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A century of decoupling size and structure of urban
spaces in the United States
Johannes H. Uhl 1,4✉, Dylan S. Connor2, Stefan Leyk 1,4 & Anna E. Braswell 3

Most cities in the United States of America are thought to have followed similar development

trajectories to evolve into their present form. However, data on spatial development of cities

are limited prior to 1970. Here we leverage a compilation of high-resolution spatial land use

and building data to examine the evolving size and form (shape and structure) of US

metropolitan areas since the early twentieth century. Our analysis of building patterns over

100 years reveals strong regularities in the development of the size and density of cities and

their surroundings, regardless of timing or location of development. At the same time, we find

that trajectories regarding shape and structure are harder to codify and more complex. We

conclude that these discrepant developments of urban size- and form-related characteristics

are driven, in part, by the long-term decoupling of these two sets of attributes over time.
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By 2050, more than two thirds of humans will live in urban
areas1, a striking projection considering that the estimated
share of people living in cities was below 30% in 1950 and

less than 16% in 19002. While we do not know what form cities
will take in the future, we can be certain that their organization
and structure will increasingly influence climate change, human
health, economic development and social inequality3–6. Unfor-
tunately, our efforts to envision the cities of the future are con-
strained by the absence of systematic insight on how today’s cities
and their surroundings have changed in the past. Much of this
shortfall is attributed to the absence of detailed information on
urban spatial change prior to the 1970s.

Historical analysis and theory provides conflicting perspectives
on long-term urbanization. While technological change is
enabling the creation of increasingly complex cities7, debate
continues as to whether differences across urban areas are
decreasing or if regions are retaining distinctive and enduring
properties8,9. This debate has long occupied historical scholars,
who are increasingly skeptical of the notion that universal forces
are homogenizing our progressively urban world10. The homo-
genization of cities is, therefore, a continuing discussion point for
geographers, social theorists and historians.

Urban spatial data are enabling investigation into urban
development, including the examination of the bottom-up self-
organization of city systems, how the characteristics of cities scale
with growth, and how different urban attributes change to create
related and potentially predictable patterns (“allometry”)11,12.
These scaling and allometric relationships, in terms of urban
size, density, and form13–15 are highly consequential for a wide
range of socio-economic and environmental outcomes16–18.
Unfortunately, the paucity of long-term urban spatial data gen-
erally confined studies to relatively short time horizons or
selected geographic contexts19,20, making it difficult to fully
understand urban growth, or (changes in) urban form21–24 and
similarity25–27. As such, much of our knowledge of urban change
rests on cross-sectional data and relatively short windows of
observation that do not fully encompass the complete develop-
ment trajectories of cities.

Our objective is to shed new light on the question of how the
spatial characteristics of cities and their surroundings have changed
over the last century. In answering this question, our goal is to
determine the consistency and variance of long-term urban spatial
development with respect to city size, density, shape and structure.
We do so by leveraging our recently published Historical Settle-
ment Data Compilation for the US (HISDAC-US)28–31 derived
from the Zillow Transaction and Assessment dataset (ZTRAX)32

to examine urban spatial development within contemporary
metropolitan statistical areas (hereafter “MSAs”) in terms of size,
density, shape, and structure related metrics33,34. ZTRAX is a
compilation of land use, built, valuation and real-estate char-
acteristics for over 200 million US cadastral parcels, and contains
rarely examined building attributes, including the year built,
indoor area, total housing units, and structural characteristics (e.g.,
building material, function). We contend that the gridded spatial
data layers from HISDAC-US are currently the most compelling
source of high-resolution data on the long-term spatial develop-
ment of the United States.

We use HISDAC-US to observe spatial land use changes within
the boundaries of MSAs, as defined in 2010. As MSA boundaries
delineate the proximate socio-economic influence of urban cen-
ters (see Methods section), they provide the most appropriate
spatial units for understanding the emergence of the con-
temporary US urban system. We examine spatiotemporal land
use changes for MSAs using our compilation of settlement data
(Fig. 1) to derive time series of descriptive spatial variables for
each MSA in the US at semi-decadal temporal resolution from

1910 to 2010. Using 10 metrics inspired by commonly employed
landscape metrics35–37 to characterize urban areas (Table 1; see
Methods section for detailed explanations), we utilize descriptive
visualizations, statistical methods and cluster analysis to identify
common types of urban spatial development over the last century.
These metrics are categorized into size-related and form-related
(i.e., shape and structure) characteristics that can be used to
analyze the interactions between these attributes11.

Our analysis proceeds in four steps. First, we examine
nationwide and MSA-specific development trends among the
time series of our 10 urban-spatial metrics. After describing these
development paths, we perform cluster analysis on temporal
cross-sections of our data to analyze historical changes in the
spatial properties of MSAs and their movement between different
clusters over time. Third, to understand variations in urban
development, we decompose these trends spatially for different
regions. We conclude our analysis with an ordinal assessment of
the relationships between size and form related urban-spatial
metrics, in order to investigate whether our numerical analysis
findings also hold in an ordinal scale. In this study, we will refer
to the term “MSA” as the analytical unit used but will use both
“MSAs” and “cities” interchangeably in discussing and inter-
preting results.

From this analysis, we provide evidence of a weakening asso-
ciation between the size-related attributes of MSAs with their
respective form-related characteristics since the early twentieth
century. That is, we find that the correlation between urban size and
urban form in our data has declined substantially from 1910 to
2010. This attenuation appears to be driven by the growing simi-
larity of places with respect to their size attributes over time, but a
greater endurance of their form-related attributes across the same
period. One potential limitation of our analysis is that the under-
lying ZTRAX data capture the existing building stock of the United
States. Thus, we do not observe buildings that have been torn down
or urban footprints that have shrunk38,39. The selective nature of
replacement at the building scale40,41 could therefore bias our
findings at the metropolitan scale. We find that our main results are
highly robust, implying that survivorship bias is not likely to be
driving our key results (see Methods section). Nonetheless, the
proceeding analysis should be viewed as an examination of build-
ings that have survived from their initial built year to 2010.

Results
Nationwide development trends since 1910. We begin by ana-
lyzing the trends in the size (Fig. 2a) and form metrics (Fig. 2b)
across MSAs from 1910 to 2010. With four of the five size-related
variables increasing over our study period, the size variables are
almost exclusively lower in magnitude in 1910 than in 2010
across all MSAs. Thus, we observe nationwide increases in urban
size (BUAREA, NUMBUPROP) and density (BUDENS, NET-
BUI) over the last century. While this pattern is expected due to
the nature of our data, it is consistent with findings from global
meta-analyses of city size changes6.

