to specific target cells through synapses 

via vesicle fusion. Synaptic vesicle fusion is mediated by two different branches of proteins, the 

SNARE and Sec1/Munc18 (SM) families. SNARE-mediated synaptic transmission between neurons 

is required for memory, learning, and computational ability (Bear et al., 2007, pg 40). Located on 

the surface of the lipid membrane, the SNARE complex is a four-helical bundle made up of syntaxin-

1, SNAP-25, and synaptobrevin/VAMP (Zhou et al., 2013). All SNARES contain a conserved region 

of 60-70 amino acids within their cytosolic domain called the SNARE motif, which homo-dimerizes. 

V-SNARES on the vesicular membrane “zip together” with t-SNARES on the target membrane, 

becoming tightly bonded, and in the process cause the opposing membranes to fuse. 

  Thus, the neurotransmitters within the vesicle can be 

released into the target cell (Karp, 2010,  pg. 296-297). 

The importance of SNARE protein complex function is 

exemplified by the fact that it is the target of two bacterial 

toxins, botulism and tetanus. These toxins cleave neuronal 

SNAREs, blocking the release of neurotransmitters and 

causing paralysis (Karp, 2010, pg. 296). 

 Previously, it was determined that Sec1/Munc18 (SM) 

proteins were required for synaptic transmission, in particular 

Munc18-1 was determined to be essential to neurotransmitter 

release. Munc18-1 accelerates vesicle fusion by directly 

interacting with v- and t-SNARES of the trans-SNARE 

complex, increasing specificity and assisting zippering of the 

SNARE complex. The delivery of lipid cargo between 

membranes requires a fusion event which can be examined by 

using a Fluorescence Resonance Energy Transfer (FRET) 

based lipid mixing assay. Our group has used FRET to 

visualize fusion of liposomes in which neuronal SNARE 

proteins have been reconstituted at appropriate surface densities (Scott et al., 2002). In these studies, 

performed by Shailendra Rathore, a post-doctoral research scientist in Dr. Jingshi Shen’s lab, v-

Figure 1. Model for the General 

Mechanism of Fusion and SM 

Function.  Yellow-SM, Green-

Syntaxin, Blue-SNAP-25, Purple-

VAMP2 (From Shen et al., 2007) 
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liposomal fusion events were examined using the FRET pair NBD-PE (fluorophore) and Rho-PE 

(quencher). These lipid chromophores become diluted as the target and vesicular membranes fuse, 

and dequenching occurs as the chromophores are no longer in close proximity. This dequenching 

can be an indication of successful membrane fusion. Stimulation of Munc18 is greatly reduced when 

mutations in VAMP2 are present, but with no effect to the core SNARE catalytic function (Figure 

2). Two specific motifs of VAMP2 were found to be required for successful stimulation of vesicle 

fusion and lipid mixing – S61/E62 and S75/Q76 (Shen et al., 2007).  

 

VAMP2, a component of the SNARE complex, has been implicated in the process of storage vesicle 

fusion (Papini et al., 1995). VAMP2 complexes with syntaxin-1 and SNAP 25 from the presynaptic 

membrane, as well as a synaptic vesicle membrane protein (VAMP/synaptobrevin; Taubenblatt et 

al., 1999). In the absence of VAMP2, neurotransmitters are not transported across the synaptic 

membrane (Taubenblatt et al., 1999).When synaptic transmission does not proceed properly, it can 

result in a range of mental disorders. We are interested in determining how VAMP2 is involved in 

the fusion of synaptic vesicles in the process of synaptic transmission, as a protein within the SNARE 
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complex. To answer this question, we have performed a complementation screen to determine the 

functional domains of VAMP2 in vesicular fusion.  

III. Materials and Methods 

Primary Neuronal Cell Cultures 

Neuronal cultures were obtained from postnatal wild type mice on day 1 or 2 following birth. 

Neurons were plated on 18 mm coverslips in 12 well dishes, or 5 coverslips in a 60 mm Petri dish. 

Coverslips were first cleaned by soaking in concentrated nitric acid (70%); the coverslips were 

further sterilized by washing in MilliQ water several times and exposure to ultraviolet light for 30 

minutes, and finally coated with poly-L-lysine. The brain was removed, placed in the 

dissection/dissociation medium, and dissected. Hippocampal and cortex neurons were dissociated 

by trypsin (5 mg/mL for 5 min at 37°C). DNAase solution was added and incubated. The cell density 

was calculated and cells were plated at 1x10^5 cells per mL in plating medium. Cells were incubated 

in the cell culture incubator at 37 °C with 95% air and 5% CO2. Cells were maintained in Neurobasal 

medium supplemented with B-27, 2 mM glutamine, and pencillin/streptomycin. See protocol in 

(Beaudoin, 2012). All mice were handled according to the NIH guidelines for Animal Care & Use, 

and the procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Colorado-Boulder.  

