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Geomagnetic storms play a significant role in space weather physics and have the po-

tential to impact our daily lives. Widespread impacts of space weather physics can include

power grid outages, air traffic rerouting, and disruption of GPS signals. The Lyon-Fedder-

Mobarry global magnetosphereionosphere coupled model (LFM-MIX) is a computer model

used at the Center for Integrated Space Weather Modeling (CISM) to study Sun-Earth in-

teractions by simulating geomagnetic storms. LFM-MIX uses solar wind observations to

perform a magnetohydrodynamic (MHD) simulation of the magnetosphere (LFM) and cou-

ples it with an electrostatic model of the ionosphere (MIX). Given a set of input parameters

and solar wind data, LFM-MIX numerically solves the MHD equations and outputs a large

bivariate spatiotemporal field of ionospheric energy and flux. These input parameters are

unknown and we focus on quantifying them. The currently available methods are insufficient

for our data set due to its high dimensionality, thus we develop our own method based on

statistical calibration. Here, statistical calibration refers to the process of fitting a model

to observed data by adjusting the input parameters. Our approach, which we call feature-

based calibration, involves calculating some goodness of fit criterion between model output

and observed data, then predicting its value over the entire feasible parameter space and

locating the minimum of the predicted surface. We apply this approach to several goodness

of fit criteria based on different defining features of the data.
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Chapter 1

Introduction

Space weather is a branch of space physics concerned with conditions in the space

surrounding Earth, including the magnetosphere, ionosphere, and thermosphere [18]. This

differs from terrestrial weather, which occurs in Earth’s atmosphere (the troposphere and

stratosphere) [18]. Although space weather events occur outside of Earth’s atmosphere, they

still have the ability to impact our daily lives.

Strong space weather events that can be observed from Earth are caused by emissions

from the Sun interacting with Earth’s atmosphere [15]. The Sun is constantly emitting a

solar wind composed of charged particles, which transmits the solar magnetic field through

space. Sometimes when the solar wind is particularly strong it can affect Earth’s magnetic

field and ionosphere. It is these disturbances in Earth’s magnetic field and ionosphere that

trigger geomagnetic storms.

The most intense space weather storms are caused by enormous magnetic eruptions

stemming from the Sun’s sunspot regions. These eruptions are initiated by solar flares, or

bursts of electromagnetic radiation composed of X-rays and ultraviolet light. If these X-rays

come in contact with Earth’s ionosphere they can cause the ionosphere to temporarily lose its

ability to reflect long-range radio waves, which is known as a Radio Blackout. In addition to

causing Radio Blackout, the X-rays and ultraviolet radiation heat the outer part of Earth’s

atmosphere, which causes it to expand and increases the drag on Earth-orbiting satellites,

especially those in high geosynchronous orbit, thus reducing their lifetime in orbit [9]. These
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changes in the atmosphere, along with the intense radio emissions from solar flares, can also

decrease the precision of GPS measurements [9].

Many of these huge magnetic eruptions also render a huge cloud of plasma and concen-

trated solar magnetic field, which is launched through space at millions of miles per hour.

This cloud is known as a coronal mass ejection, or CME. It is the interaction between a

CME and Earth’s magnetosphere that causes the largest magnitude geomagnetic storms. It

typically takes a CME 3 to 5 days to reach the Earth, triggering a geomagnetic storm which

can last somewhere between a few hours and a few days. The strongest geomagnetic storms

have been known to persist for up to a week [15].

CMEs are typically associated with solar flares, but they can also occur independent

of solar flares. Both CMEs and solar flares occur more frequently during the active phase

of the solar cycle, which lasts approximately 11 years. The most recent maximum in solar

activity occurred in April 2014 [9].

The most serious effects of space weather on human activity occur during major ge-

omagnetic storms [9]. In addition to damaging Earth-orbiting satellites and causing Radio

Blackout, geomagnetic storms have also been known to cause temporary loss of electricity

over large regions. The high currents in the magnetosphere translate to high currents in the

power lines, which can cause electric transformers and power stations to blow out. This typ-

ically happens at high latitudes, where the induced currents are the greatest, and in regions

with long power lines, where the ground is poorly conducting [9]. The most well-known

instance of this occurred in Quebec in 1989, when the entire province lost power for nine

hours [11].

In addition to the numerous negative impacts geomagnetic storms have on our lives,

they have one positive effect. From an aesthetic point of view, geomagnetic storms enhance

the Earth’s auroras, causing them to appear brighter and move closer to the equator. See

Figure 1.1.
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Figure 1.1: Aurora australis over Earth’s atmosphere viewed from the International Space

Station (ISS) [4].

Human interest in space weather began in 1724, when the English geophysicist George

Graham noticed that the needle of his magnetic compass was repeatedly deflected from

magnetic north throughout the day. In 1889 English physicist Arthur Schuster eventually

proved, via analysis of magnetic observatory data, that this was due to electrical currents

flowing through the ionosphere and magnetosphere. With the rise of technology over the last

two centuries, the study of space weather has drastically changed since the 1800’s. Today’s

state-of-the-art computer models can do more than just track the location of a geomagnetic

storm, they can simulate and even predict future storms. In this thesis we focus on one

model in particular, the LFM-MIX.

LFM-MIX is a global magnetospheric-ionospheric coupled simulation model used at
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the Center for Integrated Space Weather Modeling (CISM) to study interactions between

the Sun and Earth via simulation of geomagnetic storms. LFM-MIX takes solar wind and

magnetic field data as input, along with a set of unknown input values, and solves the mag-

netohydrodynamic equations, producing a large spatiotemporal field of ionospheric energy

and flux. Our goal is to determine the optimal set of unknown input values which results in

the most accurate prediction of the field observations. In computer experiments literature,

this process of tuning physical model parameters to observations is known as an inverse

problem, or sometimes is referred to as a calibration problem [11].

The layout of this thesis is as follows. In Chapter 2, we describe the LFM-MIX model

and our dataset in further detail. In Chapter 3 we discuss calibration in further detail,

present methods employed in the literature and discuss challenges specific to this problem,

such as the issues introduced by the dimensionality of the data and the uncertainty in the

measurement of the observed geomagnetic storm. We end the chapter by presenting our

method of feature-based calibration. Chapter 4 is where we introduce several statistics

gathered from the data and apply feature-based calibration. Then, in Chapter 5 we validate

the results from Chapter 4 by implementing leave one out cross validation. We hold out

each model as a new set of observations, then calibrate the remaining models to the new

observations and compare the estimated parameter values to the true values to determine

the accuracy of our method. Finally, in Chapter 6 we conclude by analyzing our results and

making suggestions for future work.



Chapter 2

Data and LFM-MIX Model

The LFM-MIX is a magnetospheric-ionospheric coupled model used for simulation of

geomagnetic storms. It is made up of two standalone models, the Lyon Fedder Mobarry

global MHD model (LFM) and the Magnetosphere Ionosphere Coupler/Solver (MIX).

2.1 LFM

The heart of the LFM model is a time-dependent calculation of the state of the mag-

netosphere via numerical solution of the ideal magnetohydrodynamic (MHD) equations.

Typically, the LFM model is tightly coupled to a realistic model of the polar ionospheres

(such as the MIX model), and requires only solar wind plasma and magnetic field data. The

LFM model is structured with the following essential design considerations in mind: high

resolving power transport, maintaining ∇B = 0 and low β, and using an adapted grid [20].

High resolving power transport refers to the plasma transport used in LFM, which is

designed to fulfill two goals: to avoid false extrema upon calculation and to provide the

highest resolution possible. Maintaining ∇B = 0 (up to roundoff error) is also necessary

for the LFM model, as nonzero values of ∇B can cause the magnetic stress tensor to yield

nonphysical magnetic forces. In addition to ensuring ∇B = 0, the LFM model must also

keep a low β value. β represents the ratio of plasma pressure to the magnetic pressure, and

is generally small in the inner magnetosphere. The choice of grid used in the LFM code is

the final crucial aspect of the model’s design. It uses a distorted spherical grid where the
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(r, θ) coordinate system is tailored to the problem at hand. The azimuthal coordinate φ,

on the other hand, is not modified for the specific problem; instead, it is stretched slightly

near the equator and compressed slightly near the poles to give a somewhat more uniform

mapping of the magnetospheric grid in the ionosphere [14]. This process occurs in a separate

program prior to initialization of the LFM code.

Although LFM is currently the only model that can yield a reasonably accurate sim-

ulation of the magnetosphere-ionosphere system, the model suffers from a few limitations.

For instance, LFM assumes the ideal MHD equations for the magnetospheric plasma, which

do not take into account various significant processes, such as inner magnetospheric drifts

and microscopic reconnection physics [20]. This lack of drift physics causes an absence of

trapped ring current, which is known to have a considerable effect on the electrodynamics

of geomagnetic storms [13]. Furthermore, LFM treats the auroral acceleration region in a

simplified manner and does not take into account ionospheric outflow [20].

In this thesis we focus on the LFM-MIX coupled model, but the LFM model can be

coupled with other models to simulate different aspects of Earth’s atmosphere. For instance,

the Coupled Magnetosphere Ionosphere Thermosphere Model (CMIT), which is composed of

LFM, MIX, and the Thermosphere Ionosphere Electrodynamic General Circulation Model

(TIEGCM), is used to simulate Earth’s magnetosphere-ionosphere-thermosphere system.

Coupling LFM with the Rice Convection Model (RCM) instead of MIX also simulates Earth’s

magnetosphere-ionosphere system, but trades some strengths of LFM-MIX to improve upon

weaknesses in the LFM model. For example, LFM-RCM improves upon LFM by taking into

account the trapped ring current [24].

