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Clones of Finite Idempotent Algebras with Strictly Simple Subalgebras

Thesis directed by Professor Agnes Szendrei

Abstract: We determine the clone of a finite idempotent algebra A that is not simple and has
a unique nontrivial subalgebra S with more than two elements. Under these conditions, the proper
subalgebras and the quotient algebra of A are finite idempotent strictly simple algebras of size at
least 3 and it is known that such algebras are either affine, quasiprimal, or of a third classification.
We focus on the first two cases. By excluding binary edge blockers from the relational clone
when S is affine and by excluding ternary edge blockers from the relational clone together with an
additional condition on the subuniverses of A? when S is quasiprimal, we give a nice description of
the generating set of the relational clone of A. Thus, by the Galois connection between operations

and relations, we determine the clone of A.
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Chapter 1

Introduction

In this dissertation we will determine the clones of finite idempotent algebras with certain
restrictions on subalgebras. In particular, we will consider algebras that satisfy the following

assumption.

Assumption 1. A is a finite idempotent algebra with a unique proper nontrivial subalgebra S such

that |S| > 2 and |A\ S| > 1.

Algebras that satisfy Assumption 1 have the property that their proper subalgebras and
quotient algebras are strictly simple of size at least 3. In particular, the unique nontrivial subalgebra
S is a finite idempotent strictly simple algebra with more than two elements. Such algebras were
classified by Szendrei [Sze87, Theorem 2.1] to be in one of three categories: quasiprimal, affine, or
a third category which is described in Theorem 2.4.4. We will focus our investigation on the cases
when S is quasiprimal or affine.

To determine the clone of an algebra A it suffices, by the Galois connection, to determine
the relational clone of A. Informally, the relational clone of A is the collection of all subuniverses
of finite powers of A. Therefore, our goal is to determine a set of subuniverses of finite powers of
A that generates the relational clone of A.

Our examination of the subuniverses of A", n > 1, brought to light a family of binary and
ternary relations on A which, when included in the relational clone of A, will prevent A from having
an edge operation (equivalently, a cube operation; equivalently, a parallelogram operation). We will

call these relations edge blockers. It has been shown by Aichinger, McKenzie, and Mayr [AMM]



that a finite algebra with an edge operation is finitely related, that is, has a finitely generated
relational clone.

While excluding the binary and ternary edge blockers from the relational clone of A will not
imply that A has an edge operation, it will allow us to find a nice description for the relational
clone, hence the clone of A. This description, which is the main result of this dissertation, is stated

in Theorem 5.5.9.



Chapter 2

Preliminaries

In this section we will describe the notation and conventions that we will use throughout the

paper. We will also list useful facts, some of which are well-known and some that are, perhaps, less

familiar.
For an integer n, we let m := {1,...,n}. For a nonempty set A, and a tuple (a1, ...,a,) € A",
we will sometimes write @ rather than the tuple (aq,...,a,). Though the notation is similar, it will

always be clear from context whether we are referring a set if integers or tuple.

2.1 Algebras, Operations, and Clones

For a nonempty set A and a collection of finitary operations, F', on A, the algebra with
underlying set A and basic operations F is denoted by A = (A;F). We will denote that B is
a subalgebra of A", n > 1, by B < A"™. We will say that the underlying set, B, of B is an n-
ary compatible relation of A, or equivalently, B is a subuniverse of A™ which we will denote by
B < A" We will call the one-element subuniverses of A the singleton subuniverses of A, or the
trivial subuniverses of A.

A clone on the set A is a set of finitary operations on A that is closed under compositions
and contains the projections. The clone of an algebra A = (A; F) is the least clone on A that
contains F', we say that this clone is the clone generated by F and we denote this clone by Clo(A).
The operations in the clone of A, which we call term operations, are exactly the operations that are

interpretations of terms in the language of the algebra. Two algebras are called term equivalent if



they have the same clones, that is, if they have the same term operations.

For n > 1, an n-ary operation, f, on A is an idempotent operation if f(x,...,z) = x, for
any x* € A. The algebra A = (A, F') is an idempotent algebra if and only if {a} is a one-element
subuniverse of A, for every a € A.

For any n > 1 we will denoted 7 := {1,2,...,n}. If 6 is a congruence on A and (a,b) € 6,
then we say that a is 0-related to b, and we will denote the relationship of a and b by afb. If 0 is
the equality relation on A, then will write A instead of A/6.

Let A; be a collection of algebras that have a common language, for all ¢ € m. Let 6; be an

equivalence relation on A;, for each i. Then the map on the product of Aq,..., A,, given by,

HAZ‘ — H(AZ/HZ) . (al,... ,an) — (a1/91,... ,an/Qn),

will be called the natural map. If 6; is a congruence on A;, for all 1 < ¢ < n, then this map
is the natural homomorphism from ITA; to I1(A;/0;). We will always specify the domain and the
codomain of a natural map (homomorphism), however we will omit stating the map on the elements
of the domain since this assignment is clear from the domain, the codomain, and the definition of

a natural map (homomorphism).

Theorem 2.1.1. If the variety V is congruence distributive or congruence permutable, then V is

congruence modular.
The following theorem of Mal’cev characterizes congruence modular varieties.

Theorem 2.1.2 ([Mal54]). The variety V is congruence permutable if and only if there is a term

p(z,y, z) in its language such that these equations hold for V.
(1) p(z,z,y) =y,
(2) ply,z,7) =y.

The following theorem of Gumm characterizes congruence modular varieties.



Theorem 2.1.3 ([Gum83]). A variety V is congruence modular iff for some n > 0 there are terms

do(z,y,2),...,dn(x,y, 2),p(x,y,2) in its language such that these equations hold in V.
(1) do(z,y,2) =z, di(x,y,x) =z for 1 <i<n,
(2) di(z,y,y) = dir1(,y,y) for even i <n,
(3) di(z,z,y) = diyi(x,z,y) for odd i < n,
(4) dn(z,y,9) = p(z,y,), p(x,z,y) = y.
2.2 Compatible Relations and Relational Clones

Let A be a fixed set. For an n-ary operation f and an m-ary relation p on A we say that f

preserves p or p is invariant under f if for any @; = (a1, - - -, a(m)) € A™, 1 <i <n,
a(1,1) Q(n,1) f(a(l,l)a e 7a(n,1))
_ B ag1,2) A(n,2) fla@zys - ama)
paf(alu"'van):f< ) PR ) >: )

a(1,m) A(n,m) Fla@my, - a@m)

A relational clone on the set A can be defined by two equivalent notions. The first, and one
we will use more often, is that a relational clone on A is a set of relations that contains the equality
relation and is closed under taking Cartesian products, intersections, projections, and permuting
coordinates. The second definition is that a set of relations K on A is a relational clone on A if K is
closed under primitive-positive definability, that is, if K is a set of relations on A such that p € K
holds for every relation p on A which is definable by a primitive-positive formula (pp-formula) in
the relational structure (A, K'), where a pp-formula in the language of (A, K) is a first-order formula
using only the logical symbols 3, A, =, and the symbols for the relations in K.

For an algebra A = (A; F), the relational clone RClo(A) on A is the relational clone on
A that contains all relations that are invariant under the operations in Clo(A). Notice that the

subuniverses of finite powers of A are relations that are invariant under Clo(A), in other words,



the relational clone of A is exactly the collection of all subuniverses of finite powers of A. Recall
that we defined a subuniverse of A™ to be an n-ary compatible relation, thus for an operation f
and a relation p on A, we can say that p is invariant under f or p is compatible with f. If the
relational clone of A is generated by (taking products, intersections, projections, and permuting

the coordinates of) a set R of relations on A, then we will write RClo(A) = (R) rcione-

Definition 2.2.1. The relational clone of a finite algebra A is finitely related if its relational clone

is determined by finitely many relations.

In other words, the relational clone of A is finitely related if there exists some finite set
o1,...,0p of relations A such that RClo(A) = (o1, ...,00) RCione-

We will now give some examples of compatible relations. First, we will give some notation for
constructions that yield subuniverses from subuniverses. Suppose that D < A™, for some m > 1.

Let I = {i1,...,%m}. We define the notation

D(xil7" . 7xim) = {(aip'- -7aim) € Al (ala- . '7am) € D where ay = Qjyy ovvy Om = aim}'
Thus the it" variable of D(w,,...,x;, ) corresponds to the k* variable of D, for all 1 < k < m.
Though D(z;,,...,x;, ) is a subuniverse of A7 and D is a subuniverse of A™, we will consider them
equal.

Now suppose that B is a subuniverse of A", for some n > 1. Suppose that I C n, [ =
{i1,...yim}, J C I, where i1 < --- < iy,. Then the projection of B onto its coordinates in I, is the

subuniverse of A’ denoted pr 1 B, that is defined by,

prIB = {(l’il, e xim) : (l’l, e s L =15 Ty s Ty A1y e v o s Ly —15 Ly s L1« - + xn) € B}

If D is a subset of A™ such that pr; B = D, then from the definition of the projection we get
that pr;(pr; B) = pr; B < A7, thus pr;(pr; B) = pr; D.
If @ is a tuple in A”, then the projection of @ onto its i*"-coordinates, for all i € I, will be

denoted by @y := pr;a.



Let @ € A"\ | Then the subset of Al arising from B and the tuple @ is defined by

B(a17 sy Qi =15 Ly Qg 41y -+ o5 Ay —15 Ly s Ay +1 - - - 7an)
- I.
= {(l‘il, c. 7$im) €A (al, ey Qi 1y Ly ALy e vy iy — 15 Ty s Ay 15 -+ - .,an) € B}
Furthermore, if B(a1,..., Qi —1,Tiy, Qiytly -y Qip—1s Tipyy Gipyt1 - - - s ap) = D, for some D C A™,
then
J
prJB(a17 sy Qi =15 Liq s Q415 - -5 Qi =15 Ly s Ay +1 - - - 7an) = prJD S A7,

Proposition 2.2.2. Let B is a subset of A™ such that pr; B = {a}, for some a € A. Then B is in

the relational clone of A if and only if {a} and pry__,, B are in the relational clone of A.

Proposition 2.2.3. For an algebra A and an automorphism, w, of A, the set of fixed points of ®

is a subuniverse of A.

Proposition 2.2.4. Let n > 2. If A is an algebra, then the set {(x,...,x,y) : z,y € A} is a

subuniverse of A",

Proposition 2.2.5. Let 6 be an equivalence relation on A. Then 0 is a subuniverse of A% if and

only if 0 is a congruence on A.

Proof. Suppose that @ is an equivalence relation on A. Then 6 is a subset of A2. Let f be an m-ary
term operation on A and let @; := (aj, a;»> be an element of 4, for all 1 < j < m.
(=) Suppose that 6 is a subuniverse of A?. Then @ is closed under the term operations of A.

In particular, 6 contains

= (f(a1,...,am), f(d},... al,))

Therefore f(ai,...,am) is 6-related to f(a},...,a;,) whenever @; € 6. Since # is an equivalence
relation, @; € ¢ implies that a; is f-related to a;-. It follows from the definition of a congruence

that € is a congruence on A.



(«) Now suppose that 6 is a congruence on A. Since # is an equivalence realtion, @; € ¢
implies a; is f-related to a;, for all 1 < 5 < m. Furthermore, since 6 is a congruence on A and f is
a term operation on A, we get that f(ai,...,an) is O-related to f(a},...,al,). Hence 6 contains

(flar,...,am), f(ay,...,al,)) = f(@i,...,am). Therefore 6 is closed under f and hence, 6 is a

subalgebra of AZ. O

Proposition 2.2.6. If A is an idempotent algebra, then every congruence class is a subuniverse of

A.

Proof. Let A be an idempotent algebra, where 6 is a nontrivial congruence on A and g is an n-ary
term operation on A. Let aq,...a,,a € A be elements of the congruence class a/0 € A/f. Thus
aifa, ..., anfa. Since 6 is a congruence on A we get that g(aq,...,a,)0g(a,...,a). Furthermore,
since A is idempotent, g(a,...,a) = a. Thus, g(ai,...,a,)0a, which means g(ai,...,a,) € a/f.
Therefore, the congruence class a/6 is preserved by g. Since a was an arbitrary element of A and g

was an arbitrary term operation of A, we get that every congruence class is a subuniverse of A. [

Definition 2.2.7. For 1 <i <mn, let A; be a collection of algebras that share a common language,
and let 8; be a congruence on A;. Let B be a subuniverse of Ay x --- x A,. We will say that B is

0,-closed in its it -coordinate, for some i € 7, if
(a1, ...,ai—1,0i,Qit1,-..,0,) € B and a;0;a; = (a1,...,a;—1,0a;,ai41,.-.,a,) € B.
We will say that B is 61 x --- x 0,-closed if, for all 1 < i < n,
(ai,...,an) € B and @;0;a; = (d},...,a;,) € B.

Proposition 2.2.8. For1 <i < n, let A; be a collection of algebras that share a common language,
let 6; be a congruence on A;, and let p : TIA; — T1A;/0; be the natural map. If B < Aj x -+ x A,

then TFAE.
(a) For each i, B is 0;-closed in its it" coordinate.

(b) B is 0 x -+ X ,-closed.



(c) B=p"'(o(B)).

Proof. (a) = (b) We will show this implication by inducting on n. If n = 1 and B be a
subuniverse of A; that is #;-closed, then (a) clearly implies (b).

Suppose that every subuniverse of H?:_llAi that is f;-closed in its " coordinate, for each
1<i<n-—1,isalso 0y x -+ x 0,_1-closed.

Let B be a subuniverse of II?"_ ;A; that is 6;-closed in its ith-coordinate, for each 1 < i < n.
Let (ai,...,an—1,a,) € B and suppose that a;6;a;, for each 1 <i < n. Then, for any i e n — 1, B
contains the tuple (a1, ...,a,—1,a;, aj+1,...,an—1,ayn). Thus B(x1,...,2y_1,a,) is a subuniverse of
H?Z]IAZ- that contains (ai,...,a;—1,a;, Git1,...,an—1) and (a1,...,a;—1,a},a;t1,-..,an—1), which
means B(x1,...,2Ty-1,a,) is 0;-closed in its it coordinate. Since i was arbitrary in n — 1, we get
that B(z1,...,Tn_1,ay) is O~closed in its i** coordinate, for each 1 < ¢ < n—1, thus by the induction
hypothesis, B(x1,...,Tn—1,ay) is 61 X - - X 0,_1-closed. Then a;0;a}, for each 1 < i < n—1, implies
(a},...,al, ) € B(w1,...,2n_1,a,). Hence (ay,...,a!,_;,a,) € B. Since B is f,-closed in its n'"-
coordinate and a,0,al,, we get that (af,...,al,_;,a),) € B. Therefore, B is 6 X - - x 0,,-closed.

(b) == (c) By the definition of p it is clear that B C p~'(p(B)). Let (a1,...,a,) €
p Y(p(B)). Then (a1/01,...,a,/0,) € p(B) which means, for each 1 < i < n, there exists some
a; € A; such that a}b,a; and (a},...,a),) € B. Since B is 61 X - - X f,-closed and (d},...,al) € B
with a}f;a;, for each 1 <i < n, we get that (a1,...,a,) € B. Hence B 2 p~1(p(B)).

(c) = (a) Let i € m. Suppose (ay,...,a;—1,ai,ai+1,-..,an) € B = p 1 (p(B)) and a;0;a.
By the definition of p, the tuple (a1/61,...,a;-1/0i—1,a;/0;,ai+1/0it1,...,an/0n) € p(B). Then,
since p~!(p(B)) is the full inverse image of p(B) under p, it follows from the definition of p and
aifial, that (ay,...,a;-1,a.,a;41,...,a,) € p~1(p(B)) = B. Since i was an arbitrary element of 7,

this completes the proof. O

Proposition 2.2.9. Let A and B be algebras with a common language. Let o : A — B be a
homomorphism. Let A’ be any subuniverse of A and let B’ be any subuniverse of B. Then «(A’) is

a subuniverse of B and a~'(B') is a subuniverse of A
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Proposition 2.2.10. Let A; be a collection of algebras that have a common language, for all
1 <i<n. Let0; be a congruence on A;, for eachi. Let p denote the natural map I1A; — T1(A;/6;).

Let C CTI(A;/6;) and let B = p~Y(C). Then
B is a subuniverse of I1A; < C is a subuniverse of I1(A;/6;).

Proposition 2.2.11. Let w; : A; — B; be an isomorphism, for all 1 < i <mn. Then the map, Ilr;,
defined by

H’/TZ' . H?:lAi — H?leBgi . (al, . ,an) — (7r1(a1), e ,Wn(an))
s an isomorphism.

Corollary 2.2.12. Let w; : A; — B; be an isomorphism, for all 1 < i < n. Let Ilm; be the map

defined in Proposition 2.2.11. Then,

Proof. (=) This implication clearly holds by Proposition 2.2.9 and since Il7; is a homomorphism.

(<) Suppose that IIm;(R) is a subuniverse of IIB;. By Proposition 2.2.9 and since IIm; is
a homomorphism we have that the inverse image of Ilm;(R) under Ilm; is a subuniverse of ITA;.
Proposition 2.2.11 states that, in fact, IlIm; is an isomorphism, thus the inverse image of Ilm;(R)

under IIm; is equal to R. Therefore, R is a subuniverse of IIA,;. L]

Proposition 2.2.13. Let A; be a collection of algebras that have a common language, for all

1 <1i <mn. Then the following implications hold.
(i) If B and C be subuniverses of Ay x -+ x A, then BN C is a subuniverse of Ay X -+ X A,,.
(ii) If T; < A; for all1 <i<n, then Th X --- x T}, is a subuniverse of I1A;.

(i) If T; < A; foralll1 <i<nand B < A; x---xA,, then BNTy x --- x T, is a subuniverse

of A X -+ X A,
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Proposition 2.2.14. Let A1, Ay be algebras that have a common language. Let ¢ be a function

from A1 to As. Then

¢ : A — Ay is a homomorphism < the graph of ¢ is a subuniverse of Aj X Asg.
In particular, if ¢ is a bijection, then

¢ : A1 — Ag is an isomorphism < the graph of ¢ is a subuniverse of A; x Ag.

Proposition 2.2.15. Let Ay and As be algebras that have a common language. Let 6; be an

equivalence relation on A;, i = 1,2. Let p be the natural map,
p: A1 X AQ — A1/91 X A2/92.

Let ¢ be a bijection from A1/01 to Ay/Bs, and let B = p~'(¢). If B is a subuniverse of Ay x Ag,

then
(i) 0; is a congruence on A;, fori=1,2, and
(ii) ¢ is an isomorphism A /07 — Ay /0s.

Proof. To show (i), for i = 1, we will show that #; = Bo B~!. Then, since Bo B~! is a subalgebra
of A2, so is 01, hence, by Proposition 2.2.5, ; is a congruence on A;.

(D) Let (z,2) € Bo B~!. Then there exists some y € Ay such that (z,y) € B and (z,y) €
B. From the assumption that B = p~1(¢) we get that p((z,y)) = (x/61,y/62) and p((z,y)) =
(z/61,y/02) are elements of the graph of ¢. Since ¢ is a bijection, this means that z/6; = z/6;.
Therefore z is #;-related to z, and hence (x, z) € 6.

(C) Let (u,v) € 1. Then u/6; = v/6;. Since ¢ is a bijection, it follows that ¢(u/0;) =
d(v/61). Let as € Ag be such that as/03 = ¢(u/601) = ¢(v/61). Then (u/61,a2/602) = (v/01,a2/02)
are elements in the graph of ¢. Therefore (u,as), (v,a2) € p~'(¢) = B. Thus (u,v) € Bo B~1.

To show (i), for i = 2, it is enough to note that B~! = p=1(¢~1), where ¢! : A3/0y — A1/0;
is a bijection and B! is a subuniverse of Ay /02 x A1 /6. These conditions satisfy the assumptions

of (i), therefore 5 is a congruence on As.
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By Proposition 2.2.14, to show (ii) holds it is enough to show that the graph of ¢ is a
subuniverse of Aj/60; x As/6,. First note that, by (i), 6; is a congruence on A;, i = 1,2, thus A;/6;
is an algebra. Our assumptions on B state that B = p~!(¢) and B is a subuniverse of A; x Ag,
so applying Proposition 2.2.10 gives that the graph of ¢ is a subuniverse of A;/0; x Ay/0s. By
assumption we have that ¢ is a bijection, therefore, it follows from Proposition 2.2.14 that ¢ is an

isomorphism A;/60; to Ay /6s. O

Definition 2.2.16. Let A, Ao, 01, 65 be as in Proposition 2.2.15. If B is a subuniverse of A; x Ay
such that B = p~!(¢) for some bijection ¢ : A1/ — Ag/0 where p : Ay x Ay — A1/0; x Az/0
is the natural map, then we will call B an isomorphism from A1/6, to Ag/0s.

2.3 The Galois Connection

Let A be a finite set. Let Op be the set of all finitary operations on A and let Rel be the
set of all finitary relations on A. Then there is a correspondence between the subsets of Op and
the subsets of Rel under notions of invariance and preservation that defines the following Galois

connection,

[ Op = Rel
F — F+ = {p € Rel : p is invariant under f for all f € F}

Rt ={f €Op: f preserves p for all p € R} — R,
where
1) F C F, = Fi* D Fj for all F1, F> C Op,
1 2
(2) R1 C R2 — Rf‘ D R%‘ for all Rl,RQ - Rel,
(3) F C F++ for all F € Op,
(4) RC R+t forall R e Rel,

(5) F+t+ =t for all F € Op,
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(6) R+ = R! for all R € Rel.

The Galois connection induces the Galois closure operation on the subsets of Op given by F — F++
for all F' € Op (respectively, the Galois connection induces the Galois closure operation on the
subsets of Rel given by R +— R+ for all R € Op). Thus, a set C' C Op of operations is Galois
closed if C = C*, and a set K C Rel of relations is Galois closed if K = K++.

The next two theorems come from Theorems 2.9.1, 2.9.2 in Part IT of [Lau06].
Theorem 2.3.1 ([Lau06]). Let A be a finite set. TFAE for arbitrary C C Op.
(a) C is Galois closed.
(b) C is a clone.
(c) C is the clone Clo(A) of term operations of an algebra A = (A; F').
Thus, the Galois closure of a subset F' C Op is the clone generated by F'.
Theorem 2.3.2 ([Lau06]). Let A be a finite set. TFAE for arbitrary K C Rel.
(a) K is Galois closed.
(b) K is a relational clone.

Under the Galois connection there is a one-to-one correspondence between clones and rela-
tional clones.

Let A = (A;F). Then F*+ = Clo(A) and, by property (5), (FX)*+ = Ft thus Ft =
RClo(A). This says that if R is a generating set for the relational clone RClo(A) of A, then this

set describes the clone Clo(A) of A in the sense that Clo(A) = ((R)rcione)™-

Definition 2.3.3. The clone of a finite algebra is finitely related if its relational clone is finitely

generated.
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24 Finite Idempotent Strictly Simple Algebras

Definition 2.4.1. A finite algebra A = (A; F)) is called quasiprimal if every operation preserving

all isomorphisms between subalgebras of A is a term operation of A.

Definition 2.4.2. A finite algebra A = (A4; F) is called affine with respect to an abelian group
B = (A,+,—,0) if the Mal’cev operation x — y + z is a term operation of A and every operation of

A commutes with x — y + z.

Definition 2.4.3. An algebra is called strictly simple if it is simple and has no nontrivial proper

subalgebras.

The finite idempotent strictly simple algebras with more than two elements are classified by
Szendrei in [Sze87] as stated in the theorem below. For a permutation group G on A, let Z4(G)
be the clone of all idempotent operations on A commuting with every member of G. If 0 € A,
k > 2, then let .7-',2 denote the clone of all idempotent operations on A that preserves the relation

XY ={(z1,...,2) € A¥ . 2; = 0 for some 1 < i < k}. Let FO = No<kewFp.

Theorem 2.4.4 ([Sze87, Theorem 2.1]). Let A = (A;F) be a finite idempotent strictly simple

algebra, |A| > 3. Then A is term equivalent to one of the following algebras:

(i) (A;ZA(G)) for a permutation group G acting on A such that every nonidentity member of

G has at most one fized point,

(ii) the full idempotent reduct of the module (gna, a)A for some vector space kA = (A;+; K)

over a finite field K,

(iii) (A;Za(G) N FY) for some 2 < k < w, some element 0 € A, and a permutation group G

acting on A such that O is the unique fized point of every nonidentity member of G.

Note that a finite idempotent strictly simple algebra with more then two elements that
satisfies (i) or (ii) of Theorem 2.4.4 is quasiprimal or affine, respectively. If A is affine, then xA

will be called the vector space associated to A.
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The next three propositions concern the subuniverses of finite powers of A when A is a finite
idempotent strictly simple algebra, |A| > 2. The first proposition is a special case of Theorem 4.2

in [Sze86].

Proposition 2.4.5 ([Sze86]). Let A be a finite idempotent strictly simple quasiprimal algebra,
|A| > 2. A subuniverse B < A™ (n > 2) may have unary projections that are singletons, or binary
projections that are automorphisms of A, or if there are no such unary and binary projections, then
B = A".

The next proposition follows from Lemma 4.4 in [Sze86], combined with the remark at the

bottom of page 98 in [Sze86]

Proposition 2.4.6 ([Sze86]). Let A be a finite idempotent strictly simple affine algebra, |A| > 2,
and g A be the associated vector space. Then, up to permutation of coordinates, every subuniverse

of A™ (n > 2) has the form,

S S S
{(z1,22,..., 75, Z Cls41,i)Tit0s+1, Zc(s+2,i)xi+5s+2, co Zc(n,i)$i+5n) € A" 1wy, x5 € A},
i=1 i=1 i=1
for some 6511,0s+2,...,0n € A and ¢(s414), C(s42,0)5 - > Cnyi) € K, 1 <@ <os.

It is helpful to notice that from the above description we get that a subuniverse B of A"
(n > 2), where A is a finite idempotent strictly simple affine algebra, |A| > 2, either has a unary
projection that is a singleton, an m-ary projection (m > 2) of the form (up to permutation of
coordinates) pry _,, B = {(®1,...,Zm1, S i +0) t .., @1 € A} which is the graph of
a function A™ Y — A (w1,..., 2y 1) — Z?:llcixi—i—é forsomed € Aandc, e K, 1<i<m-—1,

or if there are no such unary and m-ary projections, then B = A™. .

Proposition 2.4.7 ([Sze87]). Let A be a finite idempotent strictly simple algebra, |A| > 2, such
that A is term equivalent to the algebra in case (iii) of Theorem 2.4.4. Let B <44 A™ (n >2) such

that mo binary projection pr; ; B (1 <i < j <n) is a permutation of A. Then for some 0 € A,
B ={(z1,...,x,) € A" : Ty € pr; B for all I € P}.

where P is the family of subsets of m such that I € P if and only if |I| > 2 and pr; B = X?]‘.
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In the next proposition we will denote the set of automorphisms of A by Aut(A).
Proposition 2.4.8. Let A be a finite idempotent strictly simple algebra, |A| > 2.
(1) If A is quasiprimal, then {{a}: a € A} U Aut(A) is a generating set for RClo(A).

(ii) If A is affine, then {{a}: a € AYUAwt(A)U{(z,y,z,z—y+zx):x,y,z € A} is a generating

set for RClo(A).

(i) If A is term equivalent to the algebra in case (iii) of Theorem 2.4.4, then there exists some
3 <n < wsuch that {{a} : a € Ay UAut(A)U{X? :2 <k < n} is a generating set for

RClo(A).

Thus, the relational clone of A is finitely related if A is affine or quasiprimal. It may or may

not be finitely related in the third case.

Corollary 2.4.9. Let A be a finite idempotent strictly simple algebra, |A| > 2. Then A is either

quasiprimal, or affine, or X3 = (A x {0}) U ({0} x A) is a subuniverse of A% for some 0 € A.
Proof. This follows immediately from Theorem 2.4.4 and Proposition 2.4.8 O

Theorem 2.4.10 ([Sze88]). For an idempotent strictly simple algebra A = (A; F), one of the

following conditions holds:
(i) V(A) is congruence distributive, or

1 18 1erm equivatent to € Jutl 1aempotent reauct o € MoaUule (End, A or some vector
ii) A is ¢ walent to the full idempotent reduct of the module (gpq, a)A t

space kA = (A;+,K), or
(iii) A is a 2-element algebra term equivalent to a semilattice or to a left zero semigroup on A.

Corollary 2.4.11. The variety generated by an idempotent strictly simple algebra A, where |A| > 2,

18 congruence modular.



17

Proof. Let A be an idempotent strictly simple algebra where |A| > 2. Then either statement (i)
or (ii) of Theorem 2.4.10 holds. In the latter case, the variety generated by A has a term that satisfies
the Mal’cev identities, therefore by Mal’cev’s Theorem, Theorem 2.1.2, the variety is congruence
permutable. Thus, for in either case, it follows from Theorem 2.1.1 that the variety generated by

A is congruence modular. O

2.5 Crosses

Definition 2.5.1. For i € {1,2}, let A; be sets, let §; be an equivalence relation on A;, and let

a; € A;. The thick (A1 x Ag)-cross [A1/01, Aa/02,a1/01,a2/02] is defined to be the set
[Al/gl,A2/92,a1/01,a2/92] = {(.Tl,IEQ) S A1 X A2 . x191a1 or Q’JQGQCLQ}.

Proposition 2.5.2. Fori € {0,1,2,3}, let A; be sets, let 0; be an equivalence relation on A;, and

let bg € Ag, a1 € A1, as, by € Ag, a3 € As.
(i) If (a2, b2) & b2, then
[A1/61, As/02,a1/601,a2/02] 0 [A2/O2, A3 /O3,ba/02,a3/05] = [A1/61, As/03,a1/61,a3/05].
(ii) If ®; C A; x Aj1 is the graph of a bijection ¢; : A;/0; — Aiy1/0it1, fori=0,2, then
@yt o [Ag/00, A2/02,b0/00,b2/02] 0 By = [A1/61, A3/03, do(bo/00), P2(b2/62)].

Proof. Let i € {0,1,2,3}, let A; be sets, let 6; be an equivalence relation on A4;, and let by € Ay,
a1 € A1, as,by € Ag, a3 € As.

[(i)] To show property (i), suppose that as/62 # ba/02. Let D :=[A1/01, A2/02,a1/61,a2/02],
E :=[A3/03, A3/03,b2/02,a3/05], and F := [A1/61, A3/03,a1/61,a3/05]. Let C = D o E. Then we
want to show that C = F. Let (z1,x3) € C. Then there exists some z9 € Ay such that (x1,x2) € D
and (x9,x3) € E. To show that (x1,z3) € C, we must show that at least one of the following are
true: either x101a; or x3fs3as. Suppose, for contradiction, that z1/601 # a1/61 and x3/03 # as/6s.

Then (x1,22) € D and x1/61 # a1/60; implies x203as. Similarly, (ze,z3) € E and x3/03 # as/03
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implies x262by. Then x20as and x262by implies azfaby, which contradicts ag /02 # by /02. Therefore,
either z161a; or x303a3 or both statements are true, which means (z1,z3) € F. Hence C C F.
Now suppose that (z1,z3) € F. Then either z1601a1 or x3603a3. If x161a1, then (x1,b2) € D
and (bg,x3) € E, hence (z1,z3) € C. If z363a3, then (x1,a2) € D and (a2,z3) € E, hence
(z1,23) € C. Therefore, FF C C. This completes the proof of the statement.
[(ii)] Suppose ®; C A; x A;y1 is the graph of a bijection ¢; : A;/0; — Aijy1/0i41, for i = 0,2.

Let R := [Ao /60, Az /02, bo,/60, ba/6s]. Then,
@al o Ro®y ={(y1,y3) € A1 x Az : there exists some z¢ € Ay, z2 € Ag such that (y1,xz¢) € @51,
(z0,22) € R, (x2,¥3) € P2}
={(y1,y3) € A1 x Az : there exists some z¢ € Agy, z2 € Ag such that
do(wo/00) = y1/bh, p2(x2/02) = y3/03, and either zoboby or x262bo}
={(y1,y3) € A1 x Az : there exists some z¢ € Ag, 2 € Ag such that
y1/61 = do(w0/b0) = ¢o(bo/bo) or ys/0s = pa(x2/02) = d2(b2/02)}
= {(y1,y3) € A1 x A3 : y101¢0(bo/00) or y303p2(b2/02)}

= [A1/01, A3/03,¢00(bo/b0), p2(b2/02)].

This completes the proof of this statement. O



Chapter 3

The Subuniverses of A2

In this section we start our investigation of finite idempotent algebras A that satisfy Assump-
tion 1.

The main result of this chapter is Theorem 3.1.5 in Section 3.1, which describes the possible
binary relations that can be subuniverses of A? for such an algebra A. In Section 3.2 we study how
these binary relations compose, and which of them can occur simultaneously as subuniverses of AZ.

So, throughout this chapter we will let A be a fixed algebra that satisfies Assumption 1. It
follows that S is an idempotent algebra that contains no nontrivial proper subalgebras. Thus, by
Proposition 2.2.6, S has no nontrivial congruences. Then S is a finite simple idempotent algebra of

size greater than 2, equivalently, S is a finite strictly simple idempotent algebra, |S| > 2.

Definition 3.0.3. Define  to be the equivalence relation on A given by 6 := S2U{(b,b) : b € A\ S}.

Let S :=s/0 for any s € S and b:=b/f for any b€ A\ S.
A picture of 6 can be found on page 23.

Proposition 3.0.4. If A is not simple, then 0 is the unique nontrivial congruence on A and A/0

has no nontrivial proper subalgebras.

Proof. Suppose that A is not simple and let I" be a nontrivial congruence on A. By Proposition 2.2.6,
every congruence class of I' is a subuniverse of A, hence a/I" is either a singleton or S for each

a € A. Therefore I' = 6§ proving that 6 is the unique nontrivial congruence on A.
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Furthermore, if C' is a subuniverse of A/, then by Proposition 2.2.10, B = p~'(C) is a
subuniverse of A, where p: A — A/6 is the natural map. By our assumptions on the subalgebras
of A, B is either A, S, or a singleton {a} for some a € A. Hence C' = p(B) is A/0, {S}, or {a/0},
where a € A\ S. In particular, if C' is a proper subuniverse of A/f then B is a proper subuniverse

of A. Tt follows that A /6 has no nontrivial proper subuniverses.

Proposition 3.0.5. If o is an automorphism of A, then o|s is an automorphism of S.

