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Mysore Balasubramanya, Naveen (M.S., Electrical Engineering)

Interference Time Analysis for a Cognitive Radio on an Unmanned Aircraft

Thesis directed by Prof. Timothy X. Brown

This thesis considers a model consisting of a cognitive radio (CR) on an unmanned aircraft

(UA) and a network of licensed primary users on the ground. The cognitive radio uses the same

frequency spectrum as the primary users for its operation and hence acts as an interferer. This

work analyzes the duration of interference in such a model. It defines two important metrics –

the interference radius and the detection radius. The interference radius determines the boundary

of the area within which a primary user might be subjected to harmful interference due to the

operation of the CR. The detection radius determines the boundary of the area within which the

presence of a primary user might be detected by the CR. The interference and detection radii might

vary due to the dynamic nature of the radio environment. This thesis derives the dependence of

these metrics on the radio propagation parameters like antenna gain, antenna height, path-loss

exponents, etc. It uses these metrics and characterizes the model using an M/G/∞ queue to

determine the statistics of the interference time for the entire excursion of the unmanned aircraft.

The key statistics determined are the distribution of the duration of interference periods, the mean

and the total interference time. Firstly, this work analyzes a 1D system model where the primary

users are distributed randomly along a straight line. The results are then extended to a 2D system

where the primary users are distributed randomly over an area. The analysis is carried out for both

sparsely-dense and highly-dense primary user ground network. This work gives a new dimension

to analyze the effects of interference in terms of duration of interference. It also shows how these

interference effects can be minimized on enhancing the detection capability of the cognitive radio.

The results from this work can be used to determine the optimum setting for the cognitive radio

system such that it restrains the duration of interference below tolerable limits.
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Chapter 1

Introduction

The field of communication has developed rapidly over the past decades. With mobile phones,

smart phones and portable devices like on-the-go data cards entering the market, and with the

advent of 3G and 4G technologies, wireless communication services have become an integral part

of our daily life. These wireless communication services require the radio frequency spectrum

whose allocation and regulation is monitored by various government organizations. For example,

the Federal Communications Commission (FCC) allocates and regulates the commercial usage

of the radio frequency spectrum in the United States. With the extensive growth in wireless

communication, there is an increasing demand for spectrum. But the useful spectrum between

3 kHz and 300 GHz range has already been allocated by the FCC for different communication

services [6]. So, the new wireless services which are ready to enter the market might not obtain

enough spectrum in order to operate successfully. Hence, these new services should overcome the

shortage of spectrum by adopting a novel technology. One such technology is a cognitive radio

[4]. A cognitive radio is a device that is intelligent enough to detect and use the unused parts of

the already allocated spectrum. In many allocations, the spectrum is not used everywhere at all

times [4]. For instance, TV channel 15 is only assigned in some markets. The so-called primary

user who is assigned the channel, may not use their spectrum at all times and in all locations. For

example, a channel 15 primary user may not operate late at night. So the cognitive radio can use

the channel 15 spectrum whenever the primary user is not using it. Once it detects a primary

using the spectrum, the cognitive radio has to switch off or operate in another unused part of the
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spectrum in order to avoid interference. But in many cases, the cognitive radio might not be able

to detect a primary user in the spectrum until it comes close enough to the primary user. For

example, consider a cognitive radio on an unmanned aircraft and a primary user at the ground

level. The unmanned aircraft can be so far that it cannot detect the primary user, but near enough

to cause interference to the primary user. Thus, modeling and analysis of interference caused by

such intelligent devices becomes vital. This thesis attempts to answer some questions related to

interference caused by cognitive radios to primary users.

1.1 The Unmanned Aircraft System

An Unmanned Aircraft System (UAS) consists of an Unmanned Aircraft (UA), the UA Con-

trol Station and the Control Link in-between. Using the Control Link, the UA control station pilots

the unmanned aircraft through telecommands and the unmanned aircraft provides the responses

through telemetry. The UAS also provides numerous interfaces for communication purposes. For

example, it provides voice and data communication interfaces for the Air Traffic Control (ATC),

interfaces for navigation control, interfaces for weather data, radar, “sense and avoid” information,

etc. Figure 1.1 provides an overview of the UAS and the interfaces supported by it [10][7].

The UA control can be achieved in two ways [10] (Refer to Figure 1.2)

(1) Direct Control - This uses dedicated links from the control station to the unmanned aircraft.

Such links rely on line-of-sight (LOS) radio link or a satellite link.

(2) Network Control - In this case, the UA Control Station has access to a shared network

maintained by a Communications Service Provider (CSP). The UA control is achieved

through the CSP since it provides the necessary infrastructure to radio stations and satellite

links. It should be noted that the links within a CSP shared network may be wired or

wireless.

The Radio Technical Commission for Aeronautics Special Committee (RTCA SC-203) is currently

working on communication standards for the UAS. It includes the development of operational
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Figure 1.1: The Unmanned Aircraft System (UAS) (Adopted from [10])

Figure 1.2: Direct Control and Network Control of the UA (Adopted from [10])
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scenarios, control and communication architectures of the UAS products [15]. Hence, it becomes

vital to understand and model the performance of different radio types including the cognitive radio

in an UAS.

1.2 Cognitive radio

A ‘‘Cognitive Radio’’ is a radio that can change its transmitter parameters
based on interaction with the environment in which it operates. [5]

From the above definition, one can derive two salient features for a cognitive radio - Cognitive

capability and Reconfigurability. [1, 9, 11, 14]. These two features are discussed in detail below.

Cognitive capability : A cognitive radio should possess the ability to obtain information regarding

the characteristics of the channel or the radio environment. Usually a cognitive radio does not

have dedicated band for communication. It makes use of the unlicensed bands or uses the licensed

bands opportunistically for its operation. This is called Dynamic Spectrum Access (DSA). Hence,

finding a frequency band that causes minimal or no interference to primary users (users who are

licensed to use that band) is of foremost importance. In most of the cases, the usage of a simple

energy detector to determine the power in the band and deciding based on a threshold whether the

channel is free or busy does not work. This is because the radio environment is dynamic. Radio

propagation factors like shadow fading and path-loss strongly influence the power measured on a

channel and one cannot be sure if the measured power reflects the actual channel occupancy. So,

improved methods of sensing free channels and improved techniques for choosing the best available

channel and the optimum operational parameters become necessary. So, the cognitive capability

aspect can be classified into three major steps [1]

(1) Sensing the spectrum: This involves searching for available bands, monitoring the frequen-

cies (spectrum) in such bands and detecting spectrum holes. It should be noted that the

sensing can be a direct act of the cognitive radio or indirectly through stored databases,

feedback from other radios and sensors [3].
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(2) Analyzing the spectrum: This involves measurement and estimation of characteristics of

the radio environment in the detected spectrum holes.

(3) Deciding the best spectrum: This step covers the process of choosing the best spectrum for

transmission based on parameters like maximum data rate that can be achieved, optimized

power control, transmission modes and so on.

Reconfigurability : A cognitive radio is usually designed to adapt to the changing nature of the radio

environment. Hence, it has to be reconfigured or dynamically programmed over the air for optimal

operation without changing the underlying hardware design. Key parameters to be configured are

the following

(1) Operating frequency - The cognitive radio has to be able to operate over a range of fre-

quencies. It should be able to shift or hop to another free channel as soon as it detects a

licensed user communicating in the operating frequency.

(2) Transmission Power - The operation of the cognitive radio adds to the interference power for

primary users. Hence, the transmission power should be adjusted such that the interference

is kept below the permitted level.

(3) Radio Technology - The cognitive radio should be enabled to work over different radio

technologies (modulation schemes, radio access and data protocols) and should be able to

dynamically choose the best radio technology according to the radio environment.

1.3 Aim

From the characteristics of cognitive radios discussed above, we can note that it is very

important to model the interference caused by a cognitive radios to existing primary users. In

this thesis, we consider a cognitive radio (CR) placed on an unmanned aircraft (UA) which is

interacting with a UA control station on the ground. The ground network consists of numerous

primary transmitters and primary receivers communicating with them using an allocated frequency
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spectrum. The CR on the UA detects spectrum holes in this allocated band for primary users

and utilizes the best available frequency to communicate with the control station. Along with

spectrum sensing and utilization, the CR also has the capability to detect a primary receiver which

is broadcasting beacons within a radius Rdet. Upon successfully detecting a primary receiver, the

CR will switch off or hop to a different frequency. When such a strategy of switching off is adopted

by the CR, it will result in durations where the CR cannot communicate with the control station.

These are called detection outages. Hence, the entire excursion of the UA is distinguished by

three kinds of periods – interference periods, detection outages and interference-free communication

(Refer to Figure 1.3).

This thesis aims at modeling such a system, analyzing these three periods and determining

the distribution of their duration. The thesis answers the following questions.

(1) The UA propagation characteristics are different from terrestrial propagation. What is an

interference radius and a detection radius between an unmanned aircraft and a primary

user? How do these propagation parameters influence interference and detection radii?

(2) The UA cares about the durations of time where it interferes with the primary receivers.

What is the duration of interference per primary user? What is the mean and distribution

for the duration of interference periods for a CR on the UA? What is mean and the total

interfering time for the entire excursion of the UA?

(3) The regulator cares about the overall impact of interference on the primary user. How

helpful is primary user detection in minimizing the effect of interference from a primary

user’s perspective? What is the impact on the outages experienced by the UA due to

primary user detection?

(4) What is the effect on total interfering time due to varying interference and detection radii

amongst the primary receivers?

This work derives the interference and detection radii are derived for a simple system consisting for
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Figure 1.3: Interference and detection periods for a cognitive radio on an unmanned aircraft
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one primary transmitter-receiver pair and one cognitive radio interferer. The results are used along

with queueing theory aspects to analyze the statistics of interference time for one-dimensional and

two-dimensional systems.

