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Dent, Topaz (Ph.D., Mathematics)

Clones of Finite Idempotent Algebras with Strictly Simple Subalgebras

Thesis directed by Professor Ágnes Szendrei

Abstract: We determine the clone of a finite idempotent algebra A that is not simple and has

a unique nontrivial subalgebra S with more than two elements. Under these conditions, the proper

subalgebras and the quotient algebra of A are finite idempotent strictly simple algebras of size at

least 3 and it is known that such algebras are either affine, quasiprimal, or of a third classification.

We focus on the first two cases. By excluding binary edge blockers from the relational clone

when S is affine and by excluding ternary edge blockers from the relational clone together with an

additional condition on the subuniverses of A2 when S is quasiprimal, we give a nice description of

the generating set of the relational clone of A. Thus, by the Galois connection between operations

and relations, we determine the clone of A.
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Chapter 1

Introduction

In this dissertation we will determine the clones of finite idempotent algebras with certain

restrictions on subalgebras. In particular, we will consider algebras that satisfy the following

assumption.

Assumption 1. A is a finite idempotent algebra with a unique proper nontrivial subalgebra S such

that |S| > 2 and |A \ S| > 1.

Algebras that satisfy Assumption 1 have the property that their proper subalgebras and

quotient algebras are strictly simple of size at least 3. In particular, the unique nontrivial subalgebra

S is a finite idempotent strictly simple algebra with more than two elements. Such algebras were

classified by Szendrei [Sze87, Theorem 2.1] to be in one of three categories: quasiprimal, affine, or

a third category which is described in Theorem 2.4.4. We will focus our investigation on the cases

when S is quasiprimal or affine.

To determine the clone of an algebra A it suffices, by the Galois connection, to determine

the relational clone of A. Informally, the relational clone of A is the collection of all subuniverses

of finite powers of A. Therefore, our goal is to determine a set of subuniverses of finite powers of

A that generates the relational clone of A.

Our examination of the subuniverses of An, n ≥ 1, brought to light a family of binary and

ternary relations on A which, when included in the relational clone of A, will prevent A from having

an edge operation (equivalently, a cube operation; equivalently, a parallelogram operation). We will

call these relations edge blockers. It has been shown by Aichinger, McKenzie, and Mayr [AMM]
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that a finite algebra with an edge operation is finitely related, that is, has a finitely generated

relational clone.

While excluding the binary and ternary edge blockers from the relational clone of A will not

imply that A has an edge operation, it will allow us to find a nice description for the relational

clone, hence the clone of A. This description, which is the main result of this dissertation, is stated

in Theorem 5.5.9.



Chapter 2

Preliminaries

In this section we will describe the notation and conventions that we will use throughout the

paper. We will also list useful facts, some of which are well-known and some that are, perhaps, less

familiar.

For an integer n, we let n := {1, . . . , n}. For a nonempty set A, and a tuple (a1, . . . , an) ∈ An,

we will sometimes write a rather than the tuple (a1, . . . , an). Though the notation is similar, it will

always be clear from context whether we are referring a set if integers or tuple.

2.1 Algebras, Operations, and Clones

For a nonempty set A and a collection of finitary operations, F , on A, the algebra with

underlying set A and basic operations F is denoted by A = (A;F ). We will denote that B is

a subalgebra of An, n ≥ 1, by B ≤ An. We will say that the underlying set, B, of B is an n-

ary compatible relation of A, or equivalently, B is a subuniverse of An, which we will denote by

B ≤ An. We will call the one-element subuniverses of A the singleton subuniverses of A, or the

trivial subuniverses of A.

A clone on the set A is a set of finitary operations on A that is closed under compositions

and contains the projections. The clone of an algebra A = (A;F ) is the least clone on A that

contains F , we say that this clone is the clone generated by F and we denote this clone by Clo(A).

The operations in the clone of A, which we call term operations, are exactly the operations that are

interpretations of terms in the language of the algebra. Two algebras are called term equivalent if
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they have the same clones, that is, if they have the same term operations.

For n ≥ 1, an n-ary operation, f , on A is an idempotent operation if f(x, . . . , x) = x, for

any x ∈ A. The algebra A = (A,F ) is an idempotent algebra if and only if {a} is a one-element

subuniverse of A, for every a ∈ A.

For any n ≥ 1 we will denoted n := {1, 2, . . . , n}. If θ is a congruence on A and (a, b) ∈ θ,

then we say that a is θ-related to b, and we will denote the relationship of a and b by aθb. If θ is

the equality relation on A, then will write A instead of A/θ.

Let Ai be a collection of algebras that have a common language, for all i ∈ n. Let θi be an

equivalence relation on Ai, for each i. Then the map on the product of A1, . . . , An, given by,

ΠAi → Π(Ai/θi) : (a1, . . . , an) 7→ (a1/θ1, . . . , an/θn),

will be called the natural map. If θi is a congruence on Ai, for all 1 ≤ i ≤ n, then this map

is the natural homomorphism from ΠAi to Π(Ai/θi). We will always specify the domain and the

codomain of a natural map (homomorphism), however we will omit stating the map on the elements

of the domain since this assignment is clear from the domain, the codomain, and the definition of

a natural map (homomorphism).

Theorem 2.1.1. If the variety V is congruence distributive or congruence permutable, then V is

congruence modular.

The following theorem of Mal’cev characterizes congruence modular varieties.

Theorem 2.1.2 ([Mal54]). The variety V is congruence permutable if and only if there is a term

p(x, y, z) in its language such that these equations hold for V.

(1) p(x, x, y) = y,

(2) p(y, x, x) = y.

The following theorem of Gumm characterizes congruence modular varieties.
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Theorem 2.1.3 ([Gum83]). A variety V is congruence modular iff for some n ≥ 0 there are terms

d0(x, y, z), . . . , dn(x, y, z), p(x, y, z) in its language such that these equations hold in V.

(1) d0(x, y, z) ≈ x, di(x, y, x) ≈ x for 1 ≤ i ≤ n,

(2) di(x, y, y) ≈ di+1(x, y, y) for even i < n,

(3) di(x, x, y) ≈ di+1(x, x, y) for odd i < n,

(4) dn(x, y, y) ≈ p(x, y, y), p(x, x, y) ≈ y.

2.2 Compatible Relations and Relational Clones

Let A be a fixed set. For an n-ary operation f and an m-ary relation ρ on A we say that f

preserves ρ or ρ is invariant under f if for any ai = (a(i,1), . . . , a(i,m)) ∈ Am, 1 ≤ i ≤ n,

ρ 3 f(a1, . . . , an) = f

(


a(1,1)

a(1,2)

...

a(1,m)


, . . . ,



a(n,1)

a(n,2)

...

a(n,m)


)

=



f(a(1,1), . . . , a(n,1))

f(a(1,2), . . . , a(n,2))
...

f(a(1,m), . . . , a(n,m))


A relational clone on the set A can be defined by two equivalent notions. The first, and one

we will use more often, is that a relational clone on A is a set of relations that contains the equality

relation and is closed under taking Cartesian products, intersections, projections, and permuting

coordinates. The second definition is that a set of relations K on A is a relational clone on A if K is

closed under primitive-positive definability, that is, if K is a set of relations on A such that ρ ∈ K

holds for every relation ρ on A which is definable by a primitive-positive formula (pp-formula) in

the relational structure 〈A,K〉, where a pp-formula in the language of 〈A,K〉 is a first-order formula

using only the logical symbols ∃,∧,=, and the symbols for the relations in K.

For an algebra A = (A;F ), the relational clone RClo(A) on A is the relational clone on

A that contains all relations that are invariant under the operations in Clo(A). Notice that the

subuniverses of finite powers of A are relations that are invariant under Clo(A), in other words,
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the relational clone of A is exactly the collection of all subuniverses of finite powers of A. Recall

that we defined a subuniverse of An to be an n-ary compatible relation, thus for an operation f

and a relation ρ on A, we can say that ρ is invariant under f or ρ is compatible with f . If the

relational clone of A is generated by (taking products, intersections, projections, and permuting

the coordinates of) a set R of relations on A, then we will write RClo(A) = 〈R〉RClone.

Definition 2.2.1. The relational clone of a finite algebra A is finitely related if its relational clone

is determined by finitely many relations.

In other words, the relational clone of A is finitely related if there exists some finite set

σ1, . . . , σn of relations A such that RClo(A) = 〈σ1, . . . , σn〉RClone.

We will now give some examples of compatible relations. First, we will give some notation for

constructions that yield subuniverses from subuniverses. Suppose that D ≤ Am, for some m ≥ 1.

Let I = {i1, . . . , im}. We define the notation

D(xi1 , . . . , xim) := {(ai1 , . . . , aim) ∈ AI : (a1, . . . , am) ∈ D where a1 = ai1 , . . . , am = aim}.

Thus the ithk variable of D(xi1 , . . . , xim) corresponds to the kth variable of D, for all 1 ≤ k ≤ m.

Though D(xi1 , . . . , xim) is a subuniverse of AI and D is a subuniverse of Am, we will consider them

equal.

Now suppose that B is a subuniverse of An, for some n ≥ 1. Suppose that I ⊆ n, I =

{i1, . . . , im}, J ⊆ I, where i1 < · · · < im. Then the projection of B onto its coordinates in I, is the

subuniverse of AI , denoted prI B, that is defined by,

prI B := {(xi1 , . . . , xim) : (x1, . . . , xi1−1, xi1 , xi1+1, . . . , xim−1, xim , xim+1 . . . , xn) ∈ B}.

If D is a subset of Am such that prI B = D, then from the definition of the projection we get

that prJ(prI B) = prJ B ≤ AJ , thus prJ(prI B) = prJ D.

If a is a tuple in An, then the projection of a onto its ith-coordinates, for all i ∈ I, will be

denoted by aI := prI a.
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Let a ∈ An\I . Then the subset of AI arising from B and the tuple a is defined by

B(a1, . . . , ai1−1, xi1 , ai1+1, . . . , aim−1, xim , aim+1 . . . , an)

:= {(xi1 , . . . , xim) ∈ AI : (a1, . . . , ai1−1, xi1 , ai1+1, . . . , aim−1, xim , aim+1, . . . , an) ∈ B}.

Furthermore, if B(a1, . . . , ai1−1, xi1 , ai1+1, . . . , aim−1, xim , aim+1 . . . , an) = D, for some D ⊆ Am,

then

prJ B(a1, . . . , ai1−1, xi1 , ai1+1, . . . , aim−1, xim , aim+1 . . . , an) = prJ D ≤ AJ .

Proposition 2.2.2. Let B is a subset of An such that pr1B = {a}, for some a ∈ A. Then B is in

the relational clone of A if and only if {a} and pr2,...,nB are in the relational clone of A.

Proposition 2.2.3. For an algebra A and an automorphism, π, of A, the set of fixed points of π

is a subuniverse of A.

Proposition 2.2.4. Let n ≥ 2. If A is an algebra, then the set {(x, . . . , x, y) : x, y ∈ A} is a

subuniverse of An.

Proposition 2.2.5. Let θ be an equivalence relation on A. Then θ is a subuniverse of A2 if and

only if θ is a congruence on A.

Proof. Suppose that θ is an equivalence relation on A. Then θ is a subset of A2. Let f be an m-ary

term operation on A and let aj := 〈aj , a′j〉 be an element of θ, for all 1 ≤ j ≤ m.

(⇒) Suppose that θ is a subuniverse of A2. Then θ is closed under the term operations of A.

In particular, θ contains

f(a1, . . . , am) = f(〈a1, a
′
1〉, . . . , 〈am, a′m〉)

= (f(a1, . . . , am), f(a′1, . . . , a
′
m))

Therefore f(a1, . . . , am) is θ-related to f(a′1, . . . , a
′
m) whenever aj ∈ θ. Since θ is an equivalence

relation, aj ∈ θ implies that aj is θ-related to a′j . It follows from the definition of a congruence

that θ is a congruence on A.
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(⇐) Now suppose that θ is a congruence on A. Since θ is an equivalence realtion, aj ∈ θ

implies aj is θ-related to a′j , for all 1 ≤ j ≤ m. Furthermore, since θ is a congruence on A and f is

a term operation on A, we get that f(a1, . . . , am) is θ-related to f(a′1, . . . , a
′
m). Hence θ contains

(f(a1, . . . , am), f(a′1, . . . , a
′
m)) = f(a1, . . . , am). Therefore θ is closed under f and hence, θ is a

subalgebra of A2.

Proposition 2.2.6. If A is an idempotent algebra, then every congruence class is a subuniverse of

A.

Proof. Let A be an idempotent algebra, where θ is a nontrivial congruence on A and g is an n-ary

term operation on A. Let a1, . . . an, a ∈ A be elements of the congruence class a/θ ∈ A/θ. Thus

a1θa, . . . , anθa. Since θ is a congruence on A we get that g(a1, . . . , an)θg(a, . . . , a). Furthermore,

since A is idempotent, g(a, . . . , a) = a. Thus, g(a1, . . . , an)θa, which means g(a1, . . . , an) ∈ a/θ.

Therefore, the congruence class a/θ is preserved by g. Since a was an arbitrary element of A and g

was an arbitrary term operation of A, we get that every congruence class is a subuniverse of A.

Definition 2.2.7. For 1 ≤ i ≤ n, let Ai be a collection of algebras that share a common language,

and let θi be a congruence on Ai. Let B be a subuniverse of A1 × · · · × An. We will say that B is

θi-closed in its ith-coordinate, for some i ∈ n, if

(a1, . . . , ai−1, ai, ai+1, . . . , an) ∈ B and aiθia
′
i =⇒ (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) ∈ B.

We will say that B is θ1 × · · · × θn-closed if, for all 1 ≤ i ≤ n,

(a1, . . . , an) ∈ B and aiθia
′
i =⇒ (a′1, . . . , a

′
n) ∈ B.

Proposition 2.2.8. For 1 ≤ i ≤ n, let Ai be a collection of algebras that share a common language,

let θi be a congruence on Ai, and let ρ : ΠAi → ΠAi/θi be the natural map. If B ≤ A1 × · · · × An,

then TFAE.

(a) For each i, B is θi-closed in its ith coordinate.

(b) B is θ1 × · · · × θn-closed.
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(c) B = ρ−1(ρ(B)).

Proof. (a) =⇒ (b) We will show this implication by inducting on n. If n = 1 and B be a

subuniverse of A1 that is θ1-closed, then (a) clearly implies (b).

Suppose that every subuniverse of Πn−1
i=1 Ai that is θi-closed in its ith coordinate, for each

1 ≤ i ≤ n− 1, is also θ1 × · · · × θn−1-closed.

Let B be a subuniverse of Πn
i=1Ai that is θi-closed in its ith-coordinate, for each 1 ≤ i ≤ n.

Let (a1, . . . , an−1, an) ∈ B and suppose that aiθia′i, for each 1 ≤ i ≤ n. Then, for any i ∈ n− 1, B

contains the tuple (a1, . . . , ai−1, a
′
i, ai+1, . . . , an−1, an). Thus B(x1, . . . , xn−1, an) is a subuniverse of

Πn−1
i=1 Ai that contains (a1, . . . , ai−1, ai, ai+1, . . . , an−1) and (a1, . . . , ai−1, a

′
i, ai+1, . . . , an−1), which

means B(x1, . . . , xn−1, an) is θi-closed in its ith coordinate. Since i was arbitrary in n− 1, we get

thatB(x1, . . . , xn−1, an) is θi-closed in its ith coordinate, for each 1 ≤ i ≤ n−1, thus by the induction

hypothesis, B(x1, . . . , xn−1, an) is θ1×· · ·×θn−1-closed. Then aiθia′i, for each 1 ≤ i ≤ n−1, implies

(a′1, . . . , a
′
n−1) ∈ B(x1, . . . , xn−1, an). Hence (a′1, . . . , a

′
n−1, an) ∈ B. Since B is θn-closed in its nth-

coordinate and anθna
′
n, we get that (a′1, . . . , a

′
n−1, a

′
n) ∈ B. Therefore, B is θ1 × · · · × θn-closed.

(b) =⇒ (c) By the definition of ρ it is clear that B ⊆ ρ−1(ρ(B)). Let (a1, . . . , an) ∈

ρ−1(ρ(B)). Then (a1/θ1, . . . , an/θn) ∈ ρ(B) which means, for each 1 ≤ i ≤ n, there exists some

a′i ∈ Ai such that a′iθiai and (a′1, . . . , a
′
n) ∈ B. Since B is θ1 × · · · × θn-closed and (a′1, . . . , a

′
n) ∈ B

with a′iθiai, for each 1 ≤ i ≤ n, we get that (a1, . . . , an) ∈ B. Hence B ⊇ ρ−1(ρ(B)).

(c) =⇒ (a) Let i ∈ n. Suppose (a1, . . . , ai−1, ai, ai+1, . . . , an) ∈ B = ρ−1(ρ(B)) and aiθia
′
i.

By the definition of ρ, the tuple (a1/θ1, . . . , ai−1/θi−1, ai/θi, ai+1/θi+1, . . . , an/θn) ∈ ρ(B). Then,

since ρ−1(ρ(B)) is the full inverse image of ρ(B) under ρ, it follows from the definition of ρ and

aiθia
′
i, that (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) ∈ ρ−1(ρ(B)) = B. Since i was an arbitrary element of n,

this completes the proof.

Proposition 2.2.9. Let A and B be algebras with a common language. Let α : A → B be a

homomorphism. Let A′ be any subuniverse of A and let B′ be any subuniverse of B. Then α(A′) is

a subuniverse of B and α−1(B′) is a subuniverse of A
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Proposition 2.2.10. Let Ai be a collection of algebras that have a common language, for all

1 ≤ i ≤ n. Let θi be a congruence on Ai, for each i. Let ρ denote the natural map ΠAi → Π(Ai/θi).

Let C ⊆ Π(Ai/θi) and let B = ρ−1(C). Then

B is a subuniverse of ΠAi ⇔ C is a subuniverse of Π(Ai/θi).

Proposition 2.2.11. Let πi : Ai → Bi be an isomorphism, for all 1 ≤ i ≤ n. Then the map, Ππi,

defined by

Ππi : Πn
i=1Ai → Πn

i=1Bi : (a1, . . . , an) 7→ (π1(a1), . . . , πn(an))

is an isomorphism.

Corollary 2.2.12. Let πi : Ai → Bi be an isomorphism, for all 1 ≤ i ≤ n. Let Ππi be the map

defined in Proposition 2.2.11. Then,

R ≤ ΠAi ⇔ Ππi(R) ≤ ΠBi.

Proof. (⇒) This implication clearly holds by Proposition 2.2.9 and since Ππi is a homomorphism.

(⇐) Suppose that Ππi(R) is a subuniverse of ΠBi. By Proposition 2.2.9 and since Ππi is

a homomorphism we have that the inverse image of Ππi(R) under Ππi is a subuniverse of ΠAi.

Proposition 2.2.11 states that, in fact, Ππi is an isomorphism, thus the inverse image of Ππi(R)

under Ππi is equal to R. Therefore, R is a subuniverse of ΠAi.

Proposition 2.2.13. Let Ai be a collection of algebras that have a common language, for all

1 ≤ i ≤ n. Then the following implications hold.

(i) If B and C be subuniverses of A1× · · · ×An, then B ∩C is a subuniverse of A1× · · · ×An.

(ii) If Ti ≤ Ai for all 1 ≤ i ≤ n, then T1 × · · · × Tn is a subuniverse of ΠAi.

(iii) If Ti ≤ Ai for all 1 ≤ i ≤ n and B ≤ A1× · · · ×An, then B ∩ T1× · · · × Tn is a subuniverse

of A1 × · · · × An.
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Proposition 2.2.14. Let A1,A2 be algebras that have a common language. Let φ be a function

from A1 to A2. Then

φ : A1 → A2 is a homomorphism ⇔ the graph of φ is a subuniverse of A1 × A2.

In particular, if φ is a bijection, then

φ : A1 → A2 is an isomorphism ⇔ the graph of φ is a subuniverse of A1 × A2.

Proposition 2.2.15. Let A1 and A2 be algebras that have a common language. Let θi be an

equivalence relation on Ai, i = 1, 2. Let ρ be the natural map,

ρ : A1 ×A2 → A1/θ1 ×A2/θ2.

Let φ be a bijection from A1/θ1 to A2/θ2, and let B = ρ−1(φ). If B is a subuniverse of A1 × A2,

then

(i) θi is a congruence on Ai, for i = 1, 2, and

(ii) φ is an isomorphism A1/θ1 → A2/θ2.

Proof. To show (i), for i = 1, we will show that θ1 = B ◦B−1. Then, since B ◦B−1 is a subalgebra

of A2
1, so is θ1, hence, by Proposition 2.2.5, θ1 is a congruence on A1.

(⊇) Let (x, z) ∈ B ◦ B−1. Then there exists some y ∈ A2 such that (x, y) ∈ B and (z, y) ∈

B. From the assumption that B = ρ−1(φ) we get that ρ((x, y)) = (x/θ1, y/θ2) and ρ((z, y)) =

(z/θ1, y/θ2) are elements of the graph of φ. Since φ is a bijection, this means that x/θ1 = z/θ1.

Therefore x is θ1-related to z, and hence (x, z) ∈ θ1.

(⊆) Let (u, v) ∈ θ1. Then u/θ1 = v/θ1. Since φ is a bijection, it follows that φ(u/θ1) =

φ(v/θ1). Let a2 ∈ A2 be such that a2/θ2 = φ(u/θ1) = φ(v/θ1). Then (u/θ1, a2/θ2) = (v/θ1, a2/θ2)

are elements in the graph of φ. Therefore (u, a2), (v, a2) ∈ ρ−1(φ) = B. Thus (u, v) ∈ B ◦B−1.

To show (i), for i = 2, it is enough to note that B−1 = ρ−1(φ−1), where φ−1 : A2/θ2 → A1/θ1

is a bijection and B−1 is a subuniverse of A2/θ2×A1/θ1. These conditions satisfy the assumptions

of (i), therefore θ2 is a congruence on A2.
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By Proposition 2.2.14, to show (ii) holds it is enough to show that the graph of φ is a

subuniverse of A1/θ1 ×A2/θ2. First note that, by (i), θi is a congruence on Ai, i = 1, 2, thus Ai/θi

is an algebra. Our assumptions on B state that B = ρ−1(φ) and B is a subuniverse of A1 × A2,

so applying Proposition 2.2.10 gives that the graph of φ is a subuniverse of A1/θ1 × A2/θ2. By

assumption we have that φ is a bijection, therefore, it follows from Proposition 2.2.14 that φ is an

isomorphism A1/θ1 to A2/θ2.

Definition 2.2.16. Let A1, A2, θ1, θ2 be as in Proposition 2.2.15. If B is a subuniverse of A1×A2

such that B = ρ−1(φ) for some bijection φ : A1/θ1 → A2/θ2 where ρ : A1 × A2 → A1/θ1 × A2/θ2

is the natural map, then we will call B an isomorphism from A1/θ1 to A2/θ2.

2.3 The Galois Connection

Let A be a finite set. Let Op be the set of all finitary operations on A and let Rel be the

set of all finitary relations on A. Then there is a correspondence between the subsets of Op and

the subsets of Rel under notions of invariance and preservation that defines the following Galois

connection,

lOp � Rel

F → F⊥ = {ρ ∈ Rel : ρ is invariant under f for all f ∈ F}

R⊥ = {f ∈ Op : f preserves ρ for all ρ ∈ R} ← R,

where

(1) F1 ⊆ F2 =⇒ F⊥1 ⊇ F⊥2 for all F1, F2 ⊆ Op,

(2) R1 ⊆ R2 =⇒ R⊥1 ⊇ R⊥2 for all R1, R2 ⊆ Rel,

(3) F ⊆ F⊥⊥ for all F ∈ Op,

(4) R ⊆ R⊥⊥ for all R ∈ Rel,

(5) F⊥⊥⊥ = F⊥ for all F ∈ Op,
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(6) R⊥⊥⊥ = R⊥ for all R ∈ Rel.

The Galois connection induces the Galois closure operation on the subsets of Op given by F 7→ F⊥⊥

for all F ∈ Op (respectively, the Galois connection induces the Galois closure operation on the

subsets of Rel given by R 7→ R⊥⊥ for all R ∈ Op). Thus, a set C ⊆ Op of operations is Galois

closed if C = C⊥⊥, and a set K ⊆ Rel of relations is Galois closed if K = K⊥⊥.

The next two theorems come from Theorems 2.9.1, 2.9.2 in Part II of [Lau06].

Theorem 2.3.1 ([Lau06]). Let A be a finite set. TFAE for arbitrary C ⊆ Op.

(a) C is Galois closed.

(b) C is a clone.

(c) C is the clone Clo(A) of term operations of an algebra A = (A;F ).

Thus, the Galois closure of a subset F ⊆ Op is the clone generated by F .

Theorem 2.3.2 ([Lau06]). Let A be a finite set. TFAE for arbitrary K ⊆ Rel.

(a) K is Galois closed.

(b) K is a relational clone.

Under the Galois connection there is a one-to-one correspondence between clones and rela-

tional clones.

Let A = (A;F ). Then F⊥⊥ = Clo(A) and, by property (5), (F⊥)⊥⊥ = F⊥, thus F⊥ =

RClo(A). This says that if R is a generating set for the relational clone RClo(A) of A, then this

set describes the clone Clo(A) of A in the sense that Clo(A) = (〈R〉RClone)⊥.

Definition 2.3.3. The clone of a finite algebra is finitely related if its relational clone is finitely

generated.
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2.4 Finite Idempotent Strictly Simple Algebras

Definition 2.4.1. A finite algebra A = (A;F ) is called quasiprimal if every operation preserving

all isomorphisms between subalgebras of A is a term operation of A.

Definition 2.4.2. A finite algebra A = (A;F ) is called affine with respect to an abelian group

B = (A,+,−, 0) if the Mal’cev operation x− y+ z is a term operation of A and every operation of

A commutes with x− y + z.

Definition 2.4.3. An algebra is called strictly simple if it is simple and has no nontrivial proper

subalgebras.

The finite idempotent strictly simple algebras with more than two elements are classified by

Szendrei in [Sze87] as stated in the theorem below. For a permutation group G on A, let IA(G)

be the clone of all idempotent operations on A commuting with every member of G. If 0 ∈ A,

k ≥ 2, then let F0
k denote the clone of all idempotent operations on A that preserves the relation

X0
k = {(x1, . . . , xk) ∈ Ak : xi = 0 for some 1 ≤ i ≤ k}. Let F0

ω = ∩2≤k<ωF0
k .

Theorem 2.4.4 ([Sze87, Theorem 2.1]). Let A = (A;F ) be a finite idempotent strictly simple

algebra, |A| ≥ 3. Then A is term equivalent to one of the following algebras:

(i) (A; IA(G)) for a permutation group G acting on A such that every nonidentity member of

G has at most one fixed point,

(ii) the full idempotent reduct of the module (EndK A)A for some vector space KA = (A; +;K)

over a finite field K,

(iii) (A; IA(G) ∩ F0
k ) for some 2 ≤ k ≤ ω, some element 0 ∈ A, and a permutation group G

acting on A such that 0 is the unique fixed point of every nonidentity member of G.

Note that a finite idempotent strictly simple algebra with more then two elements that

satisfies (i) or (ii) of Theorem 2.4.4 is quasiprimal or affine, respectively. If A is affine, then KA

will be called the vector space associated to A.
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The next three propositions concern the subuniverses of finite powers of A when A is a finite

idempotent strictly simple algebra, |A| > 2. The first proposition is a special case of Theorem 4.2

in [Sze86].

Proposition 2.4.5 ([Sze86]). Let A be a finite idempotent strictly simple quasiprimal algebra,

|A| > 2. A subuniverse B ≤ An (n ≥ 2) may have unary projections that are singletons, or binary

projections that are automorphisms of A, or if there are no such unary and binary projections, then

B = An.

The next proposition follows from Lemma 4.4 in [Sze86], combined with the remark at the

bottom of page 98 in [Sze86]

Proposition 2.4.6 ([Sze86]). Let A be a finite idempotent strictly simple affine algebra, |A| > 2,

and KA be the associated vector space. Then, up to permutation of coordinates, every subuniverse

of An (n ≥ 2) has the form,

{(x1, x2, . . . , xs,

s∑
i=1

c(s+1,i)xi+δs+1,

s∑
i=1

c(s+2,i)xi+δs+2, . . . ,

s∑
i=1

c(n,i)xi+δn) ∈ An : x1, . . . , xs ∈ A},

for some δs+1, δs+2, . . . , δn ∈ A and c(s+1,i), c(s+2,i), . . . , c(n,i) ∈ K, 1 ≤ i ≤ s.

It is helpful to notice that from the above description we get that a subuniverse B of An

(n ≥ 2), where A is a finite idempotent strictly simple affine algebra, |A| > 2, either has a unary

projection that is a singleton, an m-ary projection (m ≥ 2) of the form (up to permutation of

coordinates) pr1,...,mB = {(x1, . . . , xm−1,
∑m−1

i=1 cixi + δ) : x1, . . . , xm−1 ∈ A} which is the graph of

a function Am−1 → A : (x1, . . . , xm−1) 7→
∑m−1

i=1 cixi + δ for some δ ∈ A and ci ∈ K, 1 ≤ i ≤ m− 1,

or if there are no such unary and m-ary projections, then B = An. .

Proposition 2.4.7 ([Sze87]). Let A be a finite idempotent strictly simple algebra, |A| > 2, such

that A is term equivalent to the algebra in case (iii) of Theorem 2.4.4. Let B ≤s.d An (n ≥ 2) such

that no binary projection pri,j B (1 ≤ i < j ≤ n) is a permutation of A. Then for some 0 ∈ A,

B = {(x1, . . . , xn) ∈ An : xI ∈ prI B for all I ∈ P}.

where P is the family of subsets of n such that I ∈ P if and only if |I| ≥ 2 and prI B = X0
|I|.
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In the next proposition we will denote the set of automorphisms of A by Aut(A).

Proposition 2.4.8. Let A be a finite idempotent strictly simple algebra, |A| > 2.

(i) If A is quasiprimal, then {{a}: a ∈ A} ∪Aut(A) is a generating set for RClo(A).

(ii) If A is affine, then {{a}: a ∈ A}∪Aut(A)∪{(x, y, z, x−y+x) : x, y, z ∈ A} is a generating

set for RClo(A).

(iii) If A is term equivalent to the algebra in case (iii) of Theorem 2.4.4, then there exists some

3 ≤ n ≤ ω such that {{a} : a ∈ A} ∪ Aut(A) ∪ {X0
k : 2 ≤ k < n} is a generating set for

RClo(A).

Thus, the relational clone of A is finitely related if A is affine or quasiprimal. It may or may

not be finitely related in the third case.

Corollary 2.4.9. Let A be a finite idempotent strictly simple algebra, |A| > 2. Then A is either

quasiprimal, or affine, or X0
2 = (A× {0}) ∪ ({0} ×A) is a subuniverse of A2 for some 0 ∈ A.

Proof. This follows immediately from Theorem 2.4.4 and Proposition 2.4.8

Theorem 2.4.10 ([Sze88]). For an idempotent strictly simple algebra A = (A;F ), one of the

following conditions holds:

(i) V(A) is congruence distributive, or

(ii) A is term equivalent to the full idempotent reduct of the module (End kA)A for some vector

space KA = (A; +,K), or

(iii) A is a 2-element algebra term equivalent to a semilattice or to a left zero semigroup on A.

Corollary 2.4.11. The variety generated by an idempotent strictly simple algebra A, where |A| > 2,

is congruence modular.
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Proof. Let A be an idempotent strictly simple algebra where |A| > 2. Then either statement (i)

or (ii) of Theorem 2.4.10 holds. In the latter case, the variety generated by A has a term that satisfies

the Mal’cev identities, therefore by Mal’cev’s Theorem, Theorem 2.1.2, the variety is congruence

permutable. Thus, for in either case, it follows from Theorem 2.1.1 that the variety generated by

A is congruence modular.

2.5 Crosses

Definition 2.5.1. For i ∈ {1, 2}, let Ai be sets, let θi be an equivalence relation on Ai, and let

ai ∈ Ai. The thick (A1 ×A2)-cross [A1/θ1, A2/θ2, a1/θ1, a2/θ2] is defined to be the set

[A1/θ1, A2/θ2, a1/θ1, a2/θ2] := {(x1, x2) ∈ A1 ×A2 : x1θ1a1 or x2θ2a2}.

Proposition 2.5.2. For i ∈ {0, 1, 2, 3}, let Ai be sets, let θi be an equivalence relation on Ai, and

let b0 ∈ A0, a1 ∈ A1, a2, b2 ∈ A2, a3 ∈ A3.

(i) If (a2, b2) 6∈ θ2, then

[A1/θ1, A2/θ2, a1/θ1, a2/θ2] ◦ [A2/θ2, A3/θ3, b2/θ2, a3/θ3] = [A1/θ1, A3/θ3, a1/θ1, a3/θ3].

(ii) If Φi ⊆ Ai ×Ai+1 is the graph of a bijection φi : Ai/θi → Ai+1/θi+1, for i = 0, 2, then

Φ−1
0 ◦ [A0/θ0, A2/θ2, b0/θ0, b2/θ2] ◦ Φ2 = [A1/θ1, A3/θ3, φ0(b0/θ0), φ2(b2/θ2)].

Proof. Let i ∈ {0, 1, 2, 3}, let Ai be sets, let θi be an equivalence relation on Ai, and let b0 ∈ A0,

a1 ∈ A1, a2, b2 ∈ A2, a3 ∈ A3.

[(i)] To show property (i), suppose that a2/θ2 6= b2/θ2. Let D := [A1/θ1, A2/θ2, a1/θ1, a2/θ2],

E := [A2/θ2, A3/θ3, b2/θ2, a3/θ3], and F := [A1/θ1, A3/θ3, a1/θ1, a3/θ3]. Let C = D ◦ E. Then we

want to show that C = F . Let (x1, x3) ∈ C. Then there exists some x2 ∈ A2 such that (x1, x2) ∈ D

and (x2, x3) ∈ E. To show that (x1, x3) ∈ C, we must show that at least one of the following are

true: either x1θ1a1 or x3θ3a3. Suppose, for contradiction, that x1/θ1 6= a1/θ1 and x3/θ3 6= a3/θ3.

Then (x1, x2) ∈ D and x1/θ1 6= a1/θ1 implies x2θ2a2. Similarly, (x2, x3) ∈ E and x3/θ3 6= a3/θ3
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implies x2θ2b2. Then x2θ2a2 and x2θ2b2 implies a2θ2b2, which contradicts a2/θ2 6= b2/θ2. Therefore,

either x1θ1a1 or x3θ3a3 or both statements are true, which means (x1, x3) ∈ F . Hence C ⊆ F .

Now suppose that (x1, x3) ∈ F . Then either x1θ1a1 or x3θ3a3. If x1θ1a1, then (x1, b2) ∈ D

and (b2, x3) ∈ E, hence (x1, x3) ∈ C. If x3θ3a3, then (x1, a2) ∈ D and (a2, x3) ∈ E, hence

(x1, x3) ∈ C. Therefore, F ⊆ C. This completes the proof of the statement.

[(ii)] Suppose Φi ⊆ Ai ×Ai+1 is the graph of a bijection φi : Ai/θi → Ai+1/θi+1, for i = 0, 2.

Let R := [A0/θ0, A2/θ2, b0/θ0, b2/θ2]. Then,

Φ−1
0 ◦R ◦ Φ2 = {(y1, y3) ∈ A1 ×A3 : there exists some x0 ∈ A0, x2 ∈ A2 such that (y1, x0) ∈ Φ−1

0 ,

(x0, x2) ∈ R, (x2, y3) ∈ Φ2}

= {(y1, y3) ∈ A1 ×A3 : there exists some x0 ∈ A0, x2 ∈ A2 such that

φ0(x0/θ0) = y1/θ1, φ2(x2/θ2) = y3/θ3, and either x0θ0b0 or x2θ2b2}

= {(y1, y3) ∈ A1 ×A3 : there exists some x0 ∈ A0, x2 ∈ A2 such that

y1/θ1 = φ0(x0/θ0) = φ0(b0/θ0) or y3/θ3 = φ2(x2/θ2) = φ2(b2/θ2)}

= {(y1, y3) ∈ A1 ×A3 : y1θ1φ0(b0/θ0) or y3θ3φ2(b2/θ2)}

= [A1/θ1, A3/θ3, φ0(b0/θ0), φ2(b2/θ2)].

This completes the proof of this statement.



Chapter 3

The Subuniverses of A2

In this section we start our investigation of finite idempotent algebras A that satisfy Assump-

tion 1.

The main result of this chapter is Theorem 3.1.5 in Section 3.1, which describes the possible

binary relations that can be subuniverses of A2 for such an algebra A. In Section 3.2 we study how

these binary relations compose, and which of them can occur simultaneously as subuniverses of A2.

So, throughout this chapter we will let A be a fixed algebra that satisfies Assumption 1. It

follows that S is an idempotent algebra that contains no nontrivial proper subalgebras. Thus, by

Proposition 2.2.6, S has no nontrivial congruences. Then S is a finite simple idempotent algebra of

size greater than 2, equivalently, S is a finite strictly simple idempotent algebra, |S| > 2.

Definition 3.0.3. Define θ to be the equivalence relation on A given by θ := S2∪{(b, b) : b ∈ A\S}.

Let S := s/θ for any s ∈ S and b := b/θ for any b ∈ A \ S.

A picture of θ can be found on page 23.

Proposition 3.0.4. If A is not simple, then θ is the unique nontrivial congruence on A and A/θ

has no nontrivial proper subalgebras.

Proof. Suppose that A is not simple and let Γ be a nontrivial congruence on A. By Proposition 2.2.6,

every congruence class of Γ is a subuniverse of A, hence a/Γ is either a singleton or S for each

a ∈ A. Therefore Γ = θ proving that θ is the unique nontrivial congruence on A.
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Furthermore, if C is a subuniverse of A/θ, then by Proposition 2.2.10, B = ρ−1(C) is a

subuniverse of A, where ρ : A → A/θ is the natural map. By our assumptions on the subalgebras

of A, B is either A, S, or a singleton {a} for some a ∈ A. Hence C = ρ(B) is A/θ, {S}, or {a/θ},

where a ∈ A \ S. In particular, if C is a proper subuniverse of A/θ then B is a proper subuniverse

of A. It follows that A/θ has no nontrivial proper subuniverses.

Proposition 3.0.5. If σ is an automorphism of A, then σ|S is an automorphism of S.

Proof. Suppose that σ is an automorphism of A. Since S is a subalgebra of A, it follows from the

properties of homomorphisms that σ(S) is a subuniverse of A. Furthermore, since σ is bijective, we

can infer that |σ(S)| = |S|. By assumption, S is the unique nontrivial subalgebra of A, therefore,

σ(S) = S. Hence σ|S is an automorphism of S.

It follows from Proposition 3.0.5 that the (the graphs of) automorphism of A are subsets of

S2 ∪ (A \ S)2.

Proposition 3.0.6. If σ1 and σ2 are automorphisms of A such that σ1|A\S = σ2|A\S, then σ1 = σ2.

Proof. Suppose σ1, σ2 ∈ Aut(A) and σ1|A\S = σ2|A\S . Let R be the graph of the automorphism

A → A, a 7→ σ−1
2 (σ1(a)), of A. To prove the proposition it is enough to show that ∆ ⊆ R where

∆ = {(x, x) : x ∈ A} is the graph of the identity automorphism of A.