Proof. Suppose that ¢ is an automorphism of A. Since S is a subalgebra of A, it follows from the
properties of homomorphisms that o(.5) is a subuniverse of A. Furthermore, since o is bijective, we
can infer that |0(S)| = |S]. By assumption, S is the unique nontrivial subalgebra of A, therefore,

o(S) = S. Hence o|g is an automorphism of S. O

It follows from Proposition 3.0.5 that the (the graphs of) automorphism of A are subsets of

SZU(A\S)2.
Proposition 3.0.6. If o1 and oo are automorphisms of A such that 01|A\S = UQ\A\S, then o1 = o9.

Proof. Suppose 01,02 € Aut(A) and o1|4\g = 02|4\s. Let R be the graph of the automorphism
A— A ar 02_1(01 (a)), of A. To prove the proposition it is enough to show that A C R where
A = {(x,x): x € A} is the graph of the identity automorphism of A.

Since A and R are graphs of an automorphisms of A, they are subuniverses of A?. Hence
RNA < A?and pry RNA < A. Let a € A\ S. Then 01|45 = 02| 4\s implies that oy (01(a)) = a,
therefore (a,a) € R. Since a was an arbitrary element of A\ S, this means that (a,a) € R for all
a € A\ S. Then RN A contains {(a,a) : a € A\ S}, therefore A\ S C pry RNA < A. Since
pr; RNA < A is a subuniverse of A it follows from our assumptions on the subuniverses of A that

pry RNA <A = A. Thus A C R. This completes the proof of the proposition. O
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3.1 A Description of the Subuniverses of A?

Understanding the subuniverses of A? is essential in determining the subuniverses of finite
powers of A. In this section we will describe the possible binary relations that can be subuniverses

of A2, We start with some notation and terminology.

Definition 3.1.1. The relations {(a,a’)}, where a,a’ € A, will be called points. The relations

{a} x S, {a} x A and their inverses will be called lines.

Definition 3.1.2. For 5,5’ € S and a,d’ € A, let

vss o= ({s} x ) U (S x {s'}),

paw = ({a} x A)U (A x {a'}),

Kas = ({a} x S)U (A x {s}),

As,s = 82U (A x {s}),

Xss = 52U ({s} x A) U (A x {s'}),

Xs.s := 52U (S x A)U (A x {s}) = (S x A) U (A x {s}),

Xs.5:=S2U(Sx A)U(AxS)=(Sx A)U(AxS).

The relations v, ¢ will be called (S, S)-crosses since their unary projections are equal to S. Similarly,
the relations fi, s will be called (A, A)-crosses and the relations xp s will be called (A, S)-crosses.
We will call the remaining relations thick crosses since they contain S2. Thus the relations As,s are
thick (A, S)-crosses and the remaining relations are thick (A, A)-crosses. If s = ', then we will

denote the (.5, S)-crosses v, s by vs. If a = @/, then we will denote (A, A)-crosses figq by fa-

Pictorial examples of the relations in Definition 3.1.2 can be found on pages 23-24.

If 6 is a congruence on A, then we will use the following notation for some relations of A/ xS

and (A/6)2.
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Definition 3.1.3. For s € S and @ € A/6, let

na = ({@} x A/6) U (4/0 x {a})
sas = ({@} x S) U (A/0 x {s})

nsq = ({s} x A/O) U (S x {a}).

Each relation nz will be called an (A/0, A/0)-cross since its unary projections are equal to
A/6. Similarly, each relation s s will be called an (A/f,S)-cross and each relation s,z will be

called an (S, A/f)-cross. Note that s = s,

s,a”

Definition 3.1.4. Let s,s' € S and let 7 be a permutation of A\ S. Then

veg i =vsy U{(z,7(x)):x € A\ S}

5,8
If s = s, then we will denote v, by v].

A pictorial example of a relation v] can be found on page 24.

If 0 is a congruence on A, then we will use the terminology introduced in Definition 2.2.16 to
describe an isomorphism from A;/6; to Ag /6y where A; € {S, A} and 0; € {idg,id4,0}. Namely, if
B is a subuniverse of A xS such that B is the full inverse image of a bijection ¢ : A/# — S under the
natural map p: Ax S — A/0x S, then we will call B an isomorphism from A/ to S. A symmetric
definition is given for an isomorphism from S to A /6. If B is a subuniverse of A% such that B is the
full inverse image of an automorphism ¢ of A/# under the natural map p: A x A — A/0 x A/6,
then we will call B an automorphism of A/6.

One should note that if 6 is a congruence on A (that is, 6 is a subuniverse of A?), then @ is
an automorphism of A/ in this sense, namely the identity automorphism of A/6.

The next theorem is the main result of this section.
Theorem 3.1.5. Every subuniverse of A% is one of the following:

e a direct product of subuniverses of A: a point, a line, S?, Ax S, S x A, or A?,
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e an automorphism of S, or an automorphism of A,

e an isomorphism A/6 — S, an isomorphism S — A /0, or an automorphism of A/6 (hence

0 is a congruence on A),

® a CT0SS: s, fla, Kas, OT (Kas) b, for some s € S, a € A,

; . -1 -1 !
a thick cross: Ass, (As,s) ™5 Xs,s's XS5 (XS,s) 5 0T Xs,5, for some s,s" € S,

vl, for some s € S and some fized-point free permutation T of A\S (hence 6 is a congruence

on A).

Using Definitions 3.0.3, 2.2.16, 3.1.2, and 3.1.4 we will depict some examples of what the

possible subuniverses of A? look like. Let 5,5’ € S, a € A.

An automorphism of A /6

A
=S , $/0=5(s€8),b/§=b(beA\S)
S A
e An isomorphism A/§ — S
S -
A/G — S o '.
g A
e A cross
S a S
Vs = s 3 Ha = 3 Ra,s S
s 8 a A

[ ]
>
-+
=
e
o
¢
a
o
)
n

S
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o
I

XS,s = sy Xs,S = s XSS

S A

Corollary 3.1.6. Suppose that 6 is a congruence on A. Let B <, 4 By x By where By, By € {S, A}.
For i = 1,2 let A; = B;/O; where ©; is the equality relation if B; = S and is 0 if B; = A.
Furthermore, let p be the natural homomorphism By X Bo — Ay x Ag, and let B = p(B). Then B’

is one of the following:

e a direct product of subuniverses of S and A/0: a point, a line, S?, A/0 x S, S x A/, or

(4/0),

e an automorphism of S, an automorphism of A/6, an isomorphism from S to A/6, or an

isomorphism from A/0 to S,
® a Cross: Vs, Ng, a,s, OT #sg, for some s € S, aec A/f.

Proof. The corollary follows directly from Theorem 3.1.5. O

Theorem 3.1.5 will be proved by a sequence of lemmas, and the proof will occupy the rest of

this section.

Lemma 3.1.7. Let B be a subuniverse of A%. If (a,by),(a,by) € B for some distinct by, by € A,

a € A, then {a} x S C B. Furthermore, if b; € A\ S, for some i € {1,2}, then {a} x A C B.

Proof. Let B be a subuniverse of A% such that (a,b1), (a,b2) € B for distinct by, by € A and a € A.
Then B(a, z2) is a subuniverse of A that contains {b1, b2} which implies |B(a, z2)| > 2. Since S and
A are the only nontrivial subalgebras of A, it follows that B(a, z2) contains S. Hence {a} x S C B.
Furthermore, if b; € A\ S, for some i € {1,2}, then B(a,x2) # S, in this case B(a,z1) = A,

therefore {a} x A C B. O
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Lemma 3.1.8. Let B be a subuniverse of A2. If (by,a), (ba,a) € B, for a,by,by € A, by # ba, then

S x {a} C B. Furthermore, if by € A\ S, for some i € {1,2}, then A x {a} C B.

Proof. This follows from Lemma 3.1.7 and the fact that, under the assumptions of the lemma,

(a,b1), (a,by) € B~! for distinct by, bo. O

Lemma 3.1.9. Let B be a subuniverse of A%, If ({a1} x S)U({az} x S) C B for distinct a1, as € A,

then S? C B. Furthermore, if a; € A\ S for some i € {1,2}, then A x S C B.

Proof. Let B be a subuniverse of A2 such that ({a1} x S)U ({az} x S) C B for distinct a1, as € A.
Then for all s € S the subuniverse B(z1,s) contains both a; and ag, therefore S C B(xy,s),
which means S x {s} C B. Furthermore, if one of aj,as is in A\ S, then B(z1,s) = A, thus

Ax {s} CB. O

Lemma 3.1.10. Let B be a subuniverse of A%, If (Sx{a1})U(Sx{as}) C B for distinct a1, as € A,

then S? C B. Furthermore, if a; € A\ S for some i € {1,2}, then S x A C B.

Proof. This follows from Lemma 3.1.9 and the fact that, under the assumptions of the lemma,

{a1} x SU{az} x S C B~! for distinct a1, as € A. O
Lemma 3.1.11. The following implications hold for s,s’ € S, a,a’,b € A.

(i) If paa is a subuniverse of A%, then a = d’.

(ii) If vs¢ is a subuniverse of A%, then s = s'.

Proof. Each statements (i) and (ii) follows from the fact that the intersection of subuniverses of A?
is a subuniverse of A% and the unary projection of a subuniverse of A? is a subuniverse of A.

[(0)] If poor < A2 for some a,a’ € A, a # d/, then pgq N '“;,(11' = {(a,a),(a’,a’)}. Hence
pry (fa,qer N ,u;i,) = {a,d'} is a two-element subuniverse of A which contradicts the assumptions on
the subalgebras of A. Hence a = d’.

[(ii)] The proof is similar to the proof of (i), replace jiq o With v, ¢, and a with s.



26

We will now begin the proof of Theorem 3.1.5. We will start by considering those subuniverses

of A? that have trivial unary projections.

Lemma 3.1.12. Let B be subuniverse of A%. If B has a trivial unary projection, then B is a point

or a line.

Proof. Let B be a subuniverse of A2 such that the unary projection of B onto its i*"-coordinate is
trivial, for some i € {1,2}. WLOG, suppose pr; B = {a} for some a € A. Then B = {a} x pry B.
By our assumptions on the subalgebras of A, the projection of B onto its second coordinate is

either a singleton, or S or A. It follows that B is either a point or a line. ]

Lemma 3.1.13. If B is a subuniverse of A% whose unary projections are equal to S, then B is

either an automorphism of S, or B = v, for some s € S, or B = S2.

Proof. Let B be a subuniverse of A% such that pr; B = S, i = 1,2. Then B C S%. Fix s € S.
Then B(s,z2) is subuniverse of A that is contained in S. Since s € S = pr; B and pry B = S,
we get that there exists some y € S such that (s,y) € B, thus y € B(s,z2) C S. It follows from
our assumptions on the subalgebras of A that B(s,z3) is either a singleton or S. By a symmetric
argument we get that B(x1,s) is either a singleton or S. Furthermore, we chose s € S arbitrarily,
therefore each of B(s,x2) and B(x1,s) is either a singleton or S for every s € S.

First suppose that B(s,z2) is a singleton for every s € S. This condition means that B is
(the graph of) a function ¢ : S — S, where ¢ is defined by B(s,z2) = {¢(s)} for all s € S. Since
pry B =S, we have that ¢ is an onto function S — S. As S is finite, ¢ is also one-to-one. Thus B
is (the graph of) a permutation of S, and hence by Proposition 2.2.14, B is an automorphism of S.
Similarly, if B(x1,s) is a singleton for every s € S, then it follows that B is an automorphism of S.

It remains to consider the case where B(s, z2) = S and B(x1, s’) = S for at least one s € S and
at least one s’ € S. Then B D v, ¢. If B = v ¢, then we get from statement (ii) of Lemma 3.1.11
that s = s’ and B = v,. If B # v, ¢, then let (¢,t') € B\ vg . Clearly t,t' € S and t # s, t' # 5.

Thus (¢,t') € B and (t,5') € vs ¢ C B, t' # s’ implies, by Lemma 3.1.7, that {t} x S C B. Then,
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by Lemma 3.1.9 and {s} x S C vs ¢ C B, s # t, we get that S? C B. Recall that B C S?, therefore

it follows that B = S2. This completes the proof of the lemma. O

We will use the previous lemma to determine that subdirect subalgebras of A x S.

Lemma 3.1.14. If B is a subuniverse of A% such that pry B = A and pry B = S, then B is one of

the following:

e an isomorphism from A/ to 'S (hence 0 is a congruence on A),

Ka,s, for somea € A, s € S,

As,s, for some s € S, or

e AxS.

Proof. Let B be a subuniverse of A% such that pry B = A and pry B = S. Then BN S? is a
subuniverse of S?. Since S C pr; B and pry B = S we have, for each ¢ € S, that there exists some
¢y € S such that (t,¢;) € B, so (t,¢;) € BN S?, therefore, pry(B N S?) = S. Furthermore, since
pry(BNS?) C pry B = S, we have that pry(BNS?) is a nonempty subuniverse of A that is contained
in S. Therefore pry(B N S?) is either a singleton or S. We will consider these two cases separately.

Case 1. First suppose that pry(B N S?) = {s} for some s € S. Then pr; (BN S?) = S implies
S x {s} = BN S?. Recall that pry B = S. Therefore, for each t € S\ {s} there exists some b; € A
such that (b;,t) € B and, since pry(B N S?) = {s} and t # s, we can infer that b, € A\ S. Thus
B(x1,t) is a nonempty subuniverse of A that contains by € A\ S. It follows from our assumptions
on the subalgebras of A that B(x1,t) = {b;} or A. However the latter cannot hold, otherwise we
get that A x {t} C B, hence S x {t} C B, which means t € pry(B N S?) = {s}, where t # s,
a contradiction. Therefore B(x1,t) = {b} for each t € S\ {s}. We now have two subcases to
consider. Either there exists distinct ¢,¢' € S\ {s} such that by = by or by # by for all distinct
t,t' e S.

Subcase 1.1. Suppose that there exists distinct ¢,¢' € S such that b, = by, let b := b;. Then

(b,t), (b,t") € B, and t # t’' implies, by Lemma 3.1.7, that {b} x S C B. In particular (b,s) € B.
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Recall that S x {s} C B. Therefore SU{b} C B(x1,s), where b € A\ S, which means B(z1,s) = A,
thus Ax{s} C B. Then we have found that B O Ax{s}U{b} xS = Ky 5. Suppose, for contradiction,
that there exists some (¢,¢’) € B\ kps. Then ¢ € S, ¢ # s, and ¢ # b. This means that (c, s)
and (c,c’) are distinct elements in B, thus it follows from Lemma 3.1.7 that {c} x S C B. Then
{b} x S C kps € B and {c} x S C B, where ¢ # b and b € A\ S implies, by Lemma 3.1.9, that
A x S C B. However this is a contradiction to the assumption that pry(B N S?) = {s}. Therefore
B = k.

Subcase 1.2. Now suppose that b # by for all distinet ¢,¢' € S\ {s}. We claim that this
property implies that S & B(a, z3) for each a € A\ S. Suppose, for contradiction, that there exists
some a € A\ S such that S C B(a,z2). Then {a} x S C B and for distinct ¢,t' € S\ {s} we
get that (a,t), (a,t’) € B. However this mean that by = B(z1,t) = a = B(x1,t) = by for distinct
t,t’ € S\ {s} which is a contradiction to the assumptions of this subcase. Then S Z B(a,x2) for
eacha e A\ S.

Now we will show that this means that A x {s'} € B for any s’ € S. Suppose not. Then
A x {s'} C B for some s € S. Let t € S\ {s,5'}, such an element exists since |S| > s. We saw
that there exists some by € A\ S such that (b, t) € B. Then (bs,s') € Ax {s'} C B, t # ¢, and
Lemma 3.1.7 imply that {b;} x .S C B. Therefore, B(b;, z2) 2 S where by € A\ S, which contradicts
S & B(a,z2) for each a € A\ S. Therefore A x {s'} € B for any s’ € S.

Recall that pry B = A and pry B = S, therefore for each a € A\ S there exists some ¢, € S
such that (a,cq) € B, thus B(a,z2) is a nonempty subuniverse of A that contains ¢, but does not
contain S. It follows that B(a,z2) = {c,} for each a € A\ S. We claim that, in fact, ¢, € S\ {s}
for each a € A\'S. Suppose not. Then there exists some a € A\ S such that ¢, = s, thus (a, s) € B.
Then (s,s) € S x {s} € B,a € A\ S, and a # s implies, by Lemma 3.1.8, that A x {s} C B,
which is a contradiction. Hence, for each a € A\ S, there exists some ¢, € S\ {s} such that
B(a,z2) = {ca}-

This property, together with the assumption that S x {s} C B implies that B = p~!(¢),
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where p is the natural map p: A x S — A/f x S and ¢ is the function,
¢: A0 —S:85— s5,a— c,,

for each a € A\ S, a=a/f, S =s'/0 for some s’ € S. Since S x {s} U{(bs,t) :t € S\ {s}} C B,
then ¢(S) = s and ¢(b;) =t for all t € A\ {s}, therefore ¢ is onto. We claim that ¢ is one-to-one.
Suppose not. Then there exist distinct u, v € A/ such that ¢(u) = ' = ¢(v) for some s’ € S. Thus
B 2 p '({(u,s), (v,s)}), which means there exist distinct u,v € A, where u/ = u and v/ = v
such that (u,s’), (v,s") € B. Furthermore, since u # v, it follows that at least one of u or v is in
A\ S. Therefore, it follows from Lemma 3.1.8 that A x {s'} C B, which contradicts A x {s'} Z B
for any s’ € S. We have shown that B = p~!(¢) where ¢ is a bijection from A/ to S, thus, by
Definition 2.2.16, we have that B is an isomorphism from A /6 to S.

It remains to show that 6 is a congruence on A. Recall that B is a subalgebra of A? and in
fact B <,4 A x S. We showed that B = p~!(¢) where ¢ : A/§ — S is a bijection. Then it follows
from statement (i) of Proposition 2.2.15 that 6 is a congruence on A.

Case 2. We will now consider the second case, namely that when pry(B N S?) = S. In this
case we get that B N S? is a subuniverse of A? such that pry(B N S?) = S = pry(B N S?). Hence
we can apply Proposition 3.1.13 to conclude that B N S? is either an automorphism of S, or an
(A, S)-cross v, for some s € S, or S2. We will consider these three subcases separately. In all of
the subcases the assumption that pr; B = A and pry, B = S implies that for each b € A\ S, there
exists some s, € S such that (b, sp) € B.

Subcase 2.1. First suppose that BN S? = o € Aut(S). Let b€ A\ S, and let s := s, € S
where (b,5) € B. By our assumptions on B N S? we also have that (¢7!(s),s) € B, clearly
o~ 1(s) € S. Then applying Lemma 3.1.8 to (b, s), (c7!(s), s), where b € A\ S and b # o~ (s) gives
that A x {s} C B, thus S x {s} € BNS? = ¢, which is a contradiction. Therefore this case cannot
occur.

Subcase 2.2. Now let us suppose that BNS? = v,. Ift € S\ {s}, then B(z1,t) is a subuniverse

of A such that B(z1,t) NS = (BN S?)(x1,t) = vs(w1,t) = {s}, which forces that B(z1,t) = {s}.
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This implies that B C kg and also that s, = s for all b€ A\ S. Thus (b,s) € Bforallbe A\ S.
Since we also have that vy C B, we get that ks s C B, and hence B = K, .

Subcase 2.3. Finally let us suppose that BN .S? = S2. For arbitrary (b,t) € B,bc A\ S, we
have also that (t,t) € S> C B. Then (b,t),(t,t) € B, b€ A\ S, b # t, implies, by Lemma 3.1.8,
that A x {t} C B. If there is a unique element s € S such that A x {s} C B, then this argument
shows that B C Ags and also that s, = s for all b € A\ S. Thus (b,s) € B forall b € A\ S.
Since S? C B, we get that As,s € B and hence B = Ag,. If there are at least two distinct elements
s,s € S such that A x {s}, A x {s'} C B, then, by Lemma 3.1.10 we get that B = A x S. This

completes the proof of the lemma. O
Corollary 3.1.15. If B is a subuniverse of A% such that pry B =S and pry B = A, then B is one
of the following:

e an isomorphism from S to A/ (hence 6 is a congruence on A),

° n;i, for somea € A, s€ S,

° /\5,157 for some s € S, or

e S xA.
Proof. This follows directly by applying Lemma 3.1.14 to B~ 1. O

Lemma 3.1.16. If B is a subuniverse of A® such that pry B = A = pry B, then B is one of the

following:
e an automorphism of A,

e an automorphism of A/6 (hence 0 is a congruence on A),

la, for some a € A,

-1 /
® Xs,s'5 XS,ss (XS,S) » 0T XS,S, for some s,s € S
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o v, for some s € S and some fized-point free permutation T of A\S (hence 6 is a congruence

on A) , or
o A2,

Proof. Suppose that B is a subuniverse of A% such that pry B = A = pry B. Then for each a € A
we get that there exists some by, cq € A such that (a,cq), (be,a) € B. Then B(a,z2) = {c,}, or S,
or A. Similarly B(z1,a) = {b.}, or S, or A. Let D = BN (A x S). Then either some projection of
D is a singleton, or pry D = S = pry D, or pr; D = A and pry D = S. We will consider these three
cases separately.

Case 1. Suppose that some projection of D is a singleton. Then Lemma 3.1.12 implies that
D is either a point or a line. If D = {(u,v)} for some u € A,v € S, orif D = S x {v} for some v € S
orif D = Ax{v} for some v € S, then pry(BN(AxS)) = pry D = {v}, hence pry B C {v}U(A\YS),
which contradicts pry B = A. This forces D = {u} x S for some u € A. Then for each a € A\ {u},
we get that B(a,z2) NS = (BN (A x S))(a,z2) = 0, which means B(a,z2) = {c,}. Furthermore,
S C B(u,xz2) implies that either B(u,z2) = S or B(u,x2) = A. We will consider these two cases
separately.

Subcase 1.1. First suppose that B(u,z3) = A. Then u x A C B. Let a € A\ (S U {u}),
such an element exists since |A \ S| > 1. We showed that there exists some ¢, € A\ S such that
B(a,z2) = {ca}. Then we can infer from (a,c,) € B, (u,cq) € {u} x AC B,a#u,ac A\ S and
Lemma 3.1.8 that A x {¢,} € B. Let ¢ := ¢,. Then A x {c} U{u} x A C B implies p,. C B.
Furthermore, we showed, for each a € A\ {u}, that B(a,z2) is a singleton. Thus (a,c) € B implies
B(a,z2) = {c} for every a € A\ {u}. Then B(u,z2) = A implies B C piy, hence B = pi,, .. Since
B is a subuniverse of A2, it follows from statement (i) of Lemma 3.1.11 that u = c. Therefore
B = .

Subcase 1.2. Now suppose that B(u,x2) = S. Then (u,c) ¢ Bifc e A\ S, hence Ax{c} Z B
for any ¢ € A\ S. We also have A x {c¢} € B for any ¢ € S, because BN (A x S) = {u} x S.

Therefore, A x {c¢} B for any c € A.
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Notice that there must exist distinct a,a’ € A\{u} such that ¢, = ¢,/, otherwise pr; B = A =
pry B and B(a,x3) = {c,} for each a € A\ {u} and some ¢, € A\ S implies that |A\ {u}| = |A\ 5],
which contradicts the assumption that |S| > 2. Let a,a’ € A such that ¢ := ¢, = ¢y. Then
Lemma 3.1.8 and (a,c), (a/,c) € B, with a # d/, implies that S x {¢} C B and if one of a or d’ is
in A\ S, then A x {c} C B. Since A x {c} C B contradicts A x {c} € B for any ¢ € A, it must be
that a,a’ € S. Then S x {¢} C B means that B(s,z3) = {c} for all s € S.

Furthermore, this forces u € A\ S, otherwise (u,s) € {u} x S C B and (u,c) € S x {c},
where ¢ € A\ S and ¢ # s implies, by Lemma 3.1.7, that {u} x A C B, then B(u,x2) = A, which
contradicts the assumption that B(u,z2) = S.

Finally, we claim that ¢, # ¢ for distinct a,a’ € A\ (S U {u}), otherwise, (a,c,), (¢, car) =
(d',cq) € B implies that A X {c¢,} C B, which contradicts A x {c} € B for any ¢ € A.

We have shown that ({u} x S) U (S x {c}) C B for some u,c € A\ S. Also, B(a,z2) = {cq}
for each a € A\ (SU{u}), where ¢, # c, for distinct a,a’ € A\ (SU{u}). For s € S, let s/ = S.
Let a/f = @ for each a € A\ S. Then we have that B = p~!(¢) where p is the natural map

p:AxA— A/O x AJO and ¢ is the function
¢:A/0 — A)9, u— S, S—e a—c,, forallae A\ (SU{u}).

Since ¢, # cq for distinct a,a’ we get that €, # ¢ for distinct @, a’ € A/ \ {S,u}, therefore ¢ is a
one-to-one function. Since A/ is finite we get that ¢ is a bijection. Therefore, by Definition 2.2.16,
B is an automorphism of A/6.

It remains to show that @ is a congruence on A. Recall that B is a subalgebra of A% and we
showed that B = p~1(¢) where ¢ : A/ — A/f is a bijection. Then it follows from statement (i) of
Proposition 2.2.15 that 6 is a congruence on A.

Case 2. Suppose that pr;y D = S = pry D. Then for each a € A\ S we have that B(a,z2)NS =
(BN (A x S))(a,x2) = D(a,x2) = 0. Also, pr; B = A implies that there exists some ¢, € A such
that (a,cq) € B, therefore it follows that B(a,z2) = {¢,} for some ¢, € A\ S.

Since pry D = S = pry D it is clear that pri(BN (S x A)) =5 and pry(BN (S x A)) 2 S.
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Thus, either pry(B N (S x A)) = S or pro(BN (S x A)) = A. We will consider these two cases
separately.

Subcase 2.1. First suppose that pro(BN (S x A)) = A. Let a € A\ S. Then there exists some
s € S such that (s,a) € B. Furthermore, pr; D = S = pry D implies that there exists some s’ € S
such that (s,s’) € B. From (s,a),(s,s') € B,a € A\ S, s € S, and Lemma 3.1.7 we can infer that
{s} x AC B.

Now recall that for a € A\ S we have that B(a,z2) = {¢,} for some ¢, € A\ S. Let ¢ := c,.
Then (a,c) € B and (s,c) € {s} x A C B, where a € A\ § and s € S implies, by Lemma 3.1.7,
that A x {¢} € B. This means that B(a,z2) = {c} for all a € A\ S and (b,b) ¢ B for any
be A\ (Su{c}).

Let A = {(z,2) : * € A}. Then A is a subuniverse of A2, therefore AN B < A? and
pr;(ANB) < A. Note that {s} x AUA x {c} C B implies that {(s, s), (¢,c)} € ANB. Furthermore,
since (b,b) € B for any b € A\ (SU{c}), we have that (b,b) ¢ ANB for any b € A\ (SU{c}). Then
pr;(A N B) is a proper nontrivial subsuniverse of A that contains ¢ € A\ S, which contradicts our
assumptions on the subalgebras of A. Hence, this case fails.

Subcase 2.2. Now suppose that pry(BN (S x A)) = S. Then for each a € A\ S we have that
B(z1,a) NS = (BN (S x A))(z1,a) = 0. Since pry B = A we know that there exists some b, € A
such that (bs,a) € B therefore B(x1,a) = {b,} and b, € A\ S. Recall, for each a € A\ S, that there
exists some ¢, € A\ S such that B(a,z2) = {c,}. Then these conditions imply that B contains
(the graph of) an onto function 7: A\ S — A\ S :a+ ¢, where A\ S is finite. Therefore, 7 is a
permutation of A\ S that contains (the graph of) a bijection from A\ S toA\ S. Furthermore, B
is the union of D and the graph of 7. Under the assumption that pry D = S = pry D we know, by
Lemma 3.1.13, that D is either an automorphism of S, or D = v, for some s € S, or D = S2.

If D is an automorphism of S, then we have that B(a,x1) is a singleton for every a € A.
This condition means that B is (the graph of) a function ¢ : A — A where ¢ is defined by
B(a,z1) = {¢(a)} for all @ € A. Since pry B = A, we have that ¢ is onto. Furthermore, A is

finite, therefore B is (the graph of) a permutation of A. Hence by Proposition 2.2.14, B is an
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automorphism of A.

Suppose that D = vg for some s € S. Then it follows from the above discussion that
B = v]. We claim that 7 is fixed-point free. Suppose not. Let b € A\ S such that 7(b) =
b, then (b,b) € B. Let A = {(x,x) : * € A}. Then A is a subuniverse of A? which means
AN B < A? and pry (AN B) < A. Since (b,b) € B and (s,s) € vs C B, we have that AN B D
{(s,$),(b,b)}. Furthermore, since (s',s') € vy = BN (S x S) for all & € S\ {s}, it follows
that (s/,s') ¢ AN B. Hence pri(A N B) is a proper nontrivial subuniverse of A that contains
b e A\ S, which contradicts our assumptions on the subuniverses of A. Therefore 7 is fix-point
free. Lastly, we claim that if B = v7 is a subuniverse of A2, then 6 is a congruence on A. Let
R := Bo B! = {(x,2) : there exists some y € A such that (z,9), (z,y) € B}. Since relational
clones are closed under composition, we get that R is a subuniverse of A%2. We will show that
R = 0. Recall that § = S2U {(z,2) : = € A\ S}. Let (u,v) € 6. If (u,v) € S? then we get
that (u,s), (v,s) € vs C B, therefore, (u,v) € R. If (u,v) € (A\ S9)?, then u = v which means
(u,7(w)), (v,7(u)) = (u,7(u)) € B, thus (u,v) € R. Hence # C R. Now suppose that (z,z) € R.
Then there exists some y € A such that (z,y),(z,y) € B. If y € S, then (z,2) € S? C 0. Suppose
that y € A\ S. Then z,2 € A\ S and z = 77 1(y) = 2. Therefore (x,z) € §. We have shown that
R C 0, so we may conclude that R = 6. Therefore 6 is a subuniverse of A2, from Proposition 2.2.5
it follows that 6 is a congruence on A.

Finally, suppose that D = S2. Let s/0 = S for all s € S and a/f =@ for all a € A\ S. Then

B = p~1(¢), where p is the natural map, p: A x A — A/6 x A/, and ¢ is the function given by
¢:A/0 — A)9, S~ S, a— r1(a), forallae (A/0)\{S}.

Since pry B = A we have that ¢ is onto. As, A/ is finite, ¢ is also one-to-one. Then by Defini-
tion 2.2.14 we get that B is an automorphism of A /6.

It remains to show that @ is a congruence on A. Recall that B is a subuniverse of A% and we
showed that B = p~1(¢) where ¢ : A/0 — A/# is a bijection. Then it follows from statement (i) of

Proposition 2.2.15 that 6 is a congruence on A.
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Case 3. Suppose that pry D = A and pry D = S. Then it follows from Lemma 3.1.14 that D
is either an isomorphism from A/ to S, or D = k, s for some a € A, s € S, or D = Ag ¢ for some
s€ S,or D=AxS. In each of these four cases we get that for each a € A, B(a,x3) is either a
singleton, or B(a,z2) = S, or B(a,z2) = A.

We first claim that D cannot be an isomorphism from A /6 to S. Suppose D is an isomorphism
from A/6 to S. Then for each a € A we have that B(a,z2) NS = (BN (A X 5))(a,z2) = D(a,z2) =
{84} for some s, € A. Therefore B(a,x2) = {s,} for all a € A. However this contradicts pry B = A,
so this case cannot occur.

Suppose that D = ks for some b € A, s € S. Then for each a € A\ {b} we get that
B(a,z2)NS = (BN (AxS))(a,z2) = D(a,z2) = {s}. Therefore B(a,z2) = {s} for alla € A\ {b}.
Since pry B = A, this forces B(b,x2) = A. Hence B C 5. Furthermore, B(a,z2) = A implies
{a} x A C B. We also have that {s} x A C ks C B, therefore B C 5, which means B = p, .
Since B is a subuniverse of A2, it follows from statement (i) of Lemma 3.1.11 that b = s. Therefore
B = pus.

Now suppose that D = Ag  for some s € S. Then for each a € A\ S we get that B(a,z2)NS =
(BN (A x 8))(a,z2) = D(a,z2) = {s}. Therefore B(a,z2) = {s} for all a € A\ S. Since S> C B
we have that S C B(t,z2) for all ¢t € S. Thus either B(t,z2) = S or B(t,z2) = A for each t € S.
Furthermore, pro B = A implies that there exists at least one ¢t € S such that B(t,z2) = A. Suppose
that ¢ is the unique element of S such that B(t,z2) = A. Then B(t,z2) = A, B(t',z2) = S for
all t' € S\ {t} and B(a,x2) = {s} for all a € A\ S implies B C x¢s. Furthermore, B(t,z2) = A
implies that {t} x A C B and we have that Ags, C B, therefore x; s C B, hence equality holds.
Now suppose that there exists distinct ¢,¢' € S such that B(t,z2) = A and B(t',z2) = A. Then
({t} x A)U ({t'} x A) C B, thus it follows from Lemma 3.1.9 and from ¢,¢' € S, ¢t # t/, that
S x A C B. Therefore S x A C B and B(a,z3) = {s} for all a € A\ S implies B = xgs.

Finally suppose that D = S x A. Then S C B(a,x2) for all a € A\ S, which means either
B(a,z2) = S or B(a,x2) = A. Since pry B = A, we get that there must exist some a € A such that

B(a,zq9) = A.
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Suppose that a is the unique element of A with this property. Then B(a,z3) = A and
B(d',z9) = S for all ' € A\ {a} implies B C ng Furthermore, S x A C B and B(a,z3) = A
implies {a} x A C B, therefore ngl C B, thus equality holds. We claim that a € S. Suppose not.
Recall that A = {(x,z) : ¥ € A} is a subuniverse of A%, therefore ANB < A? and pry(ANB) < A.
Ifae A\ S, then AN B = {(s,s):s € S} U{(a,a)}. We are assuming that |A\ S| > 1, therefore,
pri(A N B) = SnN{a} is a proper nontrivial subuniverse of A that contains a € A\ S, which
contradicts our assumptions on the subalgebras of A. Hence B = Xg}z and a € S.

Now suppose that there exists distinct a,a’ € A such that B(a,z2) = A and B(d/, z2) = A.
If there exists some b € A\ S such that B(b,z2) = A, then choose a = b. Then we have that
({a} x A)U ({d'} x A) C B. If a € A\ S then it follows from Lemma 3.1.7 and a # o’ that
A x A C B, therefore B = A%. However, if a,a’ € S, then we can conclude from Lemma 3.1.7 that

SxACB. Then S x AC B and B(b,z2) = S for all b€ A\ S implies that B = xg,s.