1.4 Thesis Outline

• Chapter 2 describes the interference and detection metrics for a cognitive radio. We define

the interference and detection radii for a primary receiver and determine their relation with

the radio propagation environment.

• Chapter 3 gives the interference time analysis for the one-dimensional systems. It uses

queueing theory aspects discussed in Appendix C to provide an insight to the statistics of

the interference and detection periods.

• Chapter 4 describes how the the results derived for the one-dimensional systems can be

extended to the two-dimensional systems.

• Chapter 5 describes the applications of the results.

• Chapter 6 gives the conclusions and future work.



Chapter 2

Interference and detection metrics for a cognitive radio

This chapter describes how a cognitive radio can interfere with existing radio systems and how

the cognitive radio can use its inherent detection capability to reduce interference. The chapter

introduces a simple model consisting of a single primary transmitter-receiver pair and a single

cognitive radio interferer. For instance, the cognitive radio might be on an unmanned aircraft at

a certain height above the ground and can interfere with a primary receiver at the ground level

if it comes within the receiver’s interference radius. This chapter gives the mathematical analysis

for interference radius and detection radius. It explains their relation to various system and radio

propagation parameters like antenna gain, antenna height, path-loss, shadowing, etc.

2.1 A simple cognitive radio interferer model

As discussed in the previous chapter, a cognitive radio must be able to keep interference within

limits. Hence modeling the interference becomes vital in such systems. A simple model to begin

with consists of a primary transmitter, Tx, placed at co-ordinates (x1, y1), which is communicating

with a primary receiver, Rx, placed at the origin (Refer to Figure 2.1). The primary receiver is a

licensed user and interference to him is considered harmful. Let us consider a single cognitive radio

interferer, I, placed at (x2, y2). Let RT , RI and RTI be the distances between Tx and Rx, I and

Rx, and Tx and I respectively.



10

Figure 2.1: Simple Cognitive Radio Interferer Model
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2.1.1 Interference radius, Rint

For the model shown in Figure 2.1, let R0 denote the boundary radius i.e. the maximum

distance possible between Tx and Rx for successful communication. In other words, the signal to

noise ratio (SNR) required for successful communication between Tx and Rx is at its minimum

threshold level Z at a distance R0 [2]. Let PS and PN denote the received signal power and noise

power at Rx. The received signal power, PS is given by [2]

PS =
KS · SS · pT

RaT
(2.1)

where,

KS is the constant inclusive of antenna gain and antenna height between T and Rx,

SS is the shadow fading component between T and Rx,

pT is the transmission power of Tx, and

a is the path-loss exponent between T and Rx.

The received noise power PN has two components — Noise, denoted by N and the interference

power due the cognitive radio, denoted by PI . Therefore, we have PN = PI +N , where

PI =
KI · SI · pI

RbI
(2.2)

and where,

KI is the constant inclusive of antenna gain and antenna height between I and Rx,

SI is the shadow fading component between I and Rx,

pI is the transmission power of I, and

b is the path-loss exponent between I and Rx.

At a distance R0 from Tx, using the definition of the SNR threshold, Z, we have

Z =
PS
N

=
KS · SS · pT
Ra0 ·N

Therefore, we can find the noise power N as below

N =
KS · SS · pT
Ra0 · Z

(2.3)
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For proper communication between Tx and Rx even in the presence of the cognitive radio

interferer I, we should have

PS
PN

≥ Z
(
KS ·SS ·pT

RaT

)
(
KI ·SI ·pI

RbI

)
+
(
KS ·SS ·pT
Ra0 ·Z

)
 ≥ Z

RI ≥
(
Z ·KI · SI · pI ·Ra0 ·RaT
KS · SS · pT · (Ra0 −RaT )

) 1
b

Let Rint =
(
Z·KI ·SI ·pI ·Ra0 ·RaT
KS ·SS ·pT ·(Ra0−RaT )

) 1
b
. Thus, when the cognitive radio interferer I is at a distance

RI ≤ Rint from Rx, it causes harmful interference to the primary receiver. Hence Rint is called the

interference radius of the primary receiver.

The radio propagation model between Tx and Rx can be chosen as a free-space path loss

model or ground reflection model [13]. The received power, Ps, in the case of the free-space path-

loss model is given by

Ps =

(
λ

4πRt

)2

·K · Ss · pT (2.4)

where,

λ is the wavelength used, i.e. if f is the frequency of operation and c is the velocity of light,

λ = c
f , and

K denotes the constant corresponding to the operating parameters of the system.

Comparing equation (2.4) with equation (2.1), we can find that the path-loss exponent a = 2 and

KS =
(
λ
4π

)2 ·K.

In the case of the ground reflection model, the received power, Ps, is given by

Ps =

(
K ·GT ·GR ·H2

T ·H2
R

R4
t

)
· SS · pT

where,

K denotes the constant corresponding to the operating parameters of the system,

GT denotes the gain of the Tx antenna

HT denotes the height of the Tx antenna
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Figure 2.2: Rint(Interference Distance) vs. RT (Distance between Tx and Rx)

GR denotes the gain of the Rx antenna

HR denotes the height of the Rx antenna

In this case, we have a = 4 and KS = K · GT · GR · H2
T · H2

R. Similarly, the radio propagation

model between I and Rx can also be considered as a free-space path-loss model with b = 2 and

KI =
(
λ
4π

)2 ·K or a ground reflection model with b = 4 and KI = K · GI .GR.H2
I ·H2

R, where GI

and HI denote the gain and height of the antenna on the interferer I.

Figure 2.2 shows the plot of the interference radius Rint as a function of RT , the distance

between Tx and Rx. It also depicts the dependency of the interference radius Rint on the path-loss

exponents a and b. The simulation was conducted with the following values: f = 482MHz, pT =

15dBm; GT = 2dBm, HT = 1m, GR = 0dB, HR = 1m, SS = 0dB (no shadowing), pint = 20dBm,

GI = 0dB, HI = 10m, SI = 0dB (no shadowing) and K = 1. The boundary radius, R0, is fixed to

be 80m and the threshold Z = 20dB. It can be seen that Rint increases with increase in RT . When

Rx is close to Tx, the SNR at Rx is high. Hence, the interferer I should be very close to Rx so

that it can contribute a large enough interference power PI to reduce the SNR below the threshold

Z and cause harmful interference to Rx. Therefore, the interference radius Rint is small for low

values of RT . With increase in separation of the primary receiver from the primary transmitter,



14

the received power decreases based on the path-loss exponent a. The ground reflection model with

a pathloss exponent, a = 4 is suitable when RT ≤ df , where df = 4πHtHr
λ . For RT > df , the

free-space pathloss model is applicable with the pathloss exponent, a = 2 [13]. With the transition

to the free-space pathloss model, the constant KS is now dependent only on the wavelength and

is independent of antenna heights. This explains the increase in the slope of the curve for Rint at

RT = df . When Rx is far from Tx, the SNR at Rx is low. The interferer I can be quite far from

Rx contributing a small interference power PI . But this small amount of interference power PI

might be sufficient enough to further degrade the SNR below the threshold Z and cause harmful

interference to Rx. Therefore, the interference radius Rint is large for higher values of RT .

2.1.2 Detection radius, Rdet

For the model shown in Figure 2.1, let us consider the scenario where the primary receiver,

Rx, is broadcasting beacons. The cognitive radio interferer can detect this beacons and switch off

his radio or hop to a different frequency to reduce interference to Rx. Let Rbec denote the maximum

distance possible between Rx and I for successful detection of the beacons. In other words, the

signal to noise ratio (SNR) required for successful detection between Rx and I is at its threshold

level Zbec at a distance Rbec [2]. Let PSdet and PNdet denote the received signal power and noise

power at I respectively. Therefore, the received signal power, PSdet is given by

PSdet =
KI · SI · pbec

RbI

where pbec is the beacon transmission power of Rx.

Since the beacons are almost always in a different band than the Tx → Rx channel, the

received noise power PNdet is completely determined by the Noise, denoted by Ndet. i.e. PNdet =

Ndet.
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At a distance Rbec from Rx, using the definition of the SNR threshold, Zdet, we have1

Zdet =
PSdet
Ndet

=
KI · pbec
Rbbec ·Ndet

Therefore, we can find the noise power Ndet as below

Ndet =
KI · pbec
Rbbec · Zdet

For the cognitive radio interferer I, to properly detection of Rx, we should have

PSdet
PNdet

≥ Zdet
(
KI ·SI ·pbec

RbI

)
(

KI ·pbec
Rbbec·Zdet

)
 ≥ Zdet

RI ≤ Rbec(SI)
1
b

Let Rdet = Rbec(SI)
1
b . Thus, when the cognitive radio interferer I is at a distance RI ≤ Rdet

from Rx, it successfully detects the primary receiver. Hence Rdet is called the detection radius of the

primary receiver. The values of the constants and pathloss exponents depend on the propagation

model applied.

We can note that this interference and detection radius pair form concentric circles with the

primary receiver as the center. We have two cases.

(1) Rdet < Rint - In this case, there is some interference possible in spite of detection. This is

because the interferer detects the primary receiver after entering its interference zone. But

the amount of interference is less than having no detection.

(2) Rdet ≥ Rint - In this case, there is no interference since the interferer detects the primary

receiver before entering its interference zone.

1 Zdet is defined for RI = Rbec and SI = 1



16

2.2 Discussion

This chapter explained the interference and detection radius of a primary receiver and their

relation to various system and radio propagation parameters like antenna gain, antenna height,

path-loss, shadowing, etc. In most cases, the radio link between the primary receiver and the

primary transmitter is modeled using a ground reflection model with the pathloss exponent, a = 4

since the distance between them is quite small. For the unmanned aircraft which is high above

above the ground, the radio link is more likely to be modeled as a free-space pathloss model with

the pathloss exponents b = 2 and c = 2. The aircraft might encounter multiple primary receivers on

its path. In such cases, what is the mean and total interference duration? How does the interference

radii of multiple primary receivers determine the interference durations? How will the detection

capability aid in reducing interference? These questions are answered in subsequent chapters.