Since ∆ and R are graphs of an automorphisms of A, they are subuniverses of A2. Hence

R∩∆ ≤ A2 and pr1R∩∆ ≤ A. Let a ∈ A \S. Then σ1|A\S = σ2|A\S implies that σ−1
2 (σ1(a)) = a,

therefore (a, a) ∈ R. Since a was an arbitrary element of A \ S, this means that (a, a) ∈ R for all

a ∈ A \ S. Then R ∩ ∆ contains {(a, a) : a ∈ A \ S}, therefore A \ S ⊆ pr1R ∩ ∆ ≤ A. Since

pr1R ∩∆ ≤ A is a subuniverse of A it follows from our assumptions on the subuniverses of A that

pr1R ∩∆ ≤ A = A. Thus ∆ ⊆ R. This completes the proof of the proposition.
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3.1 A Description of the Subuniverses of A2

Understanding the subuniverses of A2 is essential in determining the subuniverses of finite

powers of A. In this section we will describe the possible binary relations that can be subuniverses

of A2. We start with some notation and terminology.

Definition 3.1.1. The relations {(a, a′)}, where a, a′ ∈ A, will be called points. The relations

{a} × S, {a} ×A and their inverses will be called lines.

Definition 3.1.2. For s, s′ ∈ S and a, a′ ∈ A, let

νs,s′ := ({s} × S) ∪ (S × {s′}),

µa,a′ := ({a} ×A) ∪ (A× {a′}),

κa,s := ({a} × S) ∪ (A× {s}),

λS,s := S2 ∪ (A× {s}),

χs,s′ := S2 ∪ ({s} ×A) ∪ (A× {s′}),

χS,s := S2 ∪ (S ×A) ∪ (A× {s}) = (S ×A) ∪ (A× {s}),

χS,S := S2 ∪ (S ×A) ∪ (A× S) = (S ×A) ∪ (A× S).

The relations νs,s′ will be called (S, S)-crosses since their unary projections are equal to S. Similarly,

the relations µa,a′ will be called (A,A)-crosses and the relations κb,s will be called (A,S)-crosses.

We will call the remaining relations thick crosses since they contain S2. Thus the relations λS,s are

thick (A,S)-crosses and the remaining relations are thick (A,A)-crosses. If s = s′, then we will

denote the (S, S)-crosses νs,s by νs. If a = a′, then we will denote (A,A)-crosses µa,a by µa.

Pictorial examples of the relations in Definition 3.1.2 can be found on pages 23-24.

If θ is a congruence on A, then we will use the following notation for some relations of A/θ×S

and (A/θ)2.
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Definition 3.1.3. For s ∈ S and a ∈ A/θ, let

ηa := ({a} ×A/θ) ∪ (A/θ × {a})

κa,s := ({a} × S) ∪ (A/θ × {s})

κs,a := ({s} ×A/θ) ∪ (S × {a}).

Each relation ηa will be called an (A/θ,A/θ)-cross since its unary projections are equal to

A/θ. Similarly, each relation κa,s will be called an (A/θ, S)-cross and each relation κs,a will be

called an (S,A/θ)-cross. Note that κa,s = κ−1
s,a .

Definition 3.1.4. Let s, s′ ∈ S and let τ be a permutation of A \ S. Then

ντs,s′ := νs,s′ ∪ {(x, τ(x)) : x ∈ A \ S}.

If s = s′, then we will denote ντs,s′ by ντs .

A pictorial example of a relation ντs can be found on page 24.

If θ is a congruence on A, then we will use the terminology introduced in Definition 2.2.16 to

describe an isomorphism from A1/θ1 to A2/θ2 where Ai ∈ {S,A} and θi ∈ {idS , idA, θ}. Namely, if

B is a subuniverse of A×S such that B is the full inverse image of a bijection φ : A/θ → S under the

natural map ρ : A×S → A/θ×S, then we will call B an isomorphism from A/θ to S. A symmetric

definition is given for an isomorphism from S to A/θ. If B is a subuniverse of A2 such that B is the

full inverse image of an automorphism φ of A/θ under the natural map ρ : A × A → A/θ × A/θ,

then we will call B an automorphism of A/θ.

One should note that if θ is a congruence on A (that is, θ is a subuniverse of A2), then θ is

an automorphism of A/θ in this sense, namely the identity automorphism of A/θ.

The next theorem is the main result of this section.

Theorem 3.1.5. Every subuniverse of A2 is one of the following:

• a direct product of subuniverses of A: a point, a line, S2, A× S, S ×A, or A2,
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• an automorphism of S, or an automorphism of A,

• an isomorphism A/θ → S, an isomorphism S → A/θ, or an automorphism of A/θ (hence

θ is a congruence on A),

• a cross: νs, µa, κa,s, or (κa,s)−1, for some s ∈ S, a ∈ A,

• a thick cross: λS,s, (λS,s)−1, χs,s′, χS,s, (χS,s)−1, or χS,S, for some s, s′ ∈ S,

• ντs , for some s ∈ S and some fixed-point free permutation τ of A\S (hence θ is a congruence

on A).

Using Definitions 3.0.3, 2.2.16, 3.1.2, and 3.1.4 we will depict some examples of what the

possible subuniverses of A2 look like. Let s, s′ ∈ S, a ∈ A.

• An automorphism of A/θ

θ =

A

A

S

S

, s/θ = S (s ∈ S), b/θ = b (b ∈ A \ S)

• An isomorphism A/θ → S

A/θ → S

S

S

A

• A cross

νs =
s
s

S

S

, µa =
a

a

A

A

, κa,s = s

a

S

A

• A thick cross

λS,s = s
S

AS

, χs,s′ =
s

s′

A

A

S

S

,



24

χS,s =
s

A

AS

, χs,S =

s

A

A

S , χS,S =

A

A

S

S

• ντs =

s
s

A

A

Corollary 3.1.6. Suppose that θ is a congruence on A. Let B ≤s.d. B1×B2 where B1,B2 ∈ {S,A}.

For i = 1, 2 let Ai = Bi/Θi where Θi is the equality relation if Bi = S and is θ if Bi = A.

Furthermore, let ρ be the natural homomorphism B1 ×B2 → A1 ×A2, and let B′ = ρ(B). Then B′

is one of the following:

• a direct product of subuniverses of S and A/θ: a point, a line, S2, A/θ × S, S × A/θ, or

(A/θ)2,

• an automorphism of S, an automorphism of A/θ, an isomorphism from S to A/θ, or an

isomorphism from A/θ to S,

• a cross: νs, ηa, κa,s, or κs,a, for some s ∈ S, a ∈ A/θ.

Proof. The corollary follows directly from Theorem 3.1.5.

Theorem 3.1.5 will be proved by a sequence of lemmas, and the proof will occupy the rest of

this section.

Lemma 3.1.7. Let B be a subuniverse of A2. If (a, b1), (a, b2) ∈ B for some distinct b1, b2 ∈ A,

a ∈ A, then {a} × S ⊆ B. Furthermore, if bi ∈ A \ S, for some i ∈ {1, 2}, then {a} ×A ⊆ B.

Proof. Let B be a subuniverse of A2 such that (a, b1), (a, b2) ∈ B for distinct b1, b2 ∈ A and a ∈ A.

Then B(a, x2) is a subuniverse of A that contains {b1, b2} which implies |B(a, x2)| ≥ 2. Since S and

A are the only nontrivial subalgebras of A, it follows that B(a, x2) contains S. Hence {a}×S ⊆ B.

Furthermore, if bi ∈ A \ S, for some i ∈ {1, 2}, then B(a, x2) 6= S, in this case B(a, x1) = A,

therefore {a} ×A ⊆ B.
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Lemma 3.1.8. Let B be a subuniverse of A2. If (b1, a), (b2, a) ∈ B, for a, b1, b2 ∈ A, b1 6= b2, then

S × {a} ⊆ B. Furthermore, if bi ∈ A \ S, for some i ∈ {1, 2}, then A× {a} ⊆ B.

Proof. This follows from Lemma 3.1.7 and the fact that, under the assumptions of the lemma,

(a, b1), (a, b2) ∈ B−1 for distinct b1, b2.

Lemma 3.1.9. Let B be a subuniverse of A2. If ({a1}×S)∪({a2}×S) ⊆ B for distinct a1, a2 ∈ A,

then S2 ⊆ B. Furthermore, if ai ∈ A \ S for some i ∈ {1, 2}, then A× S ⊆ B.

Proof. Let B be a subuniverse of A2 such that ({a1}× S)∪ ({a2}× S) ⊆ B for distinct a1, a2 ∈ A.

Then for all s ∈ S the subuniverse B(x1, s) contains both a1 and a2, therefore S ⊆ B(x1, s),

which means S × {s} ⊆ B. Furthermore, if one of a1, a2 is in A \ S, then B(x1, s) = A, thus

A× {s} ⊆ B.

Lemma 3.1.10. Let B be a subuniverse of A2. If (S×{a1})∪(S×{a2}) ⊆ B for distinct a1, a2 ∈ A,

then S2 ⊆ B. Furthermore, if ai ∈ A \ S for some i ∈ {1, 2}, then S ×A ⊆ B.

Proof. This follows from Lemma 3.1.9 and the fact that, under the assumptions of the lemma,

{a1} × S ∪ {a2} × S ⊆ B−1 for distinct a1, a2 ∈ A.

Lemma 3.1.11. The following implications hold for s, s′ ∈ S, a, a′, b ∈ A.

(i) If µa,a′ is a subuniverse of A2, then a = a′.

(ii) If νs,s′ is a subuniverse of A2, then s = s′.

Proof. Each statements (i) and (ii) follows from the fact that the intersection of subuniverses of A2

is a subuniverse of A2 and the unary projection of a subuniverse of A2 is a subuniverse of A.

[(i)] If µa,a′ ≤ A2 for some a, a′ ∈ A, a 6= a′, then µa,a′ ∩ µ−1
a,a′ = {(a, a), (a′, a′)}. Hence

pr1(µa,a′ ∩ µ−1
a,a′) = {a, a′} is a two-element subuniverse of A which contradicts the assumptions on

the subalgebras of A. Hence a = a′.

[(ii)] The proof is similar to the proof of (i), replace µa,a′ with νs,s′ , and a with s.
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We will now begin the proof of Theorem 3.1.5. We will start by considering those subuniverses

of A2 that have trivial unary projections.

Lemma 3.1.12. Let B be subuniverse of A2. If B has a trivial unary projection, then B is a point

or a line.

Proof. Let B be a subuniverse of A2 such that the unary projection of B onto its ith-coordinate is

trivial, for some i ∈ {1, 2}. WLOG, suppose pr1B = {a} for some a ∈ A. Then B = {a} × pr2B.

By our assumptions on the subalgebras of A, the projection of B onto its second coordinate is

either a singleton, or S or A. It follows that B is either a point or a line.

Lemma 3.1.13. If B is a subuniverse of A2 whose unary projections are equal to S, then B is

either an automorphism of S, or B = νs for some s ∈ S, or B = S2.

Proof. Let B be a subuniverse of A2 such that priB = S, i = 1, 2. Then B ⊆ S2. Fix s ∈ S.

Then B(s, x2) is subuniverse of A that is contained in S. Since s ∈ S = pr1B and pr2B = S,

we get that there exists some y ∈ S such that (s, y) ∈ B, thus y ∈ B(s, x2) ⊆ S. It follows from

our assumptions on the subalgebras of A that B(s, x2) is either a singleton or S. By a symmetric

argument we get that B(x1, s) is either a singleton or S. Furthermore, we chose s ∈ S arbitrarily,

therefore each of B(s, x2) and B(x1, s) is either a singleton or S for every s ∈ S.

First suppose that B(s, x2) is a singleton for every s ∈ S. This condition means that B is

(the graph of) a function φ : S → S, where φ is defined by B(s, x2) = {φ(s)} for all s ∈ S. Since

pr2B = S, we have that φ is an onto function S → S. As S is finite, φ is also one-to-one. Thus B

is (the graph of) a permutation of S, and hence by Proposition 2.2.14, B is an automorphism of S.

Similarly, if B(x1, s) is a singleton for every s ∈ S, then it follows that B is an automorphism of S.

It remains to consider the case where B(s, x2) = S and B(x1, s
′) = S for at least one s ∈ S and

at least one s′ ∈ S. Then B ⊇ νs,s′ . If B = νs,s′ , then we get from statement (ii) of Lemma 3.1.11

that s = s′ and B = νs. If B 6= νs,s′ , then let (t, t′) ∈ B \ νs,s′ . Clearly t, t′ ∈ S and t 6= s, t′ 6= s′.

Thus (t, t′) ∈ B and (t, s′) ∈ νs,s′ ⊆ B, t′ 6= s′ implies, by Lemma 3.1.7, that {t} × S ⊆ B. Then,
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by Lemma 3.1.9 and {s}×S ⊆ νs,s′ ⊆ B, s 6= t, we get that S2 ⊆ B. Recall that B ⊆ S2, therefore

it follows that B = S2. This completes the proof of the lemma.

We will use the previous lemma to determine that subdirect subalgebras of A× S.

Lemma 3.1.14. If B is a subuniverse of A2 such that pr1B = A and pr2B = S, then B is one of

the following:

• an isomorphism from A/θ to S (hence θ is a congruence on A),

• κa,s, for some a ∈ A, s ∈ S,

• λS,s, for some s ∈ S, or

• A× S.

Proof. Let B be a subuniverse of A2 such that pr1B = A and pr2B = S. Then B ∩ S2 is a

subuniverse of S2. Since S ⊆ pr1B and pr2B = S we have, for each t ∈ S, that there exists some

ct ∈ S such that (t, ct) ∈ B, so (t, ct) ∈ B ∩ S2, therefore, pr1(B ∩ S2) = S. Furthermore, since

pr2(B∩S2) ⊂ pr2B = S, we have that pr2(B∩S2) is a nonempty subuniverse of A that is contained

in S. Therefore pr2(B ∩ S2) is either a singleton or S. We will consider these two cases separately.

Case 1. First suppose that pr2(B ∩S2) = {s} for some s ∈ S. Then pr1(B ∩S2) = S implies

S × {s} = B ∩ S2. Recall that pr2B = S. Therefore, for each t ∈ S \ {s} there exists some bt ∈ A

such that (bt, t) ∈ B and, since pr2(B ∩ S2) = {s} and t 6= s, we can infer that bt ∈ A \ S. Thus

B(x1, t) is a nonempty subuniverse of A that contains bt ∈ A \ S. It follows from our assumptions

on the subalgebras of A that B(x1, t) = {bt} or A. However the latter cannot hold, otherwise we

get that A × {t} ⊆ B, hence S × {t} ⊆ B, which means t ∈ pr2(B ∩ S2) = {s}, where t 6= s,

a contradiction. Therefore B(x1, t) = {bt} for each t ∈ S \ {s}. We now have two subcases to

consider. Either there exists distinct t, t′ ∈ S \ {s} such that bt = bt′ or bt 6= bt′ for all distinct

t, t′ ∈ S.

Subcase 1.1. Suppose that there exists distinct t, t′ ∈ S such that bt = bt′ , let b := bt. Then

(b, t), (b, t′) ∈ B, and t 6= t′ implies, by Lemma 3.1.7, that {b} × S ⊆ B. In particular (b, s) ∈ B.
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Recall that S×{s} ⊆ B. Therefore S∪{b} ⊆ B(x1, s), where b ∈ A\S, which means B(x1, s) = A,

thus A×{s} ⊆ B. Then we have found that B ⊇ A×{s}∪{b}×S = κb,s. Suppose, for contradiction,

that there exists some (c, c′) ∈ B \ κb,s. Then c′ ∈ S, c′ 6= s, and c 6= b. This means that (c, s)

and (c, c′) are distinct elements in B, thus it follows from Lemma 3.1.7 that {c} × S ⊆ B. Then

{b} × S ⊆ κb,s ⊆ B and {c} × S ⊆ B, where c 6= b and b ∈ A \ S implies, by Lemma 3.1.9, that

A× S ⊆ B. However this is a contradiction to the assumption that pr2(B ∩ S2) = {s}. Therefore

B = κb,s.

Subcase 1.2. Now suppose that bt 6= bt′ for all distinct t, t′ ∈ S \ {s}. We claim that this

property implies that S 6⊆ B(a, x2) for each a ∈ A \S. Suppose, for contradiction, that there exists

some a ∈ A \ S such that S ⊆ B(a, x2). Then {a} × S ⊆ B and for distinct t, t′ ∈ S \ {s} we

get that (a, t), (a, t′) ∈ B. However this mean that bt = B(x1, t) = a = B(x1, t
′) = bt′ for distinct

t, t′ ∈ S \ {s} which is a contradiction to the assumptions of this subcase. Then S 6⊆ B(a, x2) for

each a ∈ A \ S.

Now we will show that this means that A × {s′} 6⊆ B for any s′ ∈ S. Suppose not. Then

A × {s′} ⊆ B for some s′ ∈ S. Let t ∈ S \ {s, s′}, such an element exists since |S| > s. We saw

that there exists some bt ∈ A \ S such that (bt, t) ∈ B. Then (bt, s′) ∈ A × {s′} ⊆ B, t 6= s′, and

Lemma 3.1.7 imply that {bt}×S ⊆ B. Therefore, B(bt, x2) ⊇ S where bt ∈ A\S, which contradicts

S 6⊆ B(a, x2) for each a ∈ A \ S. Therefore A× {s′} 6⊆ B for any s′ ∈ S.

Recall that pr1B = A and pr2B = S, therefore for each a ∈ A \ S there exists some ca ∈ S

such that (a, ca) ∈ B, thus B(a, x2) is a nonempty subuniverse of A that contains ca but does not

contain S. It follows that B(a, x2) = {ca} for each a ∈ A \ S. We claim that, in fact, ca ∈ S \ {s}

for each a ∈ A\S. Suppose not. Then there exists some a ∈ A\S such that ca = s, thus (a, s) ∈ B.

Then (s, s) ∈ S × {s} ⊆ B, a ∈ A \ S, and a 6= s implies, by Lemma 3.1.8, that A × {s} ⊆ B,

which is a contradiction. Hence, for each a ∈ A \ S, there exists some ca ∈ S \ {s} such that

B(a, x2) = {ca}.

This property, together with the assumption that S × {s} ⊆ B implies that B = ρ−1(φ),
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where ρ is the natural map ρ : A× S → A/θ × S and φ is the function,

φ : A/θ → S : S 7→ s, a 7→ ca,

for each a ∈ A \ S, a = a/θ, S = s′/θ for some s′ ∈ S. Since S × {s} ∪ {(bt, t) : t ∈ S \ {s}} ⊆ B,

then φ(S) = s and φ(bt) = t for all t ∈ A \ {s}, therefore φ is onto. We claim that φ is one-to-one.

Suppose not. Then there exist distinct u, v ∈ A/θ such that φ(u) = s′ = φ(v) for some s′ ∈ S. Thus

B ⊇ ρ−1({(u, s′), (v, s′)}), which means there exist distinct u, v ∈ A, where u/θ = u and v/θ = v

such that (u, s′), (v, s′) ∈ B. Furthermore, since u 6= v, it follows that at least one of u or v is in

A \ S. Therefore, it follows from Lemma 3.1.8 that A× {s′} ⊆ B, which contradicts A× {s′} 6⊆ B

for any s′ ∈ S. We have shown that B = ρ−1(φ) where φ is a bijection from A/θ to S, thus, by

Definition 2.2.16, we have that B is an isomorphism from A/θ to S.

It remains to show that θ is a congruence on A. Recall that B is a subalgebra of A2 and in

fact B ≤s.d. A× S. We showed that B = ρ−1(φ) where φ : A/θ → S is a bijection. Then it follows

from statement (i) of Proposition 2.2.15 that θ is a congruence on A.

Case 2. We will now consider the second case, namely that when pr2(B ∩ S2) = S. In this

case we get that B ∩ S2 is a subuniverse of A2 such that pr1(B ∩ S2) = S = pr2(B ∩ S2). Hence

we can apply Proposition 3.1.13 to conclude that B ∩ S2 is either an automorphism of S, or an

(A,S)-cross νs for some s ∈ S, or S2. We will consider these three subcases separately. In all of

the subcases the assumption that pr1B = A and pr2B = S implies that for each b ∈ A \ S, there

exists some sb ∈ S such that (b, sb) ∈ B.

Subcase 2.1. First suppose that B ∩ S2 = σ ∈ Aut(S). Let b ∈ A \ S, and let s := sb ∈ S

where (b, s) ∈ B. By our assumptions on B ∩ S2 we also have that (σ−1(s), s) ∈ B, clearly

σ−1(s) ∈ S. Then applying Lemma 3.1.8 to (b, s), (σ−1(s), s), where b ∈ A\S and b 6= σ−1(s) gives

that A×{s} ⊆ B, thus S×{s} ⊆ B ∩S2 = σ, which is a contradiction. Therefore this case cannot

occur.

Subcase 2.2. Now let us suppose that B∩S2 = νs. If t ∈ S\{s}, then B(x1, t) is a subuniverse

of A such that B(x1, t) ∩ S = (B ∩ S2)(x1, t) = νs(x1, t) = {s}, which forces that B(x1, t) = {s}.
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This implies that B ⊆ κs,s and also that sb = s for all b ∈ A \ S. Thus (b, s) ∈ B for all b ∈ A \ S.

Since we also have that νs ⊆ B, we get that κs,s ⊆ B, and hence B = κs,s.

Subcase 2.3. Finally let us suppose that B ∩ S2 = S2. For arbitrary (b, t) ∈ B, b ∈ A \ S, we

have also that (t, t) ∈ S2 ⊆ B. Then (b, t), (t, t) ∈ B, b ∈ A \ S, b 6= t, implies, by Lemma 3.1.8,

that A × {t} ⊆ B. If there is a unique element s ∈ S such that A × {s} ⊆ B, then this argument

shows that B ⊆ λS,s and also that sb = s for all b ∈ A \ S. Thus (b, s) ∈ B for all b ∈ A \ S.

Since S2 ⊆ B, we get that λS,s ⊆ B and hence B = λS,s. If there are at least two distinct elements

s, s′ ∈ S such that A × {s}, A × {s′} ⊆ B, then, by Lemma 3.1.10 we get that B = A × S. This

completes the proof of the lemma.

Corollary 3.1.15. If B is a subuniverse of A2 such that pr1B = S and pr2B = A, then B is one

of the following:

• an isomorphism from S to A/θ (hence θ is a congruence on A),

• κ−1
a,s, for some a ∈ A, s ∈ S,

• λ−1
S,s, for some s ∈ S, or

• S ×A.

Proof. This follows directly by applying Lemma 3.1.14 to B−1.

Lemma 3.1.16. If B is a subuniverse of A2 such that pr1B = A = pr2B, then B is one of the

following:

• an automorphism of A,

• an automorphism of A/θ (hence θ is a congruence on A),

• µa, for some a ∈ A,

• χs,s′, χS,s, (χS,s)−1, or χS,S, for some s, s′ ∈ S



31

• ντs , for some s ∈ S and some fixed-point free permutation τ of A\S (hence θ is a congruence

on A) , or

• A2.

Proof. Suppose that B is a subuniverse of A2 such that pr1B = A = pr2B. Then for each a ∈ A

we get that there exists some ba, ca ∈ A such that (a, ca), (ba, a) ∈ B. Then B(a, x2) = {ca}, or S,

or A. Similarly B(x1, a) = {ba}, or S, or A. Let D = B ∩ (A× S). Then either some projection of

D is a singleton, or pr1D = S = pr2D, or pr1D = A and pr2D = S. We will consider these three

cases separately.

Case 1. Suppose that some projection of D is a singleton. Then Lemma 3.1.12 implies that

D is either a point or a line. If D = {(u, v)} for some u ∈ A, v ∈ S, or if D = S×{v} for some v ∈ S

or if D = A×{v} for some v ∈ S, then pr2(B∩(A×S)) = pr2D = {v}, hence pr2B ⊆ {v}∪(A\S),

which contradicts pr2B = A. This forces D = {u}× S for some u ∈ A. Then for each a ∈ A \ {u},

we get that B(a, x2) ∩ S = (B ∩ (A × S))(a, x2) = ∅, which means B(a, x2) = {ca}. Furthermore,

S ⊆ B(u, x2) implies that either B(u, x2) = S or B(u, x2) = A. We will consider these two cases

separately.

Subcase 1.1. First suppose that B(u, x2) = A. Then u × A ⊆ B. Let a ∈ A \ (S ∪ {u}),

such an element exists since |A \ S| > 1. We showed that there exists some ca ∈ A \ S such that

B(a, x2) = {ca}. Then we can infer from (a, ca) ∈ B, (u, ca) ∈ {u} × A ⊆ B, a 6= u, a ∈ A \ S and

Lemma 3.1.8 that A × {ca} ⊆ B. Let c := ca. Then A × {c} ∪ {u} × A ⊆ B implies µu,c ⊆ B.

Furthermore, we showed, for each a ∈ A \ {u}, that B(a, x2) is a singleton. Thus (a, c) ∈ B implies

B(a, x2) = {c} for every a ∈ A \ {u}. Then B(u, x2) = A implies B ⊆ µu,c, hence B = µu,c. Since

B is a subuniverse of A2, it follows from statement (i) of Lemma 3.1.11 that u = c. Therefore

B = µu.

Subcase 1.2. Now suppose that B(u, x2) = S. Then (u, c) /∈ B if c ∈ A\S, hence A×{c} 6⊆ B

for any c ∈ A \ S. We also have A × {c} 6⊆ B for any c ∈ S, because B ∩ (A × S) = {u} × S.

Therefore, A× {c} 6⊆ B for any c ∈ A.
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Notice that there must exist distinct a, a′ ∈ A\{u} such that ca = ca′ , otherwise pr1B = A =

pr2B and B(a, x2) = {ca} for each a ∈ A\{u} and some ca ∈ A\S implies that |A\{u}| = |A\S|,

which contradicts the assumption that |S| > 2. Let a, a′ ∈ A such that c := ca = ca′ . Then

Lemma 3.1.8 and (a, c), (a′, c) ∈ B, with a 6= a′, implies that S × {c} ⊆ B and if one of a or a′ is

in A \ S, then A× {c} ⊆ B. Since A× {c} ⊆ B contradicts A× {c} 6⊆ B for any c ∈ A, it must be

that a, a′ ∈ S. Then S × {c} ⊆ B means that B(s, x2) = {c} for all s ∈ S.

Furthermore, this forces u ∈ A \ S, otherwise (u, s) ∈ {u} × S ⊆ B and (u, c) ∈ S × {c},

where c ∈ A \ S and c 6= s implies, by Lemma 3.1.7, that {u} × A ⊆ B, then B(u, x2) = A, which

contradicts the assumption that B(u, x2) = S.

Finally, we claim that ca 6= ca′ for distinct a, a′ ∈ A \ (S ∪ {u}), otherwise, (a, ca), (a′, ca′) =

(a′, ca) ∈ B implies that A× {ca} ⊆ B, which contradicts A× {c} 6⊆ B for any c ∈ A.

We have shown that ({u} × S) ∪ (S × {c}) ⊆ B for some u, c ∈ A \ S. Also, B(a, x2) = {ca}

for each a ∈ A \ (S ∪ {u}), where ca 6= ca′ for distinct a, a′ ∈ A \ (S ∪ {u}). For s ∈ S, let s/θ = S.

Let a/θ = a for each a ∈ A \ S. Then we have that B = ρ−1(φ) where ρ is the natural map

ρ : A×A→ A/θ ×A/θ and φ is the function

φ : A/θ → A/θ, u 7→ S, S 7→ c, a 7→ ca, for all a ∈ A \ (S ∪ {u}).

Since ca 6= ca′ for distinct a, a′ we get that ca 6= ca′ for distinct a, a′ ∈ A/θ \ {S, u}, therefore φ is a

one-to-one function. Since A/θ is finite we get that φ is a bijection. Therefore, by Definition 2.2.16,

B is an automorphism of A/θ.

It remains to show that θ is a congruence on A. Recall that B is a subalgebra of A2 and we

showed that B = ρ−1(φ) where φ : A/θ → A/θ is a bijection. Then it follows from statement (i) of

Proposition 2.2.15 that θ is a congruence on A.

Case 2. Suppose that pr1D = S = pr2D. Then for each a ∈ A\S we have that B(a, x2)∩S =

(B ∩ (A × S))(a, x2) = D(a, x2) = ∅. Also, pr1B = A implies that there exists some ca ∈ A such

that (a, ca) ∈ B, therefore it follows that B(a, x2) = {ca} for some ca ∈ A \ S.

Since pr1D = S = pr2D it is clear that pr1(B ∩ (S × A)) = S and pr2(B ∩ (S × A)) ⊇ S.



33

Thus, either pr2(B ∩ (S × A)) = S or pr2(B ∩ (S × A)) = A. We will consider these two cases

separately.

Subcase 2.1. First suppose that pr2(B∩ (S×A)) = A. Let a ∈ A\S. Then there exists some

s ∈ S such that (s, a) ∈ B. Furthermore, pr1D = S = pr2D implies that there exists some s′ ∈ S

such that (s, s′) ∈ B. From (s, a), (s, s′) ∈ B, a ∈ A \S, s′ ∈ S, and Lemma 3.1.7 we can infer that

{s} ×A ⊆ B.

Now recall that for a ∈ A \ S we have that B(a, x2) = {ca} for some ca ∈ A \ S. Let c := ca.

Then (a, c) ∈ B and (s, c) ∈ {s} × A ⊆ B, where a ∈ A \ S and s ∈ S implies, by Lemma 3.1.7,

that A × {c} ⊆ B. This means that B(a, x2) = {c} for all a ∈ A \ S and (b, b) 6∈ B for any

b ∈ A \ (S ∪ {c}).

Let ∆ = {(x, x) : x ∈ A}. Then ∆ is a subuniverse of A2, therefore ∆ ∩ B ≤ A2 and

pr1(∆∩B) ≤ A. Note that {s}×A∪A×{c} ⊆ B implies that {(s, s), (c, c)} ∈ ∆∩B. Furthermore,

since (b, b) 6∈ B for any b ∈ A\ (S∪{c}), we have that (b, b) 6∈ ∆∩B for any b ∈ A\ (S∪{c}). Then

pr1(∆ ∩B) is a proper nontrivial subsuniverse of A that contains c ∈ A \ S, which contradicts our

assumptions on the subalgebras of A. Hence, this case fails.

Subcase 2.2. Now suppose that pr2(B ∩ (S ×A)) = S. Then for each a ∈ A \ S we have that

B(x1, a) ∩ S = (B ∩ (S × A))(x1, a) = ∅. Since pr2B = A we know that there exists some ba ∈ A

such that (ba, a) ∈ B therefore B(x1, a) = {ba} and ba ∈ A\S. Recall, for each a ∈ A\S, that there

exists some ca ∈ A \ S such that B(a, x2) = {ca}. Then these conditions imply that B contains

(the graph of) an onto function τ : A \ S → A \ S : a 7→ ca where A \ S is finite. Therefore, τ is a

permutation of A \ S that contains (the graph of) a bijection from A \ S toA \ S. Furthermore, B

is the union of D and the graph of τ . Under the assumption that pr1D = S = pr2D we know, by

Lemma 3.1.13, that D is either an automorphism of S, or D = νs for some s ∈ S, or D = S2.

If D is an automorphism of S, then we have that B(a, x1) is a singleton for every a ∈ A.

This condition means that B is (the graph of) a function φ : A → A where φ is defined by

B(a, x1) = {φ(a)} for all a ∈ A. Since pr2B = A, we have that φ is onto. Furthermore, A is

finite, therefore B is (the graph of) a permutation of A. Hence by Proposition 2.2.14, B is an
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automorphism of A.

Suppose that D = νs for some s ∈ S. Then it follows from the above discussion that

B = ντs . We claim that τ is fixed-point free. Suppose not. Let b ∈ A \ S such that τ(b) =

b, then (b, b) ∈ B. Let ∆ = {(x, x) : x ∈ A}. Then ∆ is a subuniverse of A2 which means

∆ ∩ B ≤ A2 and pr1(∆ ∩ B) ≤ A. Since (b, b) ∈ B and (s, s) ∈ νs ⊆ B, we have that ∆ ∩ B ⊇

{(s, s), (b, b)}. Furthermore, since (s′, s′) 6∈ νs = B ∩ (S × S) for all s′ ∈ S \ {s}, it follows

that (s′, s′) 6∈ ∆ ∩ B. Hence pr1(∆ ∩ B) is a proper nontrivial subuniverse of A that contains

b ∈ A \ S, which contradicts our assumptions on the subuniverses of A. Therefore τ is fix-point

free. Lastly, we claim that if B = ντs is a subuniverse of A2, then θ is a congruence on A. Let

R := B ◦ B−1 = {(x, z) : there exists some y ∈ A such that (x, y), (z, y) ∈ B}. Since relational

clones are closed under composition, we get that R is a subuniverse of A2. We will show that

R = θ. Recall that θ = S2 ∪ {(x, x) : x ∈ A \ S}. Let (u, v) ∈ θ. If (u, v) ∈ S2 then we get

that (u, s), (v, s) ∈ νs ⊆ B, therefore, (u, v) ∈ R. If (u, v) ∈ (A \ S)2, then u = v which means

(u, τ(u)), (v, τ(u)) = (u, τ(u)) ∈ B, thus (u, v) ∈ R. Hence θ ⊆ R. Now suppose that (x, z) ∈ R.

Then there exists some y ∈ A such that (x, y), (z, y) ∈ B. If y ∈ S, then (x, z) ∈ S2 ⊆ θ. Suppose

that y ∈ A \ S. Then x, z ∈ A \ S and x = τ−1(y) = z. Therefore (x, z) ∈ θ. We have shown that

R ⊆ θ, so we may conclude that R = θ. Therefore θ is a subuniverse of A2, from Proposition 2.2.5

it follows that θ is a congruence on A.

Finally, suppose that D = S2. Let s/θ = S for all s ∈ S and a/θ = a for all a ∈ A \ S. Then

B = ρ−1(φ), where ρ is the natural map, ρ : A×A→ A/θ ×A/θ, and φ is the function given by

φ : A/θ → A/θ, S 7→ S, a 7→ τ(a), for all a ∈ (A/θ) \ {S}.

Since pr2B = A we have that φ is onto. As, A/θ is finite, φ is also one-to-one. Then by Defini-

tion 2.2.14 we get that B is an automorphism of A/θ.

It remains to show that θ is a congruence on A. Recall that B is a subuniverse of A2 and we

showed that B = ρ−1(φ) where φ : A/θ → A/θ is a bijection. Then it follows from statement (i) of

Proposition 2.2.15 that θ is a congruence on A.
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Case 3. Suppose that pr1D = A and pr2D = S. Then it follows from Lemma 3.1.14 that D

is either an isomorphism from A/θ to S, or D = κa,s for some a ∈ A, s ∈ S, or D = λS,s for some

s ∈ S, or D = A × S. In each of these four cases we get that for each a ∈ A, B(a, x2) is either a

singleton, or B(a, x2) = S, or B(a, x2) = A.

We first claim that D cannot be an isomorphism from A/θ to S. Suppose D is an isomorphism

from A/θ to S. Then for each a ∈ A we have that B(a, x2)∩S = (B ∩ (A×S))(a, x2) = D(a, x2) =

{sa} for some sa ∈ A. Therefore B(a, x2) = {sa} for all a ∈ A. However this contradicts pr2B = A,

so this case cannot occur.

Suppose that D = κb,s for some b ∈ A, s ∈ S. Then for each a ∈ A \ {b} we get that

B(a, x2)∩S = (B ∩ (A×S))(a, x2) = D(a, x2) = {s}. Therefore B(a, x2) = {s} for all a ∈ A \ {b}.

Since pr2B = A, this forces B(b, x2) = A. Hence B ⊆ µb,s. Furthermore, B(a, x2) = A implies

{a} × A ⊆ B. We also have that {s} × A ⊆ κb,s ⊆ B, therefore B ⊆ µb,s, which means B = µb,s.

Since B is a subuniverse of A2, it follows from statement (i) of Lemma 3.1.11 that b = s. Therefore

B = µs.

Now suppose that D = λS,s for some s ∈ S. Then for each a ∈ A\S we get that B(a, x2)∩S =

(B ∩ (A × S))(a, x2) = D(a, x2) = {s}. Therefore B(a, x2) = {s} for all a ∈ A \ S. Since S2 ⊆ B

we have that S ⊆ B(t, x2) for all t ∈ S. Thus either B(t, x2) = S or B(t, x2) = A for each t ∈ S.

Furthermore, pr2B = A implies that there exists at least one t ∈ S such that B(t, x2) = A. Suppose

that t is the unique element of S such that B(t, x2) = A. Then B(t, x2) = A, B(t′, x2) = S for

all t′ ∈ S \ {t} and B(a, x2) = {s} for all a ∈ A \ S implies B ⊆ χt,s. Furthermore, B(t, x2) = A

implies that {t} × A ⊆ B and we have that λS,s ⊆ B, therefore χt,s ⊆ B, hence equality holds.

Now suppose that there exists distinct t, t′ ∈ S such that B(t, x2) = A and B(t′, x2) = A. Then

({t} × A) ∪ ({t′} × A) ⊆ B, thus it follows from Lemma 3.1.9 and from t, t′ ∈ S, t 6= t′, that

S ×A ⊆ B. Therefore S ×A ⊆ B and B(a, x2) = {s} for all a ∈ A \ S implies B = χS,s.

Finally suppose that D = S × A. Then S ⊆ B(a, x2) for all a ∈ A \ S, which means either

B(a, x2) = S or B(a, x2) = A. Since pr2B = A, we get that there must exist some a ∈ A such that

B(a, x2) = A.
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Suppose that a is the unique element of A with this property. Then B(a, x2) = A and

B(a′, x2) = S for all a′ ∈ A \ {a} implies B ⊆ χ−1
S,a. Furthermore, S × A ⊆ B and B(a, x2) = A

implies {a} × A ⊆ B, therefore χ−1
S,a ⊆ B, thus equality holds. We claim that a ∈ S. Suppose not.

Recall that ∆ = {(x, x) : x ∈ A} is a subuniverse of A2, therefore ∆∩B ≤ A2 and pr1(∆∩B) ≤ A.

If a ∈ A \ S, then ∆ ∩B = {(s, s) : s ∈ S} ∪ {(a, a)}. We are assuming that |A \ S| > 1, therefore,

pr1(∆ ∩ B) = S ∩ {a} is a proper nontrivial subuniverse of A that contains a ∈ A \ S, which

contradicts our assumptions on the subalgebras of A. Hence B = χ−1
S,a and a ∈ S.

Now suppose that there exists distinct a, a′ ∈ A such that B(a, x2) = A and B(a′, x2) = A.

If there exists some b ∈ A \ S such that B(b, x2) = A, then choose a = b. Then we have that

({a} × A) ∪ ({a′} × A) ⊆ B. If a ∈ A \ S then it follows from Lemma 3.1.7 and a 6= a′ that

A×A ⊆ B, therefore B = A2. However, if a, a′ ∈ S, then we can conclude from Lemma 3.1.7 that

S ×A ⊆ B. Then S ×A ⊆ B and B(b, x2) = S for all b ∈ A \ S implies that B = χS,S .

We have shown that either B is an automorphism of A, or B is an automorphism of A/θ and

θ is a congruence on A, or B = µa for some a ∈ A, or B is one of the thick (A,A)-crosses, χS,S , or

χS,s or χ−1
S,s for some s ∈ S, or χs,t for some s, t ∈ S. This completes the proof of the lemma.

Proof of Theorem 3.1.5. The result of this theorem follows from Lemmas 3.1.12-3.1.16.