At the building scale, average housing unit size (AVGHUSIZE)
follows a V-shape, being at similarly high levels in 1910 and 2010
with a minimum in 1950. This finding suggests on average,
similar levels of size among housing units existing in the United
States in 1910 and 2010. The decline of housing unit size in the
first half of the twentieth century implies increasing construction
of multi-family homes and apartment buildings (i.e., containing
relatively small housing units). The increase in AVGHUSIZE
starting from the 1950s likely reflects the expansion of single-
family home construction in the mid-twentieth century42. This
pattern corresponds to the primary era of US suburbanization43,
as depicted in Fig. 2, resulting in increasing proportions of
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housing units larger than those in apartment buildings. The trend
is consistent with census-based findings44 but may be subject to
survivorship bias in early settled areas (see Methods section).

The form variables vary more than the size-related character-
istics. The spatial dispersion measures scatteredness (SCAT),
number of patches (NUMPATCH), and the proportion of area
accounted for by the largest single contiguous patch of urbanized
land (MAXPATCHPROP) increased over the first 70 years of our
record. This trend implies that both the number of settlements
and their contiguous area increased over time. Since roughly
1970, the spatial dispersion measures flattened out and are now
beginning to decline. This change reflects the transition from
discrete areas of development around developing cities to more

contiguous urban spatial environments or a “filling in” of
contemporary urban regions over time.

Relatedly, spatial compactness measures such as clusteredness
(CLUST) and circularity (CIRC) have sharply declined over the
1910 to 2010 period. Over the century of observation, this
downward trend shows little sign of reversal. Combined with the
findings above, this suggests that the areas occupied by
contemporary MSAs tended to consist of numerous but spatially
compact settlements in the past, and over time, these settlements
blended into more dominant contiguous urban areas that are
quite complex in their forms. In short, the new building of urban
land within MSAs is strongly associated with the rise of more
contiguous but spatially dispersed built-up areas. These general
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Fig. 1 Gridded surfaces from the historical settlement data compilation for the US (HISDAC-US) used in this study. Built-up intensity depicted for the
greater Atlanta metropolitan statistical area (MSA) in a 1910, b 1960 and c 2010. First built-up year composite shown for d greater Philadelphia and e for
greater Rochester (New York). All datasets are at a spatial resolution of 250 × 250 m. Yellow lines represent MSA boundaries obtained from the US
Census Bureau51, used as the primary analytical unit for this study.

Table 1 Urban spatial metrics used in this study: The variables, calculated per MSA and year, used to describe the evolution of
urban areas in this study, categorized into two categories (i.e., size and form). Variables in each category are sorted by their
factor loadings from principal component analysis, conducted across all MSAs and points in time, indicating how much data
variance these variables explain (sorted per category, descending from top to bottom), see Supplementary Table 1.

Variable Characteristic of built-up areas Description

Size
Built-up area (BUAREA) Horizontal extension Total built-up area
Number of built-up properties (NUMBUPROP) Quantity of built-up elements Number of built-up properties
Net built-up intensity (NETBUI) Built-up volume Total indoor area of buildings within an MSA
Built-up density (BUDENS) Built-up density Total indoor area of buildings per built-up area)
Average housing unit size (AVGHUSIZE) Built-up element size Average size of housing units, measured in indoor area
Form
Scatteredness (SCAT) Dispersion Scatteredness: number of isolated built-up grid cells
Number of built-up patches (NUMPATCH) Dispersion Number of contiguous areas (patches) of built-up land
Largest patch area proportion (MAXPATCHPROP) Contiguity / dominance Largest built-up patch area proportion of total built up area
Clusteredness (CLUST) Compactness / dispersion Deviation of built-up cells from a random spatial distribution
Mean circularity (CIRC) Compactness Circularity of the ten largest built-up patches
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trends are, to large degrees, invariant to the spatial resolution of
the underlying gridded data, as indicated by a sensitivity analysis
(Methods section) reproducing these trends based on gridded
surfaces at multiple resolutions, as Supplementary Fig. 1 shows.
Moreover, we conducted a population-based sensitivity analysis
of our results to the survivorship bias by using the ratio of
population counts to buildings over time to calculate likely
measurement error in the enumeration of historical buildings per
MSA. This sensitivity analysis suggests that the trends reported in
Fig. 2 are largely insensitive to the underreporting of old buildings
and the survivorship bias discussed above (Methods section,
Supplementary Fig. 2).

Convergence and dispersion of MSA trajectories. While the
descriptive statistics reveal substantial change in the spatial
structure of MSAs over time, they tell us little about how urban
characteristics are shifting relative to one another. Hence, we use
a dimensionality reduction approach (t-distributed stochastic

neighbor embedding; t-SNE; see Methods section) to represent
the development of each MSA as a trajectory from 1910 to 2010
within two-dimensional attribute spaces for size and form
(Fig. 3). The size-related variables of MSAs follow smooth
(mostly parallel) bundled trajectories over time (Fig. 3a). MSAs
appear to be relatively heterogeneous in size in the early twentieth
century, converging in the later decades of the time series. While
some MSAs were well developed by 1910 (i.e., exhibiting high
BUAREA and NUMBUPROP values, such as NYC and Chicago),
others grew quickly over the 20th century. This distinction is
evident when early-developing northern, industrial urban regions
such as around Boston, New York, and Chicago that are similarly
situated in 1910 and 2010 are compared to more recently
developing MSAs (e.g., Phoenix and Dallas) that are highly dis-
persed across the attribute space in 1910.

Our results underscore a unidirectional convergence process
that reflects the growing but staggered historical development of
MSAs. The observed general trend is expected due to the nature
of the underlying data (i.e., not capturing shrinkage). However,
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Median across all MSAs under study Interquartile range Approx. start of suburbanization

Fig. 2 Temporal trends of the analyzed urban-spatial metrics across all metropolitan statistical areas.Median (black) and interquartile range (grey) of the
variables characterizing a size and density, and b shape and structure, over all analyzed metropolitan areas. Percentages depicted represent the change in
median of the respective variable from 1910 to 2010. Also shown is the approximate start of US suburbanization in the late 1950s (vertical dashed lines in red).
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high levels of congruence between 2010 radar charts (Fig. 3), and,
to a lesser degree, among 1910 and 2010 radar charts, indicate
relatively stable relationships between size variables among MSAs
of different size, and over time, respectively. While we observe
this wider process of convergence among MSAs by size, we also
note recent patterns of size-related differentiation. The data reveal
the emergence of a small set of mega-regions (e.g., New York,
Atlanta) over recent decades, which exhibit extreme levels of
built-up intensity in 2010. These MSAs generate non-normality
in the data distributions of our variables, which is reflected in
time series of cross-sectional Shapiro-Wilk normality test scores,
as shown in Supplementary Fig. 3.

