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Phononic materials comprise microstructures engineered for unique, and often exotic, acous-

tic or elastic wave-propagation characteristics. For example, an elastic metamaterial, which is a

type of phononic material, may be tuned to exhibit a band gap at frequencies corresponding to

wavelengths much longer than the size of the microstructure. A common approach for realizing

such extreme dynamical properties is to intrinsically distribute local resonators along the domain of

the material. This concept has been extensively studied in the context of low-frequency vibration

shielding, subwavelength focusing and imaging, and acoustic/elastic cloaking. However, despite

the importance of dissipation in wave propagation, the effects of damping are often neglected in

these applications, and in the elastodynamics literature in general. Incorporating damping in the

treatment of metamaterials does not only provide a more realistic description of their dynamical

behavior, but also allows one to understand and manipulate the complex interplay between dis-

persion, local resonances, and dissipation. The dispersion and resonance properties of a damped

metamaterial may be controlled by changing the levels of dissipation, and, conversely, it is possible

to enhance, or reduce, dissipation by engineering the dispersion properties.

The objective of this thesis is to advance the understanding of the connection between disper-

sion, local resonances, and dissipation in viscoelastically damped metamaterials and to develop a

methodology for precise engineering of the dissipation. A viscoelastic damping model is fitted with

experimental data for accurate prediction of dissipation within the dispersion and finite-structure

analysis frameworks. An intriguing phenomenon that is investigated using this modeling frame-

work is metadamping–a dissipation emergence phenomenon caused by the presence of local reso-

nances. This concept is investigated in a real-world system, both numerically and experimentally.

A methodology is developed to determine the levels of dissipation in a finite metamaterial pillared



iv

beam structure using only unit-cell analysis. With this information, guidelines are provided that

enable engineering of the dissipation by varying the unit-cell dispersion properties. Results show

that dissipation can either be enhanced, or reduced, within prescribed frequency ranges without

sacrificing stiffness. This concept is first shown in the context of freely propagating waves and then

extended to harmonically driven waves.
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Chapter 1

Introduction

Vibrations are omnipresent. In fact, they are an essential part of who we are. When sound

waves enter our ears, our eardrums vibrate thus allowing us to hear; when light waves are reflected

of objects, they undergo vibrations thus allowing us to see.

From an engineering perspective, however, vibrations are quite often undesirable, as they

produce noise, increased stresses, added wear, premature fatigue in machines and structures, or even

passenger discomfort in vehicles. If structural resonances are excited, structures can exhibit high

levels of vibrations leading to catastrophic failure. An infamous example is the case of the Tacoma

Narrows bridge, which dramatically collapsed due to wind-induced vibrations. Vibration mitigation

is therefore necessary in numerous engineering problems and has been active field of research for the

past decades. Nondissipative vibration isolation can be achieved by altering structural properties

such as geometry and connections with adjoining structures; however, these alterations are limited

in practice by engineering design criteria such as size or weight. Dissipative vibration isolation,

on the other hand, aims at increasing the levels of dissipation within structures by introducing

damping through layering of heavily damped materials. Layers of polymer are effective at reducing

the levels of vibration but because of their low elasticity modulus, they are often not stiff enough

to resist breakage or failure.

In many engineering applications, where structures are exposed to both static and dynamic

loads, materials exhibiting both high stiffness and high damping are highly desirable. Unfortunately,

naturally occurring materials are constrained by trade-off between these two properties. In this
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dissertation, we propose periodic elastic metamaterials as candidate materials to overcome the

stiffness/damping trade-off. We show that, through precise engineering of their internal structure,

we can enhance the levels of dissipation of existing materials such as aluminum.

1.1 Phononic Materials

Periodic materials and structures have long been recognized by researchers for their ability to

manipulate waves in unique ways. This interest dates back to 1686, when Newton [85] attempted

to derive a formula for the velocity of sound by studying a 1D periodic lattice. Two centuries

later, Rayleigh made the first study of a continuous periodic structure when he investigated a

stretched string whose density periodically varied along the length [92]. During the first half of

the 20th century, most of the research efforts on periodic materials were carried out by physicists

and electrical engineers, who developed mathematical models to study crystals, electrical circuits,

electrical transmission lines, etc. [75]. It was not until the second half of the century that engineers

recognized their great potential and applied similar analysis techniques to engineering materials

and structures such as beams [19], composite materials [84,106], and aircraft structures [77,97].

A milestone was reached in the field of periodic materials when Yablonovich [120], shortly

followed by John [44], introduced the concept of photonic materials in 1987. They investigated a

dieletric structure, periodic in all three dimensions, and reported the existence of photonic band

gaps, which are frequency ranges through which no electromagnetic wave (i.e., photon) is allowed

to propagate.

A couple years later, the field of phononic materials emerged as researchers applied this

concept of periodicity to the manipulation of vibrational and acoustic waves [98, 99]. Similarly,

phononic materials exhibit phononic band gaps through which no elastic or acoustic wave (i.e.,

phonon) is allowed to propagate. Based on the manner in which the band gaps are generated,

phononic materials can be divided into two categories: phononic crystals (PCs) and elastic meta-

materials (EMs).
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1.1.1 Phononic Crystals

Phononic crystals (PCs) are periodic structures formed by a building block, called the unit

cell, which is repeated spatially in one, two, or three directions. Their unique dynamical properties

arise from non-homogeneity in the unit cell, which is typically characterized by some form of

disparity in the constituent material phases, the internal geometry, the boundary conditions, or

a combination of them. The impedance mismatch caused by that change of material, geometry,

boundary conditions within the unit cell leads to Bragg scattering, i.e., the canceling of waves

due to destructive interferences between incident and reflected waves at certain frequencies. This

phenomenon give rises to the most notable property of PCs, the band gaps, which are frequency

ranges through which no acoustic or elastic waves is allowed to propagate.

PCs were first investigated in the early 1990s [98, 99], when Sigalas and Economou reported

a band gap for elastic and acoustic waves in a structure made of periodic spheres embedded in a

homogeneous host material. Since then, PCs have attracted the attention of scientists working in the

field of vibrations and acoustics as their internalized vibration control make them ideal candidates

for applications where wideband vibroacoustics mitigation is desired. For example, Richards and

Pines [93] proposed to use a periodic shaft to reduce noise generated by the dynamic impact of

gear meshes in helicopters. In a later study Sánchez-Dehese et al. [102] showed that periodically

arranged, porous cylinders exhibited band gaps in both the transmittance and reflectance spectra,

thus effectively creating a sound barrier. As of today, extensive research has been conducted on

the applications of these materials, which go beyond vibration control. Some of these applications

include wave filtering [87], wave guiding [49], and flow control [35].

Because the band-gap formation mechanism is based on Bragg scattering, PCs can only affect

whose wavelengths are on the order of the periodicity of the unit cell. For low-frequency vibrations

and therefore long wavelengths, the length of the unit cell becomes impractically large for most

engineering applications. Figure 1.1 shows an example of a 1D PC material, where the unit cell,

composed of one layer of aluminum and one layer of ABS, is repeated along the axial direction.
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Figure 1.1: Photograph of 1D phononic crystal beam. The unit cell, made of aluminum and plastic
(ABS), is repeated five times along the axial direction. (A dime is included for scale comparison.)

1.1.2 Elastic Metamaterials

Metamaterials (“meta” from Greek “beyond”) are artificially engineered materials whose

properties are beyond those found in naturally occurring materials or even in phononic crystals.

By making use of local resonance features (e.g., pillars, heavy bodies in a compliant matrix), they

alter the wave propagation within the underlying medium and bestow unusual properties near the

resonance frequency, such as negative effective density and/or modulus [24, 58]. In addition to

these unique physical properties, metamaterials have the ability to affect waves much larger than

themselves and therefore, to open band gaps in the sub-wavelength regime thus overcoming the

limitation of phononic crystals at low frequencies. Indeed, the local-resonance band gaps do not

depend on the spatial periodicity and are governed by the resonance frequency of the resonating

substructure instead.

The first investigation of elastic metamaterials (EMs) was a study by Liu et al. [64] in 2000 in

which the authors examined the dispersion characteristics of a 3D material composed of lead spheres

coated with silicone rubber and embedded in an epoxy matrix. Excited with acoustic waves, the

medium generated a band gap at a wavelength two orders of magnitude lower than its periodicity,

indicating that periodicity is not required for the formation of band gaps in EMs. This capacity to
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generate band gaps in the sub-wavelength regime engendered a multitude of applications, including

sub-wavelength focusing [30], sub-wavelength imaging [6], vibration and acoustic shielding [33], and

acoustic cloaking [16]. Figure 1.2 shows an example of a 1D EM, where the unit cell is composed

of a square pillar on top of a beam element.

Figure 1.2: Photograph of 1D elastic metamaterial beam. The pillars act as local resonators. (A
dime is included for scale comparison.)

1.1.3 Models and Equations

When studying phononic materials, two different approaches are usually considered: ‘mate-

rial’ versus ‘finite-structure’. The material approach consists of viewing the material as a unit cell

that is spatially repeated to infinity (in one, two, or three directions) and provides the intrinsic

dynamical properties of the material. The finite-structure approach, on the other hand, assumes a

finite number of unit cells and provides the forced response in a conventional structural setting. In

this subsection, we present the basic principles of wave propagation in phononic materials.

1.1.3.1 Material Approach

First, the PC and EM systems are considered as infinite materials. For simplicity, they are

discretized as 1D, diatomic spring-mass systems (see Fig. 1.3), where m1 and m2 are the two
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masses, and k1 and k2 are the two spring constants.
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Figure 1.3: Lattice models of 1D infinite chains. a) phononic crystal (PC), b) elastic metamaterial
(EM). The j th unit cells are highlighted (black dashed box).

For the PC system (see Fig. 1.3-a), the unit cell consists of two masses m1 and m2 connected

in series by two springs k1 and k2. From work by [40], the equations of motion for each mass in

the PC model are given by

m1ü
j
1 + k1(uj1 − u

j−1
2 ) + k2(uj1 − u

j
2) = 0 (1.1a)

and

m2ü
j
2 + k1(uj2 − u

j+1
1 ) + k2(uj2 − u

j
1) = 0, (1.1b)

where ujm is the displacement of the mth mass in the jth unit cell. The neighboring left and right

unit cells are denoted by j − 1 and j + 1, respectively.

For the EM model (see Fig. 1.3-b), the unit cell is similar to that of the PC model except

that the masses are now connected in parallel. The equations of motion for the displacement of m1
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and m2 are as follows:

m1ü
j
1 + k1(2uj1 − u

j−1
1 − uj+1

1 ) + k2(uj1 − u
j
2) = 0, (1.2a)

and

m2ü
j
2 + k2(uj2 − u

j
1) = 0. (1.2b)

To obtain the dispersion characteristics of both systems, the generalized form of Bloch’s theorem

[11] is applied on the PC and EM unit cells. This theorem states that the wave field in a periodic

medium is also periodic and is the product of an amplitude function with the unit-cell spatial

periodicity a and a plane-wave envelope. The displacement response of the mth mass in the jth

unit cell can be expressed as:

ujm(κ, t) = Ũm(κ)ei(jκa+ωt), (1.3)

where Ũm represents the periodic amplitude function of the mth mass, κ is the wavenumber, and

ω is the frequency. The displacement at one end of the unit cell can, therefore, be related to that

of the other end of the unit cell, such that:

uj+nm (κ, t) = ujm(κ, t)einκa. (1.4)

Substituting Eq. (1.3) into the two systems of equations (1.1) and (1.2), and recasting into a matrix

form results in an eigenvalue problem given by

[M− ω2K(κ)]Ũ(κ) = 0, (1.5)

where the mass M and stiffness K matrices for the PC and EM unit cells, respectively, are given

by

MPC =

m1 0

0 m2

 , KPC =

 k1 + k2 −(k1e
−iκa + k2)

−(k1e
iκa + k2) k1 + k2

 (1.6)

and

MEM =

m1 0

0 m2

 , KEM =

2k1(1− cos(κa)) −k2

−k2 k2

 . (1.7)
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We select the spring and mass parameters for the PC system to be mPC
1 = 1, mPC

2 = 2, and

kPC1 = kPC2 = 2, 000. For a fair comparison between the PC and EM systems, we require that they

be statically equivalent, i.e., that they have the same speed of sound in the long-wavelength regime

c = limκ→0(ω/κ) [40]. For the PC, cPCstat ' 18.25 m/s, therefore, the parameters for the EM system

are defined such that cEMstat = cPCstat, which yields mEM
1 = 1, mEM

2 = 2, and kEM1 = kEM2 = 1, 000.

Figures 1.4-a and 1.4-b show the dispersion curves obtained by solving Eq.(1.5) for the PC and

EM systems, respectively. Dispersion diagrams, which relate frequency to wavenumber, provide a

useful insight about the wave-propagation characteristics of the two systems. Moreover, they are

a powerful tool for design for properties such as locations and widths of band gaps can easily be

inferred from the dispersion diagram. Here, the PC band gap, caused by Bragg scattering, ranges

from 7.1 to 10 Hz , whereas the EM band gap, caused by hybridization of the local resonator with

the underlying medium, is significantly lower, and ranges from 3.1 to 6.2 Hz.

1.1.3.2 Finite-Structure Approach

Next, the PC and EM systems are analyzed as finite structures made of n = 50 unit cells

and their frequency response functions (FRFs) are obtained. For a finite system, the equation of

motion under a harmonic excitation is

Mü(t) + Ku(t) = f(t), (1.8)

where f(t) = F eiωt. Assuming a harmonic displacement u(t) = Xeiωt, substituting it into Eq.