2.2 MIX

Although the main function of the Magnetosphere Ionosphere Coupler/Solver (MIX)

code is to determine the inner boundary conditions for global MHD models, such as LFM,

it has other useful applications. When in solver mode, MIX can use an existing empiri-
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cal model of ionospheric conductance as input to solve for the electrostatic potential. Or,

when in solver/coupler mode, it can take conductance inputs from an external ionosphere-

thermosphere coupled model and calculate the potential [21]. Currently, work is being done

to use MIX in communicating between other geospace models, such as RCM and CMIT.

2.3 Data Set

The data set under consideration in this thesis arises from the LFM-MIX model. Taking

solar wind, initial magnetic field strength, and level of ultraviolet light from the Sun as

boundary conditions, LFM solves the MHD equations and passes on information about the

energy and number flux (henceforth referred to as flux) of the electrons precipitating into

the ionosphere to the MIX model. In the MIX model, three physical equations define the

energy and flux inputs:

ε0 = αc2s, f0 = βρ
√
ε0, ε‖ =

RJ‖
√
ε0

ρ
(2.1)

where ε0 is energy, f0 is flux, c2s is the speed of sound, ρ is the density of the innermost

cells in the magnetospheric grid, ε‖ represents the field aligned electric potential energy

difference, and J‖ represents the upward field aligned current. α, β, and R are unknown

tuning parameters designed to account for physical processes outside the scope of LFM-

MIX. α accounts for the effects of calculating electron temperature from the single fluid

temperature, β adjusts for possible plasma anisotropy and controls a loss filling cone, and R

allows for scaling of the parallel potential drop based on the sign of the current and accounts

for the possibility of being outside the regime of the scaling [11]. Here we seek to identify

the optimal setting of θ = (α, β,R) such that some goodness of fit criterion is minimized.
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Figure 2.1: Grid of spatial locations where the LFM-MIX model was run.

Our observational data set is a bivariate spatiotemporal field of energy (in keV) and

flux (in 1
cm2s

) from a geomagnetic storm which occurred from October 21-22, 2001. Energy

and flux were measured approximately every 3 minutes, between 1:43am (October 21) and

11:59pm UTC (October 22) (815 time points total), on a subset of the 26 × 180 grid of

4680 spatial locations in Figure 2.1. The subset of the spatial grid where the observations

are defined changes for each time point, which further complicates our analysis. In terms

of latitudes and longitudes, the spatial grid spans 46◦ to 90◦ latitude (with 46◦ latitude

corresponding to the outer circle of grid points) and all longitudes (in steps of 2◦ from 0◦

to 358◦) [6]. Our model data comes from 20 runs of LFM-MIX at different input settings

(α, β,R) in the hyperrectangle of physically feasible values: [0, 0.5] × [0, 2.5] × [0, 0.1]. To

simplify our analysis, we normalize the (α, β,R) values, resulting in the hyperrectangle

[0, 1] × [0, 1] × [0, 1] as the new grid for calibration. Each LFM-MIX run contains energy

and flux data defined on the same spatiotemporal grid as the observations. Figures 2.2 and

2.3 show examples of the observed energy and flux, respectively, for time t = 114 and three
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different model outputs for the same time.

We notice that the flux models are several orders of magnitude larger than the observed

flux, while observed energy and models are on a similar order of magnitude. In Chapter 4

we will introduce a multiplicative bias to the models in hopes of correcting this. We can

see from Figure 2.3 that the flux models also need to be rotated. In Chapter 4 we will also

introduce two different rotational biases, one constant and one time-varying.
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Figure 2.2: Top left: Observed energy at time t = 114. Top right: LFM-MIX energy output

for θ = (0.39, 1.21, 0.08). Bottom left: LFM-MIX output for θ = (0.18, 0.17, 0.01). Bottom

right: LFM-MIX output for θ = (0.16, 2.21, 0.05).
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Figure 2.3: Top left: Observed flux at time t = 114. Top right: LFM-MIX flux output

for θ = (0.39, 1.21, 0.08). Bottom left: LFM-MIX output for θ = (0.18, 0.17, 0.01). Bottom

right: LFM-MIX output for θ = (0.16, 2.21, 0.05)

Before moving on to the next chapter we need to introduce some notation. We will let

S denote the 26× 180 grid of spatial locations in Figure 2.1 and T represent the set of 815

time points where the storm was observed. The observed energy will be denoted by E0(s, t)

and the observed flux by F0(s, t), for s ∈ S and t ∈ T . We define θ to be the set of (α, β,R)

values corresponding to each model run, so θ = {(α1, β1, R1), . . . , (α20, β20, R20)} and denote

the parameters corresponding to model j by θj = (αj, βj, Rj). Then the energy and flux for

model j are denoted by Eθj(s, t) and Fθj(s, t), respectively. And finally, the optimal input

setting we are trying to identify will be denoted by θ0 = (α0, β0, R0).



Chapter 3

Method: Feature-based Calibration

In this chapter we introduce statistical calibration, which provides the basis of our

approach, then present a brief overview of different approaches to calibration found in the

literature. Finally, we discuss several challenges presented by our data set and end the

chapter by developing our method of feature-based calibration.

3.1 Calibration

Calibration is a term with many different meanings, depending on the field of study.

Scientific calibration, for example, is the process of determining the scale of a measuring in-

strument based on an informative calibration experiment. While similar to scientific calibra-

tion, a statistical calibration problem has a more complicated form. A statistical calibration

problem is a type of inverse prediction, which some authors refer to as inverse regression,

rather than calibration. To better explain a statistical calibration problem, we borrow a uni-

variate example from [17]: Suppose there is a chemist who wants to establish a calibration

curve for measuring the amount of a certain chemical A in samples sent to the laboratory.

There are two stages in the calibration process: experiment and prediction. In the first stage,

each of the samples with known amounts of chemical A is measured again, this time with

the relatively quick, inexpensive test method we wish to calibrate. The samples with known

amounts of chemical A have been measured by an extremely accurate standard method, which

is slow and expensive to implement. The resulting data is used to estimate the calibration
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curve f, ending the first stage of the calibration process. In the prediction stage, the test

method is used to analyze samples with unknown amounts of chemical A, and the amount

of chemical A is predicted for each sample.

Statistical calibration problems are separated into two classes: absolute and compar-

ative calibration. It is important to distinguish between the two types because, although

they are both called calibration, they are different concepts and lead to different issues in

statistical modelling [17]. In absolute calibration, a quick or non-standard measurement

technique is calibrated against the standard technique, which is known to be accurate. The

chemist example above is an absolute calibration problem. Comparative calibration, on the

other hand, is the process by which one instrument or measurement technique is calibrated

against another, with neither being the standard technique. In this thesis, we will focus on

absolute calibration.

3.2 Literature Review

Before we discuss the challenges presented by our data set, we outline a few popular

approaches found in the literature. We begin with the general approach of Kennedy and

O’Hagan in [10].

In their classic paper Bayesian calibration of computer models, Kennedy and O’Hagan

introduce the method of Bayesian calibration. The basic idea behind their approach is to

use the observed data to derive the posterior distribution of the unknown input parameters,

θ. Then, a predictive distribution is obtained to quantify the ’residual uncertainty’ about θ.

Their approach treats the computer model as a ’black box’, meaning that it does not make

use of any underlying information about the mathematical model, except for the relationships

between the inputs and outputs. They employ the following statistical model:

zi = ζ(xi) + ei = ρη(xi, θ) + δ(xi) + ei

where zi are the observations, ζ(xi) is the true value of the real process when the known

inputs take values xi, ei is the observation error for the ith observation, ρ is an unknown
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regression parameter, η(xi, θ) is the model output given xi and θ as inputs, and δ(·) is a

model inadequacy function that is independent of η(·, ·) [10].

Next, we describe the approach of Kleiber et al. in [11], which was developed with the

LFM-MIX model in mind. Although they also focus on the LFM-MIX model, their data

set differs from ours in that they have model data at two different resolutions. The main

idea behind the approach of Kleiber et al. is to utilize an empirical orthogonal function

(EOF) decomposition of the low resolution spatial field and an EOF decomposition of the

discrepancy function which links the high and low resolutions of the model. We discuss EOF

analysis in further detail in the next section.

Following the approach of Kennedy and O’Hagan above, Kleiber et al. exploit the

following statistical model:

Y (s, t) = H(s, t, θ) + ε(s, t)

where Y (s, t) denotes observed energy at spatial location s and time t; H(s, t, θ) is the high

resolution model output at location s, time t, and optimal input parameters θ; and ε(s, t)

is measurement error, which is normally distributed with mean zero and variance τ 2. Their

approach differs from that of Kennedy and O’Hagan in that they do not employ a model

discrepancy term. The reasons behind this decision will be discussed in section 3.4.3, where

we develop our own statistical model. Finally, the additive discrepancy function δ(s, t, θ) is

used to link the high and low resolution model data:

H(s, t, θ) = L(s, t, θ) + δ(s, t, θ)

Finally, we end our literature review by briefly describing the approach of Heaton et

al. in [6]. Their analysis builds on and extends that of Kleiber et al. by considering both

energy and flux data and including discrepancy between the model output and observations.

They note that exploratory analysis suggests a linear relationship between energy and flux

data for the low resolution model, thus we arrive at the following relationships for the low

resolution model output:

Le(s, t, θ) = µLe(s, t) + wLe(s, t, θ)
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and

Lf (s, t, θ) = µLf (s, t) + βLf (s, t)wLe(s, t, θ) + wLf (s, t, θ)

where µLe(s, t) and µLf (s, t) represent the average energy and flux at spatial location s and

time t, βLf (s, t) is a spatiotemporal slope, and wLe(s, t, θ) and wLf (s, t, θ) are independent

Gaussian random effects.

