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ABSTRACT

We say that a language K ¢ z¥ has a constant distribution if there exist

a positive integer C and an alphabet o ¢ % such that the set of letters
occurring in every subword of K of length C equals a. The subword complexity
- function of K, denoted Ty is fhe function of positive integers such that

nK(n) equals the number of subwords of length n that occur in (words of) K.

We prove that if K is a DOL language with a constant distribution then L%

is bounded by a linear function.



INTRODUCTION

A way to understand the structure of a language K is to investigate the set
of all subwords that occur in words of K (denoted as sub(K)). In particular
one can count the number of WOfds in sub(K) that are of a given length n; this
number is denoted by nK(n). Hence My is the "subword complexity" function of K:
for each n it yields the number of subwords of length n occurring ih words
of K (see, e.qg., [2], [4]).

The subword complexity function turned out to be a useful tool in investigatin
TOL systems and its subclasses (see, e.g., [4]). The subword complexity function
can be considered to measure a global feature of a TOL system: the number of
subwords in a TOL language K is well defined without knowing an actual TOL
system generating K. Still, it was demonstrated that the subword complexity
function can "detect" lgggl restrictions on TOL systems that is restrictions
on the set of productions in a given system. In particular it turned out that
generatively deterministic TOL systems generate languages wifha“]imited“ number
of subwords. Then within the subclass of generatively detérministic TOL |
systems (the so called DOL systems) restrictions on the length of the right-hand
side of productions are reflected in further limitations onthe maximal number
of subwords that can be generated (see, e.q., [3]);

The number of subwords in DOL languages is also sensitive to some global
restrictions. For example if (following [7] and [8]) one requires that every.
word in a DOL language K is square-free, i.e., it does not contain a subword of
the form x x where x is a nonempty word, then for every positive integer n,
nK(n) <=Dn ]og2 n for some positive integer D (see [3]).

In this paper we continue the investigation of global restrictions on a
DOL language that have an effect on its subwordgcomplexity. We say that a

language K ¢ £” has a constant distribution if there exist a positive integer C

and an alphabet 4 < » such that the set of letters occurring in every element




of sub(K) of length C equals A. We demonstrate that if K is a DOL language
of constant distribution then nK(n) is bounded by a linear function of n.
We also show an application of this result in estimating the subword
complexity function of a square-free (m-free in general) DOL language over

an alphabet of a limited size.



I. PRELIMINARIES AND BASIC NOTIONS

We assume the reader to be familiar with the rudiments of the theory of DOL
 systems (see, e.g., [4]). A DOL system G will be specified in the form

G = (z,h,w), its séquence IR is denbted by E(G), its language is
denoted by L(G) and maxr(G) denotes the maximal length of the right-hand

side of a production in G.

Since the problems we consider are trivial otherwise, in this paper we

deal with infinite DOL langﬁages only.

For a word a, alph({a) denotes the set of all letters occurring in «; for

~a language K, alph(K) = ka alph(a). For a word a’and a letter x, ﬁxéa) denotes
a€kK '

the number of occurrences of x in «. If K is a Tanguage then sub(K) denotes
the set of all subwords (occurring in the words) of K; for a positi?e integerA
n,‘§g§n(K) denotes the set of all subwords of length n of K. For a language

K its subword complexity, denoted Ty s is a function of positive integers such

that WK(H) = #§g§n(K) (for a finite set Z, #Z denotes its cardinality).
The following is the basic notion of this paper.
Let K ¢ 2* be a language and C a positive integer constant. We say that X

has a C-distribution if there existsan alphabet 4 ¢ 3 such that every word

a € sub(K) with |a| = C satisfies alph(a) = a. We say that K has a constant

distribution if there exists a positive integer constant C such that K has

a C-distribution,



II. RESULTS

In this section we prove the main result of this paper (Theoren 1) and
show some applications of it.