(1.8) and rearranging the terms yields

X(ω) = (K− ω2M)−1F (ω). (1.9)

FRF plots are given in Figs. 1.4-c and 1.4-d. It is interesting to note that the FRFs follow a similar

behavior to that of the dispersion curves. Indeed, in the frequency ranges that correspond to the

band gaps, the amplitude responses decrease significantly, indicating that no wave propagates in
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this frequency range. On Fig. 1.4-c, however, one peak remains in the band gap. This peak, called

truncation resonance, arises from truncating an infinite chain of unit cells to one with a finite

number of unit cells.

In addition, we plot in Fig. 1.5-a the displacement of the 50th mass of the PC system (resp.,

EM system) in response to a sinusoidal excitation applied on the 1st mass. The excitation is of the

form f(t) = sin(2πfrt), where fr is the frequency of excitation in Hz. For each system, we select

two excitation frequencies frBG and frPB, such that frBG falls within the bang gap and frPB is

within one of the pass bands. The time responses are obtained by numerically solving Eq. (1.8)
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for 0 ≤ t ≤ 100 s using the Newmark-β method:

Ai+1 = M−1(F i+1 −KXi+1) (1.10)

V i+1 = V i + ∆t[(1− γ)Ai + Ai+1] (1.11)

Xi+1 = Xi + ∆tV i + ∆t2[(
1

2
− β)Ai + βAi+1], (1.12)

where Ai, V i, Xi are the acceleration, velocity and displacement vectors at time step ti. We choose

γ = 1
2 and β = 0, such that the method is at least second-order accurate and fully explicit (for

these parameters, the method becomes identical to the central difference method). The time step

∆t = 10−4 s is chosen to ensure both stability and convergence of the results. In Fig. 1.5-a, we

show the time responses of the 50th of PC system excited in the band gap at frBG = 9 Hz and in

one of the pass bands at frrPB = 5 Hz. The amplitude of the displacement decreases significantly

(by one order of magnitude) when the frequency of excitation falls within the band gap versus in

a pass band. A similar behavior is observed for the EM system with frBG = 5 Hz and frrPB = 10

Hz.
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1.2 Damping in Phononic Materials

Damping is present in every structure and material and greatly impacts wave propagation.

Yet, because of the diversity and complexity of its mechanisms, it is often neglected or oversim-

plified in the phononic materials literature, especially in the dispersion analysis. Some studies

have examined the effects of material damping on the transmission properties of finite phononic

materials. Psarobas et al. [90] studied the effect of viscoelastic damping on 3D sonic crystals com-

posed of viscoelastic rubber spheres in air and reported an omnidirectional transmission band gap.

Merheb et al. [80] investigated the transmission properties of rubber/air PCs and showed a strong

attenuation of transmission over wide ranges of frequencies. Oh et al. [42] examined the wave

attenuation and dissipation mechanisms in viscoelastic phononic crystals with different inclusions.

However, these studies mostly focused on the effect of damping on transmission properties and

paid little attention to its effects on the dispersion characteristics. Introducing material damping

in the unit-cell analysis provides a more realistic description of the intrinsic dynamics of the system.

Furthermore, it also allows phononic materials to realize their full potential and opens the door to

novel applications involving enhancement or reduction of dissipation in materials [40], as described

in chapter 4.

The impact of damping on the dispersion of phononic materials is usually assessed by studying

its effects on the dispersions curves. Depending on the type of wave-propagation problem (free

versus driven), two approaches are followed to solve the damped eigenvalue problem: either the

wavenumbers are fixed to real values (ω(κ)-formulation) or the frequencies are fixed to real values

(κ(ω)-formulation). The ω(κ)-formulation allows the frequencies to be complex, which corresponds

to freely propagating waves, and is therefore employed to describe temporal dissipation. The κ(ω)-

formulation, on the other hand, allows the wavenumbers to be complex, which corresponds to

harmonically driven waves, and is employed to describe spatial attenuation (caused by dissipative

mechanisms). A literature review of both methods will be given in chapter 2.

Regardless of the type of wave-propagation problem (free or forced) and the method chosen to
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solve it, one still has to select a damping model, which often proves to be a challenging tasks. The

complexity of damping lies in the diversity of dissipative mechanisms. Very often, a simple struc-

ture exhibits multiple sources of damping: internal damping (atomistic level), boundary damping

(structural joints), damping due to acoustic radiation, friction damping, etc. Moreover, dissipative

mechanisms are often nonlinear: damping can increase (or decrease) nonlinearly with the ampli-

tude of excitation, or with temperature. Over the past two centuries, extensive research has been

conducted on vibration damping and numerous models have been proposed, each with their own

assumptions and simplifications. Because its equations of motion are simple and linear, viscous

damping is one of the simplest models, and probably the most popular. A further simplification —

Rayleigh (or proportional) damping [91]—is often employed in the phononic materials literature to

model vibrations [4, 23, 88]. In some cases, viscous damping is a fair assumption, especially when

the damping levels are low. However, in most cases a nonviscous damping model is required in or-

der to accurately describe the dissipation mechanisms taking place in damped phononic materials.

Therefore, over the past couple years, an increasing number of studies have modeled damped wave

propagation through phononic materials using viscoelastic damping models [39,55,62].

1.3 Metadamping

When it comes to vibration control, conventional materials are constrained by a trade-off

between their dissipation capacity and their mechanical resistance. For example, viscoelastic ma-

terials such as rubber are highly dissipative but are often not stiff enough to resist high mechanical

loads. On the other hand, metals can resist high levels of load before failure but dissipate little

energy. In many applications, where high dynamic loads can lead to premature material fatigue

and catastrophic failure, it is desirable for an engineering material to possess a high capacity to

dissipate energy while retaining high levels of stiffness and/or strength. Over the past decades,

great efforts have been made to overcome this challenge and design materials featuring both high

damping and high stiffness. Several approaches based on the engineering of composite materials

have been proposed. Some researchers have investigated polymers reinforced with negative-phase
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inclusions in a matrix [43, 59] or carbon-nanotube, engineered trusses [78]. Others have examined

a hybrid concept combining composite materials with polymers, such as thin layers of polymer

sandwiched between stiffer layers [13, 95] or coated around stiff inclusions [65]. Zhang et al. [122]

replicated the structure of biological bones, which consists of hard prisms arranged in staggered

layers in a soft matrix, and reported an enhancement of damping with minimal loss in stiffness.

Metamaterials have been gaining a lot of attention lately as they offer a possible solution

to the stiffness/damping trade-off. Metadamping, a damping emergence phenomena caused by the

presence of a local resonance, was recently proposed in the context of simple spring-mass systems

[26, 40]. When compared to an equivalent phononic crystal, it was shown in [40] and [26] that the

metamaterial exhibited higher dissipation levels for the same prescribed damping. Several studies

emerged afterwards following the metadamping concept. Antioniadis et al. [8] proposed a linear

oscillator with a negative-stiffness element which was shown to achieve a promising enhancement

of dissipation when applied to a 1D acoustic metamaterial lattice. More recently, a hybrid system

between a phononic crystal and acoustic metamaterial, referred to as phononic resonator, was

shown to greatly enhance metadamping with a careful choice of parameters [20]. However, despite

promising results, the concept of metadamping has only been shown theoretically and in the context

of lumped systems. In order for this concept to leave the realm of fundamental science and be used

in practice by engineers, its realization needs to be shown in an experimental continuous system.

1.4 Thesis Objectives

The objectives of this thesis are to advance the understanding of the relation between dis-

persion and dissipation in viscoelastically damped metamaterials and to develop a methodology for

precise engineering of the dissipation in experimental EMs.

The key results can be summarized as follows:

• Experimental fitting of a damping model for accurate prediction of dissipation within the

dispersion analysis framework.
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• Validation of metadamping in a finite experimental setting with direct correlation to theory

as described within the dispersion framework

• Theoretical extension of the concept of metadamping to the driven-waves problem with

qualitative and quantitative verification.

1.5 Summary of Chapters

This chapter introduces the topic phononic materials. The fundamental equations describing

the dynamics of these materials are derived for simple 1D spring-mass systems. First, the system is

considered as an infinite material and fundamental concepts of the dispersion analysis are presented.

Then, the infinite system is truncated and analyzed as a finite structure. Classical methods of

structural dynamics such as time integration or frequency-response analysis are employed. This

chapter also introduces the topic of damping in phononic materials and presents one of its appealing

applications: metadamping. For both of these topics, a brief literature review is presented.

The second chapter develops the framework for the treatment of damping in phononic mate-

rials. The two classes of problems, i.e. free-wave versus driven-wave propagation, as well as their

respective formulations are discussed. The damped equations of motion are derived for the lattice

system presented in the first chapter. The dispersion eigenvalue problem is solved for different

levels of prescribed damping. The effects of damping on the dispersion curves obtained with both

formulations (ω(κ) versus κ(ω)) are compared and discussed.

The third chapter describes the treatment of damping in continuous 3D phononic materials in

the context of free-wave propagation. A viscoelastic damping model, whose parameters are curve-

fitted with experimental data, is developed and applied to two 3D beam unit cells. This model

provides a realistic description of the damped wave propagation in phononic materials within the

dispersion analysis framework. Moreover the effects of viscous versus viscoelastic damping on the

dispersion curves are analyzed.

The fourth chapter explores an innovative application for damped phononic materials: metadamp-
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ing. Its existence in a 3D elastic metamaterial beam is demonstrated both experimentally and

numerically. A parametric design study is also performed in order to examine the effects of pil-

lar spacing on the levels of metadamping. Finally, a simplified analytical model is proposed to

determine bounds on both positive and negative metadamping.

The fifth chapter investigates metadamping in a 3D elastic metamaterial beam for frequency-

driven waves. The existence of both positive metadamping is verified both qualitatively as well as

quantitatively in the unit-cell and finite-structure analyses.



Chapter 2

Damped Phononic Materials: Preliminary Concepts

2.1 Introduction

Because damping plays such a crucial role on the intrinsic dynamics of phononic materials,

an increasing number of researchers have been incorporating damping in their studies. Depending

on the type of problem one is looking at, i.e., free or forced vibrations, damping is introduced in the

eigenvalue problem using one of two formulations. Their key distinction is based on whether the

wavenumbers are fixed to real values—allowing the frequencies to be complex (ω(κ)-formulation)—

or whether the frequencies are fixed to real values —allowing the wavenumbers to be complex

(κ(ω)-formulation). In this chapter, we introduce both formulations and derive their equations for

a 1D lattice system. We then investigate the effects of dissipation on the dispersion relation and

compare the results obtained with both formulations.

2.2 Formulations for Damped Wave Propagation

2.2.1 Freely Propagating Waves: ω(κ)-Formulation

The first approach (ω(κ)-formulation) corresponds to free vibrations, which occur when a

structure or material responds to an impulsive excitation. In this case, the wavenumbers are

constrained to real values and the frequencies are complex, thus accounting for energy loss over time.

Mukherjee and Lee [82] investigated the wave-propagation characteristics in a viscoelastic periodic

composite. They introduced damping using a complex elastic modulus, assumed real wavenumbers
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and derived the complex frequencies. Similarly, Sprik and Wedgam [103] used complex sound

velocities to model damping in a 3D solid-viscous fluid composite material. Zhang et al. [124]

studied the absolute acoustic band gaps in 2D systems consisting of silica cylinders in a viscous

liquid using a plane-wave expansion method. They modeled damping with a complex velocity but

assumed that the viscous damping parameter was frequency independent. Wei and Zhao [117]

followed a similar approach and showed that both the location and width of the band gaps in a

2D phononic crystal composed of cylindrical fillers embedded periodically in a viscoelastic host was

affected by the viscosity of host material. Hussein [37] and Hussein and Frazier [38] derived the

damped dispersion relation in the case of general viscous damping, for both 1D and 2D phononic

materials, and showed that damping alters the band structure. For certain levels of prescribed

damping, they observed branch overtaking and branch cut-off phenomena, which can result in

changes in the band-gap width and in the formation of partial wavenumber band gaps. In a

subsequent study, Hussein and Frazier [39] considered a viscoelastic model based on a convolution

integral. They extended to unit-cell problems the state-space approach that was first developed

in [114] to solve for the eigenvalues of exponentially damped, finite structures.

2.2.2 Harmonically Driven Waves: κ(ω)-Formulation

The second approach (κ(ω)-formulation), where frequencies are fixed to real values and

wavenumbers are allowed to be complex, corresponds to harmonically driven waves, which im-

plies that only spatial dissipation is considered (in addition, of course, to attenuation mechanisms

due to Bragg scattering and local resonance phenomena). As the wavenumbers are complex, both

propagating and evanescent modes can be obtained from the dispersion analysis.

Mead [76] was the first to study harmonic-wave propagation in a 1D periodic structure in

the context of a linear eigenvalue problem. Following this approach, Mehreb et al. [80] proposed

a method to incorporate viscoelastic damping in a 2D silicon rubber/air PC. They considered a

compressible general linear viscoelastic fluid model with frequency-dependent elastic moduli that

they implemented using a finite-domain, time-difference method. Moiseyenko and Laude [81] in-
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vestigated the influence of material loss on the complex band structure and group velocity in 2D

viscoelastic PCs. They introduced damping through a complex elasticity tensor, whose imaginary

part was assumed to increase linearly with frequency. Collet et al. proposed a new Floquet-Bloch

formulation to compute the complex wavenumbers of 2D PCs with non-homogeneous and generic

frequency-dependent damping terms. Andreassen and Jensen [7] compared the band diagrams ob-

tained with both ω(κ)- and κ(ω)-formulations band and showed that the dispersion diagrams and

temporal decays were in good agreement for small to medium amounts of material dissipation and

for long wavelengths. Recent studies have looked at the effects of viscoelastic damping on the dis-

persion and attenuation characteristics of locally resonant materials The viscoelastic material losses

present in the matrix and/or in the resonator coating were introduced through a KelvinVoigt [55]

or generalized Maxwell model [55,62].