Heaton et al. also note that exploratory analysis suggests a linear relationship between

the low and high resolution models that varies over the spatiotemporal domain. Thus, the

high and low resolution model outputs are related as follows:

He(s, t, θ) = µHe(s, t) + βHe(s, t)wLe(s, t, θ) + wHe(s, t, θ)

and

Hf (s, t, θ) = µHf (s, t) + βHf (s, t)wLf (s, t, θ) + θHf (s, t)wHe(s, t, θ) + wHf (s, t, θ)

where θHf (s, t) is a spatiotemporal slope field.

3.3 Challenges

As previously mentioned, our data set presents several challenges which render cur-

rently available methods ineffective. First of all, the models and observations are very highly

multivariate spatiotemporal fields; with only one storm and 20 LFM-MIX runs we have

over 76,284,000 correlated points (4680 grid locations for the 20 model runs at 815 time

points, plus the observed storm at a subset of the 4680 grid locations over 815 time points).

The traditional approach of Kennedy and O’Hagan in [10] is very difficult to implement for

large spatiotemporal data sets; in our case it would require inverting a covariance matrix of

dimension 76, 284, 000× 76, 284, 000, which is far beyond our computing capabilities.

In addition to the high dimensionality of our data, uncertainty in the measurement of

the observations presents further challenges. Upon analysis of total energy (which represents

the amount of energy in the storm at each time point) in chapter 4, we notice in Figure 4.5

that the observations and models have similar amounts of energy at the beginning of the

storm, but later on the models all show two large spikes in energy, where the observations
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do not. There are two possible reasons for this behavior: the LFM-MIX model is not very

accurate or the observations were not measured very accurately. The LFM-MIX has been

a very popular method of simulating the magnetosphere-ionosphere system for some time

and is known to be very realistic, thus we suspect this behavior is due to uncertainty in

measurement of the observations. Furthermore, we already know that the observations were

measured via satellite which has a limited field of vision, (this is why the spatial domain

where the observations are defined changes over time), thus it is not unreasonable to assume

that even the measurements over the observed spatial domain are not entirely accurate. In

other words, we suspect that Earth’s curvature prevents the satellite from observing the

entire storm. For example, in Figure 1.1 the part of the storm barely visible on the horizon

is likely not recorded.

Following the approach of Kleiber et al. in [11], we attempt empirical orthogonal

function (EOF) analysis to reduce dimensionality of our data. EOF analysis involves de-

composing the data set in terms of orthogonal basis functions, which are computed from the

data. The ith basis function is chosen to be orthogonal to the first i− 1st and to account

for as much variance as possible. It is very similar to principal components analysis (PCA),

except that EOF analysis finds both time series and spatial patterns, while PCA only finds

spatial patterns [23]. First, the data is arranged into a matrix so that each row represents

a particular time point and the columns are the spatial data points. Next, a singular value

decomposition is performed, resulting in M = U ·D · V t, where M is the data matrix, the

columns of U are the EOFs, the columns of V are the principal components, and the diagonal

values of D represent the amplitudes of the EOFs. However, it is unclear how to proceed

with this process in our case, due to the irregular grids on which the observed data are

defined. To construct the data matrix M , we would need the same number of spatial points

for each time point, but since our observations are defined on different grids for each time

point, we have a different number of spatial points for each time point. Thus, we quickly

abandon the EOF analysis approach.
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3.4 Feature-based Calibration

After providing sufficient background on statistical calibration, we are ready to intro-

duce the main focus of this thesis, our method of feature-based calibration. The following is

a general outline of the process:

(1) Generate statistics based on energy and flux data

(a) Calculate total energy and flux, introduce rotational and multiplicative biases,

etc. See Chapter 4 for further details.

(2) Calculate SSE between models and observations for each statistic

(3) For each statistic, implement test method we wish to calibrate

(a) Calculate empirical variogram based on the SSEs for each statistic

(b) Fit Gaussian variogram model to the empirical variogram

(c) Calculate the covariance function using the parameters from the fitted Gaussian

variogram model

(d) Krige statistics over 3D normalized parameter space

(i) Construct a confidence interval for each statistic at the minimum of the

kriged surface

(4) Validate the test method

(a) Perform leave-one-out cross validation experiment for energy and flux

In this section, we describe the test method in full detail. The statistics for calibration

are generated in Chapter 4, and the test method is applied. Finally, we conclude the cali-

bration process in Chapter 5, where we discuss validation of the test method. Here, we note

that our method differs slightly from the traditional method of absolute calibration in that
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we hold out model data for validation, rather than validating on new, unseen data. This

difference is simply due to new data being expensive and time-consuming to acquire.

Our test method is implemented as follows: For each statistic, we measure the sum of

squared errors (SSE) between the observed values and each model. This results in 20 mea-

sures of error for each statistic, which are located on the three dimensional grid of normalized

θ values for the model runs. This grid will henceforth be referred to as the normalized param-

eter space. Next, we predict the SSE values at new locations in the normalized parameter

space (where we didn’t run the LFM-MIX model) and find the minimum of the predicted

surface. Prediction of the SSE values at new locations is performed with a very popular

geostatistical method known as kriging.

3.4.1 Kriging

Kriging is an interpolation method developed by French mathematician Georges Math-

eron in 1960, based on the 1951 Master’s thesis of Danie G. Krige, after whom the method

is named. Kriging, also known as Gaussian process regression or Wiener-Kolmogorov pre-

diction, yields an interpolation function based on a covariance or variogram model derived

from the data, rather than a theoretical model of the interpolating function. Since kriging

is based on prior covariances it is able to yield the best linear unbiased prediction (under

suitable assumptions on the priors).

The basic idea of kriging is to predict the value of a random function at a given point

by computing a weighted average of the known values of the function in the neighborhood

of the point. Kriging is similar to prediction in time series: given past values, typically

measured at regular intervals, predict the signal at some future time. To analyze the signal,

first the spectrum is modeled then a filter, or predictor, is constructed. The main difference

between the kriging approach and the time series approach is that kriging takes place in a

spatial setting, rather than a temporal setting, where there is no concept of past or future.

There are two other differences between kriging and prediction in time series that we need
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to address. In kriging, the data is typically irregularly spaced, which renders many of the

commonly used methods in digital signal processing ineffective. Second, kriging requires a

continuous, rather than discrete, location indexing space.

Before describing the mechanics of kriging, we must first introduce some notation. Let

{Z(x) : x ∈ D ⊂ Rn} denote a random function used as a model for the variable of interest

{z(x) : x ∈ D ⊂ Rn}, which represents reality. In other words, z(x) is a realization of Z(x).

We will denote the set of points where Z(x) has been sampled by S = {xα : α = 1, . . . , N}.

And the kriging estimator of Z(x0) will be denoted by Z∗(x0). Finally, to make our notation

simpler, we will represent values of functions at sample points by the subscripts of the points.

For example, Zα = Z(xα), mα = m(xα) will represent the mean value of Zα, σαβ = σ(xα, xβ)

will represent the covariance between Zα and Zβ.

Depending on the stochastic properties of the random field under investigation, we

can derive different methods for calculating the weights, thus resulting in different types of

kriging. Three of the most popular methods are ordinary, simple, and universal kriging. Let

x0 denote a spatial location where we wish to estimate the value of the random function,

Z(x0). Ordinary kriging assumes an unknown constant mean over the neighborhood of

x0. Simple kriging assumes a known mean and covariance, and a constant and known first

moment over the entire domain. And universal kriging assumes the mean follows a general

polynomial trend. In this thesis, we focus of the method of simple kriging.

For simple kriging, the estimator Z∗ is defined as follows:

Z∗(x0) = m0 +
∑

α λα(Zα −mα)

where λα is the weight placed on Zα. And the kriging weights are given by the simple kriging

system below:∑
β

λβσαβ = σα0, α = 1, 2, . . . , N

In matrix notation, this is:

Σλ = σ0

where Σ = [σαβ] is the N × N matrix of covariances between the data, λ = [λα] is the
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N -vector of kriging weights, and σ0 = [σα0] is the N -vector of covariances between the data

and the target point, x0. Finally, we define the simple kriging variance as follows:

V (x0) = σ00 − λTσ0

where σ00 is the variance of Z0. We will use the kriging variance to construct a confidence

interval for the simple kriging estimator at the minimum, Z∗0 as follows:

[Z∗0 − 2
√
V0, Z

∗
0 + 2

√
V0]

3.4.2 Covariance Functions and Variograms

As previously mentioned, we need to know the covariance function in order to apply

simple kriging. Simple kriging assumes that the covariance function and variogram are both

stationary and isotropic. In this context, stationary means that the random process only

depends on the separation of any two points, rather than their actual locations. And here,

isotropic means that the random process only depends on the Euclidean distance (and not the

direction) between the points. Since we are assuming that our random process is stationary

and isotropic (together known as homogeneous), we can use one of the common covariance

models, such as the constant, linear, exponential, or Gaussian. Here we choose the Gaussian

covariance model, which is defined as follows:

C(h) = c · exp

(
− h2

a2

)
, a, c > 0

where a and c are parameters derived from the variogram.

The theoretical variogram, denoted by 2γ(x, y), is a function describing the spatial

dependence of a spatial random field or stochastic process. It is defined as the variance of

the difference between field values at two locations across realizations of the field. Mathe-

matically, this is:

2γ(x, y) = var(Z(x)− Z(y)) = E[((Z(x)− µ(x))− (Z(y)− µ(y)))2].

In the case of simple kriging we assume a constant mean µ, and this becomes:

2γ(x, y) = E[(Z(x)− Z(y))2].

γ(x, y) itself is known as the semivariogram, but is typically just called the variogram in



20

the literature. Following this convention, henceforth the term variogram will refer to the

semivariogram γ(x, y). To estimate the variogram, we calculate the sample or empirical

variogram as follows:

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

|zi − zj|2

where zi is the observed value at location xi and N(h) is the set of pairs of observations i, j

such that d(xi, xj) = h (within a given tolerance), where d(xi, xj) is the Euclidean distance

between spatial locations xi and xj.

