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Abstract

We generalize a small-gain theorem for a network of infinitely many systems, recently developed in [Kawan et. al,
IEEE TAC (2021)]. The generalized small-gain theorem addresses exponential input-to-state stability with respect to
closed sets, which enables us to study diverse control-theoretic problems in a unified manner, and it also allows for agents
to have infinitely many neighbors. The small-gain condition, expressed in terms of the spectral radius of a gain operator
collecting all the information about the internal Lyapunov gains, has several useful characterizations which simplify the
verification of the condition. To demonstrate applicability of our small-gain theorem, we apply it to the stability analysis
of infinite time-varying networks as well as the design of distributed observers for infinite networks.
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1. Introduction

Emerging technologies such as the Internet of Things,
Cloud computing and 5G communication will let us re-
alize a paradigm shift towards a hyper-connected world
composed of a large number of smart networked systems
providing us with much more autonomy and flexibility.
Examples of such smart networked systems include smart
grids, connected vehicles, swarm robotics, and smart cities
in which the size of the networks is unknown and pos-
sibly time-varying. However, standard tools for stabil-
ity analysis/stabilization of control systems do not scale
well to these large-scale complex systems [1, 2, 3]. A
promising approach to address this critical issue is to over-
approximate a finite but very large network by an infinite
network, and then control this over-approximated system;
see, e.g., [4, 3, 5].

A striking progress in the infinite-dimensional input-
to-state stability (ISS) theory, see, e.g., [6, 7, 8, 9] (also
see [10] for a recent survey on this topic) blended with
the powerful nonlinear small-gain criteria for the stabil-
ity analysis of finite networks of nonlinear systems [11, 12]
create a foundation for the development of stability con-
ditions for infinite networks.
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For interconnections of finitely many systems of arbi-
trary nature (possibly infinite-dimensional) the gain oper-
ator, collecting the information about the internal gains,
acts on a finite-dimensional Euclidean space [13]. The case
of infinite networks is much more complex, as the gain op-
erator now acts on an infinite-dimensional space, which
calls for a careful choice of the infinite-dimensional state
space of the overall network, and motivates the use of the
theory of positive operators on ordered Banach spaces for
the small-gain analysis (cf. Section 3.1).

The development of small-gain theorems for infinite net-
works has recently received considerable attention [14, 15,
16, 17]. All of these small-gain theorems for infinite net-
works address ISS with respect to the origin. A more
general notion of input-to-state stability with respect to
a closed set covers several further stability notions such as
incremental stability, robust consensus/synchronization,
ISS of time-varying systems as well as variants of input-
to-output stability in a unified and generalized manner;
see for instance [18]. On the other hand, for large-
but-finite networks, dissipative small-gain conditions are
widely used for various control problems such as dis-
tributed control design [19], compositional construction of
(in)finite-state abstractions [20, 21], cyber-security of net-
worked systems [22], and networked control systems with
asynchronous communication [23].

To provide a tool to study the above problem for in-
finite networks (or networks of possibly unknown size),
we develop in this paper a dissipative small-gain theorem
addressing exponential ISS of infinite networks with re-
spect to closed sets. We assume that all subsystems of
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an infinite network are exponentially ISS, and the associ-
ated exponential ISS Lyapunov functions in a dissipative
form are known. Based on this information, we define a
gain operator, which describes the interconnection struc-
ture of the systems and the influence of individual subsys-
tems on each other. Finally, we show that if the spectral
radius of this operator is less than one, then the whole net-
work is exponentially ISS with respect to a certain closed
set. In particular, we extend the main result of our recent
work [14, Thm. VI.1] to ISS with respect to closed sets
and to networks in which any agent can be connected to
infinitely many other agents. This generalization extends
the applicability of the small-gain result to several control-
theoretic problems, including stability analysis of infinite
time-varying networks and the design of distributed ob-
servers for infinite networks.

As the first application of the proposed small-gain theo-
rem, we study ISS for time-varying infinite networks. Ex-
isting results on infinite networks are developed for time-
invariant systems, although, practically speaking, time-
variance is a more realistic assumption. In this paper,
we address exponential ISS for both time-invariant and
time-varying infinite networks within a unified framework.

As the second application area, we provide a methodol-
ogy to address scalability in distributed estimation prob-
lems. We assume that each subsystem has a local observer
whose states exponentially converge to those of the sub-
system, given estimates of the state of neighboring subsys-
tems. Formulating the state estimation as a stabilization
problem with respect to a certain closed set, we show that
if the couplings between the subsystems are sufficiently
weak, which is quantitatively expressed by our small-gain
condition, then the state estimation problem can be tack-
led.

This paper is organized as follows: first, relevant no-
tation, a discussion of well-posedness of infinite networks
and auxiliary results on distance functions with respect
to a closed set in an infinite-dimensional state space are
given in Section 2. The notion of exponential ISS with re-
spect to a closed set for infinite-dimensional systems and
a related Lyapunov criterion are presented in Section 2.4.
In Section 3, the small-gain theorem for ISS with respect
to closed sets is presented. Applications to ISS for time-
varying systems and distributed observers are respectively
given in Sections 4 and 5. Section 6 concludes the paper.

2. Preliminaries

2.1. Notation

We write N = {1, 2, 3, . . .} for the set of positive integers
and N0 := N ∪ {0}; R denotes the reals and R+ := {t ∈
R : t ≥ 0} the nonnegative reals. For vector norms on
finite- and infinite-dimensional vector spaces, we write | · |.
For associated operator norms, we use the notation ‖ · ‖.
By `p, p ∈ [1,∞], we denote the Banach space of all real
sequences x = (xi)i∈N with finite `p-norm |x|p <∞, where

|x|p = (
∑∞
i=1 |xi|p)1/p for p < ∞ and |x|∞ = supi∈N |xi|.

Given x, y ∈ Rn, the inner product of x and y are denoted
by 〈x, y〉.