2.2.3 Simultaneously Complex Wavenumbers and Frequencies

It is commonly assumed that only one of the variables can be complex: either the wavenumber

κ, in which case it is a driven-wave problem, or the frequency, in which case it is a free-wave problem.

For harmonically driven waves, this assumption holds as, by definition, the frequency has to be real.

Therefore, only the wavenumber can be complex. However, for freely propagating waves, nothing

prevents spatial dissipation to take place in addition to temporal dissipation, i.e, in principle, it

is possible to have a complex wavenumber even when the frequency is complex. Recently, Frazier

had Hussein [27] proposed an algorithm based on a κ = κ(λ) formulation to solve this problem in

the context of proportionally damped 1D lattice systems. This algorithm, however, does not apply

to generally damped problem as the eigenvalue problem becomes nonlinear.

2.3 Effects of Dissipation on the Dispersion Relations: Example for a 1D

PC Lattice

The effects of viscous damping on the dispersion curves are illustrated for the 1D PC model

shown in Fig.1.3-a. (More complex damping models will be detailed in chapter 3.) Two viscous
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dampers c1 and c2 are added between the masses m1 and m2, as shown in Fig.2.1.
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Figure 2.1: Model of 1D infinite lattice for a PC lattice with viscous dampers.

According to [40], with damping, the equations of motion for the PC derived in Eq.(1.1) become:

m1ü
j
1 + c1(u̇j1 − u̇

j−1
2 ) + c2(u̇j1 − u̇

j
2) + k1(uj1 − u

j−1
2 ) + k2(uj1 − u

j
2) = 0, (2.1a)

and

m2ü
j
2 + c1(u̇j2 − u̇

j+1
1 ) + c2(u̇j2 − u̇

j
1) + k1(uj2 − u

j+1
1 ) + k2(uj2 − u

j
1) = 0. (2.1b)

Similarly, Eqs. (2.1) can be recasted into matrix form. The mass and stiffness matrices given in

Eq. (1.6) remain unchanged. In addition, the damping matrix is:

CPC =

 c1 + c2 −(c1e
−iκa + c2)

−(c1e
iκa + c2) c1 + c2

 . (2.2)

2.3.1 Free Waves: Derivation of the ω(κ)-Formulation

As mentioned in Section 2.1, in the ω(κ)-formulation, the wavenumbers κ are fixed and

real. For each wavenumber, the complex frequencies can be determined by solving the following

eigenvalue problem:

[λ2(κ)M + λ(κ)C(κ) + K(κ)]Ũ(κ) = 0. (2.3)

In the case of general damping (i.e., damping is nonproportional), it is not possible to solve

for Eq. (2.3) directly. Therefore, this second-order problem must be converted to a first-order
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problem through a state-space transformation, such that [54]:(K(κ) 0

0 I

− λ
−C(κ) −M

I 0

)
 Ũ(κ)

λ(κ)Ũ(κ)

 =

0

0

 . (2.4)

The solutions of Eq. (2.4) are the complex eigenvalues:

λs(κ) = −ζs(κ)ωs(κ)± iωds(κ), (2.5)

where the imaginary part ωds represents the damped frequencies corresponding to branch s, and

the real part is the product of the wavenumber-dependent damping ratios ζs with the resonant

frequencies ωs = |λs|. Note that in the case of viscous proportional damping, the resonant frequency

is equal to the undamped frequency. The damped-dispersion and damping-ratio diagrams, which

provide insight about the dissipation associated with each Bloch mode, can be derived from Eq.

(2.5). Figures 2.2-a and 2.2-b display the damped-dispersion and damping-ratio diagrams for three

levels of prescribed damping: low (c1 = c2 = 10), medium (c1 = c2 = 20) and high (c1 = c2 = 50).

For comparison, the undamped dispersion curves are also plotted in Fig. 2.2-a.

2.3.2 Harmonically Driven Waves: Derivation of the κ(ω)-Formulation

In this approach, the frequencies ω are fixed and real. At each frequency, the corresponding

complex wavenumbers are found by solving a quadratic eigenvalue problem. Recall the damping

matrix obtained after enforcement of Bloch boundary conditions:

CPC =

 c1 + c2 −(c1e
−iκa + c2)

−(c1e
iκa + c2) c1 + c2

 . (2.6)

Substituting γ = eiκa into Eq. (2.6) yields

CPC =

 c1 + c2 − 1
γ c1 − c2

−γc1 − c2 c1 + c2

 . (2.7)

Similarly, we can rewrite the stiffness matrix in terms of γ:

KPC =

 k1 + k2 − 1
γk1 − k2

−γk1 − k2 k1 + k2

 . (2.8)



21

0

5

10

15
F

re
q
u
en

cy
, 
f 

(H
z)

Wavenumber, ka 

0 0.5 1 1.5 2 2.5 3

D
am

p
in

g
 r

at
io

, 
z

0

0.25

0.50

0.75

1

Undamped

Low damping:

c
1
=c

2
=10

Medium damping:

c
1
=c

2
=20

High damping:

c
1
=c

2
=50

Free waves Harmonically driven waves

a)

b)

c)

Wavenumber, ka 

-1.5 0 1.5 3

Figure 2.2: Free waves: a) Damped dispersion curves for three levels of prescribed damping: low,
medium, and high. The undamped dispersion curves are plotted as a reference in black. b)
Corresponding damping-ratio diagram. c) Harmonically driven waves: Dispersion curves for the
three levels of prescribed damping.

Equations (2.7) and (2.8) can be rewritten as functions of γ:

C̄ = C̄0 + γC̄1 + γ2C̄2. (2.9a)
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K̄ = K̄0 + γK̄1 + γ2K̄2 (2.9b)

Substituting Eqs. (2.9) into Eq. (2.3) yields the following quadratic eigenvalue problem:

[(K̄0 + λC̄0 + λ2M̄0)︸ ︷︷ ︸
Ā0

+κ (K̄1 + λC̄1)︸ ︷︷ ︸
Ā1

+κ2 (K̄2 + λC̄2)︸ ︷︷ ︸
Ā2

]Ũ = 0, (2.10)

where λ = iω. Similarly, this eigenvalue problem can be“linearized” through a state-space trans-

formation [53]:

(Ā0(ω) 0

0 Ī

− γ
−Ā1(ω) −Ā2(ω)

I 0̄

)
 Ũ

γŨ

 =

0

0

 . (2.11)

The solutions of Eq. (2.11) are the frequency-dependent, complex eigenvalues γ(ω), from which we

can extract the complex wavenumbers:

κ(ω) =
ln γ(ω)

ia
(2.12)

The solution in Eq. (2.12) can be decomposed into its real and imaginary parts:

κ(ω) = κR(ω) + iκI(ω). (2.13)

The real part of Eq. (2.13) corresponds to propagating modes (plotted here as positive wavenum-

bers) whereas the imaginary part represents evanescent modes, i.e., modes that decay in space

(plotted here as negative wavenumbers). The dispersion curves are plotted for the same three

levels of prescribed damping as those applied in the free-wave case (see Fig. 2.2-c).

2.3.3 Free Waves versus Driven Waves

As expected, both methods yield the same dispersion curves for the undamped case (black

curves). Depending on the class of wave-propagation problem, i.e, free or driven, the effects of

damping on the dispersion characteristics of the unit cell vary drastically. For example, in the

case of free waves, the optical branch (upper branch) tends to drop for increasing the levels of
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prescribed damping, and can even drop below the acoustical branch (lower branch) if the levels of

prescribed damping are very high. On the other hand, in the case of driven waves, the shape both

dispersion branches changes quite significantly, and we can also notice the interesting phenomenon

of bang-gap closing.



Chapter 3

Modeling of Damping in Elastic Metamaterials

3.1 Introduction

Chapter 2 introduced the basic concepts of damping for 1D lattice phononic materials. In this

chapter, we extend the treatment of damping to continuous, 3D phononic materials. A viscoelastic

damping model, whose parameters are curve-fitted with experimental data, is developed and applied

to two 3D beam unit cells. For the sake of completeness, the viscous damping model derived in

chapter 2 is rederived in this chapter. We will only focus of damping in the context of free waves;

models driven-wave problems will be discussed in details in chapter 5.

3.2 Viscous Damping

Viscous damping is the best introduction to the concept of damping in that the equations

of motion of a viscously damped system are simple and linear. In introductory vibration classes,

this damping model is typically represented by viscous dashpots, which real-life examples are door

closers, or shock absorbers. A linear dashpot uses a piston to exert a force on a viscous flow. That

damping force opposes the motion and is proportional to the relative velocity such as fd = Cu̇(t).

The equations of motion for discrete lattice systems with viscous dashpots were derived in chapter

2. For convenience, there are rederived here for general continuous systems.

The free equations of motion for a system with general viscous damping are given by

Mü(t) + Cu̇(t) + Ku(t) = 0. (3.1)
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where M, C and K are the mass, damping, and stiffness matrices, respectively. General solutions

of Eq. (3.1) are assumed to be of the form:

u(t) = Ũ(x, κ)eλt, (3.2)

where λ is the frequency. In the literature, λ is commonly prescribed as an imaginary value

λ = iω, where ω is a real frequency, thus representing waves decaying in space only. To account for

temporal energy dissipation, and therefore waves decaying in time, we assume that λ is a complex

number [38]. Applying Bloch’s theorem, the total displacement field is given by

u(t) = Ũ(κ)eiκx+λt. (3.3)

Substituting Eq. (3.3) in Eq. (3.1) yields a quadratic eigenvalue problem:

[λ2(κ)M + λ(κ)C(κ) + K(κ)]Ũ(κ) = 0. (3.4)

We note here that Bloch periodicity has been enforced through a Bloch operator method [36]. The

plane-wave term was embedded within the element derivation through Eq. (3.3), and, as a result,

the stiffness and damping matrices in Eq. (3.4) depend on the wavenumber κ. Again, the second-

order problem in Eq. (3.4) can be rearranged into a first-order problem through a state-space

transformation: (K(κ) 0

0 I

− λ
−C(κ) −M

I 0

)
 Ũ(κ)

λ(κ)Ũ(κ)

 =

0

0

 . (3.5)

The solutions of Eq. (3.5) are the complex frequencies and appear in complex conjugate pairs:

λs(κ) = −ζs(κ)ωs(κ)± iωds(κ), (3.6)

where the imaginary part ωds(κ) represents the damped frequencies corresponding to branch s, and

the real part is the product of the wavenumber-dependent damping ratios ζs(κ) with the resonant

frequencies ωs(κ).

As briefly mentioned in chapter 1, there are two methods to enforce Bloch periodicity: Bloch
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operator and Bloch boundary conditions. In this chapter, the Bloch-operator method is employed

but we briefly discuss here the Bloch boundary conditions method, which are enforced as follows.

First, the equations of motion are formed for a free unit cell with no periodicity (at this stage, the

equations are equivalent to those of a finite structure made of one unit cell). Then, the equations

are discretized with the finite-element method (FEM) and Bloch periodic conditions— which relate

the displacement and stress fields of the degrees of freedom (DOFs) at one end of the unit cell to

that of the DOFs on the other end— are applied with a Bloch periodicity matrix which contains

the plane-wave terms. In that case, Eq. (3.4) becomes

[λ2(κ)M̄ + λ(κ)C̄ + K̄]Ũ(κ) = 0, (3.7)

where M̄ = P∗MP, C̄ = P∗CP, and K̄ = P∗KP. The Bloch periodicity matrix P is a function

of the wavenumber and relates the DOFs at one end of the unit-cell to those at the other end of

the unit cell. Its complex conjugate is denoted as P∗. Detailed derivations, as well as a thorough

analysis of both methods, can be found in [52].

3.3 Viscoelastic Damping

Viscous damping is simple to implement and may be suitable to account for dissipation

associated with the presence of fluids, however, it typically fails at modeling material damping in

a physically realistic way. This is why we consider here a nonviscous damping model. Viscoelastic

damping is commonly introduced through complex material properties such as complex Young’s

moduli [7] E(ω) = E′(ω) + iE′′(ω) (diagrams for a wide selection of materials can be found in the

literature [46]) or complex sound velocities [69] cL(ω) = c′L(ω) + ic′′L(ω). As a result, damping is

introduced through the stiffness matrix, which becomes complex, and no extra term to account for

the damping force is needed in equation of motion. However, because of their frequency dependency,

these quantities typically require solving the damped equation of motions with a κ(ω)-formulation

and are therefore more appropriate to describe damping in the context of driven-wave propagation.

In this chapter, we focus on damping models in the context of free-wave propagation; damping in
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the context of driven waves will be investigated in chapter 5.

Other simple nonviscous damping models can be built as a combination of viscous and elastic

elements [46] such as the Maxwell model (spring in series with dashpot), the Voigt model (spring in

parallel with dashpot), or the standard model which is combination between the Maxwell and Voigt

elements. These types of models, however, also lead to a frequency-dependent complex stiffness

matrix, which again, are challenging to implement in a ω(κ)-formulation.

k₁ c₁

k 

c 

k 

k₁ c₁

Figure 3.1: a) Maxwell model, b) Voigt model, c) Standard model. [46]

In other models such as fractional derivative models [28, 66, 110] or convolution integral models

[29, 118], damping is incorporated via a damping force. Consequently another term has to be

added in the equation of motion, which means that a damping matrix has to be specified. In

this chapter, we assume exponential damping which is a case of damping based on a convolution

integral [3]. As stated by Boltzmann’s hereditary theory, the damping force depends on the past

history of motion via a convolution integral over a kernel function G(t) [118]. We select one of

the simplest forms of these kernel functions which is based on the Maxwell model (see Fig. 3.1-a).