In order to apply simple kriging, we need a variogram that is conditionally nega-

tive definite. In other words, for all weights w1, . . . , wn such that
n∑
i=1

wi = 0, we require

n∑
i=1

n∑
j=1

wiγ(xi, xj)wj ≤ 0. Due to variability in the estimation of the empirical variogram, it

may not fulfill this requirement. To fix this, we approximate the empirical variogram with

a model function that ensures validity of the variogram. There are many different model

functions to choose from, such as exponential, spherical, and Gaussian. In this thesis we

make exclusive use of the Gaussian variogram model, defined as follows:

γ(h) = (c− n)

[
1− exp

(
− h2

a2

)]
where c, n, and a are tuning parameters and h is the lag increment. c represents the sill,

which is the limit of the variogram as h goes to infinity. n is the nugget, which is the value of

the variogram at the origin. a is the range, which is just the distance at which the difference

between the variogram and the sill becomes negligible.

Before moving on to the next subsection, we need to discuss selection of the lag incre-

ment h in the empirical variogram. The lag increment h controls the distances at which the

empirical variogram is calculated. If h is too small the variogram will be too noisy, but if

h is too large the variogram won’t include enough points, which will make it too smooth.

There is no rigorous method of selecting h in the literature, the ideal procedure depends on
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the problem at hand. For our particular problem we assume that the nugget value is zero,

thus an h that minimizes the nugget is desirable. We assume a zero nugget value because

if we run LFM-MIX at the same input settings multiple times we will always get the same

energy and flux output, resulting in the same SSEs; thus the variogram at zero lag should

be zero. The nugget value is not the only deciding factor in our selection of h. We also

require an empirical variogram that increases over a somewhat large range. Obviously the

variogram needs to be increasing, since points that are closer together should be more similar

than points that are farther apart. We also require a large range because a variogram that

increases to its sill very quickly does not show as much spatial correlation as one that takes

a long time to reach its sill.

3.4.3 Statistical Model

Finally, we are ready to introduce the statistical model for our problem. Actually, since

we are examining several different statistics, we will have a different model for each statistic;

however, they are all of the same general form. Following the approach of Kleiber et al.,

we use a method popularized by Kennedy and O’Hagan in [10]. We suppose there is an

unknown setting, θ0, for which the LFM-MIX model output is an adequate representation

of reality. In particular, for the observations, Y (s, t), at grid point s and time t, we have:

F (Y (s, t)) = F (M(s, t, θ0)) + ε(s, t)

whereM(s, t, θ0) is the LFM-MIX model output at the optimal input setting θ0, F (M(s, t, θ0))

represents a particular statistic generated from the LFM-MIX model output, F (Y (s, t)) is

the same statistic generated from the observed geomagnetic storm data, and ε(s, t) denotes

measurement error (which we assume to be normally distributed with mean zero and variance

τ 2). For example, F (·) for rotated energy would be defined as follows:

F (M(s, t, θ0)) = R(r̂)M(s, t, θ0)
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where R(r̂) is a clockwise rotation matrix given by R(r̂) =

 cos(r̂) sin(r̂)

− sin(r̂) cos(r̂)


and r̂ is the rotation that minimizes some measure of error between the observations and

rotated models. Like Kleiber et al., we also do not include a model discrepancy term. There

are two reasons for this: model discrepancy is not part of the traditional setup for large-scale

inverse problems such as ours and since we have only one geomagnetic storm, and any model

bias term would be confused with ε(s, t) without severe simplifying assumptions [11].



Chapter 4

Application of Method

In this chapter we introduce several statistics gathered from the data, then apply our

method of feature-based calibration to each one and present the results. Table 4.1 and

Figures 4.15-4.17 in Section 4.13 summarize the results for each statistic. Then, in Section

4.14 we introduce a sigmoid weight function to the statistics in hopes of improving upon the

results of Section 4.13.

4.1 Energy

The first, and simplest, statistic we will consider is the energy SSE, denoted by

SSE(Eθ). We define the energy SSE for model j as follows:

SSE(Eθj) =
∑
t∈T

∑
s∈S

(E0(s, t) − Eθj(s, t))
2. Upon calculation of the energy SSE we notice

that model 8, corresponding to (α, β,R) = (0.180, 0.169, 0.005) minimizes SSE(Eθ). Now we

initiate the calibration process by computing the empirical variogram for SSE(Eθ). Using

a bin width of 0.22, we find that the empirical variogram has an increasing trend and a

small nugget value, as desired (see the black line in Figure 4.1). Next, we fit a Gaussian

variogram model to the empirical variogram. To do this, we computed the Gaussian model

at c = a = {0.1, 0.2, . . . , 10.0}, and found that using c = 0.1 and a = 0.2 minimizes the SSE

between the empirical and fitted variograms (see Figure 4.1).

Now that we have established an appropriate variogram model, we can finish calibration

of SSE(Eθ) by kriging the SSE values over the grid of equally spaced locations in the three
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dimensional normalized parameter space [0, 1]× [0, 1]× [0, 1]. Figures 4.2-4.4 show 2D slices

of the predicted field at the minimum of the normalized parameter space, which corresponds

to the point (0.39, 1.35, 0.06) in the original (unnormalized) parameter space.
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Figure 4.1: Empirical and fitted variograms for the energy SSE. Empirical variogram is black

and fitted model is in red.
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Figure 4.2: Top left: (α, β) slice of predicted surface at the minimum of SSE(Eθ). White dots

are locations of LFM-MIX model runs. Top right: (α, β) slice of kriging prediction variance

at the minimum of SSE(Eθ). Bottom left: (α, β) slice of upper bound of 95% confidence

interval at its minimum. Bottom right: (α, β) slice of lower bound of 95% confidence interval

at its minimum.
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Figure 4.3: Top left: (α,R) slice of predicted surface at the minimum of SSE(Eθ). White

dots are locations of LFM-MIX model runs. Top right: (α,R) slice of kriging prediction

variance at the minimum of SSE(Eθ). Bottom left: (α,R) slice of upper bound of 95%

confidence interval at its minimum. Bottom right: (α,R) slice of lower bound of 95%

confidence interval at its minimum.
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Figure 4.4: Top left: (β,R) slice of predicted surface at the minimum of SSE(Eθ). White

dots are locations of LFM-MIX model runs. Top right: (β,R) slice of kriging prediction

variance at the minimum of SSE(Eθ). Bottom left: (β,R) slice of upper bound of 95%

confidence interval at its minimum. Bottom right: (β,R) slice of lower bound of 95%

confidence interval at its minimum.

4.2 Rotated Energy

Both exploratory analysis and review of the literature suggest that a rotation may be

required to better align LFM-MIX output with the observed storm. The need for a rotational

bias is clear from Figure 2.3. Furthermore, Heaton et al. even claim (on the basis of

personal discussion with scientists at CISM) that this rotational bias is highly informational

in developing future versions of LFM-MIX [6]. Here we use a slightly different approach from

that of Heaton et al., while they employ a nonlinear time-varying rotational bias, we begin

with a constant rotational bias, then introduce our own time-varying rotational bias in the

next section.
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We begin by rotating each of the models clockwise around the origin (which corre-

sponds to the North Pole) in increments of 2◦ (from 2◦ to 358◦). Model j rotated by i

degrees is denoted by Re
θj ,i

(s, t). Then we calculate the SSE between the observations and

rotated models and, for each model, choose the rotation that yields the minimum SSE.

Mathematically, the rotated energy SSE for model j is defined as follows: SSE(Re
θj

) =

min
i∈{2,4,...,358}

∑
t∈T

∑
s∈S

(Re
θj ,i

(s, t) − E0(s, t))
2. Initially, we find that model 8 (with (α, β,R) =

(0.18, 0.169, 0.005)) rotated 104◦ minimizes the rotated energy SSE, SSE(Re
θ).

Now we can commence the calibration process by computing the empirical variogram

for SSE(Re
θ). Using a bin width of 0.22, we find that the empirical variogram for SSE(Re

θ)

looks almost identical to the empirical variogram for SSE(Eθ) in Figure 4.1. Next, we fit

a Gaussian variogram model to the empirical variogram. Calculating the Gaussian fit for

inputs c = {0.01, 0.02, . . . , 1.00} and a = {0.1, 0.2, . . . , 10.0}, we find that c = 0.03 and

a = 0.4 give the best fitted Gaussian model, which looks very similar to the fitted model

in Figure 4.1. Finally, we end the calibration process for SSE(Re
θ) by kriging the values

over the same normalized 3D parameter space as in section 4.1. Upon kriging, we find that

the minimum is located at (0, 0, 0.08) in the original parameter space. We notice that the

minimum location differs significantly from that of the previous section. This is no surprise;

we expect rotated minimum locations to differ from non-rotated minimum locations.

4.3 Energy with Varying Rotation

In this section, we expand upon the idea of section 4.2 by introducing a time-varying

rotational bias à la Heaton et. al. We begin by measuring the SSE between observed energy

and each rotated model for each time point and rotation. Then, for each model and time

point, we choose the rotation that minimizes the SSE, and call this quantity rθj(t).

Now we are ready to develop our time-varying rotational bias. Since geomagnetic

storms evolve smoothly over time, the rotational bias should be a smooth function over

time [6]. While Heaton et al. choose a rotational bias that follows a natural cubic spline
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(with vague Gaussian priors used for the coefficients of the spline bases), we take a slightly

different approach. Instead, we fit natural splines of varying degrees of freedom to rθj(t) and

minimize the SSE between observed energy and rotated energy to determine the optimal

degree of spline fit for each model. We calculate the spline basis functions and coefficients

using ns in the splines package and fit them to the data using predict in the stats

package in R. The following algorithm illustrates this process step-by-step:

(1) For each model j, calculate SSE between observations and each rotation i, for each

time point:

(a) SSE(Re
θj ,i

)(t) =
∑
s∈S

(E0(s, t)−Re
θj ,i

(s, t))2

(2) Find the rotation that minimizes the SSE for each model and time point:

(a) rθj(t) = argmin
i∈{2,4,...,358}

SSE(Rθj ,i)(t)

(3) Fit splines with degrees of freedom d = {1, 2, . . . , 20}, to each rθj(t):

(a) Sθj(d, t) =
d∑

k=1

nk(t)νk

(b) nk(t) are the natural spline basis functions and νk is the corresponding coeffi-

cient.

