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ABSTRACT
Online social communities have gained significant popularity
in recent years and have become an area of active research.
Compared with general websites or well-structured Web fo-
rums, user-centered social websites pose several unique chal-
lenges for crawling, a fundamental task for data collection
and data mining of large-scale online social communities: (1)
Social websites have more complex link structures and much
higher indegree and outdegree, resulting in a large number
of duplicate links; (2) Social websites contain large amounts
of duplicate content usually listed under different URLs; (3)
Social websites are interactive in nature, containing a large
number of action or uninformative webpages such as login,
tell-a-friend, or commenting; and (4) Social webpages differ
dramatically in URL format, link structure, and page lay-
out, due to their diverse semantics, functionalities, and user
customization. Previous crawler designs targeting the gen-
eral Web or well-structured Web forums are inadequate for
social websites, wasting network bandwidth, storage space,
and causing extra overload in social network analysis and
data mining tasks.

This work tackles the problem of efficient social website
crawling by proposing two key techniques: (1) URL-based
webpage clustering that identifies frequent itemsets in URLs
and groups webpages into semantic clusters; and (2) cluster
graph pruning that removes edges and nodes representing
duplicate links, duplicate or uninformative content. The of-
fline trained webpage cluster graph is then used at runtime
to direct the crawling process. By using only URLs and
page link structures, our cluster-graph-based approach can
successfully address the challenges in crawling social web-
sites. Extensive evaluations on three different social websites
demonstrate that our approach can effectively and efficiently
crawl large amounts of informative social content while dra-
matically reducing the number of duplicate links as well as
the amount of duplicate or uninformative content.

1. INTRODUCTION
Recently, online social communities have gained signifi-

cant popularity and are now among the most popular sites
in the Web. Over two thirds of the global online population
visit a social network or blogging site, and the sector now
accounts for almost 10% of all Internet time [32]. Facebook,
one of the world’s most popular social networks, is visited
monthly by three in every 10 people online. Another popu-
lar social network, MySpace, has over 253 million users and
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a traffic rank of 9 [31]. The popularity of these sites pro-
vides great opportunities for the research community, span-
ning from structural analysis of social networks [30], to so-
cial network-based information dissemination [3], and to the
study of social behavior [36].

Research on online social communities requires a funda-
mental step – obtaining data from social websites. While a
large number of social websites exist, few of them provide
readily-available data sets. One possible approach is to use
the APIs provided by individual websites (e.g., the Flickr
API [19]). Although the APIs provide a convenient way for
obtaining semantically-structured data, their functionalities
are usually limited and do not provide all the information
needed for effective social community analysis. In addition,
the fact that only a small number of social websites provide
APIs and that APIs vary from site to site has made it dif-
ficult to apply this approach to a large number of diverse
social websites. Instead, web crawlers that rely on HTML
screen scraping are needed to obtain large amounts of data
from diverse social websites.

Web crawling has been an area of active research for over
a decade, and many crawlers have been developed [8, 12,
14, 25, 40, 27]. Compared with general websites and well-
structured Web forums, social websites pose several unique
challenges for Web crawling:

Duplicate Links: Online social communities support
many types of social interactions among a huge number of
users. As a result, a social website has complex link struc-
tures and its webpages are tightly intertwined with each
other. For example, a user’s profile page may link to all
his/her friends, communities, interest tags, blog entries, and
vice versa. Such high indegree and outdegree of social web-
pages would generate a huge number of duplicate links in
the crawling process.

Duplicate Content: Online social websites usually sup-
port powerful and convenient user interfaces for browsing
and social interaction. The same content may be displayed
in multiple ways (e.g., user posts by name, by date, or by
topic), and the same content may be listed under different
URLs and webpages. This problem is related to the near-
duplicate detection problem in Web crawling [6, 16], but it
focuses more on the semantic meaning of a cluster of web-
pages. For example, a webpage of user posts by date and
a webpage of user posts by topic may be syntactically dif-
ferent, while the two clusters of webpages (by date and by
topic) would have the same content.

Uninformative Pages: Online social communities are
user oriented and interactive in nature. To facilitate easy
interactions among users and update of individual or com-
munity information, most social websites provide extensive
“action” webpages such as login, updating a profile, adding
a friend, tell-a-friend, or commenting. Such “action” web-
pages provide no extra information for the crawling process
yet may waste a lot of network bandwidth and computation



resources if not dealt with carefully.
Diverse and Complex URL/Link/Page Structures:

Due to the diversity of people’s interests and social inter-
actions, social websites usually exhibit diverse and com-
plex structures in terms of URL formats, hyperlinks, and
page layout structures. For instance, users’ profile pages
are highly customizable, and these profile pages may link
to other user, post, community pages with diverse content
structures and URL characteristics. This differs in partic-
ular from well-structured Web forums, which tend to have
regular URL formats as well as easy-to-follow link and page
structures such as list of topics and page flipping links.

In addition, social websites are massive in size and highly
dynamic, as they are visited by millions of people on daily
basis. High efficiency and high scalability are thus essen-
tial for a social website crawler. However, due to the chal-
lenges listed above, previous Web crawlers designed for gen-
eral websites or Web forums do not perform well on social
websites. Not only do they waste computation resources,
network bandwidth and storage space, the redundant or un-
informative data gathered also cause extra overhead on fu-
ture social network analysis or data mining tasks.