A more general class of `p-spaces is defined as follows.
Let p ∈ [1,∞), let (ni)i∈N be a sequence of positive integers
and fix a norm | · |i on Rni for every i ∈ N. Then

`p(N, (ni)) :=
{
x = (xi)i∈N : xi ∈ Rni ,

∞∑

i=1

|xi|pi <∞
}

equipped with the norm |x|p := (
∑∞
i=1 |xi|

p
i )

1
p is a separa-

ble Banach space (which is proved by standard arguments,
see, e.g., [24]). Usually, we drop the index i from the norm.
We define `∞(N, (ni)) in a similar fashion.

We write L∞(R+,Rn) for the Banach space of essen-
tially bounded measurable functions from R+ to Rn. If X
is a Banach space, we write r(T ) for the spectral radius
of a bounded linear operator T : X → X. The notation
C0(X,Y ) stands for the set of all continuous mappings
f : X → Y between metric spaces X and Y . The right
upper Dini derivative of a function γ : R → R at t ∈ R
is defined by D+γ(t) := lim suph→0+

1
h

(
γ(t + h) − γ(t)

)
,

and is allowed to assume the values ±∞. Analogously,
the right lower Dini derivative of γ at t is defined by
D+γ(t) := lim infh→0+

1
h

(
γ(t+h)−γ(t)

)
. We will consider

K,K∞, and KL comparison functions, see [25, Ch. 4.4] for
definitions.

2.2. Infinite interconnections

We study interconnections of countably many systems,
each given by a finite-dimensional ordinary differential
equation (ODE). Using N as the index set (by default),
the ith subsystem is written as

Σi : ẋi = fi(xi, x̄, ui). (1)

The family (Σi)i∈N comes together with a number p ∈
[1,∞] and sequences (ni)i∈N, (mi)i∈N of positive inte-
gers so that the following assumptions hold with X :=
`p(N, (ni)) for a specified sequence of norms on the spaces
Rni :

• The state vector xi of Σi is an element of Rni .

• The internal input vector x̄ = (x̄i)i∈N is an element
of X.

• The external input vector ui is an element of Rmi .

• The right-hand side fi : Rni × X × Rmi → Rni is a
continuous function.

• Unique local solutions of the ODE (1) exist for all
initial states xi0 ∈ Rni and all continuous x̄(·) and lo-
cally essentially bounded ui(·) (which are regarded as
time-dependent inputs). We denote the correspond-
ing solutions by φi(·, xi0, (x̄, ui)).

2

                  



The values of the function fi can be independent of cer-
tain components of the input vector x̄. We write Ii for
the set of indices j ∈ N so that fi(xi, x̄, ui) is non-constant
with respect to the component x̄j of x̄ (i.e. only dependent
on the components x̄j with j ∈ Ii), and we assume that
i /∈ Ii.

In the ODE (1), we consider x̄(·) as an internal input
and ui(·) as an external input (which may be a disturbance
or a control input). The interpretation is that the subsys-
tem Σi is affected by a certain set of neighbors, indexed
by Ii, and its external input. We note that the set Ii does
not have to be finite, implying that subsystem i can be
connected to infinitely many other subsystems. Moreover,
we note that Ii is allowed to be empty.

To define the interconnection of the subsystems Σi, we
consider the state vector x = (xi)i∈N ∈ X = `p(N, (ni)),
the input vector u = (ui)i∈N ∈ U := `q(N, (mi)) for some
q ∈ [1,∞] (possibly different from p), and the right-hand
side

f(x, u) := (f1(x1, x, u1), f2(x2, x, u2), . . .). (2)

The interconnection is then written as

Σ : ẋ = f(x, u). (3)

The class of admissible input functions is defined as

U :=
{
u : R+ → U : u is strongly measurable

and essentially bounded
}
, (4)

and we equip this space with the L∞-norm

|u|q,∞ := ess sup
t≥0

|u(t)|q.

A continuous mapping ξ : J → X, defined on an interval
J = [0, T∗) with T∗ ∈ (0,∞], is called a solution of the
infinite-dimensional ODE (3) with initial value x0 ∈ X for
the external input u ∈ U provided that the function s 7→
f(ξ(s), u(s)) is an X-valued locally integrable function and

ξ(t) = x0 +

∫ t

0

f(ξ(s), u(s)) ds

holds for all t ∈ J , where the integral is the Bochner inte-
gral for Banach space valued functions. For the theory of
Bochner integration, readers may consult [26].

If for each x0 ∈ X and u ∈ U a unique (local) solu-
tion exists, we say that the system is well-posed and write
φ(·, x0, u) for the corresponding maximal solution (in the
positive direction) and Jmax(x0, u) for its interval of ex-
istence. We say that the system is forward complete if
Jmax(x0, u) = R+ for all (x0, u) ∈ X × U .

In the rest of the paper, unless otherwise stated, we
assume that the following is satisfied.

Assumption 1. The system Σ is well-posed with state
space X = `p(N, (ni)) and external input space U =

`q(N, (mi)), with finite p, q ≥ 1. Furthermore, all of
its uniformly bounded maximal solutions φ(·, x, u) are
global, i.e., exist on R+ (this latter property is also called
boundedness-implies-continuation (BIC) property).

We note that [14, Thm. III.2] provides sufficient condi-
tions for well-posedness of Σ. The BIC property is satis-
fied, e.g., if additionally the vector field f is uniformly
bounded on bounded sets and Lipschitz continuous on
bounded sets with respect to the first argument.

Note that our constructions in this paper essentially rely
on the fact that the parameters p and q are finite. For
small-gain theorems in the case of p = q =∞, we refer the
interested reader to [15, 17, 27, 28].