(4) Find the degree of freedom that minimizes the SSE between observations and models

rotated by Sθj(d, t):

(a) dθj = argmin
d∈{1,2,...,20}

∑
s∈S

∑
t∈T

(E0(s, t)−Re
θj ,Sj(d,t)

(s, t))2

(5) The time-varying rotational bias for each model is the best spline fit:

(a) λθj(t) =

dθj∑
k=1

nk(t)νk
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Finally we can define our next statistic, the SSE for energy with time-varying rotation:

SSE(Rev
θj

) =
∑
s∈S

∑
t∈T

(E0(s, t)−Rev
θj

(s, t))2, where Rev
θj

(s, t) = Re
θj ,λθj (t)

(s, t). Initially, we find

that model 8 (corresponding to (α, β,R) = (0.18, 0.169, 0.005)) with a spline of 17 degrees

of freedom minimizes SSE(Rev
θj

).

We begin the calibration process by computing the empirical variogram for SSE(Rev
θ ).

Using a bin width of 0.22, we find that the empirical variogram looks almost identical to the

empirical variograms for SSE(Eθ) and SSE(Re
θ) (see Figure 4.1). Next, we fit a Gaussian

model to the empirical variogram using inputs c = a = {0.01, 0.02, . . . , 1.00}, and find that

c = 0.03 and a = 0.49 yield the best Gaussian fitted model. Naturally, the Gaussian model

fit looks very similar to that of Figure 4.1. Now we can end the calibration process by kriging

SSE(Rev
θ ) over the 3D parameter space of section 4.1. We find that the minimum of the

kriged surface is located at (0.41, 1.43, 0.06) in the original parameter space. We notice that

the minimum locations for energy and energy with varying rotation are very similar in α

and R, and the β values differ on a slightly larger scale. This behavior is no surprise, given

that energy is only indirectly related to β via the governing equations 2.1, thus resulting in β

being not as well-defined as α and R for the energy statistics. Analysis of the flux statistics

later in this chapter will shed more light on the optimal range of β.

4.4 Total Energy

Next, we will consider the total energy, which represents the amount of energy in

the geomagnetic storm at any time point. Mathematically, the total energy for model j

is defined as follows: T eθj(t) =
∑
s∈S

Eθj(s, T ), where Eθj(s, T ) is the energy for model j at

spatial location s over all time points, T. Now we define the total energy SSE: SSE(T eθj) =∑
t∈T

(T eθj(t)− T
e
0 (t))2, where T e0 (t) is the total energy of the observations.

Upon plotting the total energy time series for each model, we notice that the models

all have the same structure over time, only with different amounts of energy. See Figure 4.5
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below. Again, we notice that model 8 ((α, β,R) = (0.18, 0.169, 0.005) minimizes the total

energy SSE.
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Figure 4.5: Total energy time series. Observations are in black and the models are in color.

Now we can initialize the calibration process, as before, by calculating the empirical

variogram. Again, we use a bin width of 0.22 and find that the empirical variogram has

the desired qualities: increasing trend and small nugget value. However, as we can see from

Figure 4.6, the empirical variogram has a slightly different shape than that of the previous

energy statistics.
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Figure 4.6: Empirical and fitted variograms for the total energy SSE. Empirical variogram

is in black and fitted model is in red.

To continue the calibration process, we fit a Gaussian model to the empirical variogram.

Using input values c = {0.1, 0.2, . . . , 10.0} and a = {0.1, 0.2, . . . , 10.0}, we find that c =

a = 0.3 yields the best fit. See Figure 4.6 above. Next, we krige the SSE values over

the normalized parameter space [0, 1] × [0, 1] × [0, 1], resulting in a minimum located at

(0.18, 0.15, 0.01) in the original parameter space. Here, we notice that the minimum locations

for total energy and the previous energy statistics differ significantly. Once again, this is

no surprise; we expect total energy minimums to differ from energy and rotated energy

minimums. We also notice that β differs on a much larger scale than α and R. Again, this

is because β is known to be not as well-defined as α and R for the energy statistics, since

energy only depends on β indirectly via the governing equations 2.1.
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4.5 Smooth Total Energy

In Figure 4.5, we notice that the total energy time series are very noisy, which suggests

that smoothing may help us better isolate the true signal. In this section, we introduce

smoothing for the total energy time series, and in the next section we expand upon this idea

by introducing a multiplicative bias.

We smooth the total energy time series (both models and observations) using a simple

moving average, also known as a Daniell window/kernel. The smoothing parameters, M0 for

observations and Mθj for models, represent the number of time points on either side of t that

we average to calculate the smoothed value for time t. We choose the optimal smoothing

parameters, M0 and Mθj , via 10-fold cross validation. The following algorithm illustrates

this process for M0:

(1) For k ∈ {1, 2, . . . , 10}, do steps 2-5:

(2) Randomly hold out 10% of total energy data, call these values H(t)

(3) Compute moving average for each H(t) value and each m ∈ {2, 3, . . . , 40}, denote it

by S(m, t):

(a) S(m, t) =
1

2m+ 1

t+m∑
i=t−m

T e0 (i)

(4) Measure error between H(t) and S(m, t) for each m:

(a) Err(m) =

|H(t)|∑
t=1

|S(m, t)−H(t)|

(5) Find the m value that minimizes Err(m) for kth fold of cross validation:

(a) M(k) = argmin
m∈{2,3,...,40}

Err(m)

(6) Average results for each fold of cross validation to get our optimal m value:

(a) M0 = 1
10

∑10
k=1M(k)



34

Now that we have calculated the smoothing parameters, we can define the observed

smooth total energy as follows: τ e0 (t) =
1

2M0 + 1

t+M0∑
i=t−M0

T e0 (i). The smooth total energy for

the models is defined analogously.

Finally, the smooth total energy SSE for model j is defined as follows: SSE(τ eθj) =∑
t∈T

(τ e0 (t)− τ eθj(t))
2.

And now we are ready to begin the calibration process by computing the empirical

variogram. Using a bin width of 0.22, we discover that the empirical variogram looks nearly

identical to that of the total energy SSE (see Figure 4.6). Next we fit a Gaussian variogram

model, which again looks very similar to that of the total energy SSE. Using input values

c = a = {0.1, 0.2, . . . , 10.0}, we find that c = 0.5 and a = 0.3 yields the best fitted variogram.

Finally, we end the calibration process for smooth total energy by kriging the SSE values

over the normalized parameter space of the previous sections. This results in a minimum

at (0.20, 1.03, 0.05) in the original parameter space. This time, we notice that the α and R

coordinates of the minimum are similar to those of total energy, while β differs on a larger

scale. As previously mentioned, this is to be expected from the governing equations 2.1.

4.6 Scaled Smooth Total Energy

We end our analysis of the energy statistics by expanding on the idea of section 4.5.

First, we must jump ahead for a brief moment. Upon initial investigation of the total flux

data, we notice that the observations are several orders of magnitude smaller than the models,

suggesting the need for a multiplicative bias. We decide to introduce a multiplicative bias,

not only for the smooth total flux, but also for the smooth total energy.

After smoothing the total energy, we choose the optimal multiplicative bias, C? for

each model in the following way:

(1) Choose C values for model j as follows:

(a) Let mj =
maxt∈T τ

e
0 (t)

maxt∈T τ eθj(t)
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(b) Cj = {0.8 ·mj, 0.85 ·mj, . . . , 1.2 ·mj}

(2) Choose C that minimizes SSE between each model and the observations, call it C?:

(a) C?(j) = argmin
i∈Cj

∑
t∈T

(τ e0 (t)− i · τ eθj(t))
2

Finally, we define the SSE for scaled smooth total energy: SSE(τ̂ eθ ) =
∑
t∈T

(τ e0 (t) −

τ̂ eθj(t))
2, where τ̂ eθj(t) = C?(j) · τ eθj(t). And now we can begin the calibration process by

calculating the empirical variogram for SSE(τ̂ eθ ). Using a bin width of 0.26, we find that

the empirical variogram has an increasing trend and small nugget value, as desired (see

Figure 4.7). Next, we fit a Gaussian model to the empirical variogram, using inputs c =

a = {0.01, 0.02, . . . , 10.00}. We find that c = 0.03 and a = 1.07 yield the best fitted

model. Finally, we end the calibration process by kriging the SSE values over the normalized

parameter space, resulting in a minimum at (0, 2.5, 0.1) in the original parameter space. We

notice that these results vary drastically from those of the other energy statistics. We

suspect this is due to a poorly fitting Gaussian variogram model. Perhaps analysis of the

flux statistics in the next several sections will aid in explaining this behavior.
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Figure 4.7: Empirical and fitted variograms for the scaled total energy SSE. Empirical

variogram is in black and fitted model is in red.

4.7 Flux

In this section we begin our analysis of the flux statistics by examining the flux SSE,

denoted by SSE(Fθ). We define the flux SSE for model j as follows:

SSE(Fθj) =
∑
t∈T

∑
s∈S

(F0(s, t) − Fθj(s, t))2. Upon calculation of the flux SSE we notice that

model 20, corresponding to (α, β,R) = (0.294, 0.64, 0.018) minimizes SSE(Fθ). Now we

initiate the calibration process by computing the empirical variogram for SSE(Fθ). Using

a bin width of 0.23, we find that the empirical variogram has an increasing trend and a

small nugget value, as desired (see the black line in Figure 4.8). Next, we fit a Gaussian

variogram model to the empirical variogram. To do this, we computed the Gaussian model

at c = a = {0.1, 0.2, . . . , 10.0}, and found that using c = 3.7 and a = 0.2 minimizes the SSE

between the empirical and fitted variograms (see Figure 4.8 again).
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Figure 4.8: Empirical and fitted variograms for the flux SSE. Empirical variogram is in black

and fitted model is in red.