With regard to the form-related variables, we find that
contemporary MSAs have developed along a more dispersed set
of trajectories over time (Fig. 3b). We observe that MSAs in early
developing, already industrialized urban regions (e.g., New York
City, Boston, San Francisco) move from left to right through the
attribute space, driven by decreasing clusteredness, scatteredness
and total number of patches. More recently developing MSAs
(e.g., Atlanta, Kansas City), in contrast, tend to move toward the
upper left part of the attribute space, driven by decreasing
compactness attributes (i.e., circularity, clusteredness). While it
may appear that historical and contemporary development
patterns are distinctly different, there is evidence of strong
continuities. Later developing MSAs, such as Kansas City and
Atlanta (in 2010), and earlier-developing MSAs, such as New
York and Boston (in 1910), are similarly situated in the attribute
space. These MSAs may, therefore, exhibit similarity in their
form-related development, but these trajectories appear to be
more complex than for the size-related attributes.

These findings provide strong descriptive evidence that MSAs
follow systematic development paths through time with respect
to size, but to lesser degrees, for form-related variables.
Moreover, regionally decomposed versions of these trajectory
plots (Supplementary Figs. 4, 5) suggest regional differences in
these development paths. Although there is evidence that the
form-related development of MSAs also exhibits similarities over
time, these trajectories are considerably more complex than for
size-related attributes, as indicated by the standard deviations of
trajectory azimuths between subsequent years (Supplementary
Table 2).

Trajectories of MSA types. Using the temporal cross-sections of
MSA-level variables, we test for common forms of urban spatial
development. We use the BIRCH clustering algorithm (see
Methods section) to assess whether MSAs followed common
development paths or if, instead, they tend to sort into specific
clusters of urban spatial development. We apply cluster analysis
separately to each temporal cross-section (Fig. 4a–c) and report
intra-cluster and inter-cluster distances to measure within-cluster
variance, and between-cluster separation, respectively (Fig. 4d, e).
Moreover, we detail the variables underlying each cluster center
(i.e., the medoid MSA in the attribute space), and visualize the
geographic cluster distributions (Fig. 5). To facilitate interpret-
ability, we focus on the top three variables, ranked by variance
explained (i.e., principal component analysis factor loadings, see
Methods section, Supplementary Table 1).

Based on the changes in clustering and the size of clusters
(Fig. 4a, b), we can make several broad observations regarding the
grouping of MSAs. First, for both categories, the number of
clusters increases between 1910 and 2010. This finding implies
that MSAs are separating into an increasing number of delineable
spatial forms over time. The stability of within-cluster variance
and increasing levels of cluster separation (Fig. 4d, e) are
consistent with this interpretation. This result suggests that as

MSAs scale up (i.e., grow), they become more highly stratified and
increase in complexity (as indicated by the number of clusters).

The clusters based on the size-related variables (Fig. 4a)
complement the interpretation of the prior analysis results. In
1910, the areas occupied by contemporary MSAs can be
categorized into two types: built-up and sparsely settled areas.
This interpretation is supported by clusters of MSAs with
moderate numbers of built up properties (NUMBUPROP) and
built-up intensity (NETBUI) and low levels of overall built up
area (BUAREA) in 1910 (Fig. 5c). Since the mid-twentieth
century, we observe that these two initial clusters split into four
groups that generally persist up to 2010. This split reflects the
growing stratification of MSAs over the twentieth century in
terms of size. By 2010, we find four size-related MSA clusters that
can be distinguished mostly by their built-up area (BUAREA),
with fewer MSAs contained in these clusters.

For each point in time, the size-related cluster centers are
almost perfectly nested inside one another (Fig. 5a–c). This
finding suggests that while contemporary MSAs certainly differ
with respect to size, the fundamental relations between size-
related characteristics remain quite consistent through time. This
regularity suggests that MSAs exhibit high levels of size-related
stratification rather than strongly heterogeneous size-related
spatial development. However, as mentioned before, it is
important to note that due to the nature of the data used herein,
the shrinkage of built-up area cannot be measured, and thus, our
observations do not account for land conversion from built-up to
not built-up (see Methods section).

By contrast, we observe more complex differentiation in the
form of cities over time. There are five clusters in 1910 and seven
clusters in 2010 (Fig. 4b). While clusters are mostly driven by
differences in attribute magnitudes (as in the case of the size-
related clusters), we also observe new and distinct cluster types
between 1960 and 2010. Specifically, we find growing distinctive-
ness based on the contiguity measure MAXPATCHPROP. While
the largest cluster of urban regions in 2010 (black) is associated
with moderate MAXPATCHPROP, the second largest cluster
(blue) captures MSAs with a high proportion of area covered by
contiguous built-up land (e.g., high MAXPATCHPROP values,
see also Fig. 5g). Thus, in addition to changes in the general
magnitude of attribute values, the main distinction between the
two largest form clusters is whether or not MSAs are
characterized by large contiguous areas of built-up land.

To assess potential interactions and access the variability of
attributes within clusters of urban regions across the two categories
over time, we conducted several statistical analyses. We assessed the
(univariate) distributions of each size variable within form-based
clusters, and vice-versa, and found increasing levels of dispersion
for most variables over time, as boxplots (Supplementary Fig. 6) and
corresponding dispersion measures suggest (i.e., changes in median
absolute deviations computed per variable and cluster, between the
1910 and 2010 cross-sections, Supplementary Table 3). By
conducting Dunn’s test of pairwise comparisons for cross-
sectional variable distributions within clusters, we also found
increasingly fewer significant differences between medians per
cluster, particularly for form variables within size-based clusters
(Supplementary Fig. 7). From a multivariate perspective, within-
cluster variance increases over time, in particular for form variables
within size-based clusters Fig. 4d, e). This indicates that cities of
similar size characteristics exhibit increasingly distinct urban forms.
This decoupling of size and form-related attributes over time
reflects that in 2010, there is more heterogeneity related to form in
heavily developed than in less developed MSA clusters (Fig. 4b).
This result suggests that the observed, systematic patterns regarding
size do not apply as seamlessly to the form characteristics of MSAs,
but rather follow more complex relationships.
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Regional distribution of thematic clusters. Do these urban
spatial forms and trajectories have an identifiable geography? If
these thematic clusters also cluster in space, it could suggest that
either the regions themselves or the timing of development may
be driving differences in the spatial organization of MSAs. We
examine this question by mapping the thematic clusters from
2010, 1960 and 1910 (Fig. 5d–f and j–l, respectively). The first
clear pattern we observe is that the size-related clusters follow the
well-known pattern of historical regional development of the
United States. We find a regionally distinct grouping of already
developed, larger MSAs in 1910 (Fig. 5f) along the eastern and

western seaboard and the Northeast-Midwest corridor. The
cluster represented by smaller points in 1910, in contrast,
encompasses regions that were less developed in 1910 but
experienced substantial urbanization over the following century.
Through the mid-twentieth century, development spread from
these traditional urban areas to the South and the Southwest
(Fig. 5d, e).