Theorem 1. Let L be a DOL language that has a constant distribution.
Then there exists a positive integer constant Q such that T (n) = QOn
for every positive integer n. |

Let L be generated by a DOL system H = (Z,f,p) with E(G) = PQrPy v e
Since L has a constant distribution, there exists a positive integer constant C
such that 'L has a C-distribution for an alphabet 4 ¢ z. Clearly we can assume -
that 4 = 2. We simply have.to start from a new axiom which equals py where t

is the smallest integer i such that |p.| > C for all j = i; in this way we

i1
may loose a finite number of subwords only.

Then we slice-up (see [4]) our system H in such a way that we obtain v
component DOL systems Hl""’Hv where each component System G = (Z,h,w)
satisfies the following three conditions. For every x € 7,

(1). alph(h(x)) = alph(h™(x)) for every positive integer m,
(11). either,for every positive integer m, h(x) = hm(x)

or, for every positive integer m, Jhm+1(x)] >‘]hm(x)],
(i11i). for every y € z,

0 for every positive integer m

it

either #y(hm(x))

i

or #y(hm(x))

or #y(hm(x)) > 1 for every positive integer m.

It is casily seen that such a slice-up is always possible.

1 for every positive integer m

m
Hence L = L(H) = U L<Hi)’ Clearly to prove the theorem it suffices to
i=1
prove that its statement holds for every component language L(Hi)' Thus Tet
G = (Z,h,w) be a component system in the above slice-up of H. Let L(G) = K and

E(G) = O @y e Let us dividg all Tetters from © into stationary letters,



that is letters that satisfy the "either part" of the condition (ii) above,
and growing letters, that is letters satisfying the "or part" of the condition
(i1) above. Let Zg and Zg denote the subsets of I consisting of stationary
and growing letters respectively.

The proof of the theorem goes now through a sequence of Temmas.

Lemma 1. Zg # 2. |

Proof.

Otherwise K would be finite. o

Corollary 1. If. a ¢ z§ N sub (K) then |a| < C.

Proof.

Immediate from Lemma 1 and from the fact that L(G) has a. C-distribution. a

Lemma 2. For every x € £, either h(x) = hm(x) for every positive integer m
m+1

or for every y € Z, #y(hm(x)) > 1land [h7 7 (x)] > Jhm(x)[ for every positive

integer m.

Proof.
Clearly it suffices to show that for every letter x ¢ zg the "or" part of

the statement of the lemma holds. To this aim cnoose mO to be such that

m m
0

0 ‘ L
[h “(x)| > 2C. Thus for every y € I, #y(h (x)) > 1 because otherwise JubC(K)

would contain a word « such that y ¢ alph{a): a contradiction,
The lemma follows now from the condition (iii) on the slice-up of H. o

Lemma 3. For every x,y € 5. and for every positive integer m,

g
[hm(x)| < ;hm(y)[ maxr G.
Proof.

m+1(y)[

By Lemma 2, x € alph(h(y)) and consequently lhm(x)( < |h . But

[hm+1(y)[ <|h™(y)| maxr G and the lemma follows. o

Let p ¢ sub(K) and let i(p) be the smallest j such that o contains an



occurrence of B. Then by occ(p) we denote the leftmost occurrence of B

i w@;(gy. A subvord a sub(K) is called an ancestor of g if « has an
occurrence 0(a) in some w,, 0 =t < i(p), such that every element of occ(p)
is contributed by an element of o{a) and if we omit either the leftmost or
the rightmost occurrence in 0(a) then this property does not hold anymore. An

ancestor o« of g is called special if it has an occurrence, referred to

as the special occurrence (with respect to g), in some 0y » 0=tc {(B), such
that | -

it contains an occurrence of a growing letter the contribution of which to '
m{i(B) Ties totally within occ(B) «........ e e e (1)
and moreover no occurrence of an ancestor of g ih some @, 0 <ux<t, satis-
fies (1). =~ ¢ B S U P55

Lemma 4. There exists a positive integer ng such that if a € sub(K)

and |a| z ny then a has a special ancestor.

Proof.