In this work, we first conduct a detailed analysis of so-
cial websites and identify their key characteristics. We have
then designed and implemented an efficient crawler for social
websites, which consists of four main components: (1) an of-
fline random webpage sampling method to quickly generate
a small yet representative sample set of webpages; (2) an
offline URL-based clustering algorithm to identify semanti-
cally similar webpages; (3) an offline cluster graph pruning
algorithm to remove redundant edges and unimportant clus-
ters in the cluster graph; and (4) an online crawling process
using cluster-graph-based filtering. Evaluation results on
three different social websites demonstrate that our crawler
can efficiently crawl large amounts of semantically important
social content while dramatically reducing duplicate links,
duplicate content, and uninformative webpages.

The rest of this paper is organized as follows. Section 2
presents the analysis and key characteristics of social web-
sites. Section 3 gives an overview of our crawler design, and
the details of the main components are presented in Sec-
tion 4. Evaluation results are described in Section 5. Sec-
tion 6 surveys the related work and Section 7 concludes.

2. ANALYSIS OF SOCIAL WEBSITES
In this section, we compare social websites with general

websites and Web forums in order to identify the key char-
acteristics of social websites for efficient crawler design.

After a careful examination of various types of online so-
cial communities, we pick three social websites of different
sizes and different user communities. LiveJournal is a pop-
ular blogging website with over 17 million users, 19 million
journals, and ∼200,000 new journals published daily. Shel-
fari is a popular social network for people who love books.
And Jaiku is a social website that supports the sharing of
short messages (activity streams) among friends. The num-
ber of daily visits of the three social websites are around 6
million for LiveJournal, 30,000 for Shelfari, and 10,000 for
Jaiku [37]. From these three social websites, we collected a
combined social websites data set of 2.3 million webpages.
For comparison purposes, we also obtained a general web-
sites data set of 2.3 million webpages, and a Web forums
data set of 2.3 million webpages.

Table 1: Indegree of Different Websites
Websites Sample size Min Max Avg Stdev

social 2.3M 0 875,646 60 3,872
general 2.3M 0 67,033 36 445
forum 2.3M 0 320,430 26 1,384

Table 2: Outdegree of Different Websites
Websites Sample size Min Max Avg Stdev

social 2.3M 0 20,123 92 124
general 2.3M 0 10,272 35 68
forum 2.3M 0 8,288 46 61

Web graph structure. We first compare the graph
structures of social websites, general websites, and Web fo-
rums, focusing on their indegree and outdegree, which are
the number of hyperlinks pointing to or from a webpage. Ta-
ble 1 and Table 2 show the min, max, average, and standard
deviation of indegree and outdegree for the social websites,
general websites, and Web forums, and Figure 1 compares
their indegree and outdegree distributions. As shown in the
figure and the tables, social websites have much higher inde-
gree and outdegree than general websites and Web forums.
E.g., the fraction of webpages with >= 10 indegree is 0.47 for
social websites, 0.22 for general websites, and 0.10 for Web
forums; and the fraction of webpages with >= 100 outdegree
is 0.25 for social websites, and only 0.07 for general websites
and Web forums. Such high indegree and outdegree of social
websites would generate a huge number of duplicate links,
resulting in long duplication check time when generic web
crawlers are used.

Duplicate and uninformative content. Compared
with general websites, the majority of the content in social
websites are generated by individual users. Most social web-
sites provide rich functionalities (web interfaces) for users to
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Figure 1: Comparison of indegree and outdegree dis-
tributions of social websites, general websites, and
Web forums.
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Figure 2: Overview: Efficient crawling of social websites (new components shown on the right).

Table 3: Duplicate or Uninformative Content in Dif-
ferent Websites

Sample Duplicate content Uninformative
Websites size pages (%) pages (%)

social 2.3M 21.49 12.57
general 2.3M 0.08 0.31
forum 2.3M 0.83 3.07

browse and create new content, as well as interacting with
each other. For example, users can be listed by both friend
list and community members, and user posts can be listed
by name, by date, or by topic. There are also many “action”
webpages for users to write a comment, add a new friend, or
send a short message to a friend or a group. Although very
useful and well-appreciated by social website users, these
browsing and “action” webpages pose a major challenge for
Web crawlers, as they typically contain duplicate or unin-
formative content. To confirm this observation, we analyze
the content of social websites, general websites, and Web
forums. For each website, we first cluster the webpages by
their URL patterns (see details in Section 4.2), then manu-
ally examine the individual clusters to determine if a cluster
represents duplicate or uninformative content. As shown
in Table 3, the percentages of duplicate and uninformative
pages in social websites are orders of magnitude higher than
that of general websites and Web forums.

Diverse and complex URL/link/page structures.
Unlike topic-centered general websites or Web forums, which
are tailored for information viewing and have a limited or
regular format for user-posted information, user-centered so-
cial websites provide much more functionalities and flexibil-
ity for users to create/customize their own webpages and
link to a wide variety of webpages of other users and commu-
nities. For example, LiveJournal provides 788 templates for
different journal styles, and each can be further customized
by individual users. Since different users may have dramati-
cally different interests and social interests, correspondingly,
the social websites and online social communities they par-
ticipate in tend to have very different URL patterns, hyper-
link structures, and page layouts.

We further compare social websites with Web forums to
explain their differences and why previous crawler designs
for Web forums [12, 40] are not applicable to social websites.

Page layout. In a Web forum, the whole website has a uni-
form style and webpages in one cluster (e.g., list of threads)
usually have the same layout. However, in a social website,
various templates exist (e.g., 788 journal styles at LiveJour-
nal) and can be further customized by users. This results in
a large number of content layout types, even for webpages

with similar semantics (e.g., user profile pages). Therefore,
using DOM trees to identify semantic webpage clusters may
not work for social websites.