We have shown that either B is an automorphism of A, or B is an automorphism of A /6 and
6 is a congruence on A, or B = p, for some a € A, or B is one of the thick (A, A)-crosses, xs g, or

XS,s Or x;i for some s € S, or x,; for some s, € S. This completes the proof of the lemma. [

Proof of Theorem 8.1.5. The result of this theorem follows from Lemmas 3.1.12-3.1.16. O

3.2 Crosses Among the Subuniverses of A2

We will now apply Proposition 2.5.2 to the (thick) cross relations occurring in Theorem 3.1.5.
Using the notation of Definition 2.5.1 these relations can be rewritten as follows. Let a,b € A and

s €5, then
® Vs = [Sa 57833]7
o iy =1[A A a,a], and if b € A\ S, then u, = [A/0, A/6,b,b],

e kas=[A,S,a,s],and if b€ A\ S, then k; s = [A/0, 5,1, 3],



37

o g = [4/6,8,8S, 5],

d XS,S = [A/ea Aaga 5]3

® XS5 = [A/G, A/97§a g]

Since the thick (A, A)-crosses xs s, where s,s’ € S, are not 6-closed in their i’

(i=1,2

h_coordinate

) for the equivalence relation 6 on A, therefore these thick crosses do not fit Definition 2.5.1.

Proposition 3.2.1. The following implications hold for all s,s' € S, a,a’ € A, be A\ S, a,a €

A/

(vii)

If 1o and pg are subuniverses of A%, then a = a'.

If vy and vy are subuniverse of A2, then s = s'.

If ng and ng are subuniverses of (A/0)?, thena =a'.

If Kqs and Ky ¢ are subuniverses of A% thena=d ors=s.

If #g,s and sz o are subuniverses of A/0 xS, thena=1a' ors=s'.

If s is a subuniverses of A%, then v, is a subuniverse of AZ.

If VT is a subuniverse of A% for some fived-point free permutation T of A\ S, then vs is a

subuniverse of AZ.
If Kq,s 1s a subuniverse of A% and a € S, then a = s and v is a subuniverse of AZ.
If xs.s or Xs,s is a subuniverse of A2 then As,s s a subuniverse of A2,

If x5.5, X8,s5 OT Xs,s 18 a subuniverse of A%, then yu, is not a subuniverse of A%. Conversely,

if wy is a subuniverse of A%, then neither XS,5, MOT XS,s, NOT X5 5 a subuniverse of AZ.

Proof. Each statement (i)-(x) follows from the fact that the intersection of subuniverses of (A /6;)?

is a subuniverse of (A/#;)? and the unary projection of a subuniverse of (A/61)? is a subuniverse

of A/6;, where 01 € {id4,0}.
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()] If pg, ptar < A2 for some a,a’ € A, a # d/, then p, N py = {(a,d’),(a’,a)}. Hence
pry (e N ) = {a,a’} is a two-element subuniverse of A which contradicts the assumptions on the
subalgebras of A. Hence a = d'.

[(ii)] The proof is similar to the proof of (i), replace u, with vg, and p, with vg.

[(iii)] The proof is similar to the proof of (i), replace p, with ng, and p, with 7.

[(iV)] If Ka,s, karsr < A? and a # o’ and s # s then kg s N ke s = {(d/, ), (a,s")}. Therefore
pri(Kas N Ky ) = {a,a’} is a two-elements subuniverse of A which is a contradiction. Similarly
Pro(Kas N Kes) = {s,s'} is a two-elements subuniverse of S which is a contradiction. Therefore,
either a = a’ or s = ¢'.

[(v)] The proof is similar to the proof of (iv), replace ko5 With g, and Ky ¢ With sy o
Recall that A /6 has only trivial proper subuniverses and |A/6| > 2.

[(vi)] If pus < A2, then pus N S? = vs. Hence vs < A2

[(vii)] If T < A2? for some fixed-point free permutation 7 of A\ S, then v7 N S? = ;. Hence
vs < A2,

[(viii)] If Kes < A% and a € S, then kus N S? = v, Therefore, by statement (ii) of
Lemma 3.1.11, we get that a = s and hence v, < AZ.

[(ix)] Suppose that B < A?, where B € {xs s Xs,s}- Then BN (A x S) = \g,. Hence
Ass < A?,

[(x)] We can show that both implications hold by assuming that p;, and at least one of the
thick (A, A)-crosses, Xs,5, XS,s; OF Xs,s'» are simultaneously subuniverses of A2, and thus arrive at
a contradiction.

If 1y, x5, < A2, then pup Nxs,s = ({b} x S)U (S x {b}). This, together with the assumption,
|A\ S| > 1 implies prq (s N xs,5) = {b} U S is a proper nontrivial subuniverse of A that contains
be A\ S, which is a contradiction to our assumptions on the subalgebras of A.

If wp, xs.5s < A2, then pp N xss = {(b,8)} US x {b} which means pry(up N xs,5) = {b} U S is
a subuniverse of A, which leads to the same contradiction as above.

Finally, if pp, s, < A2, then pup N xss = {(b,s)} U{(s,b)}. Then b € A\ S and s € S
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implies pry(pp N xs,s) = {b, s} a two elements subuniverse of A which contradicts the assumptions

on the subuniverses of A2. This completes the proof of the proposition.

Proposition 3.2.2. The following implications hold for all s,s' € S, a,b € A, and a,b € A/0:

(i)
(i)
(iif)

(iv)

(vii)
(viii)
(ix)
(x)
(xi)
(xii)

(xiii)

If Vs, kae < A% and s # 8, then ka5 < A2,

If vs, As.s < A? and s # 5/, then Ags < A2,

If iy, Ka,s < A? and a # b, then Kps < A?,

If wp, As.s < A% and b€ A\ S, then Kb,s < A2,
If Ka s, ks < A? and a # b, then vy < A?,

If Kass bas < A? and s # §', then p, < A%

If kb s, Ass <AZ and b e A\ S, then vs < A?,
If ko, Ass < A% and s # ¢, then a = s and xss < A?,
If As,s, As,s < A? and s # s, then x5 < A2

If Kas, Xs.5 < A% and a € A\ S, then g s < A%
If Mg, pip < A2 and b e A\ S, then Kps < A2
If 550, 7,5 <S x A/0 and @ # b, then vy < S2.

If 5656 <SxAJO, nz < (A/0)?, and @ # b, then sy SAMOXS.

Proof. Let A1, A, Az € {S, A, A/0}. Each statement (i)-(ix) follows from a special case of Propo-

sition 2.5.2 (i) indicated below and the fact that the composition of a subuniverse of A; x Ay with

a subuniverse of Ay x A3 is a subuniverse of A; x A3. Let s,s' € S, a,b € A, and @,b € A/0.
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[(1)] If Vsy Ka, s < AZ and s 7& 5,7 then Rq,s' O Vs = [A7 S,a,s’] o [Sa 83378] = [A,S, a, 5] = Ka,s <
A x S.
[(ii)] If v, Agsr < A% and s # ¢, then Ag g ovs = [4/0,5,5,5] 0[S, S,s,5] =[4/6,5,S,s] =

Ass <A XS.

IN

[(iii)] If pip, Fia,s < A% and a # b, then pp 0 kas = [4, A,b,b] 0 [A, S, a,s] = [A, S, b, s] = kps
A xS.

[((iv)] Tf pp, Ass < A% and b € A\ S, then up o \ss = [A/0,A/0,b,b] o [A/0,S,S,s] =
[A/0,5,b,s] = kps <A XS.

(V)] If a5, ib,s < A2 and a # b, then kg Lokys = [S, A, s,a]o[A, S,b,s] =[S, 5, s,5] = vs < S~

[(vi)] If Kq,s, kae < A? and s # 8/, then fq s 0 /{;i, =[A,S,a,s] 0[S, A,s,al =[A, A a,a] =
pa < A2

[(vii)] If kps,Ass < A? and b € A\ S, then mbj; oXss = [S,A/0,5,b 0 [A)0,S,S,s] =
(S, 8, 5,5 =v, <S?

[(viil)] If fiq s, Ass < A?and s # &', then )\S,S/on;’}g =[A/0,S,S,5'|0[S, A,s,a] = [A/0,A,S,a]
is a subuniverse of A2, By Definition 2.5.1, [4/0, A4, S,a] = S x AU A x {a}, thus Theorem 3.1.5
yields that a € S. Then statement (viii) of Proposition 3.2.1 and kg s < A? with a € S implies
a =s. Hence A\g ¢ o f@gi =[A/0,A,S,s] = xss < A%

()] If Ass, Asw < A% and s # &, then Ags 0 NGl = [4/0,5,9,5] 0 [S,A4/6,5,5] =
[4/0,4/6,5,5] = xs.s < A%

[(x)] If Kas,Xss < A% and @ € A\ S, then @ # S and g5 0 kas = [A/0,A/0,5,5] o
[A4/0,5,a,s] =[A/0,S,5,s] = Ags <A XS.

[(xi)] If Ags, 1o < A% and b € A\ S, then b # S and puyoAss = [A/0,A4/0,b,b]0[A/0,S,S,s] =
[A/6,5,b,s] = kps <A XS.

[(xii)] If 5655, 5,5 < S x A/0 and @ # b, then s,z 05+ = [S,A/0,s,a o [4/0,8,b,s] =

S, va

[S,S,s,5] =vs <S%

[(xiii)] If 555 < S x A6, nz < (A/6)?, and @ # b, then n; o 35, = [A/0,A4/6,b,b] o

A/0,8,a,s] = [A)6,S,b,5] = 3 <A/ x8S. 0
[A/ =14/ | =5, <A/
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Corollary 3.2.3. The following implications hold for all s,s' € S, a,b € A.
(1) If o, kas < A% b€ A\ S, and a # b, then vs < A%
(ii) If b, Ass < A% and b€ A\ S, then vs < A2,

Proof. Let s,s' € S, a,b € A.

[(i)] Suppose i, Kqs < A% b€ A\ S, and a # b. Then by statement (iii) of Proposition 3.2.2,
Wb, kas < A% implies that s, s < A2, Since kg, kps < A2 a # b, it follows from statement (v) of
Proposition 3.2.2 that v, < A2.

[(i1)] Suppose pp, Ass < A% and b € A\ S. Then statement (iv) of Proposition 3.2.2, implies
that rp s < A?. Furthermore, since Kbss AS,s < A2 we get from statement (vii) of Proposition 3.2.2

that v, < A2 O
Proposition 3.2.4. The following implications hold for all s,s' € S, a € A, be A\ S
(i) If po < A% and o € Aut(A), then Ho(a) < A? and every automorphism of A fizes a.
(i) If vs < A? and 7 € Aut(S), then Vr(s) < A? and every automorphism of S fizes s.
(ili) If kas < A* and m € Aut(S), then kg (5 < A%
(iv) If As,s < A? and m € Aut(S), then Ag (5 < A%

(v) If upy < A2, 0 is a congruence on A, and ® € Aut(A/0), then Pap) < A? and every

automorphism of A/0 fizes b.

(vi) If Xs.5, Xs.s5 OT Xs.s 5 a subuniverse of A%, 0 is a congruence on A, and ® € Aut(A/0),

then every automorphism of A/ fizes S.

(vii) If mqse < (A/6)?, 0 is a congruence on A, and ® € Aut(A/0), then e < (A/0)* and

every automorphism of A/6 fixes a/0.

(viii) If up < A2, 0 is a congruence on A, and ¥ is an isomorphism A/ — S, then vy < A?

and every isomorphism A/6 — S maps b to ¥(b).



(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)
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If xs,5 < A?, 0 is a congruence on A, and W is an isomorphism A/ — S, then Vy(s) < A?,

and every isomorphism A/0 — S maps S to ¥(S).

If v < A2, 0 is a congruence on A, and ¥ is an isomorphism A/ — S, then either
Xs,5 < S? and every isomorphism A/§ — S maps S to s or p. < A% for some c € A\ S,

and every isomorphism A/0 — S maps ¢ to s.

If kps < A%, 0 is a congruence on A, and U is an isomorphism A/0 — S, then vy < A?

and every isomorphism A/6 — S maps b to s.

If Ass < A2, 0 is a congruence on A, and ¥ is an isomorphism A/§ — S, then vy < A?

and every isomorphism A/0 — S maps S to s.

If 0 is a congruence on A, ;5 < S x A/f, and ® is an automorphism of A/, then

Xs.6(a) < S x A/G

If 0 is a congruence on A, s, < SxA/0, and ¥ is an isomorphism A/ — S, then v, < A?

and every isomorphism AJ/0 — S maps a to s.

Proof. Each statement (i) (xiv) follows from a special case of Proposition 2.5.2 (ii) indicated below

and the fact that the composition of a subuniverse of Ay x Ay with a subuniverse of Ay x Ag is a

subuniverse of A; x Ag. Let s, € S,a€ A,be A\ S,anda e A/0.

[(i)] If p1q < A% and o € Aut(A), then

o topsoo=0"1o[A A aa o0

= [A7 A, U(a)v 0'((1)} = Ho(a) < A%

Furthermore piq, flo(q) < A? and statement (i) of Lemma 3.1.11 implies that o(a) = a. Therefore

the automorphisms of A fix a.

[(ii)] If vs < A? and 7 € Aut(S), then

mlovsom=n"10[S,8, s, s]on

= 15,5, 7m(s),7(s)] = vp(s) < A2
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Furthermore vs, vy, < A? and statement (ii) of Lemma 3.1.11 implies that 7(s) = s. Therefore

the automorphisms of S fix s.

[(iii)] If kas < A2 and 7 € Aut(S), then

idp okgs o™ =1idp o[A, S,a,s]om

= [Aa S, a, 77(8)] = Ra,n(s) < AQa

where idy is the identity automorphism of A.

[(iv)] If Ass < A? and 7 € Aut(S), then

idg /g 0As,s o m = idy g9 0[A/0, S, S,slom

= [A/97 S, ?,71’(5)] = >‘S,7r(s) < A27

where idy /¢ is the identity automorphism of A /6.

[(V)] If up < A2, 0 is a congruence on A, and ® € Aut(A/6), then

dlouod=0"10[A/0,A/0,b,b] o ®

=[A/0,A/0,2(b), (b)] =

for some ¢ € A\ 5, where ¢ = ®(b). We have from statement (x) of Proposition 3.2.1 that u;, and

Xs,s cannot simultaneously be subuniverses of A?, therefore, it follows that ® o0 ® = . < A2,

for some ¢ € A\ S. Furthermore, p, 1. < A? and statement (i) of Lemma 3.1.11 implies that b = ¢

where ¢ = ®(b). Hence b = ®(b) which means the automorphisms of A /6 fix b.

vi)] Suppose that x5, Xss, OF Xss iS a subuniverse of A2, # is a congruence on A, and
XS,S5 XS, X, &

® € Aut(A/0). Since 6 is a congruence on A it follows that the -closure in both coordinates

of a subuniverse of A? is also a subuniverse of A2. By Proposition 2.2.8 the f-closure in both

coordinates of x5 (or xss) is B = p~(p(xs,s)) (respectively, B = p~1(p(xs.s))) where p is the

natural homomorphism p : A — (A/0)%. Since B = x5 we get that xs g is a subuniverse of AZ.
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Then

P loxssod=0"10[A/0,A/0,5,5]0®

. . XS,S) if [} ﬁXGS g,
= [A/0,A/0,2(5), ()] =

v, if ®(S) =,
for some b € A\ S. Property (x) of Proposition 3.2.1 states that y;, and xg s cannot simultaneously
be subuniverses of A2, therefore ®~1 oy 5,50 ® = xg5. Hence ® fixes S.
[(vii)] Suppose 7,9 < (A/6)%, 0 is a congruence on A, and ® € Aut(A/0). Let p: A* —
(A/6)? be the natural map. If a/0 = S, then p~*(n,/9) = xs,s, thus the statement follows from
statement (vi). Otherwise, p~1(n, /6) = tp and the statement follows from statement (v).

[(viii)] If up < A2, 0 is a congruence on A, and V¥ is an isomorphism A /0 — S, then

U lopoW =0"10[A4/0,A/0,b,b]0 T

- [S7 S’\Ij(b>7\11(b)] =l

for some t € S, where W(b) = ¢t. Property (ii) of Lemma 3.1.11 implies that there is exactly one
such element ¢t € S. Therefore every isomorphism A/ — S maps b to t.

[(ix)] If xs.s < A2, 6 is a congruence on A, and ¥ is an isomorphism A/f — S, then

\Ilil OXS,SO\P = \Ifil (¢] [A/Q,A/H,E,S] oW

= [5,S,%(5),¥(S)] = 1

for some ¢ € S, where ¥(S) = t. Property (ii) of Lemma 3.1.11 implies that there is exactly one
such element t € S. Therefore every isomorphism A/ — S maps S to t.
[(x)] If vs < A%, 0 is a congruence on A, and ¥ is an isomorphism A/ — S, then
Vov,oW ' =Tol[S, S,s,50W!
XS,S7 if \I/(g) =S,

= [A/97 A/@, \1171(5)7 \1171(8)] =
e, if W(C) = s,
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for some ¢ € A\ S. Property (x) of Proposition 3.2.1 states that xgs and p. cannot simultaneously
be subuniverses of A2. Therefore either every isomorphism A /f — S satisfies the first case or every
isomorphism A/ — S satisfies the second case. In the first case we get that every isomorphism
A/6 — S maps S to s. In the second case, Property (i) of Lemma 3.1.11 implies that there is
exactly one such element ¢ € A, thus every isomorphism A/ — S maps ¢ to s.

[(xi)] If kps < A2, 0 is a congruence on A, and V¥ is an isomorphism A/f — S, then
vlo Kps 0idg = U 10[A4/6,8,b,s]oidg

= [S7 S,\II(B),S] - V\II(B),S < A27

where idg is the identity automorphism of S. By property (ii) of Lemma 3.1.11 it follows that

U(b) = s. Hence U1 o kpso0idg = vs < A? and ¥(b) = s. Property (ii) of Lemma 3.1.11 states
that there is exactly one such element s € S. Therefore every isomorphism maps b to s.

[(xil)] If Ags < A2, 0 is a congruence on A, and ¥ is an isomorphism A /0 — S, then
Ulo Ass0idg = U 10[A4/60,8,5, 5] 0idg
=[S,5,9(9),s] = Vg (@),s < A?,

where idg is the identity automorphism of S. By property (ii) of Lemma 3.1.11 it follows that
¥(S) =s. Hence U1 o\g 0idg = vs < A? and ¥(S) = s. Property (ii) of Lemma 3.1.11 states
that there is exactly one such element s € S. Therefore every isomorphism A/f — S maps S to s.

[(xiii)] If 6 is a congruence on A, »,5 < S x A/f, and ® is an automorphism of A/6, then

idg osxsq0® =idgo[S,A/0,s,a]o P
=[S, A4/0,5,®(a)] = », 4@ <S < A/0,

where idg is the identity automorphism of S.

[(xiv)] If 6 is a congruence on A, 5,5 < S x A/f, and ¥ is an isomorphism A/6 — S, then

idgoss g0V =idgo[S,A/0,s,a]o W

= [Sa S,S,\Ij(a)] = Vs, ¥(a) < A27
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where idg is the identity automorphism of S. By statement (ii) of Lemma 3.1.11 it follows that
V(@) = s. Hence idg oses 50 W = vg < A? and ¥(a) = s. Property (ii) of Lemma 3.1.11 states that
there is exactly one such element s € S. Therefore every isomorphism A/6 — S maps @ to s.

O

If S is either quasiprimal or affine, then it follows from Propositions 2.4.5 and 2.4.6 that there
is no (S, S)-cross among the subuniverses of A%2. Therefore, the next corollary follows directly from

the above investigation of the subuniverses of A? that are crosses.

Corollary 3.2.5. Suppose that eitherS is quasiprimal, orS is affine, or that there is no (S, S)-cross

among the subuniverses of A%, Let a,a’ € A, s,s' € S,be A\ S.
(1) If kas < A2, thena € A\ S.
(ii) If Kas < A2, then As,sr & AZ.
(ili) If Ka,s < A2, then Xs,5 AZ.
(iv) If Kas, Kars < A2, then a = d’.
(v) If 6 is a congruence on A and there exists an isomorphism from A/ to'S, then xs.s % A®.
(vi) If 0 is a congruence on A and there exists an isomorphism from A/ to S, then kg s £ A2,
(vii) If 0 is a congruence on A and there exists an isomorphism from A/ to S, then g s £ A2,

(viil) If 0 is a congruence on A and there exists an isomorphism from A/0 to S, then 5,9, %

AJO xS.

(ix) If 0 is a congruence on A and ® is an automorphism of A/6, then sx,5 < S x A/6 implies

® fizes a.

(x) If 0 is a congruence on A, ngz < (A/0)?, and s < S X AJO, for some a,b € A/O, then

a=>b.
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Proof. If S is quasiprimal or affine, then there is no (S, S)-cross among the subuniverses of AZ2.
Then, each of statements (i)-(x) follows from the the assumption that there is no (S, .5)-cross
among the subuniverses of A2

[(i)] Follows directly from property (viii) of Proposition 3.2.1.

[(ii)] Suppose kg5, Ass < A% Then property (i) of this proposition implies a € A\ S. If
s = s, then property (vii) of Proposition 3.2.2 implies vs < A%, which is a contradiction. If s # s/,
then property (viii) of Proposition 3.2.2 implies a = s € S, which contradicts a € A\ S.

[(ili)] Suppose kas, Xs.s < A2 Then property (x) of Proposition 3.2.2 implies Ags < A2,
which contradicts property (ii)

[(iv)] Suppose Kas, kars < A% If a # a’, then by property (iv) of Proposition 3.2.1 we get
that s = s’. Thus property (v) of Proposition 3.2.2 implies v, < A2, which is a contradiction.

[(v)] Follows directly from property (ix) of Proposition 3.2.4.

[(vi)] Follows directly from property (i) above and property (xi) of Proposition 3.2.4.

[(vii)] Follows directly from property (xii) of Proposition 3.2.4.

[(vili)] Suppose ¢/, < A/6 x S and there exists an isomorphism from A/6 to S. Let
p:AxS— A0 xS be the natural map. Then p~!(5,/p) is a (thick) (A, S)-cross. Therefore,
#a/0,s < A/O xS implies that there exists a (thick) (A, S)-cross among the subuniverses of A%,
which gives a contradiction to statements (vi) and (vii).

[(ix)] Suppose 0 is a congruence on A and ® € Aut(A/#). Then by property (xiii) of
Proposition 3.2.4, 355 < S x A/6 implies s, 3@ < S x A/f. Suppose that ®(a@) # @ Then
Hsa, Hso(@ < S x A/0 and statement (xii) of Proposition 3.2.2 implies v < A?, which is a contra-
diction. Hence ® fixes a.

[(x)] Suppose 6 is a congruence on A, nz < (A/6)?, and #,5 < S x A/f, for some a,be AJ0.
Suppose, for contradiction, that @ # b. Then statement (xiii) of Proposition 3.2.2 implies Has <
A/0 x S. Thus sg s, My < A/0 x S and @ # b implies, by statement (xii) of Proposition 3.2.2, that

vs < S?, which is a contradiction. Hence, @ = b.



Chapter 4

Edge Blockers

In their manuscript [MMM10], Markovié¢, Maréti, and McKenzie state a necessary and suf-
ficient condition for a finite idempotent algebra A to have no edge operation. As we will show
in Proposition 4.1.4 below, this condition is equivalent to the existence of an infinite sequence of
relations in the relational clone of A.

In this chapter we will exhibit binary and ternary relations R such that if A is a finite
idempotent algebra that satisfies our usual Assumption 1, and R is in the relational clone of
A, then A has no edge operation. These small arity edge blockers arose while investigating the
subuniverses of finite powers of A when S is either quasiprimal or affine. We shall see in Chapter 6
that in all cases when S is affine and in almost all cases when S is quasiprimal, if we restrict the
relational clone of A so that it does not contain these small arity edge blockers, then we have a nice

description for the relational clone, and hence for the clone of A.

4.1 Markovi¢—Maréti—McKenzie Edge Blockers

Definition 4.1.1. For an algebra A and proper subset G C A we say that a k-ary operation f is
G-absorbing in its it"-variable, for some 1 < i < k, if whenever @ = (a1,...,a;,...,a;) € A* with

a; € G, then f(a) € G.
We will often apply this definition to a subalgebra A’ of A and a proper subset G C A’.

Definition 4.1.2. Let A be a finite idempotent algebra, A’ < A, G € A’, and n > 1. The
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n-dimensional cross on A’ at G is

XAC .= {(ay,...,a,) € (A))" : there exists i such that a; € G}.

n
In the case that A’ = A, we will simply write X,? .

Notice that we will allow the 1-dimensional cross, X f,’G = (G. We will often consider higher

dimensional crosses where A = A’.
Theorem 4.1.3 ([MMM10]). Let A be a finite idempotent algebra. TFAE.

(a) A has no edge operation.

(b) There exists A’ < A and a nonempty proper subset G C A’ such that for all k > 1 and

fe Clok(A), the restriction f|a is G-absorbing in its it" variable, for some 1 <i < k.

We will show that the second condition of Theorem 4.1.3 can be equivalently stated in terms

of the relations XJ;V’G, for all n > 1.

Proposition 4.1.4. Let A be a finite idempotent algebra. Then for each subalgebra A’ < A and

nonempty proper subset G C A’, TFAE.

(a) For all k > 1 and f € CloF(A), there exists some 1 < i < k such that f|a is G-absorbing

in its i variable.

(b) The term operations of A preserve the relation X{?/’G, for all n > 1.

Proof. (a) = (b) Let R := X2 for arbitrary 1 < n < w. For any k > 1 and f € Clo*(A) we
have, by (a), that f|4 is G-absorbing in its i*’-variable, for some 1 < i < k. WLOG, assume that
flar is G-absorbing in its first variable. Let @1,...,a; € R where a@; = (aj1,...,aj,), 1 <j < k.
Recall that R is an n-ary relation on A" and A’ < A, thus (A")" > f(a1,...,ar) = fla(@1,...,ax),

where

aia a1 flar(ara, ... ak1)

ai 2 a2 flar(are, ... ar2)
f]A/(al,...,ak):f\A/ . ey ‘ = ’ ’

a1n Qf.n fA’(al,na cee 7ak,n>
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By definition of R, @; € R implies that there exists some 1 < [ < n such that a;; € G.
Since f|as is G-absorbing in its first variable and a;; € G we get that fla(ai,1,...,a51) € G.
Thus, the I**-coordinate of the column vector f|/(@y, ..., ) is in G which means f(a@,...,a,) =
flar(@y,...,ax) € R. Therefore, R is closed under the term operations of A.

To prove (b) = (a) we will show that the contrapositive holds. Suppose that there exists
an operation f € CloF(A), for some k > 1, such that f|4/ is not G-absorbing in any of its variables.
We will show that R := X ,;4 "% is not preserved by f.

Because f|4/ is not G-absorbing in any variable, we have, for each 1 < ¢ < k, that there exists
some g; € Gand a1, ..., Qii—1,0ii41,--- 0, € A suchthat fla(ai1,. .., ai-1, 9, Giit1,- .- 0ik) =

h;, for some h; € A"\ G. Tt is clear that the tuples

g1 ai,2 ai k
a21 g2 a2 k
, € RC (A
ak.1 a2 gk
However,
g1 a2 ap i flar(gi,a12,. .., a1k) hi
a1 g2 as i flar(az 1,92, .., a2k) ha
f|A, . b X PR ) X - . - 3 )

ag1 a2 Gk flar(aka,ak2, .-, gk) D,

where h; € G for all 1 <i <k, therefore (hy, ha,...,hy) ¢ R. Therefore f|4 does not preserve R.

This completes the proof of the proposition. O

4.2 The Edge Blockers A and I,

Let A be a finite idempotent algebra that satisfies Assumption 1.

Definition 4.2.1. For b a fixed element in A\ S, and for o € Aut(S) we define the following subsets
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of A3:
Ay :=S3U{(z,y,0(z)):z €8S,y € A},
Koo :={(z,y,0(x)) :x€S,yec A} U{(z,b,y) : x,y € S}.
We will write A for Ajq, and Ky for Ky jq, for any be A\ S.
Lemma 4.2.2. For any m € Aut(S), Ay < A3 if and only if A < A3.

Proof. Suppose that 7 € Aut(S). For m; = idg: S — S, m = idpy: A — A, and mi3 =77 1: S = S,
the product isomorphism, II?_,7;, maps A, onto A. Therefore, by Corollary 2.2.12, A, < A% if and

only if A < A3, O

Lemma 4.2.3. For any m € Aut(S) and b€ A\ S, Ky < A3 if and only if K, < A3.

Proof. The proof is similar to the proof of Lemma 4.2.2 O

Therefore, by Lemmas 4.2.2 and 4.2.3, whenever A, or Kp  is a subuniverse of A3, for some

m € Aut(S),b € A\ S, we may assume that 7 is the identity automorphism of S.

Lemma 4.2.4. If A satisfies Assumption 1, then at most one of the relations Ky, for some b € A\ S

or A is a subuniverse of A3.

Proof. For contradiction, first suppose that there exists some distinct b,b" € A\ S such that
Ky, Ky < A3. Let B := Ky, B’ := K. Since |S| > 2 we have that there exists distinct elements
s,s'" € S. Then it follows from Definition 4.2.1 that B(s,z2,23) = Kp s is a subuniverse of A? and
B'(s',x1,22) = Ky ¢ is a subuniverse of A2, Then Kby Kt st < A? implies, by statement (iv) of
Proposition 3.2.1 that either b = b’ or s = s’, which contradicts our assumption that b and b are
distinct and also s and s’ are distinct.

Now suppose, for contradiction, that K, A < A2, for some b € A\ S. Let B := K;,C :=
A, and let s, s’ be distinct elements in S. Then B(s,z2,23) = Kps iS a subuniverse of A? and
C(s',z2,23) = Ag,s is a subuniverse of A2. Hence statement (viii) of Proposition 3.2.2 implies that
s = b, which contradicts the assumptions that s € S and b € A\ S. This completes the proof of

the lemma. H
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4.3 The Existence of an Algebra with a Relation A or K,

We will now show that there exists an algebra A that satisfies Assumption 1 and has among

the subuniverses of A® either A or K.

Proposition 4.3.1. Let A and S be finite sets such that S C A and 1 < |S| < |A|. Let S be a

strictly simple idempotent algebra on S. Let

S, or
G =

{b}, for somebec A\ S.
Let B:= A if G =S and let B := Ky if G = {b}. Then there exists a finite idempotent algebra A

on A such that

e A has a subalgebra S on S such that Clo(S) = Clo(S), and S is the unique proper nontrivial

subalgebra of A,
e 0 is a congruence on A, and
e B < A3,

Proof. 1t is enough to construct a finite idempotent algebra that satisfies these conditions. Let

k > 1. For each operation f € Clo* (g) we will define a k-ary operation, F'y, on A by

;

f(@),if T € S*,

Ff(f): r,ifxy ==z =x,

\ g, otherwise,
where ¢ is some fixed element of G.

For any a,a1 € A, ag € A\ G, such that a1/0 # az/0, define the binary operation, f(4, a,.q);
on A by

a,if x €a1/6,y € az/0
f(al,ag,a) (x’y) =

1y, otherwise.
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We claim that the algebra,
A= (A {{Fs|f € Clo(S)} U{flarana)a, a1 € A, az € A\ G, and a1/0 # as/0}})

satisfies the statements of the proposition.

From their definitions, it is clear that Fy and f(,, q,,4) are idempotent operations. Since
Fyls=f¢€ Clo(S) and f(ar,as,a)|s is the projection onto the second variable, it is trivial to see that
these operations preserve S, and that the subalgebra S of A on S has the same clone as S.

We claim that S is the unique nontrivial proper subalgebra of the algebra A. Suppose not.
Then there exists some Q < A, Q # A, Q # S, and |Q| > 1. Recall that S is strictly simple,
therefore S has no nontrivial proper subalgebras, which means () is clearly not a proper subset of
S. Therefore, there exist distinct elements ¢1,q2 € @ such that ¢1/0 # g2/6. This means, since
G = S or {b}, that {q1,q2} N A\ G # 0. WLOG, suppose that g2 € A\ G. Let a € A\ Q, such an
element exists since @ C A. Then f,, 4.0 (q1,92) = a ¢ Q, which contradicts the assumption that
Q is a subuniverse of A. Hence S is the unique nontrivial proper subalgebra of A.

We will now show that the operations F'y and f( preserve 6 and B.

ai,a2,a)

Claim 4.3.1.1. Letk > 1, f € Clok(S). Then the k-ary operation Fy preserves 6.

Proof. Let f € Clok(g). Suppose that Z, § € A* such that Z0y. We must show that F(Z)0F (7).

By the definition of 0, it is easy to see that Ty implies that
TeS"eye s
Therefore, either Z,5 € S* or 7,57 & S*. If 7,7 € S*, then we get that Fy(w) = f(z) € S and

Fy(y) = f(y) € S, thus Fy(z)0F(y).

Suppose that 7,7 ¢ S™. Again, by the definition of 6, it is easy to see that T8y implies that
rp=-=xp,=cz€A\SESy ==y, =€ A\S.

Henceif 1 = =2z, =cxc A\Sandy; =--- =y, =2 € A\ S, then Fy(T) = x = F¢(y). Thus

Fy(@)0F;(7)-
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Finally, suppose that 7,7 € S™ and x; # x;, for some 1 < ¢ < j < k. Then, as we saw in the
preceding paragraph, z¢y implies that y; # y; for the same 1 <7 < j < k. By the definition of Fy

we get that F¢(T) = g = F¢(y). Therefore, in all cases, F¢(T)0F(y), hence Fy preserves 6. O
Claim 4.3.1.2. Letk > 1, f € Clok(g). Then the k-ary operation Fy preserves B.

Proof. Let [ € Clok(g), uy,...,ur € B, where w; = (u;1,u;2,u;3), for 1 <i < k. By the definition

of B, we have that u;1,u;3 € S, for all 1 <4 < k. Then, for some s1,s2 € .5,

Ui, U, 1
Ff(ﬂl,,ﬂk):Ff U1,2 g eeey uk‘72
ui,3 UE,3

Fr(uyg, ... up1)

= | Fr(uiz, ..., uk2)

Fr(uiz, ..., up3)
51

- Ff(ulyg,...,uk,z)

52
If Fy(uio,...,ur2) € G, then by the definition of B it is clear that Fy(ui,%2,u3) € B. Let us
suppose that Fy(ui2,...,ur2) € G. We claim that Fy(ui2,...,ur2) € A\ G implies u;1 = u;3,
for all 1 <4 < k. For contradiction, suppose that there exists some 1 <4 < k such that u; 1 # u; 3.
WLOG, suppose that ¢ = 1. Then (uj1,u12,u1,3) = U1 € B, uj1 # up 3 implies that u; o = ¢, for

some ¢’ € G. Thus, for some s’ € S,

;

/o /
s,lfg,uzg,...,quGS

/
Ff(u1,25u2,27 v )uk,Q) = Ff(g U225+ - - )uk,Q) = g/7 if g/ =U22 = = Ug2

g, otherwise.