Chapter 3

Interference Time Analysis for a one-dimensional system

In this chapter, we consider a cognitive radio placed on an unmanned aircraft which flies over

a region consisting of primary receivers. This chapter covers the interference time analysis for a

1D system where the primary receivers are distributed on a straight line. Queueing theory aspects

discussed in Appendix C are used to derive the statistics of interference time.

3.1 Interference Time Analysis for a 1D system with fixed interference and

detection radii

3.1.1 Cognitive radio without any detection capability i.e Rdet = 0

The setting of a 1D system model in this case is as shown in Figure 3.1. The path of the

unmanned aircraft is a straight line with a total distance L. Assuming that the velocity of the

aircraft is constant, let the total time required to cover this distance be T . The cognitive radio on

the unmanned aircraft has no detection capability. There are N primary receivers distributed along

the path of the plane according to a Poisson process with density λ
′
. This density λ

′
denotes the

number of primary receivers per unit distance. Let λ denote the number of primary receivers per

unit time. Then, λ = λ
′
v, where v is the velocity of the unmanned aircraft. Therefore, the expected

number of primary receivers, E(N) is given by, E(N) = λ
′
L = λT . Each primary receiver has an

interference radius of Rint, i.e. any device operating within a radius Rint causes interference to

that primary receiver. An interference start time tis is defined as the time at which the unmanned

aircraft starts interfering with one or more primary receivers. An interference end time tie is defined
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Figure 3.1: 1D scenario for a CR without detection

as the time at which the unmanned aircraft stops interfering with this set of primary receivers. The

difference between the end time and the start time is defined to be the interference period ti. i.e.

ti = tie − tis.

This model is analogous to a queueing theory problem discussed in Appendix C. The primary

receivers can be regarded as customers entering a queue from a Poisson arrival process (Markov)

with density λ. The service time for each customer can be mapped to the interference period per

primary receiver, which is 2Rint
v , where v is the velocity of the unmanned aircraft. These interference

periods can be overlapping, i.e. the cognitive radio on the unmanned aircraft does not wait for an

interference period from one primary receiver to end before it begins interfering with the next one.

This is analogous to having infinite number of servers in the queueing system. Hence this model

can be analyzed using a M/G/∞ queue, where G denotes the cdf of the interference period with

the mean, E(S), given by, E(S) = 2Rint
v . The cdf of the interference period, G, is given by

GI(i) =


0; i < 2Rint

v

1; i ≥ 2Rint
v

In [8], the busy period of an M/G/∞ queue is defined to be a time interval during which

at-least one server is occupied. The paper provides the mean and distribution of the busy period

along with the necessary and sufficient conditions for the results to hold. It is found that the busy
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period approaches an exponential distribution for increasing λ with mean given by

E(B) =
eλE(S) − 1

λ

where B and S denote the random variable for busy period and service time respectively. It should

be noted that the expression for the mean busy period holds for any λ, while the exponential

behavior of the distribution of busy period is an asymptotic result that holds for large values of λ

[8]. The necessary and sufficient conditions for these results to hold are

(1) The mean service time is finite. i.e. E(S) <∞.

(2) The service time is strictly positive. i.e. P (S > 0) = 1.

(3) The distribution of service time should satisfy the criterion (log x)
∫∞
x (1−G(y)) · dy → 0,

as x→∞.

The interference period that is analogous to service time of an M/G/∞ queue satisfies these con-

ditions. Hence, the interference period for the entire excursion of the unmanned aircraft can then

be mapped to the total busy period of this M/G/∞ queue. Therefore, for this 1D model, the

interference period follows an exponential distribution with mean

E(I) =
eλE(S) − 1

λ

Using E(S) = 2Rint
v ,

E(I) =
e

2λRint
v − 1

λ

It is further derived in [8] that the number of idle periods approaches a Poisson process of

intensity λe−λE(S). Therefore, the number of idle periods in the interval [0, T ], Nidle for E(S) <∞

is given by

Nidle = λe−λE(S)T

Considering that the total time is large and ignoring the effects at the edges, a busy period is

followed by an idle period, i.e. the expected number of busy and idle periods are equal [8].

Nbusy = Nidle = λe−λE(S)T
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For this 1D model, the expected number of busy periods is nothing but the expected number

of interference periods Nint. Therefore,

Nint = λe−λE(S)T

Using E(S) = 2Rint
v and E(N) = λT , we have

Nint = e−
2λRint

v E(N)

Let the total interfering time for the entire excursion of the unmanned aircraft be denoted

by Tint. Then, the mean total interfering time E(Tint) can be calculated as below

E(Tint) = E(Nint) · E(I)

= e−
2λRint

v · E(N) · E(I)

where N ∼ poiss(λT ) and I ∼ exp

(
e
2λRint

v −1
λ

)
and

E(Tint) = e−
2λRint

v · E(N) · E(I)

= e−
2λRint

v · λT · (e
2λRint

v − 1)

λ

= (1− e−
2λRint

v )T

3.1.2 Cognitive radio with detection capability i.e 0 < Rdet ≤ Rint

The setting of a 1D system model in this case is the same as the model in the previous section.

But the cognitive radio on the unmanned aircraft can now detect any primary receiver within a

radius Rdet. It should be noted that if Rdet ≥ Rint, then there will be no interference periods. We

consider the case where Rdet < Rint. This is shown in Figure 3.2.

The expected number of interference periods, Nint, and the mean interference period, E(I),

due to the interfering radius Rint was calculated in Section 3.1.1.

Nint = e−
2λRint

v E(N)

E(I) =
e

2λRint
v − 1

λ
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Figure 3.2: 1D scenario for a CR with detection capability

Similarly, the expected number of detection periods, Ndet, and the mean detection period,

E(D), due to the detection radius Rdet can be calculated as

Ndet = e−
2λRdet

v E(N)

E(D) =
e

2λRdet
v − 1

λ

The mean of the total interfering time for the entire excursion of the unmanned aircraft,

E(TID), is the difference between the mean total interfering time and the mean total detection

time.

E(TID) = E(Nint)E(I)− E(Ndet)E(D)

= (1− e−
2λRint

v )T − (1− e−
2λRdet

v )T

E(TID) = (e−
2λRdet

v − e−
2λRint

v )T (3.1)

We can rewrite the above equation as E(TID) = (e−λE(Sdet) − e−λE(S))T , where E(Sdet) and

E(S) denote the mean detection time and the mean interference time per primary user. In this

case, E(Sdet) = 2Rdet
v and E(S) = 2Rint

v . The value of λ for which this expected total interfering

time is maximum can be derived from equation (3.1). Let us denote this by λf .

λf =
1

(E(S)− E(Sdet))
log

(
E(S)

E(Sdet)

)
(3.2)
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Let f denote the maximum fraction of the total time being interfered by the unmanned aircraft.

It is calculated as the ratio of the mean total time, E(TID), evaluated at λ = λf to the total time

of the excursion, T .

f =
(e−λfE(Sdet) − e−λfE(S))T

T

= e−λfE(Sdet)
(

1− eλf (E(Sdet)−E(S))
)

Using r to denote the ratio of the mean detection time to the mean interference time per

primary user. i.e. r = E(Sdet)
E(S) and substituting for λf using equation 3.2, we get

f = r
r

1−r (1− r) (3.3)

It can be seen that the fraction f approaches unity as the mean detection time approaches

zero, i.e. as E(Sdet)→ 0 or in other words as r → 0, the fraction f → 1. From Figure 3.3, we can

note that the fraction f decreases with increase in the mean detection time per primary user. As

E(Sdet)→ E(S) or in other words as r → 1, the fraction f → 0.

Now we discuss the idle (no-interference) and busy (interference) periods that occur in this

model. These are used to calculate the mean interference time for the entire excursion of the

aircraft. In this case, an idle period might occur due to the following two scenarios

(1) The cognitive radio on the unmanned aircraft might have regions where it does not interfere

with any primary receiver. These regions will result in idle periods. i.e the original set of

idle periods generated due to the interference radius Rint.

(2) The cognitive radio either switches off or hops to a different frequency on detecting the

primary receiver within a radius Rdet and does not cause any interference to it. So, the

“busy” detection periods can also be regarded as idle periods. This is nothing but E(Ndet).

We know that the expected number of idle periods due to Rint is equal to the expected number

of busy periods due to Rint, given by E(Nint) [8]. Therefore, the expected total number of idle

periods is the sum of these two kinds of idle periods. This is again same as the expected total
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Figure 3.3: Maximum fraction of the total time vs. Ratio of the mean detection time to the mean
interference time
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busy periods. The mean interference period, E(Idet), is mean total interference time divided by the

expected total busy periods. It can be calculated as below

E(Idet) =
E(Nint)E(I)− E(Ndet)E(D)

E(Nint) + E(Ndet)

=
(1− e−

2λRint
v )T − (1− e−

2λRdet
v )T

λT (e−
2λRint

v + e−
2λRdet

v )

=
(1− e−

2λ
v
(Rint−Rdet))

λ(1 + e−
2λ
v
(Rint−Rdet))

=
1

λ
tanh

(
λ

v
(Rint −Rdet)

)

3.1.3 Cognitive radio with detection capability with Rdet > Rint

In this case, there are no interference outages. Only detection outages occur. It is significant

because the switch-off or alternate frequency operation mode of the cognitive radio on the unmanned

aircraft can be modeled using the statistics of the detection outages. The results are similar to

those derived in Section 3.1.1 with Rdet substituted for Rint. For example, the distribution of

the detection periods gives the distribution of the duration for which the cognitive radio is either

switched off or operating in a different frequency band.