URL format. In a Web forum, URLs are regularly format-
ted, and only a few variables (e.g., board ID, post ID) exist
at specific positions in the path or query component of URL
strings. In a social website, many variables exist (e.g., user,
tag, community) and can appear at various positions (e.g.,
authority, path, query) in URL strings. Such complex and
diverse URL formats make URL-based webpage clustering
a much more challenging problem in social websites than in
Web forums.

Link structure. A Web forum allows users to browse and
participate in threaded discussions. Links between Web fo-
rum pages are usually well structured and exhibit specific
characteristics, which can be used for identifying valuable
links in a Web forum [40]. Social websites support a wide
variety of functionalities, and allow users to create more di-
verse link structures to support their social interaction and
information sharing needs. Such mixed and noisy link struc-
tures make it difficult to identify specific types of valuable
links at the page level. Instead, our crawler design focuses
on pruning unimportant links at the cluster graph level.

Based on the analysis and comparison above, in order
for a Web crawler to efficiently gather large amounts of
semantically-important social data from social websites, it is
essential that the crawler can quickly yet accurately identify
and prune out duplicate links, duplicate content, and unin-
formative webpages, tackling the diverse and complex URL
formats, link structures, and page layouts in social websites.

3. OVERVIEW OF CRAWLER DESIGN
In this section, we give an overview of the proposed effi-

cient Web crawler targeting social websites. We start with
a brief description of generic Web crawler design, then high-
light the main design contributions of the new crawling sys-
tem. The detailed design of the crawling system is presented
in Section 4.

Figure 2 illustrates the generic Web crawler design (left)
and the new design components (right). As shown on the
left, a generic Web crawler first gets a URL from the crawling
queue and fetches the corresponding webpage. It then parses
the URLs (hyperlinks) contained in that page. The duplica-
tion check step filters out URLs that are already crawled or
added to the crawling queue, and the remaining URLs are
inserted into the crawling queue. However, when crawling
social websites, a generic Web crawler would spend a lot of
time checking and pruning duplicate links, and it generally



fails to detect duplicate or uninformative content and ends
up downloading all these content, which is wasteful and af-
fects the overall crawling efficiency and effectiveness.

The right diagram in Figure 2 highlights the new compo-
nents in our crawler design, which utilizes an offline training
process to generate a cluster graph, and uses the cluster
graph at runtime to guide the crawling processing. Com-
pared with generic Web crawlers, our crawler consists of
four new components, and the first three components are
used in offline training:

Random Webpage Sampling: First, an improved ran-
dom webpage sampling method is developed to quickly crawl
a small yet representative set of sample webpages from a
given social website.

URL-Based Webpage Clustering: The sampled web-
pages are then clustered into various semantic groups using
FP-growth based frequent itemset mining and a hierarchical
clustering algorithm based on their URL patterns.

Cluster Graph Pruning: The URL clusters are con-
nected into a weighted directed cluster graph by examining
the link structures among the URLs, and our cluster graph
pruning algorithm then effectively removes certain nodes
and edges in the cluster graph representing duplicate links,
duplicate content, or uninformative pages.

Cluster-Graph-Based Online Filtering: The offline-
trained cluster graph is used at runtime to guide the crawling
process, filtering out newly-parsed URLs that do not belong
to any cluster in the cluster graph, or if the hyperlinks they
represent do not have a corresponding edge in the cluster
graph.

Note that the cluster-graph-based filtering step can be
applied either before (dotted line in Figure 2) or after (solid
line in Figure 2) the duplication check step. As shown in the
evaluation results (Section 5), it is more efficient to perform
cluster-graph-based filtering before duplication check.

4. SOCIAL WEBSITE CRAWLER DESIGN
In this section, we describe in detail the four main com-

ponents of our social website crawler: (1) random webpage
sampling; (2) URL-based webpage clustering; (3) cluster
graph pruning; and (4) cluster-graph-based filtering. The
first three components are used for offline training of the
cluster graph, which is then used in the fourth component
for online crawling of social websites.

4.1 Random Webpage Sampling
Given a specific social website to crawl, our first task is

to quickly generate a small yet representative set of sam-
ple webpages of the social website. The sampled set should
represent webpages of various URL patterns and link struc-
tures with roughly the same proportions as that of the com-
plete social website. Traditional webpage sampling or crawl-
ing techniques that use breadth-first, depth-first, or highest-
degree-node-first exploration are not effective as they tend to
generate localized, biased, or even skewed samples. A sim-
ple random sampling approach that selects a URL uniformly
random from the current crawling queue cannot achieve over-
all uniform random sampling since the URLs discovered ear-
lier have much higher chances of being selected than URLs
that are inserted to the crawling queue at a later time.

We propose an improved algorithm for random webpage
sampling. The main steps of the algorithm are shown in
Algorithm 1. When a newly discovered URL ui is inserted to

Algorithm 1 Random Webpage Sampling

U : URLs in the crawling queue
V : URLs crawled
W : URLs withdrawn
ξ: desired sampling probability for each URL
si: probability of URL ui already sampled
ri: probability of URL ui not yet sampled
pi: remaining sampling probability of URL ui
qi: normalized sampling probability of URL ui