Recall that g,¢’ € G, and observe that if the first case occurs, then ¢’ € S implies that

G =S > 5. Thus, in all cases we get that G 3 F¢(¢',u22,...,ur2) = Ff(u1,2,u22,...,uxz2), which
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contradict the assumption that Fy(uio,...,ux2) € A\ G. Therefore, Fr(uia,...,ux2) € A\ G

implies u; 1 = w3, for all 1 < i < k, which means s1 = Fr(ui,1,...,up1) = Fr(uis,...,up3) = so.
Hence Fy(uy,us, u3) = (s1, Fr(ure, ..., ug2),52) = (s1, Fr(ure,...,up2),s1) € B. In all cases we
get that Fy(uy, U, u3) € B, thus Fy preserves B. This completes the proof of the claim. O

Claim 4.3.1.3. Let a,a; € A, az € A\ G, such that a1/0 # a2/0. Then f(,, a,.q) preserves 0.

Proof. Let z,2',y,y" € Asuch that z62" and yfy'. We must show that fi4, 40.0) (%, ¥)0 f(a1.02,0) (%5 ¥')-
Either z € a1/, y € az/6 or not.

First suppose that x € a1/ and y € as/0. Then zfz’ and yfy' implies that 2’ € a;1/6 and
Y € az/0. Fence fiuy my o) (1) = 6 = fiay mp) (2.

Now suppose that either x € a1/0 or y & ay/f. Then xfz’ and yfy' implies that either
x' & a1/0 or y' & az/0, respectively. Thus f(4, a5.a)(2,y) =y and f(4, 40,0 (%", y") = 3. Since yoy/,

we get that fia, a0.0) (T, ¥)0f(a1 ,a2,0) (%', y'). Therefore f(q, a,.q) Preserves 6. O
Claim 4.3.1.4. Let a,a1 € A, az € A\ G, such that a1/0 # az/0. Then f, a, q,) preserves B.

Proof. Let @, v € B C A3. Then, for i = 1,3, u;,v; € S which means u;0v; and, by the definition

of f(almga), we get that f(ah%a) (u,v;) = v;. Therefore,

uy vy f(ar,a,0) (U1, 1) vy
f(a17a27a) (ﬂ7 6) = f(a17a27a) Uz ’ (%) = f(al,az,a) (UQ, 1)2) = f(a1,a2,a) ('LLQ, U2)
u3 v3 f(ar,a,a) (U3, 3) v3

Furthermore,

a, if ug € a1/0 and ve € ay/0
f(al,az, u27v2

vy, otherwise.
If flay,a0,0)(U2,v2) = va, then fi4, 4,.4)(W,7) = v € B. Suppose that fi,, 4y.4)(u2,v2) = a. Then
vy € ag/6 and ag € A\ G implies that v € A\ G. Since U € B, it follows from vy € A\ G that
vy = v3. Hence f(q; a5,0)(@0) = (V1, fla1,a0,a) (W2, V2),v3) = (V1, f(a1,a0,a) (U2, V2),v1) € B. Therefore

J(a1,a2,a) Preserves B. This completes the proof of the claim. O
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It follows from claims 4.3.1.1 and 4.3.1.3 that 6 is a congruence on A. Furthermore, from

claims 4.3.1.2 and 4.3.1.4, we get that B is a subuniverse of A3. O

We now state a version of Proposition 4.3.1 where, under the added assumption that clone
of § is finitely related, we prove that A can be chosen so that its clone is finitely related. Recall,
from Proposition 2.4.8 that there exist finite idempotent strictly simple algebras that have finitely

related relational clones, thus finitely related clones.

Corollary 4.3.2. Let A and S be finite sets such that S C A and 1 < |S| < |A|. Let S be a strictly
simple idempotent algebra on S such that the clone ofS is finitely related. Let

S, or
G:

{b}, for somebe A\ S.
Let B:= A if G =S and let B := K, if G = {b}. Then there exists a finite idempotent algebra A

on A such that

e A has a subalgebra S on S such that Clo(S) = Clo(S), and S is the unique proper nontrivial

subalgebra of A,
e 0 is a congruence on A,
e B<A3, and
e the clone of A is finitely related.

Proof. Since the clone of S is finitely related, there exists finitely many relations oq,...,o; that
determine the clone of S. Let A = (A; F), where F is the set of all operations that preserve every
relation in R := {{a}:a € A}U{S,0,B,01,...,0:}. Then the clone of A is determined by R, so it
is finitely related. Also, the fact that the relations {a} for alla € A, S, 6, and B belong to R implies
that the algebra A is idempotent, S is a subuniverse of A, @ is a congruence on A, and B < A3.

The fact that the relations o1, ..., 0 belong to R forces that for the the subalgebra S of A on S
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we have that Clo(S) C Clo(S). This proves all required properties, except that (i) Clo(S) 2 Clo(S),
and that (ii) S is the unique nontrivial proper subalgebra of A.

For the proof of (i) and (ii) we will make use of the algebra

(A5 {{Fy|f € Clo(S)} U{ flar.apa)la. a1 € A, a2 € A\ G, and a1/0 # a2/0}})

constructed in the proof of Proposition 4.3.1, which we will call now A’. It was shown in Propo-
sition 4.3.1 that every operation of A’ is idempotent and preserves S, #, and B. Furthermore,
it was shown that Clo(S') = Clo(S) holds for the subalgebra S’ of A’ on S. These properties
imply that every operation of A’ preserves all relations in R, and hence is an operation of A.
Thus Clo(A’) C Clo(A) and Clo(S’) C Clo(S). The second inclusion, together with the equality
Clo(S") = Clo(S) implies (i). The first inclusion implies that every subalgebra of A is a subalgebra

of A/, therefore (ii) follows from the analogous property of A’. O

4.4 Algebras with Small Arity Edge Blockers

Throughout this section we will assume that A satisfies Assumption 1. In this section we will
show that if one of A or K for some b € A\ S is a subuniverse of A%, then A does not have an
edge operation. In fact, we will show that A does not belong to a congruence modular variety. In
the case when the subalgebra S is affine, we will show that the same conclusions follow even if A

satisfies the weaker assumption that one of the binary crosses Ag s or kj s is a subuniverse of A? for

somese S, be A\ S.

Lemma 4.4.1. IfS is a simple affine algebra and 0 € S is the additive identity of the vector space

associated to S, then for arbitrary s € S, b€ A\ S,
(1) Ass < A? implies that Ago < AZ.
(ii) Kps < A? implies that rpo < A%

Proof. If S is a simple affine algebra, then we have from statement (i) of Proposition 2.4.8 that the

automorphisms of S are in the relational clone of S, thus they are compatible relations, therefore,
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for any s € S, the translation w(z) = x — s of the vector space associated to S is an automorphism
of S. Then by statement (iv) of Proposition 3.2.4, if Ags < A2, then \gg = Agr(s) < A2 which
proves (i). Similarly, by statement (iii) of Proposition 3.2.4, if rp s < AZ, then xyo = Kbr(s) < A2,

which proves (ii). O

If S is a simple affine algebra, then 1y is not a subuniverse of S?. Therefore it follows from
statements (v) and (vii) of Proposition 3.2.2 that at most one of the crosses A\go and k30 (b € A\S)
is a subuniverse of A?. Hence, Lemma 4.4.1 implies that if As,s < A? for some s € S, then Kpt A?
forallbe A\ S, t € S. Similarly, if ks < A? for some b € A\ S, s € S, then sy £ A? for all

W £b W eA\S, teS.

Proposition 4.4.2. Suppose that S is affine and either \g s < A? or Kps < A2, for some s € S,

be A\S. Let G =8, if \ss < A%, and let G = {b}, if kps < A% Letk > 1, f € Clo*(A), and

i € k. If f is not G-absorbing in its i*" variable, then f|s does not depend on its it" variable.

Proof. Under the assumptions of the proposition, we have that either Ag, < A? or Kps < A?. Then,
by Lemma 4.4.1, we have that either ;9 < A? or Aso < A?, respectively, where 0 is the additive
identity the vector space associated to S. By the remark preceding the proposition, exactly one
of the crosses Agp, Kpo, for some b € A\ S, is a subuniverse of A?. Hence G, as defined in the
proposition, is uniquely determined. Let,

As0,if G=S
B =

Kb,0, if G = {b}
Then B is a subuniverse of A2. Let k > 1, f € Clo*(A) and i € k. Suppose that f is not G-absorbing
in its it variable. WLOG, suppose that i = 1. Then there exists some g € G, as, .. .,a, € A such
that f(g,as,...,a,) = h, where h € A\ G. Note that B D {g} x SU A x {0}. Therefore, for any

te s,

g az ay
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and, since f € Clo(A) and B < A2, we get that

g as a f(g,az,...,a) h
B>f ) e, = -
t 0 0 £(t,0,...,0) £(t,0,...,0)
Since ¢,0 € S we have that f(¢,0,...,0) = f|s(¢,0,...,0). Recall that S is an idempotent affine

subalgebra of A, therefore f|g is a term operation on S and thus f|g(z1,...,zr) = Z?zlai:ci, for

some endomorphism «; of the vector space associated to S, 1 < i < k, where E?zlai = 1. Thus

h h
f(t,0,...,0) = fls(¢,0,...,0) = a1t and B > = , which means, since
f(t,O,...,O) aqt
h ¢ G, that a;t = 0. Since ¢t was an arbitrary element of S, |S| > 2, it follows that ay is the
zero endomorphism. Thus fls(x1,...,25) = Efzgaixi, hence f|s does not depend on its first
variable. O

In the next proposition we will make no assumption on the subalgebra S of A, and will prove
that the conclusions of the previous proposition hold if we assume that one of the relations A or
Ky, for some b € A\ S, is a subuniverse of A3. Recall from Proposition 4.2.4 that no two of these

relations can simultaneouly be subuniverses of A3.

Proposition 4.4.3. Suppose that either A < A% or Ky < A3, for someb € A\ S. Let G = S, if
A< A3, and let G = {b}, if Ky < A3, Let k> 1, f € Clo*(A), and i € k. If f is not G-absorbing

in its it" variable, then f|s does not depend on its it" variable.

Proof. Under the assumptions of the proposition, we have that either A < A3 or K < A? for some
be A\ S. It follows from our remark preceding the proposition that no two of these relations can
simultaneouly be subuniverses of A%. Thus G, as defined in the proposition, is uniquely determined.
Let,

ANifG=S
B =

Ky, if G = {b}.
Then B is a subuniverse of A3. Let k > 1, f € Clo*(A) and i € k. Suppose that f is not G-absorbing

in its ¢*" variable. WLOG, suppose that i = 1. Then there exists some g € G, as, ..., a, € A such
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that f(g,as,...,a,) = h, where h € A\ G. Note that B O (S x{g} x S)U{(z,y,x) : xz € S,y € A}.

Therefore, for any ¢,t,s9,...,5;, € S,

t S9 Sk
B> g s | ag sy | Ak )
t/ S92 Sk

and, since f € Clo(A) and B < A3, we get that

t 52 Sk f(t,SQ,...,Sk) f(t,SQ,...,Sk)
B>f glola || ag =\ flg,a2,...,ar) | = h
t/ 59 Sk f(t/7827 7Sk) f(t/7827 7Sk)
f(t, 89,... ,Sk)
Then h € B, where h € A\G, which implies that f(t, sa,...,s:) = f(t',s2,...,8k)-
f(t/, S92y .0y Sk)
The elements t,t', s9, ..., sp were arbitrarily chosen from S, hence f|g does not depend on its 1%t
variable. n

Proposition 4.4.4. Let s€ S, be A\ S. Suppose that one of the following conditions holds.
(I) S is affine and either Ass < A% or rps < A2, or
(I1) A < A3 or K < A3,

Let G = S, if Ass < A2 or A < A3, Let G = {b}, if ks < A% or K, < A3. Then the following

statements hold.

(i) If k > 1 and f € CloF(A), then there exists some 1 < i < k such that f is G-absorbing in

its it -variable.
(ii) The clone of A preserves X, for alln > 1.

(iii) A does not have an edge operation.
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(iv) The variety generated by A is not congruence modular.

Proof. Let s € S, b€ A\ S. Suppose that one of conditions (I) or (II) holds.

[(i)] Let & > 1 and f € Clo®(A). Then f is an idempotent term operation on A, which
means f|g is idempotent, therefore there exists at least one 1 < i < k such that f|s is dependent
on its i'"-variable. Then, if condition (I) or (II) holds, we get from Propositions 4.4.2 and 4.4.3,
respectively, that f is G-absorbing in its i*"-variable. This completes the proof of statement (i).

[(ii)] This follows directly from statement (i) and Proposition 4.1.4, where A = A’. This
completes the proof of statement (ii).

[(iii)] From statement (ii) we have that the idempotent operations on A preserve X&, for ar-
bitrary n, this yields, from Proposition 4.1.4, that statement (a) of Proposition 4.1.4 holds which in
turn implies that statement (b) of Theorem 4.1.3 holds. Then we can conclude from Theorem 4.1.3
that statement (a) of Theorem 4.1.3 holds, hence A does not have an edge operation.

[(iv)] Suppose, for contradiction, that the variety generated by A is congruence modular.
Then, by Theorem 2.1.3, for some n > 0, there exists term operations dy, ..., d,,p € Clo®(A) such
that identities (1) - (4) of Theorem 2.1.3 hold. Then dy|s, ..., dn|s, p|s also satisfy identities (1) - (4)

of Theorem 2.1.3.

Claim 4.4.4.1. The term operation d;|s does not depend on its second variable, for any 0 < i < n.

Proof. Let g € G and h € A\ G. Then by identity (1) of Theorem 2.1.3, for any 0 < i < n, we get

that d;(h,g,h) = h € A\ G. Thus d; is not G-absorbing in its second variable. We are assuming

condition (I) or (II) holds, therefore it follows from Proposition 4.4.2 or 4.4.3, respectively, that

d;|s does not depend on its second variable, for any 0 < i < n. ]
Then d;|s(x,y, 2) = di|s(z,y, 2), for arbitrary z,y,vy',z € S.

Claim 4.4.4.2. The term operation p|s does not depend on its first or second variable.

Proof. Let g € G and h € A\ G. Then by identity (4) of Theorem 2.1.3 we get that p(g,g,h) =

h € A\ S. Hence p is not G-absorbing in its first or second variable. We are assuming condition (I)
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or (II) holds, therefore it follows from Proposition 4.4.2 or 4.4.3, respectively, that p|s does not

depend on its first or second variable. O

Then p|s(z,y, 2) = pls(2’,y/, ), for arbitrary z,2’,y,y’, 2 € S.

Claim 4.4.4.3. For all 1 < i <n, d;|s(z,y,2) = dit1|s(x,y, 2), for arbitrary x,y,z € S.

Proof. Let x,y,z € S be arbitrary. If i < n is even, then by Claim 4.4.4.1 and identity (2)
of Theorem 2.1.3 we get that d;|s(z,y,2) = dils(z,2,2) = diyi1|s(x,2,2) = dit1]s(z,y,2). If
i < n is odd, then by Claim 4.4.4.1 and identity (3) of Theorem 2.1.3 we get that d;|s(z,y, z) =

dils(z,x,2) = diy1|s(x, z, 2) = diy1|s(z,y, z). This completes the proof of the claim. O

From identity (1) of Theorem 2.1.3 we have that do(x,y,z) = z. Thus, it follows from
repeated application of Claim 4.4.4.3 that d,(z,y,z) = x. This, together with identity (4) of

Theorem 2.1.3 and Claims 4.4.4.1 and 4.4.4.2 imply that

T = dn’S(xay7Z) = dn‘s(l',Z,Z) :p’S((E,Z,Z) :p‘s(l',l',Z) =z,

for arbitrarty z,y,z € S. Since |S| > 2, the statement x = z, for all z,z € S, gives a contradiction

and completes the proof of statement (iv). This completes the proof of the proposition. O

Corollary 4.4.5. There exists a finite idempotent algebra A that has a congruence 0 such that
the congruence classes, as algebras, generate congruence modular varieties, and A/ generates a

congruence modular variety, but A does not generate a congruence modular variety.

Proof. Let A and S be finite sets such that S C A and 2 < |S| < |A|. Let S be a strictly simple
idempotent algebra on S. From Proposition 4.3.1 we have that there exists an algebra A such that
S is the unique proper nontrivial subalgebra on A, # is a congruence on A, A/f is strictly simple,
and B = A or B = K is a subuniverse of A3, for some fixed b € A\ S. Then the congruence classes
of A are S, {{a} :a € A}. It is clear that the one-element algebras generate a congruence modular
variety. Furthermore, under these assumptions, statement (iv) of Proposition 4.4.4 implies that

the variety generated by A is not congruence modular. Finally, since S and A /6 are idempotent
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strictly simple algebras with more than two elements, it follows from Corollary 2.4.11 that S and

A/0 generate a congruence modular variety. This completes the proof of the corollary. O

Finally, recall that in Corollary 4.3.2 we constructed finite idempotent algebras A satisfying
Assumption 1 and condition (II) from Proposition 4.4.4 such that the clone of A is finitely related.
Thus the conclusions of Proposition 4.4.4 hold for A; in particular, A has no edge operation, and
also the variety generated by A is not congruence modular. These algebras A lend support to the

following conjecture of M. Valeriote.

Conjecture 4.4.6 ([MMM10]). Let A be a finite idempotent algebra. If Clo(A) is finitely related

and A generates a congruence modular variety, then A has an edge operation.



Chapter 5

The Clone of A When S is Quasiprimal or Affine

Throughout this chapter A will denote an algebra that satisfies Assumption 1.

In this chapter we will describe the clone of A when 6 is a congruence of A, S is either
quasiprimal or affine, and no small arity edge blockers occur in the relational clone of A. If S is
quasiprimal, we will also assume that the subuniverses of A? have a f-closure property that we
will define below. We accomplish this description by finding a transparent generating set for the
relational clone of A and then using the Galois connection from Section 2.3 to describe the clone
of A.

There are three integral steps to finding a generating set for the relational clone of A. The first
is a reduction step that allows us to describe a relation in the relational clone of A by isomorphisms
between subalgebras and quotients of A and higher dimensional analogs of such isomorphisms, and
by a smaller arity relation that cannot be further decomposed in this way, and will therefore be
called reduced. This means that later on, it suffices to focus on the reduced subuniverses of finite
powers of A. Secondly, we show that the reduced subuniverses of all finite powers of A satisfy
the #-closure property mentioned above. This allows us to recover a subuniverse from its image
under a quotient map. In the third step we describe the image of such a subuniverse, and use this

description to find a generating set for the relational clone of A.

Definition 5.0.7. Let B be a subuniverse of A", 1 <1i < n. We will call the it"-coordinate of B

an A-coordinate if pr; B = A.

In the next definition we use terminology from Definition 2.2.7 and Proposition 2.2.8
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Definition 5.0.8. Let n > 1. We will say that a subuniverse B of A" is 0-closed in its A-coordinates
if B is 0; x --- x Oy-closed, where 6; = 6 for all i € @ such that the i*"-coordinate of B is an

A-coordinate and 6; is the equality relation otherwise.

Thus, the 6-closure property that we alluded to above is the property that a reduced subuni-
verse of a finite power of A is #-closed in its A-coordinates. In our exploration of the subuniverses of
finite powers of A, we discovered a family of relations whose members do not satisfy this property.

We call these relations higher dimensional automorphism and we will define them here.

Definition 5.0.9. Let G be a finite, idempotent, strictly simple affine algebra, and let B <, 4 G™.
We will call B a higher dimensional automorphism, or h.d.-automorphism, of G, if n > 3 and B

satisfies the following conditions:

(i) for every i € m, and for every (n —1)-tuple, (21,...,Zi—1,Zit1,---,Tn) €PI1__i 141, n DB

there exists a unique element z; € pr; B such that (x1,...,%i—1, %, Tit1,...,2,) € B, and
(ii) no projection pr; B of B where I is a proper subset of 7 has this property.

If A satisfies Assumption 1 and S is affine, then a subuniverse B <, A" will be called a higher
dimensional automorphism, or h.d.-automorphism, of A, if n > 3, B|g is an h.d.-automorphism of

S, and B satisfies condition (i) above.

For a finite, idempotent strictly simple algebra G let Auty 4 (G) denote the set of h.d.-
automorphism of G if G is affine, and let Aut, 4 (G) = () otherwise. Similarly, if A satisfies
Assumption 1, let Auty g4 (A) denote the set of h.d.-automorphism of A if S is affine, and let
Auty g (A) = 0 otherwise.

It is not hard to see, using Propositions 2.4.5 and 2.4.7, that if G is not affine, then for n > 3,
G"™ has no subuniverse that satisfies conditions (i) and (ii). This is why h.d.-automorphisms of G
are defined only when G is affine, and h.d.-automorphisms of A are defined only when S is affine.
If S is affine, then the h.d.-automorphisms of A will also satisfy condition (ii), because they contain

an h.d.-automorphism of S which satisfies (ii).
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Notice also that condition (i) in the definition says that if B is an h.d.-automorphism of G

or A, then for all ¢+ € T there exists a function,

fitprayy B = pr; B (21,0, Tic1, Ti1, -, Tn) > T,

where x; € pr; B is the unique element such that (x1,...,2;—1, %, Tit1,...,Ty) € B.

5.1 Reductions

In this section we will complete the first step of determining a generating set for the relational

clone of A.

Definition 5.1.1. Let
Ta ={{a} :a € A} UAut(S) UAut(A) U Auty q.(S) U Auty, q.(A).
Let n > 1. We will say that a subuniverse B of A" is reduced if no projection of B is in the set 7.

Our goal is to show that every subuniverse B of A" is contained in the relational clone
generated by 7, and a projection of B that is reduced. For the case when 6 is a congruence on
A, we will prove an analogous result for every subuniverse B’ of II" ;A;, where A; € {S,A/0},
1 < i < n. This will imply that determining the relational clone of A will depend on determining
the reduced subuniverses of A" and II7"_; A;.

Both kinds of reductions rely on the following lemma.

Lemma 5.1.2. Forn > 2, let B <g4 III" |A;, where A; € {S,A}, for all1 < i <mn, or A; €
{S,A/0}, for all 1 < i < n. Suppose that there exists some 2 < k < n such that prz B =
{(f(w2, ... 2p), 2, ..., wg) & (w2,...,7%) € Pry_ x B}, where f : pry B — pry B is a function.

Then the following are true:
(i) T € B < Tp\1) € Pryp\ 1} B and T € pr B,

(11) <B>RClone = <prﬁ\{1} B, prEB>RClane'
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Proof. [(i)] Clearly, if T € B, then T\ (1} € prap (13 B and Zy; € pry B. We will show the reverse
implication. Under the assumptions of the proposition, suppose that z € II}_A; is such that
(z1,...,2x) € pry B and (22,...,2,) € pryp (13 B. Then (22,...,7,) € prp (13 B implies that there

exists some a € pr; B such that (a,z2,...,7,) € B. This means that (a,z2,...,2;) € pr;; B

and by our assumptions on pr; B we get that a = f(x2,...,7;). Furthermore the assumption
(®1,...,21) € pry B implies that x1 = f(x2,...,2;). Since f is a function it must be that a = .
Hence B 5 (a,z2,...,x,) = (1,22, ..., Zy).

[(ii)] Since relational clones are closed under projections, it is clearly the case that (B) rcione =2
{pra\ (1) B, pr; B}, and hence, (B)rcione 2 (Prm\(1} B; Pry; B) RCione-
To see the reverse inclusion, let a := prp (13 B and 8 := prgy B. Then by property (i),

we have that B is the set defined by the p.p. formula «a(zo,...,x,) A B(z1,...,2), and thus,

B e <a7ﬁ>RCl0ne = <prﬁ\{1} BaprEB>RClane' Hence, <B>RClone - <prﬁ\{1} B7prEB>RClone' O

Proposition 5.1.3. Let B <4 II!' {A,, for some n > 1, where A; € {S,A}, for all1 < i < n.

Then there exists a nonempty subset I C T such that pry B is reduced and B € (pr; B, Tp) RClone -

Proof. Let I be a minimal nonempty subset of 7 such that B € (pr; B, 7a)RCione- Such a subset
exists since B € (B, 7x) rcione = (P B, Ta) RClone-

We want to show that pr; B is reduced. This is clear if |I| = 1, because pr; B = A; € {S, A}
forall 1 < i < n, and S, A ¢ Ty. Therefore let |I| > 1. For contradiction, suppose pr; B is
not reduced. Then some projection of pr; B is in 7y. Let J be nonempty subset of I such that

pr;(pr; B) € Ty. Notice that pry (pr; B) = pry B for all J' C I.

Claim 5.1.3.1. B € (prI\{j} B, TA) RClone, for any j € J.

Proof. Let B = pr; B. We saw that pr JB = pry B, and that for a one-element set J we have
pr; B ¢ Ty. Therefore prJB € T implies that |J| > 1. WLOG, suppose that J = {1,...,|J|}.

Then pr; B € T, implies that pr; B = {(f(@o, .. smpg), @2,z ) ¢ (B2, 2)g)) € Pro )y B},

for some function f : Pry |J| B - pry B. Therefore, by property (ii) of Lemma 5.1.2 we get that
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<B>RClone = <pr1\{1} B,prJ B>R0lone- Since B = pr; B and J C I, this means that

<Pr1 B)RClone = <B>RClone = <P1‘[\{1} B) pry B)RClone = <p1“1\{1} B7 pry B)RClone-

Therefore, the assumptions B € (pr; B, 7o) Rcione and pry B = pry Be Ty, imply that

B e <pI‘I Bv TA>RClone = <pr1\{1} Bv pr; B7 TA>RClone = <pI‘I\{1} B7 TA>RClone-
This completes the claim. O

Hence B € (pry B, Tz) RCione, for I' = I'\ {j}, which contradicts the minimality of I. There-

fore, the assumption that pr; B not reduced is false. This completes the proof. ]

Proposition 5.1.4. Let B be a reduced subuniverse of A™ for some n > 1. Then the k-ary

projections of B are reduced, for all 1 < k < n.

Proof. Let B be a reduced subuniverse of A", let 1 < k < n, and I C 7 such that |I| = k. If
prj(pr; B) € T for some J C I, then pr;(pr; B) = pr; B implies that pr; B € 7y. However, this

contradicts the assumption that B is reduced. O
Definition 5.1.5. In case 6 is a congruence on A we define
2 = Aut(A/0) UTsom(S, A/0) U Auty.q.(A/0).

Let B’ be a subuniverse of II?_; A; for some n > 1, where A; = B;/©; € {S,A/0} forall1 <i<n
such that B; = A and ©; = 0 if A; = A/0, and B, = S and ©; is the equality relation if A; = S. Let
p~1(B') be the full inverse image of B’ under the natural homomorphism p : II?*_;B; — I A;. We
will say that B’ is reduced if p~!(B’) is reduced in the sense of Definition 5.1.1, and no projection

of B is in the set 7.

Definitions 5.1.1 and 5.1.5 give two notions of reduced subuniverses: one for the subuniverses
of A" and one for the subuniverses of II!" ;A;, where A; € {S,A/#}. Since a subunivese of S" is
both a subuniverse of A" and a subuniverse of II"_; A;, we must check that the two definitions are

consistent for subuniverses of finite powers of S.
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Let B < S™ Then clearly no projection of B is in the set Aut(A/#) U Isom(S,A/0) U
Auty, q.(A/6) and, by the definition of p, we have that p~'(B) = B. Thus if B is reduced in the

sense of Definition 5.1.5 if and only if B is reduced in the sense of Definition 5.1.1.

Proposition 5.1.6. Let B’ be a subuniverse of II™_|A; (n > 1), where A; = B;/0; € {S,A/0}
for all 1 < i < n such that B; = A and ©; = 6 if A; = A/6, and B, = S and ©; is the equality
relation if A; = S. If the full inverse image p~1(B') of B’ under the natural homomorphism
p: I\ B; — I | A; is reduced, then there exists some nonempty I C 7 such that pr; B’ is reduced

and B’ € <p1“1 B/, Té}RClone'
The proof of this proposition is similar to the proof of Proposition 5.1.3.

Proof. Let I be a minimal nonempty subset of @ such that B’ € (pr; B', 7{) rcione- Such a subset
exists since B' € (B',T{)rcione = (Pt B', 7)) rCione- We want to show that pr; B’ is reduced.
Since p~!(pr; B') = pr; p~}(B’) and our assumption is that p~1(B’) is reduced, Proposition 5.1.4
shows that pr; p~!(B’), and hence p~!(pr; B) is reduced.

Therefore it remains to prove that no projection of pr; B’ is in 7. Let B := pr; B', and
suppose, for contradiction, that J is a nonempty subset of I such that pr J(é) € 7. WLOG,
suppose that I ={1,...,|I|} and J ={1,...,|J|}.

Then pr; B € T/ implies pr; B = {(f(x2, ... ST T2y TYg)) 1 (T2, T g) € P B},
for some function f : prJ\{j}B — pry B. Applying statement (ii) of Lemma 5.1.2 we get that

<B>RCZOM = <pr1\{1} B,prJ B>RClone- Since B = pr; B and J C I, this means that
(pr; B')Retone = (B) rctone = (prp 1y B, vy B) Retone = (13 B’ bty B') Reione-
By assumption we have that B’ € (pr; B', 7{) rcione and pr; Be 7, . Therefore,
B’ € {pr; B', T3) rctone = (prp\ g1y B'spry B, TL) rctone = (P (13 B, T4) RCtone-

Hence B’ € (prp B,7)Rrcione, for I' = I\ {1}, which contradicts the minimality of I. This

completes the proof of the proposition. O
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Proposition 5.1.7. With the same notation as in Proposition 5.1.6, if B’ is a reduced subuniverse

of I | A;, n > 1, then the k-ary projections of B’ are reduced, for all 1 < k < n.

Proof. Let B’ be a reduced subuniverse of II?"_; A;, let 1 < k <n, and I C 7 such that |I| = k. The
same argument as in the proof of Proposition 5.1.6 shows that p~!(pr; B’) is reduced. Furthermore,
if pr;(pr; B') € T} for some J C I, then pr;(pr; B') = pry B' implies that pr; B’ € 7;. However,

this contradicts the assumption that B’ is reduced. O

5.2 H.D.-Automorphisms of A when S is Affine.

Under Assumption 1 we will determine the general form of a subuniverse B < A™, when S is
affine, Bl|g is an h.d.-automorphism of S, and B # B N S™. We will see that such a subuniverse is

an h.d.-automorphism of A.

Proposition 5.2.1. Suppose that G is a finite idempotent strictly simple affine algebra, and let
kG be the associated vector space. If n > 3 and B < G™ is an h.d.-automorphism of G, then the

following properties hold.

(1) There exist nonzero elements c1,...,cn—1 € K and g € G such that
n—1
B = {(xl,...,:vn_l,Zciaci +9)€G":xy,...,xn1 € G}
i=1

(2) For everyi €M, pryp (3 B = G\t

(3) For everyi € m,

B ={(x1,..., i1, fi(x1, ., Ti 1, it 1,y Tn)s Tig 1y, Tp)
Tl oy Ti—1;Titly--+,Tn € G}7
for some map fi :pry 1441, B = pr; B (w1, Tim1, Tig1, -, ) T, where T
is the unique element of pr; B such that (x1,...,%i—1,Ti, Tit1,-..,2Tn) € B.

(4) Let {i,j} Cn, i <j. Then, for any (c1,...,Ci—1,Cit1,---,Cj—1,Cjt1,---+Cn) € G\t

B(C1, . s G153 @iy Cig 1y - -5 Cj—1, Ty Cjg Ly - -5 Cn) < GU3}t 4s an automorphism of G.
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(5) Let i € m, n > 4. Then for any ¢; € G, B(x1,...,Ti—1Ci, Tig1,--.,Ty) is an h.d.-

automorphism of G.

Proof. Suppose that B < G" is an h.d.-automorphism of G € {S, A/0}, where G is affine, for some
n > 3.

[(1)] Since G is affine, this follows directly from Proposition 2.4.6 which describes the sub-
universes of finite powers of a finite idempotent strictly simple affine algebra.

[(2)] This is an immediate consequence of (1).

[(3)] This follows directly from Definition 5.0.9 and property (2).

[(4)] Let {i,5} € m, i < j. Since n > 3, we will assume, WLOG, that i = 1,j = 2.
Let (c3,...,¢,) € GP\ML2H Tt follows from property (2) that pr; B(z1,zo,¢3,...,¢0) = G for
i = 1,2. Property (3) implies that B(xy,z2,c¢3,...,¢n) = {(z1, fo(z1,¢3,...,¢,)) : 1 € G} and
B(xy1,z2,¢3,...,¢n) = {(fi(z2,¢3,...,¢n),22) : 2 € G}. Thus B(x1,x2,¢3,...,¢,) is the graph
of a permutation of G and since B(z1,z2,c¢3,...,c,) < G? we get that B(z1,x2,c3,...,¢,) is an
automorphism of G.

[(5)] Let i € @, n > 4. WLOG, suppose i = n. Let ¢ € GI"™ and let C := B(zy,..., 2,1, c).
Then C is a subuniverse of G"~!. For all i € n — 1, it follows from property (2) that pra\iy B =
G\ = g1« gin} o @ IM3 x {¢}. Thus G* M C P\ iy B(@1, .., Zno1,¢), and
hence DI\ (3} C =G M3 for all i € n—1. Then property (3) implies that for each : € n — 1

we have that
C= {(xlv cey i1, fi(xlv sy i1y L1y - - oy Tn—1, C)7$i+17 ey In—1, C) :
TlyeeeyTie1y,Tidlye--,Tp—1 € G}
This shows that C' is an h.d.-automorphism of G. O

Theorem 5.2.2. Suppose that A satisfies Assumption 1. Suppose that S is affine and there is no
(thick) (A, S)-cross among the subuniverses of A%. Letn > 3. Suppose that B < A™ such that Bl|s

is an h.d.-automorphism of S. If B £ S™, then 0 is a congruence on A and B = (BN S") Uo,
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where 0 = {(z,m2(z),...,m(x)) : * € A\ S} and m; is an automorphism of A/0 that fizes S, for

all 2 <i<n.

Proof. Under the assumptions of the theorem, let B be a subuniverse of A™ such that B|g is an
h.d.-automorphism of S. Suppose that B # BN S™. We will prove the theorem by inducting on n.
Suppose that n = 3. We will first show that B(s,z2,x3), B(z1, s, 13), B(z1,72,5) C S, for
all s € S, thus B C S3 x (A\ 9)3.
We claim that, for each s € S, the subuniverses B(s, z2,x3), B(z1,s,x3), and B(x1,x2,s) of

A? are automorphisms of S. WLOG, we will show the claim for B(s, z2,z3).