3.2 Interference Time Analysis for a 1D system with variable interference

and detection radii

3.2.1 Cognitive radio without any detection capability i.e Rdet = 0

The setting of a 1D system model in this case is as shown in Figure 3.4. It is similar to

the one discussed in Section 3.1.1, but the the interference radius Rint is not from a deterministic

distribution. It can be drawn from any general distribution G satisfying the necessary conditions

stated in Section 3.1.1. Then, the mean interference period per primary user, E(S), is given by

E(S) = 2E(Rint)
v , where v is the velocity of the unmanned aircraft and E(Rint) is the expected

interference radius.

Using E(S) = 2E(Rint)
v , the mean interference period, E(I) and expected total interference
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Figure 3.4: 1D scenario for primary receivers with variable interference radius Rint and a CR
without detection

time, E(Tint), are calculated as below

E(I) =
e

2λE(Rint)

v − 1

λ

E(Tint) = (1− e−
2λE(Rint)

v )T

3.2.2 Cognitive radio with variable detection capability i.e 0 < Rdet ≤ Rint

The 1D system for this case is similar to that discussed in previous section. It is shown in

Figure 3.5. But the cognitive radio can detect a primary receiver with a detection radius Rdet.

The detection radius, Rdet, is not a constant. It is drawn from a distribution H which satisfies the

conditions discussed in Section 3.1.1. Then, the mean detection period per primary user, E(Sdet),

is given by E(Sdet) = 2E(Rdet)
v , where v is the velocity of the unmanned aircraft and E(Rdet) is the

expected detection radius.

Using the results derived in the previous section and Section 3.1.2, the mean interference

period, E(Idet) and expected total interference time, E(TID), are calculated as below

E(Idet) =
1

λ
tanh

(
λ

v
(E(Rint)− E(Rdet))

)
E(TID) = (e−

2λE(Rdet)

v − e−
2λE(Rint)

v )T
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Figure 3.5: 1D scenario for primary receivers with variable interference radius Rint and a CR with
variable detection radius Rdet
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3.2.3 Cognitive radio with variable detection capability with Rdet > Rint

This case is similar to the one discussed in Section 3.1.3, but with variable interference and

detection radii. The expected number of interference outages will be zero since Rdet > Rint. Hence,

only detection outages are present. The statistics of these detection outages can be found using

the results derived in Section 3.2.1 with E(Rdet) substituted for E(Rint).

3.3 Simulation and results for 1D scenario

The simulations were carried out in MATLAB. The total length to be covered by the un-

manned aircraft, L, was taken to be 1000 units. The number of primary receivers, N ∼ poiss(λL).

The path of the unmanned aircraft was chosen to be the x-axis. For the 1D scenario, N uniform

random variables H = {h1, h2..hN} were chosen such that hi ∼ unif(0, L), where i = 1, 2..N and the

location of each primary receiver is given by (hi, 0), i.e. all the primary receivers were located on

the x-axis. The 1D scenario was analyzed when the CR had no detection capability and when the

CR could detect a primary receiver with a detection radius Rdet. The velocity, v, of the unmanned

aircraft is assumed to be constant of 1 unit so that all the distance calculations directly map to the

time calculations.

To analyze the interference time distribution, we use the empirical cdf and qq-plot. The

qq-plot is a probability plot that is used for graphically comparing two probability distributions

[16]. Let FA denote the cdf of the unknown distribution and FB denote the cdf of the reference

distribution. Then a qq-plot graphs
(
F−1A (X), F−1B (X)

)
for X ε [0, 1]. It has the property that if

FA and FB are the same distribution, then the qq-plot is a straight line. If A or B is empirical

data, then empirical distribution is used. For more details on the qq-plot, refer to Appendix B.

Figure 3.6 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has no detection capability. The interfering radius was 0.5 units. This corresponds to

a mean interfering period per primary receiver, E(S) = 2Rint
v = 1. It can be seen that the total

interfering time also matches the analytical results and saturates for λ > 7.5. The mean interfering
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Figure 3.6: Mean and total interfering time for L =1000, Rint = 0.5 and Rdet = 0, 1D case - No
Detection

time increases exponentially, matching with the analytical calculation, min
(
eλE(S)−1

λ , L
)

, for any

λ before saturation.

Figure 3.7 and Figure 3.8 give the qq-plot and cdf of the interfering time. It can be seen that

the interfering time follows an exponential distribution with the mean eλE(S)−1
λ for 2 < λ < 7.5.

For λ > 7.5, the interference time saturates to the total time.

Figure 3.9 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has no detection capability. The interfering radius was 1.5 units (E(S) = 3). With the

increase in interference radius, we can note that the total interference time saturates for a lower

density λ. In this case it is λ = 2.5, as compared to λ = 7.5 when E(S) = 1.

Figure 3.10 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has an interfering radius of 0.5 units i.e. mean interference period per primary receiver is

1 unit and a detection radius of 0.25 units, i.e. mean detection period per primary receiver is 0.5

units. The mean and the total interference time match with the analytical results. In this case, we

can note that the total interference time does not saturate for any λ. It increases initially because

the interference time will be more than detection time. With an increase in λ, the detection time

also increases. It will be more likely that the interference period of one primary receiver overlaps

with the detection period of the adjacent primary receiver. So, the total interference time decreases

and gradually reaches zero for large λ. The value of f is calculated analytically using equation 3.3

to be 0.25, which means that maximum interfered time is 25% of the total excursion time. The
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Figure 3.7: QQ-Plot and CDF plot of Interference Time for Rint = 0.5 and Rdet = 0, λ =
0.25, 0.5, 1, 2, 1D case - No Detection

Figure 3.8: QQ-Plot and CDF plot of Interference Time for Rint = 0.5 and Rdet = 0, λ = 3, 4, 5, 7.5,
1D case - No Detection

Figure 3.9: Mean and total interfering time for L = 1000, Rint = 1.5 and Rdet = 0, 1D case - No
Detection
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Figure 3.10: Mean and total interfering time for L = 1000, Rint = 0.5 and Rdet = 0.25, 1D case -
With Detection

total excursion time for the simulation is 1000 units. Hence, the maximum interfered time is 250

units which agrees with the analytical calculation.

Figure 3.11 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has an interfering radius of 1.5 units (mean interference period per primary receiver is 3

units) and a detection radius of 1 unit (mean detection time per primary receiver is 2 units). The

results are similar to the previous case except that the total interference time reaches its maximum

for a lower value of λ with the increase in interference and detection radii. The value of f is

calculated analytically using equation 3.3 to be 0.1481, which means that maximum interfered time

is 14.81% of the total excursion time. The maximum interfered time is 148.1 units in simulation

which agrees with the analytical calculation.

Figure 3.12 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has a variable interfering radius and no detection capability. The interference radius is

drawn from an uniform distribution, i.e. Rint ∼ unif(0, 1). Therefore, the mean interference radius,

E(Rint), is 0.5 unit. This corresponds to a mean interference period per primary receiver, E(S), of

1 units The mean and total interference time depict the same behavior as for the fixed Rint = 0.5

units (Refer to Figure 3.6). This is because these parameters are independent of the distribution

of interference period and depend only on E(S).

Figure 3.13 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has a variable interfering radius and variable detection capability. The interference radius
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Figure 3.11: Mean and total interfering time for L = 1000, Rint = 1.5 and Rdet = 1, 1D case -
With Detection

Figure 3.12: Mean and total interfering time for L = 1000, Rint = unif(0, 2) and Rdet = 0, 1D case
- Variable Rint, No Detection
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Figure 3.13: Mean and total interfering time for L = 1000, Rint = unif(0, 2) and Rdet = unif(0, 1),
1D case - Variable Rint, Variable Rdet

is drawn from an uniform distribution, i.e. Rint ∼ unif(0, 1). The detection radius is also drawn

from an uniform distribution such that Rdet ∼ unif(0, 0.5). If Rdet > Rint, then we set Rdet = Rint.

This corresponds to a mean interference period per primary receiver, E(S), of 1 unit. The mean

detection period per primary receiver, E(D), is calcuated using MATLAB to be 0.431 units. The

value of f is calculated analytically using equation 3.3 to be 0.3044, which means that maximum

interfered time is 30.44% of the total excursion time. The maximum interfered time is 301 units

through simulation which agrees with the analytical calculation.

3.4 Summary

This chapter described the interference time analysis for a 1D system using queueing theory.

It explained the mapping between an M/G/∞ queue and interference time. It is found that the

statistics of interference time are independent of the distribution of Rint and Rdet. Table 3.1

summarizes the results derived in this chapter for a 1D system.
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Chapter 4

Interference Time Analysis for a two-dimensional system

As in Chapter 3, we again consider a cognitive radio placed on an unmanned aircraft which

flies over a region consisting of primary receivers. We extend the results for interference time

derived for 1D systems to 2D systems, where the receivers are distributed in 2D plane according

to a Poisson’s process. Again, queueing theory (Refer to Appendix C) is used as a tool to derive

the statistics of interference time.

4.1 Mean interference period per primary user for a 2D system

From the previous chapter, we note the mean interference period per primary user in the 1D

case, E(S), is given by E(S) = 2E(Rint)
v , where E(Rint) is the expected interference radius and v is

the velocity of the unmanned aircraft. This was because the primary receiver “always” lies along

the path of the unmanned aircraft in the 1D case and the interference distance is the diameter of

a circle with radius Rint. But in the 2D case, the primary receiver need not lie exactly on the path

of the unmanned aircraft. A method to determine the mean interference period per primary user

in a 2D system is described below.

4.1.1 CR has no detection capability

Let us a consider a simple model consisting of a single primary receiver with an interference

radius Rint. Let (X,Y ) be the set of random variables that represents the x and y coordinates of

the cognitive radio respectively. Let a cognitive radio (CR) interferer move along a straight line
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Figure 4.1: Interference Period (Chord length of a circle)

parallel to the horizontal axis of the receiver, i.e X = 0. The CR has no detection capability. Then

the CR will interfere with the primary receiver if −Rint ≤ Y ≤ Rint. Let Y ∼ unif(−Rint, Rint).