3.2 Crosses Among the Subuniverses of A2

We will now apply Proposition 2.5.2 to the (thick) cross relations occurring in Theorem 3.1.5.

Using the notation of Definition 2.5.1 these relations can be rewritten as follows. Let a, b ∈ A and

s ∈ S, then

• νs = [S, S, s, s],

• µa = [A,A, a, a], and if b ∈ A \ S, then µb = [A/θ,A/θ, b, b],

• κa,s = [A,S, a, s], and if b ∈ A \ S, then κb,s = [A/θ, S, b, s],
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• λS,s = [A/θ, S, S, s],

• χS,s = [A/θ,A, S, s],

• χS,S = [A/θ,A/θ, S, S].

Since the thick (A,A)-crosses χs,s′ , where s, s′ ∈ S, are not θ-closed in their ith-coordinate

(i = 1, 2) for the equivalence relation θ on A, therefore these thick crosses do not fit Definition 2.5.1.

Proposition 3.2.1. The following implications hold for all s, s′ ∈ S, a, a′ ∈ A, b ∈ A \ S, a, a′ ∈

A/θ:

(i) If µa and µa′ are subuniverses of A2, then a = a′.

(ii) If νs and νs′ are subuniverse of A2, then s = s′.

(iii) If ηa and ηa′ are subuniverses of (A/θ)2, then a = a′.

(iv) If κa,s and κa′,s′ are subuniverses of A2, then a = a′ or s = s′.

(v) If κa,s and κa′,s′ are subuniverses of A/θ × S, then a = a′ or s = s′.

(vi) If µs is a subuniverses of A2, then νs is a subuniverse of A2.

(vii) If ντs is a subuniverse of A2 for some fixed-point free permutation τ of A \ S, then νs is a

subuniverse of A2.

(viii) If κa,s is a subuniverse of A2 and a ∈ S, then a = s and νs is a subuniverse of A2.

(ix) If χs′,s or χS,s is a subuniverse of A2, then λS,s is a subuniverse of A2.

(x) If χS,S, χS,s, or χs,s′ is a subuniverse of A2, then µb is not a subuniverse of A2. Conversely,

if µb is a subuniverse of A2, then neither χS,S, nor χS,s, nor χs,s′ is a subuniverse of A2.

Proof. Each statement (i)-(x) follows from the fact that the intersection of subuniverses of (A/θ1)2

is a subuniverse of (A/θ1)2 and the unary projection of a subuniverse of (A/θ1)2 is a subuniverse

of A/θ1, where θ1 ∈ {idA, θ}.
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[(i)] If µa, µa′ ≤ A2 for some a, a′ ∈ A, a 6= a′, then µa ∩ µa′ = {(a, a′), (a′, a)}. Hence

pr1(µa ∩µa′) = {a, a′} is a two-element subuniverse of A which contradicts the assumptions on the

subalgebras of A. Hence a = a′.

[(ii)] The proof is similar to the proof of (i), replace µa with νs, and µa′ with νs′ .

[(iii)] The proof is similar to the proof of (i), replace µa with ηa, and µa′ with ηa′ .

[(iv)] If κa,s, κa′,s′ ≤ A2 and a 6= a′ and s 6= s′ then κa,s ∩ κa′,s′ = {(a′, s), (a, s′)}. Therefore

pr1(κa,s ∩ κa′,s′) = {a, a′} is a two-elements subuniverse of A which is a contradiction. Similarly

pr2(κa,s ∩ κa′,s′) = {s, s′} is a two-elements subuniverse of S which is a contradiction. Therefore,

either a = a′ or s = s′.

[(v)] The proof is similar to the proof of (iv), replace κa,s with κa,s, and κa′,s′ with κa′,s′ .

Recall that A/θ has only trivial proper subuniverses and |A/θ| > 2.

[(vi)] If µs ≤ A2, then µs ∩ S2 = νs. Hence νs ≤ A2.

[(vii)] If ντs ≤ A2 for some fixed-point free permutation τ of A \ S, then ντs ∩ S2 = νs. Hence

νs ≤ A2.

[(viii)] If κa,s ≤ A2 and a ∈ S, then κa,s ∩ S2 = νa,s. Therefore, by statement (ii) of

Lemma 3.1.11, we get that a = s and hence νs ≤ A2.

[(ix)] Suppose that B ≤ A2, where B ∈ {χs′,s, χS,s}. Then B ∩ (A × S) = λS,s. Hence

λS,s ≤ A2.

[(x)] We can show that both implications hold by assuming that µb and at least one of the

thick (A,A)-crosses, χS,S , χS,s, or χs,s′ , are simultaneously subuniverses of A2, and thus arrive at

a contradiction.

If µb, χS,S ≤ A2, then µb ∩χS,S = ({b}×S)∪ (S ×{b}). This, together with the assumption,

|A \ S| > 1 implies pr1(µb ∩ χS,S) = {b} ∪ S is a proper nontrivial subuniverse of A that contains

b ∈ A \ S, which is a contradiction to our assumptions on the subalgebras of A.

If µb, χS,s ≤ A2, then µb ∩ χS,s = {(b, s)} ∪ S × {b} which means pr1(µb ∩ χS,S) = {b} ∪ S is

a subuniverse of A, which leads to the same contradiction as above.

Finally, if µb, χs,s′ ≤ A2, then µb ∩ χs,s′ = {(b, s′)} ∪ {(s, b)}. Then b ∈ A \ S and s ∈ S
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implies pr1(µb ∩ χs,s′) = {b, s} a two elements subuniverse of A which contradicts the assumptions

on the subuniverses of A2. This completes the proof of the proposition.

Proposition 3.2.2. The following implications hold for all s, s′ ∈ S, a, b ∈ A, and a, b ∈ A/θ:

(i) If νs, κa,s′ ≤ A2 and s 6= s′, then κa,s ≤ A2,

(ii) If νs, λS,s′ ≤ A2 and s 6= s′, then λS,s ≤ A2,

(iii) If µb, κa,s ≤ A2 and a 6= b, then κb,s ≤ A2,

(iv) If µb, λS,s ≤ A2 and b ∈ A \ S, then κb,s ≤ A2,

(v) If κa,s, κb,s ≤ A2 and a 6= b, then νs ≤ A2,

(vi) If κa,s, κa,s′ ≤ A2 and s 6= s′, then µa ≤ A2,

(vii) If κb,s, λS,s ≤ A2 and b ∈ A \ S, then νs ≤ A2,

(viii) If κa,s, λS,s′ ≤ A2 and s 6= s′, then a = s and χS,s ≤ A2,

(ix) If λS,s, λS,s′ ≤ A2 and s 6= s′, then χS,S ≤ A2.

(x) If κa,s, χS,S ≤ A2 and a ∈ A \ S, then λS,s ≤ A2.

(xi) If λS,s, µb ≤ A2 and b ∈ A \ S, then κb,s ≤ A2.

(xii) If κs,a,κs,b ≤ S× A/θ and a 6= b, then νs ≤ S2.

(xiii) If κa,s ≤ S× A/θ, ηb ≤ (A/θ)2, and a 6= b, then κb,s ≤ A/θ × S.

Proof. Let A1,A2,A3 ∈ {S,A,A/θ}. Each statement (i)-(ix) follows from a special case of Propo-

sition 2.5.2 (i) indicated below and the fact that the composition of a subuniverse of A1 ×A2 with

a subuniverse of A2 × A3 is a subuniverse of A1 × A3. Let s, s′ ∈ S, a, b ∈ A, and a, b ∈ A/θ.
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[(i)] If νs, κa,s′ ≤ A2 and s 6= s′, then κa,s′ ◦ νs = [A,S, a, s′] ◦ [S, S, s, s] = [A,S, a, s] = κa,s ≤

A× S.

[(ii)] If νs, λS,s′ ≤ A2 and s 6= s′, then λS,s′ ◦ νs = [A/θ, S, S, s′] ◦ [S, S, s, s] = [A/θ, S, S, s] =

λS,s ≤ A× S.

[(iii)] If µb, κa,s ≤ A2 and a 6= b, then µb ◦ κa,s = [A,A, b, b] ◦ [A,S, a, s] = [A,S, b, s] = κb,s ≤

A× S.

[(iv)] If µb, λS,s ≤ A2 and b ∈ A \ S, then µb ◦ λS,s = [A/θ,A/θ, b, b] ◦ [A/θ, S, S, s] =

[A/θ, S, b, s] = κb,s ≤ A× S.

[(v)] If κa,s, κb,s ≤ A2 and a 6= b, then κ−1
a,s◦κb,s = [S,A, s, a]◦[A,S, b, s] = [S, S, s, s] = νs ≤ S2.

[(vi)] If κa,s, κa,s′ ≤ A2 and s 6= s′, then κa,s ◦ κ−1
a,s′ = [A,S, a, s] ◦ [S,A, s′, a] = [A,A, a, a] =

µa ≤ A2.

[(vii)] If κb,s, λS,s ≤ A2 and b ∈ A \ S, then κ−1
b,s ◦ λS,s = [S,A/θ, s, b] ◦ [A/θ, S, S, s] =

[S, S, s, s] = νs ≤ S2

[(viii)] If κa,s, λS,s′ ≤ A2 and s 6= s′, then λS,s′◦κ−1
a,s = [A/θ, S, S, s′]◦[S,A, s, a] = [A/θ,A, S, a]

is a subuniverse of A2. By Definition 2.5.1, [A/θ,A, S, a] = S × A ∪ A × {a}, thus Theorem 3.1.5

yields that a ∈ S. Then statement (viii) of Proposition 3.2.1 and κa,s ≤ A2 with a ∈ S implies

a = s. Hence λS,s′ ◦ κ−1
a,s = [A/θ,A, S, s] = χS,s ≤ A2.

[(ix)] If λS,s, λS,s′ ≤ A2 and s 6= s′, then λS,s ◦ λ−1
S,s′ = [A/θ, S, S, s] ◦ [S,A/θ, s′, S] =

[A/θ,A/θ, S, S] = χS,S ≤ A2.

[(x)] If κa,s, χS,S ≤ A2 and a ∈ A \ S, then a 6= S and χS,S ◦ κa,s = [A/θ,A/θ, S, S] ◦

[A/θ, S, a, s] = [A/θ, S, S, s] = λS,s ≤ A× S.

[(xi)] If λS,s, µb ≤ A2 and b ∈ A\S, then b 6= S and µb◦λS,s = [A/θ,A/θ, b, b]◦ [A/θ, S, S, s] =

[A/θ, S, b, s] = κb,s ≤ A× S.

[(xii)] If κs,a,κs,b ≤ S × A/θ and a 6= b, then κs,a ◦ κ−1
s,b

= [S,A/θ, s, a] ◦ [A/θ, S, b, s] =

[S, S, s, s] = νs ≤ S2.

[(xiii)] If κa,s ≤ S × A/θ, ηb ≤ (A/θ)2, and a 6= b, then ηb ◦ κa,s = [A/θ,A/θ, b, b] ◦

[A/θ, S, a, s] = [A/θ, S, b, s] = κb,s ≤ A/θ × S.
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Corollary 3.2.3. The following implications hold for all s, s′ ∈ S, a, b ∈ A.

(i) If µb, κa,s ≤ A2, b ∈ A \ S, and a 6= b, then νs ≤ A2.

(ii) If µb, λS,s ≤ A2, and b ∈ A \ S, then νs ≤ A2.

Proof. Let s, s′ ∈ S, a, b ∈ A.

[(i)] Suppose µb, κa,s ≤ A2, b ∈ A\S, and a 6= b. Then by statement (iii) of Proposition 3.2.2,

µb, κa,s ≤ A2 implies that κb,s ≤ A2. Since κa,s, κb,s ≤ A2, a 6= b, it follows from statement (v) of

Proposition 3.2.2 that νs ≤ A2.

[(ii)] Suppose µb, λS,s ≤ A2, and b ∈ A \ S. Then statement (iv) of Proposition 3.2.2, implies

that κb,s ≤ A2. Furthermore, since κb,s, λS,s ≤ A2, we get from statement (vii) of Proposition 3.2.2

that νs ≤ A2.

Proposition 3.2.4. The following implications hold for all s, s′ ∈ S, a ∈ A, b ∈ A \ S

(i) If µa ≤ A2 and σ ∈ Aut(A), then µσ(a) ≤ A2 and every automorphism of A fixes a.

(ii) If νs ≤ A2 and π ∈ Aut(S), then νπ(s) ≤ A2 and every automorphism of S fixes s.

(iii) If κa,s ≤ A2 and π ∈ Aut(S), then κa,π(s) ≤ A2.

(iv) If λS,s ≤ A2 and π ∈ Aut(S), then λS,π(s) ≤ A2.

(v) If µb ≤ A2, θ is a congruence on A, and Φ ∈ Aut(A/θ), then µΦ(b) ≤ A2 and every

automorphism of A/θ fixes b.

(vi) If χS,S, χS,s, or χs,s′ is a subuniverse of A2, θ is a congruence on A, and Φ ∈ Aut(A/θ),

then every automorphism of A/θ fixes S.

(vii) If ηa/θ ≤ (A/θ)2, θ is a congruence on A, and Φ ∈ Aut(A/θ), then ηΦ(a/θ) ≤ (A/θ)2 and

every automorphism of A/θ fixes a/θ.

(viii) If µb ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then νΨ(b) ≤ A2

and every isomorphism A/θ → S maps b to Ψ(b).
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(ix) If χS,S ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then νΨ(S) ≤ A2,

and every isomorphism A/θ → S maps S to Ψ(S).

(x) If νs ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then either

χS,S ≤ S2 and every isomorphism A/θ → S maps S to s or µc ≤ A2 for some c ∈ A \ S,

and every isomorphism A/θ → S maps c to s.

(xi) If κb,s ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then νs ≤ A2

and every isomorphism A/θ → S maps b to s.

(xii) If λS,s ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then νs ≤ A2

and every isomorphism A/θ → S maps S to s.

(xiii) If θ is a congruence on A, κs,a ≤ S × A/θ, and Φ is an automorphism of A/θ, then

κs,φ(a) ≤ S× A/θ.

(xiv) If θ is a congruence on A, κs,a ≤ S×A/θ, and Ψ is an isomorphism A/θ → S, then νs ≤ A2

and every isomorphism A/θ → S maps a to s.

Proof. Each statement (i)– (xiv) follows from a special case of Proposition 2.5.2 (ii) indicated below

and the fact that the composition of a subuniverse of A1 × A2 with a subuniverse of A2 × A3 is a

subuniverse of A1 × A3. Let s, s′ ∈ S, a ∈ A, b ∈ A \ S, and a ∈ A/θ.

[(i)] If µa ≤ A2 and σ ∈ Aut(A), then

σ−1 ◦ µa ◦ σ = σ−1 ◦ [A,A, a, a] ◦ σ

= [A,A, σ(a), σ(a)] = µσ(a) ≤ A2.

Furthermore µa, µσ(a) ≤ A2 and statement (i) of Lemma 3.1.11 implies that σ(a) = a. Therefore

the automorphisms of A fix a.

[(ii)] If νs ≤ A2 and π ∈ Aut(S), then

π−1 ◦ νs ◦ π = π−1 ◦ [S, S, s, s] ◦ π

= [S, S, π(s), π(s)] = νπ(s) ≤ A2.
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Furthermore νs, νπ(s) ≤ A2 and statement (ii) of Lemma 3.1.11 implies that π(s) = s. Therefore

the automorphisms of S fix s.

[(iii)] If κa,s ≤ A2 and π ∈ Aut(S), then

idA ◦κa,s ◦ π = idA ◦[A,S, a, s] ◦ π

= [A,S, a, π(s)] = κa,π(s) ≤ A2,

where idA is the identity automorphism of A.

[(iv)] If λS,s ≤ A2 and π ∈ Aut(S), then

idA/θ ◦λS,s ◦ π = idA/θ ◦[A/θ, S, S, s] ◦ π

= [A/θ, S, S, π(s)] = λS,π(s) ≤ A2,

where idA/θ is the identity automorphism of A/θ.

[(v)] If µb ≤ A2, θ is a congruence on A, and Φ ∈ Aut(A/θ), then

Φ−1 ◦ µb ◦ Φ = Φ−1 ◦ [A/θ,A/θ, b, b] ◦ Φ

= [A/θ,A/θ,Φ(b),Φ(b)] =


χS,S , if Φ(b) = S,

µc, if Φ(b) = c,

for some c ∈ A \ S, where c = Φ(b). We have from statement (x) of Proposition 3.2.1 that µb and

χS,S cannot simultaneously be subuniverses of A2, therefore, it follows that Φ−1 ◦µb ◦Φ = µc ≤ A2,

for some c ∈ A \S. Furthermore, µb, µc ≤ A2 and statement (i) of Lemma 3.1.11 implies that b = c

where c = Φ(b). Hence b = Φ(b) which means the automorphisms of A/θ fix b.

[(vi)] Suppose that χS,S , χS,s, or χs,s′ is a subuniverse of A2, θ is a congruence on A, and

Φ ∈ Aut(A/θ). Since θ is a congruence on A it follows that the θ-closure in both coordinates

of a subuniverse of A2 is also a subuniverse of A2. By Proposition 2.2.8 the θ-closure in both

coordinates of χS,s (or χs,s′) is B = ρ−1(ρ(χS,s)) (respectively, B = ρ−1(ρ(χs,s′))) where ρ is the

natural homomorphism ρ : A2 → (A/θ)2. Since B = χS,S we get that χS,S is a subuniverse of A2.
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Then

Φ−1 ◦ χS,S ◦ Φ = Φ−1 ◦ [A/θ,A/θ, S, S] ◦ Φ

= [A/θ,A/θ,Φ(S),Φ(S)] =


χS,S , if Φ fixes S,

µb, if Φ(S) = b,

for some b ∈ A\S. Property (x) of Proposition 3.2.1 states that µb and χS,S cannot simultaneously

be subuniverses of A2, therefore Φ−1 ◦ χS,S ◦ Φ = χS,S . Hence Φ fixes S.

[(vii)] Suppose ηa/θ ≤ (A/θ)2, θ is a congruence on A, and Φ ∈ Aut(A/θ). Let ρ : A2 →

(A/θ)2 be the natural map. If a/θ = S, then ρ−1(ηa/θ) = χS,S , thus the statement follows from

statement (vi). Otherwise, ρ−1(ηa/θ) = µb and the statement follows from statement (v).

[(viii)] If µb ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then

Ψ−1 ◦ µb ◦Ψ = Ψ−1 ◦ [A/θ,A/θ, b, b] ◦Ψ

= [S, S,Ψ(b),Ψ(b)] = νt

for some t ∈ S, where Ψ(b) = t. Property (ii) of Lemma 3.1.11 implies that there is exactly one

such element t ∈ S. Therefore every isomorphism A/θ → S maps b to t.

[(ix)] If χS,S ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then

Ψ−1 ◦ χS,S ◦Ψ = Ψ−1 ◦ [A/θ,A/θ, S, S] ◦Ψ

= [S, S,Ψ(S),Ψ(S)] = νt

for some t ∈ S, where Ψ(S) = t. Property (ii) of Lemma 3.1.11 implies that there is exactly one

such element t ∈ S. Therefore every isomorphism A/θ → S maps S to t.

[(x)] If νs ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then

Ψ ◦ νs ◦Ψ−1 = Ψ ◦ [S, S, s, s] ◦Ψ−1

= [A/θ,A/θ,Ψ−1(s),Ψ−1(s)] =


χS,S , if Ψ(S) = s,

µc, if Ψ(c) = s,
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for some c ∈ A\S. Property (x) of Proposition 3.2.1 states that χS,S and µc cannot simultaneously

be subuniverses of A2. Therefore either every isomorphism A/θ → S satisfies the first case or every

isomorphism A/θ → S satisfies the second case. In the first case we get that every isomorphism

A/θ → S maps S to s. In the second case, Property (i) of Lemma 3.1.11 implies that there is

exactly one such element c ∈ A, thus every isomorphism A/θ → S maps c to s.

[(xi)] If κb,s ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then

Ψ−1 ◦ κb,s ◦ idS = Ψ−1 ◦ [A/θ, S, b, s] ◦ idS

= [S, S,Ψ(b), s] = νΨ(b),s ≤ A2,

where idS is the identity automorphism of S. By property (ii) of Lemma 3.1.11 it follows that

Ψ(b) = s. Hence Ψ−1 ◦ κb,s ◦ idS = νs ≤ A2 and Ψ(b) = s. Property (ii) of Lemma 3.1.11 states

that there is exactly one such element s ∈ S. Therefore every isomorphism maps b to s.

[(xii)] If λS,s ≤ A2, θ is a congruence on A, and Ψ is an isomorphism A/θ → S, then

Ψ−1 ◦ λS,s ◦ idS = Ψ−1 ◦ [A/θ, S, S, s] ◦ idS

= [S, S,Ψ(S), s] = νΨ(S),s ≤ A2,

where idS is the identity automorphism of S. By property (ii) of Lemma 3.1.11 it follows that

Ψ(S) = s. Hence Ψ−1 ◦ λS,s ◦ idS = νs ≤ A2 and Ψ(S) = s. Property (ii) of Lemma 3.1.11 states

that there is exactly one such element s ∈ S. Therefore every isomorphism A/θ → S maps S to s.

[(xiii)] If θ is a congruence on A, κs,a ≤ S× A/θ, and Φ is an automorphism of A/θ, then

idS ◦κs,a ◦ Φ = idS ◦[S,A/θ, s, a] ◦ Φ

= [S,A/θ, s,Φ(a)] = κs,φ(a) ≤ S× A/θ,

where idS is the identity automorphism of S.

[(xiv)] If θ is a congruence on A, κs,a ≤ S× A/θ, and Ψ is an isomorphism A/θ → S, then

idS ◦κs,a ◦Ψ = idS ◦ [S,A/θ, s, a] ◦Ψ

= [S, S, s,Ψ(a)] = νs,Ψ(a) ≤ A2,
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where idS is the identity automorphism of S. By statement (ii) of Lemma 3.1.11 it follows that

Ψ(a) = s. Hence idS ◦κs,a ◦Ψ = νs ≤ A2 and Ψ(a) = s. Property (ii) of Lemma 3.1.11 states that

there is exactly one such element s ∈ S. Therefore every isomorphism A/θ → S maps a to s.

If S is either quasiprimal or affine, then it follows from Propositions 2.4.5 and 2.4.6 that there

is no (S, S)-cross among the subuniverses of A2. Therefore, the next corollary follows directly from

the above investigation of the subuniverses of A2 that are crosses.

Corollary 3.2.5. Suppose that either S is quasiprimal, or S is affine, or that there is no (S, S)-cross

among the subuniverses of A2. Let a, a′ ∈ A, s, s′ ∈ S, b ∈ A \ S.

(i) If κa,s ≤ A2, then a ∈ A \ S.

(ii) If κa,s ≤ A2, then λS,s′ 6≤ A2.

(iii) If κa,s ≤ A2, then χS,S 6≤ A2.

(iv) If κa,s, κa′,s′ ≤ A2, then a = a′.

(v) If θ is a congruence on A and there exists an isomorphism from A/θ to S, then χS,S 6≤ A2.

(vi) If θ is a congruence on A and there exists an isomorphism from A/θ to S, then κa,s 6≤ A2.

(vii) If θ is a congruence on A and there exists an isomorphism from A/θ to S, then λS,s 6≤ A2.

(viii) If θ is a congruence on A and there exists an isomorphism from A/θ to S, then κa/θ,s 6≤

A/θ × S.

(ix) If θ is a congruence on A and Φ is an automorphism of A/θ, then κs,a ≤ S× A/θ implies

Φ fixes a.

(x) If θ is a congruence on A, ηa ≤ (A/θ)2, and κb,s ≤ S × A/θ, for some a, b ∈ A/θ, then

a = b.
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Proof. If S is quasiprimal or affine, then there is no (S, S)-cross among the subuniverses of A2.

Then, each of statements (i)-(x) follows from the the assumption that there is no (S, S)-cross

among the subuniverses of A2.

[(i)] Follows directly from property (viii) of Proposition 3.2.1.

[(ii)] Suppose κa,s, λS,s′ ≤ A2. Then property (i) of this proposition implies a ∈ A \ S. If

s = s′, then property (vii) of Proposition 3.2.2 implies νs ≤ A2, which is a contradiction. If s 6= s′,

then property (viii) of Proposition 3.2.2 implies a = s ∈ S, which contradicts a ∈ A \ S.

[(iii)] Suppose κa,s, χS,S ≤ A2. Then property (x) of Proposition 3.2.2 implies λS,s ≤ A2,

which contradicts property (ii)

[(iv)] Suppose κa,s, κa′,s′ ≤ A2. If a 6= a′, then by property (iv) of Proposition 3.2.1 we get

that s = s′. Thus property (v) of Proposition 3.2.2 implies νs ≤ A2, which is a contradiction.

[(v)] Follows directly from property (ix) of Proposition 3.2.4.

[(vi)] Follows directly from property (i) above and property (xi) of Proposition 3.2.4.

[(vii)] Follows directly from property (xii) of Proposition 3.2.4.

[(viii)] Suppose κa/θ,s ≤ A/θ × S and there exists an isomorphism from A/θ to S. Let

ρ : A × S → A/θ × S be the natural map. Then ρ−1(κa/θ,s) is a (thick) (A,S)-cross. Therefore,

κa/θ,s ≤ A/θ × S implies that there exists a (thick) (A,S)-cross among the subuniverses of A2,

which gives a contradiction to statements (vi) and (vii).

[(ix)] Suppose θ is a congruence on A and Φ ∈ Aut(A/θ). Then by property (xiii) of

Proposition 3.2.4, κs,a ≤ S × A/θ implies κs,Φ(a) ≤ S × A/θ. Suppose that Φ(a) 6= a. Then

κs,a,κs,Φ(a) ≤ S×A/θ and statement (xii) of Proposition 3.2.2 implies νs ≤ A2, which is a contra-

diction. Hence Φ fixes a.

[(x)] Suppose θ is a congruence on A, ηa ≤ (A/θ)2, and κs,b ≤ S× A/θ, for some a, b ∈ A/θ.

Suppose, for contradiction, that a 6= b. Then statement (xiii) of Proposition 3.2.2 implies κa,s ≤

A/θ×S. Thus κa,s,κb,s ≤ A/θ×S and a 6= b implies, by statement (xii) of Proposition 3.2.2, that

νs ≤ S2, which is a contradiction. Hence, a = b.



Chapter 4

Edge Blockers

In their manuscript [MMM10], Marković, Maróti, and McKenzie state a necessary and suf-

ficient condition for a finite idempotent algebra A to have no edge operation. As we will show

in Proposition 4.1.4 below, this condition is equivalent to the existence of an infinite sequence of

relations in the relational clone of A.

In this chapter we will exhibit binary and ternary relations R such that if A is a finite

idempotent algebra that satisfies our usual Assumption 1, and R is in the relational clone of

A, then A has no edge operation. These small arity edge blockers arose while investigating the

subuniverses of finite powers of A when S is either quasiprimal or affine. We shall see in Chapter 6

that in all cases when S is affine and in almost all cases when S is quasiprimal, if we restrict the

relational clone of A so that it does not contain these small arity edge blockers, then we have a nice

description for the relational clone, and hence for the clone of A.

4.1 Marković–Maróti–McKenzie Edge Blockers

Definition 4.1.1. For an algebra A and proper subset G ( A we say that a k-ary operation f is

G-absorbing in its ith-variable, for some 1 ≤ i ≤ k, if whenever a = (a1, . . . , ai, . . . , ak) ∈ Ak with

ai ∈ G, then f(a) ∈ G.

We will often apply this definition to a subalgebra A′ of A and a proper subset G ( A′.

Definition 4.1.2. Let A be a finite idempotent algebra, A′ ≤ A, G ( A′, and n ≥ 1. The
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n-dimensional cross on A′ at G is

XA′,G
n := {(a1, . . . , an) ∈ (A′)n : there exists i such that ai ∈ G}.

In the case that A′ = A, we will simply write XG
n .

Notice that we will allow the 1-dimensional cross, XA′,G
1 = G. We will often consider higher

dimensional crosses where A = A′.

Theorem 4.1.3 ([MMM10]). Let A be a finite idempotent algebra. TFAE.

(a) A has no edge operation.

(b) There exists A′ ≤ A and a nonempty proper subset G ( A′ such that for all k ≥ 1 and

f ∈ Clok(A), the restriction f |A′ is G-absorbing in its ith variable, for some 1 ≤ i ≤ k.

We will show that the second condition of Theorem 4.1.3 can be equivalently stated in terms

of the relations XA′,G
n , for all n ≥ 1.

Proposition 4.1.4. Let A be a finite idempotent algebra. Then for each subalgebra A′ ≤ A and

nonempty proper subset G ( A′, TFAE.

(a) For all k ≥ 1 and f ∈ Clok(A), there exists some 1 ≤ i ≤ k such that f |A′ is G-absorbing

in its ith variable.

(b) The term operations of A preserve the relation XA′,G
n , for all n ≥ 1.

Proof. (a) =⇒ (b) Let R := XA′,G
n for arbitrary 1 ≤ n < ω. For any k ≥ 1 and f ∈ Clok(A) we

have, by (a), that f |A′ is G-absorbing in its ith-variable, for some 1 ≤ i ≤ k. WLOG, assume that

f |A′ is G-absorbing in its first variable. Let a1, . . . , ak ∈ R where aj = (aj,1, . . . , aj,n), 1 ≤ j ≤ k.

Recall that R is an n-ary relation on A′ and A′ ≤ A, thus (A′)n 3 f(a1, . . . , ak) = f |A′(a1, . . . , ak),

where

f |A′(a1, . . . , ak) = f |A′





a1,1

a1,2

...

a1,n


, . . . ,



ak,1

ak,2

...

ak,n




=



f |A′(a1,1, . . . , ak,1)

f |A′(a1,2, . . . , ak,2)
...

fA′(a1,n, . . . , ak,n)


.



50

By definition of R, a1 ∈ R implies that there exists some 1 ≤ l ≤ n such that a1,l ∈ G.

Since f |A′ is G-absorbing in its first variable and a1,l ∈ G we get that f |A′(a1,1, . . . , ak,1) ∈ G.

Thus, the lth-coordinate of the column vector f |A′(a1, . . . , ak) is in G which means f(a1, . . . , ak) =

f |A′(a1, . . . , ak) ∈ R. Therefore, R is closed under the term operations of A.

To prove (b) =⇒ (a) we will show that the contrapositive holds. Suppose that there exists

an operation f ∈ Clok(A), for some k ≥ 1, such that f |A′ is not G-absorbing in any of its variables.

We will show that R := XA′,G
k is not preserved by f .

Because f |A′ is not G-absorbing in any variable, we have, for each 1 ≤ i ≤ k, that there exists

some gi ∈ G and ai,1, . . . , ai,i−1, ai,i+1, . . . ai,k ∈ A′ such that f |A′(ai,1, . . . , ai,i−1, gi, ai,i+1, . . . , ai,k) =

hi, for some hi ∈ A′ \G. It is clear that the tuples

g1

a2,1

...

ak,1


,



a1,2

g2

...

ak,2


, . . . ,



a1,k

a2,k

...

gk


∈ R ⊆ (A′)k.

However,

f |A′





g1

a2,1

...

ak,1


,



a1,2

g2

...

ak,2


, . . . ,



a1,k

a2,k

...

gk




=



f |A′(g1, a1,2, . . . , a1,k)

f |A′(a2,1, g2, . . . , a2,k)
...

f |A′(ak,1, ak,2, . . . , gk)


=



h1

h2

...

hk


,

where hi 6∈ G for all 1 ≤ i ≤ k, therefore (h1, h2, . . . , hk) 6∈ R. Therefore f |A′ does not preserve R.

This completes the proof of the proposition.

4.2 The Edge Blockers Λ and Kb

Let A be a finite idempotent algebra that satisfies Assumption 1.

Definition 4.2.1. For b a fixed element in A\S, and for σ ∈ Aut(S) we define the following subsets
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of A3:

Λσ := S3 ∪ {(x, y, σ(x)) : x ∈ S, y ∈ A},

Kb,σ := {(x, y, σ(x)) : x ∈ S, y ∈ A} ∪ {(x, b, y) : x, y ∈ S}.

We will write Λ for ΛidS and Kb for Kb,idS , for any b ∈ A \ S.

Lemma 4.2.2. For any π ∈ Aut(S), Λπ ≤ A3 if and only if Λ ≤ A3.

Proof. Suppose that π ∈ Aut(S). For π1 = idS : S → S, π2 = idA : A → A, and π3 = π−1 : S → S,

the product isomorphism, Π3
i=1πi, maps Λπ onto Λ. Therefore, by Corollary 2.2.12, Λπ ≤ A3 if and

only if Λ ≤ A3.

Lemma 4.2.3. For any π ∈ Aut(S) and b ∈ A \ S, Kb,π ≤ A3 if and only if Kb ≤ A3.

Proof. The proof is similar to the proof of Lemma 4.2.2

Therefore, by Lemmas 4.2.2 and 4.2.3, whenever Λπ or Kb,π is a subuniverse of A3, for some

π ∈ Aut(S), b ∈ A \ S, we may assume that π is the identity automorphism of S.

Lemma 4.2.4. If A satisfies Assumption 1, then at most one of the relations Kb for some b ∈ A\S

or Λ is a subuniverse of A3.

Proof. For contradiction, first suppose that there exists some distinct b, b′ ∈ A \ S such that

Kb,Kb′ ≤ A3. Let B := Kb, B′ := Kb′ . Since |S| > 2 we have that there exists distinct elements

s, s′ ∈ S. Then it follows from Definition 4.2.1 that B(s, x2, x3) = κb,s is a subuniverse of A2 and

B′(s′, x1, x2) = κb′,s′ is a subuniverse of A2. Then κb,s, κb′,s′ ≤ A2 implies, by statement (iv) of

Proposition 3.2.1 that either b = b′ or s = s′, which contradicts our assumption that b and b′ are

distinct and also s and s′ are distinct.

Now suppose, for contradiction, that Kb,Λ ≤ A2, for some b ∈ A \ S. Let B := Kb, C :=

Λ, and let s, s′ be distinct elements in S. Then B(s, x2, x3) = κb,s is a subuniverse of A2 and

C(s′, x2, x3) = λS,s′ is a subuniverse of A2. Hence statement (viii) of Proposition 3.2.2 implies that

s = b, which contradicts the assumptions that s ∈ S and b ∈ A \ S. This completes the proof of

the lemma.
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4.3 The Existence of an Algebra with a Relation Λ or Kb

We will now show that there exists an algebra A that satisfies Assumption 1 and has among

the subuniverses of A3 either Λ or Kb.

Proposition 4.3.1. Let A and S be finite sets such that S ⊆ A and 1 < |S| < |A|. Let Ŝ be a

strictly simple idempotent algebra on S. Let

G =


S, or

{b}, for some b ∈ A \ S.

Let B := Λ if G = S and let B := Kb if G = {b}. Then there exists a finite idempotent algebra A

on A such that

• A has a subalgebra S on S such that Clo(S) = Clo(Ŝ), and S is the unique proper nontrivial

subalgebra of A,

• θ is a congruence on A, and

• B ≤ A3.

Proof. It is enough to construct a finite idempotent algebra that satisfies these conditions. Let

k ≥ 1. For each operation f ∈ Clok(Ŝ) we will define a k-ary operation, Ff , on A by

Ff (x) =



f(x), if x ∈ Sk,

x, if x1 = · · · = xk = x,

g, otherwise,

where g is some fixed element of G.

For any a, a1 ∈ A, a2 ∈ A \G, such that a1/θ 6= a2/θ, define the binary operation, f(a1,a2,a),

on A by

f(a1,a2,a)(x, y) =


a, if x ∈ a1/θ, y ∈ a2/θ

y, otherwise.
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We claim that the algebra,

A =
(
A;
{
{Ff |f ∈ Clo(Ŝ)} ∪ {f(a1,a2,a)|a, a1 ∈ A, a2 ∈ A \G, and a1/θ 6= a2/θ}

})
satisfies the statements of the proposition.

From their definitions, it is clear that Ff and f(a1,a2,a) are idempotent operations. Since

Ff |S = f ∈ Clo(Ŝ) and f(a1,a2,a)|S is the projection onto the second variable, it is trivial to see that

these operations preserve S, and that the subalgebra S of A on S has the same clone as Ŝ.

We claim that S is the unique nontrivial proper subalgebra of the algebra A. Suppose not.

Then there exists some Q ≤ A, Q 6= A, Q 6= S, and |Q| > 1. Recall that S is strictly simple,

therefore S has no nontrivial proper subalgebras, which means Q is clearly not a proper subset of

S. Therefore, there exist distinct elements q1, q2 ∈ Q such that q1/θ 6= q2/θ. This means, since

G = S or {b}, that {q1, q2} ∩A \G 6= ∅. WLOG, suppose that q2 ∈ A \G. Let a ∈ A \Q, such an

element exists since Q ( A. Then f(q1,q2,a)(q1, q2) = a 6∈ Q, which contradicts the assumption that

Q is a subuniverse of A. Hence S is the unique nontrivial proper subalgebra of A.

We will now show that the operations Ff and f(a1,a2,a) preserve θ and B.

Claim 4.3.1.1. Let k ≥ 1, f ∈ Clok(Ŝ). Then the k-ary operation Ff preserves θ.

Proof. Let f ∈ Clok(Ŝ). Suppose that x, y ∈ Ak such that xθy. We must show that Ff (x)θFf (y).

By the definition of θ, it is easy to see that xθy implies that

x ∈ Sn ⇔ y ∈ Sn.

Therefore, either x, y ∈ Sk or x, y 6∈ Sk. If x, y ∈ Sk, then we get that Ff (x) = f(x) ∈ S and

Ff (y) = f(y) ∈ S, thus Ff (x)θFf (y).

Suppose that x, y 6∈ Sn. Again, by the definition of θ, it is easy to see that xθy implies that

x1 = · · · = xn = x ∈ A \ S ⇔ y1 = · · · = yn = x ∈ A \ S.

Hence if x1 = · · · = xn = x ∈ A \ S and y1 = · · · = yn = x ∈ A \ S, then Ff (x) = x = Ff (y). Thus

Ff (x)θFf (y).
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Finally, suppose that x, y 6∈ Sn and xi 6= xj , for some 1 ≤ i < j ≤ k. Then, as we saw in the

preceding paragraph, xθy implies that yi 6= yj for the same 1 ≤ i < j ≤ k. By the definition of Ff

we get that Ff (x) = g = Ff (y). Therefore, in all cases, Ff (x)θFf (y), hence Ff preserves θ.

Claim 4.3.1.2. Let k ≥ 1, f ∈ Clok(Ŝ). Then the k-ary operation Ff preserves B.

Proof. Let f ∈ Clok(Ŝ), u1, . . . , uk ∈ B, where ui = (ui,1, ui,2, ui,3), for 1 ≤ i ≤ k. By the definition

of B, we have that ui,1, ui,3 ∈ S, for all 1 ≤ i ≤ k. Then, for some s1, s2 ∈ S,

Ff (u1, . . . , uk) = Ff




u1,1

u1,2

u1,3

 , . . . ,


uk,1

uk,2

uk,3





=


Ff (u1,1, . . . , uk,1)

Ff (u1,2, . . . , uk,2)

Ff (u1,3, . . . , uk,3)



=


s1

Ff (u1,2, . . . , uk,2)

s2

 .

If Ff (u1,2, . . . , uk,2) ∈ G, then by the definition of B it is clear that Ff (u1, u2, u3) ∈ B. Let us

suppose that Ff (u1,2, . . . , uk,2) 6∈ G. We claim that Ff (u1,2, . . . , uk,2) ∈ A \ G implies ui,1 = ui,3,

for all 1 ≤ i ≤ k. For contradiction, suppose that there exists some 1 ≤ i ≤ k such that ui,1 6= ui,3.

