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ABSTRACT

Smith, Austin C. (Ph.D., Economics)

Three Essays in Applied Economics

Thesis directed by Assistant Professors Brian Cadena and Jonathan Hughes

This dissertation examines various topics in applied economics, with particular atten-

tion to policy evaluation and to how workers respond to incentives. In the �rst chapter,

I examine the impact of Daylight Saving Time (DST) on fatal automobile accidents.

Despite mounting evidence that DST fails in its primary goal of saving energy, some

form of DST is still practiced by over 1.5 billion people in over 60 countries. I demon-

strate that DST imposes high social costs on Americans, speci�cally, an increase in fatal

automobile crashes. DST alters fatal crash risk in two ways: disrupting sleep schedules

and reallocating ambient light from the morning to the evening. I �nd that shifting

ambient light reallocates fatalities within a day, while sleep deprivation caused by the

spring transition increases risk. The increased risk persists for the �rst six days of DST,

causing a total of 302 deaths at a social cost of $2.75 billion over the 10-year sample

period.

In the second chapter, my coauthor and I examine the impact of alternative com-

pensation structures on worker performance. We use a unique panel dataset that tracks

workers as they are able to adjust how they are paid for performance between a pure

variable payment scheme based on performance in a rank-order tournament and a hybrid

structure with a �xed fee and tournament component. We �nd that performance is best

under the pure variable payment structure, with performance under the hybrid struc-

ture improving as more weight is given to the variable component of pay. Importantly,

the incentives created by the variable payment scheme have an economically meaningful

impact in a setting where output is highly variant.

In the �nal chapter, I investigate how professional online poker players respond to

shocks in expected wages. Using variation in expected wages created by the amateur

portion of the player pool, I �nd that the top pros respond on the extensive margin,

playing more often when expected wages are high, and on the intensive margin, playing

more tables simultaneously. In contrast, weaker pros respond only on the intensive

margin.
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Chapter I

Spring Forward at Your Own Risk:

Daylight Saving Time and Fatal

Vehicle Crashes

1 Introduction

Daylight Saving Time (DST) in the US was originally implemented as a wartime

measure to save energy and was extended as part of the Energy Policy Act of 2005.

However, recent research demonstrates that DST does not save energy and could pos-

sibly increase energy use (Kellogg and Wol�, 2008; Kotchen and Grant, 2011). Despite

mounting evidence that DST fails in its primary goal, some form of Daylight Saving

Time is still practiced by over 1.5 billion people globally. In this paper I demonstrate

that DST imposes high social costs on Americans, speci�cally, an increase in fatal au-

tomobile crashes. Employing three tests to di�erentiate between an ambient light or

sleep mechanism, I show that this result is most likely due to sleep deprivation caused

by the spring transition and the result implies additional costs of DST in terms of lost

productivity nationwide.

The procedure for DST is well characterized by the phrase �spring-forward, fall-back.�

Each year on the spring transition date, clocks are moved forward by one hour, from 2

a.m. to 3 a.m. The process is then reversed for the fall transition with clocks �falling

back� from 2 a.m. to 1 a.m. This alters the relationship between clock time and solar

time by an hour, e�ectively moving sunlight from the morning to the evening (see Figure

1). The procedure was �rst suggested by George Vernon Hudson, an entomologist who

wanted more light in the evenings to pursue his passion of collecting insects (Hudson,

1895). While the policy was �rst used during World Wars I and II, it has since become

1



Figure 1: The In�uence of Daylight Saving Time on Ambient Light

Note: The sunset and sunrise times are for St. Louis Missouri, the nearest major city to the

population center of the US.

a peacetime measure. In all instances, the rationale has been that aligning sunlight

more closely with wakeful hours would save energy used for lighting.1 However, as Hud-

son's personal motivation for the policy suggests, DST has many impacts on practicing

populations.

This paper focuses on a major side-e�ect of DST, its impact on fatal vehicle crashes.

DST alters the risk of a fatal crash in two ways: disrupting sleep schedules and reallo-

cating ambient light from the morning to the evening. With an average of over1 39,000

annual fatalities, motor vehicle crashes are the number one cause of accidental death in

the US (CDC, 2005-2010). Given the large base level of fatalities, even a small change in

1DST is often mistakenly believed to be an agricultural policy. In reality, farmers are generally
against the practice of DST because it requires them to work for an extra hour in the morning, partially
in darkness, to coordinate with the timing of markets (Prerau, 2005).
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fatal crash risk is a potentially large killer. I identify the impact of DST on fatal crashes

by taking advantage of (i) detailed records of every fatal crash occurring in the United

States from 2002-2011; (ii) the discrete nature of the switch between Standard Time

and Daylight Saving Time; and (iii) variation in the dates covered by Daylight Saving

Time, created primarily by a 2007 policy change. I employ two di�erent identi�cation

strategies. First, I use a regression discontinuity (RD) design that examines changes in

daily crash counts immediately before and after DST transitions. Second, to measure

the duration of impact, I use a day-of-year �xed e�ects (FE) model that is identi�ed by

dates that are covered by DST in some years but Standard Time in other years. In both

speci�cations I �nd a 5.4-7.6% increase in fatal crashes immediately following the spring

transition. Conversely, I �nd no impact following the fall transition when no shock to

sleep quantity occurs.2 To address the possibility that some other unobserved factor

related to the transition dates is driving this result, I impose the pre-2007 transition

dates on data from 2007-2011 and the current transition dates on data from 2002-2006

and �nd no impact of these dates when not associated with a policy change. I then

examine the relative contribution of each DST mechanism.

Daylight Saving Time impacts practicing populations through two central channels.

First, it creates a short-term disruption in sleeping patterns following the spring tran-

sition. Harrison (2013) surveys the sleep literature and �nds that �increased sleep frag-

mentation and sleep latency� caused by the 23-hour spring transition date �present a

cumulative e�ect of sleep loss, at least across the following week.� Second, DST alters

the relationship between clock time and solar time by an hour, creating darker mornings

and lighter evenings than would be observed under Standard Time (see Figure 1).3 Even

2Barnes and Wagner (2009) �nd that Americans sleep 40 minutes less on the night of the spring
transition, but experience no signi�cant change in sleep quantity on the fall transition.

3Since fatal crashes are more prevalent in the evening (Figure 2), it is possible that transferring light
from a lower risk morning period to a higher risk evening period could lead to a net reduction in fatal
crashes.
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Figure 2: Frequency of Fatal Crashes by Hour

Note: Histogram uses all fatal crashes from 2002-2011 in the contiguous US except Arizona

and Indiana.

this one hour shift in light can have major consequences; Doleac and Sanders (2013) �nd

that increased ambient light in evenings reduces crime while Wol� and Makino (2013)

suggest that it increases time devoted to exercise.

To parse out these mechanisms and determine what portion of the increase in fatal

crashes is due to sleep loss versus reallocating light, I run three primary tests. These

tests exploit di�erential timing in when each mechanism is active, both within and

across days. First, I isolate the light mechanism by examining only the fall transition.4

4Americans do not sleep a signi�cant amount more on the fall transition date despite receiving an
extra hour in the middle of the night (Barnes and Wagner, 2009).

4



Then, I look at the di�erence between aggregate estimates in the fall (only the light

mechanism) and spring (light and sleep mechanism) to determine the net impact of the

sleep mechanism. Second, I isolate the sleep mechanism in the spring by examining a

subsample of hours furthest from sunrise and sunset. These hours are least impacted

by the light mechanism and a drowsy driver is presumably more at risk throughout

the entire day, even in hours of full light or full darkness. Third, I compare the sleep

impacted days of DST (up to the �rst two weeks) to the remainder of DST with common

support.5 All three tests suggest that the sleep deprivation is driving the increase in

fatal crashes.

My preferred speci�cation reveals a 6.3% increase in fatal crashes, persisting for six

days following the spring transition. Over the 10-year sample period, this suggests the

spring transition is responsible for a total of 302 deaths at a social cost of $1.2 to $3

billion, underscoring the huge costs of even minor disruptions to sleep schedules given

the current sleep-deprived culture in the US.6,7 The total costs of DST due to sleep

deprivation could be orders of magnitude larger when worker productivity is considered

(Wagner et al., 2012; Kamstra, Kramer, and Levi, 2000).8

This �nding is timely, given the recent empirical research suggesting that DST does

not reduce energy demand. Kellogg and Wol� (2008) use a natural experiment in Aus-

tralia where DST was extended in some states to accommodate the Sydney Olympics.

They �nd that while DST reduces energy demand in the evening, it increases demand in

the morning with no signi�cant net e�ect. Kotchen and Grant (2011) make use of quasi-

experiment in Indiana where some Southern Indiana counties did not practice DST until

5Common support refers to dates that are DST in some years and Standard Time in others.
6Social cost is based on Kniesner et al. (2012) value of a statistical life range of $4 to $10 million.
7Nearly 30% of American adults reported sleeping less than 6 hours per day in 2005-2007 according

to a National Center for Health Statistics survey.
8There has been surprisingly little empirical research on the e�ects of sleep on worker productivity.

Although fatal crashes are an extreme measure of productivity, driving is a behavior engaged in by
over 90% of American workers (Winston, 2013) and the increase in fatal crashes suggests that sleep loss
likely reduces productivity.
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2006. Their work suggests that DST could actually increase residential energy use, as

increased heating and cooling use more than o�set the savings from reduced lighting use.

For a failed energy policy to be justi�ed from a welfare standpoint, the social bene�ts

must outweigh the social costs. In this paper, I �nd a signi�cant mortality cost that

must be weighed against any perceived bene�ts of DST.

The remainder of the paper is organized as follows. The next section provides a brief

background of DST in the US. Section 3 details the mechanisms through which DST

in�uences crash risk, including reviewing existing evidence of the impact of DST on ve-

hicle crashes. Section 4 introduces the data, highlighting the visual discontinuity in raw

crash counts at the spring transition. Section 5 describes the RD and FE identi�cation

strategies, outlining the requirements for causal estimates. Section 6 presents results,

including those that di�erentiate between the sleep and light mechanisms, and explores

alternative explanations. Section 7 concludes with a brief summary and further remarks

about the implications for DST as a policy.

2 Daylight Saving Time in the US

Daylight Saving Time has been a consistent feature in most US states since the

Uniform Time Act of 1966.9 This legislation allowed states to determine whether they

practiced DST, but set uniform start and stop dates for any practicing states. Since 1966,

Congress has twice made lasting changes to the DST transition dates, most recently as

part of the Energy Policy Act of 2005. Starting in 2007, DST begins on the second

Sunday of March and continues until the �rst Sunday of November, a 3-4 week extension

in the spring and a 1 week extension in the fall.

9Among the contiguous US, all states but Arizona and parts of Indiana have practiced DST since
1973.
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Figure 1 illustrates the impact of DST on sunrise and sunset times throughout the

year and highlights the 2007 extension. On the spring transition date, clocks skip forward

from 2 to 3 a.m. pushing sunrise and sunset times back by one hour. In the fall, the

process is reversed as clocks are adjusted back by an hour to facilitate the return to

Standard Time. The 2007 extension to DST altered these transition dates and created

an additional range of dates that are DST in some years and Standard Time in others.10

In the next section, I discuss the primary mechanisms through which DST could in�uence

fatal crash risk and how I disentangle the relative contributions of each.

3 Mechanisms

There are two mechanisms through which Daylight Saving Time could impact fatal

crash risk. First, there is sleep loss associated with the spring transition when one hour

in the middle of the night is skipped. Since sleep is a key factor in alertness and control

(Smith, McEvoy, and Gevins, 2002), this sleep deprivation likely reduces driving safety.

In a study of 400 U.S. Army soldiers, Legree et al. (2003) �nd a correlation of 0.20

between driver at fault accidents and self reported insu�cient sleep. Second, DST shifts

the mapping of solar time to clock time by an hour, reallocating sunlight between the

morning and the evening. Ambient light reduces fatal crash risk (Fridstrom et al., 1995;

Sullivan and Flannagan, 2002), and this reallocation of light within a day creates riskier

morning driving conditions and less risky evening driving conditions during DST.11 I

next discuss each mechanism individually, outlining its likely e�ect on fatal crashes and

reviewing existing evidence of its impact through DST.

10Since transition rules are based on moving dates (e.g. the second Sunday of March ranges from 3/8
to 3/14) there is variation in start and end dates even within a particular transition rule.

11When switching out of DST in the fall, the mornings become less risky and evenings more risky
than under DST.
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3.1 Sleep Mechanism

The spring transition into DST is facilitated by clocks jumping forward from 2 a.m.

to 3 a.m. on the transition date. This creates a 23-hour transition day, rather than the

standard 24-hour days people are accustomed to. While this �missing� hour could be cut

from work or leisure time, Barnes and Wagner (2009) �nd that Americans make up the

majority of the missing time by sleeping less. Using the American Time Use Survey, they

�nd Americans sleep an average of 40 minutes less on the night of the spring transition.

Depending on the individual, this transition could impact sleep patterns for anywhere

from two days to two weeks (Valdez et al., 1997) with an average of about one week

(Harrison, 2013).

In the fall, the opposite scenario occurs with a 25-hour transition day. However, in

this case, Americans use very little of the extra hour for sleep, sleeping a statistically

insigni�cant extra 12 minutes (Barnes and Wagner, 2009). This creates variation in

treatment status for the sleep mechanism. The spring transition is treated (sleep loss),

while the fall transition is untreated (insigni�cant change to sleep quantity).12

Previous research on the sleep impact of DST on vehicle crashes has been mixed.

Coren (1996) and Varughese and Allen (2001) �nd an increase in crashes on the Monday

following the spring transition into DST, while Sood and Ghosh (2007) and Lahti et al.

(2010) suggest no e�ect. By focusing on one day, these tests can lack power and often

cannot rule out a wide range impacts. In contrast to these studies, I gain statistical

power by testing for a longer term sleep impact consistent with recent literature on sleep

disruptions.

Additionally, these previous studies use data centered in 1992, 1985, 1987 and 1994

respectively. Average sleep quantity has been on the decline in the US, a phenomenon

12Sexton and Beatty (2014) also �nd signi�cant sleep loss associated with the spring transition but
no signi�cant change in the fall.
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also seen in the lower tail of the distribution. According to the National Sleep Foun-

dation, the percentage of Americans averaging less than 6 hours of sleep has risen from

12% in 1998, to 20% in 2009. My data spans 2002-2011 and should generate a more up

to date measure of the impact of sleep loss given the current sleep patterns in the US.

3.2 Light Mechanism

Despite strong evidence suggesting the importance of ambient light in fatal crash

risk, the implication for net crashes due to Daylight Saving Time remains unclear. DST

does not alter the amount of light in a day, it simply reallocates it between the morning

and the evening. Since fatal crashes are more prevalent in the evening (Figure 1), it is

possible that transferring light from a lower risk morning period to a higher risk evening

period could lead to a net reduction in fatal crashes.

Previous studies by Ferguson et al. (1995) and Broughton, Hazelton, and Stone (1999)

examine the light mechanism by estimating the impact of ambient light on fatal crash

risk directly, and then simulating the impact of imposing DST light levels on the rest of

the year. Both studies suggest a reduction in fatal crashes through this mechanism.13

However, the simulation in Ferguson et al. (1995) uses a single measure of the impact of

light on crash risk. This generates a biased estimate of the life saving potential of DST

if ambient light interacts with other risk factors such as driver alertness, or type of trip

(work versus leisure) both of which are likely to vary from morning to evening driving.

Further, simulation requires assumptions about driver behavior under counterfactual

hours of light.