Then, the interference distance is computed as the length of a chord of a circle with radius Rint

whose distance from the center of the circle is abs(Y ). Let us denote this by S. (Refer to Figure

4.1)

From Figure 4.1, we can note that

S = 2
√
R2
int − Y 2
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The cdf of the interference distance G can be derived as below

G = FS(s)

= P (S ≤ s)

= P (2
√
R2
int − Y 2 ≤ s)

= P

(
Y 2 ≥

(
R2
int −

s2

4

))
= 1− P

(
Y 2 ≤

(
R2
int −

s2

4

))
= 1− P

(
−

√(
R2
int −

s2

4

)
≤ Y ≤

√(
R2
int −

s2

4

))

= 1−

√(
R2
int −

s2

4

)
Rint

The mean interference distance for a single primary receiver E(S) can be calculated as follows

E(S) =

∫ 2Rint

0
(1− FS(s))ds

=

∫ 2Rint

0


√(

R2
int −

s2

4

)
Rint

 ds

=
1

2Rint

∫ 2Rint

0

√(
4R2

int − s2
)
ds

=
πRint

2

Let v be he velocity of the CR. Then, the interference period, I, is given by I = S
v . Considering

that the velocity of the CR remains constant throughout its flight, the mean interference period,

T , can be calculated as

T = E(I)

=
E(S)

v

=
πRint

2v
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4.1.2 CR has detection capability

The model in this case is similar to the one considered in Section 4.1.1. The only change is

that the CR can now detect a primary receiver within a detection radius Rdet, i.e. the primary

receiver falls in the detection range of the cognitive radio if −Rdet ≤ Y ≤ Rdet. Then, the mean

detection period for a single primary receiver is given by

E(D) = P (−Rdet ≤ Y ≤ Rdet)E(D | det = 1) + (1− P (−Rdet ≤ Y ≤ Rdet))E(D | det = 0)

where E(D | det = 1) is the mean detection period for a single primary receiver when it is IN the

detection range and E(D | det = 0) is the mean detection period for a single primary receiver when

it is OUT of the detection range

Since Y ∼ unif(−Rint, Rint), we can calculate

P (−Rdet ≤ Y ≤ Rdet) =
Rdet
Rint

E(D | det = 1) =
πRdet

2v

E(D | det = 0) = 0

Therefore,

E(D) =
πR2

det

2Rintv

Hence the mean interference period, T , for the CR can be calculated as below

T = E(I)− E(D)

=
πRint

2v
−

πR2
det

2Rintv

=
πRint

2v

(
1−

R2
det

R2
int

)
These calculations are used in the further parts of this chapter for the interference time

analysis in 2D systems. If the locations of the primary receiver and the interferer are known, the

mean interference distance can be calculated through a different approach which is discussed in

Appendix A.
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Figure 4.2: 2D scenario for a cognitive radio without detection capability

4.2 Interference Time Analysis for a 2D system with fixed interference and

detection radii

4.2.1 Cognitive radio without any detection capability i.e Rdet = 0

The setting of a 2D system model in this case is as shown in Figure 4.2. The path of the

unmanned aircraft is a straight line with a total distance L. Assuming that the velocity of the

aircraft is constant, let the total time required to cover this distance be T . The cognitive radio

on the unmanned aircraft has no detection capability. Each primary receiver has an interference

radius of Rint. The primary receivers are distributed across a 2D plane with length L and width

Rint according to a Poisson’s process with 2D density λ
′
. This density λ

′
denotes the number of

primary receivers per unit area. Let λ1 denote the number of primary receivers per unit time in 2D.

Then, λ1 = λ
′
v, where v is the velocity of the unmanned aircraft. If (X,Y ) is the set of random

variables that denotes the x and y coordinates of the primary receivers, then X ∼ unif(0, L)

and Y ∼ unif(−Rint, Rint). The equivalent 1D density calculated per unit time, λ, is given by

λ = λ1 · 2Rint. Therefore, the expected number of primary receivers, N = λT .

This model can be analyzed using an M/G/∞ queue where G denotes the cdf of the inter-

ference period. Using the results for the M/G/∞ queue discussed in the previous section, we know

that the interference period for the entire excursion of the unmanned aircraft follows an exponential
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distribution with mean

E(I) =
eλE(S) − 1

λ

Using the results from Section 4.1.1, we have E(S) = πRint
2v . Therefore,

E(I) =
e
πλRint

2v − 1

λ

For this 2D model, the expected number of interference periods Nint is given by

Nint = λe−λE(S)T

Using E(S) = πRint
2v and E(N) = λT ,

Nint = e−
πλRint

2 E(N)

Let the total interfering time for the entire excursion of the unmanned aircraft be Tint. Then,

the mean total interfering time E(Tint) can be calculated as

E(Tint) = e−
πλRint

2v · E(N) · E(I)

where N ∼ poiss(λT ) and I ∼ exp

(
e
πλRint

2v −1
λ

)

E(Tint) = e−
πλRint

2v · λT · (e
πλRint

2v − 1)

λ

= (1− e−
πλRint

2v )T

4.2.2 Cognitive radio with detection capability i.e. 0 < Rdet ≤ Rint

The setting of a 2D system model in this case is the same as the model in the previous section.

But the cognitive radio on the unmanned aircraft can now detect any primary receiver within a

radius Rdet. This is shown in Figure 4.3.

Using the results from 4.1.1 and 4.1.2, the number of interference periods, Nint, and the mean

interference period, E(I), due to interfering radius Rint can be calculated as below

Nint = e−
πλRint

2v E(N)

E(I) =
e
πλRint

2v − 1

λ
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Figure 4.3: 2D scenario for a cognitive radio with detection capability Rdet

Also, the number of detection periods for the entire excursion of the unmanned aircraft, Ndet,

and the mean detection period for the excursion, E(D), can be calculated as below

Ndet = e
−λπR

2
det

2Rintv E(N)

E(D) =
e
λπR2

det
2Rintv − 1

λ

As in Section 3.1.2, the mean interference period, E(Idet), and the mean of total interfering

time for the entire excursion of the unmanned aircraft, E(TID), can be calculated as below

E(Idet) =
1

λ
tanh

(
λπRint

4v

(
1−

R2
det

R2
int

))
E(TID) = (e

−λπR
2
det

2Rintv − e−
πλRint

2v )T

4.2.3 Cognitive radio with detection capability with Rdet > Rint

In this case, there are no interference outages. Only detection outages occur. The results are

similar to those derived in Section 4.2.1 with Rdet substituted for Rint.
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4.3 Interference Time Analysis for a 2D system with variable interference

and detection radii

4.3.1 Cognitive radio without any detection capability i.e Rdet = 0

The setting of a 1D system model in this case is as shown in Figure 4.4. It is similar to

the one discussed in Section 4.2.1, but the the interference radius Rint is not from a deterministic

distribution. It can be drawn from any general distribution G satisfying the necessary conditions

stated in Section 3.1.1. The primary receivers are distributed across a 2D plane with length L and

width R according to a Poisson’s process with 2D density λ
′
, where λ

′
is the number of primary

users per unit time. If (X,Y ) is the set of random variables that denotes the x and y coordinates

of the primary receivers, then X ∼ unif(0, L) and Y ∼ unif(−R,R). The equivalent 1D density, λ,

is given by λ = λ
′ ·2R ·v, where v is the velocity of the unmanned aircraft. Therefore, the expected

number of primary receivers, N = λT . It should be noted that only those primary receivers which

satisfy the condition Rint ≥ abs(Y ) are interfered by the operation of the cognitive radio, the

interference distance being 2
√
R2
int − Y 2. Hence, the mean interference period per primary user,

E(S), can be calculated as below

E(S) =
1

v
· E
{
P (Rint ≥ |Y |) · E

(
2
√
R2
int − Y 2 | Rint ≥ |Y |

)}
(4.1)

where, v is the velocity of the unmanned aircraft.

Using the results from Section 4.2.1, the mean interference period, E(I) and expected total

interference time E(Tint), are calculated using the following relation.

E(I) =
eλE(S) − 1

λ

E(Tint) = (1− e−λE(S))T

where E(S) is determined by equation (4.1).
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Figure 4.4: 2D scenario for primary receivers with variable interference radius Rint and a CR
without detection
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4.3.2 Cognitive radio with variable detection capability i.e 0 < Rdet ≤ Rint

The 2D system for this case is similar to that discussed in previous section. It is shown in

Figure 4.5. But the cognitive radio can detect a primary receiver with a detection radius Rdet.

The detection radius, Rdet, is not a constant. It is drawn from a distribution H which satisfies

the conditions discussed in Section 3.1.1. As in the previous section, the mean interference period

E(S) is given by

E(S) =
1

v
· E
{
P (Rint ≥ |Y |) · E

(
2
√
R2
int − Y 2 | Rint ≥ |Y |)

)}
(4.2)

where v is the velocity of the unmanned aircraft. In this case, only those primary receivers which

satisfy the condition Rdet ≥ abs(Y ) are detected by the operation of the cognitive radio, the de-

tection distance being 2
√
R2
det − Y 2. Hence, the mean detection period, E(Sdet), can be calculated

as

E(Sdet) =
1

v
· E
{
P (Rdet ≥ |Y |) · E

(
2
√
R2
det − Y 2 | Rdet ≥ |Y |

)}
(4.3)

Since the detection uses beacons on a different channel, Rdet is independent of Rint. But in

those instances where Rint(i) < Rdet(i), we set Rint(i) = Rdet(i) so that we satisfy the condition

0 < Rdet ≤ Rint. Therefore, we have

Rint(i) =


Rdet(i), if Rint(i) < Rdet(i)

Rint(i) otherwise

(4.4)

where i = 0, 1, 2, ..N − 1

Using the results from the previous section and Section 4.2.2, the mean interference period,

E(Idet) and expected total interference time, E(TID), are calculated as below

E(Idet) =
1

λ
tanh

(
λ

2
(E(S)− E(Sdet))

)
E(TID) = (e−λE(Sdet) − e−λE(S))T

where E(S) and E(Sdet) are determined by equation (4.2) and equation (5.1) respectively. It should

be noted that the new relation for Rint given in equation (4.4) is used the computation of E(S)
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Figure 4.5: 2D scenario for primary receivers with variable interference radius Rint and a CR with
variable detection radius Rdet
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4.3.3 Cognitive radio with variable detection capability with Rdet ≥ Rint

This case is similar to the one discussed in Section 4.2.3, but with variable interference and

detection radii. In this case, for those instances where Rdet(i) < Rint(i), we set Rdet(i) = Rint(i).