U = {seed URLs}; V = ∅; W = ∅
for each ui ∈ U do

si = 0; ri = 1; pi = ξ;
end for

while crawl next URL do
for each ui ∈ U do

qi = pi/
P

uj∈U pj

end for
randomly select a URL uk with probability qk
U = U − {uk}; V = V + {uk}
X = {uj : uk links to uj , uj /∈ U , uj /∈ V , uj /∈ W}
for each ui ∈ U do

si = si + ri × qi; ri = ri × (1− qi); pi = ξ − si
if pi ≤ 0 then

U = U − {ui}; W = W + {ui}
end if

end for
for each uj ∈ X do

sj = 0; rj = 1; pj = ξ; U = U + {uj}
end for

end while

the crawling queue, its initial probability of already sampled
si, probability of not yet sampled ri, and remaining sampling
probability pi are set as follows:

si = 0; ri = 1; pi = ξ − si = ξ;

where ξ is a parameter specifying the desired sampling prob-
ability of each URL. To select the next URL to crawl, we
examine all the URLs in the current crawling queue and
compute the normalized sampling probability qi for each
URL ui: qi = pi/

P
uj∈U pj . We then randomly select a

URL with the corresponding normalized sampling proba-
bility. Let uk be the URL selected, it is moved from the
crawling queue U to the crawled set V . The probabilities
of each of the remaining URLs ui in the crawling queue are
adjusted accordingly to reflect the new si, ri, and pi values.

si = si + ri × qi; ri = ri × (1− qi); pi = ξ − si;

If ui’s remaining sampling probability pi is 0 or less, it is
removed from the crawling queue. Next, we crawl uk, iden-
tify each of the newly discovered URLs uj , and add it to the
crawling queue with the initial values of sj , rj , and pj .

Our random webpage sampling method uses a single pa-
rameter ξ, the desired sampling probability of each indi-
vidual URL. This parameter controls how quickly we move
away from the initial seed URLs. The larger ξ is, the slower
we move in the web graph, sampling more in a local region.
The smaller ξ is, the faster we move in the web graph but
may generate skewed samples as in depth-first sampling. To
choose an appropriate value for ξ, let us consider the average
outdegree of a social website, K. Let K be the number of
newly discovered URLs after crawling each URL (i.e., fan-
out). Initially, the expected value of K equals K since most
of outgoing links are new. As more and more URLs are



Table 4: Semantic Meanings of URL Clusters
Example cluster Semantic meaning

http://*.livejournal.com/ user homepage
http://*.livejournal.com/profile user profile page
http://*.livejournal.com/$.html user post

http://*.livejournal.com/tag user’s list of tags
http://www.livejournal.com/$.html website news

crawled, many of the outgoing links may have already been
crawled or exist in the crawling queue, so K would decrease
over time. When sampling a small subset of webpages, K is
expected to be only slightly smaller than the average outde-
gree K. To ensure proper execution of the sampling process,
the value of ξ should be within the range [1/K, 1]. Based
on this analysis, to generate a small sample set that is di-
verse yet representative, we choose the following ξ value:

ξ = 1
K

+
1− 1

K
α , where constant α is a positive integer to

ensure that ξ is slightly larger than 1/K.

4.2 URL-Based Webpage Clustering
The goal of webpage clustering is to identify semantically

coherent clusters, such as user profiles or group posts. Ta-
ble 4 lists some example clusters and their semantic mean-
ings. One key challenge is to distinguish variable keywords
in URL strings, such as user ID, post ID, tag ID, and date,
from functional keywords, such as profile, news, etc. Existing
clustering methods that use webpage content or structural
layout do not work well for social website pages, since se-
mantically similar webpages (e.g., users’ profile pages) may
differ dramatically in terms of content, link structure, and
(customized) page layout.

There are also several challenges when using URLs for
webpage clustering. First, URLs with similar syntax may
belong to different semantic clusters, e.g., URL 1 and URL 2
in Figure 3. Note that the pattern/cluster of URL 2 is actu-
ally a superset of the pattern/cluster of URL 1. Second, the
semantic words contained in URLs (e.g., profile, post, group)
are easily understood by human but difficult for computers.
What is more, URLs of social webpages tend to be much
noisier than general websites and Web forums, since social
website users have more flexibility in creating and naming
new content (e.g., URLs 3, 4, 5, 6 in Figure 3). Traditional
distance-based clustering method is inadequate. For exam-
ple, in Figure 3, the distances of URL 3&4 and URL 3&5 are
difficult to determine. Since each website has its own URL
formats, we have no prior knowledge about the positions of
those variables. Third, functional keywords in URL strings
may vary with websites. For example, the keyword “profile”
might correspond to“main”, “info”, or even digits in other
websites. A predefined set of functional keywords in URLs
may not work for social websites.

To address these issues, we propose a novel URL-based
webpage clustering algorithm based on FP-growth frequent
itemsets mining [21] and hierarchical clustering [9]. This is
based on the observation that functional keywords appear
frequently in URL strings and usually at specific positions.
Such URL patterns are generally stable and correspond to
the semantics of different webpages.

As shown in Algorithm 2, our clustering algorithm works
in four stages: 1) conversion from URLs to item vectors; 2)
FP-growth frequent itemsets mining; 3) hierarchical cluster-
ing tree construction; and 4) URL pattern generation.

At the first stage, each sampled URL is converted into a

Algorithm 2 URL-Based Webpage Clustering

U = {all sampled URLs}, N = |U |

for each u ∈ U do
split u into a vector of three parts: authority, path, query
each part contains one or multiple items
v = [{A1, A2, · · · }, {P1, P2, · · · }, {Q1, Q2, · · · }]

end for
split all URL vectors into M partitions of equal size
for each of three parts (Authority, Path, Query) do

for i = 1 to M do
find frequent itemsets Si for the ith bin
using the FP-growth algorithm

end for
keep the frequent itemsets that appeared in all M bins
sort frequent itemsets in ascending order of itemset size

end for

initiate pattern tree with a single root node T = {R}
for each u ∈ U do

A = largest matched Authority frequent itemset of u
if A is not empty then

create node A as child of R if A not exist in T
P = largest matched Path frequent itemset of u
if P is not empty then