As an alternative to these simulation methods, I use empirical techniques to estimate

13Sood and Ghosh (2007) also �nd a reduction in crashes which they attribute to the light mechanism.
However, they analyze only the spring transition and results are sensitive to the time frame analyzed
and choice of control group.
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the e�ect directly. First, I focus on the fall transition as a clean estimate of the light

mechanism because it is not a�icted by any signi�cant shock to sleep. Then, I examine

the spring following the �rst two weeks of DST, when the sleep mechanism should no

longer be active.

4 Data

4.1 FARS

For vehicle fatality data, I use the Fatality Analysis Reporting System (FARS), com-

piled by the National Highway Tra�c and Safety Administration. These data contain

a record of every fatal crash occurring in the United States since 1975, including exact

time and location of the accident. I focus on recent crashes, from 2002-2011, allowing

for �ve years on either side of the 2007 DST extension. Consistent with other DST

literature, my sample is the continental US excluding Arizona and Indiana because at

least part of those states did not practice DST consistently over the entire sample time

frame.14 Since the initial Sunday of DST is 23 hours long, whereas other days are 24

hours long, I adjust the crash count by counting the 3-4 a.m. hour twice, using it as a

proxy for the missing 2-3 a.m. hour. For the 25-hour fall transition date, I divide the

fatalities occurring from 2-3 a.m. by two, because this hour occurred twice.15

My dependent variable in all speci�cations is the natural log of the number of fatal

crashes occurring on a given day at the national level. I aggregate to the national

level due to the relative rarity of fatal crashes. There are roughly 100 fatal crashes

14Less than 1% of the remaining observations are dropped due to missing or inaccurate time of day.
15I also use two alternative corrections, multiplying crashes on the spring transition date by 24/23rds

and those on the fall transition date by 24/25ths, or simply dropping the transition dates from the
sample. Results are robust to both methods.

10



per day across the entire US and the mode for daily crashes at the state level is zero.

Aggregating allows me to gain statistical power and smooths out potential confounders

such as weather which could drive results in some states or even regions, but likely not

the entire US.

Figure 3 plots the total number of fatal crashes occurring in the weeks surrounding

the spring transition into DST. There is a clear break in the seasonal trend of fatal

crashes, occurring right at the spring transition.16 This provides suggestive evidence

that the spring transition is associated with a short term increase in fatal crashes. My

initial estimation strategy (RD) formally tests for this discontinuity.

If complete data were available for less severe crashes, it could be analyzed in the same

identi�cation framework I propose. However, many states do not maintain a uniform

database of these less severe crashes and the potential for reporting bias and less rigorous

redundancy checks for non-fatal crashes make these data less reliable. Considering only

fatal crashes is likely a lower bound on the impact of DST on all automobile crashes.

4.2 Other Data Sources

Fridstrom et al. (1995) �nd �exposure to risk� or Vehicle Miles Traveled (VMT) to be

the most important predictor of fatal crash counts. Unfortunately, daily VMT data does

not exist at the national level. As such, I use VMT data from Caltrans' Performance

Measurement System (PeMS) to examine whether adjustments to VMT are driving my

results. To the extent that VMT on this subset of roads is representative of US driving

patterns, this provides a useful test. In the national sample, I use weekly gasoline prices

from the U.S. Energy Information Administration and the value of the S&P 500 index

16The seasonal trend is largely due to a similar seasonal increase in vehicle miles traveled.
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Figure 3: Fatal Crashes Around the Spring Transition

Notes: Each point represents the total number of fatal crashes occurring during that week from

2002-2011. Smoothed lines are results of locally weighted regression.
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to help control for fuel prices and driving patterns.

5 Empirical Strategy

5.1 Regression Discontinuity (RD) Methods

The goal of the empirical analysis is to identify the impact of DST on fatal motor

vehicle crashes. To perform this analysis, I use a regression discontinuity design that

exploits the discrete change from Standard Time to DST. Every year on the spring

cuto� date, clock time is altered by one hour. If there is a signi�cant impact of DST on

fatal crashes, there should be a shock to the number of fatal crashes from just before to

just after the transition. Measuring the discontinuity occurring at the policy transition

provides an estimate of the policies immediate impact.

My preferred speci�cation uses local linear regression, as it has been shown to perform

better in RD settings than high order polynomials of the running variable (Gelman and

Imbens, 2014).17 To eliminate persistent day-of-week e�ects (e.g. crashes are higher on

weekends than weekdays) and long-term time trends, I �rst demean the logged crash

counts by day-of-week and year. Then, I use the standard RD speci�cation with the

demeaned crash data. The estimation equation is seen below:

lnFatalsdy = β0 + β1DSTdy + β2DaysToTrandy + β3DSTdy*DaysToTrandy + εdy (1)

DST dy is an indicator equal to one if day d in year y falls under Daylight Saving Time

and DaysToTrandy is the running variable, measuring time in days before and after

the DST transition. DaysToTrandy is centered at the transition date in each year, the

17Results using a global polynomial are qualitatively identical and are available in Table 3.
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�rst Sunday of April in 2002-2006 and the second Sunday of March in 2007-2011. The

coe�cient of interest, β1, is the aggregate e�ect of DST on vehicle fatalities at the cuto�

date.18

My baseline speci�cation uses Calonico, Cattaneo, and Titiunik's (2012) optimal

bandwidth selector to determine how many days to use on either side of the DST transi-

tion and a uniform kernel. As Imbens and Lemieux (2008) argue, there is little practical

bene�t to other weighting schemes as they are primarily indicative of sensitivity to the

bandwidth choice. For robustness I include results using alternative bandwidth selectors

and Epanechnikov and triangular kernels.

In this context, a consistent estimate requires that conditional on day of the week and

year, the treated and untreated number of fatal car crashes must vary continuously with

date around the transition. Stated di�erently, if all other factors a�ecting fatal crash risk,

besides DST, are continuous at the transition date, the RD design will provide consistent

estimates of the e�ect of DST. Figures 4 and 5 begin to speak to this assumption,

providing visual evidence that after demeaning the data, fatal crashes vary smoothly

across a year. In Section 6.5, I directly test for discontinuities in other factors that

impact crash risk.

The Energy Policy Act of 2005 allows me to further probe the robustness of my

RD estimates in a di�erence in discontinuities placebo test. The new March transition

date went into e�ect in 2007 and should have no impact in previous years. Likewise,

the old April transition date should not impact crashes in 2007-2011. By looking for

a discontinuity using these placebo transition dates, I can test whether these dates

are typically associated with a change in fatal crashes, unrelated to DST. I apply the

analogous procedure to the fall transition.

18I refer to this as the aggregate impact, because it does not yet disentangle the DST mechanisms.
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Figure 4: Spring Residual Plot

Notes: The residuals are generated from a regression of ln(fatal crash count) on day-of-week

and year dummies. Each point is the average of all residuals for that date relative to the spring

transition. Fitted lines are results of locally weighted regression. Greater variability on the

ends is largely due to these average residuals being formed by only 5 observations rather than

10 towards the middle. This is a product of the 2007 DST extension; in 2002-2006 there are

about 14 weeks before the spring transition but in 2007-2011 about 11.
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Figure 5: Fall Residual Plot

Notes: The residuals are generated from a regression of ln(fatal crash count) on day-of-week

and year dummies. Each point is the average of all residuals for that date relative to the fall

transition. Fitted lines are results of locally weighted regression. Greater variability on the

ends is largely due to these average residuals being formed by only 5 observations rather than

10 towards the middle. This is a product of the 2007 DST extension; in 2002-2006 there are

about 9 weeks following the fall transition but in 2007-2011 about 8.
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5.2 Day-of-Year Fixed E�ects

While the RD design provides a measure of the causal impact of DST on fatal crashes

at the transition date, it is more limited in estimating longer term impacts. To empiri-

cally estimate these longer lasting e�ects, I leverage variation in the coverage of Daylight

Saving Time created by both the 2007 extension and the DST cuto� rules. From 2002-

2006 the time period between the second Sunday of March and the �rst Sunday of April

was part of Standard Time. The Energy Policy Act of 2005 extended DST to cover

this 3-4 week period in 2007-2011. This creates a range of dates that are DST in some

years and Standard Time in other years. The cuto� rule further expands the number

of �switching days�. Consider the current decision rule where DST begins on the second

Sunday in March. The start date has varied from the 8th to the 14th of March depending

on the year.19 Figure 6 shows days of the year that fall under both DST and Standard

Time during the spring and their frequency under each regime. During the fall there

is a similar, but smaller, region of switching dates because the fall transition date was

only pushed back by one week.

Moving to a �xed e�ects framework, I run the following speci�cation to take advan-

tage of this variation in DST assignment:

lnFatalsdy = β0 + β1SpDSTdy + β2FaDSTdy + DayofYeard

+DayofWeekdy + Yeary + Vdy + εdy (2)

DayofYeard is a separate dummy for each day of the year, �exibly controlling for the

19For example, March 11th is Standard Time in 2002-2006, 2010 and 2011 but is DST in the years
2007-09.

17



Figure 6: Variation in DST Coverage - Spring

impact of seasonality on fatal crashes.20 DayofWeekdy and Yeary are day-of-week and year

dummies respectively. V dy is a vector of controls used in some speci�cations, including

gasoline prices, the value of the S&P 500 index and non-stationary holidays. SpDSTdy

is an indicator equal to one if the date falls under DST and is covered by the range of

spring switching dates (March 8th - April 7th). Analogously, FaDSTdy is an indicator

equal to one if the date falls under DST and is covered by the range of switching dates

in the fall (Oct 25th - Nov 7th). These are the coe�cients of interest and are interpreted

as the average e�ect of DST on fatal crashes over the �switching� dates in that season.

Note, that β1 here is a di�erent parameter from what is found using the RD de-

sign. Regression discontinuity estimates the e�ect of DST right at the spring transition,

20I create dummies for each month/day combination (e.g. an August 25th dummy). This is slightly
di�erent than creating a dummy for the 100th day of the year, because leap day would cause August
25th for most years to be matched with August 24th for 2004 and 2008. I use the month/day method
as it better aligns with holidays and generates more conservative estimates.
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whereas the �xed e�ects speci�cation measures the average e�ect of DST over all dates

that are sometimes DST and sometimes Standard Time during the spring. If DST only

creates a short-run e�ect through sleep deprivation, this should be picked up in the RD,

but would be averaged out across the full range of switching dates when using the �xed

e�ects model. Likewise, β2 is the average e�ect of DST across the roughly two weeks of

fall switching dates, rather than the e�ect of leaving DST in the fall.

Beyond identifying the average e�ect of DST across the range of switching dates,

this speci�cation can aid in disentangling the mechanisms. I isolate the light mechanism

in the spring, by focusing only on dates at least two weeks following the transition, at

which time any sleep impact should have dissipated. Comparing this light impact to the

initial impact from light and sleep provides another measure for just the sleep impact.

6 Results

6.1 Spring RD Design

Figure 4 illustrates the regression discontinuity strategy for estimating the impact of

DST on fatal crashes. The average residuals from a regression of log(daily fatal crash

count) on day-of-week and year dummies are plotted, centered by the spring transition

date. The plot follows a gradual arc demonstrating the seasonal pattern in fatal crashes,

where crashes rise from winter lows, peaking in late summer before dropping again

through the fall. If DST has an impact on fatal crashes, this should be evident in a

trend break right at the transition date. Visually, there is a short-term spike in fatal

crashes before the residuals resume the seasonal trajectory.
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Table 1: RD estimates of the impact of entering DST on fatal crashes

Table 1 shows the corresponding regression estimates.21 The spring transition into

DST is associated with a 6.3% increase in fatal crashes. This result persists using

the bandwidth selectors of Imbens and Kalyanaraman (2012) and the cross-validation

method of Ludwig and Miller (2007) seen in columns 2 and 3 respectively. To test

whether the increase is due to one particular transition rule, I split the data into an

early subsample (2002-06) that was subject to the April transition, and a late subsample

(2007-2011) that is subject to the current March transition. While cutting the sample

in half reduces precision, both time periods experience similar increases in fatal crashes

at the transition.22

To address the possibility that both transition dates are associated with an increase

in fatal crashes, unrelated to DST, I run the following placebo test in column 6. I

assign the current transition date to 2002-2006 data and the old transition date to the

21Clustering by week or year tends to decrease standard errors as the shocks are negatively correlated,
so I report the more conservative uncorrected standard errors.

22Due to small sample size (pedestrian and pedacycle accidents account for only 15% of my sample),
I am unable to address the question of whether pedestrians, or school-children in particular, would
experience an even larger increase in the risk of being hit by a vehicle due to the darkened mornings
of DST. Using the same RD design on this limited sample yields imprecise point estimates of similar
magnitude to those using the full sample.
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2007-2011 data. Running the same RD strategy measures the impact of these transition

dates in years where there was no actual shift between Standard Time and DST on these

dates. If these dates, rather than DST are responsible for the increased crash counts,

this test should reveal a similar increase in crashes to those seen in columns 1-5. The

zero result in column 6 suggests that the increase in crashes is not simply due to the

transition dates, but due to the actual policy.23

To address the concern that my results are driven by how I adjust the crash count for

the transition date, I run two additional speci�cations. First, I follow the method used by

Janszky et al. (2012) and multiply the the crash count on the transition date by 24/23rds

to calibrate for the shorter time period. Alternatively, I throw out the transition date

altogether. In both cases, results are qualitatively identical to my main speci�cation (see

Table 2). The remainder of Table 2 shows that results are robust to alternative kernel

choice, while Table 3 shows they are robust to using a global polynomial RD design.

Overall, these results demonstrate that spring transition into DST is associated with a

signi�cant increase in fatal crashes. Now I turn to the fall transition to test whether

there is an analogous reduction in crashes when leaving DST.

6.2 Fall RD Design

Figure 5 illustrates the regression discontinuity strategy for the fall. In contrast to

the spring, the residual plot looks quite smooth as it crosses the fall transition date.

Table 4 presents the corresponding regression results. Just as the residual plot suggests,

the preferred speci�cation in column 1 indicates no signi�cant change in fatal crashes

associated with leaving DST. This result is robust to alternative bandwidths (columns 2-

3) and splitting the sample into just the old October or current November transition date

23The negative point estimate would suggest that, if anything, my results understate the true impact
of the spring transition into DST.
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Table 2: RD estimates of the impact of entering DST on fatal crashes - additional
robustness

Table 3: RD estimates of the impact of entering DST on fatal crashes - global polynomial
regressions
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Table 4: RD estimates of the impact of leaving DST on fatal crashes

(columns 4-5). Using an analogous placebo test to that used in the spring suggests that

these transition dates do not systematically alter crash risk independent of a policy.

Taken as a whole, the transition from DST back to Standard Time does not reduce

fatal crash risk in the same way entering DST increases risk. I now turn back to the

mechanisms through which DST could impact crash risk to explain this asymmetric

e�ect.

6.3 Mechanisms

The spring transition is subject to both the light and sleep mechanism. Hence, the

6.3% increase in fatal crashes could be partially due to each mechanism. The most par-

simonious method for decomposing this result into each mechanism uses only aggregate

results from the spring and fall. Given the fall transition is not subject to any change in

sleep quantity, it isolates the light mechanism. The aggregate e�ect of zero when leaving

DST in the fall suggests no net impact of DST through the light mechanism. Di�erenc-

ing the spring estimate of 6.3% (light and sleep mechanism active) and the fall estimate
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of zero (only light mechanism active) provides suggestive evidence that the impact of the

spring transition should be attributed solely to the sleep loss mechanism.24 However,

di�erences in sunrise and sunset times and the potential for di�erences in driver behavior

between the spring and fall transitions prevent this from being an ideal comparison. To

further disentangle the mechanisms, I use the initial RD framework with sub-samples of

hours selected to isolate the impact of one mechanism or the other.