Claim 5.2.2.1. For each s € S, B(s,x2,x3) is an automorphism of S.

Proof of claim. Let s € S. Since B|g is an h.d.-automorphism of S and S is affine we get that
B|g satisfies the assumptions of Proposition 5.2.1. Then property (2) of Proposition 5.2.1 implies
that B(s,x2,x3)|s is an automorphism of S. Therefore, by Theorem 3.1.5, B(s, x2,x3) is either an
automorphism of S or an automorphism of A. Since s € S is arbitrary, this shows that B(s, 2, x3)
is either an automorphism of S or an automorphism of A, for all s € S.

To prove the claim, we must show that B(s,x2,z3) is not an automorphism of A, for any
s € 8. To do this, we will first define a subuniverse, C <S x A2, and prove two subclaims.

Let C be the subuniverse of S x A? defined by C := BN S x A% Then B|g C C. Property (2)
of Proposition 5.2.1 implies S? C pr; j(Bls), for all 1 < i < j < 3, therefore S? C pr; ; C.
Furthermore, it is clear from the definition of C' that C' = J,.g B(s, 2, 3). Since we showed that,
for each s € S, B(s,x2,x3) is either an automorphism of S or an automorphism of A, it follows
that B(s,z2,23) € 5% x (A\ S)? and C C S2US x (A\ 5)?. Then 52 C pry3C C S? x (A\ 5)?
implies, by Theorem 3.1.5, that either 6 is a congruence on A and pry 3 C' is an automorphism of

A/0 that fixes S or pry3C = 5%

Subclaim 5.2.2.1.1. If B(s, x2, z3) and B(s', 9, x3) are automorphisms of A, for distinct s,s" € S,

then B(s,x2,73)|a\s = B(s', 72, 23)| a\5-
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Proof of subclaim. Suppose that B(s, 2, x3) and B(s', z2, x3) are automorphisms of A, for distinct
s,s' € S. Then pr; B(s,x2,23) = A, for i = 2,3, and since B(s,z2,73) C pry3C we get that
pros3C <54 A?. Hence pros C # 5?2, which means 6 is a congruence on A and pro3C is an
automorphism of A/f that fixes S. Finally, since B(s,z2,x3), B(s', z2,23) C pry 3 C, the subclaim

follows. O

Subclaim 5.2.2.1.2. If B(s,z2,x3) is an automorphism of A, for some s € S, then B(s',x2,x3)

is an automorphism of A, for all s’ € S.

Proof of subclaim. Let s € S and suppose that B(s,x2,z3) = m, where 7 is an automorphism of
A. Then {(s,z,7(z)) : * € A} C B implies {s} x A C pr;,B. Since s € 5, it follows from
the definition of C' that {s} x A C pry,C. Furthermore, we saw that S? C pry o C, therefore
)\Ei = S?U ({s} x A) C pr;,C. By assumption there is no thick (A4, S)-cross, and thus no
thick (S, A)-cross, among the subuniverses of A2, therefore it follows from Theorem 3.1.5, that
prioC =S x A. Then {s'} x A C S x A=pr,C, forall s € S. Fix s’ € S. For each a € A,
there exists some z, € A such that (s',a,z5) € C C B, thus, pry B(s', x2,23) = A. We showed that
B(s', x9,x3) is either an automorphism of S or an automorphism of A, therefore pry B(s', 22, 23) = A
implies that B(s',z2,x3) is an automorphism of A. Since s’ was an arbitrary element from S, this

completes the proof of the subclaim. O

We are now ready to complete the proof of the claim. Recall that it remained to show that
B(s, x2, x3) is not an automorphism of A, for any s € S. Suppose, for contradiction, that there exists
some s € S, such that B(s,z2,23) is an automorphism of A. Then by Subclaim 5.2.2.1.2, we get
that B(s,x2,r3) is an automorphism of A for all s € S. Since |S| > 2, there exists distinct s,s" € S
and, by Subclaim 5.2.2.1.1, we have that B(s,z2,73)|a\s = B(s',22,23)|4\g5- Then we can infer
from Lemma 3.0.6 that B(s,z2,x3) = B(s, 22, x3), which means B(s, z2,x3)|s = B(s', 22, 23)|s.

Let (cg,c3) € B(s,x2,23)|s. Then (s,co,c3), (s, c2,¢3) € Blg, which means B(z1,x2,c3)|s
is a subuniverse of S? that contains (s,cs), (s’,c2). Recall that B|g satisfies the assumptions of

Proposition 5.2.1, therefore property (4) implies that B(z1,2,c3)|s = 7, for some m € Aut(S).
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Hence s = 77 '(c3) = s/, which contradicts s # s’. Hence, the assumption that B(s,z1,z2) is an

automorphism of A must be false, which completes the proof of the claim. O

By symmetric arguments to those given in the proof of Claim 5.2.2.1, we get that for any
s € S, B(s,r2,23), B(71,s,23) and B(x1,2,s) are each a subuniverse of S2. Therefore, there is
no tuple in B that has coordinates from both S and A\ S. In other words, if w € B, then either
ueS2oruec (A\S)3 Hence, B=(BNS3U(BN(A\S)?). We want to determine BN (A\ 9)3.

Every binary projection of B is contained in 52 U (A \ 5)? and we saw that S* C pr, ; B, for
1 <i < j < 3. Since we have assumed that B # BN S3, there exists some u € BN (A4\ S)3, which
means (u;,u;) € pr; ; BN (A\ S)2. Then, by Theorem 3.1.5, it must be that € is a congruence on
A and pr; ; B is an automorphism of A/ that fixes S, for all 1 < i < j < 3. In particular, for
i =2,3, pry; B =, where 7; is an automorphism of A/6 that fixes S. Therefore BN (A\ S)3 C
(2, mala), m(2)) - 2 € A\ 8}

We claim that BN (A \ S)? = {(x,m(z),73(x)) : # € A\ S}. Let (a1,m2(a1),m3(a1)) €
{(@,m2(x), m3(x)) : & € A\ S}. Since there exists some @ € BN (A\ 5)* and 52 C pr; 5 B, we have
that S U {u;} € pry B, where u; € A\ S, which implies pry B = A. Then a; € (A\ S) C pr; B
implies that there exists some ag, a3 € A such that (a1,a2,a3) € B. Thus, (a1,a2) € pry o Bla\s =
m2|a\s implies az = ma(a1) and (a1,a3) € pryizB|las = 7m3|a\s implies a3 = m3(a1). Hence
(a1,m2(a1),m3(a1)) = (a1, a2,a3) € B.

Therefore we have shown that 6 is a congruence on A and B = (B N S3) U o, where
o = {(z,m(x),m3(x)) : € A\ S} and 7o, w3 are automorphisms of A /6 that fix S. This completes

the proof of the theorem for the case when n = 3.

Let n > 3 and suppose that for any B < A""!, such that B|g is an h.d.-automorphism
of S and B # BN S" ! we have that 6 is a congruence on A and B = (BN S"!) U o, where
o = {(z,m2(z),...,m_1(z)) : @ € A\ S} and m; is an automorphism of A/f that fixes S, for

1<i<n—-1.
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Let B < A™. Suppose that Blg is an h.d.-automorphism of S and suppose that B # BN S™.
Since S is affine, we get that B|g satisfies the assumptions of Proposition 5.2.1. Then property (5) of
Proposition 5.2.1 implies that, for all 1 < j <mn and forall s € S, B(z1,...,2j-1,5,Zj41,---,%n)|s
is an h.d.-automorphism of S. We will show that B(x1,...,2j—1,8,%j11,...,2n) C Sn=L for all
1<j<nandallsesS. Thenitwil follow that B C S" U (A\ S)". WLOG, we will show the

claim for 7 = 1.

Claim 5.2.2.2. For each s € S, B(s,x2,...,2,) C S"7L.

Proof of claim. For each s € S, either B(s,x3,...,2,) C S ' or B(s,x2,...,2,) € S 1. It is
clear that B(s,xs,...,x,) is a subuniverse of A"~! and, as we discussed in the previous paragraph,

B(s,za,...,xy,)|s is an h.d.-automorphism of S, therefore by the induction hypothesis,
B(s,z,...,xn) = (B(s,x9,...,2,) N S" 1) Uoy,

where

0, if B(s,x2,...,1,) C S"!

o5 =
{(z,m3(x),...,mp(x)) : @ € A\ S}, otherwise,

for some automorphisms, 7;, of A/6 that fix S, 3 <i < n.

To prove this claim we must show that og = (), for all s € S. First we will define a subuniverse,
C <S x A", and prove two subclaims.

Let C be the subuniverse of S x A"~ defined by C' := BN (S x A" 1). Then B|s C C. Recall
that B|g satisfies the assumptions of Proposition 5.2.1, therefore property (2) implies that S*~1 C
Pra\ (i} Blg, for all i € @, thus S"~! C pra iy €. Since n > 3, this means that S2 C pr; ; C, for all
1 <i < j < n. Furthermore, it is clear from the definition of C' that C = (J,cg B(s,72,...,%n).
Since B(s,x1...,2,) € S" LU (A\ S)" ! we get that C C S"US x (A\ S)""!. Thus, S? C
pry; C € S2U(A\S)?, for every 3 < i < n. It follows from Theorem 3.1.5 that, for each 3 <i < n,

either 6 is a congruence on A and pr,; C' is an automorphism of A/6 that fixes S or pry,; C' = S2.
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Subclaim 5.2.2.2.1. If s, s' are distinct elements of S such that o5 # () and oy # (), then o5 = 0.

Proof of subclaim. Let s,s' € S, s # s', and suppose that o5 # () and oy # (). Let
os ={(z,m3(x),...,mp(x)) : x € A\ S}

and
oy ={(z,73(2), ..., m(x)) 1z € A\ S},

where 7; and 7; are automorphisms of A/ that fix S, for all 3 <i < n.

Then o5 C B(s,x2,...,%s), 0g € B(s',22,...,2,), and s,s" € S implies 0, Uoy C pry_, C.
Let i € m\ {1,2}. Then {(x,m(z)) : @ € A\ S} U{(z,7i(x)) : z € A\ S} C pry,; C implies
pry,; C # 5?2, thus pry; C is an automorphism of A/ that fixes S. Therefore, it must be that
mi(z) = 7i(x), for all z € A\ S. Since i was an arbitrary element of @ \ {1,2}, we get that

Og = 0Og/. ]
Subclaim 5.2.2.2.2. If o, # 0, for some s € S, then oy # 0, for every s’ € S.

Proof of subclaim. Let s € S and suppose that o5 # (). Then it follows from the discussion above
that B(s, 22, ...,2,) = (B(s, 22, ...,2,)NS" Y Uog, where 05 = {(z,73(), ..., m()) : @ € A\ S},
for automorphisms, 7;, of A/ that fix S, 3 < i < n. Let s € S\ {s}. We will show that
B(s',x9,...,2,) € 8" 1. Since B(s',x3,...,2y,) is an (n — 1)-dimensional h.d-automorphism of S
and s’ is an arbitrary element of S, this proves the subclaim.

Since o5 C B(s,x3,...,2T,) we get that {(s,z,m3(z),...,m(z)) : @ € A\ S} C B. Then
s € S implies that {(s,x,7m3(z),...,m(z)) : © € A\ S} C C, therefore {s} x A\ S C pry,C.
Furthermore, we showed that S? C pr; 5 C. Thus S? U ({s} x A\ S) C pr; 5 C. By assumption,
there is no (A, S)-cross among the subuniverses of A2 which implies no (S, A)-cross is a subunverse
of A2, Then it follows from Theorem 3.1.5 that prioC = S x A. This means that for any
be A\ S, (s,b) € Sx A =pry,C C pry, B. Therefore, there exists some tuple 7 € A"~? such

that (s’,b,u) € B, which means B(s',z2,...,z,) € S"!, so it must be that B(s',xa,...,7,) =
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(B(s',x2,...,2,) N S" 1) U oy, where oy # ). Since s’ was an arbitrary element of S\ {s}, this

completes the proof of the subclaim. O

We are ready to complete the proof of the claim. To do so, we must first show that o5 = 0,
for all s € S. Suppose, for contradiction, that there exists some s € S such that o5 # (). Then by
Subclaim 5.2.2.2.2, we get that oy # 0, for all s € S. Thus, it follows from Subclaim 5.2.2.2.1 that

os = o, for all distinct s, s’ € S. Therefore, for all s € S,
B(s,x9,...,2n) = (B(s,x2,...,2,) N S" ) Uo, (5.1)

where o = {(z,m3(z),...,m(x)) : * € A\ S} and m; is an automorphism of A/ that fixes S,
3<1<n.

Let s, s’ be distinct elements in S and define
D := {(z,x') : there exists T € A"~ 2 such that (s, 7, ), (s',T,z’) € B}.

Then D is a subuniverse of A%2. Let A = {(z,2) : * € A}. We claim that DNA = {(z,7) : # € A\S}.

Suppose (a,a’) € D. Then for some (co,...,c,_1) € A" 2 we have that (s, co,...,cn_1,0a),
(s',eay...,¢n—1,a") € B. This means that (ca,...,cn—1,a) € B(s,x2,...,2,) and (ca,...,cp—1,d") €
B(s',z1,...,2,_1), which, by (5.1), in turn implies that (ca,...,cn_1,0a), (c2,...,cn_1,a’) € S*~ LU
o C S U A\ S8)" ! and hence, (a,a’) € S2U (A\ S)2.

First suppose (ca,...,cn_1,a) € S !, then (c2,...,cn_1,a’) € S" ! and (s,co,...,¢n1,0),
(s',co,...,cn_1,a’) € S™. Suppose, for contradiction, that a = a’. Then B(z1,co,...,ch—1,22)|s
is a subuniverse of S? that contains (s,a), (s’,a’) = (s’,a). Since S is affine and B|g is an h.d.-
automorphism of S, we get that B|g satisfies the assumptions of Proposition 5.2.1. Then, by state-
ment (4) of Proposition 5.2.1, we get that B(x1,¢2,...,cn1,22)|s = 7, for some m € Aut(S). Thus
(s,a),(s',a) € B(xy,ca,...,cn1,22)|s implies s = 7~ !(a) = ', which contradicts the assumption
that s # s'. Therefore, a # o’ whenever (a,a’) € S.

If (co,...,cn1,a) € (A\ S)"71, then (co,...,cn_1,a), (c2,...,¢cn_1,a') € o, hence a =

7n(c2) = a’. Therefore a = a’ whenever (a,a’) € (A\ ).
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Furthermore, we have that (z, 72 (z),...,m,(2)) € 0 C B(s,x1,...,2,) N B(s',21,. .., Tn_1),
for any x € A\ S. Thus (s,z,m2(x),...,m(x)), (s, x,m(x),...,m(z)) € B, for any z € A\ S,
which means {(z,z) :x € A\ S} = {(mn(z), mn(z)) :z € A\ S} C D.

Therefore we have shown that DNA = {(z,z) : x € A\ S}. Since D and A are subuniverses
of A% and relational clones are closed under intersections and projections, we get that pr;(DNA) =
A\ S is a subuniverse of A. However S is the unique nontrivial subalgebra of A, therefore we have

a contradiction. This completes the proof of the claim. O

By Claim 5.2.2.2, we have that B(s,1,...,2,) = B(s,71,...,2,) N S" L, for all s € S.
Applying Claim 5.2.2.2 to the subuniverses of A" that are obtained from B by permuting coordinates
we get that for any s € S, B(1,..., 21,8, Tjt1s- -, Tn) = B(T1, ..o, Tj_1, 8, Tjr1s- -, Tp) NS,
for all j € m. Thus, for any element @ € B, either w € S™, or w € (A\ S)""!. Hence B =
(BNS™M)U(BN(A\S)"). We want to determine BN (A\ S)".

By assumption, B # B N S™, therefore BN (A\S) #0. Let w € BN (A\ S)". Then for all
1<i<j<n, (u,u;) €Epr,; BC S2U(A\S)?, where u;,uj € A\ S. Furthermore, we showed that
52 C pr; B|s C pr; ; B. Therefore, by Theorem 3.1.5, it follows that # is a congruence on A and
pr; ; B is an automorphism of A /6 that fixes S. In particular, for all i € m\ {1}, pry ; B = m;, where
7; is an automorphism of A/ that fixes S. Thus BN (A\S)" C {(x,m(x),...,m(z)) : s € A\ S}.

We claim that BN(A\S)" = {(z, m2(x),...,m(x)) : s € A\S}. Let (a1, m2(ar),...,m(a1)) €
{(#,m2(x),...,m(x)) : s € A\ S}. We showed that S* C pr;, B. Therefore SU{u1} C pr; B,
u; € A\ S, which means pry B = A. Then a; € A\ S C pr; B, which means there exists some
ag,...,an € A\ S such that (a1,az,...,a,) € B. For each 2 <i < n, (a1,a;) € (pry; B)las =
il a\s, thus a; = m;(a1). Therefore B > (a1, az,...,a,) = (a1,m2(a1), - .., ma(a1)).

We have shown that 0 is a congruence on A and B = (BN S™) U {(z,m2(x),...,m(x)) : s €
A\ S}, where 7; is an automorphism of A/f that fixes S, 2 < i < n. This completes the proof of

the theorem. O

Combining Definition 5.0.9 with Theorem 5.2.2 we get two characterizations of the h.d.-
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automorphisms of the algebras A that satisfy the assumptions of the theorem.

Corollary 5.2.3. Suppose that A satisfies Assumption 1, S is affine, and there is no (thick)
(A, S)-cross among the subuniverses of A%2. Let n > 3. The following conditions on B < A" are

equivalent:

(a) B is an h.d.-automorphism of A,
(b) B|s is an h.d.-automorphism of S and B £ BN S™,

(¢) Bls is an h.d.-automorphism of S and B = (BNS™)Uo, where 0 = {(x, ma(x),...,m(2)) :

x € A\ S} and m; is an automorphism of A/O that fizes S, for all 2 <i < n.

Proposition 5.2.4. Suppose that B < S™ for some n > 3 and there exists a tuple (a1,...,a,) € B

such that B(ai, ..., Q;i—1,Ti, Qig1, ..., An_1,Ty) is an automorphism of S for all1 <i <n—1. Then
(i) S is not quasiprimal, and
(ii) if S is affine, then B is an h.d.-automorphism of S.

Proof. The subuniverses of S” that are defined by B(ay,...,ai—1,%i, QGit1,...,0n_1,Ty), where 1 <
i < n—1, will be useful in proving this proposition. Therefore we will denote the i** such subuniverse
by B; = Bl(ai,...,a;-1,%i, Gj+1,---,0n-1,Tn). Then by the assumptions of this proposition, we
have that B; = o; for some o; € Aut(S). Notice that B; C pr;,, B for all 1 < i < n. Also,
B; = o; € Aut(S) implies B # S™.

[(1)] We will show that no unary projection of B is a singleton and no binary projection of
B is a bijection. Since B < S"™ and B # S", this will imply, by Proposition 2.4.5 that S is not
quasiprimal.

Let i € n — 1. Then B; = 0; € Aut(S) implies pr; B; = S = pr,, B;. Therefore S = pr; B; C
pr; B and S = pr, B; C pr,, B. Since i € n — 1, this means that no unary projection of B is a
singleton.

We will now show that no binary projection pr; ; B of B is a bijection. We must consider

twocases: 1<i<j<n—landl1<i<n-—1,j5=n.
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Suppose that 1 < 7 < 7 < n — 1. Recall that n > 3. We will suppose, WLOG, that
i = 1and j = 2. Then By = o9 € Aut(S) implies (s,02(s)) € By for all s € S. Thus,
(a1,s,a3,...,an-1,02(s)) € B for each s € S, which means {a1} x S C pry, B, so prj, B is
not a bijection.

Now suppose, WLOG, that i = 1 and j = n. Then By = 02 € Aut(S) implies (s, 02(s)) € B
for all s € S, therefore (a1,s,as3,...,a,-1,02(s)) € B. Thus, {a1} x S C pry ,, B. Hence pry,, B is
not a bijection.

We have shown that B is a subuniverse of S™ such that no unary projection of B is a singleton,
no binary projection of B is a bijection, and B # S™. Therefore, by Proposition 2.4.5, S is not
quasiprimal.

[(ii)] Suppose that S is affine. Since S is a finite idempotent strictly simple algebra and

B < §", it follows from Proposition 2.4.6 that, up to permutation of coordinates,

t t
B = {(xl, ooy Xt Zc(t'i'l,i)xi + 5,5.,.1, RN Z C(n,i)Ti + 5n) e S": T1,...,%¢ € S},
i=1 i=1
for some d¢41,...,0, € S and 414y, - -5 Cnyg) € K, 1 < i <'s, where kS is the associated vector

space.
We saw that B # S", therefore t # n. We claim that ¢ = n — 1. Suppose not. Then

1 <t <n— 2. This means that

On—1= Bn1

= B(alv sy Aty >an—27xn—laxn)

t

t
= prn—l,n ({(a17 ey Gy Z C(t+1,i)ai + 5t+17 o 72 c(n,i)ai + 571)})
i=1

i=1
t t
= {(Z Cln—1,i)i + On—1, Z C(n,i)@i + 0n)},
i=1 i=1

which is a contradiction. Therefore,

n—1

B = {(3517-”,1:71—17201'1'2'"’_6) S Sn:.’L’l,...,%n_l € S},
=1
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forsome § € Sand ¢; € K,1<i<s.
We claim that ¢; # 0 for all 1 <4 < mn — 1. Suppose, for contradiction, that ¢; = 0 for some

1<i<n—1. WLOG, suppose that ¢; = 0. Then

o1 = B
= B(l‘l, as, ... ,an71,$n)
n—1
= pr17n<{(.%'1,a2, v, Qp—1,C121 + Z c;a; + (5) 1 x1 € S})
i=2
n—1
=S x{)_mia; + 6},
i=2
where the last equality holds since ¢; = 0. This is a contradiction, therefore, ¢; # 0 for all

1< <n—1.

This means that no projection pr; B of B where I C 7 is an h.d.-automorphism of S, therefore
B satisfies property (ii) of Definition 5.0.9. We will now show that B satisfies property (i) of
Definition 5.0.9.

For each (z1,...,2p—1) € pr;;—7 B it is clear that z,, = Z?:_ll ¢iz;+0 € pr,, B is the unique ele-
ment such that (z1,...,2,—1,7,) € B. Let i € n — 1. Recall that ¢; is in the field K and we showed
that ¢; # 0, therefore ci_1 € K. Then for any (z1,...,Zi—1,Zit1,...,2Tn) € pryp\ (i} B we have that
T = ci_l(xn —0— Zjeﬁ\{i} c;ja;) is the unique element such that (z1,...,%i—1, %, Tiy1,...,2Tn) €
B. Therefore, B satisfies property (ii) of Definition 5.0.9, hence, B is an h.d.-automorphism of S.

O]

5.3 Compatible Subuniverses that Indicate a Ternary Edge Blocker

The goal of this section is to show that, under Assumption 1, if a subdirect subuniverse B of
S x A X S contains a triple (a1, ag,as) such that the tuples (z1,x2,x3) € B with z9 = ag yield an
automorphism of S, while those with x; = a; a (thick) (A, S)-cross, then one of the ternary edge
blockers A or K (b € A\ S) introduced in Definition 4.2.1 is among the subuniverses of A3. This

fact will be useful in proving subsequent statements.
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Theorem 5.3.1. Suppose S is quasiprimal and let B < S x A X S. Suppose that there exists some
(a1,a2,a3) € B such that B(x1,a2,x3) = o, for some o € Aut(S). Then the following implications

hold.
(i) If B(a1,22,23) = Kpas, for some b€ A\ S, then K < A3.
(ii) If B(a1,72,73) = Agas, then A < A3,

Proof. To prove this Theorem, we will show that for each s € S, the subuniverse B(z1, x2, s) of A2

can be described as follows:

—1 .
ﬁb,o_l(s)’ lf B(a17 .’1}'27 x3) = K‘b,agu

B(z1,x2,s) = (5.2)

A=l

570—1(5)7 lf B(CLl, 1.27 $3) = )\S,ag’

Therefore, if B(a1,x2,x3) = Kb g4, then B(z1,22,5) = "ib_;—l(s) = ({o71(s)} x A)U (S x {b}) and

B = (Bora,5) x {s})

seS

= J (o7 (5)} x Ax {s}) U (S x {b} x {s}))

ses

= (JUo™ ()} x A x {s})) U (S x {b} x 5)
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While, if B(ay,z2,23) = Ag,q4, then B(z1,x2,) = Aot

So-1(s) = ({o71(s)} x A)U S? and

B = J(Blay,a2,5)  {s})

SES

= Uo7} x Ax {s) U (8? x {s)

seS

= (o ()} x Ax {s})) U s®

ses
= {(c™Yx),y,2) ;2 € S,yc AJUS>
= {(z,y,0(zx)):x€ S,y c AyUS®

=A,.

Therefore Lemmas 4.2.3 and 4.2.2 imply that K, < A% or A < A3, respectively.

To show (5.2), we will first consider the binary projections pry 3 B and pry 3 B.

Claim 5.3.1.1. pry 3 B = S2.

Proof of claim. The assumption that B < S x A x S implies pr; 3 B < S?. We will show that
({a1} x S) U C pr; 3 B, therefore, by Theorem 3.1.5, pr; 3 B = 5%

Since B(a1,x2,x3) is a (thick) (A, S)-cross, we get that pry B(ai,z2,x3) = S. Then, for each
s € S there exists some a5 € A such that (as,s) € B(ay,xo,x3), therefore (a1,as,s) € B, which
means {a1} X S C pry 3 B. Furthermore, pr; 3 B 2 B(w1,a2,73) = o for some o € Aut(S). Thus,

({a1} x S)U o C pry 3 B, which, as previously noted, completes the proof of the claim. O
Claim 5.3.1.2. pry3 B=AX §S.

Proof of claim. The assumption that B < S X A X S implies pry3 B < A x S. We will show
that {as} x S C pry3 B and, under the assumption of each statement (i)-(ii) of the theorem,
there exists some u € A\ {ag} such that {u,a2} N A\ S # 0 and {u} x S C pry3B. Then
({az2} x S)U ({u} x S) C pro3 B, az # uw and {u,az} N A\ S # () implies, by Lemma 3.1.9, that

A X S C pry 3 B, hence we have equality.
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Since B(z1,a2,23) = o we get, for all s € S, that (¢7'(s),s) € B(x1,a2,23). Then
(07%(s), a2, s) € B, for each s € S, implies {az} x S C pry3 B.

Clearly, B(a1,z2,73) C pro 3 B. We are assuming that B(a1,z2,73) is a (thick) (4, 5)-cross,
therefore there exists some u € A such that {u} x S C B(ai,72,23) C pry3 B.

We claim that u # a2 and {u,as} N A\ S # 0. First note that {a2} x S € B(a1,x2,23),
otherwise we would have that {a1} x {a2} x S C B which implies {a;} x S C B(x1,a9,23) =0, a
contradiction. Then {u} x S C B(ay,z2,x3) implies u # ap. Furthermore, if B(a1, z2,23) = A5 a4,
then {as} x S € B(ay,x2,x3) implies ax € A\ S. While if B(a1,z2,23) = Kpq4, then {u} x S C
B(ai,z2,x3) implies u = b, where b € A\ S. Hence, in both cases we get that {u,as} N A\ S # 0.

We have shown that ({az2} x S) U ({u} x S) C pry3 B, with az # u and either u € A\ S or

az € A\ S, which completes the proof of this claim. O

We will now show that (5.2) holds. Let s be an arbitrary element of S and consider the
subuniverse B(r1,x2,5) C pryjo B < S x A. By Claims 5.3.1.1 and 5.3.1.2, we have that S x {s} C
52 =pry 3 Band Ax{s} C AxS = pry3 B, therefore B(x1,x2,5) <. Sx A. From Theorem 3.1.5,

we get that B(x1,x2,s) is one of the following,
S x A,

an isomorphism S — A/6,
B(xy,x9,s) =

an (S, A)-cross, or

|2 thick (S, A)-cross.

First note that B(z1,x2,s) # S x A. Otherwise, we get that S x {a2} C Sx A = B(x1,x2,s),
which implies S x {a2} x {s} C B and thus, S x {s} C B(z1, a2, x3) = 0, a contradiction. Further-
more, since B(ay, T2, T3) = kpay < A% or B(ay,z2,23) = Mgy < A2, then our assumption that S is
quasiprimal and statements (vi) and (vii) of Corollary 3.2.5, respectively, imply that B(z1, z2,s) !
is not an isomorphism from A /6 to S. Therefore it must be that B(z1, 22, s) is a (thick) (S, A)-cross.

Now we will consider the two cases treated in statements (i)—(ii) of the theorem separately.

Suppose first that B(a1,x2,23) = kpay < A? for some b € A\ S. Since S is quasiprimal it
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follows from statements (ii) and (iv) of Corollary 3.2.5 that B(z1,22,s)™! = Ky, for some v € S,
thus B(z1,z2,8) = /1;3. Next, suppose that B(ai,z2,23) = Agq,. Since S is quasiprimal we
can infer from statement (ii) of Corollary 3.2.5 that B(zy1,z2,s)"! = Ag,, for some v € S, thus
B(xy1,z2,s) = )\gi

We claim that, in either case, v = 0~ 1(s). Since B(w1, a2, r3) = o, we have that (c7!(s), s) €
B(w1,a2,73) and S x {s} € B(x1,as,3). Therefore, (6071(s),as,5) € B and S x {az} x {s} B,
which means (071(s),a2) € B(z1,72,5) and S x {as} € B(x1,22,s). Thus, B(x1,z2,5) = “bj or
)\gi implies v = o~ 1(s),

Since s € S was arbitrary, we have shown the following. If B(a,z2,23) = Kp 44, then for each
s €8, B(z1,22,8) = m;;,l(s). On the other hand, if B(ay,z2,23) = Agq,, then for each s € S,

B(zy,x9,8) = AL

So-1(s)- Therefore, as we saw at the start of the proof, this completes the proof of
o1 (s)

the Theorem. O

Corollary 5.3.2. Suppose that A satisfies Assumption 1, S is quasiprimal, and 0 is a congruence
on A. Suppose B < SxAXS and let B' = p(B) be the image of B under the natural homomorphism
p:SXxAXS—SxA/0xS. Suppose that there exists a tuple (a1,a2/0,a3) € B', where, for some
b€ A/0 and some o € Aut(S), B'(a1,x2,73) = 4, AN B'(z1,a2/0,23) = 0. Then either A < A3

or Kp < A3 andB;é?.

Proof. Under the assumptions of the corollary, let D be the full inverse image of B’ under p. Then

D is a subuniverse of S X A x S, (a1,a2,a3) € D, D(z1,a2,z3) = 0 € Aut(S), and

NSz, if b =S,
D(ay,z2,x3) =

Kbp,as, Otherwise.

Then D satisfies the assumptions of Theorem 5.3.1, therefore the assertions of the corollary follows.

O

5.4 Reduced Subuniverses Are #-Closed in their A-coordinates

In this section we will consider algebras A which satisfy the following assumption.
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Assumption 2. A is a finite idempotent algebra with a unique proper nontrivial subalgebra S such
that |S| > 2, |[A\ S| > 1 (that is, A satisfies Assumption 1), and one of the following conditions

holds for S:
(A) S is affine and As s, kps £ A? for any s € S, be A\ S;

(Q) S is quasiprimal, the reduced subuniverses of A% are 0-closed in their A-coordinates, and

A Ky £ A3 for anybe A\ S.

The purpose of this section is to accomplish the second step of our strategy for finding a
generating set for the relational clone of such an algebra A. This will be done by proving the

following theorem.

Theorem 5.4.1. If A satisfies Assumption 2, then the reduced subuniverses of all finite powers of

A are 0-closed in their A-coordinates.

Proof. Suppose that A satisfies Assumption 2. By Proposition 2.2.8, the conclusion of the theorem
will follow if we show that every reduced subuniverse of a finite power of A is #-closed in each
A-coordinate. Therefore we will assume that there exists a reduced subuniverse of a finite power of
A that is not 6-closed in some A-coordinate and show that this assumption induces a contradiction.

Let n be minimal such that there exists a reduced subuniverse, B, of A", such that pr; B = A
for some 1 < i < n and B is not 6-closed in its i coordinate. We must have n > 2, because if
n =1 and B is reduced, then B =5 or B = A, so B is #-closed in its A-coordinates. In fact, we
must have n > 3. If S is quasiprimal, this is clear, since Assumption 2 (Q) forces that all reduced
subuniverses of A? are f-closed in their A-coordinates. Now suppose that S is affine. Then vy £ A2
for all s € S, and therefore statements (vi) and (vii) of Proposition 3.2.1 imply that us £ A% and
vT £ A? hold for all s € S and all fixed-point free permutations 7 of A\ S. Assumption 2 (A),
combined with statement (ix) of Proposition 3.2.1 shows that x;s s £ A? and yss £ A? hold for all
s € S. Therefore, by inspecting the possible subuniverses of A2 listed in Theorem 3.1.5 we conclude

that all reduced subuniverses of A2 are f-closed in their A-coordinates.
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Thus n > 3. By permuting coordinates if necessary, we may assume that ¢ = n, so B is a
reduced subuniverse of A" such that pr,, B = A and B is not 6-closed in its last coordinate. Hence,
there exists some @ € B that satisfies a,, € S, and {a1} x -+ x {ap_1} x S € B. We will contradict

the assumption that such a subuniverse B exists by showing that the following three lemmas hold.

Lemma 5.4.2. Suppose that A satisfies Assumption 2, n > 3, and the reduced subuniverses of
A1 are O-closed in their A-coordinates. Let B be a reduced subuniverse of A", pr, B = A, and
a € B where a, € S and {a1} X -+ X {an—1} x S € B. Then one of the following cases holds.

FEither,
(') there exists 1 < j <n —1 such that

B B . _ 2 .
e Bj is an isomorphism A/§ — S, pr;, B= A% and B(x1,...,%j-1,05,Tjq1,...,Tp) 1S

an h.d.-automorphism of A, and

o foralll <1 <n-—1,14+# j, B; is an automorphism of S or A, pr; , B # A2, and

B(x1,. .., Ti—1,Qi, Tit1,---,Ty) is reduced,
or
(IT) for all1 <i <n—1, B = As.a,, Pty n B = Xs,5, and B(x1,...,Ti—1,0;,Tiy1,...,Ty) 18
reduced.

Lemma 5.4.3. Under the assumptions of Lemma 5.4.2, case (I') of Lemma 5.4.2 cannot occur.
Lemma 5.4.4. Under the assumptions of Lemma 5.4.2, case (I1I') of Lemma 5.4.2 cannot occur.

The proof of these lemmas will be postponed. We begin with a sequence of claims.