2.3. Distances in sequence spaces

Let X = `p(N, (ni)) for a certain p ∈ [1,∞). Consider
nonempty closed sets Ai ⊂ Rni , i ∈ N. For each xi ∈ Rni ,
we define the distance of xi to the set Ai by |xi|Ai :=
infyi∈Ai

|xi − yi|. Now we define the set

A := {x ∈ X : xi ∈ Ai, i ∈ N} = X ∩ (A1 ×A2 × . . .).
(5)

If A 6= ∅, we define the distance from any x ∈ X to A as

|x|A := inf
y∈A
|x− y|p = inf

y∈A

( ∞∑

i=1

|xi − yi|p
) 1

p

. (6)

We note that |x|{0} = |x|p. The following lemma shows
that the infimum and the sum in (6) can be exchanged.

Lemma 2. Let X = `p(N, (ni)) for a certain p ∈ [1,∞).
Assume that A defined by (5) is nonempty. Then for any
x ∈ X we have

|x|A =
( ∞∑

i=1

|xi|pAi

) 1
p

<∞. (7)

Moreover, the set A is closed in X.

Proof. First of all, for any xi ∈ Rni and zi ∈ Ai it holds
that

|xi|Ai
= inf
yi∈Ai

|xi − yi| ≤ |xi − zi| ≤ |xi|+ |zi|.

As A 6= ∅, we can choose zi ∈ Ai so that z = (z1, z2, . . .) ∈
A ⊂ X. Now, for each N > 0 the inequality γ(a + b) ≤
γ(2a) + γ(2b), which holds for any γ ∈ K and all a, b ≥ 0,
can be used to show that

N∑

i=1

|xi|pAi
≤

N∑

i=1

(|xi|+ |zi|)p ≤
N∑

i=1

(2p|xi|p + 2p|zi|p). (8)

As both x, z ∈ X, the limit for N →∞ of the right-hand
side exists, and thus

∞∑

i=1

|xi|pAi
≤ 2p(|x|pp + |z|pp) <∞. (9)
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Now, let us show the equality in (7). Pick any x ∈ X and
any ỹ ∈ A. Then for every ε > 0 there is N = N(ε) so
that

∞∑

i=N+1

|xi|p <
ε

2p+1
,

∞∑

i=N+1

|ỹi|p <
ε

2p+1
. (10)

The following holds:

|x|A = inf
y∈A

( N∑

i=1

|xi − yi|p +

∞∑

i=N+1

|xi − yi|p
) 1

p

≤ inf
yi∈Ai, 1≤i≤N

( N∑

i=1

|xi − yi|p +

∞∑

i=N+1

|xi − ỹi|p
) 1

p

,

(11)

where in the last transition we reduce the set of
y over which we take the infimum from A to
{(y1, . . . , yN , ỹN+1, ỹN+2, . . .) : yi ∈ Ai, 1 ≤ i ≤ N} ⊂ A.

Estimating the last term in (11) similarly to (8), and
using (10), we obtain

|x|A ≤ inf
yi∈Ai, 1≤i≤N

( N∑

i=1

|xi − yi|p + 2p
∞∑

i=N+1

(|xi|p+|ỹi|p)
) 1

p

≤
( N∑

i=1

inf
yi∈Ai

|xi − yi|p + ε
) 1

p

=
( N∑

i=1

|xi|pAi
+ ε
) 1

p

.

By using (9), we can estimate the last term by

|x|A ≤
( ∞∑

i=1

|xi|pAi
+ ε
) 1

p

<∞.

Now, as ε > 0 has been chosen arbitrarily, we can take the
limit ε→ 0 to obtain

|x|A ≤
( ∞∑

i=1

|xi|pAi

) 1
p

. (12)

On the other hand, as taking the infimum over all x ∈
A1×A2× . . . gives a value not larger than taking the infi-
mum over A, it holds that |x|A ≥ infyi∈Ai, i∈N(

∑∞
i=1 |xi−

yi|p)
1
p = (

∑∞
i=1 infyi∈Ai

|xi − yi|p)
1
p = (

∑∞
i=1 |xi|

p
Ai

)
1
p ,

which together with (12) completes the proof of (7). Writ-
ing A as the intersection of the preimages π−1i (Ai), i ∈ N,
under the canonical projection maps πi : X → Rni , we see
that A is closed.

2.4. Exponential input-to-state stability

We continue to suppose that Assumption 1 (well-
posedness + BIC property) for Σ holds and that the pa-
rameters p and q are finite. Our aim is to study the stabil-
ity of the interconnected system with respect to a closed
set A ⊂ X. For this purpose, we introduce the notion of
exponential input-to-state stability (exponential ISS) with
respect to a set A.

Definition 3. Given a nonempty closed set A ⊂ X,
the system Σ is called exponentially input-to-state stable
(eISS) w.r.t. A if it is forward complete and there are con-
stants a,M > 0 and γ ∈ K such that for any initial state
x0 ∈ X and any u ∈ U the corresponding solution satisfies

|φ(t, x0, u)|A ≤Me−at|x0|A + γ(|u|q,∞) ∀t ≥ 0. (13)

For any function V : X → R, which is continuous on
X\A, we define the orbital (right upper Dini) derivative
at x ∈ X\A for the external input u ∈ U by D+Vu(x) :=
D+V (φ(t, x, u))|t=0, where the right-hand side is the right
upper Dini derivative of the function t 7→ V (φ(t, x, u)),
evaluated at t = 0.

Exponential input-to-state stability is implied by the ex-
istence of an exponential ISS Lyapunov function, which we
define in a dissipative form as follows.

Definition 4. Let a nonempty closed set A ⊂ X be given.
A function V : X → R+, which is continuous on X\A, is
called an eISS Lyapunov function for Σ w.r.t. A if there
exist constants ω, ω, b, κ > 0 and γ ∈ K∞ such that

ω|x|bA ≤ V (x) ≤ ω|x|bA, ∀x ∈ X, (14a)

D+Vu(x) ≤ −κV (x) + γ(|u|q,∞), ∀x ∈ X\A, u ∈ U .
(14b)

Proposition 5. Let Assumption 1 hold. Also assume that
A is bounded or Σ is forward complete. If there exists an
eISS Lyapunov function for Σ w.r.t. A, then Σ is eISS
w.r.t. A.