create node P as child of A if P not exist in T
Q = largest matched Query frequent itemset of u
if Q is not empty then

create node Q as child of P if Q not exist in T
add u to the set of URLs in Q

end if
add u to the set of URLs in P

end if
add u to the set of URLs in A

end if
add u to the set of URLs in R

end for
start from the leaf nodes in T and go upwards
for each non-empty node X in T do

generate patterns for the set of URLs in X
end for
sort all patterns in increasing size (# matched URLs)
remove the smallest patterns s.t.
the remaining patterns cover (1− δ)×N URLs

vector. A URL is a relatively semi-structured string, which
can be treated as a sequence of substrings separated by sev-
eral special characters. According to [38], a URL can have
five parts: scheme, authority, path, query, and fragment.
For example, the following URL
http://news.example.com/over/there?name=dog\#nose

can be separated as: “http://”(scheme); “news.example.com”
(authority); “/over/there”(path); “?name=dog”(query); and
“#nose” (fragment).

After getting the five parts for each URL, we use authority,
path, and query for clustering since these three parts con-
tain the most important information of a URL. Each part
is further split into items, using separation characters ‘.’ for
authority, ‘/’ and ‘.’ for path, ‘&’ and ‘=’ for query. The
final item vector for the example URL above is

[{news, example, com}, {over, there}, {name,dog}].
At the second stage, all the URL vectors are divided into

M equal-sized bins (b1, . . . , bM ). For each of the three URL
parts (authority, path, query) and each bin, we use the FP-
growth algorithm to identify all frequent itemsets with a
minimum support value of S (i.e., minimum number of oc-
currences of an itemset in a bin). Let F (bi) (i = 1, . . . , M) be



URL 3: http://user1.LJ.com/profile
} , { } , { } ]

[ {LJ,  com}, [ {LJ,  com}, [ {LJ,  com},[ {www, LJ,  com},

[ {LJ ,  com} ,  {h tm l } ,  {

Author i ty
Path

Query

URL 1: http://www.LJ.com/10001.html 
URL 2: http://user1.LJ.com/00001.html 

URL 4: http://user1.LJ.com/tag

URL 6: http://user2.LJ.com/tag
URL 5: http://user2.LJ.com/profile

URL 7: http://user1.LJ.com/002.html?mode=reply

=> www.LJ.com/$.html 

=> *.LJ.com/$.html 

=> *.LJ.com/profi le 

=> *.LJ.com/tag

=> *.LJ.com/profi le 

=> *.LJ.com/tag

=> *.LJ.com/$.html?mode=reply 

 } ,  { } ,  { } ]

ROOT

www, LJ, com [ { LJ, com[ {

 h tml { } ,  { } ] t a g{ } ,  { } ] } , { } ]h t m l{ prof i le{ } , { } ]

mode,  rep ly} ]

Note: "LJ" refers to "l ivejournal"

Figure 3: Example URLs 1-7, and their clustering subtree with three layers (authority, path, and query).

the frequent itemsets in the i-th bin, then the final frequent
itemsets I = F (b1)∩F (b2)∩. . .∩F (bM ). By partitioning the
URLs into multiple bins and only considering itemsets that
are frequent in all bins, we can reduce the false positive rate
and effectively identify itemsets corresponding to valuable
semantic clusters. FP-growth adopts an efficient divide-and-
conquer strategy. It first compresses the database by rep-
resenting frequent items into an FP-tree, which retains the
itemset association information. It then divides the com-
pressed database into a set of conditional databases, each
associated with one frequent item, and mines each condi-
tional database separately. The number of bins M and the
minimum support value S in each bin should be set such
that stable frequent itemsets can be detected. Based on our
experiments, M = 6 and S = 5 generally work well.

At the third stage, we generate a three-layer clustering
tree, where authority, path, and query correspond to the
top, middle, and bottom layer, respectively. We start with
a tree T with a single root node R. For each of the sampled
URLs, we find its largest matched frequent itemset for each
of the three parts: authority, path, and query. We then add
a branch to T with the corresponding nodes and frequent
itemsets. Each URL is added to the bottom-level node of
matched frequent itemset (see Algorithm 2). For example,
if we have two frequent itemsets for the authority part:

{news, example, com} and {example, com},
URL http://user1.example.comwill be converted to vec-

tor [{user1, example, com},{}, {}], and its largest matched
authority frequent itemset is {example, com}. In this
case, a new node A will be created as a child of R, and the
URL will be added to the set of URLs in A.

After all the sampled URLs have been assigned to a node
in the hierarchical tree, at the last stage, we go through
each node in the tree, starting from the leaf nodes and going
upwards. For each non-empty node, we examine the URLs
assigned to this node and generate patterns by replacing the
unmatched items with a ‘$’ if it is a string of digits, or a ‘*’
for anything else. The reason we distingush digits strings
from general strings is that for some cases the format of
string is the only difference of two clusters. For example,
user1.example.com/*.html stands for user1’s posts with tag
*, and user1.example.com/$.html stands for user1’s single
post $. We have observed such difference in a few social
websites.

After all the patterns are generated, we remove the small-
est patterns (measured by the number of URLs matching
each pattern) such that the fraction of URLs covered by the
remaining patterns is at least 1− δ. In our experiments, we
set δ to 0.03 to ensure a 97% coverage of all the sampled
URLs. By removing the small patterns, we can effectively
remove the noisy or unimportant patterns and dramatically
reduce the number of patterns that we have to consider in

the cluster graph pruning component.
Figure 3 shows the clustering subtree corresponding to

example URLs 1-7. For example, URL 3’s vector is [{user1,
LJ, com}, {profile}, {}], and its best match is the rightmost
node in the path layer, and the corresponding URL pattern
for that node is *.LJ.com/profile.