As seen on Fig. 3.1, the Maxwell model consists of a linear spring (that accounts for mechanical
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energy storage during loading) placed in series with a viscous damper (that represents the energy

loss) and its associated kernel function can be described by G(t) = µ1e
µ2tH(t) where µ1,2 are the

relaxation parameters [114].

Assuming that the degree of hereditary is 1 (hence, µ = µ1 = µ2 ), the equation of motion of

a system with exponential damping is [114]:

Mü(t) +

∫ t

0
µe−µ(t−τ)Cu̇(τ)dτ + Ku(t) = f(t) (3.8)

The band structure is obtained by setting f(t) = 0 in Eq. (3.8) and by assuming a Bloch solution

of the form u(t) = Ũ(κ)eiκx+λt. The internal variable v is defined in [39] as follows:

v =

∫ t

0
µe−µ(t−τ)u̇(τ)dτ. (3.9)

Applying Leibniz rule to Eq. (3.9) gives:

v̇ = µ[u̇− v]. (3.10)

Substituting Eq. (3.10) into Eq. (3.8) yields

Mü + C(κ)[u̇− 1

µ
v̇] + K(κ)u = 0. (3.11)

Premultiplying Eq.(3.10) by C and dividing by µ2:

− 1

µ
C(κ)u̇− 1

µ2
C(κ)v̇ +

1

µ
C(κ)v = 0. (3.12)

Combining Eq.(3.11) and Eq. (3.12), we obtain the eigenvalue problem in state-space form [39]:


0 M 0

M C(κ) − 1
µC(κ)

0 − 1
µC(κ) 1

µ2
C(κ)

+ γ


−M 0 0

0 K(κ) 0

0 0 1
µC(κ)



y = 0, (3.13)

where y = [u̇ u v].

Solving Eq. (3.13) yields a set of six eigenvalues, which have the same form as the eigenvalues

for the viscous eigenproblem (see Eq. (3.6)). However, there are now three pairs of roots instead of

two: two complex conjugate pairs that physically represent the modes of damped wave propagation,

and one pair of roots that represent spurious non-oscillating solutions [39]. It is interesting to note

that, as µ tends to infinity, the viscous damping eigenvalue problem from Eq. (3.4) is recovered.
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3.4 Experimental Curve-Fitting of the Damping Parameters

The mass M and stiffness K matrices in Eq. (3.13) are obtained upon discretization of Eq.

(3.8) using the FEM. The damping matrix C(κ) in Eq. (3.8) is constructed assuming proportional

damping such that C(κ) = pM + qK(κ). The relaxation parameter µ, as well as the proportional

damping parameters p and q are unknown and are therefore selected with the help of laboratory

vibration testing. In this procedure, a numerical FRF is curve-fitted with the experimental FRF

until the numerical modal damping ratios match the experimental ones. The procedure to select

the parameters is described in the following section for an aluminum beam.

3.4.1 Description of the Experimental Set-Up

The experimental FRF is obtained as follows. A 32×1×1 inch aluminum beam is suspended

using nylon cords in order to simulate free-free boundary conditions. An accelerometer (PCB

WJ35C65) is fixed on one of the ends of the beam, at the center point of the cross-section. Impulsive

excitations are applied with an impact hammer with a metal tip (PCB 086C02) at a point located

at the center of the opposite cross-section, such that only the longitudinal modes are excited and

measured. An effort was made to keep the levels of the input force constant for all measurements.

After each hammer hit, the quality of the impulse is checked to ensure that no double impulse was

applied and that sufficient energy was input in the frequency range of interest.

The measurements are collected with a NI-DAQ 9234 data acquisition system. The frequency

rate is set to 25.6 kHz and the sample time is 10 s to ensure that the time signal decays to zero.

For averaging purposes, five time series are recorded. The inertance spectrum is obtained by post-

processing the time data using a commercial software package (MATLAB, The MathWorks Inc.,

Natick, MA, 01760, USA). First, because no trigger was used during the test, the excitation and

response signals are cropped such that, for all measurements, the impulse starts at the same time

t0 = 0.2s (see Fig. 3.3) and the time series have the same length t = 7 s.

The cropped signals are transformed to the frequency domain by using the Fourier transform
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Figure 3.2: Photograph of the experimental set-up used to extract the damping parameters.
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Figure 3.3: Examples of output time signals before and after cropping. The corresponding input
signals are shown in the insets.

method. The excitation and response linear spectra are averaged, and the auto- and crosspower

spectra are computed using MATLAB built-in functions (pwlech for the autopower spectra, and

cspd for the crosspower spectra). The system transfer functions are then computed [23]:

H1 =
Srf
Sff

H2 =
Sfr
Srr

, (3.14)

where the crosspower spectrum Srf (resp. Sfr) is the complex conjugate of the output (resp.

output) spectrum and the input (resp. output) spectrum, and the autopower spectrum Sff (resp.

Srr) is the complex conjugate of the input (resp. output) spectrum to itself. The H1 transfer-

function estimator tends to underestimate the actual transfer function H and is more sensitive to

noise on the input. The H2 transfer-function estimator, on the other hand, tends to overestimate

H and is more sensitive to noise on the output. There exist other estimators for H but they are

not considered here. The coherence function γ is usually used as an indicator of the quality and

consistency of the measurements:

γ =
H1

H2
. (3.15)
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Values range from 0 (low-quality measurements, the amplitude and phase are not repeatable from

one measurement to another) to 1 (high-quality measurements, the amplitude and phase are very

repeatable from one measurement to another.)

The two transfer-function estimators H1 and H2 for the longitudinal modes of the aluminum

beam are plotted and compared in the frequency range of interest 0 ≤ f ≤ 8 kHz. As can be

seen on Fig. 3.4-a, they show excellent agreement. The coherence is depicted on Fig. 3.4-b.

Over the frequency range of interest, its value is mostly 1, indicating repeatable and high-quality

measurements. For the rest of this study, we will consider the transfer function to be H = H1.
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Figure 3.4: a) Transfer-function estimators H1 and H2, b) Coherence function γ.

3.4.2 Numerical Model Curve-Fitted with Experimental Data

The numerical beam geometry is such that 0 ≤ x ≤ 32, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1 in. The

numerical FRF is computed by discretizing the beam geometry using 16,384 3D 8-node brick finite

elements, with elasticity parameters E = 68.9 GPa, ν = 0.33 and density ρ = 2700 kg/m3. The
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equation of motion for a forced system with exponential damping is given by

Mü(t) +

∫ t

0
µe−µ(t−τ)Cu̇(τ)dτ + Ku(t) = f(t), (3.16)

where u(t) here is redefined to denote the vector of displacements of the finite structure, and

f(t) = Feiωt is a harmonic excitation with frequency ω and amplitude F = fj , j = 1, ..., n, where

n is the total number of degrees of freedom. Assuming a time-harmonic response u(t) = U(ω)eiωt

and substituting into Eq. (3.16) yields

(K + iω(
µ

µ+ iω
)C− ω2M)U(ω) = F, (3.17)

from which the displacement amplitude is calculated as

U(ω) = (K + iω(
µ

µ+ iω
)C− ω2M)−1F. (3.18)

Finally, the inertance spectrum Y(ω) is given by

Y(ω) =
−ω2

fmax
U(ω), (3.19)

where

fmax = max
j=1,...,n

{fj}. (3.20)

Note that for viscously damped system Eq. (3.16) is simply

Mü(t) + Cu̇(t) + Ku(t) = 0. (3.21)

Therefore the displacement amplitude is given by

U(ω) = (K + iωC− ω2M)−1F. (3.22)

The sinusoidal force is applied on the axial DOF at location x = 0, y = 0.5, z = 0.5 in and

the displacement amplitude is calculated at location x = 32, y = 0.5, z = 0.5 in, which are the

excitation and measurements locations of the experimental set-up. The modal damping ratios

associated with the two longitudinal resonance frequencies in the range of interest (0 ≤ f ≤ 8 kHz)

are extracted using the circle-fit modal analysis technique. We use the code EasyMod [50], which is
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available online. Using a trial-and-error approach, we vary the prescribed-damping values p, q, and

µ in the numerical model until the numerical modal-damping ratios match the experimental ones.

Prescribed damping values of p = 22, q = 2.2× 10−7, and µ = 104 are found to yield a satisfactory

match. Figure 3.5-a compares the experimental inertance spectrum with the numerical one for

the curve-fitted damping values p = 22, q = 2.2 × 10−7, and µ = 104. Figure 3.5-b compares the

numerical and experimental modal-damping ratios. For this set of prescribed-damping parameters,

the experimental and numerical results show excellent agreement.
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Figure 3.5: a) Frequency response functions showing a comparison of experimental and numerical
inertance spectra for the first two longitudinal modes, and b) corresponding experimental and
numerical modal-damping ratios. Ym and ζm represent the inertance and the damping ratio at the
measurement point.

3.4.3 Damping Model Based on Experimental Data: Another Application

The procedure described in the previous subsections is applied here to select viscous damping

parameters for ABS plastic [53]. The experimental set-up is similar to that of section 3.4.1: the

ABS beam is suspended using nylons cords and hit with the modal hammer at a location 2 inches
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from one end and exactly halfway up. This excites flexural modes in the horizontal plane and

avoids torsional and longitudinal modes. Velocities are measured with a vibrometer laser (Polytec

PDV 100) on the opposite face from the impulse at a location 12 inches from the same end and

halfway up. The measurements are collected with a Polytec VIB-E-220 data acquisition system

(the frequency rate is set to 9.6 kHz and the sample time is 3.2 s). The experimental mobility

spectrum is obtain by post-processing the time data on MATLAB.

Figure 3.6: Experimental set-up for extraction of viscous damping properties of an ABS structure.

The numerical FRF is computed by discretizing the experimental beam using the finite-

element method with 16,384 3D 8-node, iso-parametric elements. The damping matrix C is con-

structed assuming stiffness-proportional damping C = qK, where K is the stiffness matrix and q

the viscous damping parameter. The numerical mobility spectrum is given by

H(ω) = iωX(ω). (3.23)

We extract the modal damping ratios associated with the five resonance frequencies in the

range of interest (0-1 kHz). To find a viscous-damping parameter q that leads to realistic level

of dissipation in the material, we compare the numerical and experimental modal-damping ratios.

Using a trial-and-error approach, we vary q in the numerical model until the first five flexural
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modal damping ratios approximately match the experimental values. A prescribed damping value

of q = 5×10−6 is found to produce a reasonable match. Figure 3.7 compares the experimental FRF

with the numerical FRF using the curve-fitted damping value (q = 5 × 10−6). The corresponding

damping ratios for the two FRFs are shown in Fig. 3.7-b.
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Figure 3.7: a) Frequency response functions showing a comparison of experimental and numerical
mobility spectra for the first five bending modes, and b) corresponding experimental and numerical
modal-damping ratios. Ym and ζm represent the mobility and the damping ratio at the measurement
point.

3.5 Dispersion Analysis of 3D Beam Unit Cells with Viscous and Viscoelastic

Damping

In this section, two beam unit cells are considered: a regular beam unit cell referred to as

unpillared and a beam unit cell with a square pillar on top, referred to as pillared. (The pillar act

as a local resonator.) Both unit cells are depicted on Fig. 3.8 (the dimensions are given in inches).

The mass M and stiffness K matrices are obtained upon discretization of the equations of

motion with 4,096 and 4,352 3D brick elements, respectively. The damping matrix is obtained
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Figure 3.8: Models of the a) unpillared and b) pillared unit cells. Dimensions are given in inches.

following the procedure described in the previous section. Bloch periodicity is enforced in one

direction, along the longitudinal axis. Dispersion and damping-ratio diagrams are obtained for

three different levels of prescribed damping and for both damping models: viscous and viscoelastic.

The damped dispersion and damping-ratio diagrams for both unit cells are shown in Figs. 3.9 and

3.10 if viscous damping is assumed and in Figs. 3.11 and 3.12 if viscoelastic damping is assumed..

As the level of prescribed damping is increased, the band structure is altered more profoundly.

The phenomenon of branch cut-off can be observed [38], i.e., the branches get cut off in the

wavenumber domain and do not span the entire Brillouin zone. Moreover, it is important to note

that the two types of damping alter the dispersion curves differently; with viscous damping, as

the levels of prescribed damping are increased, the dispersion branches shift down in frequency,

whereas, with the viscoelastic damping model, they shift up.
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Figure 3.9: Viscous damping model-Unpillared. a) Dispersion diagram and b) damping-ratio dia-
gram of the unpillared beam unit cell for three levels of prescribed damping (low, medium, high).
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Figure 3.11: Viscoelastic damping model-Unpillared. a) Dispersion diagram and b) damping-ratio
diagram of the unpillared beam unit cell for three levels of prescribed damping (low, medium, high).
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Chapter 4

Metadamping: Dissipation Engineering by Elastic Metamaterials in Free-Wave

Propagation

4.1 Introduction

In many engineering applications where materials exhibiting both high stiffness and high

loss are highly desirable, metadamping offers an appealing solution to the classic stiffness/damping

trade-off. Despite promising results, the concept of metadamping has only, as of today, been shown

in the context of 1D spring-mass systems and in theory [8, 20, 40]. In order for this concept to

leave the realm of fundamental science and be used in practice by engineers, it first needs to

be proven experimentally. In this section, we demonstrate the realization of metadamping in an

experimental system. We examine the dissipation levels of a 3D beam with a local array of square

pillars (which act as local resonators) and compare them to the dissipation levels of an equivalent

unpillared beam. First, we demonstrate the realization of metadamping in finite structures, both

experimentally and numerically. Then, we carry out a dispersion analysis at the unit-cell level

and establish a relation between the damping ratios derived from the unit-cell analysis and those

derived from modal analysis on the finite system. In other terms, we relate the wave-propagation

problem to the vibration problem. Based on this relation, we lay out a theoretical description for

the concept of metadamping and successfully show, through numerical experiments, that we can

engineer dissipation in elastic metamaterials in the context of free waves. We perform a parametric

study and show the effects of pillar spacing on metadamping. Finally, we provide a rigorous

mathematical description for metadamping in a locally resonant rod.
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4.2 Evidence of Metadamping in an Experimental System

4.2.1 Experimental Set-Up

Figure 4.1: Photograph of the experimental systems and their equivalent numerical systems.