The proof follows similar steps as those in the proof of
[14, Prop. IV.4]. In particular, we obtain the validity of the
eISS estimate (13) on the whole domain of the solutions
of the system. Furthermore, the BIC property guaran-
tees that the solutions satisfying the eISS estimate can be
extended to the whole positive semi-axis.

Example 6. If A is unbounded and Σ is not forward com-
plete, then Proposition 5 does not hold in general. In par-
ticular, A may contain trajectories with a finite escape
time. Even if we assume that trajectories starting in A
are all forward complete (as the system is linear in the
neighborhood of A), Proposition 5 may still not hold.

Consider the following planar system:

ẋ = f(x, y), (15a)

ẏ = f(x, y) + (x− y), (15b)

where f(x, y) = x whenever x− y ∈ [−1, 1], and f(x, y) =
x+ (k − 1)x2 whenever |x− y| = k, k ≥ 1.

Let us study the stability of this system with respect to
A := {(x, x) : x ∈ R}. Take V (x, y) := (x − y)2. As
|(x, y)|A = 1√

2
|x − y|, it holds that V (x, y) = 2|(x, y)|2A.

Since
d

dt
(x− y) = −(x− y),

we obtain
V̇ (x, y) = −2V (x, y).
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Hence, V is an exponential Lyapunov function for (15).
Furthermore, all trajectories starting in A or in a neigh-
borhood of A are forward complete. At the same time,
there are trajectories of (15) with a finite escape time.

3. Small-gain theorem

In [14], a small-gain theorem for interconnections of
countably many eISS subsystems (1) with linear internal
gains has been developed, which allows to analyze stability
of infinite networks consisting of individually eISS subsys-
tems. Here, we extend this result to the case of eISS with
respect to closed sets. Although mathematically its proof
follows similar steps as those in that of the original eISS
small-gain theorem in [14], this extension enables us to de-
velop a framework for control and observation of infinite
networks, cf. Section 5 below.

3.1. The gain operator and its properties

We assume that each Σi is eISS, and for Σi there exists
a continuous eISS Lyapunov function w.r.t. Ai with linear
gains as introduced next.

Assumption 7. For each i ∈ N, there is a nonempty
closed set Ai ⊂ Rni and a continuous function Vi : Rni →
R+ satisfying the following properties.

• There are constants αi, αi > 0 so that for all xi ∈ Rni

αi|xi|pAi
≤ Vi(xi) ≤ αi|xi|pAi

. (16)

• There are constants λi > 0, γij > 0 (j ∈ Ii) and
γiu > 0 so that the following holds: for each xi ∈
Rni \ Ai, ui ∈ L∞(R+,Rmi), each internal input x̄ =
(x̄j)j∈N ∈ C0(R+, X) and for almost all t in the max-
imal interval of existence of φi(t) := φi(t, xi, (x̄, ui)),
the following inequality holds:

D+(Vi ◦ φi)(t) ≤ −λiVi(φi(t))
+
∑

j∈Ii
γijVj(x̄j(t)) + γiu|ui(t)|q. (17)

• For all t in the maximal interval of the existence of
φi, it holds that D+(Vi ◦ φi)(t) <∞.

The gains γij and decay rates λi characterize the re-
sponse of the i-th subsystem on the internal inputs from
other subsystems.

We furthermore assume that the following uniformity
conditions hold for the constants introduced above.

Assumption 8. (a) There are constants α, α > 0 so that

α ≤ αi ≤ αi ≤ α, i ∈ N. (18)

(b) There is a constant λ > 0 so that for all i ∈ N

λ ≤ λi. (19)

(c) There is a constant γu > 0 so that for all i ∈ N

γiu ≤ γu. (20)

In order to formulate a small-gain condition, we further
introduce the following infinite nonnegative matrices by
collecting the coefficients from (17)

Λ := diag(λ1, λ2, λ3, . . .), Γ := (γij)i,j∈N,

where we put γij := 0 whenever j /∈ Ii. We also introduce
the infinite matrix

Ψ := Λ−1Γ = (ψij)i,j∈N, ψij =
γij
λi
. (21)

Under an appropriate boundedness assumption, the
matrix Ψ acts as a linear operator on `1 by (Ψx)i =∑∞
j=1 ψijxj for all i ∈ N.

We call Ψ : `1 → `1 the gain operator associated with
the decay rates λi and coefficients γij .

We make the following assumption which is equivalent
to Γ being a bounded operator from `1 to `1.

Assumption 9. The matrix Γ = (γij) satisfies

‖Γ‖1,1 = sup
j∈N

∞∑

i=1

γij <∞, (22)

where the double index on the left-hand side indicates that
we consider the operator norm induced by the `1-norm both
on the domain and codomain of the operator Γ.

Clearly, under Assumptions 9 and 8(b), the gain oper-
ator Ψ is bounded (see also [14, Lem. V.7]). Moreover,
clearly Ψ is a positive operator with respect to the stan-
dard positive cone `1+ := {x = (x1, x2, . . .) ∈ `1 : xi ≥
0, ∀i ∈ N} in `1, i.e., it maps `1+ into itself.

3.2. Small-gain theorem: eISS with respect to closed sets

In this section, we prove that the interconnected sys-
tem Σ is exponentially ISS under the given assumptions,
provided that the spectral radius of the gain operator sat-
isfies r(Ψ) < 1. In particular, we construct an overall eISS
Lyapunov function as a linear combination of individual
ones given by Assumption 7. This is accomplished by the
following small-gain theorem.

Theorem 10. Consider the infinite interconnection Σ,
composed of the subsystems Σi, i ∈ N, satisfying As-
sumption 1. That is, Σ is well-posed as a system with
state space X = `p(N, (ni)), space of input values U =
`q(N, (mi)) with finite p, q, and the external input space
U , as defined in (4), and has the BIC property. Con-
sider nonempty closed sets Ai ⊂ Rni and assume that
A := X ∩ (A1 × A2 × . . .) is nonempty. Also assume
that A is bounded or Σ is forward complete.