While the size-related clusters closely follow well-known
historical regional development trends in the US, the spatial
patterning of the form clusters deviate from these trends,
particularly from 1960. In 1910, the most notable pattern among

Fig. 4 Cross-temporal cluster analysis, carried out for cross-sections of the MSA variables in intervals of 25 years. a Size-related variables
(NUMBUPROP, NETBUI, BUAREA), and b form-related variables (NUMPATCH, SCAT, MAXPATCHPROP). Each node of the depicted networks represents a
cluster of MSAs, node sizes correspond to the number of MSAs per cluster, and node colors represent the location of the cluster center (i.e., medoid) in the
respective attribute spaces, using RGB color-coding. The legend for the attribute color-coding is shown in c. The width of the links (grey lines) between clusters
identified in subsequent years represent the number of MSAs transitioning between clusters over time ("cluster flows"). Line plots show measures of cluster
separation (blue) and within-cluster variance (orange) over time for: d size-based clusters, and e form-based clusters. Dashed lines show cluster separation and
within-cluster variances for form variables in size-based clusters (d), and vice-versa in e, indicating the disentanglement of size and form over time.
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the form clusters is the distinction between the areas spanning
from the Northeast into the Midwest and the rest of the country
(Fig. 5l). In general, the urban core of all MSAs in 1910 is
relatively small (i.e., low MAXPATCHPROP). Where MSAs
differ, however, is in their number of patches and their
scatteredness. Reflecting very low levels of development and
sparse settlements, areas outside of the Northeast-Midwest
corridor score low on both of these measures.

We observe new types of urban development with a strong
regional geography in comparing 1960 to 2010 (Fig. 5j, k). MSAs
in the blue, square cluster (characterized by a high proportion of
built-up area contained in a contiguous patch, i.e., high
MAXPATCHPROP) emerging after 1985 (Fig. 4b) are concen-
trated in the Northeast-Midwest corridor, the Southeast and the
Southwest. These areas with their dominant cores stand in
contrast to MSAs in the less urbanized regions of the Plains, the
South and Appalachia. Plains and Appalachian MSAs exhibit
higher levels of scatteredness and patchiness, likely because of
their abundant rural settlements and satellite towns. Thus, the
contemporary dominant forms of differentiation by structural
characteristics have a strong geographic imprint. These MSAs can
be categorized as those that have large, highly integrated urban
areas (blue, high MAXPATCHPROP values), typically along the
coasts or in the traditional industrial belt of the US, and those that
tend to be in the middle of the country and which are more
internally fragmented (green-yellow colors, i.e., high dispersion
measures NUMPATCH and SCAT). Given the regional geogra-
phy of these clusters, it is difficult to rule out the possibility that
the interior MSAs of the US may continue to converge on the
profiles of their coastal and Midwestern counterparts over the
decades to come.

Regional and temporal deviations in urban spatial develop-
ment. Up to this point, we have demonstrated that urban spatial
development is characterized by increasingly complex relation-
ships between size and form-related properties, and this devel-
opment process has unfolded in different places at different times.
This finding implies that MSAs have grown across varied phy-
sical, economic and cultural landscapes and during periods of
different technological development. Thus, the growing com-
plexity of the US urban system across existing MSAs could stem
from differences in the location and timing of development. This
part of the analysis focuses on regional differences in the spatial
complexity of MSAs by decomposing each variable into a regional
time series of median values Fig. 6a, b) and formally testing for
statistically significant differences in the attributes of MSAs across
regions using Kruskal-Wallis tests (Fig. 6d) and subsequent
Dunn’s tests for pairwise comparison (Fig. 6e, f, see Methods
section).

We find that across larger regions (derived from US census
divisions herein referred to as "regions", Fig. 6c), MSAs follow
similar development trajectories. The regional time series of our
size and form attributes follow very similar development paths
(Fig. 6a, b) with few exceptions. This result indicates that MSAs
are becoming larger (BUAREA), denser (BUDENS), and less
circular (CIRC), and are increasingly dominated by a large
contiguous urban tract of land (MAXPATCHPROP) across the
conterminous US. While these time series suggest that MSAs are
developing along similar trajectories across most regions, we
also observe a few distinct regional patterns with respect to form-
related characteristics, heavily driven by differences between
interior and early-developed regions of the US. These differences
become most evident when comparing the North Central MSAs,

Fig. 5 Characteristics and geographic distribution of the identified clusters of metropolitan statistical areas over time. Radar charts depicting the log-
transformed characteristics of cluster medoid MSAs for the size characteristics in a 2010, b 1960, and c 1910. Line thickness represents the log-
transformed cluster sizes (i.e., number of MSAs in each cluster); Panels d–f show corresponding multi-temporal maps of MSA cluster memberships,
with clusters definied by color and shape. Colors in a–f correspond to the RGB color-coding used in Fig. 4a, b, see Fig. 4c for a corresponding legend. Panels
g–l show the respective radar charts and maps for the form variables. Depicted locations are centroids derived from MSA boundaries obtained from US
Census Bureau51, also shown are state boundaries (white) obtained from the US Census Bureau75.
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which appear to maintain higher levels of scatteredness (SCAT)
(West North Central) and lower levels of clusteredness (CLUST)
(East North Central) than their counterparts elsewhere.
Urban areas in these MSAs tend to be more dispersed and less
compact than in other regions. Conversely, MSAs in the
Mountain region exhibit lowest levels of SCAT and NUM-
PATCH, and highest levels of CLUST over time. These
pronounced regional trends result in distinct form characteristics
for most MSAs in the interior of the US as compared to their

counterparts along the coast. Notably, we observe a decreasing
trend in NUMPATCH in most regions, starting earliest (i.e.,
around 1970) in the Northeast of the US (see also animation in
Supplementary Movie 1).

We use Kruskall-Wallis (KW) tests to examine which
attributes account for differences in urban form over time
and across regions (Fig. 6d). While KW tests show statistically
significant differences between regions for all variables of
interest and years, the associated KW H-statistic provides a
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measure of difference among multiple regions (see Methods
section). These tests confirm our finding of dramatic declines in
differences in size attributes across regions (i.e., decreasing H-
statistics) and persisting heterogeneity in the form attributes
(i.e., relatively constant H-statistics, also reflected in the
heterogeneity of median trends per variable and region, as
shown in Supplementary Fig. 8). Consistent with the prior
results, differences in the clusteredness and circularity of MSAs
(measures of compactness) appear to account for much of the
differences across regions.