WLOG, suppose that i = 1. Then (u1,1, u1,2, u1,3) = u1 ∈ B, u1,1 6= u1,3 implies that u1,2 = g′, for

some g′ ∈ G. Thus, for some s′ ∈ S,

Ff (u1,2, u2,2, . . . , uk,2) = Ff (g′, u2,2, . . . , uk,2) =



s′, if g′, u2,2, . . . , uk,2 ∈ S

g′, if g′ = u2,2 = · · · = uk,2

g, otherwise.

Recall that g, g′ ∈ G, and observe that if the first case occurs, then g′ ∈ S implies that

G = S 3 s′. Thus, in all cases we get that G 3 Ff (g′, u2,2, . . . , uk,2) = Ff (u1,2, u2,2, . . . , uk,2), which
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contradict the assumption that Ff (u1,2, . . . , uk,2) ∈ A \ G. Therefore, Ff (u1,2, . . . , uk,2) ∈ A \ G

implies ui,1 = ui,3, for all 1 ≤ i ≤ k, which means s1 = Ff (u1,1, . . . , uk,1) = Ff (u1,3, . . . , uk,3) = s2.

Hence Ff (u1, u2, u3) = (s1, Ff (u1,2, . . . , uk,2), s2) = (s1, Ff (u1,2, . . . , uk,2), s1) ∈ B. In all cases we

get that Ff (u1, u2, u3) ∈ B, thus Ff preserves B. This completes the proof of the claim.

Claim 4.3.1.3. Let a, a1 ∈ A, a2 ∈ A \G, such that a1/θ 6= a2/θ. Then f(a1,a2,a) preserves θ.

Proof. Let x, x′, y, y′ ∈ A such that xθx′ and yθy′. We must show that f(a1,a2,a)(x, y)θf(a1,a2,a)(x′, y′).

Either x ∈ a1/θ, y ∈ a2/θ or not.

First suppose that x ∈ a1/θ and y ∈ a2/θ. Then xθx′ and yθy′ implies that x′ ∈ a1/θ and

y′ ∈ a2/θ. Hence f(a1,a2,a)(x, y) = a = f(a1,a2,a)(x′, y′).

Now suppose that either x 6∈ a1/θ or y 6∈ a2/θ. Then xθx′ and yθy′ implies that either

x′ 6∈ a1/θ or y′ 6∈ a2/θ, respectively. Thus f(a1,a2,a)(x, y) = y and f(a1,a2,a)(x′, y′) = y′. Since yθy′,

we get that f(a1,a2,a)(x, y)θf(a1,a2,a)(x′, y′). Therefore f(a1,a2,a) preserves θ.

Claim 4.3.1.4. Let a, a1 ∈ A, a2 ∈ A \G, such that a1/θ 6= a2/θ. Then f(a,a1,a2) preserves B.

Proof. Let u, v ∈ B ⊆ A3. Then, for i = 1, 3, ui, vi ∈ S which means uiθvi and, by the definition

of f(a1,a2,a), we get that f(a1,a2,a)(ui, vi) = vi. Therefore,

f(a1,a2,a)(u, v) = f(a1,a2,a)




u1

u2

u3

 ,


v1

v2

v3



 =


f(a1,a2,a)(u1, v1)

f(a1,a2,a)(u2, v2)

f(a1,a2,a)(u3, v3)

 =


v1

f(a1,a2,a)(u2, v2)

v3

 .

Furthermore,

f(a1,a2,a)(u2, v2) =


a, if u2 ∈ a1/θ and v2 ∈ a2/θ

v2, otherwise.

If f(a1,a2,a)(u2, v2) = v2, then f(a1,a2,a)(u, v) = v ∈ B. Suppose that f(a1,a2,a)(u2, v2) = a. Then

v2 ∈ a2/θ and a2 ∈ A \ G implies that v2 ∈ A \ G. Since v ∈ B, it follows from v2 ∈ A \ G that

v1 = v3. Hence f(a1,a2,a)(u, v) = (v1, f(a1,a2,a)(u2, v2), v3) = (v1, f(a1,a2,a)(u2, v2), v1) ∈ B. Therefore

f(a1,a2,a) preserves B. This completes the proof of the claim.
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It follows from claims 4.3.1.1 and 4.3.1.3 that θ is a congruence on A. Furthermore, from

claims 4.3.1.2 and 4.3.1.4, we get that B is a subuniverse of A3.

We now state a version of Proposition 4.3.1 where, under the added assumption that clone

of Ŝ is finitely related, we prove that A can be chosen so that its clone is finitely related. Recall,

from Proposition 2.4.8 that there exist finite idempotent strictly simple algebras that have finitely

related relational clones, thus finitely related clones.

Corollary 4.3.2. Let A and S be finite sets such that S ⊆ A and 1 < |S| < |A|. Let Ŝ be a strictly

simple idempotent algebra on S such that the clone of Ŝ is finitely related. Let

G =


S, or

{b}, for some b ∈ A \ S.

Let B := Λ if G = S and let B := Kb if G = {b}. Then there exists a finite idempotent algebra A

on A such that

• A has a subalgebra S on S such that Clo(S) = Clo(Ŝ), and S is the unique proper nontrivial

subalgebra of A,

• θ is a congruence on A,

• B ≤ A3 , and

• the clone of A is finitely related.

Proof. Since the clone of Ŝ is finitely related, there exists finitely many relations σ1, . . . , σt that

determine the clone of Ŝ. Let A = (A;F), where F is the set of all operations that preserve every

relation in R := {{a} : a ∈ A}∪{S, θ,B, σ1, . . . , σt}. Then the clone of A is determined by R, so it

is finitely related. Also, the fact that the relations {a} for all a ∈ A, S, θ, and B belong to R implies

that the algebra A is idempotent, S is a subuniverse of A, θ is a congruence on A, and B ≤ A3.

The fact that the relations σ1, . . . , σt belong to R forces that for the the subalgebra S of A on S
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we have that Clo(S) ⊆ Clo(Ŝ). This proves all required properties, except that (i) Clo(S) ⊇ Clo(Ŝ),

and that (ii) S is the unique nontrivial proper subalgebra of A.

For the proof of (i) and (ii) we will make use of the algebra

(
A;
{
{Ff |f ∈ Clo(Ŝ)} ∪ {f(a1,a2,a)|a, a1 ∈ A, a2 ∈ A \G, and a1/θ 6= a2/θ}

})
constructed in the proof of Proposition 4.3.1, which we will call now A′. It was shown in Propo-

sition 4.3.1 that every operation of A′ is idempotent and preserves S, θ, and B. Furthermore,

it was shown that Clo(S′) = Clo(Ŝ) holds for the subalgebra S′ of A′ on S. These properties

imply that every operation of A′ preserves all relations in R, and hence is an operation of A.

Thus Clo(A′) ⊆ Clo(A) and Clo(S′) ⊆ Clo(S). The second inclusion, together with the equality

Clo(S′) = Clo(Ŝ) implies (i). The first inclusion implies that every subalgebra of A is a subalgebra

of A′, therefore (ii) follows from the analogous property of A′.

4.4 Algebras with Small Arity Edge Blockers

Throughout this section we will assume that A satisfies Assumption 1. In this section we will

show that if one of Λ or Kb for some b ∈ A \ S is a subuniverse of A3, then A does not have an

edge operation. In fact, we will show that A does not belong to a congruence modular variety. In

the case when the subalgebra S is affine, we will show that the same conclusions follow even if A

satisfies the weaker assumption that one of the binary crosses λS,s or κb,s is a subuniverse of A2 for

some s ∈ S, b ∈ A \ S.

Lemma 4.4.1. If S is a simple affine algebra and 0 ∈ S is the additive identity of the vector space

associated to S, then for arbitrary s ∈ S, b ∈ A \ S,

(i) λS,s ≤ A2 implies that λS,0 ≤ A2.

(ii) κb,s ≤ A2 implies that κb,0 ≤ A2.

Proof. If S is a simple affine algebra, then we have from statement (i) of Proposition 2.4.8 that the

automorphisms of S are in the relational clone of S, thus they are compatible relations, therefore,
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for any s ∈ S, the translation π(x) = x− s of the vector space associated to S is an automorphism

of S. Then by statement (iv) of Proposition 3.2.4, if λS,s ≤ A2, then λS,0 = λS,π(s) ≤ A2, which

proves (i). Similarly, by statement (iii) of Proposition 3.2.4, if κb,s ≤ A2, then κb,0 = κb,π(s) ≤ A2,

which proves (ii).

If S is a simple affine algebra, then ν0 is not a subuniverse of S2. Therefore it follows from

statements (v) and (vii) of Proposition 3.2.2 that at most one of the crosses λS,0 and κb.0 (b ∈ A\S)

is a subuniverse of A2. Hence, Lemma 4.4.1 implies that if λS,s ≤ A2 for some s ∈ S, then κb,t 6≤ A2

for all b ∈ A \ S, t ∈ S. Similarly, if κb,s ≤ A2 for some b ∈ A \ S, s ∈ S, then κb′,t 6≤ A2 for all

b′ 6= b, b′ ∈ A \ S, t ∈ S.

Proposition 4.4.2. Suppose that S is affine and either λS,s ≤ A2 or κb,s ≤ A2, for some s ∈ S,

b ∈ A \ S. Let G = S, if λS,s ≤ A2, and let G = {b}, if κb,s ≤ A2. Let k ≥ 1, f ∈ Clok(A), and

i ∈ k. If f is not G-absorbing in its ith variable, then f |S does not depend on its ith variable.

Proof. Under the assumptions of the proposition, we have that either λS,s ≤ A2 or κb,s ≤ A2. Then,

by Lemma 4.4.1, we have that either κb,0 ≤ A2 or λS,0 ≤ A2, respectively, where 0 is the additive

identity the vector space associated to S. By the remark preceding the proposition, exactly one

of the crosses λS,0, κb,0, for some b ∈ A \ S, is a subuniverse of A2. Hence G, as defined in the

proposition, is uniquely determined. Let,

B :=


λS,0, if G = S

κb,0, if G = {b}.

Then B is a subuniverse of A2. Let k ≥ 1, f ∈ Clok(A) and i ∈ k. Suppose that f is not G-absorbing

in its ith variable. WLOG, suppose that i = 1. Then there exists some g ∈ G, a2, . . . , an ∈ A such

that f(g, a2, . . . , an) = h, where h ∈ A \G. Note that B ⊇ {g} × S ∪ A× {0}. Therefore, for any

t ∈ S,

B 3

g
t

 ,

a2

0

 , . . . ,

ak
0

 ,
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and, since f ∈ Clo(A) and B ≤ A2, we get that

B 3 f


g
t

 ,

a2

0

 , . . . ,

ak
0


 =

f(g, a2, . . . , ak)

f(t, 0, . . . , 0)

 =

 h

f(t, 0, . . . , 0)

 .

Since t, 0 ∈ S we have that f(t, 0, . . . , 0) = f |S(t, 0, . . . , 0). Recall that S is an idempotent affine

subalgebra of A, therefore f |S is a term operation on S and thus f |S(x1, . . . , xk) = Σk
i=1αixi, for

some endomorphism αi of the vector space associated to S, 1 ≤ i ≤ k, where Σk
i=1αi = 1. Thus

f(t, 0, . . . , 0) = f |S(t, 0, . . . , 0) = α1t and B 3

 h

f(t, 0, . . . , 0)

 =

 h

α1t

, which means, since

h 6∈ G, that α1t = 0. Since t was an arbitrary element of S, |S| > 2, it follows that α1 is the

zero endomorphism. Thus f |S(x1, . . . , xk) = Σk
i=2αixi, hence f |S does not depend on its first

variable.

In the next proposition we will make no assumption on the subalgebra S of A, and will prove

that the conclusions of the previous proposition hold if we assume that one of the relations Λ or

Kb, for some b ∈ A \ S, is a subuniverse of A3. Recall from Proposition 4.2.4 that no two of these

relations can simultaneouly be subuniverses of A3.

Proposition 4.4.3. Suppose that either Λ ≤ A3 or Kb ≤ A3, for some b ∈ A \ S. Let G = S, if

Λ ≤ A3, and let G = {b}, if Kb ≤ A3. Let k ≥ 1, f ∈ Clok(A), and i ∈ k. If f is not G-absorbing

in its ith variable, then f |S does not depend on its ith variable.

Proof. Under the assumptions of the proposition, we have that either Λ ≤ A3 or Kb ≤ A3 for some

b ∈ A \ S. It follows from our remark preceding the proposition that no two of these relations can

simultaneouly be subuniverses of A3. Thus G, as defined in the proposition, is uniquely determined.

Let,

B :=


Λ, if G = S

Kb, if G = {b}.

Then B is a subuniverse of A3. Let k ≥ 1, f ∈ Clok(A) and i ∈ k. Suppose that f is not G-absorbing

in its ith variable. WLOG, suppose that i = 1. Then there exists some g ∈ G, a2, . . . , an ∈ A such
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that f(g, a2, . . . , an) = h, where h ∈ A\G. Note that B ⊇ (S×{g}×S)∪{(x, y, x) : x ∈ S, y ∈ A}.

Therefore, for any t, t′, s2, . . . , sk ∈ S,

B 3


t

g

t′

 ,


s2

a2

s2

 , . . . ,


sk

ak

sk

 ,

and, since f ∈ Clo(A) and B ≤ A3, we get that

B 3 f




t

g

t′

 ,


s2

a2

s2

 , . . . ,


sk

ak

sk



 =


f(t, s2, . . . , sk)

f(g, a2, . . . , ak)

f(t′, s2, . . . , sk)

 =


f(t, s2, . . . , sk)

h

f(t′, s2, . . . , sk)

 .

Then


f(t, s2, . . . , sk)

h

f(t′, s2, . . . , sk)

 ∈ B, where h ∈ A\G, which implies that f(t, s2, . . . , sk) = f(t′, s2, . . . , sk).

The elements t, t′, s2, . . . , sk were arbitrarily chosen from S, hence f |S does not depend on its 1st-

variable.

Proposition 4.4.4. Let s ∈ S, b ∈ A \ S. Suppose that one of the following conditions holds.

(I) S is affine and either λS,s ≤ A2 or κb,s ≤ A2, or

(II) Λ ≤ A3 or Kb ≤ A3.

Let G = S, if λS,s ≤ A2 or Λ ≤ A3. Let G = {b}, if κb,s ≤ A2 or Kb ≤ A3. Then the following

statements hold.

(i) If k ≥ 1 and f ∈ Clok(A), then there exists some 1 ≤ i ≤ k such that f is G-absorbing in

its ith-variable.

(ii) The clone of A preserves XG
n , for all n ≥ 1.

(iii) A does not have an edge operation.
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(iv) The variety generated by A is not congruence modular.

Proof. Let s ∈ S, b ∈ A \ S. Suppose that one of conditions (I) or (II) holds.

[(i)] Let k ≥ 1 and f ∈ Clok(A). Then f is an idempotent term operation on A, which

means f |S is idempotent, therefore there exists at least one 1 ≤ i ≤ k such that f |S is dependent

on its ith-variable. Then, if condition (I) or (II) holds, we get from Propositions 4.4.2 and 4.4.3,

respectively, that f is G-absorbing in its ith-variable. This completes the proof of statement (i).

[(ii)] This follows directly from statement (i) and Proposition 4.1.4, where A = A′. This

completes the proof of statement (ii).

[(iii)] From statement (ii) we have that the idempotent operations on A preserve XG
n , for ar-

bitrary n, this yields, from Proposition 4.1.4, that statement (a) of Proposition 4.1.4 holds which in

turn implies that statement (b) of Theorem 4.1.3 holds. Then we can conclude from Theorem 4.1.3

that statement (a) of Theorem 4.1.3 holds, hence A does not have an edge operation.

[(iv)] Suppose, for contradiction, that the variety generated by A is congruence modular.

Then, by Theorem 2.1.3, for some n ≥ 0, there exists term operations d0, . . . , dn, p ∈ Clo3(A) such

that identities (1) - (4) of Theorem 2.1.3 hold. Then d0|S , . . . , dn|S , p|S also satisfy identities (1) - (4)

of Theorem 2.1.3.

Claim 4.4.4.1. The term operation di|S does not depend on its second variable, for any 0 ≤ i ≤ n.

Proof. Let g ∈ G and h ∈ A \G. Then by identity (1) of Theorem 2.1.3, for any 0 ≤ i ≤ n, we get

that di(h, g, h) = h ∈ A \ G. Thus di is not G-absorbing in its second variable. We are assuming

condition (I) or (II) holds, therefore it follows from Proposition 4.4.2 or 4.4.3, respectively, that

di|S does not depend on its second variable, for any 0 ≤ i ≤ n.

Then di|S(x, y, z) = di|S(x, y′, z), for arbitrary x, y, y′, z ∈ S.

Claim 4.4.4.2. The term operation p|S does not depend on its first or second variable.

Proof. Let g ∈ G and h ∈ A \ G. Then by identity (4) of Theorem 2.1.3 we get that p(g, g, h) =

h ∈ A\S. Hence p is not G-absorbing in its first or second variable. We are assuming condition (I)
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or (II) holds, therefore it follows from Proposition 4.4.2 or 4.4.3, respectively, that p|S does not

depend on its first or second variable.

Then p|S(x, y, z) = p|S(x′, y′, z), for arbitrary x, x′, y, y′, z ∈ S.

Claim 4.4.4.3. For all 1 ≤ i < n, di|S(x, y, z) = di+1|S(x, y, z), for arbitrary x, y, z ∈ S.

Proof. Let x, y, z ∈ S be arbitrary. If i < n is even, then by Claim 4.4.4.1 and identity (2)

of Theorem 2.1.3 we get that di|S(x, y, z) = di|S(x, z, z) = di+1|S(x, z, z) = di+1|S(x, y, z). If

i < n is odd, then by Claim 4.4.4.1 and identity (3) of Theorem 2.1.3 we get that di|S(x, y, z) =

di|S(x, x, z) = di+1|S(x, x, z) = di+1|S(x, y, z). This completes the proof of the claim.

From identity (1) of Theorem 2.1.3 we have that d0(x, y, z) = x. Thus, it follows from

repeated application of Claim 4.4.4.3 that dn(x, y, z) = x. This, together with identity (4) of

Theorem 2.1.3 and Claims 4.4.4.1 and 4.4.4.2 imply that

x = dn|S(x, y, z) = dn|S(x, z, z) = p|S(x, z, z) = p|S(x, x, z) = z,

for arbitrarty x, y, z ∈ S. Since |S| > 2, the statement x = z, for all x, z ∈ S, gives a contradiction

and completes the proof of statement (iv). This completes the proof of the proposition.

Corollary 4.4.5. There exists a finite idempotent algebra A that has a congruence θ such that

the congruence classes, as algebras, generate congruence modular varieties, and A/θ generates a

congruence modular variety, but A does not generate a congruence modular variety.

Proof. Let A and S be finite sets such that S ⊆ A and 2 < |S| < |A|. Let S be a strictly simple

idempotent algebra on S. From Proposition 4.3.1 we have that there exists an algebra A such that

S is the unique proper nontrivial subalgebra on A, θ is a congruence on A, A/θ is strictly simple,

and B = Λ or B = Kb is a subuniverse of A3, for some fixed b ∈ A\S. Then the congruence classes

of A are S, {{a} : a ∈ A}. It is clear that the one-element algebras generate a congruence modular

variety. Furthermore, under these assumptions, statement (iv) of Proposition 4.4.4 implies that

the variety generated by A is not congruence modular. Finally, since S and A/θ are idempotent



63

strictly simple algebras with more than two elements, it follows from Corollary 2.4.11 that S and

A/θ generate a congruence modular variety. This completes the proof of the corollary.

Finally, recall that in Corollary 4.3.2 we constructed finite idempotent algebras A satisfying

Assumption 1 and condition (II) from Proposition 4.4.4 such that the clone of A is finitely related.

Thus the conclusions of Proposition 4.4.4 hold for A; in particular, A has no edge operation, and

also the variety generated by A is not congruence modular. These algebras A lend support to the

following conjecture of M. Valeriote.

Conjecture 4.4.6 ([MMM10]). Let A be a finite idempotent algebra. If Clo(A) is finitely related

and A generates a congruence modular variety, then A has an edge operation.



Chapter 5

The Clone of A When S is Quasiprimal or Affine

Throughout this chapter A will denote an algebra that satisfies Assumption 1.

In this chapter we will describe the clone of A when θ is a congruence of A, S is either

quasiprimal or affine, and no small arity edge blockers occur in the relational clone of A. If S is

quasiprimal, we will also assume that the subuniverses of A2 have a θ-closure property that we

will define below. We accomplish this description by finding a transparent generating set for the

relational clone of A and then using the Galois connection from Section 2.3 to describe the clone

of A.

There are three integral steps to finding a generating set for the relational clone of A. The first

is a reduction step that allows us to describe a relation in the relational clone of A by isomorphisms

between subalgebras and quotients of A and higher dimensional analogs of such isomorphisms, and

by a smaller arity relation that cannot be further decomposed in this way, and will therefore be

called reduced. This means that later on, it suffices to focus on the reduced subuniverses of finite

powers of A. Secondly, we show that the reduced subuniverses of all finite powers of A satisfy

the θ-closure property mentioned above. This allows us to recover a subuniverse from its image

under a quotient map. In the third step we describe the image of such a subuniverse, and use this

description to find a generating set for the relational clone of A.

Definition 5.0.7. Let B be a subuniverse of An, 1 ≤ i ≤ n. We will call the ith-coordinate of B

an A-coordinate if priB = A.

In the next definition we use terminology from Definition 2.2.7 and Proposition 2.2.8
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Definition 5.0.8. Let n ≥ 1. We will say that a subuniverse B of An is θ-closed in its A-coordinates

if B is θ1 × · · · × θn-closed, where θi = θ for all i ∈ n such that the ith-coordinate of B is an

A-coordinate and θi is the equality relation otherwise.

Thus, the θ-closure property that we alluded to above is the property that a reduced subuni-

verse of a finite power of A is θ-closed in its A-coordinates. In our exploration of the subuniverses of

finite powers of A, we discovered a family of relations whose members do not satisfy this property.

We call these relations higher dimensional automorphism and we will define them here.

Definition 5.0.9. Let G be a finite, idempotent, strictly simple affine algebra, and let B ≤s.d Gn.

We will call B a higher dimensional automorphism, or h.d.-automorphism, of G, if n ≥ 3 and B

satisfies the following conditions:

(i) for every i ∈ n, and for every (n− 1)-tuple, (x1, . . . , xi−1, xi+1, . . . , xn) ∈ pr1,...,i−1,i+1,...,nB

there exists a unique element xi ∈ priB such that (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ B, and

(ii) no projection prI B of B where I is a proper subset of n has this property.

If A satisfies Assumption 1 and S is affine, then a subuniverse B ≤s.d An will be called a higher

dimensional automorphism, or h.d.-automorphism, of A, if n ≥ 3, B|S is an h.d.-automorphism of

S, and B satisfies condition (i) above.

For a finite, idempotent strictly simple algebra G let Auth.d.(G) denote the set of h.d.-

automorphism of G if G is affine, and let Auth.d.(G) = ∅ otherwise. Similarly, if A satisfies

Assumption 1, let Auth.d.(A) denote the set of h.d.-automorphism of A if S is affine, and let

Auth.d.(A) = ∅ otherwise.

It is not hard to see, using Propositions 2.4.5 and 2.4.7, that if G is not affine, then for n ≥ 3,

Gn has no subuniverse that satisfies conditions (i) and (ii). This is why h.d.-automorphisms of G

are defined only when G is affine, and h.d.-automorphisms of A are defined only when S is affine.

If S is affine, then the h.d.-automorphisms of A will also satisfy condition (ii), because they contain

an h.d.-automorphism of S which satisfies (ii).
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Notice also that condition (i) in the definition says that if B is an h.d.-automorphism of G

or A, then for all i ∈ n there exists a function,

fi : prn\{i}B → priB : (x1, . . . , xi−1, xi+1, . . . , xn) 7→ xi,

where xi ∈ priB is the unique element such that (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ B.

5.1 Reductions

In this section we will complete the first step of determining a generating set for the relational

clone of A.

Definition 5.1.1. Let

TA = {{a} : a ∈ A} ∪Aut(S) ∪Aut(A) ∪Auth.d.(S) ∪Auth.d.(A).

Let n ≥ 1. We will say that a subuniverse B of An is reduced if no projection of B is in the set TA.

Our goal is to show that every subuniverse B of An is contained in the relational clone

generated by TA and a projection of B that is reduced. For the case when θ is a congruence on

A, we will prove an analogous result for every subuniverse B′ of Πn
i=1Ai, where Ai ∈ {S,A/θ},

1 ≤ i ≤ n. This will imply that determining the relational clone of A will depend on determining

the reduced subuniverses of An and Πn
i=1Ai.

Both kinds of reductions rely on the following lemma.

Lemma 5.1.2. For n ≥ 2, let B ≤s.d. Πn
i=1Ai, where Ai ∈ {S,A}, for all 1 ≤ i ≤ n, or Ai ∈

{S,A/θ}, for all 1 ≤ i ≤ n. Suppose that there exists some 2 ≤ k ≤ n such that prk B =

{(f(x2, . . . , xk), x2, . . . , xk) : (x2, . . . , xk) ∈ pr2,...,k B}, where f : pr2,...,k B → pr1B is a function.

Then the following are true:

(i) x ∈ B ⇔ xn\{1} ∈ prn\{1}B and xk ∈ prk B,

(ii) 〈B〉RClone = 〈prn\{1}B, prk B〉RClone.
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Proof. [(i)] Clearly, if x ∈ B, then xn\{1} ∈ prn\{1}B and xk ∈ prk B. We will show the reverse

implication. Under the assumptions of the proposition, suppose that x ∈ Πn
i=1Ai is such that

(x1, . . . , xk) ∈ prk B and (x2, . . . , xn) ∈ prn\{1}B. Then (x2, . . . , xn) ∈ prn\{1}B implies that there

exists some a ∈ pr1B such that (a, x2, . . . , xn) ∈ B. This means that (a, x2, . . . , xk) ∈ prk B

and by our assumptions on prk B we get that a = f(x2, . . . , xk). Furthermore the assumption

(x1, . . . , xk) ∈ prk B implies that x1 = f(x2, . . . , xk). Since f is a function it must be that a = x1.

Hence B 3 (a, x2, . . . , xn) = (x1, x2, . . . , xn).

[(ii)] Since relational clones are closed under projections, it is clearly the case that 〈B〉RClone ⊇

{prn\{1}B, prk B}, and hence, 〈B〉RClone ⊇ 〈prn\{1}B, prk B〉RClone.

To see the reverse inclusion, let α := prn\{1}B and β := prk B. Then by property (i),

we have that B is the set defined by the p.p. formula α(x2, . . . , xn) ∧ β(x1, . . . , xk), and thus,

B ∈ 〈α, β〉RClone = 〈prn\{1}B, prk B〉RClone. Hence, 〈B〉RClone ⊆ 〈prn\{1}B, prk B〉RClone.

Proposition 5.1.3. Let B ≤s.d. Πn
i=1An, for some n ≥ 1, where Ai ∈ {S,A}, for all 1 ≤ i ≤ n.

Then there exists a nonempty subset I ⊆ n such that prI B is reduced and B ∈ 〈prI B, TA〉RClone.

Proof. Let I be a minimal nonempty subset of n such that B ∈ 〈prI B, TA〉RClone. Such a subset

exists since B ∈ 〈B, TA〉RClone = 〈prnB, TA〉RClone.

We want to show that prI B is reduced. This is clear if |I| = 1, because priB = Ai ∈ {S,A}

for all 1 ≤ i ≤ n, and S,A /∈ TA. Therefore let |I| > 1. For contradiction, suppose prI B is

not reduced. Then some projection of prI B is in TA. Let J be nonempty subset of I such that

prJ(prI B) ∈ TA. Notice that prJ ′(prI B) = prJ ′ B for all J ′ ⊆ I.

Claim 5.1.3.1. B ∈ 〈prI\{j}B, TA〉RClone, for any j ∈ J .

Proof. Let B̂ = prI B. We saw that prJ B̂ = prJ B, and that for a one-element set J we have

prJ B /∈ TA. Therefore prJ B̂ ∈ TA implies that |J | > 1. WLOG, suppose that J = {1, . . . , |J |}.

Then prJ B̂ ∈ TA implies that prJ B̂ = {(f(x2, . . . , x|J |), x2, . . . , x|J |) : (x2, . . . , x|J |) ∈ pr2,...,|J | B̂},

for some function f : pr2,...,|J | B̂ → pr1 B̂. Therefore, by property (ii) of Lemma 5.1.2 we get that
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〈B̂〉RClone = 〈prI\{1} B̂, prJ B̂〉RClone. Since B̂ = prI B and J ⊆ I, this means that

〈prI B〉RClone = 〈B̂〉RClone = 〈prI\{1} B̂, prJ B̂〉RClone = 〈prI\{1}B, prJ B〉RClone.

Therefore, the assumptions B ∈ 〈prI B, TA〉RClone and prJ B = prJ B̂ ∈ TA, imply that

B ∈ 〈prI B, TA〉RClone = 〈prI\{1}B, prJ B, TA〉RClone = 〈prI\{1}B, TA〉RClone.

This completes the claim.

Hence B ∈ 〈prI′ B, TA〉RClone, for I ′ = I \ {j}, which contradicts the minimality of I. There-

fore, the assumption that prI B not reduced is false. This completes the proof.

Proposition 5.1.4. Let B be a reduced subuniverse of An for some n ≥ 1. Then the k-ary

projections of B are reduced, for all 1 ≤ k ≤ n.

Proof. Let B be a reduced subuniverse of An, let 1 ≤ k ≤ n, and I ⊆ n such that |I| = k. If

prJ(prI B) ∈ TA for some J ⊆ I, then prJ(prI B) = prJ B implies that prJ B ∈ TA. However, this

contradicts the assumption that B is reduced.

Definition 5.1.5. In case θ is a congruence on A we define

T ′A = Aut(A/θ) ∪ Isom(S,A/θ) ∪Auth.d.(A/θ).

Let B′ be a subuniverse of Πn
i=1Ai for some n ≥ 1, where Ai = Bi/Θi ∈ {S,A/θ} for all 1 ≤ i ≤ n

such that Bi = A and Θi = θ if Ai = A/θ, and Bi = S and Θi is the equality relation if Ai = S. Let

ρ−1(B′) be the full inverse image of B′ under the natural homomorphism ρ : Πn
i=1Bi → Πn

i=1Ai. We

will say that B′ is reduced if ρ−1(B′) is reduced in the sense of Definition 5.1.1, and no projection

of B′ is in the set T ′A.

Definitions 5.1.1 and 5.1.5 give two notions of reduced subuniverses: one for the subuniverses

of An and one for the subuniverses of Πn
i=1Ai, where Ai ∈ {S,A/θ}. Since a subunivese of Sn is

both a subuniverse of An and a subuniverse of Πn
i=1Ai, we must check that the two definitions are

consistent for subuniverses of finite powers of S.
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Let B ≤ Sn. Then clearly no projection of B is in the set Aut(A/θ) ∪ Isom(S,A/θ) ∪

Auth.d.(A/θ) and, by the definition of ρ, we have that ρ−1(B) = B. Thus if B is reduced in the

sense of Definition 5.1.5 if and only if B is reduced in the sense of Definition 5.1.1.

Proposition 5.1.6. Let B′ be a subuniverse of Πn
i=1Ai (n ≥ 1), where Ai = Bi/Θi ∈ {S,A/θ}

for all 1 ≤ i ≤ n such that Bi = A and Θi = θ if Ai = A/θ, and Bi = S and Θi is the equality

relation if Ai = S. If the full inverse image ρ−1(B′) of B′ under the natural homomorphism

ρ : Πn
i=1Bi → Πn

i=1Ai is reduced, then there exists some nonempty I ⊆ n such that prI B′ is reduced

and B′ ∈ 〈prI B′, T ′A〉RClone.

The proof of this proposition is similar to the proof of Proposition 5.1.3.

Proof. Let I be a minimal nonempty subset of n such that B′ ∈ 〈prI B′, T ′A〉RClone. Such a subset

exists since B′ ∈ 〈B′, T ′A〉RClone = 〈prnB′, T ′A〉RClone. We want to show that prI B′ is reduced.

Since ρ−1(prI B′) = prI ρ−1(B′) and our assumption is that ρ−1(B′) is reduced, Proposition 5.1.4

shows that prI ρ−1(B′), and hence ρ−1(prI B′) is reduced.

Therefore it remains to prove that no projection of prI B′ is in T ′A. Let B̂ := prI B′, and

suppose, for contradiction, that J is a nonempty subset of I such that prJ(B̂) ∈ T ′A. WLOG,

suppose that I = {1, . . . , |I|} and J = {1, . . . , |J |}.

Then prJ B̂ ∈ T ′A implies prJ B̂ = {(f(x2, . . . , x|J |), x2, . . . , x|J |) : (x2, . . . , x|J |) ∈ pr2,...,|J | B̂},

for some function f : prJ\{j} B̂ → pr1 B̂. Applying statement (ii) of Lemma 5.1.2 we get that

〈B̂〉RClone = 〈prI\{1} B̂, prJ B̂〉RClone. Since B̂ = prI B′ and J ⊆ I, this means that

〈prI B
′〉RClone = 〈B̂〉RClone = 〈prI\{1} B̂, prJ B̂〉RClone = 〈prI\{1}B

′, prJ B
′〉RClone.

By assumption we have that B′ ∈ 〈prI B′, T ′A〉RClone and prJ B̂ ∈ T ′A. Therefore,

B′ ∈ 〈prI B
′, T ′A〉RClone = 〈prI\{1}B

′, prJ B, T ′A〉RClone = 〈prI\{1}B, T ′A〉RClone.

Hence B′ ∈ 〈prI′ B, T ′A〉RClone, for I ′ = I \ {1}, which contradicts the minimality of I. This

completes the proof of the proposition.
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Proposition 5.1.7. With the same notation as in Proposition 5.1.6, if B′ is a reduced subuniverse

of Πn
i=1Ai, n ≥ 1, then the k-ary projections of B′ are reduced, for all 1 ≤ k ≤ n.

Proof. Let B′ be a reduced subuniverse of Πn
i=1Ai, let 1 ≤ k ≤ n, and I ⊆ n such that |I| = k. The

same argument as in the proof of Proposition 5.1.6 shows that ρ−1(prI B′) is reduced. Furthermore,

if prJ(prI B′) ∈ T ′A for some J ⊆ I, then prJ(prI B′) = prJ B′ implies that prJ B′ ∈ T ′A. However,

this contradicts the assumption that B′ is reduced.

5.2 H.D.-Automorphisms of A when S is Affine.

Under Assumption 1 we will determine the general form of a subuniverse B ≤ An, when S is

affine, B|S is an h.d.-automorphism of S, and B 6= B ∩ Sn. We will see that such a subuniverse is

an h.d.-automorphism of A.

Proposition 5.2.1. Suppose that G is a finite idempotent strictly simple affine algebra, and let

KG be the associated vector space. If n ≥ 3 and B ≤ Gn is an h.d.-automorphism of G, then the

following properties hold.

(1) There exist nonzero elements c1, . . . , cn−1 ∈ K and g ∈ G such that

B = {(x1, . . . , xn−1,
n−1∑
i=1

cixi + g) ∈ Gn : x1, . . . , xn−1 ∈ G}.

(2) For every i ∈ n, prn\{i}B = Gn\{i}.

(3) For every i ∈ n,

B ={(x1, . . . , xi−1, fi(x1, . . . , xi−1, xi+1, . . . , xn), xi+1, . . . , xn) :

x1, . . . , xi−1, xi+1, . . . , xn ∈ G},

for some map fi : pr1,...,i−1,i+1,...,nB → priB : (x1, . . . , xi−1, xi+1, . . . , xn) 7→ xi, where xi

is the unique element of priB such that (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ B.

(4) Let {i, j} ⊆ n, i < j. Then, for any (c1, . . . , ci−1, ci+1, . . . , cj−1, cj+1, . . . , cn) ∈ G{n\{i,j}},

B(c1, . . . , ci−1, xi, ci+1, . . . , cj−1, xj , cj+1, . . . , cn) ≤ G{i,j} is an automorphism of G.
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(5) Let i ∈ n, n ≥ 4. Then for any ci ∈ G{i}, B(x1, . . . , xi−1ci, xi+1, . . . , xn) is an h.d.-

automorphism of G.

Proof. Suppose that B ≤ Gn is an h.d.-automorphism of G ∈ {S,A/θ}, where G is affine, for some

n ≥ 3.

[(1)] Since G is affine, this follows directly from Proposition 2.4.6 which describes the sub-

universes of finite powers of a finite idempotent strictly simple affine algebra.

[(2)] This is an immediate consequence of (1).

[(3)] This follows directly from Definition 5.0.9 and property (2).

[(4)] Let {i, j} ⊆ n, i < j. Since n ≥ 3, we will assume, WLOG, that i = 1, j = 2.

Let (c3, . . . , cn) ∈ Gn\{1,2}. It follows from property (2) that priB(x1, x2, c3, . . . , cn) = G for

i = 1, 2. Property (3) implies that B(x1, x2, c3, . . . , cn) = {(x1, f2(x1, c3, . . . , cn)) : x1 ∈ G} and

B(x1, x2, c3, . . . , cn) = {(f1(x2, c3, . . . , cn), x2) : x2 ∈ G}. Thus B(x1, x2, c3, . . . , cn) is the graph

of a permutation of G and since B(x1, x2, c3, . . . , cn) ≤ G2 we get that B(x1, x2, c3, . . . , cn) is an

automorphism of G.

[(5)] Let i ∈ n, n ≥ 4. WLOG, suppose i = n. Let c ∈ G{n} and let C := B(x1, . . . , xn−1, c).

Then C is a subuniverse of Gn−1. For all i ∈ n− 1, it follows from property (2) that prn\{i}B =

Gn\{i} = Gn−1\{i} × G{n} ⊇ Gn−1\{i} × {c}. Thus Gn−1\{i} ⊆ prn−1\{i}B(x1, . . . , xn−1, c), and

hence prn−1\{i}C = Gn−1\{i} for all i ∈ n− 1. Then property (3) implies that for each i ∈ n− 1

we have that

C = {(x1, . . . , xi−1, fi(x1, . . . , xi−1, xi+1, . . . , xn−1, c), xi+1, . . . , xn−1, c) :

x1, . . . , xi−1, xi+1, . . . , xn−1 ∈ G}.

This shows that C is an h.d.-automorphism of G.

Theorem 5.2.2. Suppose that A satisfies Assumption 1. Suppose that S is affine and there is no

(thick) (A,S)-cross among the subuniverses of A2. Let n ≥ 3. Suppose that B ≤ An such that B|S

is an h.d.-automorphism of S. If B 6≤ Sn, then θ is a congruence on A and B = (B ∩ Sn) ∪ σ,
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where σ = {(x, π2(x), . . . , πn(x)) : x ∈ A \ S} and πi is an automorphism of A/θ that fixes S, for

all 2 ≤ i ≤ n.

Proof. Under the assumptions of the theorem, let B be a subuniverse of An such that B|S is an

h.d.-automorphism of S. Suppose that B 6= B ∩ Sn. We will prove the theorem by inducting on n.

Suppose that n = 3. We will first show that B(s, x2, x3), B(x1, s, x3), B(x1, x2, s) ⊆ S2, for

all s ∈ S, thus B ⊆ S3 × (A \ S)3.