The subuniverses of A? that are defined by B(a1,...,a;_1,Ti, Git1, .- ,0n_1,Tn), i €0 — 1,
will play an important role in the proof of this theorem. Therefore, for i € n — 1, we will denote
the it" such subuniverse by B; := B(a1,...,a;_1, %, Gis1,...,0n_1,2y). The following claim states

important properties of B;, for all : € n — 1.
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Claim 5.4.4.1. Under the assumptions of Lemma 5.4.2, B; satisfies the following properties for

allien—1,
(1) (as,an) € B;, where a, € S and {a;} x S € B;,
(2) S Cpr,Bi and {a;} x S Cpr;,, B,
(3) S Cpr; By,
an automorphism of A,
an automorphism of S,
(4) Bi=q an isomorphism A/0 — 'S, given that § € Con(A),
Kb,an

AS,ay -

Proof of claim. WLOG, we will prove that properties (1) — (4) hold for By = B(x1,a2,...,an-1,%y).

[(1)] This property clearly follows from the assumption that (ay,...,a,) € B, a, € S and
{a1} x -+ x{ap, -1} x S Z B.

[(2)] Since B is reduced we get, from Lemma 5.1.4, that the projection, pry 11y B, is a reduced
subuniverse of A"~1. Furthermore, pr,(pra 1y B) = pr,, B = A. Therefore, by the minimality of
n, Pryp\(1y B is O-closed in its last coordinate. Thus (aq,...,a,) € Pra (13 B, where a, € S, implies
{ag}.. {an-1} xS C pr (13 B, which means S Cpr, B(z1,a2,...,a-1,Ty) = pr,, By.

A similar proof shows that S C pr, By = pr,, B(ai,x2,as,...,a,-1,%,). Therefore, for all
s € S, there exists some ¢; € A such that (cs,s) € Bz, which means (a1, cs,as,...,an-1,8) € B.
Then (a1,s) € pry, B, for all s € S. Therefore {a1} x S C pry,, B.

[(3)] Recall that |S| > 2 and a,, € S, therefore there exists an element s € S\ {a,}. From
property (2), S C pr, By implies that there exists some ¢; € A such that (cs,s) € By. We claim
that ¢s # ap, otherwise if ¢5 = aq, then (a1,ay), (a1,8) = (¢s,8) € By and a, # s implies, by
Lemma 3.1.7, that {a;} x S C By, which contradicts property (1). Therefore a; and ¢, are distinct

elements in pr; By. Thus pr; B; is a nontrivial subuniverse of A, which means S C pr; Bj.
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[(4)] By properties (2) and (3) the unary projections of B; are nontrivial. Thus if By is
not reduced then it must be an automorphism of A or S. Suppose that B; is reduced. Since the
reduced subuniverses of A? are f-closed in their A-coordinates and property (1) implies that By
is not f-closed in its last coordinate, it must be that pr, By = S. Property (1) also implies that
By #8585 x 8 and By # A x S. By Assumption 2, S is quasiprimal or affine, therefore there is
no (S, S)-cross among the subuniverses of A?. Hence, by Theorem 3.1.5, if Bj is reduced, then
By is either an isomorphism from A/6 to S, an (A, S)-cross, or a thick (A, S)-cross. This proves

property (4) and completes the proof of the claim. O

Property (4) of Claim 5.4.4.1 narrows the possibilities for each subuniverse B;. We will now
show that, in fact, there are only three possible cases that all of the subuniverses B;, 1 <i<n—1,

may simultaneously satisfy. This is the first step in showing that Lemma 5.4.2 holds.

Claim 5.4.4.2. Under the assumptions of Lemma 5.4.2, one of the following cases holds. FEither
(I) foralll <i<n-—1,

an automorphism of S,

Bi=q an automorphism of A,

an isomorphism A/0 — S,

and there exists some j € n — 1 such that Bj is an isomorphism A/ — 'S, or
(II) B; = Asa,, foralll1 <i<n-—1, or
(IIT) there exists some b € A\ S such that B; = Ky, , for all1 <i<mn—1.

Proof of claim. From property (4) of Claim 5.4.4.1 we know that, for each i € n — 1, the subuniverse
B is either an automorphism of S, an automorphism of A, an isomorphism from A/§ — S, an
(A, S)-cross, or a thick (A, S)-cross.

First suppose that no subuniverse B; is an automorphism of S, an automorphism of A, or an

isomorphism from A/6 — S. Then by property (4) of Claim 5.4.4.1, each B; is either an (A, S)-cross
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or a thick (A, S)-cross. By property (ii) of Corollary 3.2.5, either B; is a thick (A, S)-cross, for all
1<i<n-—1,or B;isan (A,95)-cross, for all 1 <i <n —1. If B; is a thick (A, S)-cross, for all
1 <i<mn-—1, then for each i € n — 1, there exists some s; € S such that B; = As.s;- In this case
let G = S. Otherwise B; is an (A, S)-cross, for all 1 <i <n — 1, and by statements (i) and (iv) of
Corollary 3.2.5 we get that there exists b € A\ S such that, for each i € n — 1, there exists some
s; € S such that B; = kp,. In this case let G = {b}. Then, in either case, G xS C B; which means,
by property (1) of Claim 5.4.4.1, that a; ¢ G, 1 < i < n — 1. Thus, (a;,a,) € B; € {As,s;,Kbs, }
and a; ¢ G implies s; = a, for all 1 < ¢ < n — 1, therefore (II) or (III) holds. It remains to show
that, in all other cases, (I) holds.

Suppose that there exists some j € n — 1 such that B, is either an automorphism of S, or an
automorphism of A, or an isomorphism from A/6 — S. We will complete the proof of the claim by

first showing some subclaims.

Subclaim 5.4.4.2.1. There exists no {i,j} Cn —1, i # j, such that B; is an automorphism of S

or an automorphism of A and Bj is a (thick) (A, S)-cross.

Proof of subclaim. Suppose, for contradiction, that {i,7} € n —1, i # j, such that B; is an au-
tomorphism of S or an automorphism of A and Bj is a (thick) (A, S)-cross. The later implies,
by Assumption 2, that S is quasiprimal. We will assume, WLOG, that ¢ = 1, j = 2. Then
B(xy,22,a3,...,0,_1,T,) is a subuniverse of A3 and thus B(z1,22,a3,...,0, 1,2,) N (S x A x
S) < SxAxS. Let C := B(xi,x2,a3,...,0,-1,2,) N (S x A x S). Then C(x1,a92,z,) =
B(xy,az,a3,...,a4,_1,2,) N (S x S) = By N 52, therefore C(x1,az,x,) is an automorphism of S.
Now (ay,a,) € C(x1,a2,z,) and a, € S imply that a; € S. A similar argument shows that
C(a1,x2,23) = BoN (A x S). Since By is a (thick) (A, S)-cross, it follows that C(x1, a2, x3) = B
is a (thick) (A, S)-cross. Therefore, we have shown that C' < S x A x S and there exists a tuple
(a1,a2,a,) € C such that C(x1,a9,z,) is an automorphism of S and C(ay,z2,x,) is a (thick)
(A, S)-cross. Recall that S is quasiprimal. Then applying Theorem 5.3.1 to C and the tuple

(a1, a2, a,) gives that either A or K is a subuniverse of A® for some b € A\ S, which contradicts
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Assumption 2 (Q). This completes the proof of the subclaim. O

Subclaim 5.4.4.2.2. There exists no {i,j} Cn—1, i # j, such that B; is an isomorphism from

A/0 to S and Bj is either an (A, S)-cross or a thick (A, S)-cross.

Proof of subclaim. Suppose that B; is an isomorphism from A/ to S, for some i € n—1. We
are assuming that S is either quasiprimal or affine, thus it follows from properties (vi) and (vii)
of Corollary 3.2.5, respectively, that there is no (A, S)-cross and no thick (A4, S)-cross among the

subuniverses of A2. The subclaim follows. O

Subclaim 5.4.4.2.3. There exists some 1 < i < n — 1, such that B; is neither an automorphism

of S nor an automorphism of A.

Proof of subclaim. Suppose, for contradiction, that B; is an automorphism of S or an automorphism
of A for all 1 <i < mn —1. Then B; N S? € Aut(S), for all 1 < i < n — 1. By property (1) of
Claim 5.4.4.1, we have that (a;,a,) € B; and a, € S, therefore a; € S, for all 1 < i < n, which
means (ai,...,a,) € BNS™.

Let B = BN S™ Then B is a subuniverse of S" that satisfies (ai,...,a,) € B and
B(al, e Qi1 Ty g1y - - 5 Ap—1,Ty) is an automorphism of S, for all 1 < i < n — 1. Recall that
n > 3 and S is either quasiprimal or affine. Under these assumptions on B we get that B satisfies
the assumptions of Proposition 5.2.4, therefore it follows from applying statements (i) and (ii) of
Proposition 5.2.4 that S must be affine and that B = B N S™ is an h.d.-automorphism of S. Since
pr, B = A, we have that B £ BN S", therefore it follows from Corollary 5.2.3 that B is an h.d.-

automorphism of A. This contradicts our assumption that B is reduced and completes the proof

of the subclaim. ]

To sum up, recall that we are considering the case when there exists some 1 < j < n—1 such
that Bj is either an automorphism of S, or an automorphism of A, or an isomorphism from A/6 — S.
Thus we get from Subclaims 5.4.4.2.1 and 5.4.4.2.2, that, in fact, for every 1 < i < n—1, B; is either

an automorphism of S, an automorphism of A, or an isomorphism from A/0 — S. Furthermore, by
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Subclaim 5.4.4.2.3, there exists some 1 < j < n — 1 such that B; is an isomorphism from A/O —S.
Therefore (I) holds.

This completes the proof of Claim 5.4.4.2. O

We must show three more claims before proving Lemma 5.4.2.

Claim 5.4.4.3. Under the assumptions of Lemma 5.4.2, the following implications hold.

(i) If case (1) of Claim 5.4.4.2 holds and B; is an isomorphism A/6 — S, for some i € n — 1,

then pr; ,, B = A2,

XS,8

(ii) If case (II) of Claim 5.4.4.2 holds, then, for anyi € n—1, pr; , B =
A2

(ili) If case (III) of Claim 5.4.4.2 holds, then, for any i€ n—1, pr;, B = A%

Proof of claim. Since B is reduced and pr, B = A, the binary projection pr;, B is a reduced
subuniverse of A? that contains some tuple (w;, wy), where w, € A\ S. Since pr,(pr;, B) =
pr, B = A, it follows from the minimality of n and n > 3 that pr;,, B is f-closed in its second
coordinate.

Suppose that B satisfies the assumptions of (i), (ii), or (iii). Then B; C pr;, B, where
B is either an isomorphism A/f — S, a thick (A, S)-cross, or an (A4, S)-cross. We showed that
pr; , B is f-closed in its second coordinate, therefore, in all cases we get that A x S C pr; , B.
Thus (A x S) U {(ws,wn)} C pr;,, B, where w, € A\ S, which implies, in particular, that both
coordinates of pr;,, B are A-coordinates. Hence we get from Theorem 3.1.5 that pr; ,, B = A? or
X8S,S-

It is clear that if case (II) of Claim 5.4.4.2 holds, then implication (ii) holds.

If case (III) of Claim 5.4.4.2 holds, then kp 4, < A? for some b € A\ S. By property (iii) of
Corollary 3.2.5, xs.s % A2, therefore implication (iii) holds.

Finally, if case (I) of Claim 5.4.4.2 holds and B; is an isomorphism A/f# — S, then our

assumption that S is either quasiprimal or affine and statement (v) of Corollary 3.2.5 imply that
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Xs,s A?. Hence implication (i) holds. This completes the proof of the claim. O

Claim 5.4.4.4. Under the assumptions of Lemma 5.4.2, if n = 3, then case (1) of Claim 5.4.4.2

does not hold.

Proof of claim. Suppose, for contradiction, that n = 3 and case (I) of Claim 5.4.4.2 holds. WLOG,
suppose that By = B(z1, a2, x3) is an isomorphism from A/6 to S.

By Claim 5.4.4.3 we have that pr; 3 B = A%. Let a € A. Then {a} x A C A*> = pr; 3B
implies that for each ¢ € A there exists some ¢ € A such that (a,d,¢) € B. Therefore, B(a, 2, x3)
is a subuniverse of A% and pry B(a, 2, 23) = A.

Since By = B(z1,a2,x3) is an isomorphism from A/f to S, we get that for each a € A
there exists some as; € S such that (a,as) € B(z1,a2,22) and {a} x S ¢ B(z1,a2,x2). Thus
(a,a2,as) € B, where ag € S and {a} x {a2} x S € B.

Under the assumptions of Claim 5.4.4.4 we have that the assumptions of Lemma 5.4.2 hold.
Then replacing the tuple (a1, a2, as) with the tuple (a,a2,as) € B, we get that B and the tuple
(a,a2,as) € B satisfy the assumptions of Claim 5.4.4.1. Therefore when we apply Claim 5.4.4.1
to the tuple (a,a9,as) in place of (a1,a2,as3), we get from property (4) of Claim 5.4.4.1 that
B(a, 2, x3) is either an automorphism of S, an automorphism of A, an isomorphism from A/ to
S, or a (thick) (A, S)-cross. Since we have that prs B(a,z2,2z3) = A, it must be that B(a, z2,x3)
is an automorphism of A. The element a was an arbitrary element in A, thus, for all a € A,
B(a, z9,23) = 04, where o, is an automorphism of A. This implies that pry 3 B C S2U(A\S)? and
both coordinates of pry 3 B are A-coordinates. Since B is reduced, we know from Proposition 5.1.4
that pry g B is reduced, therefore it follows from Theorem 3.1.5 that pry 4 B is an automorphism
of A/ that fixes S. Let prog B = 0. Since 0, = B(a,r2,23) C progB = o for all a € A,
we get that o4]4\g = 0]a\g- Thus, by Lemma 3.0.6, 0, = o4, for all distinct a,a’ € A, which
means B(a,z9,x3) = 04, = B(d',22,23). Therefore, B = {(y,z,04(x)) : y,x € A}, which implies

pro3 B = 0, € Aut(A), a contradiction to the fact that the binary projections of B are reduced. [

We have one more claim to show before proving Lemma 5.4.2.
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Claim 5.4.4.5. Under the assumptions of Lemma 5.4.2, for all 1 < i < n — 1, the subuniverse

B(x1, ..., Zi 1,05, Tit1,...,Tn) < A" is either reduced or it is an h.d.-automorphism of S or A.
Proof of claim. WLOG, we will prove the claim for the subuniverse B(a1, 2, ..., x,) < A""L.
Subclaim 5.4.4.5.1. No unary projection of B(ay,xa,...,x,) is a singleton.

Proof of subclaim. Let i be arbitrary, 2 < i < mn — 1. Then the unary projection
pr; B(a1, w2,...,2,) 2 pr; B(ai, a2, ...,ai-1,%,Giy1, ..., 0n-1,Tpn) = Pr; B;.

Property (3) of Claim 5.4.4.1 implies that S C pr; B;, therefore S C pr; B; C pr; B(ai, x2,...,ZTp).
Furthermore, pr,, B(a1, z2,...,2,) 2 pr,, B(a1,x9,as,...,ay,-1,%,) = pr,, Be and from property (2)
of Claim 5.4.4.1 we have that S C pr,, B, thus S C pr,, Bs C pr,, B(a1,z2,...,zy,). Hence no unary

projection of B(ay,xo,...,x,) is a singleton. ]
Subclaim 5.4.4.5.2. If n = 3, then B(ay,x2,x3) is not an automorphism of S or A.

Proof of subclaim. Suppose, for contradiction, that B(aj,x2,x3) is an automorphism of S or an
automorphism of A. Then cases (II) and (III) of Claim 5.4.4.2 cannot hold for B, therefore it
must be that case (I) of Claim 5.4.4.2 holds, which contradicts Claim 5.4.4.4. This proves the

subclaim. O

Subclaim 5.4.4.5.3. Ifn > 4, then for 2 < m < n—2, no m-ary projection of B(a1,xa,...,T,) is
an automorphism of S, an automorphism of A, an h.d.-automorphism of S or an h.d.-automorphism

of A.

Proof of subclaim. Let n > 4 and 2 < m < n—2. Suppose, for contradiction, that there exists some
I C 7\ {1}, where [I| = m, such that the projection pr; B(ai,x2, ..., x,) is either an automorphism
of S, an automorphism of A, an h.d.-automorphism of S or an h.d.-automorphism of A. There are
two cases to be considered: the case when n ¢ I and the case when n € I.

First suppose that n ¢ I. WLOG, permute the coordinates of B so that I = {2,...,m+ 1}.

Recall that automorphisms and h.d.-automorphisms share the property that if one fixes all but one
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of the coordinates of a tuple from the relation, then there is exactly one element that can satisfy
the remaining coordinate. Since @ € B implies (ag, ..., Gm,am+1) = ay € pry B(ay, x2,...,z,) and
pr; B(ai, xa, ..., x,) is either an automorphism of S, an automorphism of A, an h.d.-automorphism
of S or an h.d.-automorphism of A, it follows that

Pry1 Blar,az, ... Gmy Tmgt, T2, - -, Tn) = {Gme1 }-
However, by property (3) of Claim 5.4.4.1, we have that
S C Prim+41 By = Plym+1 B(alv az...,0m;Tm+1, Am+2; - - -, An—1, l‘n)
Cpr,p1 Blar,ag, .. Gy T 1, Tmg2s - - T, Tn) = {@mt1},

which is a contradiction.

Suppose that n € I. WLOG, permute the coordinates of B so that I = {2,...,m — 1,n}.

Then @ € B implies (ag,...,am-1,a,) = ay € pry B(ai,x2,...,x,). Therefore, by our assumptions
on pr; B(ay,xa,...,x,), we get that
pry, B(CLl,CLQ, <oy Om—1, Tms Tm+41; - - - ,ﬂfn) = {an}

However, by property (2) of Claim 5.4.4.1, we have that

S Cpr, Bm = pr, B(ai,az ..., @m—1,Tm, Gm+1; - - Gn-1, Tn)
- pry, B(alv a2, ..., m—1,Tm, LTm+1;- - - 7xn717xn) = {an}7
therefore we have a contradiction. The proof of the subclaim is complete. O

We have shown in Subclaims 5.4.4.5.1 and 5.4.4.5.3 that, for 1 < m < n — 2, no m-ary
projection of B(aj,x2,...,2,) is a singleton, an automorphism of S, an automorphism of A, an
h.d.-automorphism of S, or an h.d.-automorphism of A. Furthermore, we have shown in Sub-
claim 5.4.4.5.2 that for n = 3, B(ay,x2,x3) itself is not an automorphism of S or A. Additionally,
since B(a1,z2,23) < A, it is clear from Definition 5.0.9 that B(ai,z2,73) < A2 cannot be an
h.d.-automorphism of S or A. Therefore it follows from Definition 5.1.1 that B(a1,x2,...,2zy) is

either reduced or it is an h.d.-automorphism of S or A. This completes the proof of the claim. [
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We are now ready to prove Lemma 5.4.2.

Proof of Lemma 5.4.2. First we will prove an auxiliary result.

Subclaim 5.4.4.5.4. Leti € n— 1. If B(w1,...,%-1,0;,%iy1,...,T,) s reduced then pr;, B #

A2,

Proof of subclaim. WLOG, we will show that the subclaim for ¢ = 1. Suppose B(aj,z2,...,xy)
is reduced. It follows from our assumptions on B, that (ag,...,a,) € B(ai,za,...,x,), where
an, € S and {ag} x -+ x {ap—1} X S € B(ay,x2,...,x,). Thus B(ay,za,...,x,) is a reduced
subuniverse of A"~! that is not #-closed in its last coordinate. By the minimality of n, we get
that pr, B(a1,22,...,2,) = S. This means, for any ¢ € A\ S there exists no u € A"~ 2 such that

a1,u,c) € B. Hence {a;} x A € pry,, B, which means pr, , B # A2. O
( ) 1n 1,n

Now we start proving Lemma 5.4.2. It follows from Claim 5.4.4.5 that, for each i € n — 1, the
subuniverse B(z1,...,%_1,ai, Tit1, ..., Ty) of A1 is either reduced or it is an h.d.-automorphism
of S or A.

Suppose first that there exists some j € n —1 such that B(z1,...,2j-1,a5,Zj41,.-.,Tn)
is not reduced. Then B(z1,...,%j-1,a5,Zj4+1,...,2y) is an h.d.-automorphism of S or an h.d.-
automorphism of A. Thus, it follows from Definition 5.0.9 that (ai,...,aj-1,aj41,...,a,) €
B(z1,...,2j-1,a5,Zj41,...,%y) implies B; is the graph of a bijection pr; B; — pr, B; for all
i € n—1\{j}. We know from statements (2) and (3) of Claim 5.4.4.1 that S C pr, B; and
S C pr; By, therefore B; is an automorphism of S or an automorphism of A. Hence case (I) of
Claim 5.4.4.2 holds and j is unique with respect to the property that Bj; is an isomorphism from
A/0 to S. Hence j is also unique with respect to the property that B(z1,...,zj-1,a5,Zj41,...,Zpn)
is not reduced. Thus B(w1,...,%i—1,0i, Tit1,---,Ty) is reduced for all i € n — 1\ {j}, which im-
plies by Subclaim 5.4.4.5.4 that pr; ,, B # A? for all such i. For j, the equality pr;, B = A? was

established in Claim 5.4.4.3.
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To see that (I’) holds, it remains to verify that B(x1,...,2j-1,a,Zj41,...,2,) is an h.d.-
automorphism of A (rather than an h.d.-automorphism of S). To simplify notation we will assume
that j = 1. We have that pr;,, B = A?, which means {a;} x A C pr;,, B. Then, for each ¢ € A,
there exists some u € pry _,,_; B such that (a1,%,c) € B. Thus pr, B(a,2,...,z,) = A. Hence
B(ay,zg,...,xy,) is not an h.d.-automorphism of S, it must be an h.d.-automorphism of A. This
shows that if B(z1,...,2j—1,a5,%j41,...,%y) is not reduced for some 1 < j < n—1, then (I’) holds.

Now suppose that B(z1,...,Ti—1,a;, Tit1,...,2,) is reduced, for all 1 <i < n — 1. Then it
follows from Subclaim 5.4.4.5.4 that pr; , B # A% for all 1 <i < n — 1. Reviewing Claim 5.4.4.3,
we see that if pr;,, B # A?, for all 1 <i < n— 1, then only case (II) of Claim 5.4.4.2 can hold with

pr;,, B = Xxs,s, for all 1 <i <n — 1. This shows (II’). O

To finish the proof of this theorem it remains to prove Lemmas 5.4.3 and 5.4.4, that is, we
must show that cases (I’) and (II') of Lemma 5.4.2 each cannot occur. We will first show that

case (I') of Lemma 5.4.2 cannot occur, thus proving Lemma 5.4.3.

Proof of Lemma 5.4.3. Suppose, for contradiction, that case (I') of Lemma 5.4.2 holds. Then
Claim 5.4.4.4 implies that n > 3. WLOG, suppose j = 1 is the unique element of n — 1 such that
the subuniverse Bj is an isomorphism A/# — S. Then, by Lemma 5.4.2, B(a1,xs,...,x,) is an

h.d.-automorphism of A, so S is affine.

Subclaim 5.4.4.5.5. If By is an isomorphism from A/ to S, then for each a € A, there exists

some sq € S such that the tuple (a,az,...,an—1,5,) € B and {a} x {az} x --- x{ap_1} xS < B.

Proof of subclaim. Suppose that Bj is an isomorphism from A/6 to S. Then for all a € A, there
exists some s, € S such that (a,s,) € By and {a} xS € B;. Since By = B(x1, a2, ...,an_1,2y), this

means the tuple (a,as,...,a,-1,8,) € B, where s, € S and {a} x {as} x - - x{apn_1} xS B. O

Subclaim 5.4.4.5.6. If By is an isomorphism from A/ to S, then for each a € A the subuniverse

B(a,x,...,x,) of A"} is an h.d.-automorphism of A.
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Proof of subclaim. Let By an isomorphism from A/ to S and let a € A. From Subclaim 5.4.4.5.5,
there exists a tuple (a,asg,...,an—1,84) € B, where s, € S and {a} x {as} x--- x {ap—1} xS € B.
Under the assumptions of Lemma 5.4.3 we have that the assumptions of Lemma 5.4.2 hold. Then
replacing the tuple (ay,...,a,) with the tuple (a,aq,...,an_1,84) € B, we get that B and the
tuple (a,ag,...,an—1,54) € B satisfy the assumptions of Lemma 5.4.2. Since the assumption that

By is an isomorphism A/6 — S implies, by Lemma 5.4.2, that pry,, B = A% and pr;,, B # A? for

i =2,...,n — 1, therefore when we apply Lemma 5.4.2 to the tuple (a,as2,...,a,_1,5,) in place
of (a1,as9,...,an—1,a,), the only case possible for (a,as,...,an—1,5,) is again case (I') with j = 1.
This shows that B(a,z2,...,z,) is an h.d.-automorphism of A, as claimed. O

It follows from Corollary 5.2.3 that for each a € A,
B(a,x,...,1,) = (B(a,z2,...,2,) N S" ) Uo,

where o, = {(z,74(z),...,7%(z)) : 2 € A\ S} and 7¢ is an automorphism of A /6 that fixes S, for

r0n

all 3 <i<n.

Subclaim 5.4.4.5.7. For all distinct a,a’ € A, 0, = 0.

Proof of subclaim. Let a,a’ € A, a # o’. Suppose that o, = {(z,73(2),...,m(z)) : 2 € A\ S} and
ow = {(z,7v3(2),...,yn(x)) : z € A\ S}, where 7; and ~; are automorphisms of A/ that fix S, for
all 3 <i<n. Letie{3,...,n}. Then pry; B2 {(z,m(z)):x € A\ S}U{(z,7vi(z)):z € A\ S}
Since pry; B = proi(Uyen Bla, 22, ... 20n)) = Upen(pro; Bla,x2,...,2,)) € S*U(A\ S)? and
pry; B < A? we have that pry; B is an automorphism of A /60 that fixes S, therefore it must be that

mi(z) = vi(z), for all x € A\ S. The element ¢ € {3,...,n} was arbitrary, hence o, = 0.

If follows from Subclaim 5.4.4.5.7 that, for all a € A,

B(a,z9,...,2,) = (B(a,za,...,2,) N S" ) Uo,
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where o = {(z,73(z),...,m(2)) : # € A\ S} and 7; is an automorphism of A/ that fixes S, for
all 3<i<n.
Furthermore, for each a € A, we have shown that B(a,xs,...,x,) is an h.d.-automorphism

of A, therefore there exists a map

fa:pro o1 Bla,xa,...,m) — pr, Bla,xa,...,75)  (T2,...,Tn—1) — Ty,
where x,, is the unique element of pr,, B(a, 2, ..., xy) such that (za, ..., xn_1,2,) € B(a,z2,...,2y,).
Subclaim 5.4.4.5.8. Let c € A\ S, ¢ € A, ¢ # . Then fo(s2,...,8n-1) # fer(S2,...,8n—1) for
all (sg,...,8,_1) € S"72.
Proof of subclaim. Suppose, for contradiction, that there exists some (sa,...,8,_1) € S" 2 such

that fe(s2,...,8n—1) = fe(S2,...,8n—1). Then there exists some s,, € S such that f.(s2,...,8,-1) =
Sp = fe(S2,. .y Sn_1).

We claim that A x {sa} x -+ x {s,} C B. From f.(s2,...,8p-1) = Sn = fe(S2,...,Sn—1), We
get that (¢, $2,...,8n-1,5n), (¢, 82,...,8n—1,8,) € B, thus the subuniverse B(x1, s2,...,Sn—1,22)
of A% contains (c, s,),(c/,s,). Since ¢ # ¢ and ¢ € A\ S, it follows from Lemma 3.1.8 that
A x {sp} C B(x1,52,...,50-1,%2), thus A X {sa} x --- x {s,} C B.

In particular, for arbitrary a € A, the tuple (a, s2, ..., Sp—1, Sn) € B. Since B(a,x3,...,T,) is
an h.d.automorphism of A and (s2,...,s,-1,8,) € B(a, 2, ...,x,), it follows from Definition 5.0.9
that B(a, s2,...,Sn—1,%n) = {sn}. Hence B(a, s2,...,Sn—1,Zn) = {sn}, for all a € A.

Clearly, B(a,s2,...,Sn—1,Tn) = {Sn} implies S € B(a,sa,...,Sn—1,Tn), therefore we have
that (a,s2,...,8p—1,5,) € B, where s, € S and {a} x {s2} x -+ x {sp—1} x § € B. Under
the assumptions of Lemma 5.4.3 we have that the assumptions of Lemma 5.4.2 hold. Then re-
placing the tuple (ai,...,a,) with the tuple (a,s2,...,8,-1,5,) € B, we get that B and the
tuple (a, s2,...,80-1,5n) € B satisfy the assumptions of Claim 5.4.4.1. Therefore when we ap-
ply property (2) of Claim 5.4.4.1 to the tuple (a, s2,...,Sn—1,8y) in place of (ai,...,a,), we get
that S C pry B(x1,82,...,8,-1,22). Thus, for each s € S, there exists some as € A such that

(as,s) € B(x1,82,...,8n-1,%2)-
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Let s € S\ {sp}. Such an element exists since |S| > 2. Then (as,s2,...,8,-1,8) € B.
Furthermore, we found that A x {s1} x --- x {s,} C B, therefore, (as,s2,...,5,-1,5,) € B.
Then B(as, S2,...,Sq—1,%,) is a subuniverse of A contains {s, s, }, where s # s,. However, this

contradicts B(as, $2,-..,Sn—1,2Zn) = {sn}. This completes the proof of the subclaim.

Subclaim 5.4.4.5.9. A\ S is a subuniverse of A.
Proof of subclaim. Let c€ A\S,d € A, c# . Let A ={(z,z) :x € A}. Let
D := {(z,2') : there exists T € A"~2 such that (¢, T, z), (¢, T, ') € B}.

Then D is a subuniverse of A? and we claim that DN A = {(z,z):z € A\ S}.

By definition of D, we have that D is a subuniverse of A2, Suppose (z,2’) € D. Then
there exists some (as,...,a,_1) € A" such that (c,az,...,an_1,2),(c,a0,...,an_1,2") € B,
which means (ag,...,an—1,2) € B(c,z9,...,2,) and (ag,...,an—1,2") € B(c,21,...,24-1). By
Subclaims 5.4.4.5.6 and 5.4.4.5.7, B(c,z2,...,x,) and B(d,x9,...,x,) are h.d.-automorphisms of
A, where

B(c,xa,...,2,) = (Blc,za,...,2,) NS HUo,
B(d,x3,...,2,) = (B(c,z2,...,2,) N S" Y Uo,

and o C (A\ S)" L. Hence (ag,...,an_1,7),(az,...,an_1,2') € S" LU (A\ 9)" L.

If (as,...,an_1,2) € S"1, then (az,...,a,_1) € S" 2 and by Subclaim 5.4.4.5.8, we get
that = f.(ag,...,an_1) # fu(as,...,an_1) = 2'. Therefore x # 2’ and (z,2') € S2.

If (ag,...,an_1,2) € (A\ S)"!, then (as,...,an_1,7),(az,...,an_1,2') € o, hence x =
mn(az) = 2'. Hence z = 2’ and (z,2') € (4\ 5)2.

By the definition of o, we get that the tuple (a,m2(a),...,m(a)) € 0 C B(c,x1,...,Tp—1)N
B(e,z1,...,2p—1) for any a € A\ S. Thus (¢, a,m(a),...,m(a)),(c,a,m2(a),...,m(a)) € B for

any a € A\ S, which means {(z,z) : z € A\ S} C D. Therefore DNA = {(z,z) : x € A\ S}. Since
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D and A are subuniverses of A? and relational clones are closed under intersections and projections,

we get that pri(DNA) = A\ S is a subalgebra of A. O

Recall that S is the unique nontrivial subalgebra of A, therefore we have a contradiction to

Subclaim 5.4.4.5.9. Hence, case (I') of Lemma 5.4.2 cannot occur. O

Since case (I’) of Lemma 5.4.2 cannot occur, it must be that case (II') of Lemma 5.4.2
holds. To complete the proof of this theorem, we will show that case (II’) cannot occur, this is
Lemma 5.4.4.

Recall from Definition 4.1.2 that if A is a finite idempotent algebra, A’ < A, G C A’, and

n > 1, then the n-dimensional cross on A’ at G is
XAC .= {(ay,...,a,) € (A))" : there exists i such that a; € G}.
In the case that A’ = A, we will simply write X,? . Therefore, the n-dimensional cross on A at S is
X% :={(a1,...,an) € (A)" : there exists i such that a; € S}.

Notice that xg g = Xﬁg.

We must show three claims before proving Lemma 5.4.4.

Claim 5.4.4.6. Letm > 3. Suppose S is quasiprimal, D is a reduced subuniverse of A™, and xg,5 <
A2, If there exists an element (a1, ...,an,) € D, where ay, € S and {ay} x --- X {am_1} x S € D,
and if the subuniverse D(a, ..., ai—1,%i, Qit1s- > Gm—1,Tm) = AS,am, Jor all 1 <i < m —1, then

the following properties hold for D,

(i) A™ ! x{am} C D,

(i) X3 , xS CD.
Proof of claim. Let D; := D(a1,...,0i—1,%i, QGit1,...,Qm—1,Tm). Then D; = Ag,, , for all i €
m — 1. Since (a1,...,am) € D, where a,, € S and {a1} x --- x {am-1} x S € D, we get that

(ai,am) € Dy and {a;} x S € D;, for all 1 <i <m —1. Thus D; = Ag,,, implies a; € A\ S, for all

1<:<m-—-1.
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We will prove the claim by inducting on m. First suppose that m = 3. Then for ¢ = 1,2
we have that D; = Agq, and a; € A\ S. Thus A x {agz} € Dy N Dy, which means (A x {a2} X
{a3}) U ({a1} x A x {a3}) € D. Therefore D(z1,x2,a3) is a subuniverse of A? that contains
(A x {a2}) U ({a1} x A) = pa, 4, where aj,as € A\ S. We are assuming that yss < A2, this
implies by property (x) of Proposition 3.2.1 that p, £ A2 for any b € A\ S. Therefore it follows
from Theorem 3.1.5 that D(x1,z2,a3) = A2, hence A% x {az} C D which proves property (i)
when m = 3. Now let s € S\ {a3} and consider the subuniverse D(z1,x2,5) of A% Since
S x{s} C Agqy = D; for i = 1,2, we have that (S x {az} x {s})U ({a1} x S x {s}) C D, therefore
D(x1,72,8) 2 (S x {az}) U ({a1} x S) where aj,as € A\ S. We are assuming that xgg < A2
thus it follows from property (vi) of Proposition 3.2.4 that every automorphism of A/ fixes S. In
particular, there is no automorphism among the subuniverses of A? that fixes an element b € A/6
where b € A\ S. Thus (S x {a2}) U ({a1} x S) C D(x1,x2,s) implies, by Theorem 3.1.5, that
xs.5 € D(z1,29,5). Hence D D (Ax S x {s})U(S x A x {s}) = X5 x {s}. We chose s € S\ {as}
arbitrarily, furthermore from property (i) we have that D D A% x {a3} 2 X5 x {a3}, therefore

D2 (X5x ] {shu(xs x{as}) = X5 xS
s€A\{as}

This proves property (ii) when m = 3.