While variation in size and density has sharply attenuated
across regions and time, differences in form are more persistent.
This result is evident in the regional variable-by-variable
significance plots, which show very substantial declines in
significant differences in size-related variables between regions
from 1910 to 2010 (Fig. 6e, f). Our finding further underscores
the strong regional unfolding of urbanization across the US. The
increasing urbanization of the Southeast and Southwest in the
second half of the twentieth century has produced a more even
picture of urban size across US regions. In contrast, the form
attributes depict a less pronounced decline in regional differences
(Fig. 6f). However, much of these persisting differences in form
are driven by the distinctive development patterns of the West
North Central, West South Central and Mountain regions relative
to the rest of the US.

Ordinal relationships between size and form. Several of our
urban-spatial metrics are skewed (as indicated by low Shapiro-
Wilk normality test scores, Supplementary Fig. 3), with some
presumably approximating a power law distribution (e.g.,
BUAREA)45–47. Thus, we can gain additional insight by analyzing
the relationships between size and form-related characteristics
using ordinal scales (Fig. 7).

We calculated Spearman’s rank correlation coefficient between
all size and form-related variables in 1910 and in 2010 (Fig. 7a
and b), respectively. These results, along with their corresponding
Q-Q plots (Fig. 7c and d), reveal further detail about the
relationship between size and form attributes. While we observe
high levels of association between dispersion measures (i.e.,
SCAT, NUMPATCH) with most size-related variables in 1910,
many of the correlations attenuate by 2010, thus providing
additional evidence for the disentanglement of size and form over
time. However, we do also observe several notable exceptions to
this finding. First, we observe an increasingly positive rank
correlation between size characteristics and MAXPATCHPROP,
which is driven by heavily developed MSAs that tend to exhibit
greater connectedness and spatial contiguity. Secondly, we find
stationary (negative) rank correlations between size variables and
circularity, most notably between BUAREA and CIRC. This result
indicates that large places tended to be less compact (i.e., less
circular) than small places in the early 20th century, and that this
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trend is still evident in 2010. Even though this analysis does not
explicitly test allometric relationships, these results are suggestive
of such relationships between size and form-related urban-spatial
metrics (see also animations in Supplementary Movies 2 and 3);
formally testing these relationships over time is an important area
for future research.

Discussion
This study leverages information from HISDAC-US to examine
urban spatial development in the United States since 1910. Irre-
spective of where MSAs are situated or when they started to grow,
we find strong congruence in their size-related spatial develop-
ment. That is, we find that more recently developing MSAs have
followed similar paths to early-developing MSAs, particularly in
terms of their size and density attributes. Even though urbanizing
(i.e., not shrinking) MSAs follow more elaborate development
trajectories in terms of structure, we also find evidence for strong
grouping effects along these dimensions. This finding points to a
set of increasingly complex urban forms, which have been
emerging across the US. From a broad perspective, we find high
degrees of continuity in the spatial development of urbanizing
MSAs regarding size-related characteristics, which are quite
robust to the timing and location of development.

Although urbanizing MSAs do follow similar size-related tra-
jectories, there are some very notable exceptions to these over-
arching trends. Firstly, MSAs appear to be increasingly stratified,
but less extremely distributed based on their size. This pattern is
evident from cross-sectional normality tests (i.e., increasing
Shapiro-Wilk normality test statistics for size variables over time,
Supplementary Fig. 3) and from our cluster analysis, which
indicates that while differences in city size have narrowed across
MSAs over time, they are sorted into an expanding number of
clusters or “types.” Furthermore, the form-related attributes of
MSAs are growing increasingly independent from their size-
related attributes. Secondly, although we find that, irrespective of
location or timing of development, most urban spatial attributes
are shifting in similar directions, there are some notable devia-
tions across US regions. Most notably, MSAs in the interior
census divisions of the United States follow urban forms that are
quite different from coastal MSAs. Whether or not this is a
temporary transition or indicative of newer and longer-lasting
regional differentiation remains to be seen.

What do our findings tell us about the existence of systematic
development trajectories across cities and their surroundings?
Generally, our results suggest that urbanizing MSAs in the US
appear to follow similar development trajectories irrespective of
whether they developed recently or farther back in time with
regards to size attributes. However, our multidimensional ana-
lyses reveal that these trajectories can be highly complex. While
the source of this local heterogeneity is beyond the scope of this
paper, the data and approaches put forward here provide a firm
basis from which to examine these patterns, albeit subject to the
issues associated with retrospective data.

The more detailed aspects of our findings also highlight the
potential value of applying spatial scientific analysis to questions
in urban history. Notably, major urban spatial transitions, such as
post-WWII suburbanization43, and the increasing formation of
interconnected, “megapolitan” city systems48 are evident
throughout our results. Fig. 1, for example, shows that from
approximately the late 1950s, average housing size and total
number of properties sharply increased while measures of spatial
compactness and circularity began to quickly decrease. These
patterns reflect the sprawl of metropolitan areas beyond their
central cities and into the emerging suburbs of the time. The
emergence of “megapolitan areas” in the US is, for example,

reflected in the emergence of the MSA cluster that is character-
ized by high levels of contiguity (see e.g., Fig. 5g). Historical
developments such as these, which have been and will be the
focus of ongoing research efforts31,49, undergird many of the
broader patterns we observe here. While we do not attempt to
grapple with these issues in this study, the approaches we
articulate provide vast opportunities for enhanced understanding
of the complex social, political and economic interactions that
have brought about widespread historical spatial change.

City boundaries naturally change over time. In our analysis, we
rely on fixed, retrospective boundaries of metropolitan statistical
areas as they existed in 2010. While they suffer from a certain
degree of arbitrariness (cf. Fig. 1), they allow for analysis within
temporally consistent spatial units. However, the time series of
certain structure- or density-based measures would be different
when using temporally adaptive boundaries, and thus, future
work could examine how our picture of urban spatial change
would differ if we instead used a changing urban footprint or
definition. Moreover, future work should include the analysis of
smaller cities and towns defined as Micropolitan Statistical Areas
(i.e., cities of less than 50,000 inhabitants) and expansion of this
work to a more complete range of large and small cities in the US,
and should also focus on the quantification of survivorship bias in
the underlying ZTRAX data at the building level, e.g., by inte-
grating auxiliary historical data sources.

Furthermore, forthcoming work should include additional
spatial and temporal characteristics (e.g., differential measures
such as expansion and densification of urban areas31), mea-
sures of intra- or peri-urban land use and vegetation, urban road
networks, and census data (e.g., population, migration and other
socio-economic variables). These data integration approaches in
combination with advanced machine learning methods could
enable predictive modelling of urban development and popula-
tion changes. The integration of population data and remote
sensing data will also allow for a quantification of the bias
introduced into such analyses by the lack of information on
building teardowns and urban shrinkage. The shrinkage phe-
nomenon affects certain regions in the US and is typically asso-
ciated with population decline and land conversion from built-up
to less developed land. Such analysis will contribute to a broader
understanding of drivers of and interactions between human and
environmental processes and urban dynamics. Future analysis
can generate valuable knowledge as a foundation for complex
simulative models predicting and projecting future development
of urban areas, population, and the interactions within socio-
environmental systems. Moreover, the long-term spatial data
used herein will potentially allow for testing urban scaling laws
over the long-term, and assessing the impact of cross-sectional
versus longitudinal analytical concepts on the outcomes of urban
change and scaling analyses.