Immediate from Corollary 1. o

Let n, be a fixed (e.g., the smallest) constant satisfying the statemént of

0
Lemma-4 and such that n, > C+l. Lt n = n,. We will analyse now words from sub (K).
0 : 0 ‘ —n
| For a word 8 € sub_(K) its category, denoted as cat{p), is a triplet (a,¢,q)
such that a is the special ancestor of B, (its existence is guaranteed by
Lemma 4), q is such that the special occurrence of a, with respect to 8,

denoted so(a), is in w, and 1 = ¢ = n is the Tength of the prefix of B ending

i(p)-q
on the last occurrence in occ(p) contributed by the Teftmost occurrence in so(a)
among all occurrences of growing letters. The situation can be illustrated as

follows:
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where x is the Teftmost among all occurrences of growing letters in so(a).
Lemma 5. If B,.8, ¢ Eggn(K)and cat(py) = cat(p,) then gy = B,.
Proof. '

Obvious. o

Lemma 6. There exists a positive integer constant D1 such that the number
of all special ancestors of words in gggn(K)is.not bigger than Dl’

Proof. |

Let B € subn(K)and let a be fhe special ancestor of p such that the special
occurrence of a is in w, where t > 0. Then |a| < 3 maxr(G) + C. To see this

assume to the contrary that |a| =z 3 maxr(G) + C and consider the direct

ancestor 6 of a (since t > 0 such a & exists). We have the following situation:
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Then |y|=maxr(G) + C and so, by Corollary 1, y contains an occurrence
of a growing letter. Consequently‘g contains an occurrence of a growing letter
and so & (rather than «) must be the special ancestor of B; a contradiction.
Hence the number of all special ancestors of words in §g§n(K) bounded

3maxr(G)+C

by D1 which equals 4z + D1 where Dl is the number of special an-

cestors with special occurrences in w. o
Bg@gﬁg‘mﬁoggrthat-from the above proof it foilows that ;f a is a spec1a] an-
cestor then |a| < max{3 maxr(G) + C, |w|}. We will use A to denote the constant
max{3 maxr(G) + C, |w|}. |
Lemma 7., There exxsts a posxtxve 1nteger F. such that for .every spec1a1
ancestor a (of a word from Eggn(K))and for every 1 = ¢ =n, -
#{q : cat(p) = (a,¢,q) for some B ¢ §g§n(K)}:sF.
Proof.
Given a positive integer t, let min(t) = min{}ht(x)} DX € zg} and
max(t) = max{[ht(x)] t X € zg}. Note that Lemma 3 impldes that
max(t) < min(t) maxr(G) «uevnenrereeninn i i i i (2)
Consider now a word B ¢ §H§ﬂ(K) and Tet cat(p) = (a,2,q).
Since every growing letter in a generates in q steps a word not longer than
max(q) and every stationary letter in « generates in q steps a word not longer
than maxr(G), we get

th )| = Ja| max{max(q), maxr(G)} TR (3)~

Since |B| = n, we also have

LR ¥ F U (4)
Then (3) and (4) yield
n < [h%a)| = |a] max{max(q), maxr(G)}.

This combined with (2) (see also fhé“remark f;iiowihg the proof of Lemma 6} yields
n s ]hq(a)]<- A max {min(q) maxr(G), maxr(G)} =
=A MIN(G) MAXIEG) Lt ettt et et ettt e (5).



Since a contains at least one occurrence of a growing letter, the definition of

a special occurrence yields min(q) < n and hence from (5) we get
n < |h%a)| < nAmaxr(G) ...... Ct et e et s eee et e etre et eaaenas (6)
Now let for 1 < ¢ <n and a special ancestor a,

Z = {q : cat(p) = (a,2,q) for some B ¢ sub (K) 3.

Zy,a

Consider m € Z, and m+ a ¢ Zz " where a = 0.