Now that we have established an appropriate variogram model, we can finish calibration

of SSE(Fθ) by kriging the SSE values over the normalized parameter space used in the

previous sections. Figures 4.9-4.11 show 2D slices of the predicted field at the minimum

of the normalized parameter space, which corresponds to the point (0.29, 0.65, 0.02) in the

original parameter space.
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Figure 4.9: Top left: (α, β) slice of predicted surface at the minimum of SSE(Fθ). White dots

are locations of LFM-MIX model runs. Top right: (α, β) slice of kriging prediction variance

at the minimum of SSE(Fθ). Bottom left: (α, β) slice of upper bound of 95% confidence

interval at its minimum. Bottom right: (α, β) slice of lower bound of 95% confidence interval

at its minimum.
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Figure 4.10: Top left: (α,R) slice of predicted surface at the minimum of SSE(Fθ). White

dots are locations of LFM-MIX model runs. Top right: (α,R) slice of kriging prediction

variance at the minimum of SSE(Fθ). Bottom left: (α,R) slice of upper bound of 95%

confidence interval at its minimum. Bottom right: (α,R) slice of lower bound of 95%

confidence interval at its minimum.
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Figure 4.11: Top left: (β,R) slice of predicted surface at the minimum of SSE(Fθ). White

dots are locations of LFM-MIX model runs. Top right: (β,R) slice of kriging prediction

variance at the minimum of SSE(Fθ). Bottom left: (β,R) slice of upper bound of 95%

confidence interval at its minimum. Bottom right: (β,R) slice of lower bound of 95%

confidence interval at its minimum.

4.8 Rotated Flux

We proceed in a similar manner to that of section 4.2, by calculating the SSE between

the observed flux and rotated models, and choosing the rotation that minimizes the SSE.

Mathematically, the rotated flux SSE for model j is defined as follows: SSE(Rf
θj

) =

min
i∈{2,4,...,358}

∑
t∈T

∑
s∈S

(Rf
θj ,i

(s, t) − F0(s, t))
2. Initially, we find that model 20 (with (α, β,R) =

(0.294, 0.64, 0.018)) rotated 6◦ minimizes the rotated flux SSE, SSE(Rf
θ ).

Now we can initiate the calibration process by computing the empirical variogram for

SSE(Rf
θ ). Using a bin width of 0.23, we find that the empirical variogram for SSE(Rf

θ )
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looks nearly identical to the empirical variogram for SSE(Fθ) in Figure 4.8. Next, we fit

a Gaussian variogram model to the empirical variogram. Calculating the Gaussian fit for

inputs c = a = {0.1, 0.2, . . . , 10.0}, we find that c = 3.7 and a = 0.2 give the best fitted

Gaussian model, which naturally looks very similar to the fitted model in Figure 4.8. Finally,

we end the calibration process for SSE(Rf
θ ) by kriging the values over the same normalized

3D parameter space as in previous sections. Upon kriging, we find that the minimum is

located at (0.29, 0.65, 0.02) in the original parameter space. We notice that the minimum

locations for flux and rotated flux are identical.

4.9 Flux with Varying Rotation

In this section, we proceed in the same manner as section 4.3, by introducing a time-

varying rotational bias for flux. Again, we will fit natural splines of varying degrees of

freedom to rθj(t) (the rotation that minimizes SSE for each time point), and minimize the

SSE between observed flux and rotated flux to determine the optimal degree of spline fit for

each model.

We define the SSE for flux with a time-varying rotational bias as follows: SSE(Rfv
θj

) =∑
s∈S

∑
t∈T

(F0(s, t) − Rfv
θj

(s, t))2, where Rfv
θj

(s, t) = Rf
θj ,λθj (t)

(s, t). Initially, we find that model

20 (corresponding to (α, β,R) = (0.294, 0.64, 0.018)) with a spline of 19 degrees of freedom

minimizes SSE(Rfv
θj

).

We begin the calibration process by computing the empirical variogram for SSE(Rfv
θ ).

Using a bin width of 0.23, we find that the empirical variogram looks almost identical to the

empirical variograms for SSE(Fθ) and SSE(Rf
θ ) (see Figure 4.8). Next, we fit a Gaussian

model to the empirical variogram using inputs c = a = {0.1, 0.2, . . . , 10.0}, and find that

c = 3.6 and a = 0.2 yield the best Gaussian fitted model. Naturally, the Gaussian model

fit looks very similar to that of Figure 4.8. Now we end the calibration process by kriging

SSE(Rfv
θ ) over the 3D parameter space of the previous sections. We find that the minimum

of the kriged surface is located at (0.29, 0.68, 0.02) in the original parameter space.
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4.10 Total Flux

Next we will consider the total flux, which represents the amount of flux in the geo-

magnetic storm at any time point. Mathematically, we define the total flux for model j as

follows: T fθj(t) =
∑
s∈S

Fθj(s, T ), where Fθj(s, T ) is the flux for model j at spatial location s

over all time points, T. Now we define the total flux SSE: SSE(T fθj) =
∑
t∈T

(T fθj(t)− T
f
0 (t))2,

where T f0 (t) is the total flux of the observations. Upon initial inspection of the total flux

time series, we find once again that model 20 ((α, β,R) = (0.294, 0.64, 0.018)) minimizes

SSE(T fθ ).

Now we can initialize the calibration process, as before, by calculating the empirical

variogram. Again, we use a bin width of 0.23 and find that the empirical variogram looks

nearly identical to that of the flux, rotated flux, and flux with varying rotation SSEs. To

continue the calibration process, we fit a Gaussian model to the empirical variogram. Using

input values c = a = {0.1, 0.2, . . . , 10.0}, we find that c = 4.0 and a = 0.2 yield the best

fit. Next, we krige the SSE values over the normalized parameter space [0, 1]× [0, 1]× [0, 1],

resulting in a minimum located at (0.29, 0.68, 0.02) in the original parameter space). We

note that calibration of flux with varying rotation and total flux yield the same minimum.

4.11 Smooth Total Flux

Here we follow the same approach as in section 4.5, smoothing the total flux with a

simple moving average. Again, we find the optimal smoothing parameters, M0 and Mθj , by

implementing 10-fold cross validation. After identifying M0 and Mθj , we define the observed

smooth total flux as follows: τ f0 (t) =
1

2M0 + 1

t+M0∑
i=t−M0

T f0 (i). And finally, the smooth total

energy SSE for model j is defined as follows: SSE(τ fθj) =
∑
t∈T

(τ f0 (t)− τ fθj(t))
2.

We begin the calibration process, as usual, by computing the empirical variogram.

Using a bin width of 0.23, we discover that the empirical variogram has the desired qualities:
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increasing trend and small nugget value (see Figure 4.12). Now we fit a Gaussian variogram

model, using inputs c = a = {0.1, 0.2, . . . , 10.0}, and find that c = 8.6 and a = 9.9 yield the

best fit. Finally, we krige the SSE values over the normalized parameter space, resulting in

a minimum at (0.5, 0, 0) in the original parameter space.
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Figure 4.12: Empirical and fitted variograms for the smooth total flux SSE. Empirical vari-

ogram is in black and fitted model is in red.

4.12 Scaled Smooth Total Flux

After smoothing the total flux, we introduce a multiplicative bias in a manner similar

to that of section 4.6. We define the SSE for scaled smooth total flux as follows: SSE(τ̂ fθ ) =∑
t∈T

(τ f0 (t)− τ̂ fθj(t))
2, where τ̂ fθj(t) = C?(j) · τ fθj(t) and C?(j) is the optimal multiplicative bias

for model j. Now we can begin the calibration process by calculating the empirical variogram

for SSE(τ̂ fθ ). We compute the empirical variogram for bin widths h = {0.10, 0.11, . . . , 0.40},

but find that none of these variograms shows any indication of spatial correlation. This
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means that we cannot continue calibration of this statistic, and must eliminate it from

further analysis.

4.13 Discussion of feature-based calibration

We begin our discussion of the results of feature-based calibration by recalling equations

2.1, which govern the input parameter values. We recall that energy is directly related to

α and R, while flux is directly related to β. These relationships suggest that α and R are

well identified by the energy statistics, but β may not be. Analogously, these relationships

suggest that β is well identified by the flux statistics, but α and R may not be.

In Table 4.1 and Figures 4.15-4.17, we notice that the minimums for the flux statistics

center around (0.29, 0.67, 0.02) in the original parameter space, while the energy minimums

do not center on any one particular point. We also note that the significant difference

between the rotated energy and energy minimums is to be expected; optimal parameter

values derived from rotated models should be different from parameter values derived without

rotations. Analogously, it is no surprise that the minimums for total energy and smooth total

energy differ so much from the minimum for energy. However, the large differences between

minimums for total energy and smooth total energy and total flux and smooth total flux are

unexpected. These significant differences in minimums are likely due to oversmoothing of the

observed total energy and total flux. To choose the degree of smoothing for each time series,

we performed 10-fold cross validation with the goal of minimizing absolute error between

smooth and unsmoothed time series. Then we averaged the results of the 10 folds to yield

our smoothing parameter. In Figures 4.13-4.14 we can see that the smoothed time series

do not capture the large spikes in observed total energy and flux around time 200, thus

causing calibration of the smoothed statistics to yield very different minimums than that

of the unsmoothed ones. Perhaps a better method of choosing the smoothing parameters

would be to perform leave-one-out cross validation similar to Chapter 5. This would involve

holding out one of the models as the new observations, then smoothing the time series and
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choosing the smoothing parameter that minimizes the error between the true (α, β,R) value

and the kriged estimate.
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Figure 4.13: Total energy time series. Observed total energy is in black and smooth observed

total energy is in red.
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Figure 4.14: Total flux time series. Observed total flux is in black and smooth observed total

flux is in red.