This will satisfy the criterion Rdet ≥ Rint and there will be no interference outages. Hence, only

detection outages are present. The statistics of these detection outages can be derived using the

results are similar to those derived in Section 4.3.1 with E(Sdet) substituted for E(S).

4.4 Simulation and results

The simulations were carried out in MATLAB. The total length to be covered by the

unmanned aircraft, L, was taken to be 1000 units. The number of primary receivers, N ∼

poiss(λ1 · L · 2R), where λ1 is the 2D-density. Let λ be the equivalent 1D-density given by

λ = λ1 · L · 2R. The path of the unmanned aircraft was chosen to be the x-axis. For the 2D

scenario, two sets of N uniform random variables H = {h1, h2..hN} and K = ({k, k2, ..kN}were

chosen such that hi ∼ unif(0, L) and ki ∼ unif(−R,R), where i = 1, 2..N and Rint is the interference

radius for the receiver1 . The location of each primary receiver in this case is given by (hi, ki). The

2D scenario was analyzed when the CR had no detection capability and when the CR could detect

a primary receiver with a detection radius Rdet. The velocity of the unmanned aircraft is assumed

to be constant of 1 unit so that all the distance calculations directly map to the time calculations.

Figure 4.6 gives the mean and total interfering time for 2D scenario when the cognitive radio

interferer has no detection capability. The interfering radius was 2
π units. This corresponds to

a mean interfering time per primary receiver, E(S) = πRint
2v = 1. It can be seen that the total

interfering time also matches the analytical results and saturates for λ > 7.5. The mean interfering

time increases exponentially and agree with the analytical calculation, min
(
eλE(S)−1

λ , L
)

, for any

λ before saturation.

Figure 4.7 and Figure 4.8 give the qq-plot and cdf of the interfering time. It can be seen that

the interfering time follows an exponential distribution with the mean eλE(S)−1
λ for large values of

1 R = Rintwhen the interference radius is a fixed value
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Figure 4.6: Mean and total interfering time for L = 1000, Rint = 2/π and Rdet = 0, 2D case - No
Detection

λ. In this case 2 < λ < 7.5, since for λ > 7.5, the interference time saturates to the total time.

Figure 4.9 gives the mean and total interfering time for 2D scenario when the cognitive radio

interferer has no detection capability. The interfering radius was 4
π units. (E(S) = 2). With the

increase in interference radius, we can note that the total interference time saturates for a lower

density λ. In this case it is λ = 2.5, as compared to λ = 7.5 when E(S) = 1.

Figure 4.10 gives the mean and total interfering time for 2D scenario when the cognitive

radio interferer has an interfering radius of 2
π units (mean interference time per primary receiver is

1 unit) and a detection radius of 1
π units (mean detection time per primary receiver is 0.5 units).

The mean and the total interference match the analytical results. Similar to the 1D case with

primary receiver detection, we can note that the total interference time does not saturate for any

λ. It increases initially because the interference time will be more than detection time. With

increase in λ, detection time also increases. So, the total interference time decreases and gradually

reaches zero for large λ. The value of f is calculated analytically using equation (3.3) to be 0.4275,

which means that maximum interfered time is 42.75% of the total excursion time. The maximum

interfered time is 472.5 units through simulation which agrees with the analytical calculation.

Figure 4.11 gives the mean and total interfering time for 2D scenario when the cognitive radio

interferer has an interfering radius of 4
π units (mean detection time per primary receiver is 2 units)

and a detection radius of 3
π units (mean detection time per primary receiver is 1.5 units). The

results are similar to the previous case except that the total interference time reaches its maximum
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Figure 4.7: QQ-Plot and CDF plot of Interference Time for Rint = 2/π and Rdet = 0, λ =
0.25, 0.5, 1, 2, 2D case - No Detection

Figure 4.8: QQ-Plot and CDF plot of Interference Time for Rint = 2/π and Rdet = 0, λ = 3, 4, 5, 7.5,
2D case - No Detection

Figure 4.9: Mean and total interfering time for L = 1000, Rint = 4/π and Rdet = 0, 2D case - No
Detection
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Figure 4.10: Mean and total interfering time for L = 1000, Rint = 2/π and Rdet = 1/π, 2D case -
With Detection

for a lower value of λ with the increase in interference and detection radii. The value of f is

calculated analytically using equation (3.3) to be 0.2088, which means that maximum interfered

time is 20.88% of the total excursion time. The maximum interfered time is 209 units through

simulation which agrees with the analytical calculation.

Figure 4.12 gives the mean and total interfering time for 1D scenario when the cognitive radio

interferer has a variable interfering radius and no detection capability. The width, R, is taken to be

5 units. The interference radius is drawn from an uniform distribution, i.e. Rint ∼ unif(0, 2). The

mean interference period per primary receiver, E(S), given by equation (4.1) is calculated using

MATLAB to be 0.4189 units and used for analytical calculations. The mean and total interference

time from simulation lie within 2dB of the analytical results.

Figure 4.13 gives the mean and total interfering time for 2D scenario when the cognitive radio

interferer has a variable interfering radius and variable detection capability. The width, R, is taken

to be 5 units. The interference radius is drawn from an uniform distribution, i.e. Rint ∼ unif(0, 2).

The detection radius is also drawn from an uniform distribution such that Rdet ∼ unif(0, 1). If

Rdet > Rint, then we set Rdet = Rint. The mean interference period and the mean detection period

per primary receiver, E(S) and E(Sdet) given by equation (4.2) and equation (5.1) are calculated

using MATLAB to be 0.4142 units and 0.0786 units respectively. These values are used in the

analytical calculations. The mean and total interference time from simulation match the analytical

results. The value of f is calculated analytically using equation (3.3) to be 0.549, which means
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Figure 4.11: Mean and total interfering time for L = 1000, Rint = 4/π and Rdet = 3/π, 2D case -
With Detection

Figure 4.12: Mean and total interfering time for L = 1000, Rint = unif(0, 2) and Rdet = 0, 2D case
- Variable Rint, No Detection
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Figure 4.13: Mean and total interfering time for L = 1000, Rint = unif(0, 2) and Rdet = unif(0, 1),
2D case - Variable Rint, Variable Rdet

that maximum interfered time is 54.9% of the total excursion time. The maximum interfered time

is 550 units through simulation which agrees with the analytical calculation.

4.5 Summary

This chapter presented the way to calculate the mean interference time, E(S) and the mean

detection time, E(Sdet) for the 2D system. It also described the methods to extend the results for

interference time derived for 1D systems to 2D systems using queueing theory. Here too, we find

that the statistics of interference time are independent of the distribution of Rint and Rdet. Table

4.1 and Table 4.2 summarize the results derived in this chapter for a 2D system of length L and

width 2R2

2 Note that for fixed Rint, R = Rint.
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Chapter 5

Applications

This chapter describes the application of the results to practical scenarios. It considers

random placement of TV transmission stations and analyzes duration of interference for the same.

It also determines the fraction of reduction in interference with improved detection capability.

Let us consider a cognitive radio placed on an unmanned aircraft flying over the United

States. Let the velocity of the unmanned aircraft, v, be 450mph. We model the interference caused

by the cognitive radio to the TV stations transmitting Channel 15 as shown in Figure 5.1. There are

168 stations spread over the entire region of length, L = 2500 miles and breadth, W = 1500 miles.

Each station has an exclusion zone with a radius if 100 miles around it. Any radio communicating

within the exclusion zone will interfere with the transmission of the TV station. Hence, the radius

of the exclusion zone can be mapped to the interference radius, Rint = 100 miles. Let us say that

each station is transmitting beacons to aid detection. These beacons can be detected within a

detection zone whose radius is Rdet. The total time for the excursion of the aircraft, T = L
v = 5.56

hours. The density of TV stations per unit time, λ is calculated as below

λ = λ1W

=
168

3, 000, 000
· v ·W

λ = 30.24
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Figure 5.1: Interference Model for Channel-15 TV stations in the United States
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The mean interference time per primary user, E(S) is calculated using equation (4.2) as below.

E(S) =
1

v
· Rint

(W/2)
· πRint

2

= 0.058 hours

E(S) = 3.49 minutes

Similarly, the mean detection time per primary user E(Sdet) is calculated using equation (4.3) as

below.

E(Sdet) =
1

v
· Rdet

(W/2)
· πRdet

2
=
πR2

det

vW
hours

5.1 Case 1: Basic detection

The number of interference periods, the mean and total interference time for the entire

excursion of the unmanned aircraft are listed Table 5.1.

We can note that the unmanned aircraft interferes for 82.73% of the total flight time in the

absence of detection with a mean interference time of 9.54 minutes. In the presence of detection,

the number of interference outages increase. But the mean interference time decreases considerably

when compared to the no-detection case. Therefore, the total interference time decreases. It can

be seen that the mean and total interference times decrease with an increase in detection radius.