4.3 Cluster Graph Pruning
The patterns (clusters) generated from the previous step

identify semantically coherent webpages such as user profile
pages or group post pages. However, webpages in these clus-
ters still contain duplicate content, uninformative pages, and
duplicate links, which we aim to remove through the cluster
graph pruning step.

Given the clusters of webpages, we create a corresponding
cluster graph as follows:

• A cluster graph G = (V, E) is a weighted directed
graph.

• G contains |V | nodes, where each node vi represents
a cluster Ci, and its size is the number of URLs con-
tained in that cluster.

• For each pair of clusters Ci and Cj , if there exists URLs
ui ∈ Ci, uj ∈ Cj , and ui links to uj , then there is a
directed edge eij points from Ci to Cj .

• Each edge eij is associated with two weights: one is
the number of URLs in Ci pointing to a URL in Cj ,
and the other is the number of URLs in Cj that are
being pointed to by a URL in Ci.

Our cluster graph pruning algorithm includes both edge
deletion for the removal of duplicate links in a social website,
and node deletion for the removal of duplicate or uninfor-
mative content in a social website.

First, for edge deletion, we examine the incoming edges
of each cluster Ci in the cluster graph. The intuition here is
that if the URLs in cluster Ci can be reached via multiple
incoming edges, we can safely remove some of the incom-
ing edges (thus reducing duplicate webpage links) while still
maintaining a good coverage (reachability from other clus-
ters) of the URLs in cluster Ci. Specifically, we first sort all
the incoming edges in descending order by their coverages
of Ci. Starting from single edges, we use dynamic program-
ming to find the coverage of every m-edge combinations. If
the highest coverage is greater than the required coverage,
we have found the best solution. Otherwise, we continue to
consider all m + 1 edge combinations. Once we have identi-
fied the best edge combination, we can delete the remaining
incoming edges of cluster Ci. Based on our experiments, a
required coverage of 0.6 is sufficient (Section 5).

After deleting the redundant edges in the cluster graph,
we also examine individual nodes in the graph and delete the
ones that correspond to duplicate content or uninformative
webpages, based on the following heuristics:



Header and footer pages: Pages such as “term of use” and
“contact us” are linked by almost all webpages on a website,
resulting in a huge number of duplicate links. Since the
content on these pages are generally not needed for social
network analysis, we can safely remove them. If a cluster is
linked to by more than half of the other clusters, and the
total number of incoming URL links is more than half of the
total number of sampled URLs, we consider this cluster a
header/footer cluster and the corresponding node is deleted
from the cluster graph.

Duplicate content: Consider the following scenario: a user-
post cluster Ck was originally pointed to from both a post-
by-date cluster Ci and a post-by-topic cluster Cj . In this
case, Ci and Cj contain duplicate content, and either eik or
ejk would be deleted during the edge deletion phase. After
edge deletion, if both Ci and Ck have no outgoing edges (i.e.,
leaf nodes), we can then delete node Ci, thus removing the
duplicate content in Ci.

Uninformative pages: After edge deletion, if a cluster node
has no outgoing edges, and the cluster itself contains a small
number of URLs (e.g., less than the average cluster size -
2 × the standard deviation of cluster size), this cluster is
considered uninformative and deleted.

4.4 Cluster-Graph-Based Filtering
Once the cluster graph has been trained offline (using ran-

dom webpage sampling, URL-based webpage clustering, and
cluster graph pruning), we can start the online crawling pro-
cess. As shown in Figure 2, every time a new URL ui is
selected, the crawler retrieves the corresponding webpage,
parses the HTML file, and generates a list of URLs (hyper-
links from ui). We check each URL uj in the list and remove
it from the list if

1. uj does not map to any cluster in the cluster graph, or

2. uj maps to cluster Cj and ui maps to cluster Ci, but
there is no edge from Ci to Cj in the cluster graph.

The remaining list of URLs are then inserted into the crawl-
ing queue for future crawling.

Note that the cluster-graph-based filtering of URLs can be
performed either before or after the duplication check step.
As shown in the evaluation results, it is more effective to
perform the cluster-graph-based filtering before duplication
check (Section 5).

5. EVALUATIONS
In this section, we evaluate the performance of our social

website crawler. Specifically, we are interested in answering
the following questions:

1. How efficient is the cluster-graph-based filtering pro-
cess? How does it compare to the duplication check
process?

2. What is the quality of the crawled webpages? How
does it compare to that of the generic crawler?

3. How effective is the cluster-graph-based filtering pro-
cess, in terms of removing duplicate links, duplicate
content, and uninformative webpages?

4. How big a sample set is needed for the offline training
process?

5.1 Experimental Setup
Our evaluations are conducted on three popular social

websites: LiveJournal, Shelfari, and Jaiku. As described
in Section 2, these three websites have different sizes and
different user communities. In our evaluations, we consider
the following three crawlers:

• Dup-only (d): A generic breadth-first crawler using
only duplication check.

• Dup-graph (dg): Proposed crawler using first dupli-
cation check, then cluster-graph-based filtering.

• Graph-dup (gd): Proposed crawler using first cluster-
graph-based filtering, then duplication check.

All three crawlers are implemented in Java and the of-
fline cluster graph training algorithms are implemented in
Python. To support efficient duplication check, we adopt the
DRUM (Disk Repository with Update Management) tech-
nique proposed by Lee et al. [27]. All experiments are con-
ducted on workstations with the same configuration, with
4GB memory and 2.66GHz Quad-core CPUs.