We have shown that if the claim fails, then it must fail for some m > 3. To aid in our inductive
step we will show that if m > 3, then D(x1,...,%i_1,a;,Zit1,...,Tm) is a subuniverse of AT\
that satisfies the assumptions of the claim for all 1 <4 < m—1. Fix i € m — 1. The assumptions of
the claim clearly imply that (ai,...,a;—1, 011, am) € D(x1,...,Ti—1,0;, Tit1, .., Tm), Where
am € S and {a1} x -+ x {ai—1} x {aix1} X - X {am-1} X S € D(x1,...,Ti—1,0i, Tit1,- -, Tm)-
Furthermore, for all j € m — 1\ {i}, D(a1,...,aj-1,2j,aj41,- ., m—1,%m) = Dj = Agq,,. Lastly,
to finish showing that D(z1,...,%;—1,ai, Tit1, ..., Ty) satisfies the assumptions of this claim, we

must show that D(x1,..., -1, a;, Tit1,-- -, Tm) is reduced.

Subclaim 5.4.4.6.1. Let i € m — 1. Then D(x1,...,Ti—1,0i, Tit1,---,Tm) @S a reduced subuni-

verse of AL,
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Proof of subclaim. By the assumptions of Claim 5.4.4.6, we have that S is quasiprimal, there-
fore S and A have no h.d.-automorphisms, by definition. WLOG we will prove the subclaim for
D(ay,x2,...,Tm). We must show that D(ay,x2,...,Z,) has no singleton unary projection and no
binary projection that is an automorphism of S or an automorphism of A. We have that D; = Ag,,,,

for all 2 <¢ < m — 1. Thus, for any 2 < i <m — 1, the unary projection

pr; D(ay, x2, ..., om) 2 pr; D(a1,ag, ..., ¢i—1,Tiy Git1,y .y Qm—1,Tm) = pr; Dj = A,
and
pr,, D(a1,z2,...,zy) 2 pr,, D(ai,x2,as3,...,am—1,Tm) = pr,, Da = S.
Therefore, no unary projection of D(ay,xg,...,Zy) is a singleton.
Furthermore, for any 2 <i <m — 1,
perD(al,xQ, ces @) 2 D(a1,a2, ..., Gi—1, Tiy Qig 1y - o Gm—1, Tm) = Di = Ag.q,,-
Therefore, for all 2 < ¢ < m—1 the binary projection pr; ,,, D(ay,xg,...,2n) is not an automorphism

of S or an automorphism of A.
Finally suppose, for contradiction, that pr; ; D(ay,xg,...,2n) is an automorphism of S or an

automorphism of A, for some 2 < ¢ < j < m. Recall that m > 3 so, WLOG, suppose i = 2,j = 3.

Then (az,...,am) € D(a1,2a,...,Ty) implies that (az,as) € pry 3 D(a1, 22, ..., Tm), which means
pr3 D(a1, a2, 23, ...,%m) = {ag}. However, since D3 = \gq,, we get that

A = pry D3 = pry D(ay,a2,23,a4, . .. ,Gm—1,Tm) C prs D(a1, a2, 3,...,Tm) = {as},
which is a contradiction. This completes the proof of the subclaim. ]

Since i € m — 1 was arbitrary, we have shown that if m > 3, then for all 1 < i <
m — 1, D(x1,...,2i_1,a;,Tis1,...,Tm) is a subuniverse of A™~! that satisfies the assumptions
of Claim 5.4.4.6. We will now prove properties (i) and (ii).

[(i)] Let m be minimal such that property (i) fails for a subuniverse, D, of A™ that satisfies

the assumptions of the claim. We showed above that property (i) holds if m = 3. Thus, m > 3 and
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by the minimality of m, we get that property (i) holds for D(ay,xo, ..., xm), D(x1,a2,23,...,Tm) <
A™1 which means A™2 x {a,} C D(a1,x2,...,%m,) N D(x1,a2,23,...,7,) and thus, ({a;} x
A2 {a, NU(Ax {ag} x A" 3x{a,}) € D. Letw € A" 3. Then D(x1, 2,7, a,) is a subuniverse
of A? that contains ({a1} x A) U (A x {a2}) = fia, ay, Where a1, a2 € A\ S. Since xg5 < A2, it
follows from property (x) of Proposition 3.2.1 and Theorem 3.1.5 that D(x1, 2,7, a,) = A2. Thus,
A% x {u} x {an} C D. Since u was an arbitrary element of A™ 3 we get that

D2 A% x | J {a} x{an} =A""" x {an},

ueAm—3

which contradicts the minimality of m. This completes the proof of property (i).

[(ii)] We have shown that property (ii) holds when m = 3. Let m > 3 and suppose that
property (ii) holds for all subuniverses of A™~! that satisfy the assumptions of Claim 5.4.4.6. Let
D < A™ that satisfies the assumptions of Claim 5.4.4.6. We will show that D D A x --- x A X § x
A x -+ x A x S where the first S appears in the i"-coordinate for any i € {1,...,m — 1}, therefore
X5  xSCD.

WLOG, let i = m — 1. We showed above that D(ay,x2,...,Zy) and D(z1, a2, 23, ..., Tm)
are subuniverses of A™ ! that satisfy the assumptions of Claim 5.4.4.6, therefore, by the induction
hypothesis, we get that D(ay, 2, ..., Zm) N D(T1,a2, 23, ..., Tm) 2 X5 5 x 8D A™3 x §2. Thus,
({a1} x Ax A™ 4 x SYU (A x {ag} x A™™* x §2) C D. Let u € A™* x S2. Then D(x1,22,7)
is a subuniverse of A% that contains ({a1} x A) U (A x {a2}) = pa,.ap Where aj,az € A\ S. By
assumption, x5 < A2, therefore it follows from property (x) of Proposition 3.2.1 and Theorem 3.1.5
that D(x1,z2,7) = A%. The tuple @ was chosen arbitrarily from A™~* x $2, thus

DOA’x | {m=AxA"tx=A""7 x5
uc Am—4x 52
Since i = m — 1 was an arbitrary choice of for i € m — 1, we have shown that D D A x --- x A x
S x Ax---x Ax S where the first S appears in the i*’-coordinate for any i € {1,...,m — 1}.

Hence, D D X2 ;| x S. This completes the proof of the claim.
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Claim 5.4.4.7. Suppose that xs,5 < A2, Letm >3, D <A™, and (X5 _xS)U(A™ ' x{a,}) C D
for some ay, €S. If D >1u = (u1,...,Un), where u; € A\ S for all1 <i<m—1 and up, # am,

then A™~1 x S C D.

Proof. We will show the claim by inducting on m. First suppose that m = 3 and D < A? satisfies
the assumptions of the claim. Suppose that (u1, ug,us3) € D, where uy,us € A\S and uz # az. Since
we also have that (ug,us,a3) € A% x {az} C D, we get that D(u1,us,r3) is a subuniverse of A that
contains {us, az} where ug # as. Therefore D(uy,us,x3) 2 S, which means {u;} x {ug} x S C D.

Let s € S\ {a3} and consider the subuniverse D(x1,z2,s) of A%2. By assumption, D D
X5 xS D (SxAx{s})U(AxS x{s}). Also, (u1,us,s) € {u1} x {ug} x S € D. Therefore
D(x1,22,5) 2 (Ax S)U (S x A) U {(u1,u2)} = xs,5 U{(u1,u2)}, where uy,up € A\ S. It follows
from Theorem 3.1.5 that D(z1,z2,s) = A2. Since s € S\ {a3} was arbitrary and we are assuming

that D D A2 x {a3}, we get that
D D (A® X Ugeg s} {8}) U (A% x {ag}) = A* x 8.

This completes the proof of the case when m = 3.

Now suppose that m > 3 and Claim 5.4.4.7 holds for all subuniverses of A™~! that satisfy the
assumption of the claim. Let D < A™ where (X5 | x S)U (A™ ! x {a,,}) C D for some a,, € S.
Suppose that D 5@ = (uy,...,un) where u; € A\ S, 1 <i<m—1, and uy, # a,,. We will show
that D(u1,x2,...,T;) is a subuniverse of A™~! that satisfies the assumptions of Claim 5.4.4.7,
therefore, by the induction hypothesis, A2 x S C D(uy,xa,...,Zm).

First we will show that XWSI_Q x S C D(uy,x9,...,%my). By assumption we have that
DDX5 xS
DAX XS 4 xS
D{u} x X5 , xS

Therefore D(u1,2,...,7m,) 2 X5 5 x S. Now, notice that since D O A™ ! x {a,,} 2 {w1} x

A™=2 x {a,}, we get that D(ui,xo,...,Tm) 2 A™ 2 x {a,}. Finally, @ € D implies that



106

D(uy,x2,...,%m) O (ug,...,uy) where ug, ..., upm—1 € A\ S and u,, # a,,. Therefore, by the
induction hypothesis, we get that A™~2 x S C D(uy, 22, ...,%n).

A similar argument shows that A™ 2 x S C D(x1,ug, T3, ..., Tm). Hence ({u1} x Ax A™3 x
SYU(Ax {ug} x A" 3 x S)C D. Let v € A" 3 x S. Then D(x1,x2,7) is a subuniverse of A? that
contains ({u1} x A) U (A x {u2}) = ptuy u, where ui,us € A\ S. We are assuming that ygs < A2,
therefore it follows from property (x) of Proposition 3.2.1 that i £ A? for any b € A\ S. Therefore,
by Theorem 3.1.5, we have that D(z1,x2,v) = A%. Since ¥ was chosen arbitrarily from A™™3 x S,
we can conclude that

DO2A’x | {m=A2xA"FxS=A""x35.
veEA™—3x% S

This completes the proof of the claim. O

Claim 5.4.4.8. If case (II') of Lemma 5.4.2 holds, then S"1 x A C B.

Proof of claim. Suppose that case (II') of Lemma 5.4.2 holds. Then xg.s,Asa, < A% By the
assumptions of Lemma 5.4.2, we have that (1) A satisfies Assumption 2, therefore \g,, < A?
implies that S is quasiprimal, and (2) B is a reduced subuniverse of A", n > 3, that contains an
element (ay,...,a,) where a, € S and {a1} x -+ x {ap,—1} x S € B. Furthermore, from case (II")
of Lemma 5.4.2 we have that B(a1,...,ai—1, %, Git1,--.,0n—1,Tn) = Agq,, forall 1 <i<n—1.
Therefore B satisfies the assumptions of Claim 5.4.4.6, so we can apply Claim 5.4.4.6 to B in place
of D

By property (ii) of Claim 5.4.4.6 we have that B D X2 ;xS D S" 1 xS. We will show that for
all ¢ € A\S the subuniverse B(z1, ..., Z,_1,c¢) is equal to S?~!. This means that S"~!x{A4\S} C B.
Therefore, the claim follows from the union (S"~! x S)U (S"! x {A\ S}) C B.

Let c€ A\ S. Then ¢ € A = pr,, B, which means B(z1,...,Zn_1,c¢) # (). Therefore we have
that B(x1,...,Zn_1,c) is a subuniverse of A"~!. We will first show that B(z1,...,2,_1,¢) <sq
S*=L. Let i € n — 1. We claim that pr; B(z1,...,2,_1,¢) = S. WLOG, suppose that i = 1. From

case (II'), we have that pry, B = xs,s, thus S x {c} C xss5 = pry, B. This means, for each
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s € S there exists some s € A" 2 such that (s,us,c) € B. Thus (s,us) € B(x1,...,7n_1,c¢),
for each s € S, hence S C pr; B(z1,...,2n-1,¢). Furthermore, equality must hold. Otherwise,
if d € pryB(x1,...,2,_1,c), for some d € A\ S, then there exists some @ € A"2 such that

(d,w) € B(w1,...,7y1,c), which means (d,u,c) € B and (d,c) € pry,, B = xs,5, where d,c €

A\ S, which is a contradiction. Hence pr; B(z1,...,zp—1,¢) = S. Therefore, we have shown that
B(xy,..., 25 1,¢) <sq S"!, which means B(z1,...,Z,_1,c) is a subuniverse of S"~! and no unary
projection of B(x1,...,Zn—1,c) is a singleton.

Since S is quasiprimal, we know from Proposition 2.4.5 that a subuniverse of S has either
unary projections that are singletons, or binary projections that are automorphisms of S, or it is
equal to the full direct product S™. Therefore, to show that B(xy,..., 2, 1,¢) = S" !, it remains
to show that no binary projection of B(x1,...,Zy—1,¢) is an automorphism of S.

Suppose not. WLOG, suppose pry o B(71,...,%n-1,¢) € Aut(S). Let w € B(z1,...,Tn-1,0),
U = (u1,...,up_1). Then B(zy,...,7p 1,¢) <sq S*! implies w € S™ 1. Also, (uj,uz) €
pryo B(w1,...,2p-1,¢) € Aut(S) implies B(z1,u2,u3,...,un—1,¢) = {ur}. Consider the subuni-
verse B(x1,us,. .., Un—1,T,) of A2, We claim that B(z1,u,...,un—1,7n) = Xs,5. First we will
show that {(u1,¢)} U (A x {an}) US? C B(x1,uz,. .., Un_1,Tn).

We are assuming that w € B(zi1,...,%,—1,c¢), this means that (ui,...,un—1,¢) € B and
(u1,c) € B(x1,ug,...,un—1,%,). Recall that B satisfies the assumptions of Claim 5.4.4.6, therefore
properties (i) and (ii) of Claim 5.4.4.6 hold for B. From property (i) of Claim 5.4.4.6 we get that
that B D A" 'x{a,} D Ax{ua}x... {un_1}x{a,}. Therefore B(x1,uz, ..., un_1,7,) 2 Ax{a,}.
Finally, from property (ii) of Claim 5.4.4.6, we get that B O X2 | x S D S™. Thus, u € S"!
implies S x {ug} x - -+ x {up_1} x § € 8" C B which means S? C B(x1,uz, ..., Un_1,Tn)-

Therefore, we have shown that B(x1,us,...,un—1,75) 2 {(u1,¢)} U A x {a,} US? where
ui,an € S and c € A\ S. By Theorem 3.1.5, it is clear that xy, ¢, € B(z1,u2,...,Un—1,%,). Then
B(x1,uz, ..., Un_1,T,) is a reduced subuniverse of A2, therefore, by the assumptions of the theorem,
B(z1,u2,...,Un—1,2y) is f-closed in its A-coordinates, which means xs s C B(z1,u2, ..., Un—1,Zn).

Furthermore, B(x1,u,...,Un—1,2n) € pry, B = xs,5, hence B(z1,uz, ..., Un—1,T5) = X3,5-
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Since B(x1,us,...,Un—1,Tn) = Xs,5, we get that S x {c} C xs5 = B(x1,u2,...,Un—1,Tn)
which means S C B(x1,us,...,u,—1,c). However, we showed that B(x1,uz,...,up—1,¢) = {u1},
therefore we have a contradiction to the assumption that pry 5 B(w1,%2,...,2n-1,¢) € Aut(S).

We have shown that B(x1,22,...,2,_1,c) is a subdirect subuniverse of S*~!, no unary pro-
jection of B(x1,x2,...,Tn—1,c) is a singleton, and no binary projection of B(x1,x2,...,Zn—_1,¢) is
an automorphism of S. Since S is quasiprimal, it follows that B(z1,z2,...,7,_1,¢) = S" 1. Fur-

thermore, ¢ € A\ S was chosen arbitrarily, therefore B(x1,z2,...,2, 1,¢) = 8" 1 forallc € A\S.

As we noted at the start of the proof, this completes the proof of the claim. O
We will now show that case (IT’) of Lemma 5.4.2 cannot occur, thus proving Lemma 5.4.4.

Proof of Lemma 5.4.4. Suppose, for contradiction, that case (II’) of Lemma 5.4.2 holds. Then
XS, AS,an < A2, By the assumptions of Lemma 5.4.2, we have that (1) A satisfies Assumption 2,
therefore Ag 4, < A? implies that S is quasiprimal, and (2) B is a reduced subuniverse of A", n > 3,
that contains an element (aq, ..., a,) where a, € S and {a1} x -+ x {ap—1} xS € B. Furthermore,
from case (II') of Lemma 5.4.2 we have that B(ai,...,ai—1,Zi, Git1,...,0n—1,%n) = Ag,q,, for all
1 <i <n—1. Therefore B satisfies the assumptions of Claim 5.4.4.6 and applying Claim 5.4.4.6
to B in place of D gives that (A""! x {a,})U (X5 ; x S) C B.

Notice that {a1} x -+ x {ap—1} x S € B has the following two implications. The first is that
{a1} x S € B(x1,a2,...,an—1,Tn) = Ag,q,, therefore a; € A\ S. The second is that A" ! x S Z B.

Therefore, we have that ygs < A2, B < A" for some n > 3, and (A" ! x {a, })U(XS | xS) C
B. Since A" ! x S ¢ B, it follows from applying Claim 5.4.4.7 to B in place of D that if there
exists a tuple w € B where @ = (uy,...,u,) and u; € A\ S for all 1 <i <n — 1, then u, = a,. To
prove the lemma, we will show that if case (II’) of Lemma 5.4.2 holds, then for any s € S\ {a,}
the tuple (ai,...,a1,s) € B. However, as we just stated, (a1,...,a1,s) € B and a; € A\ S implies
that s = a,,, which contradicts s # ay,.

Consider the subuniverse C' := BN{(x,...,z,y) : z,y € A} of A™. Since A" ! x{a,} C B, we

get that {(x,...,2,a,) : © € A} C B. Furthermore, we have from Claim 5.4.4.8 that S"~!x A C B,
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therefore {(x,...,z,y) : x € S,y € A} C B. Hence {(z,...,z,a,) : x € A} U{(z,...,x,y) : ¢ €
S,y € A} € C. Then pr;, C is a subuniverse of A? that contains {(z,a,) : z € A} U {(z,y) :
v € S,y € A} = X4, Under Assumption 2 (Q), the reduced subuniverses of A% are f-closed in
their A-coordinates. Then pry,, C 2 Xxs4, implies that pry, C is a reduced subuniverses of A2,
therefore closing pr; , C in its A-coordinates gives that pry ,, C 2 x5 2 {b} x S forallbe A\ S.
In particular, pry ,, C 2 {a1} x S. However, {a1} x S C pry,, C implies {a;}"~! x S C C C B. By
assumption, |S| > 2, solet s € S\ {an}. Then (ay,...,a1,s) € {a1}" ' xS C B where a; € A\ S.
As we explained in the previous paragraph, the existence of the tuple (aj,...,a1,s) € B where

a; € A\ S and s # a,, gives a contradiction. This completes the proof of the lemma. O

We have shown that both case (I') and case (IT’) of Lemma 5.4.2 cannot occur, thus the
assumptions of Lemma 5.4.2 are false. Therefore, if A satisfies Assumption 2, then the reduced

subuniverses of A" are #-closed in their A-coordinates. This concludes the proof of this theorem. [

5.5 The Clone of A

Under Assumption 2, and the additional assumption that A is not simple, we will now describe
the clone of A by determining a transparent generating set for the relational clone of A.

Recall that we found in Proposition 5.1.3 that if B < A" n > 1, then B € (pr; B, 7s) RClones
where pr; B is a reduced subuniverse of A’, for some nonempty I C 72. This shows that the relational
clone of A is generated by 74 and the reduced subuniverses of finite powers of A. Therefore, to find a
generating set for the relational clone of A, we must find a description for the reduced subuniverses
of finite powers of A.

If B is a reduced subuniverse of A", B <, 4 II!" | A;, where A; € {S, A}, then under Assump-
tion 2, it follows from Theorem 5.4.1 that B is #-closed in its A-coordinates. Let p be the natural
homomorphism p : II ;A; — II?_,A;/O;, where ©; is the equality relation if A; =S and ©; = 6
if A; = A. Let B’ = p(B). Then, by Proposition 2.2.8, B is the full inverse image of B’ under p.

Therefore, if we can describe B’, the we have a description for B. We found in Proposition 5.1.6
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that B’ € (pr;, B, 7)) Rcione, where prp B is a reduced subuniverse of II;¢ 7 A;, for some nonempty
I’ € m. Therefore, to understand the reduced subuniverses of finite powers of A we must find a
description for the reduced subuniverses of II}" ;A;, where A; € {S,A/6}, n > 1. This will be the
focus of this section. At the end of the section we will give a complete description of the relational

clone of A.

Definition 5.5.1. Let A; € {S,A/0}, 1 <i <n. Let {I,J} be the partition of 7 such that A; =S

whenever ¢ € I and A; = A/6 whenever ¢ € J. Let s € S and @ € A/6. Then we will call the set

XS% ={(z1,...,2,) € I} A; : there exists some ¢ such that x; =sifi €l and z; =aif i € J}
a cross on 11" A;. If Ay = -+ = Ay, and hence {I,J} = {0,n}, then we will simply denote a

cross on I | A; by X7, where g € A;.

n’

Under Assumption 2 we have that S is either quasiprimal or affine, thus there is no (S, S)-cross
among the subuniverses of A2. This fact implies the following restriction on the size of I in the

above definition.

Proposition 5.5.2. Suppose that A satisfies Assumption 2. If B = XE;’?) is a cross on I} A;,
where A; € {S,A/0}, s € S, ae€ A0, and {I,J} is the partition of m such that A; = S whenever

i€l and A; = A/O whenever i € J, then |I| <1.

Proof. For contradiction, suppose that |I| > 1. By Assumption 2 we have that S is either quasipri-
mal or affine which means there is no (S, S)-cross among the subuniverses of S?, this means
that n > 2, otherwise B’ is an (.S, 5)-cross which gives a contradiciton. WLOG, suppose that
1,2 € I. Then B < S xS x I 4A;. Let w € I 5A;, w = (us,...,u), where u; # s for all
i eIn{3,....,n} and u; # @ for all i € JN{3,...,n}. Then by Definition 5.5.1 we have that
{s}xSx{u} C XE;’?) = B’ and Sx{s} x{u} C XE;’?) = B’. Therefore B'(x1, x2,u) is a subuniverse
of S? that contains ({s} x S)U(S x {s}). In fact, B'(x1,z2,7) = ({s} x S)U(S x {s}), otherwise there
exists some (uy,u2) € B'(x1,22,7) \ [({s} x S)U (S x {s})], thus (uy,us,us,...,u,) € B' = XE;’?)

where uy # s, ug # s, u; #s foralli € IN{3,...,n} and u; # @ for all i € JN{3,...,n} which
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is a contradiction. Therefore B'(x1,z2,7) = ({s} x S) U (S x {s}) is a subuniverse of S?, however

this contradicts the fact that there is no (S, S)-cross among the subuniverses of S2. O

To describe the reduced subuniverses of II?_ | A;, where A; € {S,A/0}, we will distinguish
three cases. In Proposition 5.5.4 we consider the case when the strictly simple algebra A /6 is either
quasiprimal or affine. In Propositions 5.5.5 and 5.5.6, A /@ is assumed to be the third kind of strictly
simple idempotent algebra, and the description splits into two cases according to whether there is

a cross among the subuniverses of A/ x S.

Lemma 5.5.3. Suppose that A satisfies Assumption 1, S is quasiprimal, and 0 is a congruence
on A. Suppose that B' < A/ x S x A/O, where (a1,a2,¢c3) € B', B'(x1,a2,23) € Aut(A/6),
B'(a1,x2,23) = 3cy ey, for some ai,c3 € A0 and distinct az,co € S. Then either S = A/0 or

AScos Bdey <A XS forallde A\ S.

Proof. Under the assumptions of the lemma we have that B’(x1, az,x3) is the graph of ® for some
® € Aut(A/0) and B'(a1, 2, x3) = 5y 5. Since S is quasiprimal, statement (ix) of Corollary 3.2.5,
® € Aut(A/0), and s, < S x A/6 imply that @ fixes c3. From (ai,ag,c3) € B’ we get that

(a1,c3) € B'(x1,a2,x3), thus ®(a1) = c3, since cg is fixed by ® it follows that a1 = cs.

Claim 5.5.3.1. For any b € (A/0)\ {cs}, either B'(x1,x2, ®(b)) is an isomorphism from A/6 to S

or B'(x1,x2, ®(b)) is the (A/6,S)-cross Ky, -

Proof of claim. Let b € (A/0) \ {c3}. Notice that (b, ®(b)) € B'(x1,a2,x3) which means, since
b # c3 and ® fixes c3, that ®(b) # c3.

From the assumption that B’(ay, z2, x3) is the graph of ® we get that (b, ®(b)) € B'(x1, az, x3)
and A/0 x {®(b)} € B'(x1,a2,x3). Therefore the tuple (b, a2) € B'(x1,x2, ®(b)) and A/0 x {as} &
B'(z1,x2,®(b)). From the assumption that B'(ai,z2,23) = ey, it follows that (c2, ®(b)) €
{ca} x AJO C B'(a1,2z2,23). Also, ®(b) # c3 implies that S x {®(b)} € 3¢y, = B'(a1,x2,x3).

Therefore, (a1, c2) € B'(x1,x2,®(b)) and {a1} x S € B'(x1,x2, ®(D)).
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Then (b,as3), (a1,c2) € B'(x1, 29, ®(b)) implies {agz,ca} C pry B'(z1,22,P(b)) < S. By as-
sumption, ag and ¢z are distinct elements of S, therefore pry B'(z1, 22, ®(b)) = S. Furthermore,
{b,a1} C pr; B'(z1,22,®(b)) < A/O. We claim that a; # b, otherwise (a1,az2) = (b, a2), (a1,c2) €
B'(x1,22,®(b)), az # co implies by Lemma 3.1.7 that {a1} x S C B'(z1,z2,®(b)), which contra-
dicts {a1} x S € B'(x1, 29, ®(b)). Therefore pr; B'(x1,z2, ®(b)) = A/ and we have shown that
B'(x1,22,P(b)) <s5q AJ/O x S. Since {a1} x S € B'(x1,x2,®(b)) it is clear that B'(z1,z2, ®(b)) #
A/0 x S. Then it follows from Corollary 3.1.6 that B'(z1,x2, ®(b)) is either an isomorphism from
A/0 to S or B'(x1,x2,®(b)) is an (A/6, S)-cross.

Suppose that B'(z1,z2, ®(b)) is not an isomorphism A/6 — S. Then (b,as),(a,c2) €
B'(z1,x9,®(b)), A/0 x {as} € B'(x1,22,®(b)), and {a1} x S € B'(x1,z2,®(b)) implies that

B'(x1,x2,®(b)) = ., O

It is clear that B'(x1, 22, ®(b)) is a subuniverse of A/f x S for all b € A/ \ {c3}. Suppose
that S and A/6 are not isomorphic. Then it follows from Claim 5.5.3.1 that g, ., < A/6 xS for all
be A/O\ {cs}. Furthermore, we have by assumption that B'(ai,z2,23) = 5, c, 1S a subuniverse

of S x A/6, thus s, e, = (%ey.c5) 1 < AJ/O x S. This means that HG oy %0y < AJO xS for all

Cc2
de A\ S.
Let p: A xS — A/f x S be the natural homomorphism. Then Ag., = p_l(%g o) SAXS

and Kge, = p (3¢5, ) <A xSforallde A\ S. This completes the proof of the lemma. O

,C2

Proposition 5.5.4. Suppose that A satisfies Assumption 2, 6 is a congruence on A, and A/0 is
either quasiprimal or affine. Let n > 2 and B’ <, g IIT" | A;, where A; € {S,A/0}, for alll <i < n.

If B is reduced, then B' = {(z1,...,zn) € {_ 1 A; : (w5, 75) € pr;; B', 1 <i < j <n}.

Proof. Suppose not. The proposition clearly holds if n = 2, therefore it must be that n > 2.
Let n be minimal such that there exists a reduced subuniverse B’ < 4 II7" |A;, A; € {S,A/0},
where B" # {(z1,...,2zn) € I A; ¢ (w5,25) € pr,; B, 1 < i < j < n}. It is clear that the
containment (C) must hold. Therefore, there exists (a;,a;) € pr; ; B’ for all 1 <i < j < n such

that @ = (a1,...,a,) &€ B'. Let I C 7, |I| = n—1. Since B’ is a reduced subuniverse of dimension n
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we have that pr; B’ is a reduced subuniverse of dimension n — 1, furthermore (a;, a;) € pr; ;(pr; B')
for all 7,7 € I. Then by the minimality of n we get that pr;a € pr; B'. Since I was an arbitrary
subset of 7 containing n — 1 elements, we get that for each i € T there exists some ¢; € A such that
(a1, ..y Qi—1,Ciy Qix1, - - an) € B'. Clearly ¢; # a; for all 1 <i < n, otherwise we would have that

acB.
Claim 5.5.4.1. There exists some distinct i,j € T such that A; =S and A; = A/, also S 2 A/6.

Proof of claim. To prove this claim we will first show two subclaims.

Subclaim 5.5.4.1.1. If A} =--- = A, then B’ =1I"_, A;.

Proof of subclaim. Suppose that Ay = Ag =--- = A,,. Then B’ € RClo(G) for some G € {S,A/0}.
We have that G is simple algebra that is either quasiprimal or affine, moreover we have that B’ is
reduced, therefore it follows from the discription given in Propositions 2.4.5 and 2.4.6 that B’ must

be equal to the full direct product, G™. O
Subclaim 5.5.4.1.2. If S= A/, then B’ =117, A;.

Proof of subclaim. Suppose that S is isomorphic to A/f. Let ¢ be an isomorphism ¢ : A/§ — S and
define the map II? ;¢ : [TA; — S™, by letting ¢; = idg, if A; =S, and ¢; = ¢, if A; = A/6. Clearly
II.; is an isomorphism. Thus, applying II;.; to B’ we get B := (Ile;)(B') < S™. Since I;i; is a
product isomorphism, we have that IT;z; and (IT;2;)~! must preserve the size of unary projection and
projections that are defined by bijective maps. Since B’ is reduced, it follows that B = (T1e;)(B') is
a reduced subuniverse of S”. Then Subclaim 5.5.4.1.1 implies B =S". If we now apply the inverse
map, (IIz;)~1, to B, we get that B’ = (IIt;) " 1(B) = (It;)~1(S™) = IIA,. Hence B’ is the full direct

product. O

Suppose for contradiction that either Ay = --- = A, or that S = A/#. Then by Sub-
claims 5.5.4.1.1 and 5.5.4.1.2 we get that B’ = II?" | A;. Thus a € 11" ; A; = B’, which contradicts

EQ/B’. n
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WLOG, suppose that A; = S and Ay = A/6. Let B = B'(z1,x2,x3,0a4,...,a,). Then
B is a subuniverse of S x A/O x Asz that contains the tuples (c1,as,as3), (a1, co,as), (a1, asz,cs),
(a1,a2,a3) & 3, and ¢; # a; for 1 < i < 3. We claim that B is reduced. Since priB 2 {¢i,a;} for
i1 =1,2,3 and ¢; # a; we have that no unary projection of Bisa singleton and, in fact, since S, A /6,
and Aj are all simple algebras, this means that B <,4S x A/0 x As. Suppose, for contradiction,
that pr; ; B is an automorphism of S or A/# for some 1 < i < j < 3. Then (a;, cj), (ai,a;) € pr; ; B
implies ¢; = a;, which contradicts and ¢; # a; for 1 < ¢ < 3. Finally, by Claim 5.5.4.1 we have
that S ¢ A/6, thus B cannot be an h.d.-automorphism of S or of A/6. Therefore B is reduced. We
have shown that B is a reduced subdirect subuniverse of S x A/0 x Az, where As € {S,A/6}, and
(ai,a;) € pr; ; Bfor 1 <i < j <3, but the tuple (a1,a2,a3) & B. Thus, the proposition fails for
n =3J.

WLOG, suppose that B’ <;4 G x H x G, where {G,H} = {S,A/0}. We showed above
that there exist tuples (c1,a2,as3), (a1,ce,a3), (a1,a2,¢3) € B, (a1,a2,a3) ¢ B, and ¢; # a; for
1 <4 < 3. Consider the subuniverse B'(aj,z2,23) of H x G. We have that (co,as), (az,c3) €
B'(a1,x9,23) where ¢; # a; for i = 2,3, thus, pr; B'(a1,z2,23) is not a singleton for i = 2,3.
Since H and G are both strictly simple algebras and thus contain no proper subalgebras, this
means that B'(ay, z2,23) <4 HxG. Additionally, we have that (as,as) € B'(a1, x2, 23), therefore
B'(a1,z9,23) # HxG. We showed in Claim 5.5.4.1 that H 2 G, hence it follows from Corollary 3.1.6
that B'(a1, 2, x3) = ¢y c5-

We claim that B'(a1,z2,23) = 3¢y, < H x G implies that S is quasiprimal. Let

Koy, if H=A/0 and G = 5,
C:=

)l if H=S and G = A/9.

c2,c3
Let p be the natural homomorphism p: A x S — A/6 x S. Then p~!(C) is a a subuniverse of A%
furthermore p~!(C) is a (thick) (4, S)-cross. By Assumption 2 we have that if there is a (thick)
(A, S)-cross among the subuniverses of A2, then S is quasiprimal.

Now consider the subuniverse B’(z1,as,z3) of G2. We have that G is a strictly simple
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algebra and (c1,a3),(a1,c3) € B'(x1,a2,23) where ¢; # a; for i« = 1,3. Then G contains no
proper subalgebras and pr; B'(x1,a2,23) < G where | pr; B'(z1,a2,23)] > 1 (i = 1,3), therefore
B'(z1,a2,23) <,q G®. Furthermore, (a1,a3) &€ B'(x1,a2,23), so B'(x1,a2,23) # G?. Finally, we
have shown that S is quasiprimal and we are assuming that A/ is either quasiprimal or affine,
therefore G' € {S, A/0} implies that there is no cross among the subuniverses of G2. So it follows
from Corollary 3.1.6 that B’ is an automorphism of G.

We that we are assuming that 6 is a congruence on A and that Assumption 2 holds, therefore
we have that Assumption 1 holds. We have shown that S is quasiprimal. Additionally, we have
shown that B’ < G x H x G contains the tuple (a1, a9, c3), B'(x1, a2, x3) is an automorphism of G,
and B'(a1,x2,x3) = ¢, ;. There are two cases to consider: either G =Sand H=A/0or G=A/0
and H = S.