Furthermore, suppose that the following conditions hold:
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(i) Each Σi admits a continuous eISS Lyapunov function
Vi w.r.t. Ai so that Assumptions 7 and 8 are satisfied
with Ai as above, and with p, q as in the definition of
X,U above.

(ii) The operator Γ : `1 → `1 is bounded, i.e., Assumption
9 holds.

(iii) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then there exists a vector µ = (µi)i∈N ∈ `∞ satisfying
µ ≤ µi ≤ µ with constants µ, µ > 0 such that

µ>(−Λ + Γ) ≤ −λ∞µ> (23)

with a constant λ∞ > 0. Moreover, the function V : X →
R+, given by

V (x) =
∞∑

i=1

µiVi(xi), (24)

is an eISS Lyapunov function for the network Σ w.r.t. A
and has the following properties:

(a) V is continuous on X \ A.

(b) For all x0 ∈ X \ A and u ∈ U

D+Vu(x0) ≤ −λ∞V (x0) + µγu|u|qq,∞.

(c) For all x ∈ X the following inequalities hold:

µα|x|pA ≤ V (x) ≤ µα|x|pA. (25)

In particular, Σ is eISS w.r.t. A.

Proof. According to [14, Lem. V.10], the condition r(Ψ) <
1 implies that there exists a vector µ = (µi)i∈N ∈ `∞

satisfying µ ≤ µi ≤ µ such that (23) holds.

An eISS Lyapunov function for Σ is defined as in (24)
with µ ∈ `∞ satisfying (23). It is well-defined, because

0 ≤ V (x) ≤
∞∑

i=1

µiαi|xi|pAi
≤ α|µ|∞

∞∑

i=1

|xi|pAi

= α|µ|∞|x|pA <∞,

where we used Lemma 2. This also proves the upper bound
for (25). The lower bound for (25) is obtained analogously,
and thus inequality (14a) holds for V (with b = p). The
rest of the proof is a straightforward extension of the proof
of [14, Thm. VI.1]. We omit the details, but only mention
that the inequality (23) is crucial for the proof of the Lya-
punov estimate (14b).

Finally, since we assume that A is bounded or Σ is for-
ward complete, then Σ is eISS in view of Proposition 5.

Set stability of time-invariant systems covers several im-
portant problems such as stability analysis of time-varying
systems and observer design, among others. The next sec-
tion specifically discusses these two applications.

4. Small-gain theorem for infinite time-varying
networks

Although Theorem 10 only considers time-invariant sys-
tems, it can also be applied to time-varying systems
by transforming them into time-invariant systems of the
form (3). To see this, consider the time-varying system

ẋ = f(t, x, u), (26)

where x ∈ X, u ∈ U and f : R×X×U → X is continuous
with f(t, 0, 0) = 0 for all t ∈ R.

We assume that the state space X and the input space
U are chosen as X = `p(N, (ni)) and U = `q(N, (mi)),
respectively, for fixed p, q ∈ [1,∞). The same class of
admissible input functions as in (4) with R in place R+ is
considered here.

Similarly as we did in Section 2.2, one can introduce
the concepts of solution, well-posedness, and forward com-
pleteness for the system (26). If (26) is well-posed, for any
initial time t0 ∈ R, initial value x0 ∈ X and input u ∈ U ,
the corresponding maximal solution in the positive direc-
tion of the system (26) with x(t0) = x0 is denoted by
φ(·, t0, x0, u).

In this section, we assume:

Assumption 11. The system (26) is well-posed with state
space X = `p(N, (ni)) and external input space U =
`q(N, (mi)) for some p, q ∈ [1,∞). Furthermore, all of
its uniformly bounded maximal solutions in the positive
direction φ(·, t0, x0, u) are global, i.e., exist on [t0,∞).

Definition 12. The system (26) is called uniformly ex-
ponentially input-to-state stable (UeISS) if it is forward
complete and there are constants a,M > 0, independent
of t0, and γ ∈ K such that for any initial time t0 ∈ R,
initial state x0 ∈ X and external input u ∈ U the corre-
sponding solution of (26) satisfies for all t ≥ t0 that

|φ(t, t0, x0, u)|p ≤Me−a(t−t
0)|x0|p+γ(|u(t0+·)|q,∞). (27)

The uniformity here means that the transient term on
the right-hand side of (27) depends on t− t0, and not on
t and t0 individually.

By adding a “clock”, one can (see [29]) transform (26)
into

ẏ = 1,

ż = f(y, z, u),
(28)

where y ∈ R, z ∈ X, u ∈ U . We equip R with an arbitrary
norm | · | and turn R×X into an `p-space by putting

|(y, z)|p := (|y|p + |z|pp)1/p.

Denoting the transition map of (28) by φ̃ = φ̃(t, (y, z), u),
and its z-component by φ̃2, we see that the following holds:

φ(t, t0, x, u) = φ̃2(t− t0, (t0, x), u(t0 + ·)) ∀t ≥ t0. (29)

The stability properties of (26) and (28) are related in the
following way:
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Proposition 13. The system (26) is UeISS if and only if
(28) is eISS with respect to the closed set A = R× {0}.

The proof is straightforward and thus omitted here.
Assume that the system (26) can be decomposed into

infinitely many interconnected subsystems

ẋi = fi(t, xi, x̄, ui), i ∈ N, (30)

with t ∈ R, xi ∈ Rni , x̄ ∈ X and ui ∈ Rmi . Also,
let fi : R × Rni × X × Rmi → Rni be continuous with
fi(t, 0, 0, 0) = 0 for all t ∈ R.

With each of the systems (30), we associate a time-
invariant system by

żi = f̃i(zi, (y, z̄), ui) := fi(y, zi, z̄, ui), (31)

where the time t now becomes an additional internal input
y.

