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Sea level extremes and compoundingmarine
heatwaves in coastal Indonesia

Weiqing Han 1 , Lei Zhang 1,2, Gerald A. Meehl 3, Shoichiro Kido 4,
Tomoki Tozuka 4,5, Yuanlong Li1,6, Michael J. McPhaden 7, Aixue Hu 3,
Anny Cazenave8, Nan Rosenbloom 3, Gary Strand 3, B. Jason West9 &
Wen Xing2

Low-lying island nations like Indonesia are vulnerable to sea level Height
EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger
ecological and societal impact. Here we combine observations with model
simulations, to investigate the HEXs and Compound Height-Heat Extremes
(CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We
find that anthropogenic sea level rise combined with decadal climate varia-
bility causes increased occurrence of HEXs during 2010–2017. Both HEXs and
CHHEXs are driven by equatorial westerly and longshore northwesterly wind
anomalies. Formost HEXs, which occur duringDecember-March, downwelling
favorable northwest monsoon winds are enhanced but enhanced vertical
mixing limits surface warming. For most CHHEXs, wind anomalies associated
with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken
the southeasterlies and cooling from coastal upwelling during May-June and
November-December. Our findings emphasize the important interplay
between anthropogenic warming and climate variability in affecting regional
extremes.

Extreme sea level events are one of the most consequential manifes-
tations of climate change1,2. Anthropogenic global sea level rise over
the past century hasmagnified flooding and caused clear-sky floods in
many coastal regions around the world3. While much emphasis has
been placedon sea level extremes induced by storms and high tides on
daily time scales4, sea level extremes driven by climate variability and
their evolutionunder anthropogenic climate changehave received less
attention. As themost dominant interannual climatemode, the El Niño
- Southern Oscillation (ENSO) has global impacts on climate5. Over the
tropical Indian Ocean, El Niño (i.e., positive phase of ENSO) often

instigates strong marine heatwaves in the Indonesian-Australian basin
during boreal winter-spring6. The 2015–2016 El Niño initiated a strong
and prolonged marine heatwave in the Indonesian-Australian basin
that peaked inMarch 2016, and the 2016 negative Indian Ocean Dipole
(IOD7) sustained the marine heatwave during the following boreal
summer-fall8.

While sea level Height EXtreme (HEX) events and marine heat-
waves can have large ecological, economic, and social consequences
individually9, in combination they can be muchmore devastating, like
compound extremes over land (e.g., droughts and heatwaves)10 which
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are becoming more common in a warming climate11. Yet, integrated
studies of HEX and the compounding effect of a marine heatwave –

dubbed Compound Height-Heat EXtreme (CHHEX) – are still in their
infancy. A better understanding of these extremes will improve risk
assessments10,12, and investigating their interplay with anthropogenic
climate change and decadal-to-interdecadal climate variability (refer-
red to in short as ‘decadal’ hereafter) may help improve decadal pre-
dictions and future projections of these high-impact events.

The Indian Ocean rim region hosts one-third of the world’s
population, mostly from developing countries with low-lying coastal
areas that are highly vulnerable to climate variability and change13.
Located at the confluence of the tropical east Indian and west Pacific
Oceans within the Indo-Pacific warm pool (Fig. 1a) and being home for
diversified coral reefs, Indonesia is strongly influenced by climate
variability associated with monsoons14, IOD, and ENSO. Rapid urbani-
zation of Java island and population growth in low-lying areas15, toge-
therwith fast sinking due to groundwater extraction (e.g. Jakarta is the
fastest sinking city in the world), further increase vulnerability to cli-
mate variability and change1,3, making the problem of rising sea level
particularly acute in this region. Therefore, Indonesia is an ideal test-
bed for understanding HEX and CHHEX events in a changing climate.

Here we combine monthly in situ and satellite observations to
detect climate-driven HEX and CHHEX events around Indonesian
coasts of the Indian Ocean in recent decades and to understand their
causes. We primarily focus on the satellite altimetry era since 1993
when accelerated global sea level rise has beendetected and attributed
largely to human-induced climate change16–18. To put our analysis in a
longer-term context, we extend our analysis to the 1960s using rea-
nalysis data - model hindcast with assimilated observational data - and
model experiments. To help understand the forcing and processes
governing HEXs and CHHEXs, we carry out model experiments using
the Regional Ocean Modelling System (ROMS19), which is an ocean
general circulation model (OGCM), and the Community Earth System
Model version 1 (CESM120),which is a coupled global climatemodel. To
test the model dependence of simulated signals, we perform addi-
tional experiments using an independent OGCM, the Hybrid Coordi-
nate Ocean Model (HYCOM21). To further assess the roles of remote

equatorial Indian Ocean wind versus local longshore wind in generat-
ing HEX and CHHEX events, we employ a Bayesian dynamical linear
model22. Additionally, the results from large ensemble experiments of
the Coupled Model Intercomparison Project phase 6 (CMIP6), which
are assessed in the Intergovernmental Panel on Climate Change Sixth
Assessment Report (IPCC AR6), are also analyzed to estimate the
impacts of external forcing (natural plus anthropogenic) on Indone-
sian regional sea level change. The multi-dataset and multi-model
approach is intended to identify signals that are robust to cross-
dataset and cross-model differences. See the Methods section for
more details.