5.2 Efficiency of the Crawler
To evaluate the efficiency of crawling, we focus on the

duplication check step and the cluster-graph-based filtering
step, as the other steps (parsing, fetching, storing, etc.) have
the same time complexity for all the three different crawlers.

Figure 4 compares the time spent per URL for duplication
check and cluster-graph-based filtering of the three crawlers
and the three social websites. As shown in the figure, for
each URL, duplication check takes about 0.05ms and cluster-
graph-based filtering takes about 0.01ms, and both latencies
remain stable as the number of URLs increases. This shows
that the overhead of cluster-graph-based filtering is small
compared to that of duplication check.

Figure 5 compares the total time spent on duplication
check and cluster-graph-based filtering by the dup-graph
and graph-dup crawlers with that of the dup-only crawler.
As shown in the figure, compared with the duplication check
time by the dup-only crawler, dup-graph takes 94–99% time
for duplication check and 6–8% time for graph filtering; and
graph-dup is much more efficient, taking only 19–22% time
for duplication and 15–17% time for graph filtering. In other
words, the total time spent by graph-dup for duplication
check and graph filtering is only 35–39% of the time spent
by dup-only for duplication check.

For the dup-graph crawler and the graph-dup crawler, du-
plicate links can be detected and filtered out by either the
duplication check step or the cluster-graph-based filtering
step. In the generic crawler, duplicate links can only be
filtered by the duplication check step. As shown in Fig-
ure 6, the dup-only crawler removes 70 – 90% duplicate
links through duplication check. For the dup-graph crawler,
the duplication filtered by duplication check is reduced to
50% on average. The reason is that the cluster-graph-based
filtering step helps to select pages with less duplicate links.
The graph-dup crawler has the lowest duplication check rate.
For Shelfari and Jaiku, the duplication rate is only 2% be-
cause the cluster-graph-based filtering step effectively re-
moves most of the duplicate links. As we have seen in Fig-
ure 4, cluster-graph-based filtering is 5× faster than duplica-
tion check and scales well with the number of URLs. Thus,
the more duplicate links handled by the graph filtering step,
the more efficient the crawling process.
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Figure 4: Speed comparison of duplication check and cluster-graph-based filtering.
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the webpages crawled using the
three different crawlers.

5.3 Quality of the Crawled Webpages
Next, we evaluate the quality of the crawled data, com-

pared with the generic crawler. For each cluster in the
trained cluster graph, we manually categorize it into three
groups: valuable/informative clusters, duplicate content clus-
ters, and uninformative clusters. Valuable/informative clus-
ters are those clusters that contain pages with useful in-
formation such as user profiles. Duplicate content clusters
contain pages whose content also exist in other clusters. As
an example, consider post list pages sorted by date and post
list pages sorted by topic. If both types of pages are crawled,
then one type is a duplicate content cluster and the other
type is a valuable/informative cluster. Uninformative clus-
ters contain pages with no or little useful information, such
as web interface pages that let users leave comments or add
new friends. While some of these uninformative pages can
be filtered by checking the robots.txt file provided by a web-
site, others are not and need to be detected by a crawler.

As shown in Figure 7, both the dup-graph crawler and the
graph-dup crawler achieve 11% – 26% better data quality
than the generic crawler. The percentage of valuable pages
downloaded by the dup-only crawler is 56% for LiveJour-
nal, 76% for Shelfari, and 83% for Jaiku, while the percent-
age of valuable pages downloaded by the dup-graph crawler
and the graph-dup crawler is 82% for LiveJournal, 90% for
Shelfari, and 94% for Jaiku. Table 5 shows four clusters
representing the three different content categories, and com-
pare the number of URLs downloaded by each of the three
crawlers. The first is a valuable user profile cluster, the
next two are duplicate content clusters, and the last one is
an uninformative commenting cluster. As shown in the ta-
ble, both the dup-graph crawler and the graph-dup crawler
downloaded many URLs for the valuable cluster and one of
the two duplicate content clusters, and zero URL from the
other two clusters. On the other hand, the generic crawler
downloaded fewer URLs for the first two clusters, but many
URLs for the last two clusters.

We have seen from the previous results that cluster-graph-
based filtering can efficiently remove unwanted data while
preserving the valuable data. Here, we further analyze the
false positive rate (FP) and the false negative rate (FN) of
this method.

Table 6 shows the false positive rate and the false nega-
tive rate for each of the two crawlers (dup-graph and graph-
dup) and each of the three social websites. Here, useless
pages include both duplicate content pages and uninforma-
tive pages. As shown in the table, our cluster-graph-based
filtering method has low false negative rates (0.7% – 2.1%)
but higher false positive rates (5.9% – 18.5%). The results
depend on how we choose the thresholds during the offline
training process. Generally, it is more important to main-
tain a low false negative rate since we want to ensure that
the crawler downloads all the valuable information, while
a slightly higher false positive rate is acceptable as we can
easily remove the false positives after they are downloaded.

5.4 Sample Size for Offline Training
Compared to the generic crawler, proposed crawling sys-

tem requires an extra offline training process in order to
generate the cluster graph used for online filtering. Here,
we study how many sampled webpages are needed to achieve
good training results. Although it is possible to sample as
many webpages as possible, a larger sample size means long
time for sampling and the later training steps. Larger sam-
ple size may not always improve the quality of training as it
may introduce more noisy to the training process.