Plasmid Construction and production of lentiviruses 

From the University of Colorado Functional Genomics Facility a VAMP2 shRNA silencing 

lentiviral vector was obtained. This vector targets a sequence within the 3’UTR of the mouse 

VAMP2 gene (5’-CCGACCACAATCTGGTTCTTT-3’). The pLKO-puro lentivirus vector (Sigma-

Aldrich Co. LLC) along with three packaging plasmids (VSVG, pSPAX, and pAdvantage) were 

cotransfected into HEK293T cells at 0.5 ug, 5 ug, and 1 ug per 100 mm cell culture respectively, 

using the transfection reagent PEE25. Cell culture supernatants were collected every 24 hours 

following transfection for 3 days and used directly in infection of neurons or stored at -80°C. 

Neuronal cultures were infected DIV 6 by adding 20 uL of viral suspension per well, and examined 

using electrophysiology DIV 16-20.  

 



6 
 

Plasmid Sequence 

The vector TRC2- pLKO-puro lentivirus was 

used, which is 7,518 bp in length. In order to 

create the VAMP2 rescue the puroR gene (an 

antibiotic gene) within this vector was selectively 

removed using BamH1 and Kpn1 splicing factors, 

and was replaced with the mouse VAMP2 gene 

sequence. In this rescue the mouse VAMP2 gene 

which had been cloned in is driven by the hPGK 

promoter, allowing for the simultaneous 

expression of the shRNA VAMP2 and the 

VAMP2 mouse gene.  All mutant constructs were designed using site-directed mutagenesis, and 

verified using sequencing. The transgene was then delivered by the lentivirus. This particular vector 

allows for the production of stable lentiviral particles, as well as for transfection of the cell culture. 

The 3’UTR was used as the targeting region for the shRNA in order to conserve the coding region 

of VAMP2.  

 

 

 

Figure 4. Schematic of pLKO lentiviral Knockdown construct and Knockdown Rescue construct. In 

both of these constructs the cppt gene is replaced with a shRNA coding region, driven by the U6 

promoter. In the Knockdown Rescue construct the puroR gene is replaced with the WT VAMP2 

sequence and transcription is independently driven by the hPGK promoter. 
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There were two controls: 

TurboGFP Control 

The TurboGFP control (Sigma-Aldrich Co. LLC) is used as a positive control in 

transfection/infection. This pLKO construct contains a TurboGFP tag driven by the CMV promoter.  

Non-Mammalian shRNA Control 

The Non-target shRNA control (Sigma-Aldrich Co. LLC) is used as a negative control. It is a version 

of the pLKO construct containing an shRNA insert which does not align with any BLAST product. 

This control allows us to examine the potential effects of infecting cells with a shRNA on gene 

expression.  

There were four mutants of interest: 

VAMP2 WT 

        5          10         15         20        25         30         35          40          45          50          55         60         65          70          75        80        

SATAATAPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKL 

 

VAMP2 L63A Mutant 

        5          10         15         20        25         30         35          40          45          50          55         60         65          70          75        80        

SATAATAPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSEADDRADALQAGASQFETSAAKL 

 

VAMP2 L60A Mutant 

        5          10         15         20        25         30         35          40          45          50          55         60         65          70          75        80        

SATAATAPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKASELDDRADALQAGASQFETSAAKL 

 

VAMP2 S61D/E62H Mutant  

        5          10         15         20        25         30         35          40          45          50          55         60         65          70          75        80        

SATAATAPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLDHLDDRADALQAGASQFETSAAKL 

 

VAMP2 S75E/Q76H Mutant 

        5          10         15         20        25         30         35          40          45          50          55         60         65          70          75        80        

SATAATAPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGAEHFETSAAKL 
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Titration Assay 

The titration assay was performed using the GFP control, which contained the viral construct with a 

GFP tag, but no targeting shRNA inserted. Following transfection into the HEK293T cells, these 

cells were examined under a fluorescent microscope at 1:1, 1:10, 1:100, 1:1000, 1:10000, and 

1:100000 dilutions in order to determine the titer of the virus. Titer was calculated using the 

following equation: {(# cells at starting time)(dilution factor)(percent infection)}/(vol virus solution 

expressed in mls). The titer of GFP virus is normally 1X10^8 IU/ml.   Once the titer is calculated 

we further concentrate the supernatant about 10X by ultracentrifuge at 25k rpm for 2hr. Neuronal 

cultures are plated at 1X10^5 cells per ml, the titer of the virus is used to calculate the volume of 

virus needed to infect 100% of cells at a ratio of one virus per cell, then increased 10 fold due to the 

difficulty infecting neuronal cultures. Titer must be calculated each time an infection is performed 

since it can be variable. If only 80% of the neuronal cell culture is infected a Western Blot will no 

longer be reliable.  