Results
Detecting height extreme (HEX) & compound height-heat
extreme (CHHEX) events
Satellite altimeter data from 1993–201823 show rapid sea level rise
along the east coasts of the tropical Indian Ocean, with a rising rate of
5.12 ± 0.17mm/yr near the tide gauge location on the Java coast
(Fig. 1b) compared to the 3.1 ± 0.3mm/yr global mean rise16,17,24.
Accompanied with the rapid sea level rise is weak sea surface tem-
perature (SST) warming near Java and stronger warming around the
southern coast of Sumatra (Fig. 1c). Overlying the rising trend there are
large year-to-year variations, as shown by the ~10yr tide gauge record
at Java coast25 and satellite altimeter data at the nearest location
(Fig. 2a). The altimeter data detect fifteen HEX events during the 26 yr
(1993–2018) period, defined as monthly mean sea level anomalies
(SLAs) exceeding the 90th percentile, which is a commonly used
threshold for defining extreme events such as marine heatwaves dis-
cussed below26. The tide gauge record agrees well with the altimeter
data (correlation 0.99), albeit with somewhat larger amplitudes27–30

likely because the tide gauge contains long-period tide signals but
satellite altimeter data removes them23. It is also possible thatmonthly
tide gauge data includes signals of storm surges, which cannot be
adequately resolved by altimeter data. Additionally, satellite altimeter
data have spatial averaging but tide gauge station data do not. None-
theless, the high consistency suggests that satellite altimeter data can
be used to detect HEXs in coastal Indonesia. The SLAs (with and

Fig. 1 | Satellite observed sea surface temperature (SST) and surfacewind stress
together with trend maps of satellite sea level, surface wind, and SST. a Mean
SST and surfacewind stress for the 1989–2018 period.b Linear trend of satellite sea

level and cross-calibrated multiplatform surface wind stress from 1993–2018.
c Linear trend of satellite SST for 1993–2018. The tide gauge location at Java coast is
marked by “o” in b and c; its data is shown in Fig. 2a.
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without seasonal cycle) and the SST anomalies (SSTAs) along the entire
Indonesian coasts of the south Indian Ocean (i.e., southern Sumatra,
Java and Nusa Tenggara) are highly coherent, albeit with some quan-
titative differences (Supplementary Figs. 1b, 2), suggesting that similar,
large-scale ocean dynamics control the coastal SLA and SSTA. Our
discussions below primarily focus on the Java coast.

Notably, the majority (ten of fifteen) of the HEXs occur in the
8-year period of 2010–2017, with five other HEXs distributed across
1993–2009 (Fig. 2a). The strongest HEX occurs in June 2016, when
monthly mean sea level rose by ~0.44m (0.45m) from satellite (tide
gauge) observations. This monthly magnitude is comparable to the
0.5–1m surges due to tropical storms and high tides with a return
period of 100yrs along the Indonesian coasts4,31. The concentration of
HEX events in 2010–2017 is more evident in a longer period of
1960–2017 using the European Centre for Medium-Range Weather
Forecasts (ECMWF) ocean analysis/reanalysis system 4 (ORAS4) data32

and ROMS model simulation averaged over Java coastal area (Sup-
plementary Fig. 3, black curves). Among the fifteen HEX events, six
are compounded by marine heatwaves, i.e., CHHEXs, with
four CHHEXs occurring during 2010–2017 (Fig. 2a; Supplementary
Table 1). Here, marine heatwaves are defined as anomalously warm
water events when monthly SSTAs exceeding the 90th percentile26

(see Methods for details and for comparisons with heatwaves defined
by daily data).

While sea level signals of the CHHEXs encompass the entire
Southeast Asian coasts (Fig. 3a), the associated marine heatwaves are
limited to coastal Indonesia and an area extending a few hundred
kilometers offshore (Fig. 3c). By contrast, SLAs of theHEX alone events
areweaker and confined to the Indonesian coastswithout concurrence
of marine heatwaves (Fig. 3b, d). Here, we retain the seasonal cycle
when identifying HEX and CHHEX events because coastal inundation
depends on full sea level magnitudes, and many marine species (e.g.,
corals, kelp forest) are sensitive to extreme temperature values33,34 (see
Methods). With these definitions, the extremes occur throughout the
year except for July-October when coastal Indonesia is cold and sea
level is low (Fig. 2a & Supplementary Fig. 1c).

HEX concentration in 2010–2017
We hypothesize that anthropogenic global sea level rise combined
with decadal increase of SLA during 2010–2017 due to natural climate
variability cause the concentration of HEXs in this 8-year period. To
test the hypothesis, we perform a suite of model experiments using
ROMS and HYCOM. The two models and reanalysis data successfully
capture the satellite observed SLAs near the Java coast (correlation

Fig. 2 | Time series of observed and model-simulated monthly mean sea level
anomaly (SLA) and sea surface temperature anomaly (SSTA) from 1993–2018
near theCilacapB tide gauge locationat Java coast (markedby “o” in Fig. 1b, c),
together with 90th percentile of 8yr sliding SLA since 1960s. a Monthly mean
SLA from tide gaugeduring 2007–2016 (blue curve) and from themultiple-satellite-
merged altimeter data at the nearest grid point (black) together with satellite
observed monthly mean SSTA (red curve). The SLAs are relative to a 60yr
(1958–2017) mean of ECMWF Ocean Reanalysis System 4 (ORAS4) data at the
nearest location. Values exceeding the 90th percentile of altimeter data (horizontal
blue line) are identified as extreme events (indicated by vertical-dotted lines) and
dubbed Height EXtreme (HEX). Red dotted lines indicate HEXs co-occurred with