Define A0 := R and Ai := {0} ⊂ Rni for all i ≥ 1. Ag-
gregating all subsystems (31), i ∈ N, and adding the clock
ẏ = 1 as the 0th subsystem, we obtain an infinite network
of the form (28), modeled on the state space `p(N0, (ni))
with n0 := 1.

To enable the stability analysis of the composite system,
we make the following assumption.

Assumption 14. For each i ∈ N, there exists a continu-
ous function Vi : Rni → R+, satisfying the following prop-
erties:

• There are constants αi, αi > 0 so that for all zi ∈ Rni

αi|zi|p ≤ Vi(zi) ≤ αi|zi|p. (32)

• There are constants λi, γij , γiu > 0 so that the follow-
ing holds: for each zi ∈ Rni , ui ∈ L∞(R+,Rmi), each
internal input (y, z̄) ∈ C0(R,R × X) and for almost
all t in the maximal interval in the positive direction
of existence of φi(t) := φi(t, zi, (y, z̄), ui), one has

D+(Vi ◦ φi)(t) ≤− λiVi(φi(t)) +
∑

j∈Ii
γijVj(z̄j(t))

+ γiu|ui(t)|q, (33)

where we denote the components of z̄ by z̄j(·).
• For all t in the maximal interval in the positive direc-

tion of the existence of φi, one has D+(Vi◦φi)(t) <∞.

Note that due to the inequalities (16) and A0 = R, we
necessarily have V0 = 0 for the eISS Lyapunov function
of the 0th subsystem (the clock). Furthermore, we can
choose λ0 as an arbitrary positive number and γ0j := 0 for
all j ∈ N.

The following corollary of Theorem 10 is our small-gain
theorem for time-varying networks.

Corollary 15. Consider networks (26) and (28) and as-
sume that they are well-posed in the sense of Assump-
tion 11 and Assumption 1, respectively. Further suppose
the following:

(i) Assumption 14 holds.

(ii) The constants in Assumption 14 are uniformly
bounded as in Assumption 8.

(iii) Assumption 9 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then the composite system (26) is uniformly eISS.

5. Distributed observers

We consider the problem of constructing distributed ob-
servers for networks of control systems. For simplicity,
we set the external inputs ui to zero (i.e., ui(t) ≡ 0 for
all i ∈ N) and focus on the network interconnection as-
pect, rather than discussing the construction of individ-
ual local observers. For more details on observer the-
ory for nonlinear systems, an interested reader is referred
to [30, 31, 32, 33, 34].

Our basic assumption is that in a network context, we
have local observers for all subsystems. We assume that
the states of these local observers asymptotically converge
to those of subsystems, given perfect knowledge of the
states of neighboring subsystems. Of course, such informa-
tion will be unavailable in practice, and instead each local
observer will at best have the state estimates produced by
other, neighboring observers available for its operation.

5.1. The distributed system to be observed

Let the distributed nominal system consist of infinitely
many interconnected subsystems

Σi :

{
ẋi = fi(xi, x̄i)

yi = hi(xi, x̄i)
, i ∈ N. (34)

While xi ∈ Rni is the state of the system Σi, the quantity
yi ∈ Rpi (for some pi ∈ N) is the output that can be mea-
sured locally and serves as an input for a state observer.
We denote by x̄i the vector composed of the state vari-
ables xj , j ∈ Ii. Although our general setting allows each
subsystem to directly interact with infinitely many other
subsystems, in distributed sensing normally each subsys-
tem is only connected to a finite number of subsystems.
Therefore, the set Ii is assumed to be finite in this ap-
plication. To make this observation as clear as possible,
in (34), as opposed to the main body of the paper, we use
the notation x̄i in place of x̄. Further, we assume that
fi : Rni × RNi → Rni and hi : Rni × RNi → Rpi are both
continuous, where Ni :=

∑
j∈Ii nj .

5.2. The structure of the distributed observers

It is reasonable to assume that a local observer Oi for
a system Σi has access to yi and produces an estimate x̂i
of xi for all t ≥ 0. Moreover, we essentially need to know
xj for all j ∈ Ii to reproduce the dynamics (34). Access
to this kind of information is unrealistic, so instead it is
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assumed that it has access to the outputs yj of neighboring
subsystems and/or the estimates x̂j for j ∈ Ii produced by
neighboring observers. For more details, one may consult
the literature on distributed observation and filtering; see
e.g. [35] for distributed observers in which the outputs and
the state estimates are exchanged among local observers
and [36] for those in which only state estimates are shared.

Here, we suppose that each local observer is represented
by

Oi :
{

˙̂xi = f̂i(x̂i, yi, ȳi, ¯̂xi)

ŷi = ĥi(x̂i, ¯̂xi)
, i ∈ N, (35)

for some appropriate continuous functions f̂i and ĥi, re-
spectively. Here, yi (resp. x̂i) is composed of the outputs
yj (resp. state variables x̂j), j ∈ Ii.

Necessarily, the observers are coupled in the same direc-
tional sense as the original distributed subsystems. Based
on the small-gain theorem introduced above, this leads us
to a framework for the design of distributed observers that
guarantees that an interconnection of local observers expo-
nentially tracks the true system state. Thus, we consider
the composite system given by

ẋi = fi(xi, x̄i), yi = hi(xi, x̄i), (36a)

˙̂xi = f̂i(x̂i, yi, ȳi, ¯̂xi), ŷi = ĥi(x̂i, ¯̂xi), i ∈ N. (36b)

5.3. A consistency framework for the design of distributed
observers

Denote by φi and φ̂i the transition maps of the xi-
subsystem and x̂i-subsystem of (36), respectively, and de-
fine

Ai := {(xi, x̂i) ∈ Rni × Rni : xi = x̂i}, i ∈ N.

Denote also by φ and φ̂ the transition maps of x-subsystem
and x̂-subsystem of (36), respectively.