» 4 )

By Corollary 1, each subword of ]hm(a)t.of length (C+1) contains at least

one growing letter. Consequently SRS ‘
m

}hm+a(a)]><ibujfﬁl-— 1) 22 L. e, (7)
C+l

From (6) and (7) we get

R o R L A FCL VR

(A1 1) 22 < (0] < n A paxr(e)

C+1
and consequently
I N . '
(iﬂniﬁll - 1) 22 0 A MAXI(B) ettt e e (8)
- C+l 4

From (6) and (8) we getk
(n . 1) 22 < n A maxr(G)
\C+1

and consequently

a n 1 S
2 <I“~:-'l—— A maXY‘(G) =::I:~*I A maxr(G) A R (9)
C+1 C+1 n
Note thafﬁ —— is a monotically decreasing function of n and so,
1 1
(cir - %)
1
because n = Y we get 28 A maxr(G)
1 1
C+1 Ny
: 1
Thus a < 1092 ——— \ A maxr(G)
1 1
C+1 o |
Consequently .
1
#Z < lo e \A maxr(GQ + 1 e
g S 1997 (1 1\) G +1 (10)




Thus if we set F equal the right-hand side of the inequality (10),

the lemma holds. o

Lemma 8. Let CATn = y{cat(p) : B ¢€ Eggn(K)}Then gCATn < B n where B is
a positive integer constant.

If (a,¢,q) € CAT then 1= ¢ =n and so, by Lenma 6 and Lemma 7,
#CATn < Dan, where Dl‘and F‘are theAconstants from the statements of Lemma 6
and Lemma 7 respectively. Thus‘the lemma holds. o

To complete the proof of the theorem we proceed as follows. First of all
we note that we have considered n > ng only.. . : s
Thié; howevef, cah‘be done without the loss of .generality because we loose
a finite number of (sub)words only. Thus Lemma 5 and Lemma 8 imply that the
statement of the.theorem holds with L replaced by K.

Since L is a finite union of component.languages, the theorem holds. n

To put Theorem 1 in a proper perspective we would like to remark that
(it is easily seen that) the theorem is not true if one replaces DOL Tanguages

by e.g. context-free languages.

We end this paper by demonstrating two applications of Theorem 1. We
need some terminology first.

Already around 1910 A. Thue has introduced a way of investigating a
pattern of subwords in languages and (infinite) sequences (see (7] and (8)).
Given a word x and a positive integer m = 2 we say that x is m-free if it does
not contain a subword of the form ym where y is a nonempty word. (If x is
2-free we say that it js square-free). A language is called m-free if it consists
of m-free words only. Investigation of m-free languages and sequences forms

recently a vivid research area within formal language theory (see, e.g. [1],

(31, (5], [6]).



It was proved in (3] that if K is a square-free DOL language then
nK(n) is bounded by a quadratic function of n. Moreover it was demonstrated
that there exists a square-free DOL language in which nK(n) is of order nz.
The example given in [3] used a DOL system with 9 letters. We will show now
how using Theorem 1 one can easily prove that nK(n) is bounded by a linear
function of n if K is a square-free DOL Tanguage using 3 letters.

Corollary 2. Let K be a square-free DOL language such that yalph(K) = 3.
Then there exists a positive integer constant D such that nK(n) <=Dn for
every positive integer n. ‘

Proof.

C]eaf?y K must be a language with a  4—dist£ibution (otherwise K cannot
be Square«free).vTHQs the result follows from Theorem 1. o

On the other hand it was proved in [3] that if K is an infinite square-
free Tanguage then nK(n) > n for every positive integer n. Since it is well-
known (see, e.g., [1]) that there exist square-free DOL languages over a three
letter alphabet (and by the argument from the proof above such a Tanguage must

have 4-distribution) we get the following ramification of Theorem 1.

Theorem 2, There exists a DOL‘1anguage.K that has a constant distribution
and is such that nK(n) >'n for every positive integer n. o

For m-free DOL languages we can prove the following result.

Corollary 3. Let K be a DOL language such that galph(K) = 2. If there
exists a positive integer constant m such that K is m-free then there exists a
positive integer D such that nK(n) <D n for every positive integer n.

Proof.

If K is m-free then every element g of Eggm(K) is such that alph(p) = alph(K).

Hence the result follows from Theorem 1. o
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