5.2 Case 2: Extended detection

This is similar to the case discussed in Section 5.1, but the cognitive radio has an improved

detection capability. This is because the detection zone of the cognitive radio extends till boundary

of the interference zone along the direction of flight as shown in Figure 5.2. We can note that region

within the dotted line is the detection zone and the remaining region is the interference zone for a

primary user. Then, the mean detection time per primary user can be calculated as below

E(Sdet) =
1

v
· E
{
P (Rdet ≥ |Y |) · E

(
Rint +

√
R2
det − Y 2 | Rdet ≥ |Y |

)}
(5.1)



56

P
a
ra

m
et

er
N

o
d
et

ec
ti

o
n

R
d
e
t

=
2
5

m
il
es

R
d
e
t

=
5
0

m
il
es

R
d
e
t

=
7
5

m
il
es

E
x
p

ec
te

d
D

et
ec

ti
o
n

T
im

e
p

er
p
ri

m
a
ry

u
se

r,
E

(S
d
e
t
)

0
0
.0

0
3
6

h
o
u
rs

0
.0

1
4
5

h
o
u
rs

0
.0

3
2
7

h
o
u
rs

E
x
p

ec
te

d
N

u
m

b
er

o
f

In
te

rf
er

en
ce

O
u
ta

g
es

2
9

1
8
0

1
3
7

9
1

M
ea

n
In

te
rf

er
en

ce
T

im
e

fo
r

th
e

en
ti

re
ex

cu
rs

io
n

9
.5

4
m

in
u
te

s
8
0
.4

se
co

n
d
s

6
9

se
co

n
d
s

4
3
.5

6
se

co
n
d
s

T
o
ta

l
In

te
rf

er
en

ce
T

im
e

fo
r

th
e

en
ti

re
ex

cu
rs

io
n

4
.6

h
o
u
rs

(8
2
.7

3
%

)
4
.0

1
h
o
u
rs

(7
2
.3

%
)

2
.6

2
h
o
u
rs

(4
7
.1

2
%

)
1
.1

1
h
o
u
rs

(1
9
.9

6
%

)

M
a
x
im

u
m

F
ra

ct
io

n
o
f

to
ta

l
ti

m
e

th
a
t

ca
n

b
e

in
te

rf
er

ed
,
f

1
0
0
%

7
7
.9

3
%

4
7
.2

5
%

2
0
.8

8
%

T
ab

le
5.

1:
R

es
u
lt

s
fo

r
b

as
ic

d
et

ec
ti

on



57

Figure 5.2: Extended Detection Zone

In this case, E(Sdet) = 1
v ·

Rdet
(W/2) ·

(
Rint + πRdet

4

)
.

Table 5.2 gives the results for this case.

We can note that with improved detection, for the same Rdet, the mean and total interference

time are less compared to those computed in Section 5.1. This is because the mean detection time

per primary user, E(Sdet), increases. So, the ratio, r = E(Sdet)
E(S) , increases which in-turn leads to a

reduction in the fraction of the flight time being interfered.

Similarly, we can analyze other cases where Rint and Rdet are not fixed. In any case, the

results are dependent only on the mean statistics of Rint and Rdet. So, if we are able to calculate the

new mean due to the random nature of Rint and Rdet, we can analyze the duration of interference

accurately.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the work in this thesis. The problem of analyzing the interference

time for a cognitive radio on an unmanned aircraft flying over a region of primary users is considered.

We begin with a simple model consisting of one primary receiver-transmitter pair and one interferer.

Using this model, we define the interference radius, Rint, as the boundary of the area within which

a primary user might be subjected to harmful interference due to the operation of the CR interferer.

We consider the case of a primary receiver that broadcasts beacons to aid detection. We define

the detection radius to be the boundary of the area within which the presence of a primary user

might be detected by the CR interferer. Then, we derive the dependence of Rint and Rdet on radio

propagation parameters like antenna height, antenna gains, shadowing, etc. The analysis is carried

out for free-space pathloss and ground reflection radio propagation models. It is shown that the

interference radius increases with an increase in distance of the primary receiver from the primary

transmitter. Based on the detection radius, we have two cases – Rdet ≤ Rint and Rdet > Rint.

When Rdet ≤ Rint, there is interference to the primary user in spite of detection since the CR starts

detecting the primary user after entering its interference zone. We note that the total duration

of interference time decreases with increase in detection capability. When Rdet > Rint, there is

no such interference to the primary user. This case is significant if the CR interferer adopts the

strategy of switching-off its radio on detecting a primary receiver. It will result in communication

outages with respect to the CR.

The interference and detection metrics derived are then used to analyze the statistics of
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the duration of interference for systems consisting of multiple primary receivers. We show that

this problem can be reduced to a queueing theory problem and analyzed using the results for a

M/G/∞ queue. The interference period can be mapped to the busy period of the M/G/∞ queue.

The statistics of busy period of the M/G/∞ queue are derived in [8]. The results in [8] are used

to determine the statistics of interference time. The interference time is follows an exponential

distribution for higher densities of primary receivers. This analysis is applied to a one dimensional

system, where the primary receivers are distributed uniformly randomly on a straight line, along the

path of the unmanned aircraft. It is then extended to a two dimensional system where the primary

receivers are distributed uniformly randomly over an area. These 1D and 2D systems are analyzed

for two cases – with detection and without detection capability for the cognitive radio. In each

case, the theoretically determined statistics for the interference time are verified using MATLAB

simulations. In the cases with detection, we accurately determine the fraction of the mean total

time of the excursion of the unmanned aircraft that is subjected to interference. It is also shown

statistics of the interference time are independent of the distribution of Rint and Rdet and depend

only on their mean values.

The results from this work can be used to determine the optimum setting for the cognitive

radio system such that it restrains the duration of interference below tolerable limits. For instance,

we can determine the optimum value for the detection threshold of the CR that such that the

total interference time lies within the specified limit. This work paves the path to characterize the

duration of interference for random deployments like mesh networks and ad-hoc networks. The

analysis of such random deployments and extension of the results to more complicated models

forms the potential future work.
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Appendix A

Interference analysis for “known-location” primary receivers and cognitive

radio

Let us consider a simple model with the cognitive radio (CR) interferer at a distance RI = z,

from the primary receiver Rx located at the origin. The CR is moving towards Rx an angle θ. We

consider the following two cases — (1) the CR cannot detect the primary receiver and (2) the CR

can detect a primary receiver within a distance Rdet

A.1 CR cannot detect the primary receiver

Figure A.1 depicts the case where the CR has no primary receiver detection capability i.e.

Rdet = 0. The interfering distance d is the length of a chord in the circle of radius Rint. It can be

calculated as

d = 2
√
R2
int − z2 sin2 θ

Figure A.1: Interference Distance for simple model for a CR with no detection capability (Rdet = 0)
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We can find the interfering distance averaged over the range of θ, for fixed values of z and Rint.

We can note that the interfering distance is non-zero for θ between −φ to φ where φ = sin−1
(
Rint
z

)
.

So, the average interfering distance is

davg =
1

2π

φ∫
−φ

2
√
R2
int − z2 sin2 θdθ

The above integral can be solved using numerical integration.

Now let us say that CR can choose any angle between −π and π and start moving in that

direction. Let Θ be the random variable that denotes the angle of the CR. Then, Θ ∼ unif(−π, π).

The corresponding random variable for interfering distance would be D, which is related to Θ by

D =2
√
R2
int − z2 sin2 Θ . We can find the cdf of the interfering distance as follows.

Fd|z(D | Z) = P (D ≤ d)

= P

(
2
√
R2
int − z2 sin2 Θ ≤ d

)
= P

(
sin2 Θ ≤

(
4R2

int − d2

4z

))

=


1−

(
1
π

)
sin−1

(√(
4R2

int−d2
4z

))
for 0 ≤ d ≤ 2Rint

0 otherwise

A.2 CR can detect a primary receiver within a distance Rdet

Figure A.2 depicts the case where the CR can detect a primary receiver within a distance

Rdet. In this case, the interfering distance d can be calculated as below.

d =


2

(√
R2
int − z2 sin2 θ −

√
R2
det − z2 sin2 θ

)
if |θ| ≤ φ1

2
√
R2
int − z2 sin2 θ if φ1 > |θ| ≤ φ2

where, φ1 = sin−1
(
Rdet
z

)
and φ2 = sin−1

(
Rint
z

)
We can find the interfering distance averaged over the range of θ, while fixing the values of
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Figure A.2: Interference Distance for simple model for a CR with detection capability Rdet

z and Rint. Since θ can take values between −π and π, the average distance is

davg =


1
2π

∫ φ1
−φ1 2

(√
R2
int − z2 sin2 θ −

√
R2
det − z2 sin2 θ

)
dθ if |θ| ≤ φ1

1
2π

∫ −φ1
−φ2

(
2
√
R2
int − z2 sin2 θ

)
dθ+ 1

2π

∫ φ2
φ1

(
2
√
R2
int − z2 sin2 θ

)
dθ if φ1 > |θ| ≤ φ2

Let us say that CR can choose any angle between −π and π and start moving in that direction.

Let Θ be the random variable that denotes the angle of the CR. Then, Θ ∼ unif(−π, π) . The

corresponding random variable for interfering distance would be D. We can find the CD of the

interfering distance as follows.

Fd|z(D | Z) = P (D ≤ d)

=


P

(
2

(√
R2
int − z2 sin2 θ −

√
R2
det − z2 sin2 θ

)
≤ d
)

if |θ| ≤ φ1

P

(
2
√
R2
int − z2 sin2 θ ≤ d

)
if φ1 > |θ| ≤ φ2
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On simplification, we get

Fd|z(D | Z) =



1−
(
1
π

)
sin−1

(√(
4R2

int−d2
4z

))
−
(
1
π

)
sin−1

(√(
64R2

intR
2
det−(4R2

int+4R2
det−d2)

16d2z2

))

for 2(Rint −Rdet) ≤ d ≤ 2
√
R2
int −R2

det

and

1−
(
1
π

)
sin−1

(√(
4R2

int−d2
4z

))
for 0 ≤ d ≤ 2(Rint −Rdet)

A.3 Simulation

The average interference distance and the cdf for interfering distance were simulated using

MATLAB with Rint = 5 units. Figure A.3 shows the average interference distance and cdf of

interfering distance for a CR with no detection capability. Since the interference radius and the

position of the primary receiver are fixed, the angle φ1 = sin−1
(
Rint
z

)
decreases with increase in z

(distance between CR and Rx). Hence, the average interference distance also decreases.