Some statistics show more spatial correlation than others, so to determine one optimal

input setting θ0 we should give more consideration to those statistics that show better spatial

correlation. If we revisit the variogram plots in Figures 4.1, 4.6, 4.7, 4.8, and 4.12, we see, for

example, that the energy variogram reaches its sill slower than the total energy variogram

does, meaning that energy exhibits more spatial correlation than total energy. Following

this ideology, we conclude that energy, rotated energy, energy with varying rotation, scaled

smooth total energy, and smooth total flux exhibit the greatest spatial correlation. Here we

must note that we should eliminate rotated energy, scaled smooth total energy, and smooth

total flux from further consideration, as the extreme values of their minimums are likely to

yield nonphysical results when used as input settings for the LFM-MIX.

We conclude our discussion of feature-based calibration results by comparing our results

to those found in the literature. In [6], Heaton et al. center on θ0 = (0.47, 1.59, 0.02) as
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their optimal input setting. We find this encouraging, as our minimum for energy with

varying rotation is θ = (0.41, 1.43, 0.06). Kleiber et al. do not center on one particular

point, instead they show two dimensional slices of samples from the posterior distribution

of the input parameters (see Figure 3 in [11]). They identify α ∈ (0.1, 0.2) and β ∈ (0, 0.5)

as a likely region for the input parameters, which agrees with our total energy minimum

of (0.18, 0.15, 0.01). They also identify α ∈ (0.1, 0.2) and R ∈ (0.03, 0.05) as another likely

region for the input parameters, which agrees with our smooth total energy minimum of

(0.20, 1.03, 0.05). Finally, a different set of authors also known as Kleiber et al. find that their

posterior densities center on θ0 = (0.22, 0.75, 0.029) [12]. Again, we find this encouraging, as

our minimums for the flux statistics center on approximately θ0 = (0.29, 0.67, 0.02).

Table 4.1: Results of feature-based calibration

Statistics Min Locations Min Values

Energy (0.39, 1.35, 0.06) 16.504± 0.237

Rotated Energy (0, 0, 0.08) 16.613± 0.088

Energy w/ Varying Rotation (0.41, 1.43, 0.06) 16.676± 0.083

Total Energy (0.18, 0.15, 0.01) 22.794± 0.034

Smooth Total Energy (0.20, 1.03, 0.05) 22.099± 0.284

Scaled Smooth Total Energy (0, 2.5, 0.1) 19.538± 0.027

Flux (0.29, 0.65, 0.02) 45.946± 0.412

Rotated Flux (0.29, 0.65, 0.02) 45.947± 0.412

Flux w/ Varying Rotation (0.29, 0.68, 0.02) 46.337± 0.293

Total Flux (0.29, 0.68, 0.02) 53.741± 0.308

Smooth Total Flux (0.5, 0, 0) 20.211± 0.002
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Figure 4.15: (α, β) slice of model locations and minimum locations. Model runs are the solid

black points, energy minimums are the red open circles, and flux minimums are the blue

open circles.
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Figure 4.16: (β,R) slice of model locations and minimum locations. Model runs are the

solid black points, energy minimums are the red open circles, and flux minimums are the

blue open circles.
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Figure 4.17: (α,R) slice of model locations and minimum locations. Model runs are the

solid black points, energy minimums are the red open circles, and flux minimums are the

blue open circles.

4.14 Weighted feature-based calibration

In an attempt to improve upon the results of our feature-based calibration, we intro-

duce a sigmoidal weight function to our data. As discussed in Section 3.3, we know that

the geomagnetic storm was measured by satellite, which did not observe the entire spatial

domain. And we have reason to believe that even the measurements the satellite was able

to make do not capture all of the geomagnetic activity that occurred in the observed spatial

domain. To correct this in our measures of error between models and observations, we want

to put less weight on the locations where the observed values are small, and more weight on

the larger observations. Our weight function is defined as follows:

w(x) =
1

1 + e−(x−m)
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where m denotes the median of the observed data. We choose a shifted standard logistic

function in particular because it is a smooth monotonically increasing function with domain

R and range [0, 1]. The reason behind the shift is to align the sigmoid’s midpoint with the

median of the observations.

The process of weighted feature-based calibration is nearly identical to that of the

unweighted process, the only difference being in the calculation of the SSEs for kriging.

Since our weight function needs to depend on both time and space, the weighted SSEs for

the statistics based on total energy and total flux require a slightly different approach than

that of the other statistics. For example, in calculating the weighted SSE for total energy

we take the average of the sigmoid weight function evaluated at the observed energy, rather

than using the sigmoid weight function evaluated at the observed total energy. Table 4.2 on

the next page gives the formulas for the weighted SSEs for each statistic.
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Table 4.2: Weighted SSEs

Statistics Weighted SSEs for model j

Energy
∑
t∈T

∑
s∈S

w(E0(s, t)) · (E0(s, t)− Eθj(s, t))2

Rotated Energy
∑
t∈T

∑
s∈S

w(E0(s, t)) · (E0(s, t)−Re
θj

(s, t))2

Energy w/ Varying Rotation
∑
t∈T

∑
s∈S

w(E0(s, t)) · (Rev
0 (s, t)−Rev

θj
(s, t))2

Total Energy
∑
t∈T

(
1

|S|
∑
s∈S

w(E0(s, t))

)
· (T e0 (t)− T eθj(t))

2

Smooth Total Energy
∑
t∈T

(
1

|S|
∑
s∈S

w(E0(s, t))

)
· (τ e0 (t)− τ eθj(t))

2

Scaled Smooth Total Energy
∑
t∈T

(
1

|S|
∑
s∈S

w(E0(s, t))

)
· (τ̂ e0 (t)− τ̂ eθj(t))

2

Flux
∑
t∈T

∑
s∈S

w(F0(s, t)) · (F0(s, t)− Fθj(s, t))2

Rotated Flux
∑
t∈T

∑
s∈S

w(F0(s, t)) · (F0(s, t)−Rf
θj

(s, t))2

Flux w/ Varying Rotation
∑
t∈T

∑
s∈S

w(F0(s, t)) · (Rfv
0 (s, t)−Rfv

θj
(s, t))2

Total Flux
∑
t∈T

(
1

|S|
∑
s∈S

w(F0(s, t))

)
· (T f0 (t)− T fθj(t))

2

Smooth Total Flux
∑
t∈T

(
1

|S|
∑
s∈S

w(F0(s, t))

)
· (τ f0 (t)− τ fθj(t))

2

We begin our discussion of the results of weighted feature-based calibration by compar-

ing the weighted and unweighted calibration results. In Table 4.4 we see that the weighted

and unweighted calibration results are similar for most statistics and note that only rotated

energy, total energy, and smooth total flux differ significantly. We also notice that after

weighted calibration the smooth total flux minimum agrees with the other flux statistics,

validating our decision to apply a weight function to the data. Again, we remove scaled

smooth total energy from further consideration due to the extreme value of its minimum.

Finally, we compare the results of weighted calibration to results found in the litera-

ture. Heaton et al. center on θ0 = (0.47, 1.59, 0.02) in [6]. Again this is encouraging, as
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Table 4.3: Results of weighted feature-based calibration

Statistics Min Locations Min Values
Energy (0.42, 1.45, 0.06) 16.636± 0.073
Rotated Energy (0.42, 1.38, 0.06) 16.796± 0.059
Energy w/ Varying Rotation (0.45, 2.0, 0) 16.797± 0.050
Total Energy (0.45, 1.93, 0.01) 21.464± 0.280
Smooth Total Energy (0.21, 1.03, 0.05) 20.591± 9.075
Scaled Smooth Total Energy (0, 2.5, 0.1) 19.750± 0.106
Flux (0.29, 0.65, 0.02) 45.490± 0.412
Rotated Flux (0.29, 0.68, 0.02) 45.493± 0.402
Flux w/ Varying Rotation (0.29, 0.68, 0.02) 45.947± 0.398
Total Flux (0.29, 0.68, 0.02) 52.325± 0.468
Smooth Total Flux (0.29, 0.68, 0.02) 52.130± 0.307

the weighted energy minimum is (0.42, 1.45, 0.06). In fact, the weighted energy minimum

is closer to Heaton’s result than the unweighted energy with varying rotation. As previ-

ously mentioned, in [11] Kleiber et al. show two dimensional slices of samples from the

posterior distribution of the input parameters. Their findings indicate α ∈ (0.1, 0.2) and

R ∈ (0.03, 0.05) as a likely region for the optimal input parameters, which agrees with our

weighted smooth total energy minimum of (0.21, 1.03, 0.05). Finally, Kleiber et al. in [12]

find their posterior densities center on θ0 = (0.22, 0.75, 0.029), which is also encouraging

since our weighted flux minimums center around (0.29, 0.68, 0.02).
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Table 4.4: Comparison of weighted and unweighted calibration results

Statistics
Min Locations
(Unweighted)

Min Locations
(Weighted)