We claim that, for each s ∈ S, the subuniverses B(s, x2, x3), B(x1, s, x3), and B(x1, x2, s) of

A2 are automorphisms of S. WLOG, we will show the claim for B(s, x2, x3).

Claim 5.2.2.1. For each s ∈ S, B(s, x2, x3) is an automorphism of S.

Proof of claim. Let s ∈ S. Since B|S is an h.d.-automorphism of S and S is affine we get that

B|S satisfies the assumptions of Proposition 5.2.1. Then property (2) of Proposition 5.2.1 implies

that B(s, x2, x3)|S is an automorphism of S. Therefore, by Theorem 3.1.5, B(s, x2, x3) is either an

automorphism of S or an automorphism of A. Since s ∈ S is arbitrary, this shows that B(s, x2, x3)

is either an automorphism of S or an automorphism of A, for all s ∈ S.

To prove the claim, we must show that B(s, x2, x3) is not an automorphism of A, for any

s ∈ S. To do this, we will first define a subuniverse, C ≤ S× A2, and prove two subclaims.

Let C be the subuniverse of S×A2 defined by C := B∩S×A2. Then B|S ⊆ C. Property (2)

of Proposition 5.2.1 implies S2 ⊆ pri,j(B|S), for all 1 ≤ i < j ≤ 3, therefore S2 ⊆ pri,j C.

Furthermore, it is clear from the definition of C that C =
⋃
s∈S B(s, x2, x3). Since we showed that,

for each s ∈ S, B(s, x2, x3) is either an automorphism of S or an automorphism of A, it follows

that B(s, x2, x3) ⊆ S2 × (A \ S)2 and C ⊆ S3 ∪ S × (A \ S)2. Then S2 ⊆ pr2,3C ⊆ S2 × (A \ S)2

implies, by Theorem 3.1.5, that either θ is a congruence on A and pr2,3C is an automorphism of

A/θ that fixes S or pr2,3C = S2.

Subclaim 5.2.2.1.1. If B(s, x2, x3) and B(s′, x2, x3) are automorphisms of A, for distinct s, s′ ∈ S,

then B(s, x2, x3)|A\S = B(s′, x2, x3)|A\S.
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Proof of subclaim. Suppose that B(s, x2, x3) and B(s′, x2, x3) are automorphisms of A, for distinct

s, s′ ∈ S. Then priB(s, x2, x3) = A, for i = 2, 3, and since B(s, x2, x3) ⊆ pr2,3C we get that

pr2,3C ≤s.d A2. Hence pr2,3C 6= S2, which means θ is a congruence on A and pr2,3C is an

automorphism of A/θ that fixes S. Finally, since B(s, x2, x3), B(s′, x2, x3) ⊆ pr2,3C, the subclaim

follows.

Subclaim 5.2.2.1.2. If B(s, x2, x3) is an automorphism of A, for some s ∈ S, then B(s′, x2, x3)

is an automorphism of A, for all s′ ∈ S.

Proof of subclaim. Let s ∈ S and suppose that B(s, x2, x3) = π, where π is an automorphism of

A. Then {(s, x, π(x)) : x ∈ A} ⊆ B implies {s} × A ⊆ pr1,2B. Since s ∈ S, it follows from

the definition of C that {s} × A ⊆ pr1,2C. Furthermore, we saw that S2 ⊆ pr1,2C, therefore

λ−1
S,s = S2 ∪ ({s} × A) ⊆ pr1,2C. By assumption there is no thick (A,S)-cross, and thus no

thick (S,A)-cross, among the subuniverses of A2, therefore it follows from Theorem 3.1.5, that

pr1,2C = S × A. Then {s′} × A ⊆ S × A = pr1,2C, for all s′ ∈ S. Fix s′ ∈ S. For each a ∈ A,

there exists some xa ∈ A such that (s′, a, xs) ∈ C ⊆ B, thus, pr2B(s′, x2, x3) = A. We showed that

B(s′, x2, x3) is either an automorphism of S or an automorphism of A, therefore pr2B(s′, x2, x3) = A

implies that B(s′, x2, x3) is an automorphism of A. Since s′ was an arbitrary element from S, this

completes the proof of the subclaim.

We are now ready to complete the proof of the claim. Recall that it remained to show that

B(s, x2, x3) is not an automorphism of A, for any s ∈ S. Suppose, for contradiction, that there exists

some s ∈ S, such that B(s, x2, x3) is an automorphism of A. Then by Subclaim 5.2.2.1.2, we get

that B(s, x2, x3) is an automorphism of A for all s ∈ S. Since |S| ≥ 2, there exists distinct s, s′ ∈ S

and, by Subclaim 5.2.2.1.1, we have that B(s, x2, x3)|A\S = B(s′, x2, x3)|A\S . Then we can infer

from Lemma 3.0.6 that B(s, x2, x3) = B(s′, x2, x3), which means B(s, x2, x3)|S = B(s′, x2, x3)|S .

Let (c2, c3) ∈ B(s, x2, x3)|S . Then (s, c2, c3), (s′, c2, c3) ∈ B|S , which means B(x1, x2, c3)|S

is a subuniverse of S2 that contains (s, c2), (s′, c2). Recall that B|S satisfies the assumptions of

Proposition 5.2.1, therefore property (4) implies that B(x1, x2, c3)|S = π, for some π ∈ Aut(S).
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Hence s = π−1(c2) = s′, which contradicts s 6= s′. Hence, the assumption that B(s, x1, x2) is an

automorphism of A must be false, which completes the proof of the claim.

By symmetric arguments to those given in the proof of Claim 5.2.2.1, we get that for any

s ∈ S, B(s, x2, x3), B(x1, s, x3) and B(x1, x2, s) are each a subuniverse of S2. Therefore, there is

no tuple in B that has coordinates from both S and A \ S. In other words, if u ∈ B, then either

u ∈ S3 or u ∈ (A \S)3. Hence, B = (B ∩S3)∪ (B ∩ (A \S)3). We want to determine B ∩ (A \S)3.

Every binary projection of B is contained in S2 ∪ (A \ S)2 and we saw that S2 ⊆ pri,j B, for

1 ≤ i < j ≤ 3. Since we have assumed that B 6= B ∩ S3, there exists some u ∈ B ∩ (A \ S)3, which

means (ui, uj) ∈ pri,j B ∩ (A \ S)2. Then, by Theorem 3.1.5, it must be that θ is a congruence on

A and pri,j B is an automorphism of A/θ that fixes S, for all 1 ≤ i < j ≤ 3. In particular, for

i = 2, 3, pr1,iB = πi, where πi is an automorphism of A/θ that fixes S. Therefore B ∩ (A \ S)3 ⊆

{(x, π2(x), π3(x)) : x ∈ A \ S}

We claim that B ∩ (A \ S)3 = {(x, π2(x), π3(x)) : x ∈ A \ S}. Let (a1, π2(a1), π3(a1)) ∈

{(x, π2(x), π3(x)) : x ∈ A \ S}. Since there exists some u ∈ B ∩ (A \ S)3 and S2 ⊆ pr1,2B, we have

that S ∪ {u1} ∈ pr1B, where u1 ∈ A \ S, which implies pr1B = A. Then a1 ∈ (A \ S) ⊆ pr1B

implies that there exists some a2, a3 ∈ A such that (a1, a2, a3) ∈ B. Thus, (a1, a2) ∈ pr1,2B|A\S =

π2|A\S implies a2 = π2(a1) and (a1, a3) ∈ pr1,3B|A\S = π3|A\S implies a3 = π3(a1). Hence

(a1, π2(a1), π3(a1)) = (a1, a2, a3) ∈ B.

Therefore we have shown that θ is a congruence on A and B = (B ∩ S3) ∪ σ, where

σ = {(x, π2(x), π3(x)) : x ∈ A \S} and π2, π3 are automorphisms of A/θ that fix S. This completes

the proof of the theorem for the case when n = 3.

Let n > 3 and suppose that for any B ≤ An−1, such that B|S is an h.d.-automorphism

of S and B 6= B ∩ Sn−1, we have that θ is a congruence on A and B = (B ∩ Sn−1) ∪ σ, where

σ = {(x, π2(x), . . . , πn−1(x)) : x ∈ A \ S} and πi is an automorphism of A/θ that fixes S, for

1 ≤ i ≤ n− 1.
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Let B ≤ An. Suppose that B|S is an h.d.-automorphism of S and suppose that B 6= B ∩ Sn.

Since S is affine, we get that B|S satisfies the assumptions of Proposition 5.2.1. Then property (5) of

Proposition 5.2.1 implies that, for all 1 ≤ j ≤ n and for all s ∈ S, B(x1, . . . , xj−1, s, xj+1, . . . , xn)|S

is an h.d.-automorphism of S. We will show that B(x1, . . . , xj−1, s, xj+1, . . . , xn) ⊆ Sn−1, for all

1 ≤ j ≤ n and all s ∈ S. Then it will follow that B ⊆ Sn ∪ (A \ S)n. WLOG, we will show the

claim for j = 1.

Claim 5.2.2.2. For each s ∈ S, B(s, x2, . . . , xn) ⊆ Sn−1.

Proof of claim. For each s ∈ S, either B(s, x2, . . . , xn) ⊆ Sn−1 or B(s, x2, . . . , xn) 6⊆ Sn−1. It is

clear that B(s, x2, . . . , xn) is a subuniverse of An−1 and, as we discussed in the previous paragraph,

B(s, x2, . . . , xn)|S is an h.d.-automorphism of S, therefore by the induction hypothesis,

B(s, x2, . . . , xn) = (B(s, x2, . . . , xn) ∩ Sn−1) ∪ σs,

where

σs =


∅, if B(s, x2, . . . , xn) ⊆ Sn−1

{(x, π3(x), . . . , πn(x)) : x ∈ A \ S}, otherwise,

for some automorphisms, πi, of A/θ that fix S, 3 ≤ i ≤ n.

To prove this claim we must show that σs = ∅, for all s ∈ S. First we will define a subuniverse,

C ≤ S× An−1, and prove two subclaims.

Let C be the subuniverse of S×An−1 defined by C := B∩(S×An−1). Then B|S ⊆ C. Recall

that B|S satisfies the assumptions of Proposition 5.2.1, therefore property (2) implies that Sn−1 ⊆

prn\{i}B|S , for all i ∈ n, thus Sn−1 ⊆ prn\{i}C. Since n > 3, this means that S2 ⊆ pri,j C, for all

1 ≤ i < j ≤ n. Furthermore, it is clear from the definition of C that C =
⋃
s∈S B(s, x2, . . . , xn).

Since B(s, x1 . . . , xn) ⊆ Sn−1 ∪ (A \ S)n−1 we get that C ⊆ Sn ∪ S × (A \ S)n−1. Thus, S2 ⊆

pr2,iC ⊆ S2 ∪ (A \S)2, for every 3 ≤ i ≤ n. It follows from Theorem 3.1.5 that, for each 3 ≤ i ≤ n,

either θ is a congruence on A and pr2,iC is an automorphism of A/θ that fixes S or pr2,iC = S2.
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Subclaim 5.2.2.2.1. If s, s′ are distinct elements of S such that σs 6= ∅ and σs′ 6= ∅, then σs = σs′.

Proof of subclaim. Let s, s′ ∈ S, s 6= s′, and suppose that σs 6= ∅ and σs′ 6= ∅. Let

σs = {(x, π3(x), . . . , πn(x)) : x ∈ A \ S}

and

σs′ = {(x, γ3(x), . . . , γn(x)) : x ∈ A \ S},

where πi and γi are automorphisms of A/θ that fix S, for all 3 ≤ i ≤ n.

Then σs ⊆ B(s, x2, . . . , xn), σs′ ⊆ B(s′, x2, . . . , xn), and s, s′ ∈ S implies σs∪σs′ ⊆ pr2,...,nC.

Let i ∈ n \ {1, 2}. Then {(x, πi(x)) : x ∈ A \ S} ∪ {(x, γi(x)) : x ∈ A \ S} ⊆ pr2,iC implies

pr2,iC 6= S2, thus pr2,iC is an automorphism of A/θ that fixes S. Therefore, it must be that

πi(x) = γi(x), for all x ∈ A \ S. Since i was an arbitrary element of n \ {1, 2}, we get that

σs = σs′ .

Subclaim 5.2.2.2.2. If σs 6= ∅, for some s ∈ S, then σs′ 6= ∅, for every s′ ∈ S.

Proof of subclaim. Let s ∈ S and suppose that σs 6= ∅. Then it follows from the discussion above

that B(s, x2, . . . , xn) = (B(s, x2, . . . , xn)∩Sn−1)∪σs, where σs = {(x, π3(x), . . . , πn(x)) : x ∈ A\S},

for automorphisms, πi, of A/θ that fix S, 3 ≤ i ≤ n. Let s′ ∈ S \ {s}. We will show that

B(s′, x2, . . . , xn) 6⊆ Sn−1. Since B(s′, x2, . . . , xn) is an (n− 1)-dimensional h.d-automorphism of S

and s′ is an arbitrary element of S, this proves the subclaim.

Since σs ⊆ B(s, x2, . . . , xn) we get that {(s, x, π3(x), . . . , πn(x)) : x ∈ A \ S} ⊆ B. Then

s ∈ S implies that {(s, x, π3(x), . . . , πn(x)) : x ∈ A \ S} ⊆ C, therefore {s} × A \ S ⊆ pr1,2C.

Furthermore, we showed that S2 ⊆ pr1,2C. Thus S2 ∪ ({s} × A \ S) ⊆ pr1,2C. By assumption,

there is no (A,S)-cross among the subuniverses of A2 which implies no (S,A)-cross is a subunverse

of A2. Then it follows from Theorem 3.1.5 that pr1,2C = S × A. This means that for any

b ∈ A \ S, (s′, b) ∈ S × A = pr1,2C ⊆ pr1,2B. Therefore, there exists some tuple u ∈ An−2 such

that (s′, b, u) ∈ B, which means B(s′, x2, . . . , xn) 6⊆ Sn−1, so it must be that B(s′, x2, . . . , xn) =
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(B(s′, x2, . . . , xn) ∩ Sn−1) ∪ σs′ , where σs′ 6= ∅. Since s′ was an arbitrary element of S \ {s}, this

completes the proof of the subclaim.

We are ready to complete the proof of the claim. To do so, we must first show that σs = ∅,

for all s ∈ S. Suppose, for contradiction, that there exists some s ∈ S such that σs 6= ∅. Then by

Subclaim 5.2.2.2.2, we get that σs′ 6= ∅, for all s′ ∈ S. Thus, it follows from Subclaim 5.2.2.2.1 that

σs = σs′ , for all distinct s, s′ ∈ S. Therefore, for all s ∈ S,

B(s, x2, . . . , xn) = (B(s, x2, . . . , xn) ∩ Sn−1) ∪ σ, (5.1)

where σ = {(x, π3(x), . . . , πn(x)) : x ∈ A \ S} and πi is an automorphism of A/θ that fixes S,

3 ≤ i ≤ n.

Let s, s′ be distinct elements in S and define

D := {(x, x′) : there exists x ∈ An−2 such that (s, x, x), (s′, x, x′) ∈ B}.

ThenD is a subuniverse of A2. Let ∆ = {(x, x) : x ∈ A}. We claim thatD∩∆ = {(x, x) : x ∈ A\S}.

Suppose (a, a′) ∈ D. Then for some (c2, . . . , cn−1) ∈ An−2 we have that (s, c2, . . . , cn−1, a),

(s′, c2, . . . , cn−1, a
′) ∈ B. This means that (c2, . . . , cn−1, a) ∈ B(s, x2, . . . , xn) and (c2, . . . , cn−1, a

′) ∈

B(s′, x1, . . . , xn−1), which, by (5.1), in turn implies that (c2, . . . , cn−1, a), (c2, . . . , cn−1, a
′) ∈ Sn−1∪

σ ⊆ Sn−1 ∪ (A \ S)n−1 and hence, (a, a′) ∈ S2 ∪ (A \ S)2.

First suppose (c2, . . . , cn−1, a) ∈ Sn−1, then (c2, . . . , cn−1, a
′) ∈ Sn−1 and (s, c2, . . . , cn−1, a),

(s′, c2, . . . , cn−1, a
′) ∈ Sn. Suppose, for contradiction, that a = a′. Then B(x1, c2, . . . , cn−1, x2)|S

is a subuniverse of S2 that contains (s, a), (s′, a′) = (s′, a). Since S is affine and B|S is an h.d.-

automorphism of S, we get that B|S satisfies the assumptions of Proposition 5.2.1. Then, by state-

ment (4) of Proposition 5.2.1, we get that B(x1, c2, . . . , cn−1, x2)|S = π, for some π ∈ Aut(S). Thus

(s, a), (s′, a) ∈ B(x1, c2, . . . , cn−1, x2)|S implies s = π−1(a) = s′, which contradicts the assumption

that s 6= s′. Therefore, a 6= a′ whenever (a, a′) ∈ S2.

If (c2, . . . , cn−1, a) ∈ (A \ S)n−1, then (c2, . . . , cn−1, a), (c2, . . . , cn−1, a
′) ∈ σ, hence a =

πn(c2) = a′. Therefore a = a′ whenever (a, a′) ∈ (A \ S)2.
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Furthermore, we have that (x, π2(x), . . . , πn(x)) ∈ σ ⊆ B(s, x1, . . . , xn) ∩B(s′, x1, . . . , xn−1),

for any x ∈ A \ S. Thus (s, x, π2(x), . . . , πn(x)), (s′, x, π2(x), . . . , πn(x)) ∈ B, for any x ∈ A \ S,

which means {(x, x) : x ∈ A \ S} = {(πn(x), πn(x)) : x ∈ A \ S} ⊆ D.

Therefore we have shown that D∩∆ = {(x, x) : x ∈ A \S}. Since D and ∆ are subuniverses

of A2 and relational clones are closed under intersections and projections, we get that pr1(D∩∆) =

A \ S is a subuniverse of A. However S is the unique nontrivial subalgebra of A, therefore we have

a contradiction. This completes the proof of the claim.

By Claim 5.2.2.2, we have that B(s, x1, . . . , xn) = B(s, x1, . . . , xn) ∩ Sn−1, for all s ∈ S.

Applying Claim 5.2.2.2 to the subuniverses of An that are obtained fromB by permuting coordinates

we get that for any s ∈ S, B(x1, . . . , xj−1, s, xj+1, . . . , xn) = B(x1, . . . , xj−1, s, xj+1, . . . , xn)∩Sn−1,

for all j ∈ n. Thus, for any element u ∈ B, either u ∈ Sn, or u ∈ (A \ S)n−1. Hence B =

(B ∩ Sn) ∪ (B ∩ (A \ S)n). We want to determine B ∩ (A \ S)n.

By assumption, B 6= B ∩ Sn, therefore B ∩ (A \ S) 6= ∅. Let u ∈ B ∩ (A \ S)n. Then for all

1 ≤ i < j ≤ n, (ui, uj) ∈ pri,j B ⊆ S2∪ (A\S)2, where ui, uj ∈ A\S. Furthermore, we showed that

S2 ⊆ pri,j B|S ⊆ pri,j B. Therefore, by Theorem 3.1.5, it follows that θ is a congruence on A and

pri,j B is an automorphism of A/θ that fixes S. In particular, for all i ∈ n\{1}, pr1,iB = πi, where

πi is an automorphism of A/θ that fixes S. Thus B ∩ (A \S)n ⊆ {(x, π2(x), . . . , πn(x)) : s ∈ A \S}.

We claim that B∩(A\S)n = {(x, π2(x), . . . , πn(x)) : s ∈ A\S}. Let (a1, π2(a1), . . . , πn(a1)) ∈

{(x, π2(x), . . . , πn(x)) : s ∈ A \ S}. We showed that S2 ⊆ pr1,2B. Therefore S ∪ {u1} ⊆ pr1B,

u1 ∈ A \ S, which means pr1B = A. Then a1 ∈ A \ S ⊆ pr1B, which means there exists some

a2, . . . , an ∈ A \ S such that (a1, a2, . . . , an) ∈ B. For each 2 ≤ i ≤ n, (a1, ai) ∈ (pr1,iB)|A\S =

πi|A\S , thus ai = πi(a1). Therefore B 3 (a1, a2, . . . , an) = (a1, π2(a1), . . . , πn(a1)).

We have shown that θ is a congruence on A and B = (B ∩ Sn) ∪ {(x, π2(x), . . . , πn(x)) : s ∈

A \ S}, where πi is an automorphism of A/θ that fixes S, 2 ≤ i ≤ n. This completes the proof of

the theorem.

Combining Definition 5.0.9 with Theorem 5.2.2 we get two characterizations of the h.d.-



79

automorphisms of the algebras A that satisfy the assumptions of the theorem.

Corollary 5.2.3. Suppose that A satisfies Assumption 1, S is affine, and there is no (thick)

(A,S)-cross among the subuniverses of A2. Let n ≥ 3. The following conditions on B ≤ An are

equivalent:

(a) B is an h.d.-automorphism of A,

(b) B|S is an h.d.-automorphism of S and B 6≤ B ∩ Sn,

(c) B|S is an h.d.-automorphism of S and B = (B∩Sn)∪σ, where σ = {(x, π2(x), . . . , πn(x)) :

x ∈ A \ S} and πi is an automorphism of A/θ that fixes S, for all 2 ≤ i ≤ n.

Proposition 5.2.4. Suppose that B ≤ Sn for some n ≥ 3 and there exists a tuple (a1, . . . , an) ∈ B

such that B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn) is an automorphism of S for all 1 ≤ i ≤ n−1. Then

(i) S is not quasiprimal, and

(ii) if S is affine, then B is an h.d.-automorphism of S.

Proof. The subuniverses of Sn that are defined by B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn), where 1 ≤

i ≤ n−1, will be useful in proving this proposition. Therefore we will denote the ith such subuniverse

by Bi = B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn). Then by the assumptions of this proposition, we

have that Bi = σi for some σi ∈ Aut(S). Notice that Bi ⊆ pri,nB for all 1 ≤ i ≤ n. Also,

Bi = σi ∈ Aut(S) implies B 6= Sn.

[(i)] We will show that no unary projection of B is a singleton and no binary projection of

B is a bijection. Since B ≤ Sn and B 6= Sn, this will imply, by Proposition 2.4.5 that S is not

quasiprimal.

Let i ∈ n− 1. Then Bi = σi ∈ Aut(S) implies priBi = S = prnBi. Therefore S = priBi ⊆

priB and S = prnBi ⊆ prnB. Since i ∈ n− 1, this means that no unary projection of B is a

singleton.

We will now show that no binary projection pri,j B of B is a bijection. We must consider

two cases: 1 ≤ i < j ≤ n− 1 and 1 ≤ i ≤ n− 1, j = n.
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Suppose that 1 ≤ i < j ≤ n − 1. Recall that n ≥ 3. We will suppose, WLOG, that

i = 1 and j = 2. Then B2 = σ2 ∈ Aut(S) implies (s, σ2(s)) ∈ B2 for all s ∈ S. Thus,

(a1, s, a3, . . . , an−1, σ2(s)) ∈ B for each s ∈ S, which means {a1} × S ⊆ pr1,2B, so pr1,2B is

not a bijection.

Now suppose, WLOG, that i = 1 and j = n. Then B2 = σ2 ∈ Aut(S) implies (s, σ2(s)) ∈ B2

for all s ∈ S, therefore (a1, s, a3, . . . , an−1, σ2(s)) ∈ B. Thus, {a1} × S ⊆ pr1,nB. Hence pr1,nB is

not a bijection.

We have shown that B is a subuniverse of Sn such that no unary projection of B is a singleton,

no binary projection of B is a bijection, and B 6= Sn. Therefore, by Proposition 2.4.5, S is not

quasiprimal.

[(ii)] Suppose that S is affine. Since S is a finite idempotent strictly simple algebra and

B ≤ Sn, it follows from Proposition 2.4.6 that, up to permutation of coordinates,

B = {(x1, . . . , xt,
t∑
i=1

c(t+1,i)xi + δt+1, . . . ,
t∑
i=1

c(n,i)xi + δn) ∈ Sn : x1, . . . , xt ∈ S},

for some δt+1, . . . , δn ∈ S and c(t+1,i), . . . , c(n,i) ∈ K, 1 ≤ i ≤ s, where KS is the associated vector

space.

We saw that B 6= Sn, therefore t 6= n. We claim that t = n − 1. Suppose not. Then

1 ≤ t ≤ n− 2. This means that

σn−1 = Bn−1

= B(a1, . . . , at, . . . , an−2, xn−1, xn)

= prn−1,n

(
{(a1, . . . , at,

t∑
i=1

c(t+1,i)ai + δt+1, . . . ,
t∑
i=1

c(n,i)ai + δn)}
)

= {(
t∑
i=1

c(n−1,i)ai + δn−1,

t∑
i=1

c(n,i)ai + δn)},

which is a contradiction. Therefore,

B = {(x1, . . . , xn−1,
n−1∑
i=1

cixi + δ) ∈ Sn : x1, . . . , xn−1 ∈ S},
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for some δ ∈ S and ci ∈ K, 1 ≤ i ≤ s.

We claim that ci 6= 0 for all 1 ≤ i ≤ n− 1. Suppose, for contradiction, that ci = 0 for some

1 ≤ i ≤ n− 1. WLOG, suppose that c1 = 0. Then

σ1 = B1

= B(x1, a2, . . . , an−1, xn)

= pr1,n

(
{(x1, a2, . . . , an−1, c1x1 +

n−1∑
i=2

ciai + δ) : x1 ∈ S}
)

= S × {
n−1∑
i=2

xiai + δ},

where the last equality holds since c1 = 0. This is a contradiction, therefore, ci 6= 0 for all

1 ≤ i ≤ n− 1.

This means that no projection prI B of B where I ( n is an h.d.-automorphism of S, therefore

B satisfies property (ii) of Definition 5.0.9. We will now show that B satisfies property (i) of

Definition 5.0.9.

For each (x1, . . . , xn−1) ∈ prn−1B it is clear that xn =
∑n−1

i=1 cixi+δ ∈ prnB is the unique ele-

ment such that (x1, . . . , xn−1, xn) ∈ B. Let i ∈ n− 1. Recall that ci is in the field K and we showed

that ci 6= 0, therefore c−1
i ∈ K. Then for any (x1, . . . , xi−1, xi+1, . . . , xn) ∈ prn\{i}B we have that

xi = c−1
i (xn− δ−

∑
j∈n−1\{i} cjaj) is the unique element such that (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈

B. Therefore, B satisfies property (ii) of Definition 5.0.9, hence, B is an h.d.-automorphism of S.

5.3 Compatible Subuniverses that Indicate a Ternary Edge Blocker

The goal of this section is to show that, under Assumption 1, if a subdirect subuniverse B of

S × A × S contains a triple (a1, a2, a3) such that the tuples (x1, x2, x3) ∈ B with x2 = a2 yield an

automorphism of S, while those with x1 = a1 a (thick) (A,S)-cross, then one of the ternary edge

blockers Λ or Kb (b ∈ A \ S) introduced in Definition 4.2.1 is among the subuniverses of A3. This

fact will be useful in proving subsequent statements.
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Theorem 5.3.1. Suppose S is quasiprimal and let B ≤ S×A× S. Suppose that there exists some

(a1, a2, a3) ∈ B such that B(x1, a2, x3) = σ, for some σ ∈ Aut(S). Then the following implications

hold.

(i) If B(a1, x2, x3) = κb,a3, for some b ∈ A \ S, then Kb ≤ A3.

(ii) If B(a1, x2, x3) = λS,a3, then Λ ≤ A3.

Proof. To prove this Theorem, we will show that for each s ∈ S, the subuniverse B(x1, x2, s) of A2

can be described as follows:

B(x1, x2, s) =


κ−1
b,σ−1(s)

, if B(a1, x2, x3) = κb,a3 ,

λ−1
S,σ−1(s)

, if B(a1, x2, x3) = λS,a3 .

(5.2)

Therefore, if B(a1, x2, x3) = κb,a3 , then B(x1, x2, s) = κ−1
b,σ−1(s)

= ({σ−1(s)} ×A) ∪ (S × {b}) and

B =
⋃
s∈S

(B(x1, x2, s)× {s})

=
⋃
s∈S

(
({σ−1(s)} ×A× {s}) ∪ (S × {b} × {s})

)
= (

⋃
s∈S

({σ−1(s)} ×A× {s})) ∪ (S × {b} × S)

= {(σ−1(x), y, x) : x ∈ S, y ∈ A} ∪ (S × {b} × S)

= {(x, y, σ(x)) : x ∈ S, y ∈ A} ∪ (S × {b} × S)

= Kb,σ.
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While, if B(a1, x2, x3) = λS,a3 , then B(x1, x2, s) = λ−1
S,σ−1(s)

= ({σ−1(s)} ×A) ∪ S2 and

B =
⋃
s∈S

(B(x1, x2, s)× {s})

=
⋃
s∈S

(
({σ−1(s)} ×A× {s}) ∪ (S2 × {s})

)
= (

⋃
s∈S

({σ−1(s)} ×A× {s})) ∪ S3

= {(σ−1(x), y, x) : x ∈ S, y ∈ A} ∪ S3

= {(x, y, σ(x)) : x ∈ S, y ∈ A} ∪ S3

= Λσ.

Therefore Lemmas 4.2.3 and 4.2.2 imply that Kb ≤ A3 or Λ ≤ A3, respectively.

To show (5.2), we will first consider the binary projections pr1,3B and pr2,3B.

Claim 5.3.1.1. pr1,3B = S2.

Proof of claim. The assumption that B ≤ S × A × S implies pr1,3B ≤ S2. We will show that

({a1} × S) ∪ σ ⊆ pr1,3B, therefore, by Theorem 3.1.5, pr1,3B = S2.

Since B(a1, x2, x3) is a (thick) (A,S)-cross, we get that pr3B(a1, x2, x3) = S. Then, for each

s ∈ S there exists some as ∈ A such that (as, s) ∈ B(a1, x2, x3), therefore (a1, as, s) ∈ B, which

means {a1} × S ⊆ pr1,3B. Furthermore, pr1,3B ⊇ B(x1, a2, x3) = σ for some σ ∈ Aut(S). Thus,

({a1} × S) ∪ σ ⊆ pr1,3B, which, as previously noted, completes the proof of the claim.

Claim 5.3.1.2. pr2,3B = A× S.

Proof of claim. The assumption that B ≤ S × A × S implies pr2,3B ≤ A × S. We will show

that {a2} × S ⊆ pr2,3B and, under the assumption of each statement (i)–(ii) of the theorem,

there exists some u ∈ A \ {a2} such that {u, a2} ∩ A \ S 6= ∅ and {u} × S ⊆ pr2,3B. Then

({a2} × S) ∪ ({u} × S) ⊆ pr2,3B, a2 6= u and {u, a2} ∩ A \ S 6= ∅ implies, by Lemma 3.1.9, that

A× S ⊆ pr2,3B, hence we have equality.
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Since B(x1, a2, x3) = σ we get, for all s ∈ S, that (σ−1(s), s) ∈ B(x1, a2, x3). Then

(σ−1(s), a2, s) ∈ B, for each s ∈ S, implies {a2} × S ⊆ pr2,3B.

Clearly, B(a1, x2, x3) ⊆ pr2,3B. We are assuming that B(a1, x2, x3) is a (thick) (A,S)-cross,

therefore there exists some u ∈ A such that {u} × S ⊆ B(a1, x2, x3) ⊆ pr2,3B.

We claim that u 6= a2 and {u, a2} ∩ A \ S 6= ∅. First note that {a2} × S 6⊆ B(a1, x2, x3),

otherwise we would have that {a1} × {a2} × S ⊆ B which implies {a1} × S ⊆ B(x1, a2, x3) = σ, a

contradiction. Then {u} × S ⊆ B(a1, x2, x3) implies u 6= a2. Furthermore, if B(a1, x2, x3) = λS,a3 ,

then {a2} × S 6⊆ B(a1, x2, x3) implies a2 ∈ A \ S. While if B(a1, x2, x3) = κb,a3 , then {u} × S ⊆

B(a1, x2, x3) implies u = b, where b ∈ A \ S. Hence, in both cases we get that {u, a2} ∩A \ S 6= ∅.

We have shown that ({a2} × S) ∪ ({u} × S) ⊆ pr2,3B, with a2 6= u and either u ∈ A \ S or

a2 ∈ A \ S, which completes the proof of this claim.

We will now show that (5.2) holds. Let s be an arbitrary element of S and consider the

subuniverse B(x1, x2, s) ⊆ pr1,2B ≤ S×A. By Claims 5.3.1.1 and 5.3.1.2, we have that S × {s} ⊆

S2 = pr1,3B and A×{s} ⊆ A×S = pr2,3B, therefore B(x1, x2, s) ≤s.d. S×A. From Theorem 3.1.5,

we get that B(x1, x2, s) is one of the following,

B(x1, x2, s) =



S ×A,

an isomorphism S→ A/θ,

an (S,A)-cross, or

a thick (S,A)-cross.

First note that B(x1, x2, s) 6= S×A. Otherwise, we get that S×{a2} ⊆ S×A = B(x1, x2, s),

which implies S ×{a2}× {s} ⊆ B and thus, S ×{s} ⊆ B(x1, a2, x3) = σ, a contradiction. Further-

more, since B(a1, x2, x3) = κb,a3 ≤ A2 or B(a1, x2, x3) = λS,a3 ≤ A2, then our assumption that S is

quasiprimal and statements (vi) and (vii) of Corollary 3.2.5, respectively, imply that B(x1, x2, s)−1

is not an isomorphism from A/θ to S. Therefore it must be that B(x1, x2, s) is a (thick) (S,A)-cross.

Now we will consider the two cases treated in statements (i)–(ii) of the theorem separately.

Suppose first that B(a1, x2, x3) = κb,a3 ≤ A2 for some b ∈ A \ S. Since S is quasiprimal it
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follows from statements (ii) and (iv) of Corollary 3.2.5 that B(x1, x2, s)−1 = κb,v, for some v ∈ S,

thus B(x1, x2, s) = κ−1
b,v . Next, suppose that B(a1, x2, x3) = λS,a3 . Since S is quasiprimal we

can infer from statement (ii) of Corollary 3.2.5 that B(x1, x2, s)−1 = λS,v, for some v ∈ S, thus

B(x1, x2, s) = λ−1
S,v.

We claim that, in either case, v = σ−1(s). Since B(x1, a2, x3) = σ, we have that (σ−1(s), s) ∈

B(x1, a2, x3) and S × {s} 6⊆ B(x1, a2, x3). Therefore, (σ−1(s), a2, s) ∈ B and S × {a2} × {s} 6⊆ B,

which means (σ−1(s), a2) ∈ B(x1, x2, s) and S × {a2} 6⊆ B(x1, x2, s). Thus, B(x1, x2, s) = κ−1
b,v or

λ−1
S,v implies v = σ−1(s),

Since s ∈ S was arbitrary, we have shown the following. If B(a1, x2, x3) = κb,a3 , then for each

s ∈ S, B(x1, x2, s) = κ−1
b,σ−1(s)

. On the other hand, if B(a1, x2, x3) = λS,a3 , then for each s ∈ S,

B(x1, x2, s) = λ−1
S,σ−1(s)

. Therefore, as we saw at the start of the proof, this completes the proof of

the Theorem.

Corollary 5.3.2. Suppose that A satisfies Assumption 1, S is quasiprimal, and θ is a congruence

on A. Suppose B ≤ S×A×S and let B′ = ρ(B) be the image of B under the natural homomorphism

ρ : S×A× S→ S×A/θ × S. Suppose that there exists a tuple (a1, a2/θ, a3) ∈ B′, where, for some

b ∈ A/θ and some σ ∈ Aut(S), B′(a1, x2, x3) = κb,a3
and B′(x1, a2/θ, x3) = σ. Then either Λ ≤ A3

or Kb ≤ A3 and b 6= S.

Proof. Under the assumptions of the corollary, let D be the full inverse image of B′ under ρ. Then

D is a subuniverse of S× A× S, (a1, a2, a3) ∈ D, D(x1, a2, x3) = σ ∈ Aut(S), and

D(a1, x2, x3) =


λS,a3 , if b = S,

κb,a3 , otherwise.

Then D satisfies the assumptions of Theorem 5.3.1, therefore the assertions of the corollary follows.

5.4 Reduced Subuniverses Are θ-Closed in their A-coordinates

In this section we will consider algebras A which satisfy the following assumption.
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Assumption 2. A is a finite idempotent algebra with a unique proper nontrivial subalgebra S such

that |S| > 2, |A \ S| > 1 (that is, A satisfies Assumption 1), and one of the following conditions

holds for S:

(A) S is affine and λS,s, κb,s 6≤ A2 for any s ∈ S, b ∈ A \ S;

(Q) S is quasiprimal, the reduced subuniverses of A2 are θ-closed in their A-coordinates, and

Λ,Kb 6≤ A3 for any b ∈ A \ S.

The purpose of this section is to accomplish the second step of our strategy for finding a

generating set for the relational clone of such an algebra A. This will be done by proving the

following theorem.

Theorem 5.4.1. If A satisfies Assumption 2, then the reduced subuniverses of all finite powers of

A are θ-closed in their A-coordinates.

Proof. Suppose that A satisfies Assumption 2. By Proposition 2.2.8, the conclusion of the theorem

will follow if we show that every reduced subuniverse of a finite power of A is θ-closed in each

A-coordinate. Therefore we will assume that there exists a reduced subuniverse of a finite power of

A that is not θ-closed in some A-coordinate and show that this assumption induces a contradiction.

Let n be minimal such that there exists a reduced subuniverse, B, of An, such that priB = A

for some 1 ≤ i ≤ n and B is not θ-closed in its ith coordinate. We must have n ≥ 2, because if

n = 1 and B is reduced, then B = S or B = A, so B is θ-closed in its A-coordinates. In fact, we

must have n ≥ 3. If S is quasiprimal, this is clear, since Assumption 2 (Q) forces that all reduced

subuniverses of A2 are θ-closed in their A-coordinates. Now suppose that S is affine. Then νs 6≤ A2

for all s ∈ S, and therefore statements (vi) and (vii) of Proposition 3.2.1 imply that µs 6≤ A2 and

ντs 6≤ A2 hold for all s ∈ S and all fixed-point free permutations τ of A \ S. Assumption 2 (A),

combined with statement (ix) of Proposition 3.2.1 shows that χs,s 6≤ A2 and χS,s 6≤ A2 hold for all

s ∈ S. Therefore, by inspecting the possible subuniverses of A2 listed in Theorem 3.1.5 we conclude

that all reduced subuniverses of A2 are θ-closed in their A-coordinates.
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Thus n ≥ 3. By permuting coordinates if necessary, we may assume that i = n, so B is a

reduced subuniverse of An such that prnB = A and B is not θ-closed in its last coordinate. Hence,

there exists some a ∈ B that satisfies an ∈ S, and {a1}× · · · × {an−1}×S 6⊆ B. We will contradict

the assumption that such a subuniverse B exists by showing that the following three lemmas hold.

Lemma 5.4.2. Suppose that A satisfies Assumption 2, n ≥ 3, and the reduced subuniverses of

An−1 are θ-closed in their A-coordinates. Let B be a reduced subuniverse of An, prnB = A, and

a ∈ B where an ∈ S and {a1} × · · · × {an−1} × S 6⊆ B. Then one of the following cases holds.