marine heatwaves, defined as SSTA (relative to a 30yr mean from 1989–2018)
exceeding 90th percentile (horizontal red line). We dub these events Compound
Height-Heat EXtreme (CHHEX). b Monthly SLAs from satellite (black, same as that
of a), ORAS4 reanalysis (red), and ocean general circulation model simulations
fromROMS andHYCOM(blue and purple). cThe time-evolution of 90th percentile
of SLA with an 8-year sliding window from ORAS4 reanalysis (red) & ROMS simu-
lation (blue) with & without the 1960–2017 linear trend (solid & dashed), and from
satellite altimeter data (purple) with & without anthropogenic global sea level rise
for 1993–2017 (solid and dashed). Note that the last value in 2013 represents the
90th percentile for 2010–2017. See Methods for data and model details.
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0.90–0.98; Fig. 2b). HYCOM and reanalysis data, however, under-
estimate the satellite-observed rising trend from1993–2017, but ROMS
realistically simulates the rising trend, falling in the uncertainty range
of satellite observation (Fig. 2b; Supplementary Table 2). The sea level
variability magnitudes from reanalysis and models are all within data
uncertainty range (Supplementary Table 2; see Methods for details).
The time-evolution of HEX strength is also well simulated by ROMS
compared to satellite data for their overlapping period (Fig. 2c). Both
ROMS and HYCOM successfully simulate the spatial patterns and
amplitudes of SLA and SSTA for CHHEX and HEX events (compare
Fig. 3 and Supplementary Fig. 4). The good agreement between
observations and model simulations (including ORAS4 reanalysis)
suggests that the signals we identify exceed cross-model and cross-
dataset differences, lending us confidence in using the models -
especially ROMS - to explore the relevant forcing and processes con-
trolling HEXs and CHHEXs.

To quantify the effects of anthropogenic sea level rise and natural
decadal variability, we remove the anthropogenically-induced global
sea level rise estimated from observation-based global-mean sea level
dataset18,35 (Methods) and natural decadal variability (8 yr lowpass fil-
tered SLA) from theROMSsimulation. After removing both effects, the
increased HEX occurrence and larger magnitude during 2010–2017
disappear (Fig. 4a; Supplementary Fig. 3c). The same conclusion holds
after removing the linear trend and decadal variability from ORAS4
reanalysis for 1960–2017 (Supplementary Fig. 3a). By only excluding
anthropogenic global sea level rise, the concentration of HEXs in
2010–2017 remains identifiable even though both frequency and
magnitude are reduced (Supplementary Fig. 3, red curves of b & d).
These results confirm our hypothesis that anthropogenic sea level rise
combined with decadal increase of SLA during 2010–2017 – rather
than randomness of HEX occurrence – causes the concentration of
HEXs on the 2010–2017 period. Anthropogenic sea level rise and a

decadal increase of SLA contribute roughly equally to the enhanced
HEXactivities during 2010–2017 (Figs. 2c, 4b, dark red andblack). Note
that the effect of external forcing (natural plus anthropogenic) on
dynamical sea level, which is regional sea level variation with global
mean sea level rise removed, near the Indonesian coast isweak (<2 cm)
with large uncertainties36, based on the large ensemble experiments of
multiple CMIP6 models (Supplementary Fig. 5).

Causes for decadal increase of SLA in 2010–2017
Thepositive decadal SLAduring 2010–2017, whichenhances theHEXs,
resultsmainly from surfacewind stress forcing (Fig. 4b, compare black
and cyan curves) associated with decadal variability of ENSO and IOD.
The enhanced equatorial westerly winds over the Indian Ocean
(Fig. 4d) pile up the warm pool water (Fig. 1a) in the eastern Indian
Ocean and increase sea level along the Indonesian coast; meanwhile,
strengthened northwesterly longshore winds near the southern
Sumatra and Java coasts cause surface Ekman mass convergence
toward the coasts and further enhance sea level rise there (Fig. 4d).
Thesearguments are further supportedby theBayesiandynamic linear
model forced by remote equatorial zonal wind and local longshore
wind over the Indian Ocean, producing decadal SLAs similar to that of
ROMS simulations (Fig. 4b, compare red, black and cyan lines).

The decadal anomalies of surface wind stress, which drive the
decadal sea level increase in 2010–2017, are largely associated with
ENSO decadal variability before 2012. This is because decadal SLAs
along Java coast from the 10-member ensemblemean of CESM1 Pacific
pacemaker experiments, which are forced by observed tropical Pacific
SST (Methods), can explain a large fraction of the total andwind-driven
decadal SLAs before 2012 (Fig. 4b, compare blue with black and cyan
lines) and follow the decadal variability of ENSO index (blue curves in
Fig. 4b, c). During the global surface warming slowdown period of
~2003–2012when the rate of global warmingdecreased, ENSOdecadal

Fig. 3 | Composite of satellite-observed monthly sea level anomaly (SLA), sur-
face wind stress anomaly, and sea surface temperature anomaly (SSTA) for the
peak months of the six CHHEX and nine HEX alone events. All anomalies are
relative to 1993–2018mean. a, bComposites of SLA (color) and surface wind stress

(arrows) for CHHEX & HEX alone events; c, d Composites of SSTA (color) and
surface wind stress (arrows) for CHHEX & HEX alone events. Wind vectors are the
average for the event peak month and the preceding month, considering the
propagation time of equatorial Kelvin waves that impact SLA and SSTA.
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variability is La Niña-like with intensified easterly trade winds in the
tropical Pacific37. The intense easterly trades enhanced the mass and
heat transports into the Indian Ocean from the Indonesian Through-
flow (ITF)38,39, likely also contributing to the persistent upward trend of
SLA in CESM1 experiments from 2003–2009. The effects of salinity are
weak in this coastal area40. The tropical Pacific forcing, however, can-
not explain the sustained positive SLAs from 2013–2017 (Fig. 4b, blue
and black). During this period, decadal variability of the Indian Ocean
Dipole7,41,42 changes from positive to negative phase, as shown by the
upward trend of decadal -IOD index (Fig. 4c, cyan). Here, -IOD index is
shown because negative IODs cause sea level increases along Indone-
sian coast. The negative IOD transition is associated with equatorial
westerly and longshore northwesterly wind anomalies (Fig. 4d), which
sustain the high SLAs from 2013–2017 (compare cyan curves of
Fig. 4b, c).