Figure A.4 shows the average interference distance and cdf of interfering distance for a CR

with a detection radius Rdet = 3 units. As expected, the average interference distance reduces with

the introduction of detection capability.
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Figure A.3: Average and cdf of interfering distance for a CR with no detection capability
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Appendix B

QQ-Plot

The qq-plot compares two distributions by plotting their quantiles against each other (In

qq-plot, ’q’ stands for quantile). Quantiles are defined as points taken at regular intervals from the

cdf of a random variable. In other words, quantile is the fraction of data points below the given

value. For example, if the data size is n, the 60% quantile is the point at which 0.6n data samples

fall below this point. In a qq-plot, ’q’ such quantiles from the ordered data set obtained using

the first distribution are plotted against the ’q’ quantiles obtained from the ordered data set of

the second distribution. Let {X1, X2..Xn} be an ordered data set of n points. from the unknown

distribution FA and let FB be the second distribution. The qq-plot graphs
(
Xi, F

−1
B

(
i− 1

2
n

))
A

45-degree reference line is also plotted. If the two distributions are similar, the points should fall

approximately along this reference line. The greater the departure from this reference line, it is

more likely that the data sets belong to different distribution i.e the two distributions are dissimilar.



Appendix C

An Introduction to Queueing Theory

This thesis considers the scenario of a cognitive radio on an unmanned aircraft that might

interfere with the primary users on the ground. The mean and distribution of the duration of

interference outages, and the total interference duration for the entire excursion of the aircraft are

the metrics of interest. These metrics can be derived using queueing theory. Queueing theory deals

with the study and analysis of queues or in a more generic sense waiting lines. It is often regarded

as a branch of operations research since the results derived from queueing theory are widely used

to determine resource allocation and optimum service strategy for a business model. It can also be

considered as a branch of applied probability theory since it uses probability and random process

theory to model and analyze several processes related to queues or waiting lines. For example,

queueing theory enables us to determine the average number of customers in a queue, arrival and

departure rate of the customers, average or expected waiting time and service time per customer

and the probability of the queue being empty or full. It is applied in numerous fields such as

computer networks, telecommunications, machine plants, intelligent transport systems, traffic flow

analysis, etc.

C.1 A typical Queueing system

A typical queueing system model consists of a service center with a certain number of servers

and a population of customers. A new customer arriving to obtain service is serviced immediately

if the service center is free (i.e. the service center is not servicing any customer). Otherwise, the
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customer has to wait in a queue until he gets his chance to be serviced. A simple example would

be a coffee shop with a single server servicing the customers. If a new customer enters the coffee

shop and finds that there are no other people at the server, he is served immediately. But if he

enters the shop and finds say 5 people in queue, he has to join the end of the queue and wait for

his turn [8].

A typical queueing system model is as shown in Figure C.1. Let us consider that the customers

enter the service center in a random manner. The service facility has one or more servers and each

server can serve exactly one customer at a time. The service time required per customer is also

modeled as a random variable following a certain distribution with a finite mean. Let us assume

that there are infinite number of customers and the nth customer Cn arrival at time τn. The

difference in arrival times of consecutive customers is called the interarrival time. It is denoted by

tn and is defined as

tn = τn − τn−1

Let us assume that these interarrival times (tn) are i.i.d random variables, i.e. the interarrival times

are independent from each other and are drawn from the same distribution with the cdf A(t).

A(t) = P (tn ≤ t)

Similarly, we assume that the service times sn corresponding to each customer Cn are also i.i.d

random variables drawn from the same distribution with the cdf B(t). Also, the queue has an

infinite length to accommodate every customer entering the system.

A queueing system employs a service strategy to handle the customers. Some of the commonly

used service strategies are

• FIFO: (First In First Out): This is the most widely used service strategy. A new customer

entering the system goes to the end of the queue if he finds the system busy. Hence the

customer who entered the system first will be the first one to obtain service.
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Figure C.1: Typical Queueing System Model
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• LIFO: (Last In First Out): A new customer entering the system goes to the head or top of

the queue if he finds the system busy. Hence the customer who entered the system most

recently will be the first one to obtain service.

• Round Robin: In this case, every customer gets an equal time slice. If the service is not

completed in this round, the customer will re-enter the queue from the end.

• Priority Disciplines: Here each customer is assigned with a priority and the service center

serves the customers based on the decreasing order of priority. i.e the highest priority

customer is served first. The priority assignment can be static or dynamic and the system

can be preemptive or non-preemptive.

• Random Service: The customers are serviced randomly.

C.2 Kendall Notation

Queueing systems are characterized mainly by the distribution of interarrival time, distribu-

tion of service time and the number of servers. Kendall notation is used as the standard notation

to characterize queueing systems. This notation is named after D. G. Kendall who introduced it in

1953 as a three-factor notation [12]

A/B/C

where,

A denotes the arrival process,

B denotes the distribution of the service time, and

C indicates the number of servers.

Some additional factors like K, N and D are used along with the three-factor notation and

represented in the following way

A/B/C/K/N/D

where,
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K denotes the maximum number of customers allowed in the system (inclusive of those being

serviced),

N denotes the total size of the population from which the customers come, and

D indicates the service strategy used like FIFO, LIFO, etc.

When K/N/D are omitted, it is assumed that K =∞, N =∞ and D = FIFO.

The common abbreviations used for A and B are:

• M(Markov): This indicates the underlying distribution obeys Markov property i.e. it is

memoryless. Exponential distribution is the only continuous distribution that satisfies this

property. So, M(t) = 1 − e−λt and the corresponding pdf m(t) = λe−λt, where λ > 0 is

called the “rate”. The mean or the expected value when this distribution is used is 1
λ .

• Ek(Erlang-k): This indicates an Erlang distribution with k phases (k ≥ 1). We have

Ek(t) = 1 −
∑k−1

n=0 e
−λt (λt)n

n! and the corresponding pdf is ek(t) = λktk−1e−λt

(k−1)! , where the

“rate” λ > 0 and the mean is k
λ . For example, this is used to model the distribution of the

arrival of telephone calls at a central office.

• D(Deterministic): This indicates that all the values are a constant and hence drawn from

a “deterministic distribution”. D(t) = α , where α is a constant. The mean is α.

• G(General): This indicates that the underlying distribution is a general distribution which

varies according to applications. Usually it will have finite mean and variance.

C.3 Little’s law and some commonly used queues

C.3.1 Little’s Law

Little’s law is a simple theorem and an integral part of queueing theory. [12] It states that

“The long-term average number of customers in a stable system L is equal to the product of the

long-term average arrival rate, λ, and the long-term average time a customer spends in the system,
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W”

L = λW

This shows that the long-term average number of customers is completely independent of the

underlying distributions for the arrival process and the service times. It is only dependent on their

mean or expected values. This law holds good for any G/G/1 queue and even for service strategies

other than FIFO.

C.3.2 Commonly used queues

Some of the commonly used queue are M/M/1 queue, M/M/m queue and the M/G/1

queue. Some important results corresponding to performance metrics of these queues such as the

distribution and mean of the waiting time for a customer, the mean number of customers within a

duration, the mean and distribution of the busy and idle times of the queue, etc. [12]

C.3.2.1 M/M/1 queue

This is a single server queue model and is widely used to model simple systems. Using

Kendall notation, we can note the following characteristics about the queue - the interarrival time

is derived from an exponential distribution with rate λ (or the arrival process is a Poisson process

since a Poisson process results in exponential interarrival times), the service time is also from an

exponential distribution with rate µ and there is only one server. The length if the queue and

population size are infinite and the service strategy is FIFO. Such a queue can be used to model

the coffee shop example discussed in the previous section with the constraint that the shop has

only one employee serving all the customers and the interarrival and service times for customers

are exponential (which is mostly true in many real world scenarios)

C.3.2.2 M/M/m queue

This is a multi server queue model. Using Kendall notation, we can note the following

characteristics about the queue - the interarrival time is derived from an exponential distribution
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with rate λ, the service time is also from an exponential distribution with rate µ and there is

m servers. The length if the queue and population size are infinite and the service strategy is

FIFO. Again the same coffee shop example can be considered with the constraint that it now

has m employees serving the customers and the interarrival and service times for customers are

exponential. Such queues are used to analyze traffic flows in computer networks too.

C.3.2.3 M/G/1 queue

This is also a single server queue model and used to model simple systems whose service

time distribution depends on their application. Using Kendall notation, we can note the following

characteristics about the queue - the interarrival time is derived from an exponential distribution

with rate λ, the service time is from a general distribution with mean µ and variance σ and there

is only one server. The length of the queue and population size are infinite and the service strategy

is FIFO.

C.3.2.4 M/G/∞ queue

Using Kendall notation, we can note the following characteristics about the queue - the

interarrival time is derived from an exponential distribution with rate λ, the service time is from a

general distribution with mean µ and variance σ and there are infinite servers. The length of the

queue and population size are also infinite and the service strategy is FIFO. Since there are infinite

servers, every customer begins to get serviced immediately. In other words, the waiting time for

any customer in the queue is zero.

C.4 Summary

This chapter presented a brief introduction to queueing theory, some commonly used queues

and their representation. The model that we consider in this thesis can be analyzed using queueing

theory. The primary receivers can be regarded as customers entering a queue from an arrival

process. The interference period per primary receiver can be mapped to the service time for each
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customer. The cognitive radio on the unmanned aircraft does not wait for an interference period

from one primary receiver to end before it begins interfering with the next one. This is analogous

to having infinite number of severs in the queueing system. If we consider the arrival process to be

Markov and any general distribution for interference period, this model can be analyzed M/G/∞

queue, where M denotes the Markov arrival of primary receivers and G denotes the cdf of the

interference period. The results are derived in Chapter 3.