6.3.1 Light

Since only the light mechanism is active during the fall, the aggregate fall e�ect of

zero suggests no net impact through this channel. To determine if light has become

altogether unimportant as a fatal crash risk factor, perhaps through improved vehicle

lights, I further explore the light mechanism by examining sub-samples of hours closest

to sunrise and sunset.25 Upon leaving DST in the fall, an hour of light is removed

from the evening and returned to the morning. If light remains an important fatal

crash risk factor, additional morning light should create a safer atmosphere for driving

during morning hours. Likewise, removing light from the evening should create a more

dangerous driving atmosphere during this time. To test this hypothesis, I break the

sample into a set of morning hours (4-9 a.m.) and evening hours (3-8 p.m.). Then I run

the initial RD analysis on these subsamples for the fall transition. If light remains an

important factor in fatal crash risk, leaving DST should lead to fewer morning crashes

24The aggregate estimates for leaving DST tend to be positive (though insigni�cant). By symmetry,
if leaving DST increases fatal crash risk this implies that entering DST reduces fatal crash risk. Hence,
if anything, the light mechanism reduces crashes during DST (as suggested by Broughton, Hazelton,
and Stone (1999) and Ferguson et al. (1995)). As such, the 6.3% increase in crashes in the spring is, if
anything, a downwardly biased estimate of the sleep mechanism.

25Since 2003 BMW, Toyota and others have released vehicles with Adaptive Front-Lighting Systems
(AFS). AFS are designed to optimize headlight direction and volume in response to steering, ambient
weather, visibility conditions and speed.
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Table 5: RD estimates of the in�uence of ambient light on fatal crashes when leaving
DST

(more light) and additional evening crashes (less light). If no change in crashes is seen,

it is likely that light no longer plays an important role in fatal crashes. Table 5 details

the results.

Across di�erent bandwidths, leaving DST is associated with a signi�cant reduction in

fatal crashes during the morning (more ambient light). Conversely, evening hours (less

ambient light) are always associated with a signi�cant increase in fatal crashes. These

results suggest that light still plays an important role in fatal crash risk. However, the

aggregate zero e�ect (Column 1) suggests these impacts balance out and light has no

net impact through DST. Crashes are simply reallocated between the morning and the

evening. This reallocation can be seen more clearly in the kernel density function in

Figure 7.

6.3.2 Sleep

The spring transition is subject to both the sleep and light mechanisms. However,

my estimates for the fall transition suggest that the net impact of the light mechanism
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Figure 7: Reallocation of Fatal Crashes (Fall Transition)

Notes: The kernel density functions use an Epanechnikov kernel. First week of standard time

begins on the 25-hour transition date (Sunday).
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Figure 8: Spring Residual Plot � Six Day Sleep Impact

Notes: The residuals are generated from a regression of ln(fatal crash count) on day-of-week

and year dummies. Each point is the average of all residuals for that date relative to the spring

transition. Fitted lines impose linear seasonal trend on residuals.

is zero. Taking a closer look at the spring residual plot in Figure 8 provides a clearer

picture of what is occurring right at the spring transition. There is a discontinuous jump

in fatal crashes that seems to persist for the �rst six days of DST, before jumping back

down to essentially the same seasonal path seen during Standard Time. Since the light

mechanism is in e�ect for the entire period of DST, this data pattern is inconsistent with

a light impact � we would not expect the crash count to jump back down. However, a

shock to sleep should only be felt in the initial period following the transition, before

dissipating � exactly the phenomenon seen here.
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Table 6: RD estimates of the in�uence of sleep loss on fatal crashes

To pry further at the sleep mechanism, I focus on a sub-sample of hours furthest

away from sunset and sunrise to mitigate the light impact.26 Figure 9 illustrates the

discontinuity while Table 6 provides the regression results. The point estimates are quite

similar to the full day impacts and are signi�cant using two of the three bandwidth

selectors. This suggests that it is the sleep mechanism, not light, that causes the short-

run increase in fatal crashes following the spring transition. To further investigate the

mechanisms and to determine the length of this sleep impact, I turn to the �xed e�ects

model.

6.4 Fixed E�ects Model

Table 7 presents the results from the FE model. The point estimates represent the

average impact of DST over the full range of switching dates (dates that are DST in

some years and Standard Time in others), rather than just at the threshold. While the

26I say �mitigate� not �eliminate� because the angle of the sun and moon are still altered even in these
hours of full light and full darkness.
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Figure 9: Spring Residual Plot � Least Light Impacted Hours

Notes: The residuals are generated from a regression of ln(fatal crash count) on day-of-week

and year dummies. Each point is the average of all residuals for that date relative to the spring

transition. Fitted lines are results of locally weighted regression. Least light impacted hours

are 9am-3pm and 8pm-4am.
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initial columns examine the spring DST period as a whole, columns 3-7 break spring

DST down into three components (i) the �rst six days of DST, where the sleep e�ect

should be felt most strongly;27 (ii) the next eight days of DST, the longest any sleep

study suggests a sleep impact could persist; and (iii) the remainder of spring DST with

common support, days in which only the light mechanism should remain present.

27I choose six days based on the appearance of the residual plot seen in Figure 8. This covers the
Sunday-Friday following the spring transition and is consistent with the literature on how long DST
impacts sleeping patterns.
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Table 7: FE estimates of the impact of DST on fatal crashes

31



Beginning with the entire spring period, column 1 shows that spring DST is asso-

ciated with a signi�cant 3.4% increase in fatal crashes over the roughly one month of

switching dates. The fall estimate is insigni�cant from zero, again suggesting no im-

pact of DST in the fall.28 In addition to day-of-year �xed e�ects, column 1 uses just

day-of-week and year dummies, the same controls used in the RD design. Column 2

includes additional covariates for nonstationary holidays, gasoline prices and the value

of the S&P 500 index.29 Results are quite stable across columns and continue to suggest

that DST causes a signi�cant increase in crashes during the spring and has no e�ect

during the fall.

Turning to columns 3-4, the results are broadly consistent with a sleep impact that

diminishes further from the spring transition and no net impact from reallocating light.

The �rst six days of DST experience a signi�cant 5.6% increase in fatal crashes, quite

similar to the 6.3% increase found in the RD design. The point estimate shrinks to

an insigni�cant 2.9% during the next eight days and diminishes further to 1.8% for the

remainder of the spring. During both time periods in which only the light mechanism

is active, the fall and the spring following the �rst two weeks, there is no signi�cant

change in crash counts. Including additional controls in column 4 to help proxy for the

character and amount of vehicle miles traveled leaves results qualitatively identical.

Columns 5-7 explore these impacts across di�erent times of day, reinforcing previous

�ndings regarding the sleep mechanism. Column 5, uses just the subsample of hours

least e�ected by the light mechanism, e�ectively isolating the sleep mechanism. The

4.8% increase in crashes during the �rst six days of DST provides a measure of the

impact of just the sleep deprivation mechanism on crashes during these hours. Across

each subsample of hours, the point estimates drop from the �rst six days of DST to

28The fall estimates are less precise because there was only a 1-week extension to DST in the fall,
providing fewer switching dates than in the spring.

29Adding each additional covariate individually leaves results qualitatively identical.
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beyond the �rst two weeks of DST in the spring. This suggests that across all hours,

mitigating the sleep mechanism reduces fatal crash risk. Overall, the body of evidence

from the FE model aligns with that found from the RD model. There is a signi�cant

short-term increase in fatal crashes following the spring transition, consistent with a

detrimental impact of sleep loss. Now I turn to plausible alternative explanations for

this short-term spike in fatal crashes.

6.5 Alternative Explanations

A key omitted variable in this analysis and previous studies is Vehicle Miles Traveled

(VMT). If VMT increases at the DST transition date, this behavioral change could be

driving results rather than sleep loss. While national VMT data is not available, the

Performance Measurement System (PeMS) in California tracks VMT on many major

highways within the state. Using the same regression discontinuity model from equation

1 with log(VMT) as the dependent variable yields an insigni�cant 0.016% increase in

VMT. To the extent that driving habits on these California roadways are representative

of national driving patterns, this suggests VMT is not the cause of increased crashes.

Adverse weather conditions increase the risk of fatal crashes (Fridstrom et al., 1995).

Although weather is pseudo-random, if adverse weather occurred just following the

spring transition, this could lead to the short-term increase in fatal crashes. Using a

FARS variable that indicates weather conditions at each fatal crash, I create a variable

for the ratio of crashes within a day that are impacted by weather. Using the regression

discontinuity model from equation 1 with weather-ratio as the dependent variable I �nd

an insigni�cant 1.2 percentage point decrease in weather related crashes.30

30The residual plots and regression output for both of these �alternative explanations� are available
in the appendix.
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This analysis suggests that some of the most likely alternative pathways cannot

explain the increase in fatal crashes. Further, if the increase is due to adjusting to a

new schedule, the same increase should occur immediately following the fall transition,

a phenomenon that we do not see. While this is not an exhaustive list of competing

explanations, the balance of evidence points strongly towards DST increasing fatal crash

risk, through the mechanism of sleep deprivation. In the next section, I explore whether

this result varies by region.

6.6 Geographical Heterogeneity

At the national level, the spring transition into DST leads to a signi�cant increase in

fatal crashes. However, this could be due to a constant treatment e�ect where all regions

experience the same 6% increase in crashes, or a heterogeneous treatment e�ect where

some regions experience a larger increase and others experience little or no e�ect. In this

section, I explore two pathways through which geography could lead to heterogeneous

impacts of DST, one through the sleep mechanism and the other through the light

mechanism.

Sleep deprivation could be more detrimental when driving in already dangerous area.

If there are more situations where a delayed response can lead to a crash, the sleep

mechanism has more scope to operate. To test this hypothesis, I split my sample in two

based on the median number of fatal crashes per capita in each county.31 The counties

with a higher per capita fatal crash rate, I refer to as high risk counties. Running the

RD analysis with these subsamples (Table 8) provides weak evidence that high risk

counties are subject to a larger initial increase in fatal crashes (in percentage terms)

than their low risk counterparts. While the estimates may not be statistically di�erent

312010 census counts used for county population.
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Table 8: RD estimates of the impact of entering DST on fatal crashes, by county risk
level

at conventional levels, in all cases the point estimate for high risk counties is above that

of low risk counties. This provides suggestive evidence that sleep loss is more detrimental

when performing a more di�cult task.

If ambient light is more important in certain hours than others, heterogeneity in

sunrise and sunset times within a time zone could lead to di�erential impacts of DST.

Sunrise occurs earliest in the Eastern portion of any time zone; in Boston, sunrise the

day before DST occurs at 6:07 a.m. whereas in Louisville, Kentucky, it occurs at 7:04

a.m. In Boston, the onset of DST moves sunrise back an hour to roughly 7 a.m. while

in Louisville sunrise is moved to roughly 8 a.m. If light is more important for fatal

crashes (perhaps due to more driving) during the 7-8 a.m. hour relative to the 6-7

a.m. hour, Louisville should experience a bigger morning increase in fatal crashes (in

percentage terms) than Boston.32 To test this mechanism, I split the sample into an

32In the evening, sunset shifts from 17:45 to 18:45 in Boston and 18:45 to 19:45 in Louisville. Again,
it would appear that Boston is helped more, as 17:45 to 18:45 is more of a peak travel time than
18:45-19:45.
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Table 9: RD estimates of the impact of entering DST on fatal crashes - geographical
impacts

Eastern, Western, and Central third of each timezone.33

Table 9 shows the RD results. In contrast to what might be expected based on

common commute times, results are quite similar for both areas. Figure 2 helps to

elucidate this �nding. While the darkened hour in the Eastern portion of time zones

has fewer fatal crashes and the brightened hour has more fatal crashes, it is a very

minor di�erence. Further, the average sunset and sunrise times in the Eastern and

Western portion of a timezone is closer than the full hour seen in the Boston - Louisville

example. This geographic heterogeneity could be explored further in other applications

where higher frequency events would increase the power of the test and allow for more

narrow geographic areas than one third of a timezone.

33I split each timezone into East, West, and Central thirds based on number of fatal crashes in each
portion (rather than by population or landmass).
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7 Conclusion

Daylight Saving Time is one of the most practiced policies across the globe, impacting

over 1.5 billion people. Despite this worldwide coverage, many of the impacts of DST

remain empirical questions. I exploit the discrete nature of transitions between Standard

Time and DST, and variation in the coverage of DST created primarily by a 2007 policy

change, to estimate the impact of DST on fatal vehicle crashes. My main �nding is that

the spring transition into DST increases fatal crash risk by 5.4-7.6%.

I employ three tests to determine whether this result is due to shifting of ambient

light or sleep deprivation caused by the 23-hour transition date. These tests reveal that

while ambient light reallocates risk within a day, it does not contribute to the increase

in crashes. All three tests suggest that the sleep deprivation is driving the increase in

fatal crashes. Consistent with literature investigating the impact of DST transitions on

sleep, the impact persists for the �rst six days of DST. Back of the envelope calculations

suggest that over the ten year study period, DST caused 302 deaths at a social cost of

$2.75 billion.34

In terms of DST, this result should be viewed as one piece of the puzzle, to be

examined in conjunction with research on other impacts of DST. In previous research,

when a bene�t of DST is found it tends to be through the light mechanism. More light in

the evening has bene�ts at reducing crime (Doleac and Sanders, 2013) and encouraging

exercise (Wol� and Makino, 2013).35 When costs are found, similar to my study, it tends

to be due to sleep loss or disruptions associated with transitions (Janszky et al., 2012).

34Social cost is calculated as follows: Multiplying the 5.6% increase found in the FE model by the
489.3 fatal crashes averaged on Sundays-Fridays in March and April yields 27.4 additional fatal crashes
per year. Multiplying this by the 1.104 fatalities per crash observed over my sample and the 10 year
study period yields and extra 302 deaths over 10 years. Applying the Department of Transportation's
$9.1 million value of a statistical life, this a $2.75 billion social cost.

35One concern about DST is that morning rise time relative to sunrise time is an important factor in
clinical depression (Olders, 2003).
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Taking these points in combination, an ideal policy solution would leave the bene�ts

of DST intact while eliminating the damage caused by the spring transition. Before a

signi�cant policy change is made, further research should be conducted on the welfare

e�ects of the policy.

Finally, this paper �ts into the small but growing literature examining the impact of

sleep on worker productivity (Kamstra, Kramer, and Levi, 2000; Lockley et al., 2007;

Barnes and Wagner, 2009; Wagner et al., 2012). Although fatal vehicle crashes are an

extreme measure of productivity, driving is an activity that over 90% of American work-

ers engage in (Winston, 2013) and DST provides an exogenous shock to sleep quantity.

The increased risk of a fatal vehicle crash suggests signi�cant costs of sleep deprivation,

even when undertaking a routine task. Given the ongoing trend towards less sleep,

particularly among full-time workers (Knutson et al., 2010), it is important that re-

searchers continue to investigate the relationship between sleep and productivity. My

results represent a lower bound for the overall cost of DST through sleep deprivation,

since reductions in workplace productivity are unaccounted for.
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Chapter II

Alternative Compensation and

Performance: Evidence From Staking

in Online Poker

8 Introduction

A central tenet of personnel economics is that workers respond to incentives. Given

that monitoring costs in most work settings can be prohibitively high, workers may shirk

duties in the absence of incentives to align their interests with those of the �rm (Nagin

et al., 2002). In response to this, there has been renewed interest in the use of perfor-

mance based contracts � contracts in which workers are paid based on output. Some

form of performance pay was used in 39% of US private sector jobs during 2013 (Git-

tleman and Pierce, 2013). However, empirical studies on performance pay are relatively

scarce.