As illustrated in Fig. 4.1, the two test structures are aluminum beams, referred to as un-

pillared and pillared. The unpillared beam has for dimensions 32 × 1 × 1 inches and is made of

aluminum. The pillared beam is composed of four periodic unit cells of dimensions 8× 1× 1 inch

along the axial direction, where each unit cell consists of a square pillar of dimensions 0.5× 0.5× 2

inch on top of the beam. In order to solely focus on the effects of the pillar on damping and mini-

mize the variables involved, the pillars were not attached to the main beam using glue. Instead, the

pillared beam was manufactured by milling a beam of dimensions 32×1×3 inch with a CNC milling

machine. The experimental time responses are obtained following the procedure described in 3.4.1.

For convenience, we provide here a brief summary. Each beam is suspended using nylon cords in

order to simulate free-free boundary conditions. An accelerometer (PCB WJ35C65) is fixed on one

of the ends of the beam, at the center point of the cross-section. Impulsive excitations are applied

with an impact hammer (PCB 086C02) at a point located at the center of the opposite cross-section,
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such that only the longitudinal modes are excited and measured. The acceleration responses are

collected with a NI-DAQ 9234 for 10s. FRFs for both beams are obtained by post-processing the

time data on MATLAB (see section 3.4.1 for more details).

4.2.2 Numerical Model

Numerical FRFs are obtained by modeling the experimental beam geometries using 16,384

and 16,896 3D 8-node brick finite elements, with elasticity parameters E = 68.9 GPa, ν = 0.33

and density ρ = 2700 kg/m3. Viscoelastic damping is applied to the numerical model following the

procedure described in chapter 3. The proportional damping parameters p, and q, as well as the

viscoelastic damping constant µ are found by curve-fitting the experimental and numerical modal-

damping ratios (see 3.4.2 for more details). Prescribed damping values of p = 22, q = 2.2 × 10−7,

and µ = 104 are found to produce a satisfactory match (see Fig. 4.2). The numerical time responses
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Figure 4.2: a) Frequency response functions (FRFs) showing a comparison of the experimental and
numerical inertance spectra, and b) corresponding experimental and numerical modal-damping
ratios.

are obtained by implementing the direct time integration method for exponentially damped systems
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described in [3]. As in laboratory testing, an initial displacement is applied at the center of the

cross-section on one end of the beam along the longitudinal axis, and the displacement is calculated

at a point located at the center of the opposite cross-section. The simulation is run for a total time

of t = 0.4 s with a time step of ∆t = 3 × 10−5 s. To further simulate the experimental set-up,

the initial displacement is modeled as a Gaussian excitation whose parameters a and b are selected

such that it matches the experimental impulse:

u0(t) = e−
(t−a)2

2b2 , (4.1)

where a = 0.01 and b = 8× 10−5.

4.2.3 Metadamping Quantification

Fig. 4.3-c shows the time series obtained for both beams in response to impulsive excitations

applied on the longitudinal axis. The excitation profiles are shown in the insets. Note that order

to fairly compare the time series of both experimental structures, we had to ensure that the excita-

tion impulses had the same amplitude; therefore, multiple excitations were applied on each beam

until two measurements providing a satisfactory match were obtained. To quantify the temporal

attenuation in each beam, and hence, get information about their dissipation levels, we compare

the time decays, which we obtain using the following procedure. We take the first derivative of

the displacement response and we extract the extrema, which are the points where the derivative

changes signs. They are referred to as response peaks. We curve-fit exponential functions of the

form f(t) = ae−bt, where b is the exponential decay constant, to the response peaks using MATLAB

curve-fitting tool.

The ratio r = bpillared/bunpillared is defined as an indicator of metadamping. A ratio greater

than unity signifies positive metadamping, i.e., the time response of the pillared beam decays faster

than that of the unpillared beam. Conversely, a ratio less than unity indicates negative metadamp-

ing, i.e., the time response of the pillared beam decays slower than that of the unpillared beam.

A ratio of rexp = 1.49 is found for the experimental time decays, hence suggesting that the
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Figure 4.3: Finite-structure response, Numerical and experimental FRFs for the a) unpillared and
b) the pillared beam. c) Experimental d) and numerical time responses for the two beams. The
yellow and green curves correspond to exponential curves that were fitted to the unpillared and
pillared time signals, respectively, to determine their time decays. The impulsive excitations are
shown in the insets.

pillared beam exhibits higher dissipation levels than the unpillared one. To support the experi-

mental findings, a numerical experiment is performed : the numerical ratio rnum = 1.09 follows the
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same trend, supporting the positive metadamping hypothesis.

4.3 Dispersion Analysis

In elastic metamaterials, local resonances interfere with the dispersion curves of the under-

lying medium and can alter the spatial attenuation characteristics by creating band gaps, which

are frequency range through which no wave is allowed to propagate. Here, the idea that local reso-

nances can affect the temporal attenuation instead is investigated; therefore, a dispersion analysis

at the unit-cell level is performed to comprehensively describe and analyze this concept. Figure

4.4 depicts the unpillared and pillared unit cells; dimensions are in inches. The damped band

Unpillared Pillared

81

1

81

1 0.5
0.5

2

a) b)

Figure 4.4: Models of the a) unpillared and b) pillared unit cells. Dimensions are given in inches.

structure and damping-ratio diagrams are plotted in Figs. 4.5-a and b, respectively, for both unit

cells (see chapter 3 for details). For clarity, we denote the first four beam branches in the disper-

sion diagram–corresponding to the flexional, torsional, transverse and longitudinal beam modes,

respectively [48]–as well as their equivalent branches in the damping-ratio diagram.

4.3.1 Relation between the Vibration and Wave-Propagation Problems

Numerous studies on phononic materials have established a relation between the dispersion

analysis of the unit cell and the FRF of the finite structure [41, 119]. For example, a band gap in
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Figure 4.5: Unit-cell analysis. a), Dispersion diagram for the unpillared (dashed blue) and pillared
(red) unit cells. The first four branches corresponding to the flexional, torsional, transverse and
longitudinal modes of the beam are identified. The frequency content of the impulsive excitation
excitations is depicted in the inset. b), Damping-ratio diagram. The first four damping branches
are identified. The insets in a) and b) are the close-up views used in Figure 4.6.

the dispersion diagram will materialize by low amplitude levels in the FRF of the finite structure.

However, no such relation has been shown between the damping-ratio diagram of the unit cell and

the modal damping ratios of the finite system. Fig. 4.6 demonstrates that the vibration (or finite)

problem can be related to the wave-propagation (or infinite) problem in the context of damped

wave propagation. For each resonance frequency in the FRF (Fig. 4.6-a), the modal damping ratios

shown in Fig. 4.6-c are obtained using a circle-fit technique [23,50]. Then, each of these resonance

frequencies is projected onto the dispersion diagram and the corresponding wavenumber(s) are

determined. Lastly, the modal damping values of Fig. 4.6-c are projected onto the damping-ratio

diagram. The damping parameters p, q and µ, which were selected with experimental curve-fitting,

are adjusted until the modal-damping ratios fall on the right spot on the damping-ratio diagram

(see Fig. 4.6-d). We devised here a new procedure to close the loop between the infinite and finite

analysis and were able to develop a damping model which accurately predicts dissipation within
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the dispersion analysis framework.
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4.3.2 Positive and Negative Metadamping

We conduct a numerical experiment to show that depending on the frequency content of the

impulsive excitation, dissipation can be engineered for both its maximization or reduction. For

the case presented earlier in this chapter (see Fig. 4.1), the frequency content of the excitation

falls into the positive metadamping region, which ranges from 2.5 to 3.75 kHz (see blue line in

inset of Fig. 4.7-a). The blue arrows in the dispersion diagram represent the displacement of the

dispersion curves due to the introduction of a pillar. That effect is mapped onto the damping-ratio

diagram (see Fig. 4.7-b), and it can be seen that, for those same points, the damping ratio has

increased, hence supporting the positive metadamping observed in the finite structure (Fig. 4.5).

It has been shown by theory and experiments, that local resonances with proper tuning and under

certain conditions can actually enhance dissipation in the medium without adding more damping

to the medium.

In principle, the opposite effect can be demonstrated; therefore, the existence of negative

metadamping, i.e., decreasing the dissipation in the medium by adding a pillar, is investigated

next. The black arrows in the dispersion diagram represent the displacement of the dispersion

curves due to the pillar in a different frequency region (3.75-4.5 kHz). Again, those arrows are

mapped onto the damping-ratio diagram, and this time the damping ratio has decreased. In order

to test that hypothesis, the impulsive excitation is tailored such that its frequency content falls

into our ‘suspected’ negative-metadamping region, i.e., 3.75-4.5 kHz (see black dashed line in Fig.

4.7-b). The Gaussian excitation of Eq. 4.1 becomes

u0(t) = e−
(t−a)2

2b2 eict, (4.2)

where a = 0.01, b = 3× 10−4, c = 2.5× 10−4. The response extrema and time decays are obtained

and shown on Fig. 4.7-d. (For reference, the response peaks and time decays are shown in Fig.

4.7-c. A metadamping ratio of rnum = 0.84 is found, which indicates that the pillared time response

decays slower than the unpillared one, thus indicating the existence of negative metadamping.
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4.4 Parametric Design Study: Effects of Pillar Spacing on Metadamping

We perform a parametric study and vary the unit-cell length to determine how the spacing of

the pillars affects metadamping (positive and negative). We define the two metadamping metrics

Dp and Dn to help quantify the amount of positive and negative metadamping in the unit cell. The

procedure to obtain these metrics is as follows. First, the Bloch modes are sorted using the MAC

criterion. Then, the damping branches corresponding to the longitudinal modes are identified in the

damping-ratio diagram by computing the longitudinal polarization for each Bloch mode. According

to [2], the amount of polarization along the longitudinal axis is given by

px =

∫
|ux|2dr∫

(|ux|2 + |uy|2 + |uz|2)dr
, (4.3)

where ux, uy, and uz are the displacement fields along the x, y, and z directions. The integral in

Eq. (4.3) is taken over the unit cell. For the unpillared beam, the longitudinal mode consists of only

one branch, whereas for the pillared beam, we extract two branches corresponding to the equivalent

longitudinal mode. They are referred to as upper branch (associated with positive metadamping)

and lower branch (associated with negative metadamping). We define the positive (resp. negative)

metadamping metric as the area encompassed between the unpillared branch and the upper (resp.

lower) pillared branch, and between the left (resp. right) and middle boundary lines. The left and

right boundary lines are drawn at the wavenumbers for which the ratio between the pillared and

unpillared damping ratios differ by 5% such that

δ =
|ζpil − ζunp|

ζunp
× 100 = 5. (4.4)

The middle line is drawn such that it passes through the extrema of the two pillared branches. The

wavenumbers at which these extrema occur are determined using the curvature (second derivative,

see insets on Fig. 4.8). In order to ensure accuracy in the area calculation of the two metadamping

regions, linear interpolation is performed along the wavenumber axis on the unpillared and pillared

branches, between the left and right boundary lines. The areas are then calculated by slicing the

two metadamping regions into quadrilaterals between consecutive wavenumbers and summing their
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areas. The formula used to find the area of each quadrilateral is as given by

area =
1

2
|(x1y2 − x2y1) + (x2y3 − x3y2)

+ (x3y4 − x4y3) + (x4y1 − x1y4)|,
(4.5)

where x1 = x4 = κi and x2 = x3 = κi+1 are consecutive wavenumbers, y1 and y2 are the unpillared

damping-ratio values, and y3 and y4 are the pillared damping-ratio values. Figure 4.8 shows a

summary of the procedure for a unit cell with length a = 6 in. The positive metadamping region

is highlighted in blue and the negative metadamping one in black.
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Figure 4.8: Metadamping metric calculation for a = 6 The left and right boundary lines (dashed
grey) are drawn at the wavenumbers for which the difference between the unpillared and pillared
damping ratios is 5%. The middle line is drawn such that it passes through the extrema of both
pillared damping branches (the curvature or second derivative for both branches are shown in the
insets). The value of the positive metadamping metric Dp (resp. negative metadampig metric Dn)
is derived by calculating the area of the region shaded in blue (resp. black). The color bar indicates
the level of longitudinal polarization: values range from 0 (pure shear) to 1 (pure longitudinal).

Figure 4.9 shows the evolution of the metadamping metrics as a function of the unit-cell

length a. As expected, both metrics follow a decreasing trend for increasing unit-cell lengths a.
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Indeed, for longer unit cells, the coupling between the pillars becomes weaker, hence leading to

a reduced effect on the damping in the main structure. It is interesting to note that positive

metadamping especially is affected by the length of the unit cell, as Dp decays at a greater rate

than Dn for increasing a.
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Figure 4.9: Parametric study: effects of the pillar-spacing on metadamping. Positive (blue) and
negative (black) metadamping metrics as a function of the unit-cell length a.

4.5 Effects of Added Mass on the Damping-Ratio Diagram

We want to ensure that the added mass of the pillar is not a factor into our metadamping

study. The pillared beam has a volume of Vpil = 34 in3 whereas the unpillared beam has a

volume of Vpil = 32 in3. Therefore, to show that the metadamping is due to local resonance

phenomena only, and not added mass, we perform a similar analysis as that of Fig. 4.3-d on an

unpillared beam that has the same volume as the pillared beam. Numerical time responses and

their curve-fitted exponential functions are shown on Fig. 4.10. The metadamping ratio, here
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redefined as r = bunpillaredvol
/bunpillared, is unity as expected. This analysis supports our thesis that

metadamping emerges from the presence of local resonance and not from the addition of damped

material.
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Figure 4.10: Numerical time responses for the two unpillared beam with volumes V = 32 in3 (blue)
and V = 34 in3 (grey). The light and dark green curves correspond to exponential curves that were
fitted to the unpillared and unpillared volume time signals, respectively, to determine their time
decays.