Western Blot 

Immunoblotting was used to examine the knockdown efficiency and gene expression within the 

rescue. Neuronal cells which had been previously infected were separated at DIV 16-20 on 8% SDS-

PAGE gels. These membranes were stained using monoclonal anti-VAMP2 antibodies, monoclonal 

anti-syntaxin anitbodies, or anti-Bip antibodies. VAMP2 was detected using the secondary antibody 

goat Fluor 488-conjugated (Life Technologies), Syntaxin was detected using the secondary antibody 

goat rhodamine-conjugated (Jackson ImmunoResearch).  Chemiluminescence was detected using 

enhanced chemiluminescence (ECL) after the membrane was exposed to photographic film. 

FM4-64 labeling and Live Imaging 

FM4-64 labeling of recycling vesicles in live neurons and live imaging was performed following the 

described protocol in (Beaudoin, 2012, pg. 1744). Cultured neurons were incubated in Tyrode’s 

solution, high KCL Tyrode’s solution containing 10mM FM4-64, and Tyrode’s solution containing 

Advasep-7. Cells were fixed using 10mM FM4-64X and 4% paraformaldehyde. These cells were 
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examined using a confocal imaging system, FM4-64 can be excited between 510-570 nm and 

emission collected at 560-750 nm.  

Electrophysiology Recordings  

Electrophysiology Recordings were performed in whole-cell patch-clamp mode using a Multiclamp 

700B amplifier (Molecular Devices) to examine synaptic currents. Evoked synaptic transmission 

was stimulated by concentric bipolar electrodes placed 100-150 µm from the neuron, which 

delivered one millisecond current injections. The resistance of pipettes varied between 3 and 5 

Ohms, after the whole cell was patched resistance was adjusted to between 8 and 10 Ohms. The 

frequency, duration, and magnitude of extracellular stimuli were controlled by an Isolated Pulse 

Stimulator (World Precision Instruments). The whole cell pipette solution contained 135 mM CsCl, 

10 mM HEPES-CsOH (pH 7.25), 0.5 mM EGTA, 2 mM MgCl2, 0.4 mM NaCl-GTP, and 4 mM 

NaCl-ATP.  The bath solution contained 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.8 MgCl2, 10 

mM HEPES-NaOH (pH 7.4), and 10 mM Glucose. IPSCs and EPSCs were isolated by adding either 

the GABAA receptor blocker picrotoxin (50 µM) or the glutamate receptor blockers CNQX (20 µM) 

and AP-5 (50 µM) (all from Sigma) to the bath solution. In order to block action potentials the 

spontaneous mEPSCs and mIPSCs were analyzed using tetrodotoxin (TTX). Electrophysiological 

data were analyzed using the pClamp 10 software (Molecular Devices), statistical analysis were 

performed using Student’s t-tests. VAMP2 rescue mutants were compared to WT control neurons.  
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IV. Results 

 In order to determine the effects of VAMP2 mutations on synaptic transmission, we expressed four 

different mutant VAMP2 constructs in VAMP2 knockdown neuronal cultures. First, VAMP2 was 

silenced in mouse neuronal cultures using lentiviral constructs containing shRNAs. To determine 

the proper concentration of lentivirus necessary to infect mouse neuronal cultures, a GFP Titration 

Assay was performed (Figure 3). The titration assay is necessary to accurately determine the titer of 

the virus as neuronal cell cultures are more difficult to infect and the titer can vary. A GFP control 

was used during transfection, containing a GFP tag but no shRNA silencing elements.  