Existing evidence on the e�cacy of performance pay is primarily clustered on two

types of workers. The �rst set of studies focus on rote jobs where output is easily mea-

surable. Here, there is a consensus that performance pay leads to signi�cant increase in

worker productivity.36 The second set of studies examine the impact of CEO compen-

sation on �rm performance.37 While there is less consensus in this area, recent evidence

suggests that risk-aversion on the part of the CEO can lead to worse �rm outcomes when

CEO pay is tied more closely to stock returns (Brick, Palmon, and Wald, 2012). Less

is known about the impact of performance pay on those in the middle to high end of

36Lazear (2000), uses data from windshield installer Safelite to demonstrate that individuals are more
productive when paid via a piece-rate than an hourly wage. Selection e�ects, induced by the piece-rate
scheme, further improve the quality of the average worker. Similarly, Paarsch and Shearer (1999) �nd
that tree planters produce higher levels of output when facing a piece-rate.

37See Tosi et al. (2000) for a summary of these studies.
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the income distribution, particularly regarding workers engaged in primarily cognitive

tasks.38 We focus on this group, using a unique panel dataset that tracks workers as

they are able to adjust how they are paid for performance. We �nd that performance

is best when payment is made solely based on outcomes, with performance declining as

more weight is given to a �xed component of pay.

The analysis in this paper is based on data from over 100,000 online poker tourna-

ments played by 98 players from May 2009 through December 2010.39 The advent of a

new marketplace allowed players to seek �staking� for individual poker tournaments, an

arrangement in which investors pay players a �xed fee for participating in a tournament

in return for a set percentage of prize money. Unstaked, a player's pay for a given poker

tournament is based solely on their �nish position in that tournament. When staked,

a player's pay is based on two components: i) a �xed fee received from the investor,

and ii) the residual share (after the investor receives their share) of any prize earned for

performance in the poker tournament.

Staking likely alters performance in two competing ways. First, staking creates the

alternative compensation structure described above, which reduces the players marginal

return to an improvement in rank. Reducing the marginal return to �nish position

in a tournament structure has been shown to reduce the e�ort level of competitors

(Ehrenberg and Bognanno, 1990a,b). Second, staking loosens the �nancial constraints

facing players.40 This could allow players, who face a choice among risky alternatives,

to adopt a higher-risk strategy with a higher expected value.

38Fernie and Metcalf (1999) examine professional horse jockeys, a group that is high-skill and high-
income, but their task is largely physical. They �nd that jockeys perform better when their pay is tied
to the race prize than when receiving a �xed fee.

39Levitt and Miles (2014) demonstrate that poker tournaments are skilled based. Using data from
World Series of Poker tournaments, they �nd that a priori identi�ed professional players earn a return
on investment that is 46 percentage points higher than amateurs.

40 Players must pay an entry fee to participate in each tournament.
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Exploiting variation in staking status within a player, we estimate the impact of

staking on player performance. We adopt a player by skill-tier �xed e�ects approach,

comparing results for a given player at a given entry fee level when staked, to results for

the same player at the same entry fee level when unstaked. Across di�erent measures of

performance, we �nd strong evidence that performance is worse when staked, suggesting

that the muting of incentives created by staking is the dominant factor in�uencing

performance.

Despite the within-player comparison group used for identi�cation, staking is not

randomly assigned. A player selects into staking, posting an advertisement only for those

tournaments for which they desire staking. As such, selection bias could play a role in

our results � a player may only seek staking when they possess private information that

makes staking advantageous for them. This would bias our results towards our current

�nding of worse performance when staked. To address this concern, we perform three

tests. First, we look for unusually strong results before the �rst staking incident. This

could indicate that a player appears more skilled to investors than they truly are, and

that the player is trying to capitalize on this appearance by garnering a higher �xed fee.

Worse results when staked could be regression to the mean. Second, we use variation in

the amount that players are staked (what percent of prize money they have sold) only

within staked tournaments. Finally, we analyze the variation in percent staked created

on the investor side of the market (situations in which a player does not receive the full

amount of staking requested). While selection likely plays a small role, all three tests

provide evidence that the alternative compensation structure created by staking is the

main driver of worse performance.

Our results suggest that the muting of incentives caused by staking reduces overall

performance of the worker. In our setting, where an unstaked player is operating like

a �rm (bearing all risk and receiving all pro�ts), this implies that moving from a sit-
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uation where the worker is the �rm to one where incentives are closely aligned, leads

to a signi�cant productivity loss. We acknowledge that part of this loss is potentially

due to selection, which has been shown to play a large role in sorting into incentive

schemes across workers (Lazear, 2000; Dohmen and Falk, 2011). However, our empirical

tests suggest that this is primarily an incentive story. Overall, our results con�rm the

prediction of tournament theory that larger prizes induce higher e�ort levels from com-

petitors. This has implications for �rms, where promotions often follow a tournament

structure with employees promoted based on their performance relative to other employ-

ees (Lazear, 1992; Baker, Gibbs, and Holmstrom, 1993, 1994a,b; Bognanno, 2001). Our

results suggest that increasing the prize (the value of the promotion) can be an e�ective

way to increase productivity, even when output is highly variant as is the case in poker

tournaments.

The remainder of the paper is organized as follows. Section 2 brie�y describes the

features of online poker tournaments and the market for staking that are crucial for un-

derstanding our empirical analysis. Section 3 describes the data, while section 4 outlines

our empirical framework and central estimation equations. Section 5 presents the results

of our analysis, including tests that di�erentiate between potential mechanisms. Section

6 concludes with a discussion of the implications of our �ndings.
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9 Online Poker Tournaments and the Market for Stak-

ing

9.1 Online Poker Tournaments

The typical online poker tournament is open to any individual willing to pay the

entry fee (referred to as buyin hence forth). In exchange for the buyin, participants

receive a predetermined amount of tournament chips. Players are randomly assigned

a table and the tournament plays out continuously, with participants being eliminated

when they run out of chips, until only one player remains (with all of the chips). Prizes

are awarded based on inverse order of elimination, with approximately 10% of the �eld

receiving payouts. The winner receives the largest share of the prize pool, followed by

the last player eliminated and so on.

The prize pool is funded by the buyins of all competitors, with some portion of the

fee going to the hosting site (about 8% is typical in our sample). Prizes increase nonlin-

early with �nish position and follow the general structure seen in Figure 10. Notably,

the marginal return from moving up one �nish position from 3rd to 2nd is worth 3.4% of

the prize pool whereas moving up from 19th to 18th is worth only 0.07%.41 Across tour-

naments the structure of prizes based on �nish percentile is virtually identical, although

the level of prize money varies across tournaments based on the buyin and number of

participants. The top heavy prize structure and the stochastic component of poker cre-

ate a high level of variance in the earnings of tournament players.42 To reduce variance,

some poker players turn to a secondary market to reduce their risk.43

41Marginal returns are based on a �eld size of 2263, the mean staked tournament in our sample.
42See (Levitt, Miles, and Rosen�eld, 2012) for discussion of the relative importance of skill versus

luck in poker.
43Many players specify in their advertisements why they are seeking staking, with reducing the

variance of outcomes being the most common stated reason.

43



Figure 10: The Impact of Staking on Poker Tournament Prizes

(a) Full Distribution of Prizes

(b) At First Prize Level

Notes: Figure 1a depicts the distribution of pro�t for the mean staked tournament in our

sample, under the conditions of no staking and staking of 50% with average markup. Figure

1b zooms in on �nish positions near the �rst prize.
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9.2 The Market for Staking

Staking is an arrangement in which an investor(s) pays a portion of a player's buyin

for a speci�c poker tournament, in return for an agreed upon percentage of any prize

money won by that player in that tournament. While informal staking arrangements

have likely existed since the advent of poker, formal marketplaces are a relatively new

phenomenon.44 Our data come from the staking marketplace on twoplustwo.com (the

largest poker strategy forum on the internet). Here, the market generally proceeds in

three stages: (i) the player advertises the tournament(s) for which they are seeking

staking and the terms of the deal; (ii) investors express their intention to purchase some

or all of the available stake and send money to the player; and (iii) the player participates

in the agreed upon tournament(s) and sends the investor their share of prize money.

Figure 11 walks through this process for a typical example. The advertisement

includes the tournament(s) for which staking is being requested and the total amount

requested. Often, shares are sold with markup, meaning that an investor must pay more

than 1% of the buyin to be entitled to 1% of the prize money. Markup of 15%, a typical

amount in our sample, means that an investor must pay 1.15% of the buyin to be entitled

to 1% of the prize money. Finally, advertisements provide evidence of previous success,

linking to a complete history of all tournaments previously played by the player on the

major online poker sites.

Once an advertisement has been posted, any member of the marketplace may post

to purchase some (or all) of the stake. As seen in Figure 11, it is common for investors

to purchase only a portion of the total amount for sale. Hence, to sell out, a player often

receives staking from multiple investors.45 Once the sale is complete (or the tournament

44The staking marketplace on twoplustwo.com opened in 2008.
45This system creates situations in which a player recieves only some, but not all of their requested

level of staking. We use this variation, generated on the investor side of the market, to try to di�erentiate
between mechanisms.
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is about to start if the stake does not sell out), the player con�rms the receipt of all

investor funds. Upon completion of the tournament(s), the player sends the appropriate

percentage of prize money to each investor.

Figure 11: Typical Staking Transaction

(a) Phase 1: Advertisement

(b) Phase 2: Investment

(c) Phase 3: Payout

Notes: Staking data come from the marketplace forum on twoplustwo.com. This example,

which follows the typical structure of a staking transaction, comes directly from our sample.
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While staking can take various forms, the transactions in our sample are all one-o�

arrangements. The player does not owe investors anything if they do not earn a prize

in the staked tournament(s) and the player is not obligated to seek staking again or to

give current investors any preference in future sales. Once the stake has been settled,

the relationship between player and investor is e�ectively over.

10 Data

Our staking data come from the staking marketplace on twoplustwo.com. We recorded

every transaction occurring from August 2009 through May 2010 for tournaments played

on one online poker site, Full Tilt Poker (FTP).46 To increase the number of observa-

tions we extended coverage for staked players backwards, using archived posts, to the �rst

staking incident which occurred in May 2009, and forward through the end of 2010.47

After cross-checking the player usernames with the other major staking marketplace,

Part Time Poker, and dropping players who received staking for unknown tournaments,

we were left with 98 players and over 3000 staked tournaments.

We merged this staking dataset with tournament results for these players, gath-

ered from O�cialPokerRankings.com. The tournament results are comprehensive, with

one record for every tournament played on FTP for each player in our sample. Each

record includes buyin, number of entrants, �nish position, prize won, and tournament

characteristics. Over the 20-month period, from May 2009 through Dec 2010, our 98-

player sample played a total of 100,641 tournaments.48 Of these, 3,344 were successfully

46We choose Full Tilt Poker because it was the largest online site during this timeframe for which a
complete history of tournament �nishes by player is available.

47Online poker in the United States was shut down on Friday, April 15th 2011. We choose to end
our sample at the end of 2010 as rumors about the solvency of FTP began in early 2011 and it became
common for a dollar on FTP to be sold for less than $1.

48A small subset of tournaments (quali�ers and sit-n-gos) were dropped from the sample because
there were exceedingly few staked observations and the payout structure di�ers markedly from the
standard structure seen in Figure 10.
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matched as staked tournaments. The remaining 97,297 without corresponding staking

records are assumed to be unstaked.49

Table 10 provides the summary statistics for our sample. Unconditionally, perfor-

mance in staked tournaments is signi�cantly worse. This is seen in a worse �nish per-

centile, lower return on investment (buyins won), and reduced likelihood of having a big

or very big win (win3 and win10 respectively). However, at least some of this perfor-

mance gap can likely be attributed to the di�erent characteristics of staked tournaments

relative to unstaked tournaments. On average, staked tournaments have signi�cantly

higher buyins, $157 to $81, and larger �eld sizes. In the following section, we outline

our empirical strategy for estimating the causal impact of staking on performance.

49To the extent that we may be missattribute a tournament that was staked privately (not on a mar-
ketplace) as unstaked, our estimates represent a lower bound for the impact of staking on performance.
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Table 10: Summary Statistics

Variable Full Sample Unstaked Staked t-Statistic

staked 0.033 - - -
(0.179)

buyin 83.188 80.667 156.547 -20.461

(113.700) (107.769) (213.516)
entries 1454.040 1426.226 2263.334 -14.342

(2895.252) (2875.002) (3332.883)
prize 0.134 0.133 0.138 -0.782

(0.340) (0.340) (0.345)
�nishpercentile 58.318 58.352 57.310 2.324

(24.780) (24.753) (25.522)
smallwin 0.085 0.085 0.100 -2.836

(0.279) (0.278) (0.299)
win3 0.049 0.049 0.039 3.051

(0.216) (0.216) (0.193)
win10 0.021 0.021 0.012 5.081

(0.144) (0.145) (0.107)
buyins won 1.460 1.479 0.902 3.298

(29.752) (30.219) (8.427)
mark-upa 17.149 13.231 17.164 -

(10.760) (4.622) (10.775)
percent requestedb 55.748 46.923 55.783 -

(16.705) (14.367) (16.706)
percent stakedc 52.766 0 52.984 -

(19.749) (0) (19.497)
winnings 96.743 96.082 115.980 -0.987

(1054.002) (1050.573) (1149.310)
lowbuyin 0.437 0.441 0.295 18.225

(0.496) (0.497) (0.456)
midbuyin 0.378 0.381 0.280 12.760

(0.485) (0.486) (0.449)
highbuyin 0.185 0.177 0.425 -28.680

(0.389) (0.382) (0.494)
weekend 0.488 0.481 0.690 -25.618

(0.500) (0.500) (0.463)

Observations 100,641 97,297 3,344

Standard deviations appear in parentheses below the mean.

The t-statistics are from the null hypothesis that there is no di�erence between the
unstaked mean and the staked mean, and that the variances of the two samples are
unequal. T-statistics in bold are signi�cant at the 5% level.

amark-up has n = (3,351; 13; 3,338) for the (full; unstaked; staked) samples
bpercent requested has n = (3,306; 13; 3,293) for the (full; unstaked; staked) samples
cpercent sold has n = (3,169; 13; 3,156) for the (full; unstaked; staked) samples
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11 Empirical Strategy

Ex ante, the impact of staking on performance is ambiguous. We propose two mecha-

nisms through which staking could in�uence performance: alternative incentives created

by staking, and a loosening of �nancial constraints faced by players. We discuss the

theoretical predictions of each and describe the empirical tests we use to discern which

impact dominates.

The practice of staking alters the incentives a player faces. As seen in Figure 10,

a players marginal return to improving their �nish position by one rank is lower when

staked, as some percentage of the prize is reserved for the investor. Assuming that con-

centration/e�ort provision is costly for the player, muted incentives created by staking

should lead the player to rationally choose a lower e�ort level when staked. Indeed,

Ehrenberg and Bognanno (1990a,b) �nd that e�ort provision by professional golfers is

lower when tournament prizes are smaller. Empirically, the impact of muted incentives

should reveal itself in worse performance when staked. Further, if the marginal cost of

e�ort is increasing, meaning that it is harder to maintain concentration the longer a

tournament goes on, this impact should be increasingly evident in the right-tail of the

performance distribution.

An argument for improved performance comes from the impact of staking on a players

�nancial constraints. Given a �nite budget and a choice among risky strategies, there can

be a wedge between the optimal strategy for maximizing expected value in the current

tournament and optimal strategy for maximizing the discounted expected value of all

future tournaments played. The risk of ruin (a players chance of going broke) can dictate

a lower variance, lower return strategy in the current tournament, than what is optimal

given an unlimited budget. Staking increases a players e�ective budget, shrinking the

gap between optimal strategies. This should allow a player to adopt a higher variance,
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higher return strategy when staked. Empirically, this would reveal itself in terms of a

higher return on investment when staked.