Individual HEX events: mechanisms
To understand the causes for the fifteen individual SLA peaks, we
analyze the seasonal-to-interannual SLA component, obtained by

removing the anthropogenic global sea level rise and 8yr-lowpass fil-
tered decadal variability. The results show that wind stress forcing is
the deterministic cause for individual HEX events (Fig. 5a, black and
cyan curves). The equatorial westerly wind anomalies cause Ekman
mass convergence to the equator, raising sea level. The high sea level
signals propagate eastward as equatorial Kelvin waves, which subse-
quently propagate poleward as coastally trapped waves upon
impinging on the easternboundary, inducing coherent sea level surges
along the Indonesian coasts (Figs. 3a, b; 5b). Meanwhile, the local
northwesterly longshore winds induce Ekman mass convergence to
the Indonesiancoast, enhancing the remotely forced equatorial signals
(Figs. 3a, b, 5b, red and cyan curves).

CHHEX versus HEX-alone events
To understand why someHEXs are accompanied bymarine heatwaves
(i.e., CHHEXs) while others are not, we first analyze their relationships
with climate variability. Note that albeit with the strong rising trend of
coastal sea level during the satellite era (Fig. 1b), the six CHHEX events
remain the same after removing the 1993–2018 trends from satellite

Fig. 4 | Time series of monthly sea level anomalies (SLAs) averaged over Java
coastal area (Supplementary Fig. 1) from model simulations, anthro-
pogenically induced globalmean sea level rise (SLR), climate indices, andmap
of sea level and surface wind anomalies averaged for 2010–2017. Calculations
are done for 1960–2017 but only 1993–2017 is shown for clarity. The 1960–2017
mean is removed from each time series. a ROMS simulated total SLA (black) and its
linear trend (blue), observational-based estimate of anthropogenic SLR (dark red),
and ROMS seasonal-to-interannual SLA with anthropogenic SLR and 8yr lowpass
filtered decadal SLA removed (cyan). b ROMS decadal SLA (black), the sum of
decadal SLA and anthropogenic SLR (dark red; which is the difference between the

black and cyan curves in a), ROMS SLA forced only by surface wind stress (cyan),
ROMSSLA fromBayesian dynamic linearmodel (DLM)due to equatorial zonalwind
and local longshore wind forcing (red), and SLA from the 10-member ensemble
mean of Pacific Pacemaker experiment using Community Earth System Model
version 1 (CESM1) (blue), which assesses the impacts of tropical Pacific sea surface
temperature variability. c Normalized indices of decadal variability (8 yr low-pas-
sed) of reversed El Niño-Southern Oscillation (-ENSO, blue) and Indian Ocean
Dipole (-IOD; cyan). d Maps of ROMS decadal SLAs and its forcing wind stress
anomalies averaged for 2010–2017.
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SLA and SSTA (Supplementary Fig. 6a). For the nine HEX alone events,
only theDec 2013HEX falls below the 90thpercentile after detrending.
ROMS SLAs after removing the 1993–2017 trend are close to that after
removing the 1960–2017 anthropogenic global sea level rise and
decadal variability (r =0.99; Supplementary Fig. 6b), so the latter is
used for our following discussions.

All six CHHEXs occur during negative IOD years, of which five co-
occurred with La Niña (the negative phase of ENSO) although in June
2016 La Niña is developing and -ENSO index is below 1 standard
deviation (Fig. 5c; Supplementary Table 1a). A negative IOD typically
develops in June and peaks in September-November with warm (cold)
sea surface temperature anomalies in tropical southeast (west) Indian
Ocean7,41. An exception is 2013 when the IOD index is negative from
April-October, peaks in May and becomes positive in November. The
May 2013 CHHEX has no co-occurring La Niña, and its seasonal-to-
interannual SLA is smaller than other CHHEXs’ (Figs. 5a, b, 6c).

The negative IOD and La Niña are associated with similar patterns
of surface wind anomalies in tropical Indian Ocean (Fig. 6b). Their co-
occurrence intensifies the wind anomalies; by interacting with seaso-
nal monsoon winds, they result in CHHEXs. The IOD is phase-locked
with boreal summer and fall, during which seasonal southeasterly

monsoon winds prevail43 (Supplementary Figs. 7a, b, 8). These winds
cause Ekman mass divergence away from the Indonesian coast, which
lowers sea level, shoals the thermocline depth (the depth range where
temperature decreases the fastest towards the deeper ocean), induces
seasonal upwelling of colder subsurface water to the surface, and
results in a cooler SST there (Supplementary Figs. 1c, 7a, b, 8 and
Fig. 6c, e). The interannual anomalies of equatorial westerly and
longshore northwesterly winds associated with negative IOD and La
Niña weaken or reverse the seasonally-prevailing southeasterly mon-
soon winds. These changed winds either reduce or reverse the seaso-
nal coastal Ekman divergence, raise sea level, deepen the thermocline,
reduce seasonal upwelling cooling and mixing of colder water from
below, causing large-amplitude interannualmarine heatwaves that last
from June–December (dark red curves of Fig. 6c, e; Supplementary
Figs. 7, 9). Meanwhile, the weakened or reversed southeasterly winds
also induce anomalous southeastward longshore currents, advecting
the warm equatorial water to the Indonesian coast and enhancing the
warm SST anomalies.

While the interannualwarmSSTAs are largely compensatedby the
seasonal cooling during July-October which led to weak total SSTAs
(sum of seasonal and interannual SSTAs), they enhance the seasonal

Fig. 5 | Time series of ROMSmonthly sea level anomalies (SLAs) averaged over
Java coastal area and climate indices. a Seasonal-to-interannual SLA from ROMS
main run experiment (total, black) and from wind-stress forced experiment (blue),
togetherwith themean seasonal cycle of SLA for 1960–2017 (purple).b Interannual
SLA (seasonal cycle removed) fromROMSmain run (black) and fromBayesianDLM
due to remote equatorial zonal wind and local longshore wind forcing (red), and

due only to remote equatorial wind forcing (blue). cNormalized reversed indices of
seasonal-to-interannual ENSO (-ENSO; black) and IOD (-IOD; blue); La Niña and
negative IOD events are identified when their indices exceed 1 standard deviation.
d Indian monsoon wind index (black; one month lead) and Australian-Indonesian
monsoon index (blue). Vertical dotted lines in each panel show the HEX (black) and
CHHEX (red) events. See Methods for definition of each climate mode index.
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warmSSTAs during the IOD initiation in June andpeak-to-decay period
of November-December (Fig. 6c & Supplementary Fig. 9), causing the
CHHEX events (Fig. 6). For the May 2013 CHHEX event, northwesterly
longshore wind anomalies associatedwith a negative IODwork against
the seasonal southeasterlies (Supplementary Fig. 8), causing a warm
interannual SSTA. The moderate interannual SSTA superimposes on
the high seasonal SST in May, leading to a marine heatwave (Fig. 6c).