As shown in Figure 3, the lentivirus concentrations are increased 10 fold, and the neurons are 

typically infected at an adjusted titer so that there is ~100% infection rate. The levels of transfection 

are comparable to that of the other constructs used in our experiments.  
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Knockdown efficiency of multiple VAMP2 knockdown constructs was determined by 

immunoblotting. The WT form of VAMP2 was compared to a GFP control construct, a shRNA 

control without any targeting shRNA, and three separate knockdowns. V1 contains a shRNA 

sequence within the 3’UTR, while V2 and V4 contain the shRNA targeting region within their 

coding regions. V1 is a more reliable knockdown to use because the shRNA targeting region has no 

effect on the construct’s coding region and is not predicted to cause interference. Incorporating the 

shRNA targeting region into the 3’UTR is also more efficient, if the shRNA targeting region is 

incorporated within the coding region of the protein it is necessary to perform a mutagenesis. The 

data illustrates that no VAMP2 protein is present in V1, V2, or V4 (Figure 4). Also no unexpected 

interference results from the addition of a GFP tag or the use of shRNA on gene expression. Syntaxin 

was detected in order to ensure synaptic formation was normal, and that the shRNA was specifically 

targeting VAMP2. Bip was used as an indication of ER stress, and acted as a loading control. 
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Once knockdown cell lines were obtained, we expressed the mutant constructs of interest to perform 

the complementation assay. The expression level of VAMP2 rescue mutants was examined using 

immunoblotting. VAMP2 knockdown with four different rescue constructs was compared to 

wildtype VAMP2 expressed at endogenous levels (CTR). A wild type rescue construct as well as 

four rescue mutant constructs, two with single point mutations (L63A and L60A) and two with 

double mutations (S61D/E62H and S75E/Q76H) expression levels were compared. The expression 

level of VAMP2 rescue mutants was examined via immunoblotting, and each cell line was 

determined to have similar VAMP2 protein levels as the WT control. (Figure 5).  Syntaxin was used 

to ensure synapse formation was normal, and that the shRNA was targeting specifically VAMP2. 

The effects of mutant VAMP2 expression on endocytosis during synaptic transmission were 

analyzed using FM4-64 dye. FM dyes are amphiphilic styryls which insert into one leaflet of the 

lipid bilayer through a lipophilic tail. During endocytosis the dye becomes entrapped within 

vesicles and fluoresces, allowing it to be used as a marker of synaptic transmission. 
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Following exposure to the FM dye the cells are washed and any remaining FM dye is present 

within vesicles which have budded off from the plasma membrane. In VAMP2 knockdown cells 

there is very little fluorescence, while the Rescue WT shows significant fluorescence. Cells 

expressing the L60A mutant protein show comparable levels of fluorescence to those of the 

Rescue WT, illustrating that this mutant’s mutation has little effect on the functionality of 

VAMP2. S61D/E62H and S75E/Q76H show partial fluorescence when compared to the Rescue 

WT, and therefore most likely have partially functional VAMP2 proteins. L63A, on the other 

hand, shows a very low level of fluorescence comparable to that of the VAMP2 knockdown V1. 

The L63A mutation is significant because it has completely ablated VAMP2 functionality, thus 

affecting the fusion process (Bolte et al., 2004). 

Next, we examined the effects of the L60A and L63A VAMP2 mutations on neurotransmitter 

release/exocytosis using electrophysiology recordings. The S61D/E62H and S75E/Q76H VAMP2 

mutants were not examined as they demonstrated only partial effects on synaptic endocytosis. I was 

Figure 6. Analysis of Synaptic Transmission using FM4-64. The effect of the knockdown and VAMP2 

rescue mutants on synaptic transmission can be detected using fluorescence levels.  
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able to assist Dr. Chong Shen, a post-doctoral research scientist within Jingshi Shen’s lab, in some 

aspects of this work.  

The spontaneous neurotransmitter release was examined by monitoring miniature excitatory 

postsynaptic currents (mEPSCs). The VAMP2 knockdown greatly diminished the frequency of 

spontaneous neurotransmitter release (Figure 7), and could only be successfully rescued by the 

VAMP2 WT. Both the L63A and L60A VAMP2 mutants were unable to restore the frequency of 

spontaneous neurotransmitter release back to a wildtype level.  There was no effect on the amplitude 

of these neurotransmitter releases. This indicates that these mutations are detrimental to VAMP2 

protein’s functionality in regulating exocytosis during neurotransmitter release. In order to ensure 

these mutations had a universal effect on the mechanism of transmission, miniature inhibitory 

postsynaptic currents (mIPSCs) were also examined (Figure 8). Similarly, the L63A and L60A 

mutants demonstrated greatly reduced frequency of neurotransmitter release with little effect on the 

amplitude. Since both the mEPSCs and mIPSCs were affected by the VAMP2 knockdown as well 

as the VAMP2 mutants, it appears that these mutations universally affect the mechanism of SNARE 

mediated synaptic transmission.  