Either,

(I’) there exists 1 ≤ j ≤ n− 1 such that

• Bj is an isomorphism A/θ → S, prj,nB = A2, and B(x1, . . . , xj−1, aj , xj+1, . . . , xn) is

an h.d.-automorphism of A, and

• for all 1 ≤ i ≤ n − 1, i 6= j, Bi is an automorphism of S or A, pri,nB 6= A2, and

B(x1, . . . , xi−1, ai, xi+1, . . . , xn) is reduced,

or

(II’) for all 1 ≤ i ≤ n − 1, Bi = λS,an, pri,nB = χS,S, and B(x1, . . . , xi−1, ai, xi+1, . . . , xn) is

reduced.

Lemma 5.4.3. Under the assumptions of Lemma 5.4.2, case (I’) of Lemma 5.4.2 cannot occur.

Lemma 5.4.4. Under the assumptions of Lemma 5.4.2, case (II’) of Lemma 5.4.2 cannot occur.

The proof of these lemmas will be postponed. We begin with a sequence of claims.

The subuniverses of A2 that are defined by B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn), i ∈ n− 1,

will play an important role in the proof of this theorem. Therefore, for i ∈ n− 1, we will denote

the ith such subuniverse by Bi := B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn). The following claim states

important properties of Bi, for all i ∈ n− 1.
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Claim 5.4.4.1. Under the assumptions of Lemma 5.4.2, Bi satisfies the following properties for

all i ∈ n− 1,

(1) (ai, an) ∈ Bi, where an ∈ S and {ai} × S 6⊆ Bi,

(2) S ⊆ prnBi and {ai} × S ⊆ pri,nB,

(3) S ⊆ priBi,

(4) Bi =



an automorphism of A,

an automorphism of S,

an isomorphism A/θ → S, given that θ ∈ Con(A),

κb,an ,

λS,an .

Proof of claim. WLOG, we will prove that properties (1) – (4) hold forB1 = B(x1, a2, . . . , an−1, xn).

[(1)] This property clearly follows from the assumption that (a1, . . . , an) ∈ B, an ∈ S and

{a1} × · · · × {an − 1} × S 6⊆ B.

[(2)] Since B is reduced we get, from Lemma 5.1.4, that the projection, prn\{1}B, is a reduced

subuniverse of An−1. Furthermore, prn(prn\{1}B) = prnB = A. Therefore, by the minimality of

n, prn\{1}B is θ-closed in its last coordinate. Thus (a2, . . . , an) ∈ prn\{1}B, where an ∈ S, implies

{a2} . . . {an−1} × S ⊆ prn\{1}B, which means S ⊆ prnB(x1, a2, . . . , an−1, xn) = prnB1.

A similar proof shows that S ⊆ prnB2 = prnB(a1, x2, a3, . . . , an−1, xn). Therefore, for all

s ∈ S, there exists some cs ∈ A such that (cs, s) ∈ B2, which means (a1, cs, a3, . . . , an−1, s) ∈ B.

Then (a1, s) ∈ pr1,nB, for all s ∈ S. Therefore {a1} × S ⊆ pr1,nB.

[(3)] Recall that |S| ≥ 2 and an ∈ S, therefore there exists an element s ∈ S \ {an}. From

property (2), S ⊆ prnB1 implies that there exists some cs ∈ A such that (cs, s) ∈ B1. We claim

that cs 6= a1, otherwise if cs = a1, then (a1, an), (a1, s) = (cs, s) ∈ B1 and an 6= s implies, by

Lemma 3.1.7, that {a1}×S ⊆ B1, which contradicts property (1). Therefore a1 and cs are distinct

elements in pr1B1. Thus pr1B1 is a nontrivial subuniverse of A, which means S ⊆ pr1B1.



89

[(4)] By properties (2) and (3) the unary projections of B1 are nontrivial. Thus if B1 is

not reduced then it must be an automorphism of A or S. Suppose that B1 is reduced. Since the

reduced subuniverses of A2 are θ-closed in their A-coordinates and property (1) implies that B1

is not θ-closed in its last coordinate, it must be that prnB1 = S. Property (1) also implies that

B1 6= S × S and B1 6= A × S. By Assumption 2, S is quasiprimal or affine, therefore there is

no (S, S)-cross among the subuniverses of A2. Hence, by Theorem 3.1.5, if B1 is reduced, then

B1 is either an isomorphism from A/θ to S, an (A,S)-cross, or a thick (A,S)-cross. This proves

property (4) and completes the proof of the claim.

Property (4) of Claim 5.4.4.1 narrows the possibilities for each subuniverse Bi. We will now

show that, in fact, there are only three possible cases that all of the subuniverses Bi, 1 ≤ i ≤ n− 1,

may simultaneously satisfy. This is the first step in showing that Lemma 5.4.2 holds.

Claim 5.4.4.2. Under the assumptions of Lemma 5.4.2, one of the following cases holds. Either

(I) for all 1 ≤ i ≤ n− 1,

Bi =



an automorphism of S,

an automorphism of A,

an isomorphism A/θ → S,

and there exists some j ∈ n− 1 such that Bj is an isomorphism A/θ → S, or

(II) Bi = λS,an, for all 1 ≤ i ≤ n− 1, or

(III) there exists some b ∈ A \ S such that Bi = κb,an, for all 1 ≤ i ≤ n− 1.

Proof of claim. From property (4) of Claim 5.4.4.1 we know that, for each i ∈ n− 1, the subuniverse

Bi is either an automorphism of S, an automorphism of A, an isomorphism from A/θ → S, an

(A,S)-cross, or a thick (A,S)-cross.

First suppose that no subuniverse Bi is an automorphism of S, an automorphism of A, or an

isomorphism from A/θ → S. Then by property (4) of Claim 5.4.4.1, each Bi is either an (A,S)-cross
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or a thick (A,S)-cross. By property (ii) of Corollary 3.2.5, either Bi is a thick (A,S)-cross, for all

1 ≤ i ≤ n − 1, or Bi is an (A,S)-cross, for all 1 ≤ i ≤ n − 1. If Bi is a thick (A,S)-cross, for all

1 ≤ i ≤ n− 1, then for each i ∈ n− 1, there exists some si ∈ S such that Bi = λS,si . In this case

let G = S. Otherwise Bi is an (A,S)-cross, for all 1 ≤ i ≤ n− 1, and by statements (i) and (iv) of

Corollary 3.2.5 we get that there exists b ∈ A \ S such that, for each i ∈ n− 1, there exists some

si ∈ S such that Bi = κb,si . In this case let G = {b}. Then, in either case, G×S ⊆ Bi which means,

by property (1) of Claim 5.4.4.1, that ai /∈ G, 1 ≤ i ≤ n − 1. Thus, (ai, an) ∈ Bi ∈ {λS,si , κb,si}

and ai /∈ G implies si = an for all 1 ≤ i ≤ n − 1, therefore (II) or (III) holds. It remains to show

that, in all other cases, (I) holds.

Suppose that there exists some j ∈ n− 1 such that Bj is either an automorphism of S, or an

automorphism of A, or an isomorphism from A/θ → S. We will complete the proof of the claim by

first showing some subclaims.

Subclaim 5.4.4.2.1. There exists no {i, j} ⊆ n− 1, i 6= j, such that Bi is an automorphism of S

or an automorphism of A and Bj is a (thick) (A,S)-cross.

Proof of subclaim. Suppose, for contradiction, that {i, j} ⊆ n− 1, i 6= j, such that Bi is an au-

tomorphism of S or an automorphism of A and Bj is a (thick) (A,S)-cross. The later implies,

by Assumption 2, that S is quasiprimal. We will assume, WLOG, that i = 1, j = 2. Then

B(x1, x2, a3, . . . , an−1, xn) is a subuniverse of A3 and thus B(x1, x2, a3, . . . , an−1, xn) ∩ (S × A ×

S) ≤ S × A × S. Let C := B(x1, x2, a3, . . . , an−1, xn) ∩ (S × A × S). Then C(x1, a2, xn) =

B(x1, a2, a3, . . . , an−1, xn) ∩ (S × S) = B1 ∩ S2, therefore C(x1, a2, xn) is an automorphism of S.

Now (a1, an) ∈ C(x1, a2, xn) and an ∈ S imply that a1 ∈ S. A similar argument shows that

C(a1, x2, x3) = B2 ∩ (A× S). Since B2 is a (thick) (A,S)-cross, it follows that C(x1, a2, x3) = B2

is a (thick) (A,S)-cross. Therefore, we have shown that C ≤ S × A × S and there exists a tuple

(a1, a2, an) ∈ C such that C(x1, a2, xn) is an automorphism of S and C(a1, x2, xn) is a (thick)

(A,S)-cross. Recall that S is quasiprimal. Then applying Theorem 5.3.1 to C and the tuple

(a1, a2, an) gives that either Λ or Kb is a subuniverse of A3 for some b ∈ A \ S, which contradicts
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Assumption 2 (Q). This completes the proof of the subclaim.

Subclaim 5.4.4.2.2. There exists no {i, j} ⊆ n− 1, i 6= j, such that Bi is an isomorphism from

A/θ to S and Bj is either an (A,S)-cross or a thick (A,S)-cross.

Proof of subclaim. Suppose that Bi is an isomorphism from A/θ to S, for some i ∈ n− 1. We

are assuming that S is either quasiprimal or affine, thus it follows from properties (vi) and (vii)

of Corollary 3.2.5, respectively, that there is no (A,S)-cross and no thick (A,S)-cross among the

subuniverses of A2. The subclaim follows.

Subclaim 5.4.4.2.3. There exists some 1 ≤ i ≤ n − 1, such that Bi is neither an automorphism

of S nor an automorphism of A.

Proof of subclaim. Suppose, for contradiction, that Bi is an automorphism of S or an automorphism

of A for all 1 ≤ i ≤ n − 1. Then Bi ∩ S2 ∈ Aut(S), for all 1 ≤ i ≤ n − 1. By property (1) of

Claim 5.4.4.1, we have that (ai, an) ∈ Bi and an ∈ S, therefore ai ∈ S, for all 1 ≤ i ≤ n, which

means (a1, . . . , an) ∈ B ∩ Sn.

Let B̂ = B ∩ Sn. Then B̂ is a subuniverse of Sn that satisfies (a1, . . . , an) ∈ B̂ and

B̂(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn) is an automorphism of S, for all 1 ≤ i ≤ n − 1. Recall that

n ≥ 3 and S is either quasiprimal or affine. Under these assumptions on B̂ we get that B̂ satisfies

the assumptions of Proposition 5.2.4, therefore it follows from applying statements (i) and (ii) of

Proposition 5.2.4 that S must be affine and that B̂ = B ∩ Sn is an h.d.-automorphism of S. Since

prnB = A, we have that B 6≤ B ∩ Sn, therefore it follows from Corollary 5.2.3 that B is an h.d.-

automorphism of A. This contradicts our assumption that B is reduced and completes the proof

of the subclaim.

To sum up, recall that we are considering the case when there exists some 1 ≤ j ≤ n−1 such

that Bj is either an automorphism of S, or an automorphism of A, or an isomorphism from A/θ → S.

Thus we get from Subclaims 5.4.4.2.1 and 5.4.4.2.2, that, in fact, for every 1 ≤ i ≤ n−1, Bi is either

an automorphism of S, an automorphism of A, or an isomorphism from A/θ → S. Furthermore, by



92

Subclaim 5.4.4.2.3, there exists some 1 ≤ j ≤ n− 1 such that Bj is an isomorphism from A/θ → S.

Therefore (I) holds.

This completes the proof of Claim 5.4.4.2.

We must show three more claims before proving Lemma 5.4.2.

Claim 5.4.4.3. Under the assumptions of Lemma 5.4.2, the following implications hold.

(i) If case (I) of Claim 5.4.4.2 holds and Bi is an isomorphism A/θ → S, for some i ∈ n− 1,

then pri,nB = A2.

(ii) If case (II) of Claim 5.4.4.2 holds, then, for any i ∈ n− 1, pri,nB =


χS,S

A2

.

(iii) If case (III) of Claim 5.4.4.2 holds, then, for any i ∈ n− 1, pri,nB = A2.

Proof of claim. Since B is reduced and prnB = A, the binary projection pri,nB is a reduced

subuniverse of A2 that contains some tuple (wi, wn), where wn ∈ A \ S. Since prn(pri,nB) =

prnB = A, it follows from the minimality of n and n ≥ 3 that pri,nB is θ-closed in its second

coordinate.

Suppose that B satisfies the assumptions of (i), (ii), or (iii). Then Bi ⊆ pri,nB, where

Bi is either an isomorphism A/θ → S, a thick (A,S)-cross, or an (A,S)-cross. We showed that

pri,nB is θ-closed in its second coordinate, therefore, in all cases we get that A × S ⊆ pri,nB.

Thus (A × S) ∪ {(wi, wn)} ⊆ pri,nB, where wn ∈ A \ S, which implies, in particular, that both

coordinates of pri,nB are A-coordinates. Hence we get from Theorem 3.1.5 that pri,nB = A2 or

χS,S .

It is clear that if case (II) of Claim 5.4.4.2 holds, then implication (ii) holds.

If case (III) of Claim 5.4.4.2 holds, then κb,a3 ≤ A2 for some b ∈ A \ S. By property (iii) of

Corollary 3.2.5, χS,S 6≤ A2, therefore implication (iii) holds.

Finally, if case (I) of Claim 5.4.4.2 holds and Bi is an isomorphism A/θ → S, then our

assumption that S is either quasiprimal or affine and statement (v) of Corollary 3.2.5 imply that
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χS,S 6≤ A2. Hence implication (i) holds. This completes the proof of the claim.

Claim 5.4.4.4. Under the assumptions of Lemma 5.4.2, if n = 3, then case (I) of Claim 5.4.4.2

does not hold.

Proof of claim. Suppose, for contradiction, that n = 3 and case (I) of Claim 5.4.4.2 holds. WLOG,

suppose that B1 = B(x1, a2, x3) is an isomorphism from A/θ to S.

By Claim 5.4.4.3 we have that pr1,3B = A2. Let a ∈ A. Then {a} × A ⊆ A2 = pr1,3B

implies that for each c ∈ A there exists some c′ ∈ A such that (a, c′, c) ∈ B. Therefore, B(a, x2, x3)

is a subuniverse of A2 and pr3B(a, x2, x3) = A.

Since B1 = B(x1, a2, x3) is an isomorphism from A/θ to S, we get that for each a ∈ A

there exists some as ∈ S such that (a, as) ∈ B(x1, a2, x2) and {a} × S 6⊆ B(x1, a2, x2). Thus

(a, a2, as) ∈ B, where as ∈ S and {a} × {a2} × S 6⊆ B.

Under the assumptions of Claim 5.4.4.4 we have that the assumptions of Lemma 5.4.2 hold.

Then replacing the tuple (a1, a2, a3) with the tuple (a, a2, as) ∈ B, we get that B and the tuple

(a, a2, as) ∈ B satisfy the assumptions of Claim 5.4.4.1. Therefore when we apply Claim 5.4.4.1

to the tuple (a, a2, as) in place of (a1, a2, a3), we get from property (4) of Claim 5.4.4.1 that

B(a, x2, x3) is either an automorphism of S, an automorphism of A, an isomorphism from A/θ to

S, or a (thick) (A,S)-cross. Since we have that pr3B(a, x2, x3) = A, it must be that B(a, x2, x3)

is an automorphism of A. The element a was an arbitrary element in A, thus, for all a ∈ A,

B(a, x2, x3) = σa, where σa is an automorphism of A. This implies that pr2,3B ⊆ S2∪ (A\S)2 and

both coordinates of pr2,3B are A-coordinates. Since B is reduced, we know from Proposition 5.1.4

that pr2,3B is reduced, therefore it follows from Theorem 3.1.5 that pr2,3B is an automorphism

of A/θ that fixes S. Let pr2,3B := σ. Since σa = B(a, x2, x3) ⊆ pr2,3B = σ for all a ∈ A,

we get that σa|A\S = σ|A\S . Thus, by Lemma 3.0.6, σa = σa′ , for all distinct a, a′ ∈ A, which

means B(a, x2, x3) = σa = B(a′, x2, x3). Therefore, B = {(y, x, σa(x)) : y, x ∈ A}, which implies

pr2,3B = σa ∈ Aut(A), a contradiction to the fact that the binary projections of B are reduced.

We have one more claim to show before proving Lemma 5.4.2.
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Claim 5.4.4.5. Under the assumptions of Lemma 5.4.2, for all 1 ≤ i ≤ n − 1, the subuniverse

B(x1, . . . , xi−1, ai, xi+1, . . . , xn) ≤ An−1 is either reduced or it is an h.d.-automorphism of S or A.

Proof of claim. WLOG, we will prove the claim for the subuniverse B(a1, x2, . . . , xn) ≤ An−1.

Subclaim 5.4.4.5.1. No unary projection of B(a1, x2, . . . , xn) is a singleton.

Proof of subclaim. Let i be arbitrary, 2 ≤ i ≤ n− 1. Then the unary projection

priB(a1, x2, . . . , xn) ⊇ priB(a1, a2, . . . , ai−1, xi, ai+1, . . . , an−1, xn) = priBi.

Property (3) of Claim 5.4.4.1 implies that S ⊆ priBi, therefore S ⊆ priBi ⊆ priB(a1, x2, . . . , xn).

Furthermore, prnB(a1, x2, . . . , xn) ⊇ prnB(a1, x2, a3, . . . , an−1, xn) = prnB2 and from property (2)

of Claim 5.4.4.1 we have that S ⊆ prnB2, thus S ⊆ prnB2 ⊆ prnB(a1, x2, . . . , xn). Hence no unary

projection of B(a1, x2, . . . , xn) is a singleton.

Subclaim 5.4.4.5.2. If n = 3, then B(a1, x2, x3) is not an automorphism of S or A.

Proof of subclaim. Suppose, for contradiction, that B(a1, x2, x3) is an automorphism of S or an

automorphism of A. Then cases (II) and (III) of Claim 5.4.4.2 cannot hold for B, therefore it

must be that case (I) of Claim 5.4.4.2 holds, which contradicts Claim 5.4.4.4. This proves the

subclaim.

Subclaim 5.4.4.5.3. If n ≥ 4, then for 2 ≤ m ≤ n−2, no m-ary projection of B(a1, x2, . . . , xn) is

an automorphism of S, an automorphism of A, an h.d.-automorphism of S or an h.d.-automorphism

of A.

Proof of subclaim. Let n ≥ 4 and 2 ≤ m ≤ n−2. Suppose, for contradiction, that there exists some

I ⊆ n\{1}, where |I| = m, such that the projection prI B(a1, x2, . . . , xn) is either an automorphism

of S, an automorphism of A, an h.d.-automorphism of S or an h.d.-automorphism of A. There are

two cases to be considered: the case when n 6∈ I and the case when n ∈ I.

First suppose that n 6∈ I. WLOG, permute the coordinates of B so that I = {2, . . . ,m+ 1}.

Recall that automorphisms and h.d.-automorphisms share the property that if one fixes all but one
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of the coordinates of a tuple from the relation, then there is exactly one element that can satisfy

the remaining coordinate. Since a ∈ B implies (a2, . . . , am, am+1) = aI ∈ prI B(a1, x2, . . . , xn) and

prI B(a1, x2, . . . , xn) is either an automorphism of S, an automorphism of A, an h.d.-automorphism

of S or an h.d.-automorphism of A, it follows that

prm+1B(a1, a2, . . . , am, xm+1, xm+2, . . . , xn) = {am+1}.

However, by property (3) of Claim 5.4.4.1, we have that

S ⊆ prm+1Bm+1 = prm+1B(a1, a2 . . . , am, xm+1, am+2, . . . , an−1, xn)

⊆ prm+1B(a1, a2, . . . , am, xm+1, xm+2, . . . , xn−1, xn) = {am+1},

which is a contradiction.

Suppose that n ∈ I. WLOG, permute the coordinates of B so that I = {2, . . . ,m − 1, n}.

Then a ∈ B implies (a2, . . . , am−1, an) = aI ∈ prI B(a1, x2, . . . , xn). Therefore, by our assumptions

on prI B(a1, x2, . . . , xn), we get that

prnB(a1, a2, . . . , am−1, xm, xm+1, . . . , xn) = {an}.

However, by property (2) of Claim 5.4.4.1, we have that

S ⊆ prnBm = prnB(a1, a2 . . . , am−1, xm, am+1, . . . , an−1, xn)

⊆ prnB(a1, a2, . . . , am−1, xm, xm+1, . . . , xn−1, xn) = {an},

therefore we have a contradiction. The proof of the subclaim is complete.

We have shown in Subclaims 5.4.4.5.1 and 5.4.4.5.3 that, for 1 ≤ m ≤ n − 2, no m-ary

projection of B(a1, x2, . . . , xn) is a singleton, an automorphism of S, an automorphism of A, an

h.d.-automorphism of S, or an h.d.-automorphism of A. Furthermore, we have shown in Sub-

claim 5.4.4.5.2 that for n = 3, B(a1, x2, x3) itself is not an automorphism of S or A. Additionally,

since B(a1, x2, x3) ≤ A2, it is clear from Definition 5.0.9 that B(a1, x2, x3) ≤ A2 cannot be an

h.d.-automorphism of S or A. Therefore it follows from Definition 5.1.1 that B(a1, x2, . . . , xn) is

either reduced or it is an h.d.-automorphism of S or A. This completes the proof of the claim.
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We are now ready to prove Lemma 5.4.2.

Proof of Lemma 5.4.2. First we will prove an auxiliary result.

Subclaim 5.4.4.5.4. Let i ∈ n− 1. If B(x1, . . . , xi−1, ai, xi+1, . . . , xn) is reduced then pri,nB 6=

A2.

Proof of subclaim. WLOG, we will show that the subclaim for i = 1. Suppose B(a1, x2, . . . , xn)

is reduced. It follows from our assumptions on B, that (a2, . . . , an) ∈ B(a1, x2, . . . , xn), where

an ∈ S and {a2} × · · · × {an−1} × S 6⊆ B(a1, x2, . . . , xn). Thus B(a1, x2, . . . , xn) is a reduced

subuniverse of An−1 that is not θ-closed in its last coordinate. By the minimality of n, we get

that prnB(a1, x2, . . . , xn) = S. This means, for any c ∈ A \ S there exists no u ∈ An−2 such that

(a1, u, c) ∈ B. Hence {a1} ×A 6⊆ pr1,nB, which means pr1,nB 6= A2.

Now we start proving Lemma 5.4.2. It follows from Claim 5.4.4.5 that, for each i ∈ n− 1, the

subuniverse B(x1, . . . , xi−1, ai, xi+1, . . . , xn) of An−1 is either reduced or it is an h.d.-automorphism

of S or A.

Suppose first that there exists some j ∈ n− 1 such that B(x1, . . . , xj−1, aj , xj+1, . . . , xn)

is not reduced. Then B(x1, . . . , xj−1, aj , xj+1, . . . , xn) is an h.d.-automorphism of S or an h.d.-

automorphism of A. Thus, it follows from Definition 5.0.9 that (a1, . . . , aj−1, aj+1, . . . , an) ∈

B(x1, . . . , xj−1, aj , xj+1, . . . , xn) implies Bi is the graph of a bijection priBi → prnBi for all

i ∈ n− 1 \ {j}. We know from statements (2) and (3) of Claim 5.4.4.1 that S ⊆ prnBi and

S ⊆ priBi, therefore Bi is an automorphism of S or an automorphism of A. Hence case (I) of

Claim 5.4.4.2 holds and j is unique with respect to the property that Bj is an isomorphism from

A/θ to S. Hence j is also unique with respect to the property that B(x1, . . . , xj−1, aj , xj+1, . . . , xn)

is not reduced. Thus B(x1, . . . , xi−1, ai, xi+1, . . . , xn) is reduced for all i ∈ n− 1 \ {j}, which im-

plies by Subclaim 5.4.4.5.4 that pri,nB 6= A2 for all such i. For j, the equality prj,nB = A2 was

established in Claim 5.4.4.3.
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To see that (I’) holds, it remains to verify that B(x1, . . . , xj−1, aj , xj+1, . . . , xn) is an h.d.-

automorphism of A (rather than an h.d.-automorphism of S). To simplify notation we will assume

that j = 1. We have that pr1,nB = A2, which means {a1} × A ⊆ pr1,nB. Then, for each c ∈ A,

there exists some u ∈ pr2,...,n−1B such that (a1, u, c) ∈ B. Thus prnB(a1, x2, . . . , xn) = A. Hence

B(a1, x2, . . . , xn) is not an h.d.-automorphism of S, it must be an h.d.-automorphism of A. This

shows that if B(x1, . . . , xj−1, aj , xj+1, . . . , xn) is not reduced for some 1 ≤ j ≤ n−1, then (I’) holds.

Now suppose that B(x1, . . . , xi−1, ai, xi+1, . . . , xn) is reduced, for all 1 ≤ i ≤ n − 1. Then it

follows from Subclaim 5.4.4.5.4 that pri,nB 6= A2, for all 1 ≤ i ≤ n− 1. Reviewing Claim 5.4.4.3,

we see that if pri,nB 6= A2, for all 1 ≤ i ≤ n− 1, then only case (II) of Claim 5.4.4.2 can hold with

pri,nB = χS,S , for all 1 ≤ i ≤ n− 1. This shows (II’).

To finish the proof of this theorem it remains to prove Lemmas 5.4.3 and 5.4.4, that is, we

must show that cases (I’) and (II’) of Lemma 5.4.2 each cannot occur. We will first show that

case (I’) of Lemma 5.4.2 cannot occur, thus proving Lemma 5.4.3.

Proof of Lemma 5.4.3. Suppose, for contradiction, that case (I’) of Lemma 5.4.2 holds. Then

Claim 5.4.4.4 implies that n > 3. WLOG, suppose j = 1 is the unique element of n− 1 such that

the subuniverse B1 is an isomorphism A/θ → S. Then, by Lemma 5.4.2, B(a1, x2, . . . , xn) is an

h.d.-automorphism of A, so S is affine.

Subclaim 5.4.4.5.5. If B1 is an isomorphism from A/θ to S, then for each a ∈ A, there exists

some sa ∈ S such that the tuple (a, a2, . . . , an−1, sa) ∈ B and {a} × {a2} × · · · × {an−1} × S 6⊆ B.

Proof of subclaim. Suppose that B1 is an isomorphism from A/θ to S. Then for all a ∈ A, there

exists some sa ∈ S such that (a, sa) ∈ B1 and {a}×S 6⊆ B1. Since B1 = B(x1, a2, . . . , an−1, xn), this

means the tuple (a, a2, . . . , an−1, sa) ∈ B, where sa ∈ S and {a}×{a2}× · · ·×{an−1}×S 6⊆ B.

Subclaim 5.4.4.5.6. If B1 is an isomorphism from A/θ to S, then for each a ∈ A the subuniverse

B(a, x2, . . . , xn) of An\{1} is an h.d.-automorphism of A.
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Proof of subclaim. Let B1 an isomorphism from A/θ to S and let a ∈ A. From Subclaim 5.4.4.5.5,

there exists a tuple (a, a2, . . . , an−1, sa) ∈ B, where sa ∈ S and {a}× {a2}× · · · × {an−1}×S 6⊆ B.

Under the assumptions of Lemma 5.4.3 we have that the assumptions of Lemma 5.4.2 hold. Then

replacing the tuple (a1, . . . , an) with the tuple (a, a2, . . . , an−1, sa) ∈ B, we get that B and the

tuple (a, a2, . . . , an−1, sa) ∈ B satisfy the assumptions of Lemma 5.4.2. Since the assumption that

B1 is an isomorphism A/θ → S implies, by Lemma 5.4.2, that pr1,nB = A2 and pri,nB 6= A2 for

i = 2, . . . , n − 1, therefore when we apply Lemma 5.4.2 to the tuple (a, a2, . . . , an−1, sa) in place

of (a1, a2, . . . , an−1, an), the only case possible for (a, a2, . . . , an−1, sa) is again case (I’) with j = 1.

This shows that B(a, x2, . . . , xn) is an h.d.-automorphism of A, as claimed.

It follows from Corollary 5.2.3 that for each a ∈ A,

B(a, x2, . . . , xn) = (B(a, x2, . . . , xn) ∩ Sn−1) ∪ σa

where σa = {(x, πa3(x), . . . , πan(x)) : x ∈ A \ S} and πai is an automorphism of A/θ that fixes S, for

all 3 ≤ i ≤ n.

Subclaim 5.4.4.5.7. For all distinct a, a′ ∈ A, σa = σa′.

Proof of subclaim. Let a, a′ ∈ A, a 6= a′. Suppose that σa = {(x, π3(x), . . . , πn(x)) : x ∈ A \ S} and

σa′ = {(x, γ3(x), . . . , γn(x)) : x ∈ A \ S}, where πi and γi are automorphisms of A/θ that fix S, for

all 3 ≤ i ≤ n. Let i ∈ {3, . . . , n}. Then pr2,iB ⊇ {(x, πi(x)) : x ∈ A \ S} ∪ {(x, γi(x)) : x ∈ A \ S}.

Since pr2,iB = pr2,i(
⋃
a∈AB(a, x2, . . . , xn)) =

⋃
a∈A(pr2,iB(a, x2, . . . , xn)) ⊆ S2 ∪ (A \ S)2 and

pr2,iB ≤ A2 we have that pr2,iB is an automorphism of A/θ that fixes S, therefore it must be that

πi(x) = γi(x), for all x ∈ A \ S. The element i ∈ {3, . . . , n} was arbitrary, hence σa = σa′ .

If follows from Subclaim 5.4.4.5.7 that, for all a ∈ A,

B(a, x2, . . . , xn) = (B(a, x2, . . . , xn) ∩ Sn−1) ∪ σ,
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where σ = {(x, π3(x), . . . , πn(x)) : x ∈ A \ S} and πi is an automorphism of A/θ that fixes S, for

all 3 ≤ i ≤ n.

Furthermore, for each a ∈ A, we have shown that B(a, x2, . . . , xn) is an h.d.-automorphism

of A, therefore there exists a map

fa : pr2,...,n−1B(a, x2, . . . , xn)→ prnB(a, x2, . . . , xn) : (x2, . . . , xn−1) 7→ xn,

where xn is the unique element of prnB(a, x2, . . . , xn) such that (x2, . . . , xn−1, xn) ∈ B(a, x2, . . . , xn).

Subclaim 5.4.4.5.8. Let c ∈ A \ S, c′ ∈ A, c 6= c′. Then fc(s2, . . . , sn−1) 6= fc′(s2, . . . , sn−1) for

all (s2, . . . , sn−1) ∈ Sn−2.

Proof of subclaim. Suppose, for contradiction, that there exists some (s2, . . . , sn−1) ∈ Sn−2 such

that fc(s2, . . . , sn−1) = fc′(s2, . . . , sn−1). Then there exists some sn ∈ S such that fc(s2, . . . , sn−1) =

sn = fc′(s2, . . . , sn−1).

We claim that A×{s2}× · · · × {sn} ⊆ B. From fc(s2, . . . , sn−1) = sn = fc′(s2, . . . , sn−1), we

get that (c, s2, . . . , sn−1, sn), (c′, s2, . . . , sn−1, sn) ∈ B, thus the subuniverse B(x1, s2, . . . , sn−1, x2)

of A2 contains (c, sn), (c′, sn). Since c 6= c′ and c ∈ A \ S, it follows from Lemma 3.1.8 that

A× {sn} ⊆ B(x1, s2, . . . , sn−1, x2), thus A× {s2} × · · · × {sn} ⊆ B.

In particular, for arbitrary a ∈ A, the tuple (a, s2, . . . , sn−1, sn) ∈ B. Since B(a, x2, . . . , xn) is

an h.d.automorphism of A and (s2, . . . , sn−1, sn) ∈ B(a, x2, . . . , xn), it follows from Definition 5.0.9

that B(a, s2, . . . , sn−1, xn) = {sn}. Hence B(a, s2, . . . , sn−1, xn) = {sn}, for all a ∈ A.

Clearly, B(a, s2, . . . , sn−1, xn) = {sn} implies S 6⊆ B(a, s2, . . . , sn−1, xn), therefore we have

that (a, s2, . . . , sn−1, sn) ∈ B, where sn ∈ S and {a} × {s2} × · · · × {sn−1} × S 6⊆ B. Under

the assumptions of Lemma 5.4.3 we have that the assumptions of Lemma 5.4.2 hold. Then re-

placing the tuple (a1, . . . , an) with the tuple (a, s2, . . . , sn−1, sn) ∈ B, we get that B and the

tuple (a, s2, . . . , sn−1, sn) ∈ B satisfy the assumptions of Claim 5.4.4.1. Therefore when we ap-

ply property (2) of Claim 5.4.4.1 to the tuple (a, s2, . . . , sn−1, sn) in place of (a1, . . . , an), we get

that S ⊆ pr2B(x1, s2, . . . , sn−1, x2). Thus, for each s ∈ S, there exists some as ∈ A such that

(as, s) ∈ B(x1, s2, . . . , sn−1, x2).
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Let s ∈ S \ {sn}. Such an element exists since |S| ≥ 2. Then (as, s2, . . . , sn−1, s) ∈ B.

Furthermore, we found that A × {s1} × · · · × {sn} ⊆ B, therefore, (as, s2, . . . , sn−1, sn) ∈ B.

Then B(as, s2, . . . , sn−1, xn) is a subuniverse of A contains {s, sn}, where s 6= sn. However, this

contradicts B(as, s2, . . . , sn−1, xn) = {sn}. This completes the proof of the subclaim.

Subclaim 5.4.4.5.9. A \ S is a subuniverse of A.

Proof of subclaim. Let c ∈ A \ S, c′ ∈ A, c 6= c′. Let ∆ = {(x, x) : x ∈ A}. Let

D := {(x, x′) : there exists x ∈ An−2 such that (c, x, x), (c′, x, x′) ∈ B}.

Then D is a subuniverse of A2 and we claim that D ∩∆ = {(x, x) : x ∈ A \ S}.

By definition of D, we have that D is a subuniverse of A2. Suppose (x, x′) ∈ D. Then

there exists some (a2, . . . , an−1) ∈ An−1 such that (c, a2, . . . , an−1, x), (c′, a2, . . . , an−1, x
′) ∈ B,

which means (a2, . . . , an−1, x) ∈ B(c, x2, . . . , xn) and (a2, . . . , an−1, x
′) ∈ B(c′, x1, . . . , xn−1). By

Subclaims 5.4.4.5.6 and 5.4.4.5.7, B(c, x2, . . . , xn) and B(c′, x2, . . . , xn) are h.d.-automorphisms of

A, where

B(c, x2, . . . , xn) = (B(c, x2, . . . , xn) ∩ Sn−1) ∪ σ,

B(c′, x2, . . . , xn) = (B(c′, x2, . . . , xn) ∩ Sn−1) ∪ σ,

and σ ⊆ (A \ S)n−1. Hence (a2, . . . , an−1, x), (a2, . . . , an−1, x
′) ∈ Sn−1 ∪ (A \ S)n−1.

If (a2, . . . , an−1, x) ∈ Sn−1, then (a2, . . . , an−1) ∈ Sn−2 and by Subclaim 5.4.4.5.8, we get

that x = fc(a2, . . . , an−1) 6= fc′(a2, . . . , an−1) = x′. Therefore x 6= x′ and (x, x′) ∈ S2.

If (a2, . . . , an−1, x) ∈ (A \ S)n−1, then (a2, . . . , an−1, x), (a2, . . . , an−1, x
′) ∈ σ, hence x =

πn(a2) = x′. Hence x = x′ and (x, x′) ∈ (A \ S)2.

By the definition of σ, we get that the tuple (a, π2(a), . . . , πn(a)) ∈ σ ⊆ B(c, x1, . . . , xn−1) ∩

B(c, x1, . . . , xn−1) for any a ∈ A \ S. Thus (c, a, π2(a), . . . , πn(a)), (c′, a, π2(a), . . . , πn(a)) ∈ B for

any a ∈ A\S, which means {(x, x) : x ∈ A\S} ⊆ D. Therefore D∩∆ = {(x, x) : x ∈ A\S}. Since
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D and ∆ are subuniverses of A2 and relational clones are closed under intersections and projections,

we get that pr1(D ∩∆) = A \ S is a subalgebra of A.

Recall that S is the unique nontrivial subalgebra of A, therefore we have a contradiction to

Subclaim 5.4.4.5.9. Hence, case (I’) of Lemma 5.4.2 cannot occur.

Since case (I’) of Lemma 5.4.2 cannot occur, it must be that case (II’) of Lemma 5.4.2

holds. To complete the proof of this theorem, we will show that case (II’) cannot occur, this is

Lemma 5.4.4.

Recall from Definition 4.1.2 that if A is a finite idempotent algebra, A′ ≤ A, G ( A′, and

n ≥ 1, then the n-dimensional cross on A′ at G is

XA′,G
n := {(a1, . . . , an) ∈ (A′)n : there exists i such that ai ∈ G}.

In the case that A′ = A, we will simply write XG
n . Therefore, the n-dimensional cross on A at S is

XS
n := {(a1, . . . , an) ∈ (A)n : there exists i such that ai ∈ S}.

Notice that χS,S = XS
2 .

We must show three claims before proving Lemma 5.4.4.

Claim 5.4.4.6. Let m ≥ 3. Suppose S is quasiprimal, D is a reduced subuniverse of Am, and χS,S ≤

A2. If there exists an element (a1, . . . , am) ∈ D, where am ∈ S and {a1} × · · · × {am−1} × S 6⊆ D,

and if the subuniverse D(a1, . . . , ai−1, xi, ai+1, . . . , am−1, xm) = λS,am, for all 1 ≤ i ≤ m − 1, then

the following properties hold for D,

(i) Am−1 × {am} ⊆ D,

(ii) XS
m−1 × S ⊆ D.

Proof of claim. Let Di := D(a1, . . . , ai−1, xi, ai+1, . . . , am−1, xm). Then Di = λS,am , for all i ∈

m− 1. Since (a1, . . . , am) ∈ D, where am ∈ S and {a1} × · · · × {am−1} × S 6⊆ D, we get that

(ai, am) ∈ Di and {ai}× S 6⊆ Di, for all 1 ≤ i ≤ m− 1. Thus Di = λS,am implies ai ∈ A \ S, for all

1 ≤ i ≤ m− 1.
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We will prove the claim by inducting on m. First suppose that m = 3. Then for i = 1, 2

we have that Di = λS,a3 and ai ∈ A \ S. Thus A × {a3} ⊆ D1 ∩ D2, which means (A × {a2} ×

{a3}) ∪ ({a1} × A × {a3}) ⊆ D. Therefore D(x1, x2, a3) is a subuniverse of A2 that contains

(A × {a2}) ∪ ({a1} × A) = µa1,a2 where a1, a2 ∈ A \ S. We are assuming that χS,S ≤ A2, this

implies by property (x) of Proposition 3.2.1 that µb 6≤ A2 for any b ∈ A \ S. Therefore it follows

from Theorem 3.1.5 that D(x1, x2, a3) = A2, hence A2 × {a3} ⊆ D which proves property (i)

when m = 3. Now let s ∈ S \ {a3} and consider the subuniverse D(x1, x2, s) of A2. Since

S × {s} ⊆ λS,a3 = Di for i = 1, 2, we have that (S × {a2} × {s})∪ ({a1} × S × {s}) ⊆ D, therefore

D(x1, x2, s) ⊇ (S × {a2}) ∪ ({a1} × S) where a1, a2 ∈ A \ S. We are assuming that χS,S ≤ A2,

thus it follows from property (vi) of Proposition 3.2.4 that every automorphism of A/θ fixes S. In

particular, there is no automorphism among the subuniverses of A2 that fixes an element b ∈ A/θ

where b ∈ A \ S. Thus (S × {a2}) ∪ ({a1} × S) ⊆ D(x1, x2, s) implies, by Theorem 3.1.5, that

χS,S ⊆ D(x1, x2, s). Hence D ⊇ (A× S × {s})∪ (S ×A× {s}) = XS
2 × {s}. We chose s ∈ S \ {a3}

arbitrarily, furthermore from property (i) we have that D ⊇ A2 × {a3} ⊇ XS
2 × {a3}, therefore

D ⊇ (XS
2 ×

⋃
s∈A\{a3}

{s}) ∪ (XS
2 × {a3}) = XS

2 × S.