To summarize, staking could cause a change in performance due to (i) muted incen-

tives leading to worse performance; or (ii) the relaxation of �nancial constraints leading

to better performance. The �rst step in determining the dominant mechanism is to

estimate the overall impact of staking on poker tournament performance. To do so,

we employ a player by buyin-tier �xed e�ects model. This allows the comparison of

a player's tournament outcomes when they are staked to their tournament outcomes

when they are not staked. Additionally, by interacting the player �xed e�ects with three

di�erent tournament skill levels (proxied by buyin tiers), we allow for di�erences in a

player's average performance/outcomes based on the skill level of the tournament.

Given that the payout structure of the tournaments is nonlinear, we explore several

outcomes. The binary outcomes considered are prize, smallwin, win3 and win10. Prize

is an indicator equal to 1 if the player earns any prize, smallwin is an indicator for

earning a prize of less than 3 times the tournament buyin, while win3 and win10 are

indicators for a prize of greater than 3 and greater than 10 times the buyin, respectively.

In addition to the binary outcomes we also look at the continuous outcomes buyins won

(de�ned as the amount of the prize normalized by the entry fee) and �nishpercentile.

The most straightforward prediction comes from examining buyins won, our measure

of return on investment. If muted incentives reduce the e�ort level of players, we expect

them to have a lower return on investment, whereas if staking allows a player to adopt

a higher return strategy, this should appear in a larger return on investment. Similarly,

players exerting less e�ort are less likely to attain the largest wins (win3 and win10 ),

especially if the marginal cost of e�ort is increasing in tournament duration, as these

prizes are only awarded to those lasting to roughly the �nal 5% and 1% of all participants.
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11.1 Monetary Outcomes

The �rst set of outcomes that we investigate are estimated with the following equa-

tion:

outcomeibt = βstakedibt + µib +XtB+ εibt (3)

where outcomeibt ∈ {buyins won, win10, win3, smallwin, prize} for player i, playing at

buyin tier b, in tournament t. The variable stakedibt is a binary variable equal to 1 if a

player was staked in a tournament and 0 otherwise, µib is a vector of player by buyin-tier

�xed e�ects, X is a vector of tournament speci�c control variables, and εibt is a random

error term.

The coe�cient of interest is β, the coe�cient on staked, which is the e�ect of being

staked on the outcome observed. Under this �xed e�ects speci�cation, β is consis-

tently estimated so long as the only unobserved factors correlated with both staked

and outcome do not vary over time. We estimate Equation (3) using ordinary least

squares.50

11.2 Finish Position

In addition to the aforementioned monetary tournament outcomes, we also look at

the rank that a player �nishes in the tournament. A player that wins the tournament

has a rank of 1, a player that �nishes second has a rank of 2, and so on. The variable

�nishpercentile measures the percentile at which a player �nishes the tournament:

�nishpercentile =

(
1− rank

entries

)
× 100

50For the binary dependent variables (prize, smallwin, win3, and win10 ) we also estimate Equation
(3) using a probit model and results are qualitatively identical.
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and thus a higher �nishpercentile is a better outcome for a player.51

The empirical model used to estimate staking's e�ect on a player's rank in a tourna-

ment is:

�nishpercentileibt = βstakedibt + µib +XtB+ εibt (4)

where �nishpercentileibt is the percentile of player i 's �nish at buyin tier b in tournament

t, and stakedibt, µib, XtB, and εibt are as described in the previous subsection. Although

β is consistently estimated by OLS when there are no unobserved variables correlated

with both �nishpercentile and staked, we also consider quantile regression (QREG) as

an estimation method. As displayed in the histogram of �nishpercentile, Figure 12, it

appears that the e�ect of staking on �nishing position is concentrated in the right-tail

of the distribution of �nishpercentile. Therefore, our preferred method of estimation of

Equation (4) is QREG since it allows for changes in an expected quantile rather just the

expected mean.52

51Note that, as constructed, �nishpercentile is biased downward - it never takes on a value of 100; an
alternative measure is also considered where �nishpercentile is biased upward - it can never be zero.

52We also perform OLS on Equation (3) and present it in Table 12 as a baseline.
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Figure 12: Distribution of �nishpercentile: Staked versus Unstaked

12 Results

12.1 Main Results

12.1.1 Monetary Outcomes

Table 11 shows the ordinary least squares (OLS) results for estimating the e�ect of

being staked on the set of monetary outcomes. We compare a player's outcomes at a

speci�c buyin-tier when they are staked to when they are not staked. We �nd that

staking has a negative e�ect on a player's average normalized winnings from a poker

tournament. Our results also suggest that the probability of a player winning a large
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prize are lower when playing in a tournament in which they are staked. While the

probability of a large prize is decreasing, staking appears to increase the probability of a

small prize. Our preferred estimates also suggest that the overall probability of returning

any prize is not a�ected by a player receiving staking.

We �rst focus on a continuous measure of poker tournament prizes and its relation-

ship to whether or not a player has been staked for a poker tournament. The dependent

variable in Column 1 of Table 11, buyins won, scales the prize won in a tournament

by the entry fee for that tournament. The results here suggest that being staked de-

creases, on average, the number of buyins won by 0.67. This is a 44.42 percent decrease

when compared to the number of buyins won by the same player, playing in the same

tournament-skill-tier, when unstaked. This result provides evidence that staking, by

muting a player's incentives, has a negative e�ect on the monetary outcomes of poker

players.

We now turn our attention to columns 2 and 3. The results found in these columns

provide more evidence that staking mutes the incentives of the players in our sample.

The dependent variables in columns 2 and 3, win10 and win3, are two di�erent binary

measures of large poker tournament wins. The results in columns 2 and 3 suggest that

when a player receives staking for a tournament, that player's probability of winning at

least ten times the amount of the entry fee decreases by 0.68 percentage points, while

their probability of winning at least three times the amount of the entry fee decreases by

0.96 percentage points. These are 32.33 percent and 19.49 percent reductions, respec-

tively. Thus, when a player is staked, they are less likely to win a large poker tournament

prize.
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Table 11: Monetary Outcomes

(1) (2) (3) (4) (5)
VARIABLES buyins won win10 win3 smallwin prize

staked -0.665*** -0.00679*** -0.00955** 0.0137** 0.00465
(0.183) (0.00225) (0.00391) (0.00584) (0.00680)

Tournament Characteristics:

buyin -0.000939* -6.16e-06 -7.90e-09 8.44e-06 8.50e-06
(0.000486) (5.34e-06) (9.36e-06) (1.25e-05) (1.51e-05)

entries -0.000843 -3.24e-06*** -1.46e-06** 3.64e-06*** 2.03e-06**
(0.00102) (3.54e-07) (6.42e-07) (7.34e-07) (9.29e-07)

entries2 4.66e-08 8.30e-11*** 7.65e-11*** -7.57e-11*** 0
(5.00e-08) (0) (0) (0) (0)

unlimited rebuy 0.645*** 0.00937*** 0.0186*** 0.0178*** 0.0369***
(0.170) (0.00159) (0.00231) (0.00279) (0.00347)

single rebuy -0.113 0.00685** 0.00827** 0.0155*** 0.0240***
(0.428) (0.00277) (0.00382) (0.00489) (0.00598)

fast 0.0423 -0.00647*** -0.0115*** 0.00135 -0.0105***
(0.417) (0.00119) (0.00180) (0.00247) (0.00296)

slow 0.290 -0.00599** -0.00912** -0.00961 -0.0178**
(0.620) (0.00265) (0.00454) (0.00624) (0.00748)

Observations 100,641 100,641 100,641 100,641 100,641
R-squared 0.012 0.007 0.007 0.006 0.008
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

All regressions include player by buyin-tier �xed e�ects and indicators for whether or not
the tournament was part of a special tournament series, or played on the weekend.

Focusing on Column 4 from Table 11, we �nd that being staked increases the proba-

bility that a player wins a prize of less than three times the entry fee by 1.37 percentage

points - a 16.12 percent increase when compared to the average probability of a �small

win�. The result found in Column 5, where prize is the dependent variable, �nds an

imprecisely estimated positive coe�cient on staked. The 95 percent con�dence interval

on the estimate of β ranges from -0.0087 and 0.0180. Thus, the e�ect of staked on prize
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ranges from a 6.52 percent decrease to an 13.5 percent increase. Looking over this range

of possibilities, we conclude that staking has a small, if not zero, e�ect on whether or

not a player wins a prize.

Combining all of the results in Table 11, our conclusion is that staking has a negative

e�ect on a poker player's tournament outcomes. Although staking possibly has a very

small positive e�ect on whether or not a player wins any prize, we see that staking

is negatively related with buyins won, win10, and win3. Further, when we add the

evidence that smaller poker tournament wins are more likely when a player is staked, it

appears that staking has the e�ect of reallocating large poker tournament wins to smaller

poker tournament wins. When we combine this explanation with the negative coe�cient

on staked in the buyins won speci�cation (implying a negative change in the average

tournament prize), it appears that staking has an adverse e�ect on the distribution of

poker tournament outcomes. To expand upon this idea, we turn our attention to a

comparison of the rank at which a player �nishes a tournament under the two staking

scenarios.

12.1.2 Finishing Rank Outcomes

In addition to monetary outcomes, we also examine staking's e�ect on the rank at

which a player �nishes in a poker tournament. Since poker tournaments vary in size even

within a given buyin level, as described above, we create a measure of the percentile at

which a player �nishes a tournament. Initial evidence that staking has an e�ect on

where a player �nishes in a tournament is found in Figure 12. This �gure shows staked

players are less likely to �nish in the extreme upper percentiles. For a reference point,

and tying this �gure to the monetary outcomes above, the extreme upper percentiles are

where the large poker tournament prizes are won.
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Table 12 shows the results of regressing �nishpercentile on an indicator for whether

or not a player received staking for that poker tournament. In Column 1 we use ordi-

nary least squares (OLS) to estimate this relationship and �nd a positive relationship

between whether or not a player is staked and the percentile at which a player �nishes

a tournament. Although the OLS results suggest that staking has almost no impact on

a player's poker tournament ranking outcome, there is reason to believe that comparing

the average �nishpercentile of a player when they are staked to when they are not staked

is not informative about the e�ect that staking has on a player's incentives. Columns 2

through 7 are the results of regressing �nishpercentile on staked using quantile regression

(QREG) as the estimation method. The negative e�ect that staking has on a player's

incentives is found in the right-tail of the distribution of �nishpercentile - where there

are poker tournament prizes. On average, poker tournaments begin paying out play-

ers around the 90th percentile. The QREG results show that, from the 90th quantile

on, staking has a uniformly negative e�ect on the expected �nishpercentile of a player.

Again, this suggests that the negative e�ect on poker tournament outcomes generated by

muted incentives dominates any positive e�ect on these outcomes generated by loosening

a player's �nancial constraints.
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Table 12: Finishing Position Outcomes

Dependent Variable: �nishpercentile

Estimation OLS Quantile
Quantile N/A 25 50 75 90 95 97.5

staked 0.0565 -0.345 -0.389 0.413 -0.0595 -0.726* -0.450*
(0.499) (0.693) (0.768) (0.731) (0.556) (0.385) (0.246)

Tournament Characteristics:

truebuyin -0.00384*** -0.00896*** -0.00425** -7.34e-05 -0.000318 0.000629 -0.000732
(0.00122) (0.00157) (0.00174) (0.00165) (0.00126) (0.000871) (0.000557)

entries -3.04e-05 -0.000199** -7.91e-05 6.24e-05 -5.66e-05 -4.36e-05 -4.79e-05
(6.66e-05) (9.09e-05) (0.000101) (9.59e-05) (7.30e-05) (5.05e-05) (3.23e-05)

entries2 -7.07e-10 9.90e-10 0 7.60e-10 2.79e-09 1.91e-09 1.18e-09
(1.88e-09) (2.42e-09) (2.68e-09) (2.55e-09) (1.94e-09) (1.34e-09) (8.59e-10)

unlimited rebuy 7.756*** 11.66*** 8.929*** 5.318*** 2.201*** 1.107*** 0.540***
(0.220) (0.332) (0.368) (0.350) (0.266) (0.184) (0.118)

single rebuy 5.158*** 8.376*** 5.977*** 3.810*** 1.787*** 0.825** 0.412*
(0.432) (0.606) (0.672) (0.639) (0.486) (0.336) (0.215)

fast -1.650*** -1.033*** -5.298*** -2.504*** -1.074*** -0.674*** -0.455***
(0.217) (0.314) (0.348) (0.331) (0.252) (0.174) (0.111)

slow 0.222 -0.377 0.122 -0.235 -0.655 -0.663 -0.0764
(0.552) (0.810) (0.898) (0.854) (0.650) (0.450) (0.288)

Observations 100,641 100,641 100,641 100,641 100,641 100,641 100,641
R-squared 0.037
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

All regressions include player by buyin-tier �xed e�ects and indicators for whether or not the tournament
was part of a special tournament series, or played on the weekend.
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Both Figure 12 and the QREG results provide evidence that when a player receives

staking there is a negative relationship with where that player �nishes in a poker tourna-

ment. This impact is concentrated in the right-tail of the distribution. One reason that

we may observe this, is that the marginal cost of e�ort is increasing in the duration of a

tournament, as it becomes progressively challenging/costly to maintain concentration.

12.2 Addressing Issues of Selection Bias

The results described in the previous subsection imply that the negative e�ect of

staking, the reduced incentives for marginal e�ort, tend to dominate the positive e�ect

of staking, the loosening of a player's �nancial constraints. One concern is that there is a

sample selection issue that would yield the same results. For example, a player who has

private information that their recent results appear better than their true skill level (lots

of recent luck) may seek staking with a pro�t motive. By seeking staking at markup,

they could ensure a guaranteed payout that is perhaps higher than their true expected

value in a given tournament. Our initial results measure the total impact of staking on

performance, this includes the direct impact of staking, and any within-player selection

e�ects. To address the possibility that selection is biasing our results towards worse

performance when staked, we employ three tests.

We �rst examine visual evidence regarding a player's poker tournament outcomes

before they sought out staking and compare this to tournament outcomes directly after

this �rst incident of staking. Here, pro�t motive should reveal itself in unusually strong

performance directly before staking. We then look at how variation in the amount that

a player was staked e�ects a player's poker tournament outcomes only for tournaments

where a player is staked. This allows us to allay concern about bias caused by sample

selection as the comparison group is limited to other staked tournaments of the same
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buyin tier by the same player. Finally, we consider only variation in percent staked

generated by take-up on the investor side (players not receiving their full staking request).

12.2.1 Staking Timeline

One scenario that would diminish our �nding, that staking has a negative impact on

relatively large poker tournament prizes, would be if poker players had abnormal positive

results right before they sought out staking and then returned to �normal� immediately,

and coincidentally, right after receiving staking. To investigate this potential scenario

we regress �nishpercentile on month dummies and all of the controls found in Equation

(3) for all of a player's unstaked tournaments. We then average the residuals by each day

pre- and post- a player's �rst day of staking. Plotting these residuals in Figure 13, we

see that there is no long positive run of residuals prior to a player's �rst day of staking.

This lack of a pattern in the residuals mitigates the concern that our �ndings are due to

a player returning to their average poker tournament outcomes after a lucky streak.53

53We also perform a Chow test (untabulated) for a structural break at the time of a player's �rst staked
tournament and include a cubic time trend. The results of the test fail to reject the null hypothesis of
no structural break.
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Figure 13: Residual Plot of �nishpercentile Around the First Staking Incident

Notes: The residuals are generated from a regression of �nishpercentile on all standard controls

and month �xed e�ects, using a sample of only unstaked tournaments. Each point is the average

of all residuals for that day relative to the �rst instance of staking. Fitted lines are results of

locally weighted regression.