4.6 Bounds on Positive and Negative Metadamping

In this section, we develop a mathematical framework to further investigate positive and

negative metadamping in the context of free-wave propagation. To that end, we analytically de-

scribe the temporal attenuation of longitudinal waves in a locally resonant rod. We follow the work

by Maznev [72] who, in a recent publication, analytically investigated the avoided crossing of the

optical and acoustic branches in a locally resonant acoustic medium, as a function of the oscilla-

tor damping and oscillator interaction strength. We extend here his analysis, and determine the

bounds on the prescribed damping η for the locally resonant rod to exhibit positive and negative
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metadamping over the whole wavenumber range.
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h

Figure 4.11: Simplified analytical model : a) Homogeneous rod, b) Rod with a local resonator

4.6.1 Simplified Analytical Model

The governing equation describing the longitudinal motion u of a homogenous rod is given

by

∂2u

∂t2
− (c∗L)2∂

2u

∂x2
= 0, (4.6)

where c∗L =
√
E∗/ρ = cL

√
(1 + iη) is the longitudinal speed of sound, where ρ is the density of the

medium, E∗ = E(1 + iη) is the complex Young’s modulus, and η is the prescribed damping. For

the locally resonant rod, an inertia term for the oscillator mass must be added [72] and Eq. (4.6)

becomes:

∂2u

∂t2
+M

∂2U

∂t2
− (c∗L)2∂

2u

∂x2
= 0, (4.7)
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where M is the mass of the oscillator and U its displacement. The volume fraction of the oscillator

is negligible compared to the volume of the rod, therefore, the density and the modulus of the rod

are not affected. The equation of motion of the spring-mass oscillator is given by

MÜ + η(U̇ − u̇) +K(U − u) = 0, (4.8)

where K is the spring constant, and η the damping coefficient (note that the damping coefficient is

identical to the prescribed hysteresis damping). Assuming solutions of the form u = ueiωt−iκx and

U = Ueiωt−iκx for the displacements of the rod and of the oscillator, respectively, Eqs. (4.6), (4.7)

and (4.8) respectively become:

(ω2 − (c∗L)2κ2)u = 0 (4.9)

(ω2β + ω2 − (c∗L)2 + κ2)u+ βω2r = 0 (4.10)

ω2u+ (ω2 − iγω − ω2
0)r = 0, (4.11)

where r = U − u is defined as the amplitude of the oscillator displacement relative to the rod,

ω2
0 = K/M is the resonance frequency of the oscillator, γ = η/M is a term describing the damping

in the oscillator, and β = M/ρ is a term describing the strength of coupling between the oscillator

and the rod. From Eq. (4.9), we arrive at the dispersion relation for a damped rod:

(c∗L)2κ2 = ω2. (4.12)

Combining Eqs. (4.10) and (4.11), we obtain the dispersion for the damped rod with an oscillator:

(c∗L)2κ2 = ω2(1 + β
iγω + ω2

0

ω2
0 − ω2 + iγω

). (4.13)

Following the assumptions made in [72] that the damping is small γ � 1 and that the

resonator has a small effect on the propagating waves β � 1, the term iβω in Eq. (4.13) can be

discarded from the numerator:

(c∗L)2κ2 = ω2(1 + β
ω2

0

ω2
0 − ω2 + iγω

). (4.14)
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We set ω0 and cL to unity in (4.12) and (4.14), which respectively become:

(1 + iη)κ2 = ω2 (4.15)

(1 + iη)κ2 = ω2 +
ω2β

1− ω2 + iγω
. (4.16)

Rearranging (4.16) yields:

((
√

1 + iη)κ2 − ω2)(1− ω2 + iγω) = βω2. (4.17)

The left-hand side of Eq. (4.17) describes the interaction of the oscillator with the propagating

waves in the rod, whereas the right-hand side describes the interaction of the acoustic mode with

the optical mode. From here, there are two ways to solve Eqs. (4.12) and (4.13). Either we treat

κ as a fixed and real value and solve for the complex frequency ω, or we treat ω as a fixed and real

value and solve for the complex wavenumber κ. As discussed in chapter 2, the first case is typically

employed to describe the temporal attenuation of freely propagating waves, whereas the second

case is utilized to describe the spatial dissipation of harmonically driven waves. In this chapter, we

are interested on the effects of the oscillator on the temporal attenuation of longitudinal waves and

therefore, assume a real wavenumber and solve for complex frequencies.

In the work presented in [72], the author is interested in a so-called exceptional point, which can be

described as the bifurcation point separating the strong-coupling from the weak-coupling regimes.

Therefore, if the two modes are uncoupled, one can assume that κ = ω = 1 in the vicinity of that

exceptional point. Equation (4.17) can be further simplified as:

(2(
√

1 + iη)κ− ω)(2− 2ω + iγ) = β. (4.18)

The solution of this quadratic equation is:

ω1,2 =
1

4
(2(
√

1 + iη)κ+ 2 + iγ ∓
√

(2− 2(
√

1 + iη)κ+ iγ)2 + 4β). (4.19)

According to [72], the two modes coalesce at the exceptional point, requiring the square root term

to be equal to zero. We rederive here the values taken by γ and ω at that exceptional point for the
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case where both the rod and the oscillator are damped:

γ =
2
√
β

1− 2M
, κ = 1, ω = 1 +

iγ(1 + 2M)

4
. (4.20)

4.6.2 Bounds on Metadamping

Let us now characterize the condition on η for the locally resonant rod to exhibit positive

and negative metadamping across the wavenumber range. For the sake of simplicity, we followed

Maznev’s approach in the previous section and assumed a displacement of the form u = eiωt−iκx

as it greatly helped simplify Eq. (4.18). However, in order to be consistent with our formulation

of Bloch’s solution given by u(x, κ, t) = Ũ(x, κ)eiκx+λt, we will assume a solution of the form

u = eλt−iκx for the rest of this analysis. With this formulation, the solution of the regular rod

becomes:

λr = iωr = iκ
√

1 + iη = −κn+ iκm, (4.21)

where

m =
1√
2

√√
1 + η2 + 1, n =

1√
2

√√
1 + η2 − 1. (4.22)

Similarly, the solutions of the locally resonant rod become:

λ1,2 =
1

4
[(−(γ + 2κq ± b) + i(2κp± a)], (4.23)

where

a =
1√
2

√√
x2 + y2 + 1, b =

1√
2

√√
x2 + y2 − 1, (4.24)

and where

x = 4− 8κm+ 4κ2m2 − 4κ2n2 + 4β + 4κnη − η2, y = −8κn+ 8κ2mn+ 4η − 4κnη. (4.25)

From Eq. (4.21), we extract the wavenumber-dependent damping ratio for the regular rod such

that ζr(κ) = −Re(λr)/Abs(λr). Note that, because of our choice of material damping model, i.e., a

frequency-independent complex Young’s modulus, ζr remains constant over the whole wavenumber

range. Similarly, we extract the damping ratio for the acoustic ζ1(κ) and for the optical ζ2(κ)
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modes of the locally resonant rod from Eq. (4.23).
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Figure 4.12: a) Damped dispersion curves for the regular rod (dashed) and the locally resonant
rod (solid) for β = 0.01 and η = 0.1. The lower branch is the acoustic mode (red) and the upper
branch is the optical mode (blue). b) Corresponding damping-ratio diagram.

We want to determine the bounds on the prescribed damping value η, such that the acoustic

branch exhibits positive metadamping over the whole wavenumber, i.e., ζ1(κ)−ζr(κ) > 0 is satisfied

for any 0 < κ < π, and the optical branch simultaneously exhibits negative metadamping over the

whole wavenumber range, i.e., ζr(κ)−ζ2(κ) > 0 is satisfied for any κ. Using Eq. (4.19), we plot the

damped frequencies ωdr = Im(λr) and ωd1,2 = Im(λ1,2) for prescribed values β = 0.01 and η = 0.1

(see Fig. 4.12-a). As expected, the hybridization caused by the local resonance occurs in the region

of the resonance frequency of the oscillator ω0 = 1.

On Fig. 4.12-b, we show the corresponding damping ratios. The damping branch associated

with the acoustic mode lies above the damping ratio branch for the regular rod for the entire

wavenumber range (positive metadamping). Conversely, the damping branch associated with the

optical mode lies below the damping ratio branch for the regular rod for the entire wavenumber

range (negative metadamping).
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Figure 4.13: Phase diagram for the bounds on the prescribed damping η. The inequality for positive
metadamping is shaded in red. The inequality for negative metadamping is shaded in blue. The
region shaded in green represents the value of η, which satisfy both conditions on positive and
negative metadamping accross the wavenumber range.

Due to the complexity of the closed form of both inequalities ζ1(κ)− ζr(κ) > 0 and ζr(κ)−

ζ2(κ) > 0, we use the help of numerical root finding to solve for the values of η meeting both

conditions. For an arbitrary value of β = 0.01, the results are summarized in the following phase

diagram.

From Fig. 4.13, we find that, in order to satisfy both positive and negative metadamping

accross the whole wavenumber range, the bounds on η are such that 0 < η < 0.14. Figure 4.14

shows the damping ratio diagram obtained for two values of prescribed damping η1 = 0.1 and

η2 = 0.2. In the first case (see Fig. 4.14-a), η is smaller than the threshold value ηmax, which

leads the optical branch to exhibit negative metadamping over the whole wavenumber range. In

the second case however, η is greater than the threshold value ηmax, and the condition for negative

metadamping is therefore no longer satisfied for 0 < κ < 0.5.
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Figure 4.14: a) Damping-ratio diagram for η = 0.1 < ηmax, b) Damping-ratio diagram for η =
0.2 > ηmax.

4.6.3 Effect of Assumptions

For the sake of completeness, we investigate now the effects of the assumptions made from

Eq. (4.13) to Eq. (4.17)— small damping, small coupling term, and vicinity of the exceptional

point— on the solutions of the dispersion equations. For that purpose, we compare the solutions of

Eq. (4.13) to those of Eq. (4.19) Using our Bloch-solution formulation, we rewrite Eq. (4.13) as:

(c∗L)2κ2 = −λ2(1 + β
γλ+ ω2

0

λ2 + γλ+ ω2
0

). (4.26)

Collecting terms as a function of λ yields the following quartic characteristic equation:

λ4 + λ3(γ(1 + β)) + λ2(ω2
0(1 + β) + (c∗L)2κ2) + λ(γ(c∗L)2κ2) + (c∗L)2κ2ω2

0 = 0. (4.27)

Because of the complexity of the closed-form solution, we solve Eq. (4.27) with the help of numerical

root finding (roots algorithm on Matlab). The results are presented in Fig. 4.15. The solutions

obtained following Maznev’s assumptions are plotted in solid lines, whereas the solutions of the full

dispersion relation (with no assumptions made) are plotted in dashed lines. The imaginary part

of λ, which is represents damped frequency is hardly affected, even for high levels of prescribed
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damping. On the other hand, the real part of the solution, from which we the damping ratio,

seems to be significantly altered, even for small levels of prescribed damping. The bounds on the
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Figure 4.15: a) Damping-ratio diagram for η = 0.001 < ηmax, b) Damping-ratio diagram for
η = 0.5 > ηmax.

prescribed damping η become 0 ≤ η ≤ 0.03. The maximum value ηmax = 0.03 is significantly lower

than the one calculated previously (ηmax = 0.14).
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4.7 Conclusions

Taken together, these results show that the dissipation levels can effectively be either en-

hanced or reduced in elastic metamaterials. Moreover, the unit-cell analysis provides us with a

valuable design tool, as the regions of positive (resp. negative) metadamping can be tailored to the

desired frequency ranges. Future work will focus on optimization through design of the unit cell

in order to maximize the enhanced (resp. reduced) dissipation effect. Furthermore, metadamping

has been here demonstrated in the context of free vibrations. For this concept to be applied to

practical devices, it needs to be extended to harmonically driven vibrations.



Chapter 5

Metadamping in Frequency Driven Elastic Waves

5.1 Introduction

Harmonically driven waves are more frequently encountered than freely propagating waves in

numerous engineering applications. For example, structures supporting rotating machine compo-

nents such as turbines or motors are constantly subjected to forced vibrations. Over time, stresses

induced by repetitive oscillatory motions can lead to material fatigue and eventually failure. In

the previous chapter, elastic metamaterials have proven their ability to enhance dissipation when

properly enginereed. This is why, in this chapter, we extend the concept of metadamping to driven

waves such that we can design materials exhibiting both high stiffness and high damping under

harmonic excitation. We examine the levels of spatial dissipation of the beam unit cells from

chapter 4. To that end, we introduce the loss factor, which is the measure of damping that is

commonly used to characterize spatial dissipation in viscoelastic materials and discuss some of the

definitions available in the literature. Through a dispersion and finite-structure analysis, we verify

metadmaping in the context of driven waves both qualitatively and quantitatively.