This proves property (ii) when m = 3.

We have shown that if the claim fails, then it must fail for some m > 3. To aid in our inductive

step we will show that if m > 3, then D(x1, . . . , xi−1, ai, xi+1, . . . , xm) is a subuniverse of Am\{i}

that satisfies the assumptions of the claim for all 1 ≤ i ≤ m−1. Fix i ∈ m− 1. The assumptions of

the claim clearly imply that (a1, . . . , ai−1, ai+1, . . . , am) ∈ D(x1, . . . , xi−1, ai, xi+1, . . . , xm), where

am ∈ S and {a1} × · · · × {ai−1} × {ai+1} × · · · × {am−1} × S 6⊆ D(x1, . . . , xi−1, ai, xi+1, . . . , xm).

Furthermore, for all j ∈ m− 1 \ {i}, D(a1, . . . , aj−1, xj , aj+1, . . . , am−1, xm) = Dj = λS,am . Lastly,

to finish showing that D(x1, . . . , xi−1, ai, xi+1, . . . , xm) satisfies the assumptions of this claim, we

must show that D(x1, . . . , xi−1, ai, xi+1, . . . , xm) is reduced.

Subclaim 5.4.4.6.1. Let i ∈ m− 1. Then D(x1, . . . , xi−1, ai, xi+1, . . . , xm) is a reduced subuni-

verse of Am−1.



103

Proof of subclaim. By the assumptions of Claim 5.4.4.6, we have that S is quasiprimal, there-

fore S and A have no h.d.-automorphisms, by definition. WLOG we will prove the subclaim for

D(a1, x2, . . . , xm). We must show that D(a1, x2, . . . , xm) has no singleton unary projection and no

binary projection that is an automorphism of S or an automorphism of A. We have that Di = λS,an ,

for all 2 ≤ i ≤ m− 1. Thus, for any 2 ≤ i ≤ m− 1, the unary projection

priD(a1, x2, . . . , xm) ⊇ priD(a1, a2, . . . , ai−1, xi, ai+1, . . . , am−1, xm) = priDi = A,

and

prmD(a1, x2, . . . , xm) ⊇ prmD(a1, x2, a3, . . . , am−1, xm) = prmD2 = S.

Therefore, no unary projection of D(a1, x2, . . . , xm) is a singleton.

Furthermore, for any 2 ≤ i ≤ m− 1,

pri,mD(a1, x2, . . . , xm) ⊇ D(a1, a2, . . . , ai−1, xi, ai+1, . . . , am−1, xm) = Di = λS,an .

Therefore, for all 2 ≤ i ≤ m−1 the binary projection pri,mD(a1, x2, . . . , xm) is not an automorphism

of S or an automorphism of A.

Finally suppose, for contradiction, that pri,j D(a1, x2, . . . , xm) is an automorphism of S or an

automorphism of A, for some 2 ≤ i < j < m. Recall that m > 3 so, WLOG, suppose i = 2, j = 3.

Then (a2, . . . , am) ∈ D(a1, x2, . . . , xm) implies that (a2, a3) ∈ pr2,3D(a1, x2, . . . , xm), which means

pr3D(a1, a2, x3, . . . , xm) = {a3}. However, since D3 = λS,a3 , we get that

A = pr3D3 = pr3D(a1, a2, x3, a4, . . . , am−1, xm) ⊆ pr3D(a1, a2, x3, . . . , xm) = {a3},

which is a contradiction. This completes the proof of the subclaim.

Since i ∈ m− 1 was arbitrary, we have shown that if m > 3, then for all 1 ≤ i ≤

m − 1, D(x1, . . . , xi−1, ai, xi+1, . . . , xm) is a subuniverse of Am−1 that satisfies the assumptions

of Claim 5.4.4.6. We will now prove properties (i) and (ii).

[(i)] Let m be minimal such that property (i) fails for a subuniverse, D, of Am that satisfies

the assumptions of the claim. We showed above that property (i) holds if m = 3. Thus, m > 3 and
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by the minimality of m, we get that property (i) holds for D(a1, x2, . . . , xm), D(x1, a2, x3, . . . , xm) ≤

Am−1, which means Am−2 × {am} ⊆ D(a1, x2, . . . , xm) ∩ D(x1, a2, x3, . . . , xm) and thus, ({a1} ×

Am−2×{an})∪(A×{a2}×Am−3×{an}) ⊆ D. Let u ∈ Am−3. Then D(x1, x2, u, an) is a subuniverse

of A2 that contains ({a1} × A) ∪ (A × {a2}) = µa1,a2 , where a1, a2 ∈ A \ S. Since χS,S ≤ A2, it

follows from property (x) of Proposition 3.2.1 and Theorem 3.1.5 that D(x1, x2, u, an) = A2. Thus,

A2 × {u} × {an} ⊆ D. Since u was an arbitrary element of Am−3, we get that

D ⊇ A2 ×
⋃

u∈Am−3

{u} × {an} = Am−1 × {an},

which contradicts the minimality of m. This completes the proof of property (i).

[(ii)] We have shown that property (ii) holds when m = 3. Let m > 3 and suppose that

property (ii) holds for all subuniverses of Am−1 that satisfy the assumptions of Claim 5.4.4.6. Let

D ≤ Am that satisfies the assumptions of Claim 5.4.4.6. We will show that D ⊇ A× · · · ×A× S ×

A× · · ·×A×S where the first S appears in the ith-coordinate for any i ∈ {1, . . . ,m− 1}, therefore

XS
m−1 × S ⊆ D.

WLOG, let i = m − 1. We showed above that D(a1, x2, . . . , xm) and D(x1, a2, x3, . . . , xm)

are subuniverses of Am−1 that satisfy the assumptions of Claim 5.4.4.6, therefore, by the induction

hypothesis, we get that D(a1, x2, . . . , xm)∩D(x1, a2, x3, . . . , xm) ⊇ XS
m−2×S ⊇ Am−3×S2. Thus,

({a1} × A × Am−4 × S2) ∪ (A × {a2} × Am−4 × S2) ⊆ D. Let u ∈ Am−4 × S2. Then D(x1, x2, u)

is a subuniverse of A2 that contains ({a1} × A) ∪ (A × {a2}) = µa1,a2 where a1, a2 ∈ A \ S. By

assumption, χS,S ≤ A2, therefore it follows from property (x) of Proposition 3.2.1 and Theorem 3.1.5

that D(x1, x2, u) = A2. The tuple u was chosen arbitrarily from Am−4 × S2, thus

D ⊇ A2 ×
⋃

u∈Am−4×S2

{u} = A2 ×Am−4 × S2 = Am−2 × S2.

Since i = m− 1 was an arbitrary choice of for i ∈ m− 1, we have shown that D ⊇ A× · · · × A×

S × A × · · · × A × S where the first S appears in the ith-coordinate for any i ∈ {1, . . . ,m − 1}.

Hence, D ⊇ XS
m−1 × S. This completes the proof of the claim.
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Claim 5.4.4.7. Suppose that χS,S ≤ A2. Let m ≥ 3, D ≤ Am, and (XS
m−1×S)∪(Am−1×{am}) ⊆ D

for some am ∈ S. If D 3 u = (u1, . . . , um), where ui ∈ A \ S for all 1 ≤ i ≤ m− 1 and um 6= am,

then Am−1 × S ⊆ D.

Proof. We will show the claim by inducting on m. First suppose that m = 3 and D ≤ A3 satisfies

the assumptions of the claim. Suppose that (u1, u2, u3) ∈ D, where u1, u2 ∈ A\S and u3 6= a3. Since

we also have that (u1, u2, a3) ∈ A2×{a3} ⊆ D, we get that D(u1, u2, x3) is a subuniverse of A that

contains {u3, a3} where u3 6= a3. Therefore D(u1, u2, x3) ⊇ S, which means {u1} × {u2} × S ⊆ D.

Let s ∈ S \ {a3} and consider the subuniverse D(x1, x2, s) of A2. By assumption, D ⊇

XS
2 × S ⊇ (S × A × {s}) ∪ (A × S × {s}). Also, (u1, u2, s) ∈ {u1} × {u2} × S ⊆ D. Therefore

D(x1, x2, s) ⊇ (A × S) ∪ (S × A) ∪ {(u1, u2)} = χS,S ∪ {(u1, u2)}, where u1, u2 ∈ A \ S. It follows

from Theorem 3.1.5 that D(x1, x2, s) = A2. Since s ∈ S \ {a3} was arbitrary and we are assuming

that D ⊇ A2 × {a3}, we get that

D ⊇ (A2 × ∪s∈S\{a3}{s}) ∪ (A2 × {a3}) = A2 × S.

This completes the proof of the case when m = 3.

Now suppose that m > 3 and Claim 5.4.4.7 holds for all subuniverses of Am−1 that satisfy the

assumption of the claim. Let D ≤ Am where (XS
m−1 × S) ∪ (Am−1 × {am}) ⊆ D for some am ∈ S.

Suppose that D 3 u = (u1, . . . , um) where ui ∈ A \ S, 1 ≤ i ≤ m− 1, and um 6= am. We will show

that D(u1, x2, . . . , xm) is a subuniverse of Am−1 that satisfies the assumptions of Claim 5.4.4.7,

therefore, by the induction hypothesis, Am−2 × S ⊆ D(u1, x2, . . . , xm).

First we will show that XS
m−2 × S ⊆ D(u1, x2, . . . , xm). By assumption we have that

D ⊇ XS
m−1 × S

⊇ A×XS
m−2 × S

⊇ {u1} ×XS
m−2 × S

Therefore D(u1, x2, . . . , xm) ⊇ XS
m−2 × S. Now, notice that since D ⊇ Am−1 × {am} ⊇ {u1} ×

Am−2 × {am}, we get that D(u1, x2, . . . , xm) ⊇ Am−2 × {am}. Finally, u ∈ D implies that
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D(u1, x2, . . . , xm) 3 (u2, . . . , um) where u2, . . . , um−1 ∈ A \ S and um 6= am. Therefore, by the

induction hypothesis, we get that Am−2 × S ⊆ D(u1, x2, . . . , xm).

A similar argument shows that Am−2×S ⊆ D(x1, u2, x3, . . . , xm). Hence ({u1}×A×Am−3×

S)∪ (A×{u2}×Am−3×S) ⊆ D. Let v ∈ Am−3×S. Then D(x1, x2, v) is a subuniverse of A2 that

contains ({u1} ×A) ∪ (A× {u2}) = µu1,u2 where u1, u2 ∈ A \ S. We are assuming that χS,S ≤ A2,

therefore it follows from property (x) of Proposition 3.2.1 that µb 6≤ A2 for any b ∈ A\S. Therefore,

by Theorem 3.1.5, we have that D(x1, x2, v) = A2. Since v was chosen arbitrarily from Am−3 × S,

we can conclude that

D ⊇ A2 ×
⋃

v∈Am−3×S

{v} = A2 ×Am−3 × S = Am−1 × S.

This completes the proof of the claim.

Claim 5.4.4.8. If case (II’) of Lemma 5.4.2 holds, then Sn−1 ×A ⊆ B.

Proof of claim. Suppose that case (II’) of Lemma 5.4.2 holds. Then χS,S , λS,an ≤ A2. By the

assumptions of Lemma 5.4.2, we have that (1) A satisfies Assumption 2, therefore λS,a3 ≤ A2

implies that S is quasiprimal, and (2) B is a reduced subuniverse of An, n ≥ 3, that contains an

element (a1, . . . , an) where an ∈ S and {a1} × · · · × {an−1} × S 6⊆ B. Furthermore, from case (II’)

of Lemma 5.4.2 we have that B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn) = λS,an , for all 1 ≤ i ≤ n − 1.

Therefore B satisfies the assumptions of Claim 5.4.4.6, so we can apply Claim 5.4.4.6 to B in place

of D

By property (ii) of Claim 5.4.4.6 we have that B ⊇ XS
n−1×S ⊇ Sn−1×S. We will show that for

all c ∈ A\S the subuniverseB(x1, . . . , xn−1, c) is equal to Sn−1. This means that Sn−1×{A\S} ⊆ B.

Therefore, the claim follows from the union (Sn−1 × S) ∪ (Sn−1 × {A \ S}) ⊆ B.

Let c ∈ A \ S. Then c ∈ A = prnB, which means B(x1, . . . , xn−1, c) 6= ∅. Therefore we have

that B(x1, . . . , xn−1, c) is a subuniverse of An−1. We will first show that B(x1, . . . , xn−1, c) ≤s.d

Sn−1. Let i ∈ n− 1. We claim that priB(x1, . . . , xn−1, c) = S. WLOG, suppose that i = 1. From

case (II’), we have that pr1,nB = χS,S , thus S × {c} ⊆ χS,S = pr1,nB. This means, for each
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s ∈ S there exists some us ∈ An−2 such that (s, us, c) ∈ B. Thus (s, us) ∈ B(x1, . . . , xn−1, c),

for each s ∈ S, hence S ⊆ pr1B(x1, . . . , xn−1, c). Furthermore, equality must hold. Otherwise,

if d ∈ pr1B(x1, . . . , xn−1, c), for some d ∈ A \ S, then there exists some u ∈ An−2 such that

(d, u) ∈ B(x1, . . . , xn−1, c), which means (d, u, c) ∈ B and (d, c) ∈ pr1,nB = χS,S , where d, c ∈

A \ S, which is a contradiction. Hence pr1B(x1, . . . , xn−1, c) = S. Therefore, we have shown that

B(x1, . . . , xn−1, c) ≤s.d Sn−1, which means B(x1, . . . , xn−1, c) is a subuniverse of Sn−1 and no unary

projection of B(x1, . . . , xn−1, c) is a singleton.

Since S is quasiprimal, we know from Proposition 2.4.5 that a subuniverse of Sn has either

unary projections that are singletons, or binary projections that are automorphisms of S, or it is

equal to the full direct product Sn. Therefore, to show that B(x1, . . . , xn−1, c) = Sn−1, it remains

to show that no binary projection of B(x1, . . . , xn−1, c) is an automorphism of S.

Suppose not. WLOG, suppose pr1,2B(x1, . . . , xn−1, c) ∈ Aut(S). Let u ∈ B(x1, . . . , xn−1, c),

u = (u1, . . . , un−1). Then B(x1, . . . , xn−1, c) ≤s.d Sn−1 implies u ∈ Sn−1. Also, (u1, u2) ∈

pr1,2B(x1, . . . , xn−1, c) ∈ Aut(S) implies B(x1, u2, u3, . . . , un−1, c) = {u1}. Consider the subuni-

verse B(x1, u2, . . . , un−1, xn) of A2. We claim that B(x1, u2, . . . , un−1, xn) = χS,S . First we will

show that {(u1, c)} ∪ (A× {an}) ∪ S2 ⊆ B(x1, u2, . . . , un−1, xn).

We are assuming that u ∈ B(x1, . . . , xn−1, c), this means that (u1, . . . , un−1, c) ∈ B and

(u1, c) ∈ B(x1, u2, . . . , un−1, xn). Recall that B satisfies the assumptions of Claim 5.4.4.6, therefore

properties (i) and (ii) of Claim 5.4.4.6 hold for B. From property (i) of Claim 5.4.4.6 we get that

that B ⊇ An−1×{an} ⊇ A×{u2}×. . . {un−1}×{an}. Therefore B(x1, u2, . . . , un−1, xn) ⊇ A×{an}.

Finally, from property (ii) of Claim 5.4.4.6, we get that B ⊇ XS
n−1 × S ⊇ Sn. Thus, u ∈ Sn−1

implies S × {u2} × · · · × {un−1} × S ⊆ Sn ⊆ B which means S2 ⊆ B(x1, u2, . . . , un−1, xn).

Therefore, we have shown that B(x1, u2, . . . , un−1, xn) ⊇ {(u1, c)} ∪ A × {an} ∪ S2, where

u1, an ∈ S and c ∈ A \S. By Theorem 3.1.5, it is clear that χu1,an ⊆ B(x1, u2, . . . , un−1, xn). Then

B(x1, u2, . . . , un−1, xn) is a reduced subuniverse of A2, therefore, by the assumptions of the theorem,

B(x1, u2, . . . , un−1, xn) is θ-closed in its A-coordinates, which means χS,S ⊆ B(x1, u2, . . . , un−1, xn).

Furthermore, B(x1, u2, . . . , un−1, xn) ⊆ pr1,nB = χS,S , hence B(x1, u2, . . . , un−1, xn) = χS,S .
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Since B(x1, u2, . . . , un−1, xn) = χS,S , we get that S × {c} ⊆ χS,S = B(x1, u2, . . . , un−1, xn)

which means S ⊆ B(x1, u2, . . . , un−1, c). However, we showed that B(x1, u2, . . . , un−1, c) = {u1},

therefore we have a contradiction to the assumption that pr1,2B(x1, x2, . . . , xn−1, c) ∈ Aut(S).

We have shown that B(x1, x2, . . . , xn−1, c) is a subdirect subuniverse of Sn−1, no unary pro-

jection of B(x1, x2, . . . , xn−1, c) is a singleton, and no binary projection of B(x1, x2, . . . , xn−1, c) is

an automorphism of S. Since S is quasiprimal, it follows that B(x1, x2, . . . , xn−1, c) = Sn−1. Fur-

thermore, c ∈ A\S was chosen arbitrarily, therefore B(x1, x2, . . . , xn−1, c) = Sn−1, for all c ∈ A\S.

As we noted at the start of the proof, this completes the proof of the claim.

We will now show that case (II’) of Lemma 5.4.2 cannot occur, thus proving Lemma 5.4.4.

Proof of Lemma 5.4.4. Suppose, for contradiction, that case (II’) of Lemma 5.4.2 holds. Then

χS,S , λS,an ≤ A2. By the assumptions of Lemma 5.4.2, we have that (1) A satisfies Assumption 2,

therefore λS,a3 ≤ A2 implies that S is quasiprimal, and (2) B is a reduced subuniverse of An, n ≥ 3,

that contains an element (a1, . . . , an) where an ∈ S and {a1}× · · ·×{an−1}×S 6⊆ B. Furthermore,

from case (II’) of Lemma 5.4.2 we have that B(a1, . . . , ai−1, xi, ai+1, . . . , an−1, xn) = λS,an , for all

1 ≤ i ≤ n − 1. Therefore B satisfies the assumptions of Claim 5.4.4.6 and applying Claim 5.4.4.6

to B in place of D gives that (An−1 × {an}) ∪ (XS
n−1 × S) ⊆ B.

Notice that {a1}× · · · × {an−1}×S 6⊆ B has the following two implications. The first is that

{a1}×S 6⊆ B(x1, a2, . . . , an−1, xn) = λS,an , therefore a1 ∈ A\S. The second is that An−1×S 6⊆ B.

Therefore, we have that χS,S ≤ A2, B ≤ An for some n ≥ 3, and (An−1×{an})∪(XS
n−1×S) ⊆

B. Since An−1 × S 6⊆ B, it follows from applying Claim 5.4.4.7 to B in place of D that if there

exists a tuple u ∈ B where u = (u1, . . . , un) and ui ∈ A \ S for all 1 ≤ i ≤ n− 1, then un = an. To

prove the lemma, we will show that if case (II’) of Lemma 5.4.2 holds, then for any s ∈ S \ {an}

the tuple (a1, . . . , a1, s) ∈ B. However, as we just stated, (a1, . . . , a1, s) ∈ B and a1 ∈ A \S implies

that s = an, which contradicts s 6= an.

Consider the subuniverse C := B∩{(x, . . . , x, y) : x, y ∈ A} of An. Since An−1×{an} ⊆ B, we

get that {(x, . . . , x, an) : x ∈ A} ⊆ B. Furthermore, we have from Claim 5.4.4.8 that Sn−1×A ⊆ B,
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therefore {(x, . . . , x, y) : x ∈ S, y ∈ A} ⊆ B. Hence {(x, . . . , x, an) : x ∈ A} ∪ {(x, . . . , x, y) : x ∈

S, y ∈ A} ⊆ C. Then pr1,nC is a subuniverse of A2 that contains {(x, an) : x ∈ A} ∪ {(x, y) :

x ∈ S, y ∈ A} = χS,an . Under Assumption 2 (Q), the reduced subuniverses of A2 are θ-closed in

their A-coordinates. Then pr1,nC ⊇ χS,an implies that pr1,nC is a reduced subuniverses of A2,

therefore closing pr1,nC in its A-coordinates gives that pr1,nC ⊇ χS,S ⊇ {b} × S for all b ∈ A \ S.

In particular, pr1,nC ⊇ {a1} × S. However, {a1} × S ⊆ pr1,nC implies {a1}n−1 × S ⊆ C ⊆ B. By

assumption, |S| > 2, so let s ∈ S \ {an}. Then (a1, . . . , a1, s) ∈ {a1}n−1 × S ⊆ B where a1 ∈ A \ S.

As we explained in the previous paragraph, the existence of the tuple (a1, . . . , a1, s) ∈ B where

a1 ∈ A \ S and s 6= an gives a contradiction. This completes the proof of the lemma.

We have shown that both case (I’) and case (II’) of Lemma 5.4.2 cannot occur, thus the

assumptions of Lemma 5.4.2 are false. Therefore, if A satisfies Assumption 2, then the reduced

subuniverses of An are θ-closed in their A-coordinates. This concludes the proof of this theorem.

5.5 The Clone of A

Under Assumption 2, and the additional assumption that A is not simple, we will now describe

the clone of A by determining a transparent generating set for the relational clone of A.

Recall that we found in Proposition 5.1.3 that if B ≤ An, n ≥ 1, then B ∈ 〈prI B, TA〉RClone,

where prI B is a reduced subuniverse of AI , for some nonempty I ⊆ n. This shows that the relational

clone of A is generated by TA and the reduced subuniverses of finite powers of A. Therefore, to find a

generating set for the relational clone of A, we must find a description for the reduced subuniverses

of finite powers of A.

If B is a reduced subuniverse of An, B ≤s.d. Πn
i=1Ai, where Ai ∈ {S,A}, then under Assump-

tion 2, it follows from Theorem 5.4.1 that B is θ-closed in its A-coordinates. Let ρ be the natural

homomorphism ρ : Πn
i=1Ai → Πn

i=1Ai/Θi, where Θi is the equality relation if Ai = S and Θi = θ

if Ai = A. Let B′ = ρ(B). Then, by Proposition 2.2.8, B is the full inverse image of B′ under ρ.

Therefore, if we can describe B′, the we have a description for B. We found in Proposition 5.1.6



110

that B′ ∈ 〈prI′ B′, T ′A〉RClone, where prI′ B′ is a reduced subuniverse of Πi∈I′Ai, for some nonempty

I ′ ∈ n. Therefore, to understand the reduced subuniverses of finite powers of A we must find a

description for the reduced subuniverses of Πn
i=1Ai, where Ai ∈ {S,A/θ}, n ≥ 1. This will be the

focus of this section. At the end of the section we will give a complete description of the relational

clone of A.

Definition 5.5.1. Let Ai ∈ {S,A/θ}, 1 ≤ i ≤ n. Let {I, J} be the partition of n such that Ai = S

whenever i ∈ I and Ai = A/θ whenever i ∈ J . Let s ∈ S and a ∈ A/θ. Then we will call the set

X
(s,a)
(I,J) := {(x1, . . . , xn) ∈ Πn

i=1Ai : there exists some i such that xi = s if i ∈ I and xi = a if i ∈ J}

a cross on Πn
i=1Ai. If A1 = · · · = An, and hence {I, J} = {∅, n}, then we will simply denote a

cross on Πn
i=1Ai by Xgn, where g ∈ A1.

Under Assumption 2 we have that S is either quasiprimal or affine, thus there is no (S, S)-cross

among the subuniverses of A2. This fact implies the following restriction on the size of I in the

above definition.

Proposition 5.5.2. Suppose that A satisfies Assumption 2. If B′ = X
(s,a)
(I,J) is a cross on Πn

i=1Ai,

where Ai ∈ {S,A/θ}, s ∈ S, a ∈ A/θ, and {I, J} is the partition of n such that Ai = S whenever

i ∈ I and Ai = A/θ whenever i ∈ J , then |I| ≤ 1.

Proof. For contradiction, suppose that |I| > 1. By Assumption 2 we have that S is either quasipri-

mal or affine which means there is no (S, S)-cross among the subuniverses of S2, this means

that n > 2, otherwise B′ is an (S, S)-cross which gives a contradiciton. WLOG, suppose that

1, 2 ∈ I. Then B′ ≤ S × S × Πn
i=3Ai. Let u ∈ Πn

i=3Ai, u = (u3, . . . , un), where ui 6= s for all

i ∈ I ∩ {3, . . . , n} and ui 6= a for all i ∈ J ∩ {3, . . . , n}. Then by Definition 5.5.1 we have that

{s}×S×{u} ⊆ X
(s,a)
(I,J) = B′ and S×{s}×{u} ⊆ X

(s,a)
(I,J) = B′. Therefore B′(x1, x2, u) is a subuniverse

of S2 that contains ({s}×S)∪(S×{s}). In fact, B′(x1, x2, u) = ({s}×S)∪(S×{s}), otherwise there

exists some (u1, u2) ∈ B′(x1, x2, u) \ [({s} × S) ∪ (S × {s})], thus (u1, u2, u3, . . . , un) ∈ B′ = X
(s,a)
(I,J)

where u1 6= s, u2 6= s, ui 6= s for all i ∈ I ∩ {3, . . . , n} and ui 6= a for all i ∈ J ∩ {3, . . . , n} which
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is a contradiction. Therefore B′(x1, x2, u) = ({s} × S) ∪ (S × {s}) is a subuniverse of S2, however

this contradicts the fact that there is no (S, S)-cross among the subuniverses of S2.

To describe the reduced subuniverses of Πn
i=1Ai, where Ai ∈ {S,A/θ}, we will distinguish

three cases. In Proposition 5.5.4 we consider the case when the strictly simple algebra A/θ is either

quasiprimal or affine. In Propositions 5.5.5 and 5.5.6, A/θ is assumed to be the third kind of strictly

simple idempotent algebra, and the description splits into two cases according to whether there is

a cross among the subuniverses of A/θ × S.

Lemma 5.5.3. Suppose that A satisfies Assumption 1, S is quasiprimal, and θ is a congruence

on A. Suppose that B′ ≤ A/θ × S × A/θ, where (a1, a2, c3) ∈ B′, B′(x1, a2, x3) ∈ Aut(A/θ),

B′(a1, x2, x3) = κc2,c3, for some a1, c3 ∈ A/θ and distinct a2, c2 ∈ S. Then either S ∼= A/θ or

λS,c2 , κd,c2 ≤ A× S for all d ∈ A \ S.

Proof. Under the assumptions of the lemma we have that B′(x1, a2, x3) is the graph of Φ for some

Φ ∈ Aut(A/θ) and B′(a1, x2, x3) = κc2,c3 . Since S is quasiprimal, statement (ix) of Corollary 3.2.5,

Φ ∈ Aut(A/θ), and κc2,c3 ≤ S × A/θ imply that Φ fixes c3. From (a1, a2, c3) ∈ B′ we get that

(a1, c3) ∈ B′(x1, a2, x3), thus Φ(a1) = c3, since c3 is fixed by Φ it follows that a1 = c3.

Claim 5.5.3.1. For any b ∈ (A/θ) \ {c3}, either B′(x1, x2,Φ(b)) is an isomorphism from A/θ to S

or B′(x1, x2,Φ(b)) is the (A/θ, S)-cross κb,c2.

Proof of claim. Let b ∈ (A/θ) \ {c3}. Notice that (b,Φ(b)) ∈ B′(x1, a2, x3) which means, since

b 6= c3 and Φ fixes c3, that Φ(b) 6= c3.

From the assumption that B′(a1, x2, x3) is the graph of Φ we get that (b,Φ(b)) ∈ B′(x1, a2, x3)

and A/θ×{Φ(b)} 6⊆ B′(x1, a2, x3). Therefore the tuple (b, a2) ∈ B′(x1, x2,Φ(b)) and A/θ×{a2} 6⊆

B′(x1, x2,Φ(b)). From the assumption that B′(a1, x2, x3) = κc2,c3 it follows that (c2,Φ(b)) ∈

{c2} × A/θ ⊆ B′(a1, x2, x3). Also, Φ(b) 6= c3 implies that S × {Φ(b)} 6⊆ κc2,c3 = B′(a1, x2, x3).

Therefore, (a1, c2) ∈ B′(x1, x2,Φ(b)) and {a1} × S 6⊆ B′(x1, x2,Φ(b)).
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Then (b, a2), (a1, c2) ∈ B′(x1, x2,Φ(b)) implies {a2, c2} ⊆ pr2B
′(x1, x2,Φ(b)) ≤ S. By as-

sumption, a2 and c2 are distinct elements of S, therefore pr2B
′(x1, x2,Φ(b)) = S. Furthermore,

{b, a1} ⊆ pr1B
′(x1, x2,Φ(b)) ≤ A/θ. We claim that a1 6= b, otherwise (a1, a2) = (b, a2), (a1, c2) ∈

B′(x1, x2,Φ(b)), a2 6= c2 implies by Lemma 3.1.7 that {a1} × S ⊆ B′(x1, x2,Φ(b)), which contra-

dicts {a1} × S 6⊆ B′(x1, x2,Φ(b)). Therefore pr1B
′(x1, x2,Φ(b)) = A/θ and we have shown that

B′(x1, x2,Φ(b)) ≤s.d A/θ × S. Since {a1} × S 6⊆ B′(x1, x2,Φ(b)) it is clear that B′(x1, x2,Φ(b)) 6=

A/θ × S. Then it follows from Corollary 3.1.6 that B′(x1, x2,Φ(b)) is either an isomorphism from

A/θ to S or B′(x1, x2,Φ(b)) is an (A/θ, S)-cross.

Suppose that B′(x1, x2,Φ(b)) is not an isomorphism A/θ → S. Then (b, a2), (a1, c2) ∈

B′(x1, x2,Φ(b)), A/θ × {a2} 6⊆ B′(x1, x2,Φ(b)), and {a1} × S 6⊆ B′(x1, x2,Φ(b)) implies that

B′(x1, x2,Φ(b)) = κb,c2 .

It is clear that B′(x1, x2,Φ(b)) is a subuniverse of A/θ × S for all b ∈ A/θ \ {c3}. Suppose

that S and A/θ are not isomorphic. Then it follows from Claim 5.5.3.1 that κb,c2 ≤ A/θ× S for all

b ∈ A/θ \ {c3}. Furthermore, we have by assumption that B′(a1, x2, x3) = κc2,c3 is a subuniverse

of S × A/θ, thus κc3,c2 = (κc2,c3)−1 ≤ A/θ × S. This means that κS,c2 ,κd,c2 ≤ A/θ × S for all

d ∈ A \ S.

Let ρ : A × S → A/θ × S be the natural homomorphism. Then λS,c2 = ρ−1(κS,c2) ≤ A × S

and κd,c2 = ρ−1(κd,c2) ≤ A× S for all d ∈ A \ S. This completes the proof of the lemma.

Proposition 5.5.4. Suppose that A satisfies Assumption 2, θ is a congruence on A, and A/θ is

either quasiprimal or affine. Let n ≥ 2 and B′ ≤s.d. Πn
i=1Ai, where Ai ∈ {S,A/θ}, for all 1 ≤ i ≤ n.

If B′ is reduced, then B′ = {(x1, . . . , xn) ∈ Πn
i=1Ai : (xi, xj) ∈ pri,j B′, 1 ≤ i < j ≤ n}.

Proof. Suppose not. The proposition clearly holds if n = 2, therefore it must be that n > 2.

Let n be minimal such that there exists a reduced subuniverse B′ ≤s.d. Πn
i=1Ai, Ai ∈ {S,A/θ},

where B′ 6= {(x1, . . . , xn) ∈ Πn
i=1Ai : (xi, xj) ∈ pri,j B′, 1 ≤ i < j ≤ n}. It is clear that the

containment (⊆) must hold. Therefore, there exists (ai, aj) ∈ pri,j B′ for all 1 ≤ i < j ≤ n such

that a = (a1, . . . , an) 6∈ B′. Let I ⊆ n, |I| = n−1. Since B′ is a reduced subuniverse of dimension n
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we have that prI B′ is a reduced subuniverse of dimension n−1, furthermore (ai, aj) ∈ pri,j(prI B′)

for all i, j ∈ I. Then by the minimality of n we get that prI a ∈ prI B′. Since I was an arbitrary

subset of n containing n− 1 elements, we get that for each i ∈ n there exists some ci ∈ A such that

(a1, . . . , ai−1, ci, ai+1, . . . , an) ∈ B′. Clearly ci 6= ai for all 1 ≤ i ≤ n, otherwise we would have that

a ∈ B′.

Claim 5.5.4.1. There exists some distinct i, j ∈ n such that Ai = S and Aj = A/θ, also S 6∼= A/θ.

Proof of claim. To prove this claim we will first show two subclaims.

Subclaim 5.5.4.1.1. If A1 = · · · = An, then B′ = Πn
i=1Ai.

Proof of subclaim. Suppose that A1 = A2 = · · · = An. Then B′ ∈ RClo(G) for some G ∈ {S,A/θ}.

We have that G is simple algebra that is either quasiprimal or affine, moreover we have that B′ is

reduced, therefore it follows from the discription given in Propositions 2.4.5 and 2.4.6 that B′ must

be equal to the full direct product, Gn.

Subclaim 5.5.4.1.2. If S ∼= A/θ, then B′ = Πn
i=1Ai.

Proof of subclaim. Suppose that S is isomorphic to A/θ. Let ι be an isomorphism ι : A/θ → S and

define the map Πn
i=1ιi : ΠAi → Sn, by letting ιi = idS , if Ai = S, and ιi = ι, if Ai = A/θ. Clearly

Πιi is an isomorphism. Thus, applying Πiιi to B′ we get B̂ := (Πιi)(B′) ≤ Sn. Since Πiιi is a

product isomorphism, we have that Πiιi and (Πiιi)−1 must preserve the size of unary projection and

projections that are defined by bijective maps. Since B′ is reduced, it follows that B̂ = (Πιi)(B′) is

a reduced subuniverse of Sn. Then Subclaim 5.5.4.1.1 implies B̂ = Sn. If we now apply the inverse

map, (Πιi)−1, to B̂, we get that B′ = (Πιi)−1(B̂) = (Πιi)−1(Sn) = ΠAi. Hence B′ is the full direct

product.

Suppose for contradiction that either A1 = · · · = An or that S ∼= A/θ. Then by Sub-

claims 5.5.4.1.1 and 5.5.4.1.2 we get that B′ = Πn
i=1Ai. Thus a ∈ Πn

i=1Ai = B′, which contradicts

a 6∈ B′.



114

WLOG, suppose that A1 = S and A2 = A/θ. Let B̂ := B′(x1, x2, x3, a4, . . . , an). Then

B̂ is a subuniverse of S × A/θ × A3 that contains the tuples (c1, a2, a3), (a1, c2, a3), (a1, a2, c3),

(a1, a2, a3) 6∈ B̂, and ci 6= ai for 1 ≤ i ≤ 3. We claim that B̂ is reduced. Since pri B̂ ⊇ {ci, ai} for

i = 1, 2, 3 and ci 6= ai we have that no unary projection of B̂ is a singleton and, in fact, since S, A/θ,

and A3 are all simple algebras, this means that B̂ ≤s.d S × A/θ × A3. Suppose, for contradiction,

that pri,j B̂ is an automorphism of S or A/θ for some 1 ≤ i < j ≤ 3. Then (ai, cj), (ai, aj) ∈ pri,j B̂

implies cj = aj , which contradicts and ci 6= ai for 1 ≤ i ≤ 3. Finally, by Claim 5.5.4.1 we have

that S 6∼= A/θ, thus B̂ cannot be an h.d.-automorphism of S or of A/θ. Therefore B̂ is reduced. We

have shown that B̂ is a reduced subdirect subuniverse of S× A/θ × A3, where A3 ∈ {S,A/θ}, and

(ai, aj) ∈ pri,j B̂ for 1 ≤ i < j ≤ 3, but the tuple (a1, a2, a3) 6∈ B̂. Thus, the proposition fails for

n = 3.

WLOG, suppose that B′ ≤s.d. G × H × G, where {G,H} = {S,A/θ}. We showed above

that there exist tuples (c1, a2, a3), (a1, c2, a3), (a1, a2, c3) ∈ B′, (a1, a2, a3) 6∈ B′, and ci 6= ai for

1 ≤ i ≤ 3. Consider the subuniverse B′(a1, x2, x3) of H × G. We have that (c2, a3), (a2, c3) ∈

B′(a1, x2, x3) where ci 6= ai for i = 2, 3, thus, priB′(a1, x2, x3) is not a singleton for i = 2, 3.

Since H and G are both strictly simple algebras and thus contain no proper subalgebras, this

means that B′(a1, x2, x3) ≤s.d. H×G. Additionally, we have that (a2, a3) 6∈ B′(a1, x2, x3), therefore

B′(a1, x2, x3) 6= H×G. We showed in Claim 5.5.4.1 that H 6∼= G, hence it follows from Corollary 3.1.6

that B′(a1, x2, x3) = κc2,c3 .

We claim that B′(a1, x2, x3) = κc2,c3 ≤ H×G implies that S is quasiprimal. Let

C :=


κc2,c3 , if H = A/θ and G = S,

κ−1
c2,c3 , if H = S and G = A/θ.

Let ρ be the natural homomorphism ρ : A× S→ A/θ × S. Then ρ−1(C) is a a subuniverse of A2,

furthermore ρ−1(C) is a (thick) (A,S)-cross. By Assumption 2 we have that if there is a (thick)

(A,S)-cross among the subuniverses of A2, then S is quasiprimal.

Now consider the subuniverse B′(x1, a2, x3) of G2. We have that G is a strictly simple
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algebra and (c1, a3), (a1, c3) ∈ B′(x1, a2, x3) where ci 6= ai for i = 1, 3. Then G contains no

proper subalgebras and priB′(x1, a2, x3) ≤ G where | priB′(x1, a2, x3)| > 1 (i = 1, 3), therefore

B′(x1, a2, x3) ≤s.d G2. Furthermore, (a1, a3) 6∈ B′(x1, a2, x3), so B′(x1, a2, x3) 6= G2. Finally, we

have shown that S is quasiprimal and we are assuming that A/θ is either quasiprimal or affine,

therefore G ∈ {S,A/θ} implies that there is no cross among the subuniverses of G2. So it follows

from Corollary 3.1.6 that B′ is an automorphism of G.

We that we are assuming that θ is a congruence on A and that Assumption 2 holds, therefore

we have that Assumption 1 holds. We have shown that S is quasiprimal. Additionally, we have

shown that B′ ≤ G×H×G contains the tuple (a1, a2, c3), B′(x1, a2, x3) is an automorphism of G,

and B′(a1, x2, x3) = κc2,c3 . There are two cases to consider: either G = S and H = A/θ or G = A/θ

and H = S.