 

 

 

Figure 7. Electrophysiological analysis of VAMP2 impact on spontaneous 

neurotransmitter release by monitoring miniature excitatory postsynaptic 

currents. Test of the rescue ability of VAMP2 mutants.  (From Chong Shen)  

 

 Figure 7. Electrophysiological analysis of VAMP2 impact on spontaneous 

neurotransmitter release by monitoring miniature excitatory postsynaptic 

currents. Test of the rescue ability of VAMP2 mutants.  (From Chong Shen) 
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We also investigated the effects of the VAMP2 mutations on evoked neurotransmitter release.  

Action potential-evoked neurotransmitter release in the cultured neurons was triggered using 

electrical stimulus, then currents were quantified (Figure 9). The amplitude of these evoked EPSCs 

was greatly reduced by the L63A and L60A mutants. Neither of these mutants was capable of 

rescuing the VAMP2 knockdown, which demonstrated a greatly reduced amplitude as compared to 

the wildtype. The wildtype VAMP2 was capable of rescuing the VAMP2 knockdown and 

successfully restored evoked neurotransmitter release. The evoked IPSCs were affected in a similar 

manner (Figure 10); the VAMP2 knockdown greatly reduced the amplitude of the evoked IPSCs 

and was only successfully rescued by the VAMP2 wildtype. Neither mutant was capable of rescuing 

the knockdown phenotype.  

 

 Figure 8. Electrophysiological analysis of VAMP2 impact on spontaneous 

neurotransmitter release by monitoring miniature inhibitory postsynaptic 

currents. Test of the rescue ability of VAMP2 mutants. (From Chong Shen) 
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These results indicate that the loss of functional VAMP2 protein inhibits endocytosis, as well as 

spontaneous and evoked neurotransmitter release.  

 

 

 

 

 

 

 

 

 

 

 Figure 9. Electrophysiological analysis of VAMP2 impact on evoked neurotransmitter release by 

monitoring excitatory postsynaptic currents. Test of the rescue ability of VAMP2 mutants. (From 

Chong Shen) 
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V. Discussion  

In order to function properly, neurons must transmit signals to target cells via vesicle fusion in the 

neuronal synapse. VAMP2 is a necessary component of the SNARE complex and is required for 

vesicle fusion to take place. The  previous identification of two essential motifs in the v-SNARE 

VAMP2 (S61/E62 and S75/Q76) that appear to be indispensable in the Munc18-1/trans-SNARE 

interaction lead to further examination of VAMP2 and its potential implications in neurotransmitter 
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release. Mutations within these two motifs disrupt the catalytic role of Munc18-1 in SNARE 

complex zippering, but do not impact the formation of the trans-SNARE complex (Shen et al., 2007).  

The purpose of this research was to examine what residues of the VAMP2 protein are involved in 

the fusion of synaptic vesicles during synaptic transmission. We were able to successfully design 

and test an effective series of knockdowns and rescue mutants to examine the effects of knockdown 

and mutant VAMP2 expression in mouse neuronal cultures on SNARE mediated synaptic 

transmission. Once the efficiency and level of expression was verified using immunoblotting the 

knockdown (V1), rescue WT, and four rescue mutants implications in endocytosis were examined 

using FM4-64 dye. Of the four mutants L63A demonstrated the most intriguing results, as it reduced 

synaptic endocytosis to similar levels as the VAMP2 knockdown. L60A appeared to have little effect 

on endocytosis, while the S61D/E62H and S75E/Q76H mutants only had partial inhibition of 

synaptic endocytosis. Our electrophysiological data also indicate that the VAMP2 L60 and L63 

residues are required for neurotransmitter release. 

Previous work in the field of vesicular fusion has shown that the SNARE complex is required for 

neuronal transmission in vivo. Recently a correlation between genetic variations in VAMP2 and 

Idiopathic Generalized Epilepsy (IGE) has been observed in humans. IGE is believed to be 

dependent on genetic variations which impair synaptic processes (Yilmaz et al., 2013). To determine 

the function of VAMP2 in vesicular fusion in mice, I am interested in creating a VAMP2 knockdown 

mouse model. This model could be created by injecting a VAMP2-secific CRISPR sequence into 

mouse embryos, and then analyzing the neurological phenotype in adult animals. Based upon this 

previous research I expect that VAMP2 knockdown mice will display a phenotype similar to IGE 

patients.  
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