5.2 Damped Dispersion: Driven Waves versus Free Waves

In this chapter, we consider the same two unit cells as in chapter 4: an unpillared unit cell

(homogeneous beam) and a pillared unit cell (homogeneous beam with a square pillar on top). For

the sake of convenience, the unit-cell designs are depicted in Fig. 5.1. The harmonically forced
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Figure 5.1: Models of the a) unpillared and b) pillared unit cells. Dimensions are given in inches.

equation of motion for an exponentially damped system is given by:

Mü(t) +

∫ t

0
µe−µ(t−τ)Cu̇(τ)dτ + Ku(t) = f(t). (5.1)

We assume a time harmonic solution of the form u(t) = Ũeiωt, where ω is a real frequency. Equation

(5.1) becomes:

(−ω2M + iω
µ

µ+ iω
C + K)Ũ = F . (5.2)

The mass and stiffness matrices are obtained upon discretization with the FEM using 3D 8-node

brick elements (512 for the unpillared unit cell and 544 for the pillared unit cell). Both unit cells are

made of aluminum with elasticity parameters E = 68.9 GPa, ν = 0.33 and density ρ = 2700 kg/m3.

The damping matrix is constructed assuming proportional damping such that C = pM + qK. In

the previous chapter, the damping parameters were determined using experimental data obtained

on an aluminum beam. However, because aluminum has low levels of dissipation, we arbitrarily

select here a new set of prescribed damping parameters, such that the levels of material damping

are higher and the effects of damping on the dispersion are amplified. The parameters chosen for

this analysis are p = 30, q = 10−7, and µ = 104.

Bloch periodicity is enforced through Bloch periodic conditions. The Bloch periodicity matrix P,

which relates the displacement and stresses on one end of the unit cell to those on the opposite
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end, can be decomposed as follows (if the order of periodicity is 1):

P = P0 + λxPx, (5.3)

where λx = eiκa, where κ is the complex wavenumber as defined in Eq. (2.13), and P0 and Px are

the Bloch periodicity sub-matrices. To impose the periodic boundary conditions, we premultiply

Eq. (5.2) by the complex transpose of the periodicity matrix P∗ and postmultiply by P:

P∗(−ω2M + iω
µ

µ+ iω
C + K)PŨ = 0, (5.4)

where P∗F = 0. Equation (5.4) yields a quadratic eigenvalue problem [68]:

(A2γ
2 + A1γ + A0)Ũ = 0, (5.5)

with

A0 = PT
xDP0 (5.6a)

A1 = PT
0 DP0 + PT

xDPx (5.6b)

A2 = PT
0 DPx, (5.6c)

and where D = (−ω2M + iω µ
µ+iωC + K) is the dynamic matrix. We linearize the eigenvalue

problem in Eq. (5.5) through a state-space transformation:

(A0(ω) 0

0 I

− γ
−A1(ω) −A2(ω)

I 0

)
 Ũ

γŨ

 =

0

0

 . (5.7)

The solutions of Eq. (5.7) are the frequency-dependent, complex eigenvalues γ(ω), from which we

can extract the complex wavenumbers:

κ(ω) =
ln γ(ω)

ia
. (5.8)

Equation (2.12) can be decomposed into its real and imaginary parts such that:

κ(ω) = κR(ω) + iκI(ω). (5.9)
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Figure 5.2: Undamped dispersion curves for a) freely propagating waves, b) harmonically driven
waves. Damped dispersion curves for c) freely propagating waves, d) harmonically driven waves.
The unpillared modes are plotted in dashed grey/blue and the pillared modes are plotted in solid
black/red.
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The real part of Eq. (5.9) corresponds to the oscillating modes, whereas the imaginary part

represents the spatially decaying modes.

Figure 5.2-b shows the forced dispersion diagram plotted of the two beam unit cells from chapter

4 for the unadamped case. As a reference, the free dispersion diagram is plotted on Fig. 5.2-a. It

is instructive to notice that the real part of dispersion curves obtained with both the κ(ω)- and

the ω(κ)-formulations perfectly match when the systems are undamped. The corresponding forced

and free damped dispersion diagrams are shown on Figs. 5.2-d and c, respectively. This time,

even for relatively low levels of prescribed damping, the two dispersion diagrams exhibit significant

differences, especially around the hybridization region. For example, the two pillared branches

associated with the longitudinal mode in the free-waves case merge into one S-shaped branch in

the driven-waves case.

5.3 Definition of the Loss Factor

In the free-wave analysis, we characterized the temporal attenuation of both unit cells with

the help of the damping ratio, which was extracted from the real part of the complex frequency such

that ζ = −Re(λ)/|λ|. For the driven-wave analysis, however, there is no temporal dissipation as the

system is constantly being excited. (Moreover, the frequency is real and fixed). Therefore, we need

to define a new metric in order to describe spatial attenuation caused by dissipative mechanisms in

both unit cells. Most of the definitions available in the phononic literature are based on a variant

of the so-called loss factor, which was originally introduced as a measure of intrinsic damping in

viscoelastic materials.

After unloading, viscoelastic materials recover parts of the energy stored during loading and

dissipate the remainder in the form of heat. The ratio of the energy loss and the energy stored is

known as the loss tangent or, more frequently, loss factor. For viscoelastic materials, it is generally

expressed as a function of the complex Young’s modulus E∗ = E′ + iE′′:

η = tan(δ) = 2
E′′

E′
, (5.10)
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where E′ is the storage modulus and E′′ the loss modulus. Empirical plots of storage and loss

moduli as a function of frequency (or temperature) are available for numerous viscoelastic materials

in the literature [46]. Another definition of the loss factor, which is also commonly employed for

viscoelastic materials, is based on energy concepts [18]:

η =
D

2πW
, (5.11)

where D represents the energy dissipated per cycle (i.e., the amount of energy that has to be

provided to maintain steady-state conditions) and W represents the maximum deformation energy

stored. For low damping values, Eq. (5.11) is equivalent to Eq. (5.10). These two definitions

are suitable and widely use to describe attenuation capacities of viscoelastic materials. However,

in order to better describe the loss factor from a wave-propagation perspective, an alternative

definition of the loss factor is required. Andreassen and Jensen [7] followed the work by [19] and

defined the loss factor as twice the ratio of the imaginary component of the wavevector over the

real component of the wavevector:

η = 2
κI
κR

. (5.12)

In their study, they also computed an equivalent temporal decay by taking the product of the group

velocity of the wave cg with the spatial decay given by the imaginary part of the wavenumber κI

such that (TD)κ = κIcg. They showed, that for low levels of material damping, the equivalent

temporal decay matched the actual temporal decay which can explicitly be obtained from the

ω(κ)-formulation. Krushynska et al. [55] used the same loss factor definition to evaluate the atten-

uation performance of viscoelastic acoustic metamaterials. In addition, they noted that, in order to

quantify the spatial attenuation due to material damping solely, the effects of the local resonance

on spatial attenuation had to be taken into account. To that end, they calculated an “undamped”

loss factor for the case where no damping was applied to the metamaterial and subtracted it from

the actual loss factor.

Manconi and Mace proposed another approach to calculate the loss factor in periodic viscoelastic

laminate plates based on the modal strain energy method, which was first proposed by Ungar and
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Kerwin [111]. The loss factor is obtained by calculating the wave mode shapes [69]:

η =
V∗jK

′′Vj

V∗jK′Vj
, (5.13)

where Vj is a matrix containing the eigenvectors, K′ is the real part of the stiffness matrix K, and

K′′ its imaginary part. One disadvantage of this method is that it requires the knowledge of the

stiffness matrix which is not always guaranteed.

Finally, we consider the definition by Langley [61], which he proposed in the framework of wave

propagation in a 1D waveguide. The wavenumber is complex and can be written as:

κ∗ = κR − i
ωη

cg
. (5.14)

Rearranging terms yields the following loss factor definition:

η = 2
κIcg
ω

. (5.15)

For the remainder of this analysis, we will use the definition of Eq. (5.12). A comparison of this

Figure 5.3: Comparison of the loss factor definitions described in Eqs. (5.12) (red) and (5.15)
(black).
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definition with that of Langley (Eq. (5.15)) is shown on Fig. 5.3 for the longitudinal modes of

the unpillared and pillared unit cells. For the unpillared case, both definitions yield the same loss

factor diagram. For the pillared case, on the other hand, the loss factors are qualitatively similar

but quantitatively different. Note that for all the loss factor diagrams presented in this chapter,

we follow Krushynska’s approach of subtracting the “undamped” loss factor, such that we discard

the effects of the local resonance on spatial attenuation and solely focus on the effects of material

damping on the spatial dissipation.

5.4 Evidence of Metadamping in the Dispersion Analysis

We start by investigating metadamping in the dispersion analysis in order to identify the fre-

quency regions where the pillared beam is expected to exhibit higher (or lower) levels of dissipation

than the unpillared beam. Using a MAC criterion technique, we sort the waves by modes in Fig.

5.2-d and identify the longitudinal modes in both the dispersion and loss-factor diagrams. They

are plotted on Fig. 5.4-a and b, respectively, and the other modes are shaded in grey.

We identify three points of interest on Fig. 5.4-b, which we will further investigate in our

finite-structure analysis to numerically demonstrate the existence of positive metadamping. Ac-

cording to Fig. 5.4-b, we expect positive metadamping if the excitation frequency falls into one of

the two “metadamping regions”: fA = 3, 421 Hz (point A) and fB = 4, 111 Hz (point B). We also

choose a point where the loss factors are identical for both beams fC = 2, 000 Hz (point C) and we

expect that, if excited at that frequencies, both beams will have similar levels of dissipation.

5.5 Evidence of Metadamping in the Finite System

The unpillared beam geometry is such that 0 ≤ x ≤ 32, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1 in. The

pillared beam, which is composed of four unit cells, has the same dimensions. In addition four

pillars of dimensions 0.5× 0.5× 2 are periodically arranged along the longitudinal axis. The mass

M and stiffness K matrices are obtained upon discretization with the FEM using 3D 8-node brick

finite elements (2,048 for the unpillared geometry, 2,176 for the pillared geometry). The numerical
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Figure 5.4: Dispersion analysis: a) Dispersion diagram for the unpillared (blue) and pillared (red)
unit cells. The longitudinal modes of the beam are identified and highlighted. The other modes
are shaded. b) Corresponding loss-factor diagram. The three frequencies of interest are denoted
as A, B, and C.

time responses are obtained by implementing the direct time integration method for exponentially

damped systems described in [3]. In order to simulate harmonically driven vibrations, a sinusoidal

force is applied at the center of the cross-section on one end of the beam along the longitudinal axis,

and the displacement is calculated at a point located at the center of the opposite cross-section.

The simulation is run for a total time of t = 2 s with a time step of ∆t = 1× 10−6 s.

The undamped and damped responses of both beams are shown in Fig. 5.5 for the three

excitation frequencies discussed earlier. Figures 5.5-a and b correspond to point A (i.e., fA = 3, 421

Hz), Figs. 5.5-c and d to point B (i.e., fB = 4, 111 Hz), and finally Figs. 5.5-e and f to point C

(i.e., f = 2, 000 Hz).

5.5.1 Steady-State Metadamping Metric

As we cannot use the metadamping-ratio procedure proposed in chapter 4 to characterize

metadamping for forced waves, we need to define a new metric in order to quantify the levels
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Figure 5.5: Finite-structure analysis: a-b) Undamped and damped time responses under the
excitation frequency fA = 3, 421 Hz for a) the unpillared beam and b) the pillared beam, c-d)
Undamped and damped time responses under the excitation frequency fB = 4, 111 Hz for c) the
unpillared beam and d) the pillared beam, e-f) Undamped and damped time responses under the
excitation frequency fC = 2, 000 Hz for e) the unpillared beam and f) the pillared beam.
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of spatial dissipation in the finite-structure analysis. We cannot compare the change in absolute

magnitude of the damped time signals, as these amplitude changes might be due to nondissipative

mechanisms. Instead, we propose to compare the relative amplitude change between the undamped

and damped time signals to ensure that we account for material dissipation only. If the beams are

excited at frequency A or B, we expect a higher amplitude decrease for the pillared beam than for

the unpillared beam. At the neutral point, we expect similar levels of amplitude change.

The procedure to obtain the steady-state metadamping metric is as follows. We split the time

series in intervals of dt = 0.01 s for 1 ≤ t ≤ 1.8 s (which corresponds to two “beats” on Fig. 5.5-d)

and find the maximum displacement amplitude in each of these intervals. We then average these

maximum amplitudes over all the intervals to ensure that any beating phenomenon is “averaged”.

We define the amplitude ratio as:

runpillared/pillared =
max(Dundamped)

max(Ddamped)
, (5.16)

where Dundamped and Ddamped are the average maximum amplitude of the undamped and damped

time response, respectively, for 1 ≤ t ≤ 1.8 s. As in chapter 4, we define the metadamping ratio as:

rmeta =
rpillared

runpillared
. (5.17)

A ratio greater than unity suggest that the pillared beam exhibits positive metadamping. The

ratios obtained for the three excitations frequencies are presented in Table 5.1. At both point A

Metadamping Metric: Steady-State Regime

A: Positive Metadamp-
ing

B: Positive Metadamp-
ing

C: No Metadamping

runpillared 1.26 1.62 1.34
rpillared 1.62 1.78 1.33
rmeta 1.29 1.10 1.01

Table 5.1: Steady-State Metadamping Metrics

and B, rmeta is greater than unity, hence confirming our positive metadamping analysis. It also

interesting to note that the two ratios follow the trend observed on the loss-factor diagram (see
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Fig. 5.4-b), i.e., metadamping is stronger at point A than at point B. At point C, rmeta = 1.01 is

very close to unity as expected from the loss-factor diagram.