The above arguments are further supported by the mixed layer
heat budget analysis (Fig. 6d). For the 1998, 2010 and 2016 CHHEXs,
reduced upwelling & vertical mixing, together with horizontal advec-
tion (Fig. 6d, dark red and green), cause the interannual warm SSTA
and marine heatwaves. For the May 2013 CHHEX, increased surface
heat flux together with reduced upwelling and vertical mixing
accounts for the warm SSTA.

By contrast, none of the HEX alone events is associated with co-
occurrence of negative IOD and La Niña, and their composite shows
little interannual SSTA along the Indonesian coast (Supplementary
Fig. 10). While most HEXs are associated with strong Indian and/or

Australian monsoon winds during December-March, one occurs in a
negative IOD year and three occur in La Niña years (Supplementary
Table 1a; Fig. 5). The Dec 2013 SLA falls below the 90th percentile with
weak interannual SLA associated with monsoon variability, suggesting
that with anthropogenic sea level rise and a decadal sea level increase,
even weak interannual variability that occurs in the normally high sea
level season can become an extreme event.

Thewarm interannual SSTAs associatedwith either a negative IOD
or a LaNiña are not strong enough to bring the seasonal-to-interannual
SSTAs above the 90th percentile (Fig. 6c). The rest of the HEX alone
events all occur duringDecember-March; their equatorial westerly and
longshore northwesterly wind anomalies associated with monsoon
variability enhance the seasonal monsoons (Supplementary Figs. 8,
10), causing coastal downwelling, raising sea level and deepening
thermocline. However, they increase the surface temperature very
little or even slightly decrease it (Fig. 6c, d&Supplementary Fig. 10) for
two reasons. Firstly, when the thermocline is already relatively deep, a
further deepening does not cause a significant increase in SSTA by

Fig. 6 | Composites of ROMS simulated sea surface temperature anomaly
(SSTA) and wind anomalies (from JRA55-do reanalysis data that force ROMS)
for the six CHHEXs and time series of SSTA& its budget terms averaged in Java
coastal area (white box). a Composite SSTA (color) and surface wind (arrows)
anomalieswith the 1993–2017mean removedbut seasonal variability retained tobe
consistent with Fig. 3c from observations. b Same as a but with seasonal cycle
removed. c Timeseries of mean seasonal variability (black) and interannual

variability with seasonal anomaly removed (dark red). d Terms of heat budget
analysis formixed layer SSTA (dark red curve inb): timechanging rate of SSTA from
all processes (dT/dt, black), from net surface heat flux (cyan), from subsurface
processes (upwelling+mixing, dark red) and horizontal advection+mixing (green).
Units: degree per month. e Same as c except for depth of 20 °C isotherm (D20)
from ROMS and ORAS4 interannual D20A, representing thermocline variability.
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reducing upwelling. Secondly, the northwesterly longshore wind
anomalies enhance, rather than weaken, the seasonal monsoon winds,
which strengthen the turbulent heat loss and mixing-induced cooling,
counteracting the warm SSTA caused by reduced upwelling. Note that
SLAs represent changes of mass and heat of the entire water column,
whereas SST variability can be controlled by surfaceheating processes.
Therefore, some marine heatwaves are not associated with sea level
extremes and vice versa.

Discussion
Satellite observations, tide gauge data, reanalysis products, andmodel
simulations all have unique error characteristics. The fact that they are
highly consistent in detecting and simulating the extreme events in
coastal Indonesia demonstrates that the HEX and CHHEX events
identified here well exceed data and model uncertainties. The high
consistency between satellite altimetry and tide gauge observations
points to the importance of continued altimetry missions and tide
gauge networks in detecting and understanding sea level extremes for
island nations in a changing climate. The agreement among different
models on simulating the HEX and CHHEX events lends further con-
fidence in our results. Since the 1960s, anthropogenic global sea level
rise has increased the HEX magnitude near the Java coast by
0.7m–0.8mduring 2010–2017, comparable to the seasonal increase of
sea level. The decadal variability of ENSO and IOD further enhance the
SLAs by ~0.7m during the 2010–2017 period, further boosting the
frequency and magnitude of HEXs in the past decade. These results
indicate our need for reliable decadal predictions of major climate
modes, in conjunction with anthropogenic sea level rise, to achieve
successful decadal predictions of regional HEX impacts.

Climatemodel projections suggest that continued anthropogenic
warming will reduce the number of negative IOD events, which are key
for generating the CHHEXs, due to a mean state change toward a
shallower (deeper) thermocline in the tropical eastern (western) Indian
Ocean44–46; however, the amplitude of the IODs is projected to
increase47. The shallower thermocline in the eastern pole of the IOD –

with continued anthropogenic sea level rise and surface warming
albeit with a slower warming rate near Indonesian coast45 –makes the
upper-ocean temperature more sensitive to wind-induced Ekman
convergence and thus favorably preconditions the ocean for stronger
HEXs and CHHEXs in coastal Indonesia. This will increase climate
change induced social, environmental, and ecological stresses.