This work provides data and blueprints for broad, long-term
investigation into spatial differentiation across urban environ-
ments. This study establishes an analytical foundation to measure
well-known processes of urbanization, such as sprawl, infilling
and densification, over long periods of time and at scales mean-
ingful for analytical and interpretational purposes, both long-
standing limitations in urban studies. Moreover, our analytical
framework and the underlying data provide valuable insight for
city and regional planners, allowing for the identification and
forecasting of fine and coarse development trajectories. Knowl-
edge of these trajectories may be particularly valuable in tackling
issues related to environmental change, transportation and
inequality49. We demonstrate how innovative data derivatives can
be used to quantitatively assess different urban characteristics and
their changes at fine spatial and temporal granularity. Our ana-
lysis demonstrates the value of applying data-driven analytical
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methods to the exploration of large spatial-temporal settlement
data in urban geography, which can enhance our understanding
of the historical settlement of cities in the US and elsewhere.

Methods
US metropolitan statistical areas. The US Office of Management and Budget
defines a Metropolitan Statistical Area (MSA) as a larger commuting area con-
taining at least one urban cluster or urbanized area with a population of at least
50,000. It is comprised of the central county or counties containing the urban core,
including adjacent counties characterized by a high degree of social and economic
interaction with the central county or counties, which is measured through com-
muting50. Hence, MSA boundaries are spatial units containing urban cores, peri-
urban areas and the urban fringe and thus constitute a suitable source of spatial
zoning data for the analyses presented herein. In 2010, there were 363 MSAs in the
conterminous US51 which were used in this study, and kept temporally consistent
over the study period from 1910 to 2010.

Gridded spatial layers. Spatial layers consist of time series of gridded data layers
at a spatial resolution of 250 m. These layers have been generated at semi-decadal
temporal resolution for the study period 1910 to 2010, and include:

● HOUS: Count of housing units per grid cell and year52.
● BUPROP: Count of built-up properties (i.e., unique locations of housing

units) per grid cell and year53.
● Built-up intensity (BUI): Indoor area of all buildings per grid cell and year

(unit: m2)54.
● First built-up year (FBUY): Temporal composite containing the built year of

the oldest structure per grid cell (unit: year)55.

These layers are available in the Historical Settlement Data Compilation for the
US (HISDAC-US28–30, see Fig. 1 and Supplementary Fig. 9).

Time series of descriptive variables per MSA. The urban-spatial metrics used
herein allow for a multi-faceted spatial perspective on urban systems, given the
available data. We reduced an initial set of 50+ urban-spatial metrics to the 10
metrics used herein, based on a visual-analytical assessment involving plausibility,
cross-correlation and variability analysis. Each of these variables is derived for each
MSA and each 5-year interval for the study period 1910 - 2010, resulting in a
multivariate time series characterizing the evolution of each MSA from different
perspectives. We grouped these time series into two categories:

● Size-related variables: Characterizing the horizontal and vertical dimensions
of urban systems, as well as the average size of the units comprising an urban
system. In this category, we included density-based measures since they
describe the relationship between horizontal and vertical extension of an urban
system.

● Form-related variables: Characterizing the shape (i.e., geometric properties)
of the urban footprint and its morphological structure (i.e., properties of the
spatial entities constituting the urban footprint).

Similar categorizations are commonly used and suggested in urban studies11,56

and allow for separate analysis, as well as studying interactions between these
categories. Below, we describe the urban-spatial metrics used, adjusted to the
nature and the volume of our data.

Size related variables. Based on zonal statistics of the spatial layer series within MSA
boundaries (see processing workflow in Supplementary Fig. 9), we derived the following
MSA-level time series characterizing the horizontal and vertical dimensions of urban
systems57 and their interactions, guided by the information contained in our data:

● BUAREA: The planar area of the grid cells occupied by at least one building in
a given year, as an absolute measure of horizontal extension of urban areas.

● NETBUI: The net built-up intensity, calculated as the total indoor building
area in an MSA polygon in a given year. This measure allows for quantifying
the total built-up volume57.

● BUDENS: The net built-up intensity per built-up ground area in an MSA in a
given year. This measure relates to the commonly used floor-area-ratio (i.e.,
the quotient of building indoor area and area built upon, i.e., plot or parcel
area58). However, due to the lack of footprint area or multi-temporal parcel
area in our data, we used the area of the built-up grid cells as a proxy for plot
area. By using the built-up area as denominator, rather than the MSA area, we
overcome the issue of arbitrariness of MSA boundaries.

● NUMBUPROP: The number of built-up properties per MSA and year, an
approximate, absolute measure of the size of the building stock in an MSA.

● AVGHUSIZE: The total BUI divided by the number of housing units within
an MSA in a given year, as a measure of granularity of the units constituting
the built environment.

Form-related variables. Through segmentation and vectorization of the BUA layer
series59, which was derived from the FBUY layer (see Supplementary Fig. 9), we

obtained spatial vector objects of contiguous built-up areas within each MSA per
year and derived the following variables:

● NUMPATCH: The number of built-up patches within an MSA per year, with
a patch consisting of at least two grid cells, as a measure of fragmentation60.

● SCAT: The number of spatially isolated built-up grid cells (i.e., none of the 8
adjacent grid cells in a Moore neighborhood being built-up) within an MSA
per year, as a measure of spatial scatteredness of the built-up area. This metric
was adopted from the "scatter development"61 metric which represents the
count of grid cells with less than 30% built-up area in their neighborhood.
Since our BUI data measures total indoor area without specifying the area of
building footprints, we chose to set this threshold to 0%.

● MAXPATCHPROP: The proportion of the largest built-up patch from the
total built-up area within an MSA per year, as a percent-based measure of
built-up area contiguity and dominance. This measure is related to the "largest
patch index" (LPI)60. However, while LPI measures the proportion of the
largest patch area with respect to the landscape area (i.e., the MSA area), we
decided to use the total built-up area as denominator, in order to be
independent from the (arbitrary) MSA area.