For each of the three social websites, we experimented
with increasingly-larger sample sizes and stop when the train-
ing results stabilize. We consider the following measures of

Table 6: False Positive and False Negative of
Cluster-Graph-Based Filtering

Website dg FP(%) dg FN(%) gd FP(%) gd FN(%)

LiveJournal 18.1 2.0 18.5 2.1
Shelfari 9.6 0.9 9.8 1.1
Jaiku 5.9 0.7 6.1 0.7



Table 5: Comparison of the Number of URLs Crawled for Each Content Category
Content category Cluster pattern Dup-only Dup-graph Graph-dup

valuable: User profile http://*.livejournal.com/profile 74,827 208,289 208,289
content dup: User posts ordered by time http://*.livejournal.com 32,452 76,293 75,345
content dup: User posts ordered by tag http://*.livejournal.com/tag/* 30,595 0 0

uninformative: comments http://*.livejournal.com/$.html?mode=reply 4,903 0 0
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Figure 8: Number of sampled URLs needed for offline cluster graph training.

the training results: (1) the total number of clusters the
training process generates; (2) the number of links among
all clusters; (3) the number of remaining clusters after clus-
ter graph pruning; (4) the number of links remaining after
cluster graph pruning. As shown in Figure 8, for LiveJour-
nal, when the number of sampled URLs is greater than 15K,
the four measures stabilize. We can then infer that 15K sam-
pled URLs are sufficient for offline training for LiveJournal.
Similarly, based on the results in the figure, we can infer
that 7K and 6K sampled URLs are sufficient for the offline
training of Shelfari and Jaiku, respectively.

6. RELATED WORK
Our work draws upon research in several areas concerning

Web crawling: webpage and graph sampling, Web crawler
design, near-duplicate webpage detection, as well as graph
node and edge deletion. In this section, we survey research
work most related to ours.

Analysis and understanding of Web graph characteristics
are important for Web crawler design. Various Web proper-
ties have been studied [26, 11, 1, 18]. Several techniques have
been proposed for graph sampling [20, 39, 22] and in par-
ticular for Web graph sampling [5, 24, 34]. Previous studies
show that no sampling method works well in the presence
of duplicate links, duplicate content, or invalid nodes [7].
Through improved random webpage sampling, URL-based
webpage clustering, cluster graph pruning, and online filter-
ing, our crawler can effectively identify and prune duplicate
links, duplicate content, and uninformative webpages when
crawling social websites.

Extensive research has been conducted in the area of Web
crawler design. One related subarea is focused crawling [13],
which crawls only a subset of the Web pertaining to a spe-
cific topic. One general approach is to prioritize the pages
to be crawled using link-based or content similarity-based
page importance measures [2, 10, 15, 29, 42]. Further im-
provements include reinforcement crawling [33] and con-
text graph-based crawling [17, 25]. Our work differs from
focused crawling in that we need to crawl all useful informa-
tion in social websites instead of specific topics. Moreover,
current focused crawlers do not address the problems of du-
plicate content, links and invalid pages. Other related Web
crawler designs include random crawler [8], salable crawler

design [27], and the recently developed iRobot crawler for
Web forums [12, 40]. Due to the user-centered nature of
social websites and the diversity in user interests and so-
cial interactions, previous crawler designs targeting general
websites or Web forums do not work well when crawling
social websites. Schonfeld et al. proposed using sitemaps
in Web crawling [35]. However, sitemaps can not solve the
challenges of social websites crawling. Also, social websites
generally do not provide a sitemap file because of its user-
centered nature, each user has her own “sitemap” instead of
a global sitemap.

Content-based near-duplicate webpage detection has been
studied previously [23, 28, 41]. These techniques detect and
remove near-duplicate webpages after they have been down-
loaded from the Web. Recent work [6, 16] aims to learn
URL rewrite or transformation rules such that webpages
with duplicate content can be detected by the URL. These
approaches focus on pair-wise syntactic similarity between
webpages. However, on social websites, a group of webpages
may contain duplicate content as another group of webpages
(e.g., user posts by date or by topic), but the pairwise simi-
larity between two webpages may be low. However cluster-
ing webpages into semantic groups and examine their link
structures, our crawler can effectively detect and prune this
type of duplicate content. Node and edge deletion prob-
lems have been subjected to several theoretical studies and
most of them have been shown to be NP-complete [4, 43].
Our heuristics for cluster graph pruning can efficiently and
effectively remove redundant edges or unimportant nodes.

7. CONCLUSIONS AND FUTURE WORK
Crawling large-scale social data from social websites is

an essential building block for the increasingly-active on-
line social network-based research including social network
analysis, data mining, information dissemination and rec-
ommendation, social behavior study, and research on online
security and privacy issues. In this work, we have analyzed
and identified several key challenges of crawling social web-
sites: duplicate links, duplicate content, uninformative web-
pages, diverse and complex URL/link/page structures. We
have then developed an efficient Web crawler for social web-
sites. Our crawler utilizes an offline training process of ran-
dom webpage sampling, URL-based webpage clustering, and



cluster graph pruning for identifying semantically-important
URL clusters and most effective cluster link structures. The
trained cluster graph is then used during online crawling to
quickly and accurately filter out unneeded webpages. Ex-
perimental results on three social websites of different sizes
and different user communities show that our crawler can
efficiently crawl large amounts of socially-meaningful web-
pages while dramatically reducing duplicate links, duplicate
content, and uninformative webpages.

This work is our first step towards efficient crawling of
large-scale online social communities. We are currently col-
laborating with sociologists to identify important social be-
havioral and structural features to crawl. We will continue
to evaluate the performance of our crawler on other social
websites. Webpage content and structure may be integrated
in our crawler design. We also plan to investigate revisit
strategies for crawling dynamic social websites, which is an
important aspect in understanding the evolution of social
behavior and information dissemination.
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