If G = S and H = A/θ, then B′ and the tuple (a1, a2, c3) satisfy the assumptions of Corol-

lary 5.3.2. Thus Corollary 5.3.2 implies that either Λ ≤ A3 or Kb ≤ A3 where c2 = b/θ for some

b ∈ A \ S. However, both cases contradict Assumption 2 (Q).

Now suppose that G = A/θ and H = S. Since c2 6= a2, we have that B′ and the tuple

(a1, a2, c3) satisfy the assumptions of Lemma 5.5.3. Then Lemma 5.5.3 implies that either S ∼= A/θ

or λS,c2 , κd,c2 ≤ A × S for all d ∈ A \ S. By Claim 5.5.4.1 we have that S 6∼= A/θ, therefore

λS,c2 , κd,c2 ≤ A× S for all d ∈ A \ S. However, since S is quasiprimal we have from property (ii) of

Corollary 3.2.5 that κa,s ≤ A× S implies λS,s′ 6≤ A× S for all a ∈ A, s, s′ ∈ S, therefore we have a

contradiction. This completes the proof of the proposition.

Proposition 5.5.5. Suppose that A satisfies Assumption 2, θ is congruence on A, and there exists

an (A/θ,A/θ)-cross among the subuniverses of (A/θ)2, but there is no (S,A/θ)-cross among the

subuniverses of S × A/θ. If B′ is a reduced subuninverse of Sr × (A/θ)n−r for some n ≥ 2,

0 ≤ r ≤ n, then B′ = prr B′ × prn\r B′.

Proof. Suppose that ηa ≤ (A/θ)2, for some a ∈ A/θ and there is no (thick) (S,A/θ)-cross among

the subuniverses of S× A/θ. Let B′ be a reduced subuninverse of Sr × (A/θ)n−r, for some n ≥ 2,
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0 ≤ r ≤ n.

If r = 0, then B′ ≤ (A/θ)n, thus B′ = prn\r B′. Alternatively, if r = n, then B′ ≤ Sr and

B′ = prr B′. Therefore, it remains to show that the proposition holds when there exists some

i, j ∈ n such that priB′ = S and prj B′ = A/θ.

For contradiction, suppose the statement of the proposition does not hold. If n = 2, then

B′ ≤ S × A/θ. Recall that there exists a (A/θ,A/θ)-cross among the subuniverses of (A/θ)2 and

there does not exist an (S, S)-cross among the subuniverses of A2, therefore S and A/θ are not

isomorphic. Furthermore, we are assuming that there is no (S,A/θ)-cross among the subuniverses

of S × A/θ. Therefore, it follows from Corollary 3.1.6 that B′ = S × A/θ = pr1B
′ × pr2B

′. This

means that if the proposition fails for some n-dimensional subuniverse, then it must be that n ≥ 3.

Let n be minimal such that there exists a reduced subuniverse B′ ≤ Sr × (A/θ)n−r, where

B 6= prr B′ × prn\r B′. We showed that the proposition holds if r ∈ {0, n}, therefore it must be

that pr1B
′ = S and prnB′ = A/θ.

Clearly, B′ ⊆ prr B′ × prn\r B′. The projection of a reduced subuniverse is reduced, thus

pr2,...,nB
′ ≤ Πi∈n\{1}Ai and pr1,...,n−1B

′ ≤ Πi∈n−1Ai are reduced subuniverses. Therefore, by the

minimality of n, we get that pr2,...,nB
′ = prr\{1}B′×prn\r B′ and pr1,...,n−1B

′ = prr B′×prn−1\r B
′.

We are assuming that B′ 6= prr B′ × prn\r B′, therefore there exists a tuple (u1, . . . , un) ∈

prr B′ × prn\r B′ such that (u1, . . . , un) 6∈ B′. However, (u1, . . . , un) ∈ prr B′ × prn\r B′ implies

that (u2, . . . , un) ∈ prr\{1}B′ × prn\r B′ = pr2,...,nB
′ and (u1, . . . , un−1) ∈ prr B′ × prn−1\r B

′ =

pr1,...,n−1B
′. Therefore, there exists some c1 ∈ S, cn ∈ A/θ such that B′ contains the tuples

(c1, u2, . . . , un−1, un) and (u1, u2, . . . , un−1, cn). Since (u1, u2, . . . , un−1, un) 6∈ B′, we get that ci 6=

ui, for i = 1, n.

Then B′(x1, u2, . . . , un−1, xn) is a subuniverse of S×A/θ that contains the tuples (c1, un) and

(u1, cn). Furthermore, since {ui, ci} ∈ priB′(x1, u2, . . . , un−1, xn) and ui 6= ci, for i ∈ {1, n}, we get

that B′(x1, u2, . . . , un−1, xn) is a subdirect subuniverse of S×A/θ. We are assuming that S and A/θ

are not isomorphic and there exists no (S,A/θ)-cross among the subuniverses of S×A/θ, therefore,

by Corollary 3.1.6, we get that B′(x1, u2, . . . , un−1, xn) = S × A/θ. Hence, (u1, un) ∈ S × A/θ =
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B′(x1, u2, . . . , un−1, xn), which means (u1, . . . , un) ∈ B′, a contradiction to (u1, . . . , un) 6∈ B′. This

completes the proof of the proposition.

Proposition 5.5.6. Suppose that A satisfies Assumption 2, θ is a congruence on A, and there exists

an (A/θ,A/θ)-cross among the subuniverses of (A/θ)2 and there exists an (A/θ, S)-cross among

the subuniverses of A/θ × S. Let B′ be a reduced subuninverse of Πn
i=1Ai, where Ai ∈ {S,A/θ},

1 ≤ i ≤ n, and n ≥ 2. Let P be the family of subsets of n such that I ∈ P if and only if prI B′ is a

cross on Πi∈IAi. Then B′ = {a ∈ Πn
i=1Ai : aI ∈ prI B′ for all I ∈ P}.

Proof. We are assuming that there exists an (A/θ, S)-cross among the subuniverses of A/θ × S,

therefore its full inverse image under the natural homomorphism ρ : A × S → A/θ × S is a

subuniverse of A× S. Hence there exists a (thick) (A,S)-cross among the subuniverses of A2. By

the Assumption 2, it must be that S is quasiprimal. Furthermore, there is no (S, S)-cross that is a

subuniverse of S2.

We are also assuming that there is an (A/θ,A/θ)-cross among the subuniverses of (A/θ)2,

therefore S and A/θ are not isomorphic. Let us suppose that ηa ≤ (A/θ)2, for some a ∈ A/θ.

Then by statement (iii) of Proposition 3.2.1, we get that ηa is the unique (A/θ,A/θ)-cross that is

a subuniverse of (A/θ)2. Furthermore, if κb,s is a subuniverse of A/θ × S, for some b ∈ A/θ, s ∈ S,

then by statement (x) of Corollary 3.2.5, we get that ηa ≤ (A/θ)2 and κb,s ≤ A/θ × S implies that

a = b. Therefore, every (A/θ, S)-cross that is a subuniverse of A/θ×S is of the form κa,s, for some

s ∈ S.

Finally, we claim that ηa ≤ (A/θ)2 implies that a is the special element of A/θ such that

X
(s,a)
(I,J) is a cross on Πn

i=1Ai, for some s ∈ S, Ai ∈ {S,A/θ}, some partition {I, J} of n, and n ≥ 2.

For contradiction, suppose that a 6= b ∈ A/θ and X
(s,b)
(I,J) is a cross on Πn

i=1Ai, for some s ∈ S,

Ai ∈ {S,A/θ}, some partition {I, J} of n, and n ≥ 2. Either I = ∅ or I 6= ∅. If I = ∅, then J = n

and C := X
(s,b)
(I,J) = Xbn ≤ (A/θ)n. Let u ∈ (A/θ)n−2. Then C(x1, x2, u) is a subuniverse of (A/θ)2

and, by definition of C, C(x1, x2, u) = ηb. However, ηb ≤ (A/θ)2 and a 6= b contradicts the above

statement that ηa is the unique (A/θ,A/θ)-cross that is a subuniverse of (A/θ)2. Thus I 6= ∅. Let
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i ∈ I and j ∈ J . WLOG, suppose that i = 2 and j = 1. Let C := X
(s,b)
(I,J) ≤ A/θ × S × Πn

i=3Ai

and let u ∈ Πn
i=3Ai. Then C(x1, x2, u) is a subuniverse of A/θ × S and, by definition of C,

C(x1, x2, u) = ({b} × S) ∪ (A/θ × {s}) = κb,s. However κb,s ≤ A/θ × S and a = b contradicts the

above statement that every (A/θ, S)-cross that is a subuniverse of A/θ × S is of the form κa,s, for

some s ∈ S. Thus, we have shown that a is the special element of A/θ such that X
(s,a)
(I,J) is a cross

on Πn
i=1Ai.

We will first show that the proposition holds when either n = 2, or A1 = · · · = An, or

n ∈ P . Suppose that n = 2 and B′ is a reduced subuniverse of A1 × A2. Since A/θ and S are not

isomorphic, it follows from Corollary 3.1.6 that B′ is either an (A/θ, S)-cross, an (S,A/θ)-cross, an

(A/θ,A/θ)-cross, A/θ × S, S ×A/θ, S2, or (A/θ)2, therefore the proposition holds.

If A1 = · · · = An, then either B′ ≤ Sn or B′ ≤ (A/θ)n. Suppose B′ ≤ Sn. Since S is

quasiprimal and B′ is reduced, it follows from Proposition 2.4.5 that B′ = Sn. Now suppose that

B′ ≤ (A/θ)n. Since ηa ≤ (A/θ)2 and A/θ is strictly simple, it follows from Proposition 2.4.7 that

the proposition holds for B′.

Lastly, suppose that n ∈ P . It is clear that B′ ⊆ {a ∈ Πn
i=1Ai : aI ∈ prI B′, I ∈ P}.

Furthermore, since n ∈ P , for any a ∈ {a ∈ Πn
i=1Ai : aI ∈ prI B′, I ∈ P}, we get that a = (a)n ∈

prnB′ = B′, hence B′ ⊇ {a ∈ Πn
i=1Ai : aI ∈ prI B′, I ∈ P}. Therefore, we have shown that the

proposition holds when either n = 2, or A1 = · · · = An, or n ∈ P .

Now let us suppose, for contradiction, that the proposition fails. Let n be minimal such that

there exists a reduced subuniverse B′ of Πn
i=1Ai where B′ 6= {a ∈ Πn

i=1Ai : aI ∈ prI B′, I ∈ P}.

Then n ≥ 3, there exists some distinct i, j ∈ n such that priB′ = S and prj B′ = A/θ, and n 6∈ P .

Let k ∈ n and Pk be the family of subsets of n \ {k} such that I ∈ Pk if and only if

prI(prn\{k}B′) is a cross on Πi∈n\{k}Ai. Recall that prI(prn\{k}B′) = prI B′. Therefore, Pk =

{I ⊆ n : I ∈ P, k 6∈ I}. Since, for any k ∈ n, prn\k B′ is a subuniverse of Πi∈n\{k}Ai, it follows from

the minimality of n that prn\{k}B′ = {a ∈ Πi∈n\{k}Ai : aI ∈ prI B′, I ∈ Pk} = {a ∈ Πi∈n\{k}Ai :

aI ∈ prI B′, I ∈ P, k 6∈ I}.

Clearly, B′ ⊆ {a ∈ Πn
i=1Ai : aI ∈ prI B′, I ∈ P}. Since the proposition fails for B′, it must
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be that there exists some u = (u1, . . . , un) ∈ {a ∈ Πn
i=1Ai : aI ∈ prI B′, I ∈ P} such that u 6∈ B′.

Then un\{k} ∈ {a ∈ Πi∈n\{k}Ai : aI ∈ prI B′, I ∈ P, k 6∈ I} = prn\{k}B′. Thus, for all 1 ≤ k ≤ n,

there exists some ck ∈ Ak such that

(u1, . . . , uk−1, ck, uk+1, . . . , un) ∈ B′. (5.3)

Claim 5.5.6.1. If there exists some u ∈ Πn
i=1Ai, ck ∈ Ak, for all 1 ≤ k ≤ n, such that u 6∈ B′

and (u1, . . . , uk−1, ck, uk+1, . . . , un) ∈ B′, for all 1 ≤ k ≤ n, then, for each 1 ≤ i < j ≤ n,

B′(u1, . . . , ui−1, xi, ui+1, . . . , uj−1, xj , uj+1, . . . , un) is a subuniverse of Ai × Aj and

B′(u1, . . . , ui−1, xi, ui+1, . . . , uj−1, xj , uj+1, . . . , un)

=



an automorphism of S, if Ai = S = Aj, or

the (A/θ, S)-cross, κa,cj , and ci = a, if Ai = A/θ and Aj = S, or

the (S,A/θ)-cross, κci,a, and cj = a, if Ai = S and Aj = A/θ, or

the (A/θ,A/θ)-cross, ηa, and ci = a = cj, if Ai = A/θ = Aj.

Proof of claim. It is clear that B′(u1, . . . , ui−1, xi, ui+1, . . . , uj−1, xj , uj+1, . . . , un) is a subuniverse

of Ai × Aj that contains the tuples (ci, uj), (ui, cj) but does not contain (ui, uj), thus ci 6= ui and

cj 6= uj . Then

B′(u1, . . . , ui−1, xi, ui+1, . . . , uj−1, xj , uj+1, . . . , un) ≤s.d. Ai × Aj

and B′(u1, . . . , ui−1, xi, ui+1, . . . , uj−1, xj , uj+1, . . . , un) 6= Ai × Aj .

WLOG, we will suppose that i = 1 and j = 2. If A1 = S = A2, then B′(x1, x2, u3, . . . , un) ≤s.d

S2 and B′(x1, x2, u3, . . . , un) 6= S2, implies, by Corollary 3.1.6, that B′(x1, x2, u3, . . . , un) is an

automorphism of S.

Suppose that A1 = A/θ and A2 = S. We saw that A/θ and S are not isomorphic and

B′(x1, x2, u3, . . . , un) 6= A/θ×S, therefore it follows from Corollary 3.1.6 that B′(x1, x2, u3, . . . , un)

is an (A/θ, S)-cross. Furthermore, since (u1, c2), (c1, u2) ∈ B′(x1, x2, u3, . . . , un) and (u1, u2) 6∈
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B′(x1, x2, u3, . . . , un) we get that B′(x1, x2, u3, . . . , un) = κc1,c2 , which means, as we discussed at

the beginning of the proof, c1 = a. A symmetric proof shows the result when A1 = S and A2 = A/θ.

Finally, suppose that A1 = A/θ = A2. We have that (u1, c2), (c1, u2) ∈ B′(x1, x2, u3, . . . , un).

We claim that c1 = a = c2. Recall the Ai = S for some i ∈ n. WLOG, suppose that i = 3.

Then we have that A1 = A/θ and A3 = S implies B′(x1, u2, x3, u4, . . . , un) is the (A/θ, S)-cross,

κc1,c3 and c1 = a. Similarily, A2 = A/θ and A3 = S implies B′(u1, x2, x3, u4, . . . , un) is the

(A/θ, S)-cross, κc2,c3 and c2 = a. Thus (u1, c2) = (a, c2), (c1, u2) = (a, c2) and (a, c2), (a, c2) ∈

B′(x1, x2, u3, . . . , un). Since B′(x1, x2, u3, . . . , un) is a subdirect subproduct of (A/θ)2 and is not

equal to the full direct product (A/θ)2, it follows from Corollary 3.1.6 that B′(x1, x2, u3, . . . , un) is

either an automorphism of A/θ or an (A/θ,A/θ)-cross. By statement (vii) of Proposition 3.2.4, we

have that ηa ≤ (A/θ)2 implies every automorphism of A/θ must fix a. Thus, if B′(x1, x2, u3, . . . , un)

is an automorphism of A/θ, then (a, u2) ∈ B′(x1, x2, u3, . . . , un) implies u2 = a, thus u2 = a = c2,

which is a contradiction. Hence, B′(x1, x2, u3, . . . , un) is an (A/θ,A/θ)-cross and, since ηa is the

unique (A/θ,A/θ)-cross that is a subuniverse of (A/θ)2, we get that B′(x1, x2, u3, . . . , un) = ηa.

This completes the proof of the claim.

Claim 5.5.6.2. There exists at most one i ∈ n such that Ai = S.

Proof of claim. Suppose not. WLOG, suppose A1 = S = A3. We are assuming that there exists

some j ∈ n such that Aj = A/θ. WLOG, suppose that j = 2. Then by Claim 5.5.6.1 we have that

B′(x1, u2, x3, u4, . . . , un) is an automorphism of S and B′(u1, x2, x3, u4, . . . , un) is an (A/θ, S)-cross.

Therefore B′(x1, x2, x3, u4, . . . , un) is a subuniverse of S × A/θ × S that satisfies the assumptions

of Corollary 5.3.2. Then it follows from Corollary 5.3.2, that either Λ ≤ A2 or Kb ≤ A3, for some

b ∈ A\S. However, since S is quasiprimal, this is a contradiction to Assumption 2. This completes

the proof of the claim.

Since we have that the proposition fails for B′ ≤ Πn
i=1Ai where Ai = S for some i ∈ n, it

follows from Claim 5.5.6.2 that there exists a unique element ι ∈ n such that Aι = S.
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Either P 6= ∅ or P = ∅. We will consider these two cases separately. First suppose that P 6= ∅

and let I ∈ P . WLOG, we may permute the coordinates of B′ so that I = {1, . . . ,m}. Recall

that we showed that proposition holds if n ∈ P , thus, since we are assuming that the proposition

fails for B′, it must be that m < n. By Claim 5.5.6.2 there exists at most one i ∈ n such that

Ai = S. Therefore we may assume, WLOG, that Ai = A/θ for all 1 ≤ i ≤ m − 1. Since m < n

it follows from (5.3) that (u1, . . . , um−1, um), (u1, . . . , um−1, cm) ∈ prI B′. We claim that ui = a for

some 1 ≤ i ≤ m− 1. Suppose not. Then (u1, . . . , um−1, um), (u1, . . . , um−1, cm) ∈ prI B′ and prI B′

a cross on Πj∈IAj with special element a ∈ A/θ implies that um = cm, which contradicts ui 6= ci,

for all 1 ≤ i ≤ n. Therefore ui = a for some 1 ≤ i ≤ m− 1. WLOG, suppose that u1 = a.

We have made no assumption on Am, thus either Am = S or Am = A/θ. We will consider each

case separately. First suppose that Am = S. Then A1 = A/θ, Am = S implies, by Claim 5.5.6.1,

that B′(x1, u2, . . . , um−1, xm, um+1, . . . , un) is the (A/θ, S)-cross, κa,cm , and c1 = a. Then c1 = a =

u1, a contradiction. Now suppose that Am = A/θ. Then A1 = A/θ = Am implies, by Claim 5.5.6.1,

that B′(x1, u2, . . . , um−1, xm, um+1, . . . , un) is the (A/θ,A/θ)-cross, ηa, and c1 = a = c2. Thus

c1 = a = u1, a contradiction. Therefore P 6= ∅ contradicts ui 6= ci, for all 1 ≤ i ≤ n.

Now suppose that P = ∅. We will first consider the case when n = 3 and then consider

the case when n > 3. Suppose that n = 3. Then B′ is a reduced subuniverse of Π3
i=1Ai such

that no projection of A is a cross and, since the proposition fails for B′, B′ 6= Π3
i−1Ai. Finally, we

showed that ι is the unique such element of {1, 2, 3} such that Aι = S. WLOG, we will permute

the coordinates of B′ so that B′ ≤ A/θ × A/θ × S.

Then by Claim 5.5.6.1 we get that B′(u1, x2, x3) = κa,u3 = B′(x1, u2, x3), B′(x1, x2, u3) = ηa,

and c1 = a = c2. Then,

B′ ⊇ ({u1} × {a} × S) ∪ ({u1} ×A/θ × {c3})

∪ ({a} × {u2} × S) ∪ (A/θ × {u2} × {c3})

∪ (A/θ × {a} × {u3}) ∪ ({a} ×A/θ × {u3}).

Let I = {3} and J = {1, 2}. We claim that B′ ⊇ Xc3,aI,J . Suppose not. Then there exists some
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tuple (v1, v2, v3) ∈ Xc3,aI,J such that (v1, v2, v3) 6∈ B′. By the definition of Xc3,aI,J we know that either

v1 = a, or v2 = a, or v3 = u3. Suppose that v1 = a. From the above list of subsets of B′, we get that

B′(a, x2, x3) is a subuniverse of A/θ × S that contains ({u2} × S) ∪ (A/θ × {u3}) and u2 6= c2 = a,

therefore, it follows that B′(a, x2, x3) is not an (A/θ, S)-cross and thus, by Corollary 3.1.6, we have

that B′(a, x2, x3) = A/θ×S. Then B′ ⊇ {a}×A/θ×S 3 (a, v2, v3) = (v1, v2, v3), a contradiction. A

symmetric argument shows that we get a contradiction if v2 = a. Suppose that v3 = c3. From above

we have that B′(x1, x2, c3) is a subuniverse of (A/θ)2 that contains ({u1}×A/θ)∪(A/θ×{u2}) and

ui 6= ci = a, for i = 1, 2, thus, B′(x1, x2, c3) is not an (A/θ,A/θ)-cross, therefore, by Corollary 3.1.6,

B′(x1, x2, c3) = (A/θ)2. Then B′ ⊇ (A/θ)2 × {c3} 3 (v1, v2, c3) = (v1, v2, v3), a contradiction.

Therefore we have shown that B′ ⊇ Xc3,aI,J .

Since P = ∅ we have that B′ 6= Xc3,aI,J . Therefore there exists some tuple (v1, v2, v3) ∈ B′ such

that (v1, v2, v3) 6∈ Xc3,aI,J , which means v1 6= a 6= v2 and v3 6= c3. Then v1 ∈ A/θ implies that

B′ ⊇ Xc3,aI,J ⊇ ((A/θ)2 × {c3}) ∪ (A/θ × {a} × S) ⊇ ({v1} ×A/θ × {c3}) ∪ ({v1} × {a} × S).

Therefore B(v1, x2, x3) is a subuniverse of A/θ×S that contains (A/θ×{c3})∪({a}×S)∪{(v2, v3)}.

Since v2 6= a and v3 6= c3, it follows that B(v1, x2, x3) = A/θ × S. Thus ({v1} × A/θ × S) ⊆ B′.

Also, ({a} × A/θ × S) ⊆ Xc3,aI,J ⊆ B′, where a 6= v1. Let w ∈ pr2,3B
′ = A/θ × S. Then B′(x1, w)

is a subuniverse of A/θ that contains v1, a, where v1 6= a, which means B′(x1, w) = A/θ. Since w

was an arbitrary element of pr2,3B
′, we get that

B′ = A/θ ×
⋃

w∈pr2,3B
′

{w} = A/θ ×A/θ × S,

which contradicts the assumption that B′ 6= Π3
i=1Ai. This completes the proof when n = 3 and

P = ∅.

We will now suppose that P = ∅ and n ≥ 4.

Claim 5.5.6.3. Let j ∈ n. Then B′(x1, . . . , xj−1, uj , xj+1, . . . , xn) is a cross on Πi∈n\{j}Ai.

Proof of claim. Let j ∈ n. Then B′(x1, . . . , xj−1, uj , xj+1, . . . , xn) is a subuniverse of Πi∈n\{j}Ai.

WLOG, suppose that j = 1. Clearly, B′(u1, x2, . . . , xn) is a subuniverse of Πi∈n\{1}Ai. We will
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show that B′(u1, x2, . . . , xn) is reduced, no m-ary projection of B′(u1, x2, . . . , xn) is a cross, for

2 ≤ m < n− 2, and B′(u1, x2, . . . , xn) 6= Πi∈n\{j}Ai. Then the result of the claim will follow from

the minimality of n.

First we will show that B′(u1, x2, . . . , xn) is reduced. Since ck, uk ∈ prk B′(u1, x2, . . . , xn)

and ck 6= uk, for all 2 ≤ k ≤ n, we get that no unary projection of B′(u1, x2, . . . , xn) is trivial. Fur-

thermore, since n ≥ 4, for all 2 ≤ i < j ≤ n, we have that (ci, uj), (ui, uj) ∈ pri,j B′(u1, x2, . . . , xn).

Thus, if pri,j B′(u1, x2, . . . , xn) is an automorphism, then ci = ui, which is a contradiction. There-

fore, no binary projection of B′(u1, x2, . . . , xn) is an automorphism. Since S is quasiprimal this

shows that B′(u1, x2, . . . , xn) is reduced.

Now, we will show that no m-ary projection of B′(u1, x2, . . . , xn) is a cross, for 2 ≤ m < n−1.

Let I ′ ⊆ {2, . . . , n}, |I ′| = m. Let I = I ′ ∪ {1}. Then |I| = m + 1 < n and prI B′ is a reduced

subuniverse of Πi∈IAi such that, since P = ∅, no projection of prI B′ is a cross. By the minimality

of n we get that prI B′ = Πi∈IAi. Then u1 ∈ pr1B
′ implies prI B′ ⊇ {u1} × Πi∈I\{1}Ai =

{u1} × Πi∈I′Ai. Hence prI′ B′(u1, x2, . . . , xn) ⊇ Πi∈I′Ai. Since I ′ was arbitrary, we have shown

that no m-ary projection of B′(u1, x2, . . . , xn) is a cross, for 1 ≤ m < n− 1.

Then it follows from the minimality of n that B′(u1, x2, . . . , xn) is the full cross on Πn
i=2Ai.

This completes the proof of the claim.

Recall that ι is the unique element of n such that Aι = S. Let I = {ι} and J = n \ {ι}.

Claim 5.5.6.4. B′ ⊇ Xuι,aI,J

Proof of claim. To show this claim we will show that, for j ∈ J , B′(x1, . . . , xj−1, a, xj+1, . . . , xn) =

Πi∈n\{j}Ai and, for j ∈ I, B′(x1, . . . , xj−1, uj , xj+1, . . . , xn) = Πi∈n\{j}Ai. WLOG, we will show

this result for j = 1.

First it will be useful to show that, for any 2 ≤ k ≤ n,

{a1} ×Πi∈n\{1,k}Ai ⊆ B′′(x1, . . . , xk−1, uk, xk+1, . . . , xn),

where a1 = u1, if A1 = S, and a1 = a, if A1 = A/θ. WLOG, suppose that k = n. Claim 5.5.6.3
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implies that B′(x1, . . . , xn−1, un) is a cross on Πn−1
i=1 Ai. Thus there exists some a ∈ A1 such that

{a} × Πn−1
i=2 Ai ⊆ B′(x1, . . . , xn−1, un). Since A1 and A2 are not both equal to S, it follows from

Claim 5.5.6.1 that B′(x1, x2, u3, . . . , un) = ({a1} ×A2) ∪ (A1 × {a2}), where ai = ui if Ai = S and

ai = a if Ai = A/θ, for i = 1, 2. We claim that a = a1. Suppose not. Note that {a} × Πn−1
i=2 Ai ⊆

B′(x1, . . . , xn−1, un) implies {a} ×A2 × {(u3, . . . , un)} ⊆ B′′. Also B′(x1, x2, u3, . . . , un) = ({a1} ×

A2) ∪ (A1 × {a2}) implies {a1} ×A2 × {(u3, . . . , un)} ⊆ B′′. Therefore ({a} ×A2) ∪ ({a1} ×A2) ⊆

B′(x1, x2, u3, . . . , un). Then for v ∈ A2, we have that B′(x1, v, u3, . . . , un) is a subuniverse of A1 that

contains the distinct elements a, a1. Since A1 is strictly simple, it follows that B′(x1, v, u3, . . . , un) =

A1. We chose v ∈ A2 arbitrarily, therefore B′(x1, x2, u3, . . . , un) = A1×
⋃
v∈A2
{v} = A1×A2, which

contradicts B′(x1, x2, u3, . . . , un) = ({a1} × A2) ∪ (A2 × {a2}). Thus a = a1 and we have shown

that {a1} ×Πn−1
i=2 Ai ⊆ B′(x1, . . . , xn−1, un), where a1 = u1, if A1 = S, and a1 = a, if A1 = A/θ.

Let,

g =


u1, if A1 = S

a, if A1 = A/θ.

Then we have shown that {g} ×Πk−1
i=2Ai × {uk} ×Πn

k+1Ai ⊆ B′′, for each 2 ≤ k ≤ n. Thus

B′(g, x2, . . . , xn) ⊇
⋃

k∈{2,...,n}

(Πk−1
i=2Ai × {uk} ×Πn

k+1Ai).

Clearly B′(g, x2, . . . , xn) is reduced and no m-ary projection of B′(g, x2, . . . , xn) is a cross, for

2 ≤ m ≤ n− 2. Furthermore, we claim that B′(g, x2, . . . , xn) is not a cross on Πn
i=2Ai. Recall that

n ≥ 4, Aι = S, and Aj = A/θ, for all j ∈ J . Then it follows from Claim 5.5.6.1 that cj = a for all

j ∈ J . If B′(g, x2, . . . , xn) is a cross on Πn
i=2Ai, then we have that

B′(g, x2, . . . , xn) ⊇
⋃

k∈{2,...,n}

(Πk−1
i=2Ai × {uk} ×Πn

k+1Ai)

implies uj = a, for all j ∈ J . Thus ui = a = ci, which is a contradiction. Therefore B′(g, x2, . . . , xn)

is not a full cross on Πn
i=2Ai. Then it follows from the minimality of n that B′(g, x2, . . . , xn) =

Πn
i=2Ai. This completes the proof of the claim.
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From Claim 5.5.6.4 we have that B′ contains the cross X
(uι,a)
I,J . We are assuming that no

projection of B′ is a cross, therefore there must exist some tuple (v1, . . . , vn) ∈ B′ such that

(v1, . . . , vn) 6∈ X
(uι,a)
I,J . Then vι 6= uι and vj 6= a, for all j ∈ J .

WLOG, we will permute the coordinates of B′ so that A1 = A/θ. Clearly B′(v1, x2, . . . , xn)

is a subuniverse of Πn
i=2Ai. We claim that B′(v1, x2, . . . , xn) is reduced and no projection of

B′(v1, x2, . . . , xn) is a cross. Since B′ contains the full cross X
(uι,a)
I,J , we have that {v1}×X

(uι,a)
I,J\{1} ⊆

B′, thus B′(v1, x2, . . . , xn) ⊇ X
(uι,a)
I,J\{1}. Therefore it is clear that B′(v1, x2, . . . , xn) is reduced and

no m-ary projection of B′(v1, x2, . . . , xn) is a cross, for 2 ≤ m ≤ n − 2. Furthermore, X
(uι,a)
I,J\{1} ∪

(v2, . . . , vn) ⊆ B′(v1, x2, . . . , xn), where vj 6= a, for all j ∈ J , and vι 6= uι. Thus B′(v1, x2, . . . , xn) 6=

X
(uι,a)
I,J\{1} and, since B′(v1, x2, . . . , xn) ⊇ X

(uι,a)
I,J\{1}, it cannot be that B′(v1, x2, . . . , xn) is a cross on

Πn
i=2Ai, therefore by the minimality of n we get that B′(v1, x2, . . . , xn) = Πn

i=2Ai.

We have shown that ({v1} × Πn
i=2Ai) ⊆ B′ and pr2,...,nB

′ = Πn
i=2Ai. Furthermore, since B′

contains X
(uι,a)
I,J , we have that ({a} ×Πn

i=2Ai) ⊆ B′. Thus ({a} ×Πn
i=2Ai) ∪ ({v1} ×Πn

i=2Ai) ⊆ B′,

where v1 6= a. Let w ∈ pr2,...,nB
′ = Πn

i=2Ai. Then B′(x1, w) is a subuniverse of A/θ that contains

v1, a, where v1 6= a. Since A/θ is strictly simple, we get that B′(x1, w) = A/θ. The choice of w was

arbitrary in pr2,...,nB
′, therefore

B′ = A/θ ×
⋃

w∈pr2,...,nB
′

{w} = A1 ×Πn
i=2Ai = Πn

i=1Ai,

which contradicts our assumption that B′ 6= Πn
i=1Ai. Therefore our assumption that there exists

some reduced subuniverse for which the proposition fails is incorrect. This completes the proof of

the proposition.

In Propositions 5.5.4, 5.5.5, and 5.5.6 we obtained similar descriptions for the reduced sub-

universes of Πn
i=1Ai, where Ai ∈ {S,A/θ}, under various assumptions on the existence of crosses

among the subuniverses of (A/θ)2 and A/θ×S. Next we will translate these results into descriptions

of subuniverses of finite powers of A.

The analog of Definition 5.5.1 is the following.
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Definition 5.5.7. Let Bi ∈ {S,A}, 1 ≤ i ≤ n. Let {I, J} be the partition of n such that Bi = S

whenever i ∈ I and Bi = A whenever i ∈ J . Let s ∈ S and let G = S or G = {b} for some b ∈ A\S.

Then we will call the set

X(s,G)
(I,J) := {(x1, . . . , xn) ∈ Πn

i=1Bi : there exists some i such that xi = s if i ∈ I and xi ∈ G if i ∈ J}

a (Bi)ni=1-cross. If B1 = · · · = Bn ∈ {S,A}, then we will simply denote an (S)ni=1-cross by Xs
n, and

an (A)ni=1-cross by XG
n with s and G as before.

It is easy to see that if ρ denotes the natural homomorphism Πn
i=1Bi → Πn

i=1Ai where Ai =

A/θ if Bi = A and Ai = S if Bi = S, then the (Bi)ni=1-cross Xs,G
(I,J) is the full inverse image, under

ρ, of the cross Xs,a(I,J) on Πn
i=1Ai where a = S if G = S and a = b if G = {b} for some b ∈ A \ S.

In particular, for n = 2, s ∈ S and b ∈ A \ S we have

Xs
2 = νs, XS

2 = χS,S , Xb
2 = µb, X(s,S)

({1},{2}) = λ−1
S,s, X(s,b)

({1},{2}) = κ−1
b,s .

Theorem 5.5.8. Suppose that A satisfies Assumption 2 and θ is a congruence on A. Let B ≤s.d.

Πn
i=1Bi (n ≥ 2) where Bi ∈ {A,S} for all 1 ≤ i ≤ n, and let ρ be the natural homomorphism

Πn
i=1Bi → Πn

i=1Ai where Ai = A/θ if Bi = A and Ai = S if Bi = S. If B′ = ρ(B) is a reduced

subuniverse of Πn
i=1Ai, then

B = {a ∈ Πn
i=1Bi : aI ∈ prI B for all I ∈ P}, (5.4)

where P is the set of all subsets I of n such that prI B is a (Bi)i∈I-cross.

Proof. Under the assumptions of the theorem, A/θ is a finite idempotent strictly simple algebra.

Recall that |A \ S| > 1, therefore, |A/θ| > 2. Then by Corollary 2.4.9, A/θ is either quasiprimal or

affine or has an (A/θ,A/θ)-cross among its subuniverses. Therefore one of Propositions 5.5.4, 5.5.5,

or 5.5.6 applies to B′. In each case, since B′ is reduced, therefore B is a reduced subuniverse of An.

Hence, by Theorem 5.4.1, B is θ-closed in its A-coordinates, which implies by Proposition 2.2.8

that B = ρ−1(B′).
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Therefore, if A/θ is quasiprimal or affine, then the equality proved in Proposition 5.5.4 implies,

by taking inverse images, that

B = {(x1, . . . , xn) ∈ Πn
i=1Bi : (xi, xj) ∈ pri,j B, 1 ≤ i < j ≤ n}.

As we noted at the beginning of the proof of Propositions 5.5.4, in this case a binary projection of

B′ is either an (S,A/θ)-cross, an (A/θ, S)-cross, or a direct product S2, (A/θ)2, S×A/θ, or A/θ×S.

Thus a binary projection of B is either an (S,A)-cross, an (A,S)-cross, or a direct product S2, A2,

S × A, or A × S. If pri,j B is a direct product, then pri,j B = priB × prj B = Bi × Bj , so the

condition (xi, xj) ∈ pri,j B makes no restriction, and can be omitted. Thus we get that (5.4) is true

in this case.

Suppose there exists an (A/θ,A/θ)-cross among the subuniverses of (A/θ)2, but there is no

(S,A/θ)-cross among the subuniverses of S× A/θ, then by permuting coordinates if necessary, we

get from Proposition 5.5.5 that the equality B′ = prJ B′×prK B′ holds for B′ where J is the set of

all i ∈ n such that Bi = S, and K is the set of all i ∈ n such that Bi = A. Here prK B′ is a reduced

subuniverse of a power of the strictly simple algebra A/θ, therefore it follows from Proposition 2.4.7

that prK B′ = {a ∈ Πi∈KAi : aI ∈ prI B′ for all I ∈ P ′}, where P ′ is the set of all I ⊆ K such

that prI B′ is an cross on (A/θ)I . Hence B′ = {a ∈ Πn
i=1Ai : aI ∈ prI B′ for all I ∈ P ′}. By taking

inverse images under ρ we get that (5.4) is true.

Finally, if there exists an (A/θ,A/θ)-cross among the subuniverses of (A/θ)2 and also an

(S,A/θ)-cross among the subuniverses of S×A/θ, then (5.4) follows immediately from the equality

proved in Proposition 5.5.6, by taking inverse images.

Theorem 5.5.9. Suppose that A satisfies Assumption 2 and that θ is a congruence on A. Then

the relational clone RClo(A) of A is generated by the following members of RClo(A).

(i) All {a} for a ∈ A.

(ii) All automorphisms of A, S and A/θ.

(iii) All isomorphisms S→ A/θ.
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(iv) All h.d.-automorphisms of A, S, and A/θ.

(v) All higher dimensional crosses X(s,G)
(I,J) in RClo(A) where s ∈ S, G = S or G = {b} for some

b ∈ A \ S, and {I, J} is a partition of n, n ≥ 2 with |I| ≤ 1.

Proof. Let R denote the set of relations listed in (i)–(vi). It is clear that R ⊆ RClo(A). To show

that R generates RClo(A) we will choose any subuniverse B of a finite power of A, and want to

show that B is contained in the relational clone 〈R〉RClone generated by R.

All members of

TA = {{a} : a ∈ A} ∪Aut(S) ∪Aut(A) ∪Auth.d.(S) ∪Auth.d.(A)

are listed in R, so it follows that TA ⊆ 〈R〉RClone. All remaining members of

T ′A = Aut(A/θ) ∪ Isom(S,A/θ) ∪Auth.d.(A/θ)

are listed in R, so we get as before that T ′A ⊆ 〈R〉RClone.

Now let B be a subuniverse of An. Then it follows from Proposition 5.1.3 that there exists a

nonempty subset I ⊆ n such that B ∈ 〈prI B, TA〉RClone and prI B is a reduced subuniverse of A|I|.

Thus, it will suffice to show that prI B ∈ 〈R〉RClone.

Therefore, replacing B by prI B, we may assume that B is reduced. Let B ≤s.d. Πn
i=1Bi

where Bi ∈ {S,A} for all 1 ≤ i ≤ n. With the same notation as in the preceding theorem, let

B′ = ρ(B). We know from Theorem 5.4.1 that B is θ-closed in its A-coordinates, and therefore

B = ρ−1(B′). Also, it follows from Proposition 5.1.6 that there exists some nonempty J ⊆ n such

that B′ ∈ 〈prJ B′, T ′A〉RClone and prJ B′ is reduced. By examining the proof, and using the fact

that B = ρ−1(B′), one can see that B ∈ 〈prJ B, T ′A〉RClone also holds.

Therefore, replacing B by prJ B, we may assume that B is such that B′ is reduced. Now

Theorem 5.5.8 shows that B is in the relational clone generated by the relations in (vi). This proves

that B ∈ 〈R〉RClone.
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