Methods
Tide gauge data, satellite observations and ocean reanalysis
product
The tide gaugedata25 at stationCalicapBof Java coast from2007–2016
were downloaded from the Permanent Service for Mean Sea Level
(PSMSL) 2020: https://www.psmsl.org/data/obtaining/, and were cor-
rected for Glacial Isostatic Adjustment (GIA) and Inverted Barometer
(IB) effects that were provided by PSMSL along with the tide gauge
data. No land movement correction was done due to the lack of GPS
data within 10 km of the tide gauge station48.

The satellite altimeter data23 (both two-satellite and all-satellite)
were download fromCopernicus Climate Change Service (C3S) (2018):
Sea level daily gridded data on 0.25° × 0.25° grids for the global
ocean from 1993 to present, EuropeanUnion, under license agreement
V1.2 (Nov 2019), https://cds.climate.copernicus.eu/cdsapp#!/dataset/
satellite-sea-level-global?tab=overview. Monthly means of the all-
satellite data are used in our analysis, and the timeseries shown in
Fig. 2 is from the nearest grid point approximately 18 km southeast of
the Java tide gauge station. Using the two-satellite data yields similar
results except for slightly weaker amplitudes for some extreme events.

The Cross-Calibrated Multi-Platform (CCMP) Satellite
derived winds49,50 were downloaded from http://www.remss.com/
measurements/ccmp/. The National Oceanic and Atmospheric

Administration (NOAA) blended satellite sea surface temperature
(SST) data51 on 1° × 1° grids at monthly resolution and on 0.25° × 0.25°
at daily resolution are publicly available at: (https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.html; https://psl.noaa.gov/data/gridded/
data.noaa.oisst.v2.highres.html).

The European Centre for Medium-Range Weather Forecasts
(ECMWF) operational ocean analysis/reanalysis system version 4
(ORAS4)32 monthly sea level and temperature data at 1° × 1° resolution,
which are used to infer thermocline depth (as indicated by the depth of
20 °C isotherm), from 1958–2017 are obtained fromhttps://www.ecmwf.
int/en/research/climate-reanalysis/ocean-reanalysis. TheORAS4data are
ocean model hindcasts assimilated observational data, including satel-
lite altimeter data.

Estimates of anthropogenic global sea level rise
First, we obtained themonthly globalmean sea level (GMSL) data from
CSIRO available for 1880–2013, which are adjusted to satellite obser-
vations from 1993–201318 (ftp://ftp.csiro.au/legresy/gmsl_files). Then
we use the 1880–1992 GMSL from this dataset and the NASA monthly
GMSL data from 1993–201924 to form a time series from 1880–2019,
and choose the 1960–2019 period for our analysis. The NASA GMSL
data are downloaded from http://podaac.jpl.nasa.gov/dataset/
MERGED_TP_J1_OSTM_OST_ALL_V4252. Note that the CSIRO and NASA
GMSL data are very similar for their overlapping period of 1993–2013.
Two methods were used to assess the anthropogenic GMSL rise
(GMSLR): (1) Since anthropogenic effect (thermal expansion, land ice
melting and land water storage) explains ~90% of the GMSL in recent
decades35,53, we use 90% of the quadratic fits of GMSL (i.e., fitted
GMSLR*0.9) to represent anthropogenic GMSLR; the quadratic fits
are done individually for the 1960–1992 and 1993–2019 periods
to consider SLR acceleration in recent decades; (2) For the
1993–2019 satellite period, we use the climate-change induced accel-
eration of 0.084mmyr−2 17 to estimate the anthropogenic GMSLR, and
keep the 1960–1992 period the same as in (1). The two curves are
almost identical.

CMIP6 climate model simulations
The coupled model intercomparison project phase 6 (CMIP6) large
ensemble experiment results, with ensemble members of each model
ranging from 10–50 (Supplementary Fig. 5), were obtained from
https://esgf-node.llnl.gov/projects/cmip6/. They are used to assess the
impacts of external forcing (natural + anthropogenic) on regional sea
level near the Indonesian coast.

Climate mode indices
The monthly HadISST data available since 187054 are used to calculate
climate mode indices. The climatological seasonal cycle is removed
before we calculate the indices. Climate events are defined as indices
exceeding one standard deviation. The Niño3.4 index, which is the
time-series of SST anomaly (SSTA) averaged for (120°W-170°W, 5°S-
5°N), is used to represent ENSO. ENSO is the most dominant mode of
climate variability, which is associated with strong SSTA in the tropical
Pacific Ocean and has large impacts on global climate. It develops
during boreal summer and peaks during boreal winter (Dec-Feb). Its
negative (cold) phase is referred to as La Niña, and positive (warm)
phase is called El Niño. The decadal variability of Niño3.4 index,
obtained by 8 yr lowpass filtering, represents decadal variability of
ENSO, which is highly correlated with the Interdecadal Pacific Oscilla-
tion (IPO)55, with its negative phase being referred to as La Niña-like
and positive (warm) phase being El Niño-like SSTA pattern.

The dipole mode index, defined as the SSTA difference between
tropical western Indian Ocean (50°E-70°E, 10°S-10°N) and tropical
eastern Indian Ocean (90°E–110°E, 0°–10°S), represents the Indian
Ocean Dipole (IOD7). In general, the IOD develops in boreal summer
and peaks during boreal fall (Sep-Nov). Its negative phase is associated
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with warm SSTA and deeper thermocline in the eastern pole and cold
SSTA and shallower thermocline in the western pole.

The monthly wind shear index56 is used to represent Indian mon-
soon variability, which is the zonal wind U at 850hPa (U850) averaged
over (40°E-110°E, EQ-20°N) minus that of 200hPa (U200), i.e. U850(40-
110E,EQ-20N)-U200(40-110E,EQ-20N), and it affects equatorial zonal
wind anomaly (Supplementary Fig. 11a). The Australian-Indonesian
monsoon index43 is defined as U850 anomaly averaged over (110°E-
130°E, 15°S-5°S), which affects longshore wind anomaly (Supplementary
Fig. 11b). Both are calculated from NCEP1 reanalysis winds from https://
psl.noaa.gov/data/gridded/data.ncep.reanalysis.html57.