12.2.2 Percent Staked

The empirical model used to test how percent staked a�ects tournament outcomes

is:

outcomesibt = αpercent stakedibt + µib +XtB+ εibt (5)

where outcomesibt ∈ {buyins won, win3, win10, smallwin, prize, �nishpercentile},

percent stakedibt is the amount of staking that player i playing at buyin-tier b received
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for tournament t, and the remainder of the variables are as de�ned above. We use OLS

to estimate buyins won and the binary dependent variables, whereas we use QREG to

estimate �nishpercentile.

The coe�cient of interest is α, the coe�cient on the variable percent staked. Since

Equation (5) is also a player by buyin-tier �xed e�ects speci�cation, α is consistent so

long as there are no time variant unobserved variables correlated with the outcome in

question and the percent staked. As the amount of staking that a player receives increases

we expect that their incentives become more and more muted, ceteris paribus. Hence, a

positive α̂ is consistent with the incentive mechanism story when the dependent variables

are smallwin, and a negative α̂ for buyins won, win10, win3, and �nishpercentile.

Table 13 shows how the amount of staking received for a tournament impacts the

aforementioned monetary outcomes. We restrict our sample to only staked tournaments

where the precise amount of staking is known.54 As the amount of staking a player

receives (percent staked) increases, we �nd the average number of buyins won decreases

and that the likelihood of a relatively large win (as measured by win10 and win3 ) also

decreases. When we look at the probability of winning any prize (prize) or winning a

relatively small prize (smallwin), our results suggest that there is essentially no e�ect of

staking on these outcomes. The results in Table 13 provide evidence that our main results

are not being driven by sample selection, but by changes in a player's incentives. This

evidence is strengthened by the choice of our sample - we only consider observations

where a player has staking for a poker tournament. We �nd results consistent with

the premise that when the percentage of staking that a player receives increases, the

marginal return for a player's e�ort decreases and the player chooses a lower e�ort level

accordingly. The poker tournament outcome for a player, given these muted incentives,

54We also investigate the full sample of poker tournaments by using the sample of players with known
staking amounts and setting the unstaked players percent staked equal to zero. The results are similar
to Table 13, except with coe�cients that are smaller in magnitude (except for the coe�cient on percent

staked when the dependent variable is smallwin) but more precisely estimated.
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is a decreased likelihood of winning large poker tournament prizes.

Table 13: Monetary Outcomes - Percent Staked (Restricted Sample)

(1) (2) (3) (4) (5)
VARIABLES buyins won win10 win3 smallwin prize

percent staked -0.0371* -0.000352** -0.000620* 0.000165 -0.000435
(0.0225) (0.000172) (0.000359) (0.000590) (0.000668)

Tournament Characteristics:

buyin 0.000234 7.86e-06 3.44e-05 2.84e-05 6.24e-05
(0.000438) (1.51e-05) (2.84e-05) (3.46e-05) (4.44e-05)

entries -5.70e-05 -3.72e-06 -1.85e-07 7.27e-06* 7.17e-06
(5.66e-05) (2.50e-06) (3.64e-06) (4.10e-06) (5.21e-06)

entries2 3.03e-09 2.33e-10 1.71e-10 -2.11e-10** -0
(2.05e-09) (1.58e-10) (1.71e-10) (1.03e-10) (1.88e-10)

unlimited rebuy -0.114 -0.00397 0.0161 -0.00121 0.0152
(0.347) (0.00611) (0.0129) (0.0175) (0.0210)

single rebuy -0.363 -0.00395 0.0168 0.0627** 0.0795**
(0.351) (0.00901) (0.0191) (0.0310) (0.0350)

fast -1.188** -0.0134** -0.0314** -0.0336 -0.0644**
(0.502) (0.00523) (0.0141) (0.0267) (0.0294)

slow 0.307 0.0132 0.0116 0.0141 0.0265
(0.434) (0.0134) (0.0218) (0.0334) (0.0379)

Observations 3,169 3,169 3,169 3,169 3,169
R-squared 0.028 0.043 0.065 0.060 0.066
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

All regressions include player by buyin-tier �xed e�ects and indicators for whether
or not the tournament was part of a special tournament series, or played on the
weekend

We also examine the e�ect that percent staked has on the rank at which a player

�nishes in a poker tournament. The results, which are found in Table 14, suggest that as

the amount of staking a player receives increases, that player has a worse expected poker

tournament ranking. As with the main results, this is made evident when looking at the
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extreme right-tail of the distribution of �nishpercentile.55 These results are consistent

with the idea that the alternative payout structure created by staking mutes player

incentives and leads to worse poker tournament outcomes.

55As with the monetary outcomes, we also expand our sample to include all players whose staking
amount is known by setting percent staked equal to zero for all unstaked players. The results are
qualitatively similar to the restricted sample results, however none of the coe�cients are precisely
estimated.
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Table 14: Finishing Rank Outcomes - Percent Staked (Restricted Sample)

Dependent Variable: �nishpercentile

Estimation OLS Quantile Regression
Quantile N/A 25 50 75 90 95 97.5

percent staked 0.00799 -0.00351 0.0368 0.00263 -0.0547 -0.0192 -0.0301*
(0.0488) (0.0650) (0.0693) (0.0651) (0.0415) (0.0283) (0.0154)

Tournament Characteristics:

buyin 0.00658* 0.00453 0.0107** 0.00792* 0.00394 0.00442** 0.00310***
(0.00340) (0.00480) (0.00512) (0.00481) (0.00306) (0.00209) (0.00113)

entries 0.000520 0.000624 0.000546 0.000553 0.000188 -5.93e-05 -2.22e-05
(0.000381) (0.000525) (0.000560) (0.000526) (0.000335) (0.000229) (0.000124)

entries2 -1.47e-08 -2.36e-08 -9.71e-09 -8.37e-09 -1.52e-09 3.60e-09 2.81e-09
(1.41e-08) (1.79e-08) (1.91e-08) (1.79e-08) (1.14e-08) (7.79e-09) (4.23e-09)

unlimited rebuy 6.509*** 10.59*** 8.155*** 3.949* 0.509 0.227 -0.123
(1.473) (2.260) (2.410) (2.264) (1.441) (0.984) (0.534)

single rebuy 6.400*** 9.784*** 3.899 5.979* 5.692*** 2.486* 2.709***
(2.371) (3.296) (3.515) (3.301) (2.102) (1.435) (0.779)

fast -6.368*** -2.549 -9.600** -5.695 -3.147 -2.505 -2.521***
(2.395) (3.582) (3.820) (3.588) (2.285) (1.560) (0.847)

slow 4.064 5.748 5.590 3.243 -0.259 -1.542 -1.861**
(2.687) (3.996) (4.261) (4.002) (2.549) (1.740) (0.945)

Observations 3,169 3,169 3,169 3,169 3,169 3,169 3,169
R-squared 0.098
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

All regressions include player by buyin-tier �xed e�ects and indicators for whether or not the tournament
was part of a special tournament series, or played on the weekend.
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12.2.3 Staking Gap

Another way that we measure how staking changes the incentives of poker players is

through the di�erence between how much staking a player received for a poker tourna-

ment and how much staking a player sought out for that same poker tournament. This

allows us to look at variation generated by di�erences in how much a player was willing

to sell of their winnings and how much they would actually have to give up. Thus, we

create the variable gap for player i at buyin-tier b in tournament t , which we de�ne as:

gapibt = percent requestedibt − percent stakedibt

As this di�erence increases, a player's marginal return to �nishing position also increases,

compared to what they were willing to give up to their investors, ceteris paribus. There-

fore, we expect the average number of buyins won to increase and the probability of

large poker tournament wins to increase as gap increases.56

To investigate the relationship between the monetary outcomes and gap we introduce

the following speci�cation:

outcomeibt = λ1gapibt + λ2percent requestedibt + µib +XtB+ εibt (6)

where outcomeibt ∈ {buyins won, win10, win3, smallwin, prize}, gapibt is as de�ned

above, percent requestedibt is the percentage of winnings that player i o�ered to poten-

tial buyers for tournament t at buyin-tier b, and µib, XtB, and εibt are as described

above. This speci�cation allows us to compare players with di�erent levels of gap, but

who requested the same amount of staking. Since we include the amount of staking that

56We consider two versions of gap, one where gap is restricted to non-negative numbers and one where
gap does not have this restriction. For gap to be negative, a player must receive more staking than
initially requested. We �nd that both de�nitions yield qualitatively similar results.

67



the player requested when they posted their advertisement on twoplustwo.com, concerns

regarding adverse selection are further mitigated. Thus, the estimate of λ1, the coe�-

cient on gap, will provide more insight into how incentives play a role in the e�ort and

concentration choices of poker players.

Estimating Equation (6) by OLS yields the results found in Table 15. The sample is

restricted to only players that received staking for a poker tournament and whose staking

gap was known.57 Columns 1 through 3 provide further evidence that as a player's

incentives are increased, as measured by an increase in gap, their average number of

buyins won increases, as does the probability of player achieving a large win (win10

and win3 ), ceteris paribus.58 The results in Columns 4 and 5 are consistent with our

other �ndings regarding smaller poker tournament wins (smallwin) and the probability

of winning any prize (prize). As gap increases, the probability of a small win decreases

and the probability of winning any prize remains unchanged. With the exception of

the speci�cation where win10 is the outcome variable, the coe�cients on the variable

gap are imprecisely estimated. However, when considering the outcomes of buyins won,

win10, and win3, this lack of statistical signi�cance is most likely due to a negative bias

from (potential) investors being able to observe something about the poker player that

the econometrician cannot. Speci�cally, we propose that the aforementioned unobserved

variable would be positively correlated with gap and negatively correlated with buyins

won or either of the big win dummy variables.59 Since, our estimated coe�cients on gap

for these speci�cations are positive, while the potential bias is negative, this implies that

the incentives are the dominant factor with respect to the e�ects of staking on poker

57We lose 26 observations due to the advertisement not listing how much staking a player was seeking.
58Additionally, the estimated coe�cients in Table 15 are similar in absolute value to the estimates

when the monetary outcomes are regressed on only percent staked and the controls (i.e. the results
found in Table 13).

59For example, suppose that a potential investor thinks that a poker player has gotten lucky in their
successful poker tournaments. This investor is less likely to invest in said player, and if the investor
is correct regarding the players tournaments outcomes being lucky results, this player will eventually
revert to their mean poker tournament prizes in future tournaments.
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tournament performance.

Table 15: Monetary Outcomes (Staking Gap and Percent Requested; Restricted Sample)

(1) (2) (3) (4) (5)
VARIABLES buyins won win10 win3 smallwin prize

gap 0.0304 0.000285* 0.000221 -0.000113 0.000100
(0.0203) (0.000166) (0.000437) (0.000704) (0.000805)

percent requested -0.0479 -0.000458 -0.00117** 0.000152 -0.000983
(0.0395) (0.000295) (0.000530) (0.000868) (0.000978)

Tournament Characteristics:

buyin 0.000338 8.88e-06 3.98e-05 2.87e-05 6.80e-05
(0.000586) (1.58e-05) (2.93e-05) (3.54e-05) (4.55e-05)

entries -5.78e-05 -3.75e-06 -1.91e-07 7.41e-06* 7.30e-06
(5.71e-05) (2.51e-06) (3.67e-06) (4.13e-06) (5.25e-06)

entries2 3.06e-09 2.33e-10 1.71e-10 -2.12e-10** -0
(2.05e-09) (1.58e-10) (1.71e-10) (1.04e-10) (1.88e-10)

unlimited rebuy -0.119 -0.00404 0.0160 -0.000888 0.0156
(0.352) (0.00617) (0.0130) (0.0176) (0.0212)

single rebuy -0.373 -0.00404 0.0164 0.0630** 0.0794**
(0.349) (0.00906) (0.0193) (0.0313) (0.0352)

fast -1.193** -0.0134** -0.0315** -0.0339 -0.0648**
(0.502) (0.00527) (0.0142) (0.0269) (0.0296)

slow 0.308 0.0135 0.0114 0.0163 0.0287
(0.442) (0.0136) (0.0223) (0.0340) (0.0386)

Observations 3,143 3,143 3,143 3,143 3,143
R-squared 0.028 0.043 0.065 0.060 0.066
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

All regressions include player by buyin-tier �xed e�ects and indicators for whether
or not the tournament was part of a special tournament series, or played on the
weekend
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13 Conclusion

Performance pay, broadly de�ned, was used in 39% of jobs in the US private sector

during 2013 (Gittleman and Pierce, 2013). Despite this prevalence, particularly among

the highest quartile of wage-earners, empirical studies are relatively few. To assess the

impact of alternative compensation on performance, we make use of a unique setting, the

advent of a formal staking market for online poker players. This market allows poker

players to move from a pure variable payment�based on tournament performance�to

a hybrid structure with a �xed fee and variable tournament component. Our central

�nding is that the performance is signi�cantly better under the pure variable payment

scheme, with poker tournament earnings falling by 44% under the hybrid scheme.

To address the concern that selection bias could be contributing to our �nding, we

run three empirical tests. First, we examine unstaked tournament results surrounding

a players �rst staking event and �nd no signi�cant performance di�erences. Then,

limiting the sample to only tournaments with nonzero staking and using variation from

the intensive margin, percent staked, we �nd that performance improves as more weight

is given to the variable component of pay. Finally, we examine variation in percent

staked created on the investor side of the market. While these estimates are noisy,

earnings are higher when a player receives less than their desired level of staking, ceteris

paribus. The balance of evidence suggests that the worse performance found under

staking is primarily due to lowering the marginal return to an increase in rank, rather

than through selection.

Our results con�rm the prediction of tournament theory that larger prizes induce

higher e�ort levels from competitors. This has implications for �rms, where promotions

often follow a tournament structure with employees promoted based on their perfor-

mance relative to other employees. Our results suggest that increasing the prize (the
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value of the promotion) can be an e�ective way to increase productivity. Tournament

theory also suggests that the higher the variance in the mapping between e�ort and

output, the less impact tournament prizes will have on e�ort levels (Lazear and Rosen,

1981; Eriksson, 1999). Despite the high variance in poker tournament outcomes, we still

�nd economically meaningful impacts from varying tournament prizes. This suggests

that tournament incentives can still play an important role in industries where output

is highly variant.
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Chapter III

Scanning the Tables: Do Professional

Online Poker Players Respond to

Earning Conditions?

14 Introduction

Dynamic models of lifecycle labor supply predict that when facing a transitory wage

shock, workers substitute intertemporally between labor and leisure, working more dur-

ing high wage periods and reducing hours worked during low wage periods when the

opportunity cost of leisure is relatively low (Lucas and Rapping, 1969). Despite this

straightforward prediction, previous empirical studies have found little evidence of in-

tertemporal substitution of labor. Estimates using individual panel data suggest that

this elasticity is quite small, or perhaps negative (MaCurdy, 1981; Browning, Deaton,

and Irish, 1985; Altonji, 1986).

One concern with this set of studies, is that they relate annual changes in hours

worked to annual changes in average wages. It seems unlikely that annual wage changes

are purely transitory, and hence they would be associated with nontrivial income ef-

fects. If there is any increase in expected lifetime wealth, this would bias estimates of

the intertemporal substitution elasticity downwards, and could explain the very small

empirical estimates. Another potential concern is that there could be constraints on

workers' labor supply. Indeed, there is strong evidence that in many industries workers

are not free to set their own working hours (Dickens and Lundberg, 1993; Farber, 2005).

To address these concerns, a new strand of the literature has focused on unconventional

jobs that conceivably have �exibility in hours worked and purely transitory wage shocks.