● CIRC: The circularity of the ten largest built-up patches per MSA and year.
There are several approaches for measuring spatial compactness such as
circularity in the geospatial sciences62; for example, the commonly used
CIRCLE metric, relying on comparing the area of a shape to the area of its
circumcircle63. Herein, we used the isoperimetric quotient, a commonly used
circularity measure64,65 defined as the ratio of a polygon’s area A to the area of
a circle with the same perimeter p as the polygon, in percent:

CIRC ¼ 100 � 4πA
p2

ð1Þ

which we employed as an alternative measure of circularity, assumed to be
computationally inexpensive to process the large amount of built-up patches
in this study (>250,000 patches in all MSAs in 2010). Thus, CIRC characterizes
the compactness of the largest patches constituting an urban system and is
used as a measure of spatial complexity.

● CLUST: The clusteredness of built-up grid cells per MSA and year. This
measure is the average nearest neighbor index (ANNI) based on the centroids
of built-up grid cells. ANNI compares the observed average nearest neighbor
distance dNN;O of a set of point locations to the expected average nearest
neighbor distance dNN;E in a random point distribution of the same number of
points and spatial extent66 and has been applied for long-term urban change
studies and other spatial analyses67,68. The ANNI is calculated as:

ANNI ¼ dNN;O
dNN;E

ð2Þ

with small values corresponding to highly clustered point patterns. Thus, we
calculated our measure of clusteredness CLUST by subtracting the ANNI from
the global maximum ANNI across all MSAs and points in time, to obtain large
values for highly clustered point patterns:

CLUST ¼ maxðANNIÞ � ANNI ð3Þ
Supplementary Fig. 9 illustrates the performed geoprocessing steps to generate
time series of these urban-spatial metrics.

Data uncertainty handling
External validation of HISDAC-US source data. The quality of built-up areas
extracted from the HISDAC-US spatial layer series may suffer from missing
housing records or from spatial offsets in the geolocations contained in the ZTRAX
database, causing grid cells falsely labelled as "not built-up". To quantify these
positional uncertainties, we conducted a multi-temporal accuracy assessment
against a highly accurate reference database created from cadastral parcel records
and building footprint data in 31 US counties, yielding F-measures of 0.9 or higher
for each evaluated year in the time period 1910 - 201029. Moreover, we conducted a
US-wide accuracy assessment of built-up areas in 2016 derived from the HISDAC-
US data against a remote-sensing derived building footprint dataset, yielding
similarly high accuracy values in urban areas30. Furthermore, we cross-compared
temporal trajectories of housing unit counts (HOUS) against census-based housing
statistics30.

Incompleteness of temporal information and locational uncertainty. As shown in29

the HISDAC-US inherits issues of data incompleteness from the original ZTRAX
data. For example, 82 counties (i.e., approximately 2.5% of the land area) in the
conterminous US do not contain any settlement-related ZTRAX data records.
Approximately 20% of the built-up areas in the conterminous US are lacking
temporal information (i.e., the year when a structure has been built) necessary to
map built-up areas at a given point in time. However, the large majority of these
areas is located in rural regions30. In this study, we excluded MSAs that have an
area proportion of more than 5% of a county of known data missingness. Fur-
thermore, we excluded MSAs that have a temporal missingness of more than 50%.
Besides data missingness, there are issues due to generalization of the geospatial
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locations when dummy coordinates are used (i.e., the use of identical coordinates
for numerous settlement locations within an MSA). In order to account for this, we
computed the ratio between the NUMBUPROP and HOUS layers in 2010. We
excluded the MSAs exceeding the 95th percentile of this ratio, i.e., MSAs con-
taining extremely high proportions of housing units assigned to an identical geo-
location, indicating the presence of dummy coordinates. In total, 31 of 363 MSAs
were excluded from this study (see map of MSA-level data completeness, Sup-
plementary Fig. 10).

Time series correction. For the remaining MSAs, we developed a correction pro-
cedure applied to the time series that works as follows: We created a spatial layer
indicating the indoor area, the number, and the presence of properties per grid cell
without built year information29 and added those grid cell values to the con-
temporary layers, BUI2015, NUMBUPROP2015, and BUA2015, respectively. The key
assumption is that buildings without built year information exist in 2015. Based on
these corrected layers, correction terms are calculated and the variables are
recomputed for each MSA in 2015. We use the resulting correction terms, pro-
portionally, to adjust the variable values in the previous years, while preserving the
relative change between two subsequent points in time (see31 for details). We
evaluated the accuracy of this correction procedure in an experiment in which we
artificially removed a random sample of up to 50% of the temporal information
from MSAs of originally high built year attribute completeness, and compared the
original and the corrected time series per variable and across time. Boxplots in
Supplementary Fig. 11 shows the relative error distributions over time, based on N
= 100 realizations of the described procedure. We found high accuracies in our
corrected time series for the MSAs under test for the time period 1910–2010.

Temporal mismatch and survivorship bias. Neither does the ZTRAX database
contain information on teardowns or building replacements, nor does it provide
sufficient information on remodeling activities. Thus, attributes of built-up struc-
tures may refer to a contemporarily existing building and may not reflect the
characteristics in the year when a location became first built-up (i.e., the built year
information on record). This may result in a selection bias, or survivorship bias, in
a sense that information on first settlements, typically small buildings, has been
replaced by the characteristics of larger buildings that replaced the original
buildings. This issue is also seen as a selection bias, introduced by the non-
randomness of building replacements, e.g., the survival of a building depends
heavily on its characteristics (size, material), and the time period in which it was
built40,41. This effect likely causes a biased view on the building stock in early years,
and cannot be easily quantified nor mitigated, thus remaining the largest source of
uncertainty in this study. The lack of information on teardowns and building
replacements likely causes an increasing underestimation of the building stock
towards early points in time which can, to some degree, be measured by comparing
our results to population data. We carried out such a comparative analysis and
found that the overall trends reported herein are largely unaffected by this latter
issue. To do so, we obtained decadal census population counts per MSA since 1940,
and calculated the average population-building ratio (PBR) per MSA and year. We
compared these ratios to census-based average population-household ratios (PHR)
and observed a similar decreasing trend for both PBR and PHR over time (Sup-
plementary Fig. 2a), although PBR has much larger values than PHR in earlier
years. While these dynamics may be a superposed effect of a variety of processes,
and the differences may partially be the result of different reference units (i.e.,
buildings versus households) and geographic coverages (MSAs versus all
US including rural areas), we partially attribute the divergence observed in earlier
years to underreporting in the ZTRAX data. We used the maximum PBR (PBRmax)
per MSA, calculated over all years, as an MSA-level measure of underreporting.
While the PBRmax is not a function of absolute MSA size, measured by NET-
BUI2010, as Supplementary Fig. 2b suggests, we apply a range of thresholds to
PBRmax and assessed the sensitivity of the overall trends reported in Fig. 2. Results
suggest that these overall trends are mostly unaffected by early-year underreporting
in ZTRAX. That is, even MSAs with PBRmax below the 5th percentile, and thus,
least affected by underreporting, exhibit similar trends compared to the baseline
trend using all MSAs. (Supplementary Fig. 2c).