Definitions of marine heatwave (MHW) and Compound Height-
Heat EXtreme (CHHEX)
The NOAA blended satellite SST data51 are used to detect marine
heatwaves (MHWs). The MHWs are defined as monthly SST anomalies
relative to the mean of a 30yr baseline period of 1989–2018 exceeding
the 90th percentile, following the recommended definition of MHWs
from the previous studies26,58,59. Based on this definition, the mean
seasonal variation of SST is retained when we define MHW events
because marine ecosystems are sensitive to the total SST magnitude,
although interannual variability of SST excluding the mean seasonal
cycle is also meaningful for some species26,58,59. Note that there are
previous studies using monthly SST to define MHWs26. Although a
general recommendation on MHW definition has been given, the
choice of threshold and calculation of SST anomalies should be based
on the study purpose. Comparing to the MHWs identified using daily
data, which are defined as discrete prolonged anomalously warm
water events when daily SSTAs exceed the 90th percentile for the 30 yr
baseline period of 1989–2018 and persist for at least 5 days26, we see
thatmostMHWs identified bymonthly SST data correspond to a series
ofMHWs defined by daily SST data (Supplementary Fig. 12), except for
Nov 1998 and Dec 2016. The stronger and longer-lasting MHWs based
on monthly data correspond to a series of more intense and/or more
frequent MHWs from daily data (Supplementary Fig. 12).

Usingmonthly data, aCHHEXevent is identifiedwhen aMHW(i.e.,
monthly SSTA > 90th percentile) is detected during a HEX event. Note
that for the December 2010 event, SSTA merely reaches the 90th
percentile two months before the HEX peak but remains close to the
90th percentile when HEX peaks. Thus, we also count this event as a
CHHEX. A gap of at least one month is required between two con-
secutive HEX (or MHW) events.

Ocean general circulation models (OGCMs), experiments and
validation
To ensure the HEX and CHHEX events detected here exceed cross-
model differences, we use two independent OGCMs with somewhat
different surface forcing fields to carry out experiments: The Regional
Ocean Modeling System (ROMS19) and the HYbrid Coordinate Ocean
Model (HYCOM21). The ROMS is configured for the global tropical
oceans (25°S to 25°N) with a horizontal resolution of 1/3° × 1/3° and 40
vertical sigma layers60, and forced by 3hourly Japanese 55-year atmo-
spheric reanalysis - drive ocean (JRA55-do61) fields (e.g., surface wind,
heat flux and precipitation) from 1958–2017, which are the JRA55 rea-
nalysis surface fields adjusted relative to reference datasets. Along the
northern and southern open ocean boundaries, the mixed radiation‐
nudging boundary condition is used, where temperature, salinity, and
horizontal velocity are relaxed to the monthly values of ORAS4 reana-
lysis datawith thenudging timescaleof 360days (3days) for theoutflow
(inflow) case. The open ocean boundary conditions allow the influence
of global sea level rise on Indonesian coast because ORAS4 reanalysis
assimilated observed data (including satellite altimeter data), and there
is no constraint for volume conservation over a specific ocean basin.

Two experiments were performed for the 1958–2017 period:
ROMS main run (MR) & ROMS WSTRESS run. The MR is the complete

solution, and the WSTRESS run is the same as the MR except for fixing
the forcing fields used to calculate heat and freshwater fluxes to their
climatology but keeping 3hourly wind stress forcing as in the MR.
Therefore, ROMSWSTRESS run isolates oceanic variability driven only
by surface wind stress.

A recent version of HYCOM was set up for the global ocean with
50 hybrid layers, 1/2° × 1/2° resolution, and daily surface forcing fields
from JRA55 reanalysis dataset from 1958–2017. Note that global sea
level rise due to land ice melting, which contributes ~44% during the
satellite altimetry era16, is not included in the model.

Overall, the reanalysis data and model simulations successfully
capture the satellite observed SLAs near the Java coast, with corre-
lation with satellite SLA being 0.98 for ORAS4 reanalysis, 0.95 for
ROMS and 0.90 for HYCOM (Fig. 2b; Supplementary Table 2). The
linear trend of ROMS main run SLA is 6.50 ± 1.16mm/yr, which is
within the uncertainty range of satellite SLA trend of 5.59 ± 0.99mm/
yr for the 1993–2017 period. The ORAS4 reanalysis data – which
assimilate satellite SLA – underestimates the sea level rise trend, as
does HYCOM, with both exceeding the uncertainty range of satellite
data. This is likely due to the coarser 1° × 1° resolution of ORAS4
reanalysis data with the nearest grid point being farther away from
the tide gauge location compared to the 0.25° × 0.25° satellite
observation. The global HYCOM significantly underestimates the sea
level rising trend along the Indonesian coast, in part due to the
missing land ice melting effect in the model. The underestimation of
the sea level rise trend in HYCOMwithout including land ice melting,
and the adequate simulation of sea level rise trend in ROMS that
includes the effect of land icemelting by usingORAS4 reanalysis data
as boundary conditions, further confirm the impact of global sea
level rise on Indonesian coastal sea level change.

Despite errors in simulating the sea level rise trend inHYCOMand
ORAS4 reanalysis, the increased occurrence of HEX events during
2010–2017 is consistent in all datasets. Since ROMS applies open
boundary conditions with 3hourly forcing fields, it contains global sea
level rise and storm surge signals like the tide gauge data. This is
probably why the ROMS SLAs are somewhat larger than satellite data,
as the tide gauge observation (Fig. 2a, b). Due to the stronger ampli-
tudes,moreHEXs are identified in the tide gauge record and theROMS
simulation based on the 90th percentile threshold of satellite data.
Since this study aims for climate-driven longer timescale extremes, we
focus on the events identified using monthly satellite altimeter data.