Energy (0.39, 1.35, 0.06) (0.42, 1.45, 0.06)
Rotated Energy (0, 0, 0.08) (0.42, 1.38, 0.06)
Energy w/ Varying Rotation (0.41, 1.43, 0.06) (0.45, 2.0, 0)
Total Energy (0.18, 0.15, 0.01) (0.45, 1.93, 0.01)
Smooth Total Energy (0.20, 1.03, 0.05) (0.21, 1.03, 0.05)
Scaled Smooth Total Energy (0, 2.5, 0.1) (0, 2.5, 0.1)
Flux (0.29 0.65 0.02) (0.29, 0.65, 0.02)
Rotated Flux (0.29, 0.65, 0.02) (0.29, 0.68, 0.02)
Flux w/ Varying Rotation (0.29, 0.68, 0.02) (0.29, 0.68, 0.02)
Total Flux (0.29, 0.68, 0.02) (0.29, 0.68, 0.02)
Smooth Total Flux (0.5, 0, 0) (0.29, 0.68, 0.02)



Chapter 5

Cross Validation Experiment

5.1 Method

To validate the results of Chapter 4, we perform leave-one-out cross validation. In

the interest of time, we will only do cross validation for energy, flux, weighted energy, and

weighted flux. The following illustrates this process:

(1) For k ∈ {1, . . . , 20}, do steps 2-9:

(2) Choose model k to be the new observations

(3) Measure SSE between new observations and the remaining models

(4) Calculate empirical variogram based on the SSEs

(5) Fit Gaussian model to empirical variogram

(6) Calculate the covariance function using the parameters from the fitted variogram

model

(7) Predict SSE values by kriging over the normalized parameter space

(8) Locate minimum of predicted surface

(9) Measure Euclidean distance between predicted minimum and true parameter values

(10) Average Euclidean distances to yield a single measure of error
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5.2 Results

Table 5.1 and Figures 5.1-5.4 summarize the results of our leave-one-out cross validation

experiment. The rows of Table 5.1 show the cross validation errors when each model is held

out as the new observations, with the last row yielding the average of the previous rows. As

previously mentioned, each cross validation error is the average of the Euclidean distances

between the kriged minimums and the true parameter values. The distances between kriged

minimums and true parameter values are calculated in the normalized parameter space,

rather than the original space [0, 0.5]× [0, 2.5]× [0, 0.1]. As a baseline for comparison, Table

5.1 also includes the cross validation error for randomly choosing a model run. This random

cross validation error is calculated as follows:

(1) For k ∈ {1, . . . , 20} do steps 2-5:

(2) Hold out model k as the new observations

(3) Choose a random model run

(4) Calculate the Euclidean distance between the randomly chosen parameter values and

the held out parameter values

(5) Save the average of these distances, call it er

(6) Perform steps 1-5 100 times

(7) Average the er’s to yield a single measure of error

Our results indicate that energy and weighted energy calibration actually perform

worse than if we just chose a random model run. Flux and weighted flux calibration, on the

other hand, perform slightly better than choosing a random model run. From Figures 5.1-5.4

it seems that parameters in [0.3, 0.5] × [0.5, 1.3] × [0.06, 0.1] were well estimated by energy

calibration, parameters in [0.25, 0.3] × [1.5, 2.0] × [0.07, 0.09] were well estimated by flux
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calibration, parameters in [0.3, 0.5]× [0.5, 0.75]× [0.06, 0.1] were well estimated by weighted

energy, and parameters in [0.25, 0.3]× [1.5, 2.0]× [0.08, 0.09] were well estimated by weighted

flux calibration.
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Figure 5.1: 2D slice plots of cross validation errors for energy calibration. The color of each

point indicates the value of the cross validation error and the location of the point signifies

which model was held out as the observations.
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Table 5.1: Cross Validation Errors

Held Out Model Energy Flux Weighted Energy Weighted Flux Random
(0.01, 0.045, 0.0004) 0.8701 1.1522 0.8800 1.1522
(0.385, 1.208, 0.081) 0.4024 0.6903 0.5655 0.6903
(0.273, 0.597, 0.058) 0.4011 0.5103 0.4011 0.5457
(0.473, 1.591, 0.03) 0.5655 0.6735 0.5655 0.6735
(0.233, 1.392, 0.053) 0.6889 0.7376 0.6889 0.4983
(0.037, 0.898, 0.036) 0.7014 0.7344 0.7073 0.7344
(0.069, 1.726, 0.071) 0.4859 0.6941 0.4799 0.6941
(0.18, 0.169, 0.005) 0.6947 0.8520 0.6947 0.8520
(0.213, 1.061, 0.043) 0.4821 X 0.6423 X
(0.243, 1.924, 0.076) 0.7039 0.2551 0.7039 0.2551
(0.361, 0.333, 0.049) 0.8580 0.5641 0.7493 0.5641
(0.411, 2.038, 0.012) 1.1935 0.6054 1.1935 0.6054
(0.105, 0.404, 0.087) 1.2481 0.8088 1.2549 0.8088
(0.13, 1.364, 0.018) 0.4799 0.7163 0.4799 0.7163
(0.157, 2.211, 0.052) 0.4887 0.8098 0.4887 0.8098
(0.297, 1.465, 0.092) 0.7816 0.2650 0.7676 0.2650
(0.331, 2.317, 0.023) 0.4557 0.7381 0.4690 0.7381
(0.443, 0.748, 0.1) 0.4225 0.5321 0.4364 0.5593
(0.495, 2.478, 0.065) 0.9709 0.5727 0.9782 0.5727
(0.294, 0.64, 0.018) 0.6657 0.4404 0.6657 0.4404
Cross validation error 0.6780 0.6501 0.6906 0.6408 0.6753
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Figure 5.2: 2D slice plots of cross validation errors for flux calibration. The color of each

point indicates the value of the cross validation error and the location of the point signifies

which model was held out as the observations.
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Figure 5.3: 2D slice plots of cross validation errors for weighted energy calibration. The

color of each point indicates the value of the cross validation error and the location of the

point signifies which model was held out as the observations.
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Figure 5.4: 2D slice plots of cross validation errors for weighted flux calibration. The color

of each point indicates the value of the cross validation error and the location of the point

signifies which model was held out as the observations.



Chapter 6

Conclusion

In this thesis we developed an approach based on statistical calibration to determine

the optimal input parameters θ0 for the LFM-MIX model for geomagnetic storms. High

dimensionality of the data, uncertainty in the measurement of the observations, and obser-

vations defined on different subsets of the spatial grid presented additional challenges and

rendered many of the available methods ineffective. Instead, we took a feature-based ap-

proach, meaning that we identified different optimal input settings θ0 for different features

of the data and then compared the results. Following the approach of Heaton et al. in [6],

we introduced a time-varying rotational bias to the energy and flux data (in addition to

a constant rotational bias). We also considered statistics based on total energy and flux,

which are just time series representing the amount of energy (or flux) observed over the

entire spatial grid. We attempted smoothing the total energy and flux to better identify the

true signal, then introduced a multiplicative bias to better align the LFM-MIX models with

the observed total energy and flux.

For each statistic, we applied our method of feature-based calibration, which is based

on the popular geostatistical method of kriging. The main idea behind kriging is to predict

the value of a random function by computing a weighted average of the known values of the

function, which is based on a covariance model derived from the data. We calculated the

SSE between the LFM-MIX models and the observations, then used kriging to predict these

values at unsampled locations in the three dimensional (α, β,R) space of parameters. Finally,
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we took θ0 to be the minimum of this kriged surface. Then, in an attempt to correct the

measurement error, we introduced a sigmoidal weight function to the data and performed

calibration on each statistic once again. Finally, to validate our method of feature-based

calibration we implemented leave-one-out cross validation. In the interest of time we were

only able to perform cross validation for energy, flux, and weighted energy and flux.

We found that the minimums for the flux statistics centered around (0.29, 0.67, 0.02)

for unweighted calibration and (0.29, 0.68, 0.02) for weighted calibration, while the energy

minimums did not center on any one point. The results of the cross validation experiment

suggested that some statistics identified particular regions of the parameter space better

than others, but overall weighted flux calibration was the most accurate. Given these results

and our analysis of the variograms for each statistic, we conclude that the optimal input

parameter setting for the LFM-MIX model is (0.29, 0.68, 0.02).

The clearest route for future research is to apply feature-based calibration to LFM-

MIX output from multiple geomagnetic storms. A key question posed by authors before us

is: how does LFM-MIX react to different storms? Would our analysis center on the same θ0

values if we used data from multiple storms? It is beyond the scope of this thesis to answer

this question with confidence, as we only had data from one storm available to us. However,

we can begin to address this question by comparing our results to those of the authors in

[6, 11, 12], who all used data from the same storm which occurred on January 10, 1997.

Given that our results support the conclusions of the authors before us, we suspect that our

results and those in the literature are not specific to any one storm, but instead generalize to

all geomagnetic storms. To answer this question with more confidence, we propose obtaining

the data from the 1997 storm, applying feature-based calibration, and comparing the results

to those found herein.

Another suggestion for future research is to include other features in our feature-based

calibration. For example, we could include a feature describing spatial extent of the geo-

magnetic storm. This would involve calculating the ratio of points above a certain threshold
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to the number of points where the storm was observed. We could also implement a process

similar to that of Kleiber et al. in [12] using ”landmarks”, or spatial features of the data

we wish to focus on. For example, we could place four landmarks outlining the approximate

boundary of the high energy spatial feature and a fifth at the spatial mode. The next step

would be to measure the distance between model landmarks and observation landmarks and

apply kriging to these distances.

To improve upon the accuracy of our method, we suggest future researchers obtain

more LFM-MIX runs. Rules of thumb in the kriging literature range from a minimum of

20 to 100 points, with the consensus being around 30 [1]. We believe that an additional

10 LFM-MIX runs would significantly increase the reliability of our results. On a similar

note, we also suggest obtaining data from a different geomagnetic storm to use in cross

validation of the method. Finally, we propose applying both simple kriging and gradient

enhanced kriging to the data and comparing their results. Gradient enhanced kriging, as

the name suggests, is a special type of kriging that incorporates gradient information in its

prediction. We suspect gradient enhanced kriging would increase the accuracy of our results,

since assuming the random process is isotropic may be assuming too much.
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