These studies have focused on taxi cab drivers (Camerer et al., 1997; Farber, 2005;
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Crawford and Meng, 2011; Farber, 2014) who can choose when to quit a shift, and

stadium vendors (Oettinger, 1999) and bike messengers (Fehr and Goette, 2007), who can

choose the number of shifts worked. Although early results in the area were mixed, with

estimated elasticities ranging from -1 to 1.5, a majority �nd that there is a signi�cant

positive intertemporal labor supply elasticity, as predicted by neoclassical theory. While

these studies represent a signi�cant step forward from their predecessors, each category

of workers still faces limitations on their labor supply. Taxi drivers must pay a signi�cant

�xed cost to rent their medallion, can only choose when to quit while on shift, and are

constrained to work a maximum of 12 hours. Stadium vendors and bike messengers

choose whether to participate, but face �xed shift lengths and set game dates or shift

times. Further, these studies focus on low-wage jobs in localized regions (individual

cities), bringing up concerns about external validity. I overcome these challenges by

analyzing a unique international labor market with relatively high wages and the ability

to start and stop work at any time.

Matching hours worked data from the Online Poker Database of the University of

Hamburg with a dataset I assembled on daily poker earnings, I analyze the labor supply

decisions of professional online poker players. This is an attractive market for studying

labor supply because players have complete �exibility in hours worked and can adjust

e�ort on an observable margin, altering the number of tables played simultaneously.60

Additionally, and crucial for estimation, expected wages for a professional player vary

greatly across time.

When a pro sits down at a poker table, their expected wage is inversely related

to the skill level of their opponents. At a table with many inexperienced recreational

players, expected wages are high. At a table with only skilled professionals, expected

wages are low and could even be negative. Online professionals often play at many

60The setting in Fehr and Goette (2007) allows for inference of e�ort, based on revenue earned during
a �xed-length shift.
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tables at once, and so their wage expectation depends on the overall composition of the

player pool for the particular game type and stake they are playing. Ceteris paribus,

an increase in the number of recreational players raises expected wages for pros, while

a decline in the number of recreational players reduces expected wages. Using variation

in expected wages created by the amateur portion of the player pool, I �nd that the top

professionals respond by playing more often and adding additional tables when expected

wages are high. In contrast, weaker professionals only respond by adding additional

tables, suggesting that the skills that make a poker player successful are related to

optimizing work decisions.

The remainder of this proposal is organized as follows. Section 2 provides the back-

ground about online poker cash games that is necessary for understanding the empirical

analysis. Section 3 discusses the two data sources, detailing how they are merged and

what unique variables are provided in each. Section 4 outlines the empirical framework

and central estimation equations, while Section 5 presents the central results, including

tests for heterogeneity across player type. Section 6 concludes with a discussion of the

implications of the �ndings.

15 Online Poker Cash Games

To participate in an online poker cash game, a prospective player must �rst create

an account associated with the hosting website and deposit money for use at the tables.

During the sample period, the only restriction on account creation was that the indi-

vidual must be of legal gambling age in their jurisdiction. Upon account creation, the

prospective player chooses a unique username that identi�es them whenever playing. To

participate in a particular cash game, the player must choose a table from the playing

lobby with an available seat (the virtual poker tables used in this analysis are limited to
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6 players) and select �take-seat�, to join the game.

When joining the game, money is transferred from the players virtual account with

the hosting site to the table. A player may choose the amount of money to put on the

table, subject to restrictions based on the betting limits of the game. For the game

studied here, the player may start with anywhere from 20 times the minimum bet to

100 times the minimum bet.61 After taking a seat, a player is a part of the game and

will be dealt into the next hand. Play proceeds according to the rules of the game, and

any chips won or lost are added to the players virtual chipstack at the table. All chips

are denoted at their dollar value, and importantly for the premise of this paper, a player

may get up after any hand and leave with the amount of money they possess.

The speci�c poker game analyzed in this paper is No-Limit Texas Hold'Em, by far

the most prevalent type of poker played during the study period.62 Levitt, Miles, and

Rosen�eld (2012) and Levitt and Miles (2014) provide convincing empirical evidence

documenting the importance of skill in Texas Hold'Em. Notably, when participating

in World Series of Poker tournaments, a priori identi�ed pros realized a return on

investment that was 46 percentage points higher than nonpros. In my analysis, I analyze

the labor supply decisions of professionals as de�ned based on high playing volume and

success over a nine month pre-period.

16 Data Description

The primary data source for this analysis is the Online Poker Database of the Uni-

versity of Hamburg (OPD-UHH) which contains high-frequency labor supply data for

61In between hands a player may always add additional funds to bring their total allotment of chips
up to 100 times the minimum bet. However, a player may not remove chips from the table and remain
seated. The only way to remove chips from the table is to leave that game.

62No Limit Texas Hold'Em comprises over 85% of all hours played during my sample period.
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the universe of players on one major online poker site - Full Tilt Poker.63 To create

this dataset, the OPD-UHH took a virtual �snapshot� of the lobby for Full Tilt Poker

at approximately 10-minute intervals. Each snapshot provides a list of players playing

at each table (identi�ed by username), the player's country of origin, what the stakes of

the table are, and what the game type is. The data spans six months, from Sept 6th,

2009 to March 11th, 2010. However, I use the September period solely to estimate the

skill level of all players in the sample. Further, due to the advent of new game o�erings

in 2010 that were untracked, I limit my labor supply study period to Oct 1st - Dec 18th

2009.64 Due to the substantial time costs associated with cleaning the labor supply data,

I focus on one particular game type and stake: $1/$2 No-Limit Texas Hold'Em 6-Max.65

In order to de�ne professional players and to create a high-frequency measure of

earning conditions, I augment the labor supply data with daily earnings data procured

from a reliable poker datamining company. The datamining company tracked the vast

majority of hands occurring on Full Tilt from Jan 2009-Dec 2010.66 This dataset tracks

earnings for each player at each unique game type by stake combination, at the daily

level. For example, Player A would have one observation for Jan 14th 2009, playing

$1/$2 (stake)67 No Limit-Holdem (game type) and another observation on Jan 14th

63The OPD-UHH tracked this information across multiple poker sites, but with about 20% of the
market share during the study period, FullTilt is by far the largest site for which earnings data is also
available.

64I stop the sample on Dec. 18th rather than Dec. 31st, because playing volume is signi�cantly
di�erent around the winter holidays, and unobserved di�erences in religious observance could alter the
value of leisure for di�erent players at di�erent times. I also omit the Wednesday - Sunday surrounding
Thanksgiving from my analysis, as a plurality of professionals are U.S. based.

65This was the most popular cash game played during the study time frame with a full buyin of at
least $100. Further, this mid-stake level is preferred to higher stakes games where scarcity of tables
could constrain a players choice of when or how many tables to play. Finally, recreational players make
up a larger portion of the player pool at lower stakes and this analysis uses plausibly exogenous variation
in the recreational portion of the player pool.

66Coverage is 95%+ and the missing data generally occurs when FullTilt updated their software and
lasts until a �x was made by the datamining company.

67Stakes refer to the betting limits of the game. The second number, $2, refers to the big blind. This
is the smallest increment that can be bet in a single action. For reference, a standard buy in is 100
times the big blind, or $200 for a $1/$2 game.
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2009, playing $2/$4 (stake) Pot Limit Omaha (game type).

Because the earnings data is costly to obtain, I do not possess the universe of earnings.

I used the OPD-UHH to determine the pool of potential professional players, for whom

I gathered earnings data. I gathered earnings data for the top 1% of players in terms

of hours played and table-hours played.68 In order to construct the earnings condition

measure, I also gathered earnings data for a random 1% sample of all other players

participating in these games.

To generate a predicted skill level for the amateur portion of the player pool, it is

necessary to link the two data sets together. In order to map these 10-minute snapshots

into daily labor supply variables, I do the following. Total hours worked for individual

i on date d (Hoursid) is calculated as the number of snapshots the player appears in on

date d, multiplied by 1/6th (because 10 minutes is 1/6th of an hour). Analogously, Table-

hoursid = Tables Played Simultaneouslyid * Hoursid. Merging the two datasets together, I

create a panel dataset with one observation per unique player * game type * stake * date

combination. Figure 14 displays the relationship between the two datasets, documenting

the unique and shared variables within each. Figure 15 plots the relationship between

hands played (Earnings Data) and table-hours played (OPD-UHH) at the player × date

level. The clear trend and correlation of 0.94 suggests that the data are appropriately

linked.

68All play at any stake with a minimum full buyin of at least $100 was used for this calculation.

77



Figure 14: Dataset Characteristics and Matching
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Figure 15: Dataset Alignment

Notes: Table-hours come from OPD-UHH and Hands come from the Earnings Dataset.
Each observation is one player-date. Hands are a noisy function of table-hours played
(roughly 65 hands per table-hour).

16.1 De�ning Professionals

Throughout this analysis, I focus my attention on the labor supply behavior of �pro-

fessional� players. Given that I analyze a single stake, $1/$2 No-Limit Texas Hold'Em

6-max, I only consider players for whom this is their most played game over the labor

supply study period. I de�ne professional players using data from the earnings dataset

for the 9-month pre-period from January through September 2009. The two criteria

used are: i) playing volume � a player must devote signi�cant time to this endeavor; and

ii) success � a player must be playing with the purpose of deriving income. The baseline
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Table 16: Summary Statistics

sample of professionals is de�ned as players that played at least 10,000 hands during

the pre-period with positive earnings. A more restrictive �Top Pro� sample is de�ned as

those who played at least 25,000 hands during the pre-period and had a win rate of at

least 3 bets per 100 hands - a common benchmark within the poker community. Finally,

I refer to those players who meet the �rst but not the second de�nition, as �Marginal

Pros.�

Table 16 provides descriptive statistics about playing performance and frequency

for these three categories of professional players during the labor supply study period.

Notably, average hourly earnings are relatively high at $30.49, signi�cantly higher than

the mean wage in the US during this period.69 The a priori identi�ed Top Pros have

higher hourly earnings, $34.66, relative to the Marginal Pros $22.56, and play slightly

fewer hours.

One strength of this setting relative to those used previous studies, is that poker

players can literally choose any time to start and stop play. Figure 16 illustrates this

69Mean hourly wages in 2009 were lee than <$22.50 according to the Bureau of Labor Statistics.
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phenomenon, showing that there is wide distribution in weekly hours worked, ranging

from zero to over 70, with no signi�cant clumping at 40 hours or other common thresh-

olds.

Figure 16: Distribution of Weekly Hours Played

Note: Based on weekly observations for all 195 pros over the roughly 11-week labor
supply study period.

17 Empirical Framework

When a poker player sits down at a table, virtual or otherwise, one of their �rst goals

is to gauge the skill level and playing styles of their opponents.70 In online poker, where

many pros use software that tracks every hand they have ever played, it can be very

70As Matt Damon's character in the movie Rounders says, �If you can't spot the sucker in the �rst
half hour at the table, you are the sucker.�
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easy to identify weak players. If a pro has ever played against player x, they can know

within seconds of sitting down and have access to powerful statistics about player x's

previous behavior. Further, Full Tilt's software allowed players to color code notes and

pros often do this based on these statistics (e.g. red = good, yellow=ok, green = weak

player). As such, it can be quite easy to look across all tables being played to get a feel

for expected earnings. The goal of this empirical analysis is to estimate the labor supply

response of professional poker players to changes in these earning conditions. Are poker

players optimizing by shifting their labor supply intertemporally, or do they maintain

the same schedule regardless of earning conditions?

To undertake this analysis, I adopt a three-step approach. In the �rst step, I estimate

the skill level of all non-pro players within the sample using their observable playing

characteristics. This skill level is measured in units of �expected dollar contribution

per table-hour�. An inexperienced amateur player would have a very large value, as

they are likely to lose money quickly (e.g. contribute a lot of money to the rest of the

participants). A breakeven player would have a value of 0, and a winning player would

have a negative value (on average they take money from the rest of the player pool).

In the second step, I aggregate this measure up to the player pool level, creating an

overall amateur contribution measure for each 10-minute snapshot. In the �nal step, I

estimate the impact of this measure on the labor supply behavior of professionals. The

underlying identi�cation assumption is that the choice of when and how much to play

by amateurs is unrelated to the playing decision of pros, except through its impact on

expected earnings.

82



17.1 Predicting �Skill� of Amateurs

In order to evaluate earning conditions for professional poker players, I need to know

the skill level of their opponents (are they really bad, or just average). To this end, I

estimate the predicted skill level of each non-pro player based on their previous playing

history.71 The measure used, ExpectedContribution, is in units of dollars lost per table-

hour. A very weak player would thus have a very high ExpectedContribution; they lose

money rapidly and hence are contributing a lot of money to the rest of the player pool.

To generate these predictions, I use the 1% random sample. Losses per table-hour in

the present time-period are modeled as a function of previous play.72 As such, a players

skill level can change over time as they learn and develop, or regress. For this estimation

procedure, players are grouped into three categories.

Category 1: Players with earnings data (the random 1% sample) and previous play-

ing experience - Assigned ExpectedContribution based on recent playing style, earnings,

experience, and number of tables played.

Category 2: Players without earnings data but with previous playing experience -

Assigned ExpectedContribution based on recent experience and number of tables played.

Category 3: New Players - Assigned ExpectedContribution of the average observed

contribution of all �rst time players in the 1% sample.

The estimates from category 1 are generated from the following OLS regression frame-

work:

Lossiw = β0 +XiwB+ ZiwC+ εiw (7)

where Lossiw is the loss per table-hour for player i in week w, X is a vector of individual

71Players who would qualify as a pro but have a di�erent main game then $1/$2 NLHE 6-max are
not included in the amateur group.

72I use the previous 3-weeks of play as a main speci�cation, but results are qualitatively similar using
2, 4, or 6 weeks.
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level controls about playing volume over the previous 3 weeks (e.g. average number of

tables played simultaneously) available in the OPD-UHH and Z is a vector of individual

controls about playing style and earnings over the previous 3 weeks available in the

earnings dataset (e.g. percent of hands played). The predicted values are saved, and

become the ExpectedContribution estimates for that player in that time period.

To generate skill estimates for category 2 players (those without earnings data), I

run the modi�ed version of equation 1 seen below on the random 1% sample:

Lossiw = β0 +XiwB+ εiw (8)

where all variables are as de�ned above. I then use the regression coe�cients to compute

the ExpectedContribution values for the players outside the random 1% sample.73 Finally,

for group 3 (the new players), I simply assign the average observed contribution for all

�rst time players in the 1% random sample.74

This procedure generates an ExpectedContribution estimate for each individual player

in my sample, for every time period they are an active player. Next I translate these

individual level skill measures into an overall measure for the entire amateur portion of

the player pool, for each ten-minute interval, as seen below:

AmExpContt =
∑
i

(ExpectedContributionit ∗ Tablesit) ∀ t (9)

where AmExpCont t is the total Amateur Expected Contribution occurring during ten-

minute snapshot t. It is formed as the sum of the expected contribution per table-hour

of each amateur, multiplied by the number of tables they are playing. Hence it is in

73Recall the category 2 players have a playing volume history (X) but no earnings data history, hence
the ommision of Z.

74The regression results for both categories of players are available from the author upon request.
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units of dollars per hour. Put simply, 1/6th * AmExpCont t is the average expected

dollar amount that the amateur portion of the player pool is likely to contribute (i.e.

lose) to the professional portion of the player pool, during that ten-minute time frame.75

17.2 Labor Supply Responses to Earning Conditions

The empirical model used to test how the expected contribution from amateurs a�ects

the labor supply of professionals is:

outcomesit = α1Ln(AmExpContt) + (playeri ×montht ×DOWt × hourt) + εit(10)

where outcomesit ∈ {played, start, quit, ln(tablesplayed)}, AmExpContt is as de�ned

in the previous subsection, and playeri×montht×DOWt× hourt is a player by month

by day-of-week by hour �xed e�ect. Each cluster within this �xed e�ect contains 24 or

30 observations.76 α1 is the coe�cient of interest, and for the binary outcomes (played,

start, quit) it is interpreted as a 1% increase in AmExpContt is associated with an α1

percentage point increase in the outcome (e.g. probability of playing). When considering

ln(tablesplayed) as the outcome, α1 is interpreted as an elasticity.