If G=S and H = A/, then B’ and the tuple (a1, as, c3) satisfy the assumptions of Corol-
lary 5.3.2. Thus Corollary 5.3.2 implies that either A < A3 or K < A3 where ¢y = b/6 for some
be A\ S. However, both cases contradict Assumption 2 (Q).

Now suppose that G = A/ and H = S. Since ¢ # ag, we have that B’ and the tuple
(a1, az, c3) satisfy the assumptions of Lemma 5.5.3. Then Lemma 5.5.3 implies that either S = A /6
O AS oy Kdey, < A xS foralld € A\ S. By Claim 5.5.4.1 we have that S 2 A/6, therefore
AS,cor Kd,ey < A xS forall d e A\ S. However, since S is quasiprimal we have from property (ii) of
Corollary 3.2.5 that k.5 < A x S implies A\gy £ A x S for all a € A, s,5" € S, therefore we have a

contradiction. This completes the proof of the proposition. ]

Proposition 5.5.5. Suppose that A satisfies Assumption 2, 6 is congruence on A, and there exists
an (A/0, A/0)-cross among the subuniverses of (A/0)2, but there is no (S, A/0)-cross among the
subuniverses of S x A/f. If B' is a reduced subuninverse of S" x (A/0)"~" for some n > 2,

0 <7 <mn, then B' = prz B' x prp B'.

Proof. Suppose that nz < (A/0)%, for some @ € A/6 and there is no (thick) (S, A/f)-cross among

the subuniverses of S x A/#. Let B’ be a reduced subuninverse of S” x (A/0)"~", for some n > 2,
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0<r<n.

If r =0, then B’ < (A/0)", thus B’ = prp\; B'. Alternatively, if r = n, then B’ < §" and
B’ = prz B’. Therefore, it remains to show that the proposition holds when there exists some
i,j € T such that pr; B’ = S and pr; B’ = A/0.

For contradiction, suppose the statement of the proposition does not hold. If n = 2, then
B’ < S x A/. Recall that there exists a (A/6, A/0)-cross among the subuniverses of (A/6)? and
there does not exist an (S, 9)-cross among the subuniverses of A2 therefore S and A/ are not
isomorphic. Furthermore, we are assuming that there is no (S, A/6)-cross among the subuniverses
of S x A/f. Therefore, it follows from Corollary 3.1.6 that B’ =S x A/6 = pr; B x pry B’. This
means that if the proposition fails for some n-dimensional subuniverse, then it must be that n > 3.

Let n be minimal such that there exists a reduced subuniverse B’ < S” x (A/0)"~", where
B # pry B' x prypy: B'. We showed that the proposition holds if 7 € {0,n}, therefore it must be
that pr; B’ = S and pr, B’ = A/#.

Clearly, B" C prz B’ x pryp B'. The projection of a reduced subuniverse is reduced, thus
pry o, B' < Iicm i3Ai and pry 1 B' < 1I;.;—A; are reduced subuniverses. Therefore, by the
minimality of n, we get that pry _, B" = prp 1y B’ xpryp\z B and pry 1 B’ = pry B’ xpr—\; B'.

We are assuming that B’ # pr. B’ x pry; B’, therefore there exists a tuple (uq,...,u,) €

n\F
pry B’ X prapyy B’ such that (ui,...,u,) ¢ B'. However, (u1,...,un) € pry B’ X prp; B’ implies
that (ug,...,un) € prpp1y B' X prpye B' = pry_ , B' and (w1, ..., un—1) € prz B’ x prp—=; B’ =
pry n—1 B’. Therefore, there exists some ¢; € S, ¢, € A/ such that B’ contains the tuples
(c1,u2, .y Up—1,up) and (ug,ug,...,Up—1,¢p). Since (uy,ug,...,Unp—1,uy) € B', we get that ¢; #
u;, for i =1, n.

Then B'(x1,ug, ..., uUp—1,%,) is a subuniverse of S x A/6 that contains the tuples (c1, u,) and
(uq,cp). Furthermore, since {u;, ¢;} € pr; B'(z1,ug, ..., up—1,2,) and u; # ¢;, for i € {1,n}, we get
that B'(z1,us,...,up—1,Ty) is a subdirect subuniverse of Sx A/#. We are assuming that S and A /6

are not isomorphic and there exists no (.5, A/6)-cross among the subuniverses of S x A /6, therefore,

by Corollary 3.1.6, we get that B'(z1,u2,...,up—1,2,) = S x A/6. Hence, (u1,u,) € Sx A/f =
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B'(x1,uz, ..., up—1,2y), which means (uq,...,u,) € B’, a contradiction to (uq,...,u,) ¢ B’. This

completes the proof of the proposition. O

Proposition 5.5.6. Suppose that A satisfies Assumption 2, 0 is a congruence on A, and there exists
an (A/0, A/0)-cross among the subuniverses of (A/0)? and there exists an (A/0,S)-cross among
the subuniverses of AJ0 x S. Let B' be a reduced subuninverse of 11 | A;, where A; € {S,A/6},
1<i<mn, andn >2. Let P be the family of subsets of m such that I € P if and only if pr; B’ is a

cross on ierA;. Then B' = {a € I"_|A; : ay € pr; B’ for all I € P}.

Proof. We are assuming that there exists an (A/#,S)-cross among the subuniverses of A/ x S,
therefore its full inverse image under the natural homomorphism p : A x S — A/ x S is a
subuniverse of A x S. Hence there exists a (thick) (A, S)-cross among the subuniverses of A%, By
the Assumption 2, it must be that S is quasiprimal. Furthermore, there is no (5, S)-cross that is a
subuniverse of S2.

We are also assuming that there is an (A4/60, A/6)-cross among the subuniverses of (A/#)?
therefore S and A/ are not isomorphic. Let us suppose that nz < (A/0)2, for some a € A/6.
Then by statement (iii) of Proposition 3.2.1, we get that 1z is the unique (A/6, A/#)-cross that is
a subuniverse of (A/6)2. Furthermore, if » . 1s a subuniverse of A/f x S, for some be AJo,se S,

then by statement (x) of Corollary 3.2.5, we get that 7z < (A/0)? and sg , < A/f x S implies that

S

= b. Therefore, every (A/0, S)-cross that is a subuniverse of A/6 x S is of the form g s, for some

“n

S

»

Finally, we claim that nz < (A/6)? implies that @ is the special element of A/ such that

X(S’fi]) is a cross on II" ;A;, for some s € S, A; € {S, A/}, some partition {I,J} of @, and n > 2.

For contradiction, suppose that @ # b € A/0 and XE;’?) is a cross on II" | A;, for some s € S,

A; € {S,A/6}, some partition {I,J} of m, and n > 2. Either I =0 or I # (. If I =), then J =7
and C := XE;’E)) = Xz < (A/O)". Let w € (A/0)""2. Then C(z1,x9,u) is a subuniverse of (A/0)?

and, by definition of C, C(x1,x2,%) = n. However, n; < (A/0)% and @ # b contradicts the above

statement that 7z is the unique (A/6, A/0)-cross that is a subuniverse of (A/0)2. Thus I # (). Let
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i €l and j € J. WLOG, suppose that i = 2 and j = 1. Let C := XE}Q’Z)) < A/O xS x I 5 A;
and let w € II?" ;A;. Then C(z1,x2,u7) is a subuniverse of A/§ x S and, by definition of C,
C(z1,22,7) = ({b} X S) U (A/6 x {s}) = 35 ,. However 35, < A/ x S and @ = b contradicts the

above statement that every (A/6,S)-cross that is a subuniverse of A/# x S is of the form kg s, for

some s € S. Thus, we have shown that @ is the special element of A/6 such that XE;’EJ)) is a cross
on II | A;.
We will first show that the proposition holds when either n = 2, or Ay = .- = A,, or

n € P. Suppose that n = 2 and B’ is a reduced subuniverse of A; x As. Since A/f and S are not
isomorphic, it follows from Corollary 3.1.6 that B’ is either an (A4/6, S)-cross, an (S, A/6)-cross, an
(A/0, A/6)-cross, AJ§ x S, S x AJO, S? or (A/0)?, therefore the proposition holds.

If Ay = --- = A,, then either B < S" or B’ < (A/f)™. Suppose B’ < S™. Since S is
quasiprimal and B’ is reduced, it follows from Proposition 2.4.5 that B’ = S™. Now suppose that
B' < (A/0)". Since ng < (A/6)? and A/ is strictly simple, it follows from Proposition 2.4.7 that
the proposition holds for B’.

Lastly, suppose that m € P. It is clear that B’ C {@a € I |A; : a; € pr;B',I € P}.
Furthermore, since m € P, for any @ € {a € I |A; : a; € pr; B',I € P}, we get that a = (a)n €
pry B' = B’, hence B’ O {a € II! 1A; : a; € pr; B’,I € P}. Therefore, we have shown that the
proposition holds when either n =2, or Ay =---=A,,orn € P.

Now let us suppose, for contradiction, that the proposition fails. Let n be minimal such that
there exists a reduced subuniverse B’ of II?" | A; where B’ # {a € II]" |A; : a; € pr; B',I € P}.
Then n > 3, there exists some distinct i, j € 7 such that pr; B’ = S and pr; B’ = A/f, and 7o € P.

Let £k € m and P, be the family of subsets of @ \ {k} such that I € Py if and only if
pry(pra 1y B') is a cross on Ilicm (x)A;. Recall that pr;(prp (ry B') = pry B'. Therefore, P, =
{ICm:1€ Pk¢I}. Since, for any k € 7, pry;, B’ is a subuniverse of Tliepm\ (1A, it follows from
the minimality of n that pr,, 4y B’ = {@ € Wiem\(x)Ai : @1 € pr; B, 1 € P} = {@ € Tigm (i Ai
arepr; B, I € Pk¢l}.

Clearly, B’ C {a € I |A; : a; € pr; B',I € P}. Since the proposition fails for B’, it must



119

be that there exists some @ = (u1,...,uy,) € {@ € I |A; : a; € pr; B',I € P} such that u ¢ B’.
Then tm (1} € {@ € Wiem (x)Ai s @1 € pry B, 1 € Pk ¢ I} = pry\ gy B'. Thus, for all 1 < k < n,

there exists some ¢, € Ay such that
(ul,...,uk_l,ck,uk+1,...,un) € B. (53)

Claim 5.5.6.1. If there exists some uw € I A;, ¢, € Ay, for all 1 < k < n, such that u ¢ B’

and (Ui, ..., Up_1,Chk,Uks1,---,Up) € B, for all 1 < k < n, then, for each 1 < i < j < n,

B (Ui, .oy Uiy Ty Wi 15 - o s Ujm1, Ty Ujt 1, - - -, Up) 1S @ subuniverse of A; x Aj and
B,(Ula-n7Ui71a$i,ui+17---7Ujflamjauj+la-~'aun)

;

an automorphism of S, if A; =S = A;, or
the (A/0,S)-cross, sgc;, and ¢; =a, if A; = A/0 and A; =S, or

the (S, A/8)-cross, ¢, a, and ¢; =a, if Ay =S5 and A; = A/, or

the (A/0,A/8)-cross, ng, and ¢; =a = ¢j, if A; = A/0 = Aj.

Proof of claim. 1t is clear that B'(ui,...,Ui—1,%i, Wit1,. .., Uj—1,Tj, Uj4+1, ..., Uy) IS & subuniverse
of A; x Aj that contains the tuples (c¢;, u;), (us, ¢j) but does not contain (u;,u;), thus ¢; # u; and

Cj #Uj. Then
/
B(U1, ooy Uiy Ty Wi 1y o s U1, Ty U 1, - -+ Up) Ssd. Ay XA

and B (U1, ..., Wim1, Ti, Wit 1, - o, Uje1, Tjy Ujp 1, - - -, Up) 7 Ay X A

WLOG, we will suppose that i = 1 and j = 2. If A} = S = Ag, then B/ (21,22, us, ..., uy) <s4
S? and B'(z1,22,us,...,u,) # S%, implies, by Corollary 3.1.6, that B'(x1,x2,us,...,u,) is an
automorphism of S.

Suppose that A; = A/0 and Ay = S. We saw that A/f and S are not isomorphic and
B'(x1,29,us,...,u,) # A/0 x S, therefore it follows from Corollary 3.1.6 that B'(x1, x2,us, ..., uy)

is an (A/6,S)-cross. Furthermore, since (u1,c2), (c1,u2) € B'(x1,x2,us,...,u,) and (u1,u2) &
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B'(x1,x2,us, ..., u,) we get that B'(x,x2, us, ..., up) = ¢, ¢, which means, as we discussed at
the beginning of the proof, ¢; = @. A symmetric proof shows the result when 4; = S and As = A/6.

Finally, suppose that A1 = A/ = As. We have that (uj,c2), (c1,u2) € B/ (21,22, us3, ..., uy).
We claim that ¢; = @ = ¢o. Recall the 4; = S for some i € m. WLOG, suppose that i = 3.
Then we have that A; = A/f and A3 = S implies B'(x1,ug,x3,uy,...,uy,) is the (A4/6,S)-cross,
%e s and ¢; = a. Similarily, A2 = A/0 and A3 = S implies B'(u1,z2, 3, u4,...,uy,) is the
(A/6,S)-cross, scy e, and ca = a@. Thus (u1,c2) = (a,c2), (c1,u2) = (@,c2) and (@, c2), (@,c2) €
B'(x1,x9,u3,...,uy,). Since B'(z1,x2,us,...,uy) is a subdirect subproduct of (A/#)? and is not
equal to the full direct product (A/8)2, it follows from Corollary 3.1.6 that B'(x1,z2,us, ..., uy,) is
either an automorphism of A/# or an (A/6, A/6)-cross. By statement (vii) of Proposition 3.2.4, we
have that 1z < (A/#)? implies every automorphism of A/ must fix @. Thus, if B'(x1, 22, us3, . . ., Uy)
is an automorphism of A/#, then (a,us) € B'(x1,x2,us, ..., u,) implies ug = @, thus ug = a = ca,
which is a contradiction. Hence, B'(x1,x2,us,...,uy,) is an (A/6, A/f)-cross and, since ng is the
unique (A/6, A/#)-cross that is a subuniverse of (A/0)2, we get that B'(z1,x2,us,...,un) = Na.

This completes the proof of the claim. O
Claim 5.5.6.2. There exists at most one i € m such that A; = S.

Proof of claim. Suppose not. WLOG, suppose A1 = S = As. We are assuming that there exists
some j € . such that A; = A/6#. WLOG, suppose that j = 2. Then by Claim 5.5.6.1 we have that
B'(x1,u2,x3,u4, . .., u,) is an automorphism of S and B’ (u1, x2, x5, u4, . .., uy) is an (A/60, S)-cross.
Therefore B'(x1,x2,23,u4,...,uy) is a subuniverse of S x A/f x S that satisfies the assumptions
of Corollary 5.3.2. Then it follows from Corollary 5.3.2, that either A < A? or K < A3, for some
b e A\ S. However, since S is quasiprimal, this is a contradiction to Assumption 2. This completes

the proof of the claim. O

Since we have that the proposition fails for B’ < I ;A; where A; = S for some ¢ € 7, it

follows from Claim 5.5.6.2 that there exists a unique element ¢ €  such that A, = 5.
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Either P # () or P = (). We will consider these two cases separately. First suppose that P # ()
and let I € P. WLOG, we may permute the coordinates of B’ so that I = {1,...,m}. Recall
that we showed that proposition holds if @ € P, thus, since we are assuming that the proposition
fails for B’, it must be that m < n. By Claim 5.5.6.2 there exists at most one i € n such that
A; = S. Therefore we may assume, WLOG, that A; = A/ for all 1 <i < m — 1. Since m < n
it follows from (5.3) that (u1,..., Um—1,Um), (U1, .., Um—1,Cm) € pr; B'. We claim that u; = a for
some 1 <4 <m— 1. Suppose not. Then (uy, ..., Un—1,Un), (U1,...,Un-1,¢n) € pr; B and pr; B’
a cross on IlcrA; with special element @ € A/6 implies that wu,, = ¢,,, which contradicts u; # ¢,
for all 1 <+¢ < n. Therefore u; = @ for some 1 <i <m — 1. WLOG, suppose that u; = a.

We have made no assumption on A,,, thus either 4,, = S or 4,, = A/0. We will consider each
case separately. First suppose that A,, = S. Then A; = A/0, A,, = S implies, by Claim 5.5.6.1,
that B'(z1,u2, ..., Um—1, Tm, Um+1, - - -, Up) is the (A/0,S)-cross, »5,,, and ¢; =a. Then ¢; =a =
u1, a contradiction. Now suppose that A,, = A/0. Then A} = A/0 = A,, implies, by Claim 5.5.6.1,
that B'(z1,u2, ... Um—1, Tm, Um+1, - - - Up) is the (A/0, A/O)-cross, ng, and ¢; = @ = c3. Thus
¢1 = @ = uy, a contradiction. Therefore P # () contradicts u; # ¢;, for all 1 <7 < n.

Now suppose that P = ). We will first consider the case when n = 3 and then consider
the case when n > 3. Suppose that n = 3. Then B’ is a reduced subuniverse of H?:lAZ— such
that no projection of A is a cross and, since the proposition fails for B’, B’ # Hf_lAi. Finally, we
showed that ¢ is the unique such element of {1,2,3} such that A, = S. WLOG, we will permute
the coordinates of B’ so that B’ < A/ x A/# x S.

Then by Claim 5.5.6.1 we get that B'(u1, z2, 23) = g4, = B'(z1,u2,23), B (21,22, u3) = 1,

and ¢y = a = co. Then,

B' D ({ur} x {@a} x S)U ({ur} x A/0 x {c3})
U ({a@} x {ua} x S)U(A/8 x {uz} x {e3})

U (A/0 x {a} x {us}) U ({a} x A/0 x {uz}).

Let I = {3} and J = {1,2}. We claim that B’ D X?f. Suppose not. Then there exists some
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tuple (v, ve,v3) € X?i’]a such that (vi,ve,v3) ¢ B’. By the definition of X?i’]a we know that either
v1 = @, or vy = @, or v3 = u3. Suppose that v; = @. From the above list of subsets of B’, we get that
B'(@, z2,x3) is a subuniverse of A/f x S that contains ({uz} x S) U (A/0 x {us}) and uz # c2 = a,
therefore, it follows that B’(@, 22, x3) is not an (A/6, S)-cross and thus, by Corollary 3.1.6, we have
that B'(a,zo,x3) = A/6xS. Then B’ D {a} x A/0xS > (a,vq,v3) = (v1,v2,v3), a contradiction. A
symmetric argument shows that we get a contradiction if vo = @. Suppose that v3 = c3. From above
we have that B'(x1, z2, c3) is a subuniverse of (A/6)? that contains ({u;} x A/8)U(A/x {us}) and
u; # ¢; =@, for i = 1,2, thus, B(z1,x2,c3) is not an (A/6, A/6)-cross, therefore, by Corollary 3.1.6,
B'(z1,79,c3) = (A/0)2. Then B’ O (A/0)? x {c3} > (vi,v2,¢3) = (v1,v2,v3), a contradiction.
Therefore we have shown that B’ D X;?’JE.

Since P = () we have that B’ # Xi‘j’f. Therefore there exists some tuple (vq,vs,v3) € B’ such

that (vq,vg,v3) & X??’f, which means v; # @ # v2 and vg # ¢3. Then v; € A/6 implies that
B' D XP D ((A/0)* x {es}) U (A/0 x {a} x §) D ({v1} x A/ x {e3}) U ({vr} x {a} x 9).

Therefore B(vy, 2, x3) is a subuniverse of A/0 xS that contains (A/6 x {c3})U({a} x S)U{(va,v3)}.
Since vo # @ and v3 # cs3, it follows that B(vi,ze,23) = A/6 x S. Thus ({v1} x A/8 x S) C B'.
Also, ({a} x A/0 x §) € X' C B', where @ # v1. Let W € pryz B' = A/6 x S. Then B'(z1,)
is a subuniverse of A/f that contains vy, a, where v; # @, which means B'(z1,w) = A/f. Since w
was an arbitrary element of pry 5 B’, we get that
B'=A/0x | {w}=A/0xA/0xS,

WEpry 3 B
which contradicts the assumption that B’ # II?_; A;. This completes the proof when n = 3 and
P =0.

We will now suppose that P = () and n > 4.
Claim 5.5.6.3. Let j € n. Then B'(x1,...,2j-1,Uj,Tjq1,...,Tn) 5 a cross on Micp ;1A

Proof of claim. Let j € m. Then B'(z1,...,%j—1,%j,Tj41,...,Ts) is a subuniverse of Wiem\ 3 A

WLOG, suppose that j = 1. Clearly, B'(u1,x2,...,7,) is a subuniverse of Tl;cz 134 We will
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show that B’(uy,x2,...,x,) is reduced, no m-ary projection of B'(uj,xo,...,2,) is a cross, for
2<m<n—2 and B'(u1,22,...,2,) # iem\ (j3Ai- Then the result of the claim will follow from

the minimality of n.

First we will show that B'(uj,x2,...,2,) is reduced. Since c,ur € pry B'(u1,22,...,2y)
and ¢y # uy, for all 2 < k < n, we get that no unary projection of B'(uy,x2,...,z,) is trivial. Fur-
thermore, since n > 4, for all 2 <4 < j < n, we have that (c;,u;), (ui,u;) € pr; ; B'(u1, 22, ..., 7).
Thus, if pr; ; B'(u1,2,...,2,) is an automorphism, then ¢; = u;, which is a contradiction. There-
fore, no binary projection of B'(uj,x9,...,2,) is an automorphism. Since S is quasiprimal this
shows that B'(u1,x2,...,x,) is reduced.

Now, we will show that no m-ary projection of B'(uy,x2,...,x,) is a cross, for 2 <m < n—1.

Let I' C {2,...,n}, |[I'| = m. Let I = I" U{1}. Then |I| = m+ 1 < n and pr; B’ is a reduced
subuniverse of II;c7A; such that, since P = (), no projection of pr; B’ is a cross. By the minimality

of n we get that pr; B’ = Ilic;A;. Then u; € pry B' implies pr; B' 2 {u1} x Iep A =

{ur} x ;e A;. Hence prp B'(uy,x2,...,2,) 2 IiepA;. Since I' was arbitrary, we have shown
that no m-ary projection of B'(uj,zo,...,2,) is a cross, for 1 <m < n — 1.

Then it follows from the minimality of n that B'(u1,z2,...,zy) is the full cross on II" ,A,.
This completes the proof of the claim. O

Recall that ¢ is the unique element of 7@ such that A, = S. Let I = {¢} and J =7\ {¢}.

Claim 5.5.6.4. B’ D X}/

Proof of claim. To show this claim we will show that, for j € J, B'(z1,...,2j-1,@, Zj41,...,%n) =
iem (A and, for j € I, B'(z1,...,xj-1,u5, %511, -, ¥n) = Wicm (;3Ai. WLOG, we will show
this result for j = 1.

First it will be useful to show that, for any 2 < k < n,

{al} X Hieﬁ\{l,k}A’i g B”(xla vy Lhe—1, Uk The41y - - - 7‘7;71)7

where a1 = uy, if A1 =S, and a1 = @, if Ay = A/§. WLOG, suppose that k¥ = n. Claim 5.5.6.3
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implies that B'(x1,...,2p—1,u,) I8 a cross on H?;llAi. Thus there exists some a € A; such that
{a} x H?;;Ai C B'(x1,...,Zpn—-1,uy). Since A; and Ay are not both equal to S, it follows from
Claim 5.5.6.1 that B'(x1, 22, us, ..., un) = ({a1} x A2) U (A1 X {az2}), where a; = u; if A; =S and
a; =a if A; = A/6, for i = 1,2. We claim that a = a;. Suppose not. Note that {a} x H?;;Ai -
B'(z1,...,2n—1,uy) implies {a} x Ay X {(us,...,u,)} C B”. Also B'(x1,x2,us,...,u,) = ({a1} x
A) U (Ay x {az}) implies {a1} x Ay x {(us,...,u,)} C B”. Therefore ({a} x A2)U ({a1} x Az) C
B'(z1,x2,u3,...,uy). Then for v € Ay, we have that B'(x1,v, us, ..., u,) is a subuniverse of A; that
contains the distinct elements a, a1. Since A; is strictly simple, it follows that B'(z1, v, us, ..., u,) =
Ay. We chose v € Ay arbitrarily, therefore B'(x1, x2, us, ..., u,) = Ay X UveAQ{v} = Ay x As, which
contradicts B'(z1,x2,us3,...,un) = ({a1} x A2) U (Az x {a2}). Thus a = a; and we have shown
that {a1} x H?;;Ai C B'(x1,...,Zn-1,uy), where a; = uy, if Ay =S, and a1 =@, if Ay = A/6.
Let,

ui, if A1 = S
g:
a,if Ay = A/f.

Then we have shown that {g} x TI* 2} A; x {ug} x Iy, A; € B”, for each 2 < k <n. Thus

Blgws.ow) 2 | (A x fug} x I, Ay).

ke{2,...,n}
Clearly B'(g,z2,...,%,) is reduced and no m-ary projection of B'(g,xa,...,z,) is a cross, for
2 <m < n — 2. Furthermore, we claim that B'(g,z2, ..., ;) is not a cross on II" ,A;. Recall that

n>4, A =8, and A; = A/, for all j € J. Then it follows from Claim 5.5.6.1 that ¢; = @ for all

jeJ. It B'(g,xz9,...,2y) is a cross on I ,A;, then we have that

B(g, 22, yx0) 2 () (A0 x {ug} x i, Ay)

ke{2,....n}
implies u; = @, for all j € J. Thus u; = @ = ¢;, which is a contradiction. Therefore B'(g, 2, ..., zn)
is not a full cross on II?" ,A;. Then it follows from the minimality of n that B'(g,z2,...,z,) =

IT?" ,A;. This completes the proof of the claim. O
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From Claim 5.5.6.4 we have that B’ contains the cross Xgﬁ}’a). We are assuming that no
projection of B’ is a cross, therefore there must exist some tuple (vq,...,v,) € B’ such that
(V1,...,0n) & Xgﬁ}’a). Then v, # u, and v; # @, for all j € J.

WLOG, we will permute the coordinates of B’ so that A1 = A/6. Clearly B'(v1,x2,...,xy)
is a subuniverse of I ,A;,. We claim that B'(v,x2,...,2,) is reduced and no projection of

B'(vi,xa,...,xy,) is a cross. Since B’ contains the full cross ny}’a), we have that {v} x X%}’\E{)l} C

B’, thus B'(vi,z2,...,2,) 2 Xg“f]’\a{)l}. Therefore it is clear that B'(vi, o, ..., x,) is reduced and

(u.,@)
{1} Y

(v2,...,vn) C B'(v1,22,...,2,), where vj # @, for all j € J, and v, # w,. Thus B'(v1,x2,...,2T,) #

no m-ary projection of B'(vq,x,...,x,) is a cross, for 2 < m < n — 2. Furthermore, X

Xgﬁ}’\a{)l} and, since B'(v1,22,...,%,) 2 X?f}’\a{)l}, it cannot be that B'(vy,xa,...,z,) is a cross on
I ,A;, therefore by the minimality of n we get that B'(vi,z2,...,2,) = I ,A;.

We have shown that ({v1} x II}_»A;) € B’ and pry__,, B’ = II}_,A;. Furthermore, since B’
contains X5, we have that ({@} x I} ,A;) C B'. Thus ({@} x I_,A;) U ({1} x II7,A,) C B,
where vy # @. Let W € pry__,, B’ = II}_,A;. Then B'(z1,w) is a subuniverse of A/f that contains
v1,a, where vy # @. Since A/@ is strictly simple, we get that B'(x1,w) = A/#. The choice of w was

arbitrary in pry ,, B’, therefore

B'=A/0x |) (@} =A41 x4 =TI A,

,,,,,

which contradicts our assumption that B’ # II?_;A;. Therefore our assumption that there exists
some reduced subuniverse for which the proposition fails is incorrect. This completes the proof of

the proposition. O

In Propositions 5.5.4, 5.5.5, and 5.5.6 we obtained similar descriptions for the reduced sub-
universes of II?" ;A;, where A; € {S,A/6}, under various assumptions on the existence of crosses
among the subuniverses of (A/6)? and A /6 xS. Next we will translate these results into descriptions
of subuniverses of finite powers of A.

The analog of Definition 5.5.1 is the following.
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Definition 5.5.7. Let B; € {S,A}, 1 <i < n. Let {I,J} be the partition of 7 such that B; =S
whenever i € I and B; = A whenever i € J. Let s € S and let G = S or G = {b} for some b € A\ S.

Then we will call the set

XS%) = {(z1,...,zn) € II}_B; : there exists some ¢ such that z; =sifi € [ and x; € G if i € J}

a (Bj)l -cross. If By =--- =B, € {S,A}, then we will simply denote an (S)'_,-cross by X3, and

an (A)P_,-cross by X$ with s and G as before.

It is easy to see that if p denotes the natural homomorphism II?_;B; — II?'_; A; where A; =
A/0if B; = A and A; = S if B; = S, then the (B;)]_-cross Xf}Gj) is the full inverse image, under
p, of the cross X?’IEJ) on IT?"_;A; wherea =S if G =S and @a=1b if G = {b} for some b € A\ S.

In particular, forn =2, s € S and b € A\ S we have
S __ S _ b — (S,S) _ —1 (va) R -1
Xy =vs, Xy =Xxss Xo=t, Xy op =Ase X({ihen = s

Theorem 5.5.8. Suppose that A satisfies Assumption 2 and 0 is a congruence on A. Let B <, 4.
I B; (n > 2) where B; € {A,S} for all 1 < i < n, and let p be the natural homomorphism
I B; — I A; where A; = A/0 if B, = A and A; =S if B; =S. If B = p(B) is a reduced

subuniverse of II1'_; A;, then
B={aeclll'B;:as € pr; B for all I € P}, (5.4)
where P is the set of all subsets I of m such that pr; B is a (B;)ier-cross.

Proof. Under the assumptions of the theorem, A/ is a finite idempotent strictly simple algebra.
Recall that |A\ S| > 1, therefore, |[A/6| > 2. Then by Corollary 2.4.9, A/ is either quasiprimal or
affine or has an (A4/60, A/0)-cross among its subuniverses. Therefore one of Propositions 5.5.4, 5.5.5,
or 5.5.6 applies to B’. In each case, since B’ is reduced, therefore B is a reduced subuniverse of A™.
Hence, by Theorem 5.4.1, B is #-closed in its A-coordinates, which implies by Proposition 2.2.8

that B = p~1(B').
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Therefore, if A /6 is quasiprimal or affine, then the equality proved in Proposition 5.5.4 implies,

by taking inverse images, that
B ={(21,...,zn) € B; : (z,25) €pr;; B, 1 <i < j <n}.

As we noted at the beginning of the proof of Propositions 5.5.4, in this case a binary projection of
B'is either an (S, A/6)-cross, an (A/6, S)-cross, or a direct product S?, (4/0)2, Sx A/f, or A/OxS.
Thus a binary projection of B is either an (S, A)-cross, an (A, S)-cross, or a direct product S?, A2,
Sx A, or Ax S. If pr; ; B is a direct product, then pr; ; B = pr; B x pr; B = B; x Bj, so the
condition (z;,z;) € pr; ; B makes no restriction, and can be omitted. Thus we get that (5.4) is true
in this case.

Suppose there exists an (A/6, A/6)-cross among the subuniverses of (A/6)2, but there is no
(S, A/0)-cross among the subuniverses of S x A/6, then by permuting coordinates if necessary, we
get from Proposition 5.5.5 that the equality B’ = pr; B’ X prg B’ holds for B’ where J is the set of
all i € m such that B; =S, and K is the set of all i € 7 such that B; = A. Here pry B’ is a reduced
subuniverse of a power of the strictly simple algebra A /0, therefore it follows from Proposition 2.4.7
that pry B’ = {a € IliexA; : ay € pr; B for all I € P'}, where P’ is the set of all I C K such
that pr; B is an cross on (A/0)!. Hence B’ = {@ € I""|A; : a; € pr; B for all I € P'}. By taking
inverse images under p we get that (5.4) is true.

Finally, if there exists an (A/6, A/f)-cross among the subuniverses of (A/#)? and also an
(S, A/0)-cross among the subuniverses of S x A/, then (5.4) follows immediately from the equality

proved in Proposition 5.5.6, by taking inverse images. O

Theorem 5.5.9. Suppose that A satisfies Assumption 2 and that 0 is a congruence on A. Then

the relational clone RClo(A) of A is generated by the following members of RClo(A).
(i) All {a} fora € A.
(ii) All automorphisms of A, S and A/6.

(iii) All isomorphisms S — A /6.
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(iv) All h.d.-automorphisms of A, S, and A/6.

v) All higher dimensional crosses X9 in RClo(A) where s € S, G =S8 orG={b} for some
(1,7)

be A\'S, and {I,J} is a partition of m, n > 2 with |I] < 1.

Proof. Let R denote the set of relations listed in (i)—(vi). It is clear that R C RClo(A). To show
that R generates RClo(A) we will choose any subuniverse B of a finite power of A, and want to
show that B is contained in the relational clone (R)rcione generated by R.

All members of
Ta ={{a} :a € A} UAut(S) U Aut(A) U Auty 4.(S) U Auty q.(A)
are listed in R, so it follows that 7y C (R)Rcione- All remaining members of
1 = Aut(A/0) UTsom(S, A/0) U Auty,q.(A/6)

are listed in R, so we get as before that 7, C (R)rcione-

Now let B be a subuniverse of A™. Then it follows from Proposition 5.1.3 that there exists a
nonempty subset I C 7 such that B € (pr; B, 7a) rcione and pry B is a reduced subuniverse of Al
Thus, it will suffice to show that pr; B € (R) rcione-

Therefore, replacing B by pr; B, we may assume that B is reduced. Let B <;4 II7";B;
where B; € {S,A} for all 1 < i < n. With the same notation as in the preceding theorem, let
B’ = p(B). We know from Theorem 5.4.1 that B is #-closed in its A-coordinates, and therefore
B = p~Y(B’). Also, it follows from Proposition 5.1.6 that there exists some nonempty J C 7 such
that B’ € (pr; B, 7)) rcione and pr; B’ is reduced. By examining the proof, and using the fact
that B = p~1(B’), one can see that B € (pr; B, 7)) RCione also holds.

Therefore, replacing B by pr; B, we may assume that B is such that B’ is reduced. Now
Theorem 5.5.8 shows that B is in the relational clone generated by the relations in (vi). This proves

that B € <R>RClone~ O
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