Assumption 16. We assume that the sequence of local
observers O = (Oi)i∈N for Σ = (Σi)i∈N is given. Further,
there is p ∈ [1,∞) so that for each i ∈ N there exist a
continuous function Vi : Rni × Rni → R+, as well as con-
stants αi, αi > 0 and λi, γij > 0, j ∈ Ii such that for all
xi, x̂i ∈ Rni the following holds:

αi|(xi, x̂i)|pAi
≤ Vi(xi, x̂i) ≤ αi|(xi, x̂i)|pAi

. (37)

Here, we endow the state space Rni of Σi, the state space
Rni of the observer Oi, and the state space Rni × Rni of
the composite i-th subsystem with the `p-norm.

Furthermore, we assume that the dissipative estimates

D+(Vi ◦ (φi, φ̂i))(t) ≤− λiVi(φi(t), φ̂i(t))
+
∑

j∈Ii
γijVj(xj(t), x̂j(t)) (38)

hold for all i ∈ N. Furthermore, for all t in the maximal
interval in the positive direction of the existence of φi and
φ̂i we have D+(Vi ◦ (φi, φ̂i))(t) <∞.

Following our general framework, we choose the state
space for the system Σ = (Σi)i∈N and for the network of
local observers O = (Oi)i∈N as X := `p(N, (ni)) for p as in
Assumption 16.

We would like to derive conditions which ensure that
the network of local observers O = (Oi)i∈N is a distributed
observer for the whole system Σ, i.e., the error dynamics of
the composite system (36) is globally exponentially stable.

Following our approach, the state space of the total com-
posite system consists of sequences (xi, x̂i)

∞
i=1 with a finite

`p-norm:

|(xi, x̂i)∞i=1|p =
( ∞∑

i=1

|(xi, x̂i)|p
)1/p

=
( ∞∑

i=1

|xi|p + |x̂i|p
)1/p

<∞.

Hence, we can view the state space of the total compos-
ite system as the Banach space X × X with the norm

‖(x, y)‖X×X :=
(
|x|pp + |y|pp

)1/p
, (x, y) ∈ X ×X. Define

A := {(x, x̂) ∈ X ×X : x = x̂}
= (X ×X) ∩ (A1 ×A2 × . . .).

(39)

Here is the main result of this section.

Theorem 17. Consider the infinite interconnection Σ,
given by equations (34), and the corresponding compos-
ite system (36), with fixed p ∈ [1,∞). Let the following
hold:

(i) (36) is well-posed and forward complete as a system
on X ×X.

(ii) Each Σi admits a continuous eISS Lyapunov function
Vi so that Assumptions 8 and 16 are satisfied.

(iii) Assumption 9 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then the composite system (36) admits a Lyapunov func-
tion w.r.t. A as defined in (39) of the form

V (x, x̂) =

∞∑

i=1

µiVi(xi, x̂i), V : X ×X → R+ (40)

for some µ = (µi)i∈N ∈ `∞ satisfying µ ≤ µi ≤ µ with
some constants µ, µ > 0. In particular, the function V
has the following properties:

(a) V is continuous on (X ×X) \ A.

(b) There is a λ∞ > 0 so that for all x0 ∈ (X ×X) \ A

D+V (x0) ≤ −λ∞V (x0).

(c) For all x, x̂ ∈ X, the following inequalities hold:

µα|(x, x̂)|pA ≤ V (x, x̂) ≤ µα|(x, x̂)|pA. (41)
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Consequently, the error dynamics of (36) is globally expo-
nentially stable, i.e., there are M,a > 0 so that the follow-
ing holds for all x, x̂ ∈ X and all t ≥ 0:

|φ(t, x)− φ̂(t, x̂)|p ≤Me−at|x− x̂|p, (42)

which in turn means that O = (Oi)i∈N is a distributed
observer for Σ.

Proof. Applying Theorem 10, we obtain that V is an expo-
nential Lyapunov function for the composite system (36)
with respect to the set A.

The distance of (x, y) ∈ X × X to the set A can be
computed as

|(x, y)|A := inf
z∈X
‖(x, y)− (z, z)‖X×X

= inf
z∈X

(
|x− z|pp + |y − z|pp

)1/p
= 2−

p−1
p |x− y|p, (43)

where the infimum is achieved at z = 1
2 (x+ y).

To see this, note that for every p ≥ 1 the function f :
x 7→ xp is convex, so in particular

f(x/2 + y/2) ≤ f(x)/2 + f(y)/2.

Using the triangle inequality, we obtain

|x− y|pp ≤
∑

i

(|xi − zi|+ |zi − yi|)p

=
∑

i

f(|xi − zi|+ |zi − yi|)

≤ 1

2

∑

i

f(2|xi − zi|) +
1

2

∑

i

f(2|zi − yi|)

= 2p−1
(∑

i

|xi − zi|p +
∑

i

|zi − yi|p
)
.

This implies

2−(p−1)/p|x− y|p ≤ (|x− z|pp + |z − y|pp)1/p,

and allows us to represent the norm of the error

e(t, x, x̂) := φ(t, x)− φ̂(t, x̂)

of the observer system (36) as

|e(t, x, x̂)|p = |φ(t, x)− φ̂(t, x̂)|p
= 2

p−1
p

∣∣(φ(t, x), φ̂(t, x̂)
)∣∣
A.

(44)

Hence, global exponential stability of (36) w.r.t. A im-
plies global exponential stability of the error dynamics
(w.r.t. the X-norm).

5.4. Example

Consider an infinite network with sector nonlinearities,
whose subsystems are described by

Σi :

{
ẋi = Aixi + Eiϕi(Gixi) +Dix̄i

yi = Cixi
, i ∈ N, (45)

where Ai ∈ Rni×ni , Ei ∈ Rni , G
>
i ∈ Rni , Di ∈

Rni×Ni , Ci ∈ Rpi×ni , Ni =
∑
j∈Ii nj , I1 = {2}, and

Ii = {i − 1, i + 1} for all i ≥ 2. Let us take the stan-
dard Euclidean norm on each Rni , Rmi and RNi . That is,
we choose p = 2.