To examine whether di�erent groups of professionals respond di�erently to shocks in

the player pool, I also consider the following interaction model:

outcomesit = α1Ln(AmExpContt) + α2(TopProi × Ln(AmExpContt)) (11)

751/6th* AmExpCont t to convert dollars per hour to dollars per ten minute.
76 There are six ten-minute intervals within each hour of the day, and a given day of the week (e.g.

Tuesday) occurs either 4 or 5 times per month.
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+(playeri ×montht ×DOWt × hourt) + εit

where (TopProi×Ln(AmExpContt)) is an interaction of being a Top Pro, as previously

de�ned, and the log of the amateur expected contribution. It shows any additional e�ect

that earning conditions have on the subsample of Top Pros, relative to a reference group

of Marginal Pros.

18 Results

18.1 Main Results

Table 17 shows the main results for estimating the e�ect of earning conditions on the

labor supply decisions of professionals. The data are high-frequency panel observations,

with an observation occurring at the player × 10-minute level. I compare outcomes

within a speci�c player × hour × day-of-week × month cluster. For example, a player's

decision to play at 5:40pm on Monday, Oct 6th is compared to their playing decision

at all six 10-minute intervals in the 5pm hour on Mondays Oct 13th, Oct 20th, and

Oct 27th, as well as the other �ve 10-minute intervals occurring during the 5pm hour

on Monday, Oct 6th. Hence, this analysis addresses the question of whether a speci�c

professional is more or less likely to play, during essentially the same time frame, based

on prevailing earning conditions. The results suggest that professionals do respond to

earning conditions, with Top Pros intertemporally shifting to better times to play, while

Marginal Pros either do not intertemporally shift or shift towards worse playing times.

Both types of pros adjust along the intensive margin, playing additional tables during

periods with high expected earnings.
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Table 17: The impact of earning conditions on whether and how much to play
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I �rst focus on a discrete measure of labor supply, whether the individual is playing.

The dependent variable in columns 1-4 is an indicator equal to one if the the player

is observed playing. The result in column 1 suggests that pros are more likely to play

when earning conditions, as proxied by ln(AmExpCont), are better. The point estimate

of .00794 means that a 1% increase in AmExpCont leads to a .00794 percentage point

increase in the probability that a professional is playing. To put this in context, a one

standard deviation change in AmExpCont (within a cluster) is roughly 11%, and the

mean probability of a professional playing in any time period is .0946. Thus, a one

standard deviation improvement in earning conditions leads to roughly a 1% increase in

the probability that a professional plays.77

Previous studies have demonstrated that labor supply responses can vary based on

experience or skill-level of the worker (Camerer et al., 1997; Fehr and Goette, 2007;

Farber, 2014). As such, in columns 2-4 I use the interaction model seen in equation 11 to

test for heterogeneity in labor supply responses across professional type. The coe�cient

estimate on AmExpCont is now just the labor supply response for the reference group,

the a priori identi�ed Marginal Pros. Among this group, there is actually a reduction in

play as earning conditions improve. The positive coe�cient seen in column 1 is driven by

the Top Pros, who are .017 percentage points more likely to play for every 1% increase

in AmExpCont.78 Moving to column 3 and changing from a quartic time trend to a more

�exible time structure with week dummies leaves results relatively unchanged. Since the

base �xed e�ects structure is asking a lot of the data, in column 4 I use an alternative

�xed e�ects structure at the Player × Hour × DOW level. While the magnitudes

change, the results are qualitatively identical. Marginal Pros are less likely to play when

the Amateur Expected Contribution is higher, while Top Pros are more likely to play.

77A one standard deviation change in playing conditions increases probability of playing by .00794 *
11.1= .088 percentage points on a base of 9.46 percentage points.

78Hence, a 1 standard deviation improvement in earning conditions increases the probability of a Top
Professional playing by about 2%.
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In Columns 5-7, I examine behavior on the intensive margin. Given that a profes-

sional is playing, do they adjust how many tables they are playing simultaneously in

response to earning conditions? The result in column 5 implies that yes, professionals

do respond along this margin. This coe�cient is an elasticity, suggesting that for a 1%

increase in AmExpCont, professionals increase the number of tables played by .096%.

The interaction model in column six reveals that this adjustment occurs among both

categories of pros. While Top Pros might be slightly more responsive, both types of

professionals add additional tables during high earning time periods. Results are quali-

tatively identical in column 7, with the alternative �xed e�ects structure.

Professional poker players do respond to earning conditions, and as a whole they

do so in the manner that neoclassical theory predicts, intertemporally substituting to-

wards labor when facing better earning conditions. However, this interpretation masks

signi�cant heterogeneity across player type. Top Pros are more likely to play during

time periods with better earning conditions while marginal pros are slightly less likely

to play. Conditional on playing, both types of professionals add additional tables during

high earning periods. To further explore the di�erences between player types in the

playing decision, in the next section I investigate the decision of when to start and when

to stop playing.

18.2 The Start and Quit Decisions

Table 18 shows the results for estimating the e�ect of earning conditions on the

decision of when to start and when to quit a poker session. The variable startit is

de�ned as an indicator equal to 1 if the player is observed playing in time period t, but

is not observed playing in period t-1 or t-2.79 Similarly, quitit is de�ned as an indicator

79I prefer this de�nition to an alternative where the player only must be absent in time period t-1, as
it is less likely to count a player stopping for a few minutes for a bathroom break as starting another
session. Results using this alternative de�nition are qualitatively identical but less precise than those
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equal to 1 if the player is observed playing in time period t, but is not observed playing

in period t+1 or t+2. These results are estimated using both the pooled model from

equation 10 and the interaction from equation 11.

using the preferred speci�cation.
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Table 18: The impact of earning conditions on when to start and quit a poker session
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The result in column 1 suggests that among all professionals an improvement in

earning conditions leads to a small increase in the probability of starting a session.

Moving to the interaction model in column 2, reveals signi�cant heterogeneity across

player types. Top Pros are signi�cantly more likely to start playing during a time

period when earning conditions are abnormally good. In contrast, Marginal Pros are

unresponsive or perhaps slightly less likely to start playing during a good time period.

These di�erences are even more stark when using the alternative �xed e�ects structure

without a month component seen in column 3.

Columns 4-7 provide estimates for the impact of earning conditions on the decision

of when to quit a session. Here, I add a control for the duration of the session, which is

a strong predictor of when a player will quit. The pooled model in column 4 suggests

that there is no statistically signi�cant change in the probability of quitting a session

based on earning conditions, though if anything players may be slightly more likely to

quit when earning conditions are good. Moving to column 5, reveals that there is no

signi�cant di�erence in quitting behavior across player types. However, this result is

not particularly robust, as moving to the more restrictive �xed e�ects model suggests

that Marginal Pros are more likely to quit during time periods with better earning

conditions. Finally, Column 7 uses an alternative de�nition for quit, where quit is set

equal to 1 in the �rst time period that a player is unobserved, following a string of

present observations. Results here are similar to those seen in column 5 and suggest

that there is no strong relationship between the decision of when to quit and earning

conditions.

Considering the main estimates regarding the probability of playing in conjunction

with these estimates regarding the probability of starting or quitting a session provides

a richer picture of the labor supply decisions of professional poker players. Top Pros are

more likely to play during periods with better earning conditions, and this seems to be
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driven primarily by the decision of when to start a session. Marginal Pros are slightly

less likely to play during periods with better earning conditions, potentially driven by

a reduction in the probability of starting a session when earning conditions are good.

This asymmetry could potentially be due to di�erences in the tracking software and notes

taken by these di�erent groups of pros. With standard online poker tracking software

and color-coded notes, a pro can easily scan the playing lobby to get a rough idea about

earning conditions before they start to play. If the Marginal Pros are less likely to

have these aids than Top Pros, they may not realize what earning conditions are like

until ex post, when they start to play and see how opponents are behaving. This could

also explain why both types of pros adjust along the intensive margin. Conditional on

playing, both types of pros realize what earning conditions are, and they add additional

tables when earning conditions are better.

18.3 Robustness - Addressing the Exogeneity Assumption

One concern with the analysis thus far, is that for the estimates to be causal, variation

in AmExpCont must be exogenous within a day-of-week by hour by month cluster.

However, this assumption would be violated if some unobserved factor was correlated

with the playing decisions of both amateurs and pros. For example, a major winter

storm could lead to an increase in play by both market segments as amateur players

have a workday o�, while the value of leisure time for pros is conceivably lower when

outdoor activities are unavailable. While regional stories like this are mitigated by the

global nature of this market, it is still possible that omitted variable bias is contributing

to my result.80 To address this concern, I add in an additional control for the volume

80The 195 professionals live in 28 di�erent countries, with a maximum of 41% from any one country
(USA).
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of amateurs in the market.81 Thus, the only identifying variation left in AmExpCont is

variation in the average quality of the amateur player pool. This is cleaner variation in

the sense that it is di�cult to come up with a story for why average amateur quality

is correlated with when professionals choose to play, other than through the channel of

expected earnings.

Table 19 documents the results of this analysis for the four main outcomes. The

result in column 1 rea�rms the idea that Top Pros are more likely to play when earning

conditions are better. Perhaps surprisingly, this result is stronger than before as condi-

tional on the covariates the volume of amateurs playing is actually negatively correlated

with the probability a pro is playing.82 Column 2 shows that the earning condition elas-

ticity of tables shrinks slightly under this speci�cation, but remains signi�cant for both

types of Pros.83 Finally, the results in column 3 rea�rm that Top Pros are more likely

to start playing when earning conditions are better, while there is little to no e�ect of

earning conditions on the decision to quit playing. Overall, the results are qualitatively

unchanged and mitigate concerns about omitted variable bias.

18.4 Aggregate Daily Measures

One question that I am unable to address with high-frequency data is what impact

does AmExpCont have on the earnings of professionals? In other words, is AmExpCont

a good proxy for earning conditions? Unfortunately, earnings data at the level of ten-

minute intervals is not available. However, I can aggregate the AmExpContt up from

the ten-minute interval to the daily level, by simply summing all 144 measures within a

81This is de�ned as the total number of seats occupied by amateurs, hence an amateur playing two
tables is counted twice.

82This would occur if for example, a major live poker tournament series leads to additional advertising
for online poker, driving up the volume of play by amateurs, but driving down the volume of play by
professionals who will substitute from online poker to participating in the tournament series.

83Occasionally, poker sites o�er rewards for playing multiple tables at once. This could explain the
positive relationship between amateur volume and number of tables played by pros.
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Table 19: Robustness - Controlling for Amateur Volume

day to get a daily measure AmExpContd.
84 Then, in the following regression framework

I can look at the impact of this measure on the daily earnings of pros:

outcomesid = α1Ln(AmExpContd) + (playeri ×monthd ×DOWd) + εid (12)

where outcomesid ∈ {earnings, table-hours}, and AmExpContd is as de�ned above.

The results of estimating equation 12 are seen in Table 20. Column 1 pools all

pros together, and the coe�cient of -49.88, means that a 1% increase in AmExpContd

is associated with a $49.88 decrease in daily earnings for a professional. However, this

84When there is a missing observation for AmExpContt, as occurs < 1% of the time when labor
supply data is missing, I use a simple linear interpolation based on AmExpContt in the surrounding
time periods.
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estimate is extremely noisy with a 95% con�dence interval of -$362 to $262. Moving to

the interaction model in Columns 2-3 does little to provide a clearer picture. Finally,

Column 4 adds in the control for amateur playing volume. While this does not increase

precision, it does move the point estimates to a positive $266.70 for Marginal Pros and

$171.67 for Top Pros.
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Table 20: Aggregated Daily Observations
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Unfortunately, the imprecision in the earnings estimates prohibit any strong con-

clusions from being drawn regarding the impact of AmExpContd on realized earnings.

This noisiness is a due to at least 3 factors: 1) classical measurement error inherent in

poker, as realized earnings over a short-time frame are a very noisy indicator of expected

earnings; 2) by regressing a daily measure of earning conditions on realized earnings for

a player that occur during only a small subset of that day, this is essentially an intent to

treat e�ect, rather than a treatment e�ect;85 and 3) there is signi�cantly less identifying

variation in the daily measure of AmExpCont relative to the high-frequency measure.

This is documented in the histograms seen in Figure 17.

In columns 5-8, I examine the impact of AmExpContd on daily table-hours played.

Although the signs are generally positive, suggesting that pros are playing slightly more

on days with better earning conditions, the estimates remain quite noisy. Again, I

caution against drawing any strong conclusions from this more aggregate sample.

85This is especially problematic if earning conditions are not strongly correlated within a day.
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Figure 17: Histogram of Residual Variation in AmExpCont

(a) High Frequency Observations

(b) Aggregated Daily Observations

Notes: Figure 17a depicts the distribution of residual variation in AmExpContt, after

regressing it on a quartic time trend and a player×month×DOW ×hour �xed e�ect. Figure

17b is the analogous �gure at the daily level, using a player ×month×DOW �xed e�ect.
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19 Conclusion

Neoclassical models of lifecycle labor supply predict that a worker should increase

hours worked when facing a transitory increase in wages. However, empirical results have

been mixed with estimated elasticities ranging from -1 to 1.5. Disagreement persists in

part due to the scarcity of labor markets in which workers are able to choose their labor

supply on a daily basis. Even among the recent set of studies that allow for a reasonable

amount of �exibility in labor supply, workers still face signi�cant constraints (Camerer

et al., 1997; Oettinger, 1999; Farber, 2005; Fehr and Goette, 2007; Crawford and Meng,

2011; Farber, 2014). I overcome this issue by focusing on a new sample of workers.

Online poker players have complete �exibility in hours worked and their expected wages

are changing constantly based on the overall composition of the player pool. Using

high frequency labor supply data from the Online Poker Database of the University of

Hamburg, I analyze the labor supply decisions of professional online poker players.

Using variation in earning conditions created by the amateur portion of the player

pool, I �nd that the Top Pros respond according to neoclassical theory. They substitute

towards labor when facing better earning conditions than are typical during that day

of the week and hour. In contrast, weaker pros are actually slightly less likely to play

during good times. This is potentially due to a combination of target earning (some

speci�cations indicate that Marginal Pros are more likely to quit early when earning

conditions are good) and lack of a priori knowledge of earning conditions (they are no

more likely to start a session during good times). These results support previous �ndings

that there is heterogeneity in labor supply responses within a particular job (Camerer

et al., 1997; Fehr and Goette, 2007; Farber, 2014). In this setting, where success as a

poker player depends on skills including patience and the ability to focus on expected

rather than realized earnings, perhaps it is not surprising that more successful pros also

appear more rational in a neoclassical sense.
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Finally, this paper contributes to the growing literature examining the impact of

�nancial incentives on e�ort provision of workers.86 The study most similar to mine

is Fehr and Goette (2007) who �nd that when facing a better earning conditions, bike

messengers work additional shifts but provide less e�ort per shift. The primary di�erence

between our settings is the rigidity of shift length. Since their workers must choose a

lumpy number of hours associated with a discrete number of shifts of �xed length, it can

be optimal to exert less e�ort over additional shifts. However, in my setting shift length

is continuous. I �nd a small, but statistically signi�cant earning condition elasticity of

e�ort of roughly 0.1. This has implications for �rms considering short-term productivity

bonuses, or piece-rates, to try to meet a tight deadline.87 My results suggest that these

measures would lead to an increase in e�ort provision by workers.

86See (Prendergast, 1999) for an overview of this literature.
87It must be a transitory wage change, so as not to impact lifetime earnings, or their would be a

potentially o�setting income e�ect.
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