5.6 Simplified Analytical Model

As in chapter 4, we analytically investigate the longitudinal motion of a locally resonant rod

in order to further investigate metadamping in the context of driven waves. We consider the same

simplified models as that of chapter 4: a homogeneous rod, and a rod with a spring-mass oscillator

attached to it. A schematics of the two models is shown on Fig. 5.6. Following a recent study by

MK
x, u(x)

x, u(x)

U(x)

a)

b)
h

Figure 5.6: Simplified analytical model : a) Homogeneous rod, b) Rod with a local resonator

Maznev [72], we derived the dispersion relations for both systems in chapter 4 (see Eqs. (4.12) and

(4.14)). They are as follows:

(c∗L)2κ2 = ω2 (5.18a)

(c∗L)2κ2 = ω2(1 + β
ω2

0 + iγω

ω2
0 − ω2 + iγω

). (5.18b)
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This time, we treat the frequency ω as the independent variable and solve for the complex wavenum-

bers, which can be explicitly obtained from Eqs. (5.18a) and (5.18b). Note that, because these

equations are much simpler to solve than the equations of the free-waves problem, we do not make

any assumptions on the prescribed damping η nor on the coupling term β. However, we normalize

the solutions by setting cL =
√
E/ρ and ω0 to unity. Equations (5.18a) and (5.18b) then become:

κ2 =
1

(1 + iη)
ω2 (5.19a)

κ2 =
1

(1 + iη)
ω2(1 + β

1 + iγω

1− ω2 + iγω
). (5.19b)

The solutions of Eqs. (5.19a) and(5.19b) are plotted on Fig. 5.7-a if the rods are undamped and on

Fig. 5.7-b if the prescribed damping is η = 0.1. As in chapter 4, the coupling factor is arbitrarily

set to β = 0.01. For the damped case, the two branches (acoustic and optical) merge into one S-

shaped branch. On Figs. 5.7-c and d, we plot the loss factors calculated according to the definition

given in Eq. 5.12. For the undamped case, the loss factors are zero as expected. For the damped

case (see Fig. 5.7-d), we observe that the loss factor associated with the locally resonant rod forms

a peak, which is known as the Lorentzian absorption peak [72]. The Lorentzian function can be

mathematically described as:

L(x) =
1

π

1
2Γ

(x− x0)2 + (1
2Γ)2

, (5.20)

where x0 is the center of the peak and Γ the width of the peak. Moreover, the value at its maximum

is given by

L(x0) =
2

πΓ
. (5.21)

Next, we vary the value prescribed damping η from 0 to 1 and observe the effects on the height

and width of the absorption peak. The results are presented on Fig. 5.8. Figure 5.8-a depicts

the normalized maximum amplitude at the center of the absorption peak Pn = L(x0)/η as a

function of the prescribed damping η. Figure 5.8-b depicts the normalized width Wn = Γη as a

function of η. It is interesting to note that the absorption peak amplitude decreases for higher

values of prescribed damping η. Conversely, the peak becomes wider for increasing values of η.
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Figure 5.7: a) Undamped dispersion curves for the rod (dashed blue) and locally resonant rod
(solid red) and b) corresponding loss-factor diagram. c) Damped dispersion curves for the rod
(dashed blue) and locally resonant rod (solid red) for η = 0.01 and c) corresponding loss-factor
diagram. The coupling factor is arbitrarily set to β = 0.01.

The decrease in dissipation levels for higher values of prescribed damping can be explained by

the interaction between the two attenuation mechanisms: local resonance and material damping.

Indeed, high levels of material damping may neutralize the effects of the local resonator on energy

dissipation [70]. Finally, we select two values of η such that ηA = 0.0707 and ηB = 0.5. The
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Figure 5.8: a) Normalized peak amplitude Pn = L(x0)/η and b) normalized width Wn = Γη as a
function of the prescribed damping η. Two values of prescribed damping are selected and denoted
as A ηA = 0.0707 and B ηB = 0.5. The corresponding loss-factor diagrams are plotted in c) and
d), respectively.

corresponding loss factors for these two values of η are shown on Figs. 5.8-c and d.
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5.7 Parametric Design Study and Metadamping Performance

In this section, we vary the unit-cell length a in order to determine the effect of pillar spacing

on the metadamping performance. Figure 5.9 summarizes the results for unit-cell lengths ranging

from a = 3 to a = 8 in. For 3 ≤ a ≤ 6 in, we observe one single absorption peak centered on the

local resonance of the pillar, which is very similar to what we observed for the simplified analytical

model. Moreover, we notice that, as the unit-cell length increases, the maximum amplitude of

the peak decreases and its width increases. For a = 7 and a = 8 in, we observe the formation of

another absorption peak which gets closer to the first one as the unit-cell length increases. That

second peak is most likely caused by localized pillar modes which fall into the hybridization region

for these two designs, and interact with the “equivalent” longitudinal modes of the pillared beam.

According to the loss-factor diagrams (see Fig. 5.9), the highest metadamping performance

is obtained for a = 3 in at f = 3, 597 Hz. We verify the correlation between the infinite and finite

analyses by calculating the undamped and damped time responses for two finite beams made of

four unit cells each. The new unpillared beam geometry is such that 0 ≤ x ≤ 12, 0 ≤ y ≤ 1,

and 0 ≤ z ≤ 1 in. The new pillared beam, which is composed of four unit cells, has the same

dimensions. Again, four pillars of dimensions 0.5 × 0.5 × 2 are periodically arranged along the

longitudinal axis. The undamped and damped time responses of both beams under the excitation

frequency of f = 3, 597 Hz are shown on Fig. 5.10. Following the procedure described in section

5.5.1, we find the metadamping ratio to be rmeta = 1.83, which is an improvement of 40% compared

to the ratio obtained for a = 8 in.

5.8 Conclusions

In this chapter, we have theoretically extended the concept of metadamping to the driven-

waves problem with qualitative and quantitative verification. By performing a dispersion analysis

on the 3D beam unit cells and examining the loss factor diagrams, we were able to determine the

frequency regions where the pillared beam is expected to exhibit higher levels of dissipation than
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Figure 5.9: Parametric Design Study : Longitudinal loss factor for the unpillared unit cell dashed
blue) and pillared unit cell (solid red) as a function of the unit-cell length a.
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the unpillared beam. Next, we performed a finite-structure analysis and showed that indeed, if

excited at frequencies falling into one of the metadamping regions, the pillared beam exhibited

higher spatial dissipation levels than the unpillared beam. The analytical study on a simplified

model enabled us to deepen our understanding of the absorption peaks observed in the loss-factor

diagrams. Based on that knowledge, we performed a parametric design study to determine the

effects of pillar spacing on the amplitude of the absorption peak. We find that for a = 3 in, the

metadamping performance is increased by 40% compared to a = 8 in. In the future, other designs

will be considered in order to further improve the metadamping performance of the pillared beam.

Moreover, the concept of metadamping in forced-waves problems will be extended to structures

with higher order of periodicity.



Chapter 6

Conclusions

6.1 Summary of Dissertation

This thesis focuses on the relation between dissipation and dispersion in elastic metamaterials.

In the first part, a viscoelastic damping model fitted with experimental data is developed in order

to accurately predict dissipation within the dispersion analysis framework. In the second part, the

ability of metamaterials to manipulate waves is exploited for the engineering of dissipation. To that

end, the concept of metadamping is validated in a finite experimental setting with direct correlation

to theory as described within the dispersion framework.

Chapter 1 introduces the concept of phononic materials, of which elastic metamaterials are

a category. A brief literature search covering the history and recent applications of these delicately

engineered materials is provided. Elementary concepts of their dynamics are introduced and their

fundamental equations are derived in the context of 1D discrete systems. Then, the topic of damped

wave propagation in phononic materials is presented and a succinct literature review examines

the methods employed for the treatment of damping in these materials. Finally, the concept of

metadamping is reviewed and a brief literature synopsis is provided such that the work is placed

into context.

Chapter 2 further details the treatment of damping in phononic materials. The methods

to solve the two classes of damped-wave propagation problems—free waves versus driven waves—

are presented and a literature review of their use in the phononics literature is provided. Next, a

viscous dashpot is added to the spring-mass system of Chapter 1 and the fundamental equations
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are derived for both free and forced waves.

Chapter 3 extends the analysis of damping in phononic metamaterials to 3D continuous

systems. In this chapter, only freely propagating waves are considered. Two categories of damping

models are discussedviscous and viscoelasticand the corresponding damped dispersion relations are

derived for general continuous unit cells. The dispersion curves of a 3D beam unit cell are plotted

for different levels of prescribed damping, and the effects of viscous versus viscoelastic damping

on the dispersion spectrum are discussed. The main result of this chapter is the development

(with relevant mathematical derivations) of a viscoelastic damping model, whose parameters are

curve-fitted with experimental data. The experimental procedure, as well as the method that

was developed to extract sets of damping parameters leading to realistic levels of dissipation, are

thoroughly described. In addition, two examples of the application of this method are presented:

one to extract the damping parameters for longitudinal modes of an aluminum beam, and one

to extract the damping parameters for bending modes of an ABS plate. The set of parameters

obtained for the longitudinal modes of the aluminum beam are used in chapter 4, in an effort

to accurately predict the damped dispersion characteristics of an aluminum elastic metamaterial

beam.

Chapter 4 examines the capacity of a 3D locally resonant beam to exhibit either higher or

lower dissipation levels, at certain frequency ranges, than those of a homogeneous beam in the con-

text of freely propagating waves. This concept of damping emergence, referred to as “metadamp-

ing”, is demonstrated first in two finite aluminum beams (a homogeneous beam and a locally

resonant beam), both experimentally and numerically. Then, a dispersion analysis is performed

on the homogeneous and locally resonant beam unit cells in order to further investigate the phe-

nomenon of damping emergence caused by the presence of local resonances. On the damping-ratio

diagram, two frequency regions are identified: one associated with positive metadamping and one

with negative metadamping; the latter has been identified for the first time as a concept. We ob-

serve that the higher temporal attenuation in the corresponding finite structure takes place where

the frequency range of the excitation coincides with the region where positive metadamping is
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indicated in the dispersion analysis, thus confirming our positive metadamping hypothesis. To in-

vestigate the negative metadamping hypothesis, the finite structures are numerically excited with

an impulse whose frequency content is designed such that it falls within the identified negative

metadamping region. In that case, the pillared beam is shown to exhibit lower levels of temporal

attenuation. Next, a parametric design study is performed in order to examine the effects of pillar

spacing on both positive and negative metadamping. Finally, wave dispersion relations are derived

for simplified analytical models of both beams, and bounds on the prescribed damping value are

determined such that the condition for simultaneous positive and negative metadamping is satisfied

across the entire wavenumber range covering the first Brillouin zone.

Chapter 5 extends the study of metadamping followed in chapter 4 to the driven-waves

problems. The dispersion diagrams from chapter 4 are rederived for harmonically driven waves.

Next, a discussion is provided on the definitions of the loss factor, which is a measure of damping

typically employed to describe spatial attenuation in viscoelastic materials. A dispersion analysis

is performed in order to identify the potential regions of metadamping. For the unit-cell design

of chapter 4 (i.e., a = 8 in), two positive metadamping frequency values are determined. By

exciting the finite structures at frequencies coinciding with these two frequencies, and comparing

the relative amplitude changes between the undamped and damped signals, the existence of positive

metadamping is verified in the context of driven waves. Then, the simplified analytical model is

used to further investigate the absorption peak observed in the loss factor diagram. Finally, the

unit-cell length is varied and the metadamping performance of the various designs is examined. It

is found that for a = 3 in the metadamping performance is improved by 40% compared to a = 8 in,

which is consistent with what would be expected when the density of the resonators is increased.

6.2 Outlook

This dissertation has aimed to take the concept of metadamping, which was first proposed

in [40] for theoretical systems, a significant step closer to being applied in practice. To that end, a

physically realistic damping model has been developed to better predict damped-wave propagation
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within the dispersion analysis framework. Metadamping in 3D continuous systems has also been

explored and the realization of positive metadamping for free-wave propagation has been demon-

strated for the first time. Despite encouraging results, the work done in this dissertation has solely

focused on rather simple structures such as beams. In order to design more practical devices which

could be used by engineers in applications where both high stiffness and high damping are desir-

able, further work on the concept of metadamping has to be conducted. Possible tracks for future

studies are listed below:

• Damping model improvement : Despite great efforts to develop a realistic damping model

based on experimental data, the model presented has limitations and could be considerably

improved. For example, one could use a general damping matrix instead of a proportional

damping matrix. Furthermore, one could consider a more complex kernel function for the

convolution integral in the damping force term, such a generalized Maxwell model.

• Experimental validation of negative metadamping for free waves: In this dissertation, pos-

itive metadamping has been experimentally validated because the frequency range of the

excitation applied with the available laboratory modal hammer coincided with the region

where positive metadamping is indicated in the dispersion analysis. In order to experimen-

tally demonstrate negative metadamping for the locally resonant beam design proposed in

chapter 4, one would need to synthesize an experimental excitation whose frequency profile

matches the one plotted in dashed black in Fig. 4.7-a.

• Negative metadamping in driven waves: For applications where extremely low levels of wave

attenuation is desirable (e.g., NDT, imaging lenses), devices exhibiting negative metadamp-

ing would be highly appealing and potentially revolutionary. Although, the existence of

negative metadamping for free waves has been shown in this dissertation, it has yet to be

shown in the context of driven waves.

• Experimental verification of metadamping in driven waves: The definition of the metadamp-
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ing metric that is proposed in chapter 5 is suitable for numerical experiments, as one can

easily remove damping from the model and compute the undamped time series. However,

every real-world system has damping, therefore, it would be impossible to obtain an exper-

imental undamped time response. Consequently, in order to experimentally demonstrate

metadamping in driven waves, another metric should be proposed. One could also ob-

tain an experimental loss-factor diagram by exciting the structure at one frequency and

measuring the complex wavenumber.

• Extension to more complex structures: The studies in this dissertation have been conducted

on relatively large beams. In addition to being rather impractical for most engineering

applications, these structures are periodic along one dimension only. A natural next step

would be to extend the realization of metadamping to structures with higher order of

periodicity such as plates and to investigate it in the context of different types of waves

(flexural, shear, etc.), and for smaller and more compact structures.
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