We assume that the pair (Ai, Ci) is detectable for all
i ∈ N. This ensures the existence of matrices Li ∈ Rni×pi

such that Ãi := Ai + LiCi are Hurwitz for all i ∈ N.
Let the observer Oi be given for all i ∈ N by

Oi :
{

˙̂xi = Aix̂i + Eiϕi(Gix̂i) +Di
¯̂xi − Li(yi − ŷi),

ŷi = Cix̂i.
(46)

Assume that Ai, Ei, Gi, Di, Li and Ci are uniformly
bounded for all i ∈ N, i.e., ‖Ai‖ ≤ a, ‖Ei‖ ≤ e, ‖Gi‖ ≤
g, ‖Bi‖ ≤ b, ‖Di‖ ≤ d, ‖Li‖ ≤ l and ‖Ci‖ ≤ c. We as-
sume that the functions ϕi : R → R have some regularity
properties (e.g. local Lipschitz continuity) such that well-
posedness of the overall network (45) and (46) and the BIC
property with the state space `2(N, (ni))× `2(N, (ni)) are
ensured.

Now, for all i ∈ N define the function Vi as

Vi(xi, x̂i) := (xi − x̂i)>Pi(xi − x̂i),

where Pi ∈ Rni×ni , i = 1, . . . , n are symmetric, positive
definite and uniformly bounded matrices, i.e.

λmin(Pi)|xi − x̂i|2 ≤ Vi(xi, x̂i) ≤ λmax(Pi)|xi − x̂i|2, (47)

where 0 < p ≤ λmin(Pi) ≤ λmax(Pi) ≤ p < ∞. λmin

and λmax are, respectively, the smallest and largest eigen-
values. In that way, conditions (37) and (18) hold with
αi = λmin(Pi), αi = λmax(Pi), α = p, and α = p.

Moreover, assume that for all i ∈ N, xi ∈ Rni , the
inequality

2(xi − x̂i)>Pi
(
Ãi(xi − x̂i) + Ei(ϕi(Gixi)− ϕi(Gix̂i))

)
≤

− κi(xi − x̂i)>Pi(xi − x̂i) (48)

holds with κi ≥ κ > 0 for some κ. We have

〈∂Vi(xi, x̂i)
∂xi

, fi(xi, x̄i)
〉

+
〈∂Vi(xi, x̂i)

∂x̂i
, f̂i(x̂i, yi, ȳi, ¯̂xi)

〉
=

2(xi − x̂i)>Pi
(
Ãi(xi − x̂i) + Ei(ϕi(Gixi)− ϕi(Gix̂i))

)

+ 2(xi − x̂i)>PiDi(x̄i − ¯̂xi).

Since Pi is positive definite,
√
Pi is well-defined, and we

have

2(xi−x̂i)>PiDi(x̄i − ¯̂xi)
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= 2(xi − x̂i)>
√
Pi
√
PiDi(x̄i − ¯̂xi)

≤ 2|
√
Pi(xi − x̂i)| · |

√
PiDi(x̄i − ¯̂xi)|

≤ εi|
√
Pi(xi − x̂i)|2 +

1

εi
‖
√
PiDi‖2|x̄i − ¯̂xi|2

= εi(xi − x̂i)>Pi(xi − x̂i) +
1

εi
‖
√
PiDi‖2|x̄i − ¯̂xi|2.

Using (48), and choosing εi ∈ (0, κi), we obtain

〈∂Vi(xi, x̂i)
∂xi

, fi(xi, x̄i)
〉

+
〈∂Vi(xi, x̂i)

∂x̂i
, f̂i(x̂i, yi, ȳi, ¯̂xi)

〉

≤ −(κi − εi)(xi − x̂i)>Pi(xi − x̂i) +
‖√PiDi‖2

εi
|x̄i − ¯̂xi|2.

From the first inequality of (47) and since Ii = {i−1, i+1},
one has

〈∂Vi(xi, x̂i)
∂xi

, fi(xi, x̄i)
〉

+
〈∂Vi(xi, x̂i)

∂x̂i
, f̂i(x̂i, yi, ȳi, ¯̂xi)

〉
≤

− (κi − εi)Vi(xi, x̂i)

+
‖√PiDi‖2

εi

(Vi−1(xi−1, x̂i−1)

λmin(Pi−1)
+
Vi+1(xi+1, x̂i+1)

λmin(Pi+1)

)
.

Clearly, condition (38) is fulfilled with λi = κi − εi, λij =
‖√PiDi‖2
εiλmin(Pj)

for all j ∈ Ii. To verify (19) and (22), we choose

εi’s so that there exist ε, ε > 0 with ε ≤ εi ≤ ε < ∞. In

that way, λ = κ − ε and λij ≤ pd2

pε . Finally, we need to

verify the spectral radius condition for which we use the
following sufficient condition

r(Ψ) ≤ ‖Ψ‖ < 1, (49)

with ψij = ‖√PiDi‖2
(κi−εi)εiλmin(Pj)

for j ∈ Ii and ψij = 0 oth-

erwise. The second inequality of (49) is clearly satisfied
if

pd2

(κ− ε)pε < 1,

which, in turn, holds for appropriate choices of εi and suffi-
ciently small d. The latter particularly implies sufficiently
small coupling between subsystems.

6. Conclusions

We developed a small-gain theorem ensuring exponen-
tial ISS with respect to a closed set for infinite networks.
The small-gain condition was given in terms of the spectral
radius representing the strength of the couplings between
participating subsystems, for which there exist several in-
sightful criteria, see [16, 37]. We illustrated the applicabil-
ity of our small-gain theorem by applying it to the stability
problem for time-varying infinite networks and distributed
state estimation.
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