Sensitivity to spatial resolution. The urban spatial metrics used herein may be
sensitive to the spatial resolution of the underlying gridded data layers. To assess
whether the observed trends hold across different spatial resolutions, we randomly
selected 25 of the 300+ MSAs and computed the metrics for a range of cell sizes
(i.e., 30 m, 100 m, 400 m, 500 m) besides the cell size of 250 m used herein, and
visualized the resulting trends for each cell size (Supplementary Fig. 1). Despite
different magnitudes for some metrics, we observe relatively similar trends over
time, and find that the chosen resolution of 250 m represents an acceptable tradeoff
between spatial generalization (i.e., capturing most components of the urban
environment, such as impervious surfaces) and uncertainty, while preserving the
characteristic shapes of urban extents.

Analytical methods
Cross-temporal quantitative trajectory analysis. Each MSA at any given year can be
represented as a point in a 5-dimensional attribute space defined by the variables
derived for each of the two categories. In order to analyze similarity between the

MSAs within each category, we used t-distributed stochastic neighbor embedding
(t-SNE)69 to reduce the dimensionality of these attribute spaces. T-SNE allows for
mapping higher-dimensional data into low-dimensional spaces where Euclidean
distance among nearby data points in the target space represents their similarity in
the original space. We performed t-SNE for each category using the described
variables extracted for each MSA and each year to visually assess the similarity
between MSAs at different points in time in a two-dimensional space. See Fig. 3
and Supplementary Figs. 4, 5.

Variable selection and dimensionality reduction. In order to reduce the complexity
of the subsequent analyses and enable legible and comprehensive interpretation of
the results, we decreased the number of variables to three per category using
principal component analysis applied to the full data (i.e., all MSAs and all years).
We retained those three variables per category that showed the highest factor
loadings of the first principal component (PC1) (Supplementary Table 1). These
variables represent the highest contribution to the variability in the respective data
distributions.

Multi-temporal thematic cluster analysis. Whereas the described t-SNE based tra-
jectory visualization method reveals spatio-temporal MSA-level patterns of simi-
larity and variability, they do not inform about the number, homogeneity,
characteristics and size of thematic clusters and their variation over time. Thus, we
developed a framework for cluster analysis of the temporal cross-sections of MSAs.
For each point in time and each of the two variable categories, we identified clusters
of MSAs using the BIRCH clustering algorithm (balanced iterative reducing and
clustering using hierarchies), a tree-based clustering algorithm suitable for non-
uniformly distributed data70. BIRCH allowed us to determine the number of
clusters based on the data (rather than specifying a fixed number of clusters) and
the size of each cluster for each temporal cross-section. We ran BIRCH without
specifying a number of clusters, thus using the subclusters returned by BIRCH
before the final, global clustering step when the user-specified threshold value is
reached (i.e., the so-called tree-BIRCH method71). We adjusted this threshold
empirically for each category of variables. Since the same threshold was used for all
temporal cross-sections of the data, the resulting clustering sequences are inde-
pendent from the threshold and intercomparable. The thresholds used as stopping
criteria were 0.15 (size-related variables), and 0.125 (form-related variables). A
branching factor of 50 was used for all cluster analyses. The resulting temporal
sequence of clusters allowed us to assess how MSAs maintain or switch mem-
berships between clusters in subsequent years. Finally, we registered the MSA
representing the medoid of each cluster in the three-dimensional space spanned by
the used variables in a given year, in order to derive MSAs typical for a cluster at
each point in time (see Fig. 5). The variable magnitudes of these medoid MSAs
were RGB color-coded for the visualizations of the clusters (see Fig. 4). Moreover,
we visualized these clusters in geographic space for selected years in order to reveal
spatial patterns of thematic clusters (see Fig. 5). We assessed clustering validity by
generating time series of within-cluster variability and between-cluster variation72,
and, likewise, used these metrics to evaluate distributions of size-variables within
form-based clusters, and vice-versa (Fig. 4d,e). To further assess these interactions,
we conducted Dunn’s test of pairwise comparisons on size variable distributions
within form-based clusters, and vice-versa, for each point in time (Supplementary
Fig. 7) and assessed within-cluster dispersion (Supplementary Fig. 6, Supplemen-
tary Table 3).

Regionalized time series generation. We generated median time series per variable
and geographic region in the US, adapted from the US census divisions73. More-
over, we used Kruskal-Wallis (KW) tests to analyze whether regional median time
series exhibit statistically significant differences, and how statistical significance
behaves over time. We used non-parametric KW tests since non-normality of most
variables can be assumed based on Shapiro-Wilk tests applied to temporal cross-
sections of the data (Supplementary Fig. 3). While it is common practice to use the
p-value returned by the KW test as a measure of statistical significance, we also
analyzed time series of the H-statistic returned by each KW test (Fig. 6d) as a
measure of difference between group (i.e., region) distributions. Since the sample
sizes per variable and year are identical (i.e., the number of MSAs included in the
study), the H-statistic is based on the same degrees of freedom and thus, com-
parable across variables and over time. Moreover, we conducted subsequent post-
hoc Dunn’s test of pairwise comparisons per year to analyze between which pairs of
regions the identified statistically significant differences occurred (see Fig. 6e,f).

Limitations of this work. Whereas the results are promising, several limitations of
the presented work need to be mentioned: First, the ZTRAX database and the
derived HISDAC-US data do not take into account teardowns and building
renovations. Thus, built year information may refer to the first existing building,
whereas other attributes, such as building size, may refer to the structure existent at
present, allowing only for analyzing the "surviving" building stock. Moreover, this
limits our analysis to the measurement and quantification of urban growth, and
does not take into account the shrinkage of built-up areas, with Detroit as a
popular example. This limitation may slightly distort variables that take into
account age and built-up intensity in an integrated manner. However, as Supple-
mentary Fig. 2 suggests, our main findings are largely invariant to these effects.
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Moreover, buildings in public lands may suffer from lower levels of coverage in the
ZTRAX database. Second, some MSAs were excluded in this study due to data
incompleteness (Supplementary Fig. 10). In the future, more sophisticated data
correction methods (e.g., based on ancillary data and machine-learning based
predictive models) will be employed to fill these data gaps more reliably, allowing
for a complete analysis of urban evolution in the US using the proposed methods.

Data availability
The HISDAC-US geospatial data layers used for this study have been made publicly
available under https://dataverse.harvard.edu/dataverse/hisdacus. Moreover, the urban
spatial metrics per MSA and year are available at https://doi.org/10.6084/m9.
figshare.1330309174.

Code availability
Code is available from the authors upon reasonable request.
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