After removing the 1993–2017 trend, the standard deviation of
satellite SLA is0.12m, compared to the0.13m inORAS4, 0.15mROMS,
and 0.13m in HYCOM. All of them are within the 0.04m difference
between tide gauge and satellite data (Supplementary Table 2), sug-
gesting that the sea level variabilitymagnitudes in both reanalysis data
and model simulations fall in the uncertainty range of observations.

The time-evolution of HEX strength, represented by the 90th
percentile of SLAs with an 8year sliding window, is well simulated by
ROMS compared to satellite data for their overlapping period (Fig. 2c,
solid blue and purple curves). In comparison, the ORAS4 reanalysis
data underestimate theHEXmagnitude during the satellite era (Fig. 2c,
solid red), likely due to its underestimation of the rising trend. The
spatial patterns and amplitudes of SLA and SSTA associated with the
CHHEX and HEX events from ROMS and HYCOM (Supplementary
Fig. 4) agree well with those of satellite observations (Fig. 3). The good
agreement between observations and model simulations (including
ORAS4 reanalysis) suggests that the signals we identify exceed cross-
model and cross-dataset differences, which give us confidence in using
the models - especially the ROMS - to explore the relevant forcing and
processes controlling the HEXs and CHHEXs.

Coupled global climate model experiments using CESM1
To assess the role played by ENSO and its decadal variability in affecting
Indian Ocean sea level, we perform a ten-member ensemble of the
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tropical PacificOceanpacemaker experiments using theNational Center
for Atmospheric Research (NCAR) Community Earth System Model
version 1 (CESM120) from 1920–2019. In this experiment ensemble, SST
in the central and eastern tropical Pacific is restored to observations but
is fully coupled to the atmosphere elsewhere. The 10-member ensemble
mean fields of the pacemaker experiments estimate the Pacific impacts
on the Indian Ocean through both atmospheric bridge and oceanic
connection via the Indonesian Throughflow. Even though themodel has
somebiases62, its results provide valuable assessments of remote forcing
from the Pacific especially in the context of analyzing these results with
observations and standalone OGCM simulations.

ROMS mixed layer heat budget analysis
Time evolution of the mixed layer temperature, Tmix, is governed by
the following equation:

∂Tmix
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where T is the sea water temperature, ρ represents the sea water den-
sity, Cp is the specific heat of the sea water, (u, v, w) denote zonal,
meridional and vertical velocity, respectively, and h is the mixed layer
depth. The mixed layer depth h is defined as a depth at which the
potential density increases by 0.01 kg/m3 from the sea surface. Qnet is
the net surface heat flux and Qsw (z = −h) is the shortwave radiation at
the bottom of the mixed layer. Additionally, κH and κv are horizontal
and vertical mixing coefficients, and ΔT is the temperature difference
between themixed layer andupper thermocline. Thefirst two termson
the right-hand side represent the surface heat flux forcing; the third-to-
fifth terms are zonal advection, meridional advection, and horizontal
mixing. The last three terms represent subsurface processes: vertical
advection, vertical mixing, and entrainment, respectively. The mixed
layer heat budget is closed in the ROMS experiment60,63.

The Bayesian dynamical linear model
To quantify forcing by remote equatorial wind and local longshore
wind on sea level variability along the Indonesian coast, we apply the
Bayesian dynamic linear model (DLM) with two predictors. The Baye-
sian DLM consists of two equations: an “observation equation” analo-
gous to the conventional multiple linear regression model (Eq. (2)
below), and a “state equation” that controls the dynamical evolution of
coefficients bi (i = 0, 1, 2) represented by Eq. (3).

Y ðtÞ=b0ðtÞ+b1ðtÞX 1ðtÞ+b2ðtÞX2ðtÞ+ εðtÞ, εðtÞ ~Nð0,V ðtÞÞ, ð2Þ

biðtÞ=biðt � 1Þ+wiðtÞ,wiðtÞ ~Nð0,WiðtÞÞ: ð3Þ

In equation (2), X1 and X2 are the predictors, and Y(t) is the pre-
dictand. The state Eq. (3)means that the predictive distribution of bi at
each time step t (i.e.,posterior) is updated based on its previous step t-1
distribution (i.e., prior) and the probability of observations Y condi-
tional on bi at time t (i.e., the likelihood) using Bayes theorem22. Coef-
ficients bi are obtained by applying Kalman filtering and smoothing,
with the regression coefficient of conventional linear regression as its
initial guess64,65. The b0(t) term represents a time-varying “intercept”
whose variability is unexplained by the predictors Xi, while the bi terms
represent the non-stationary influence of Xi on Y, which is superior to

the conventional regression model with stationary bi which can only
estimate stationary impacts of the predictors64. Terms ε(t) andwi(t) are
independentwhite noise or errors, distributednormallywith ameanof
0 and variances of V(t) and Wi(t). Here, we use zonal wind stress
anomalies averaged over the equatorial area (65°E-95°E, 5°S-5°N) and
longshore wind stress averaged along Sumatra and Java coast (Sup-
plementary Fig. 1) as the two predictors (X1 and X2) and sea level
anomalies along Indonesian coast as thepredictand, Y(t). Timeseries of
the equatorial wind (X1) leads Java coast sea level anomaly by one
month to consider the propagation timeof equatorial Kelvinwave, but
the local longshore wind has no lag.

Data availability
All the observational data sets used in this research are publicly
available from links provided in the Methods section. The model data
generated in this study, including the OGCM experiments using ROMS
and HYCOM, CESM1 Pacific Pacemaker experiments and the Bayesian
dynamic linear model that were used to produce the Figures in the
main text (Figs. 1–6) have been deposited at theUniversity of Colorado
Scholar database (https://doi.org/10.25810/mzt8-w960).

Code availability
The IDL and MATLAB codes for carrying out the analyses and produ-
cing the figures are deposited at a public repository at theUniversity of
Colorado Scholar (https://doi.org/10.25810/mzt8-w960).
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