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Neutral atom optical standards require the highest levels of laser precision to operate near

the limit set by quantum fluctuations. We develop state-of-the-art ultra-stable laser systems to

achieve a factor of 10 enhancement in clock measurement precision and additionally demonstrate

optical linewidths below 50 mHz. The most stable of these lasers reaches its thermal noise floor of

1 × 10−16 fractional frequency instability, allowing the attainment of near quantum-noise-limited

clock operation with single-clock instabilities of 3×10−16/
√
τ . We utilize this high level of spectral

resolution to operate a 87Sr optical lattice clock in a regime in which quantum collisions play

a dominant role in the dynamics, enabling the study of quantum many-body physics. With a

fractional level of precision of near 1× 10−16 at 1 s, we clearly resolve the signatures of many-body

interactions. We find that the complicated interplay between the p wave-dominated elastic and

inelastic interaction processes between lattice-trapped atoms leads to severe lineshape distortion,

shifts, and loss of Ramsey fringe contrast. We additionally explore the theoretical prediction that

these many-body interactions will modify the quantum fluctuations of the system and we find that

in certain parameter regimes the quantum noise distribution exhibits a quadrature dependence.

We further present technological advancements that will permit ultra-stable lasers to operate with

reduced thermal noise, leading to a potential gain of an additional factor of 10 in stability. This

indicates that laser fractional frequency instabilities of 1× 10−17 are within experimental reach, as

is a fully-quantum-limited regime of optical clock operation.
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Chapter 1

Introduction

Many of the tools that are crucial for optical atomic clocks and high-precision optical spec-

troscopy played a prominent role in 20th century physics. Likewise, the development of both

microwave and optical frequency standards has been an important driving force in quantum mea-

surement and atomic, molecular, and optical science. The technology utilized in today’s state-

of-the-art optical frequency standards has spurred numerous new research directions, including

optical frequency combs, ultrastable optical interferometers, and interacting quantum gases. Here

we provide an introduction to optical frequency standards, their key components, and metrics for

evaluating their performance.

1.1 Historical discussion

Precision spectroscopy has played a foundational role in our understanding of modern physics.

Radio-frequency spectroscopy enabled early measurements of nuclear magnetic moments [3, 4], the

Lamb shift in atomic hydrogen [5], and the accurate determination on an anomalous electron

g-factor [6]. These measurements each represent experimental milestones that spurred theoretical

development in atomic and nuclear physics as well as quantum optics and quantum electrodynamics.

The pioneering work of Norman Ramsey in developing the method of separated oscillatory fields

[7] set the stage for the development of radio frequency (RF) frequency standards by enabling the

accurate and precise determination of resonances in atomic beams. The Cs fountain clocks that

define the SI second today operate using Ramsey’s scheme, and the precise RF clocks flying aboard
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GPS satellites have fundamentally changed the way much of the world navigates.

With the invention of the laser [8], the field of laser-based optical spectroscopy was born,

allowing optical measurement of fundamental quantities, such as the Lamb shift [9, 10]. Further-

more, optical analogues of the Ramsey separated fields technique were demonstrated in the optical

domain [11, 12], representing the first demonstrations of coherent optical spectroscopy and setting

the stage for high resolution spectroscopy of narrow optical transitions in molecules, atoms, and

ions.

The advent of laser cooling and trapping [13, 14, 15, 16, 17, 18, 19] represents another

groundbreaking milestone for modern science and has opened up the quantum world to direct

laboratory exploration and manipulation. With laser-cooled atoms and ions, coherence times for

optical (e.g., [20, 21, 22]) and microwave (e.g., [23]) spectroscopy were dramatically improved. The

long coherence times were a direct contributor to the success of frequency standards based on laser

cooled atoms and ions that emerged from this work, and directly enabled the most precise and

accurate clocks in existence today.

1.2 Precision spectroscopy and atomic clocks

The physical basis for precision spectroscopy and atomic timekeeping is the relationship

between energy and frequency, given by Plank’s famous equation relating the frequency of photon

to its energy

∆E = hν, (1.1)

where ∆E is the energy between the ground and excited clock states (g and e, respectively), h is

Planck’s constant and ν is the transition frequency (i.e., the frequency of the absorbed or emitted

radiation). Optical and microwave transitions between metastable states in ions and atoms make

good frequency references because they are based on quantum systems whose transition frequencies

depend very directly on the fundamental laws of nature, and should be perfectly reproducible from

one realization to another. In many cases, g is the energetic ground state of the atom or ion,
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Figure 1.1: Coherent spectroscopy in a 87Sr optical lattice clock. The atomic population undergoes
a series of collapses and revivals as a function of laser detuning and pulse duration, demonstrating
a coherent regime of spectroscopy.

while e is a highly metastable, excited state whose natural lifetime exceeds all experimentally

relevant timescales. As a result, the techniques of coherent spectroscopy, as first developed by I.

I. Rabi and N. H. Ramsey for nuclear magnetic resonance measurements, are still utilized today,

from RF frequencies to ultraviolet optical frequencies. Figure 1.1 depicts an example of coherent

spectroscopy using lattice-trapped and spin-polarized 87Sr—the 87Sr optical lattice clock that is

the subject of this thesis. In Chapter 2 we provide a complete description of the 87Sr optical lattice

clock. Briefly, an ultrastable laser is tuned such that the photon energy is nearly matched to ∆E

and the pulse is applied for a given duration. The duration is chosen such that the maximum

population transfer occurs on resonance for a given coupling strength between the laser and atom

called the “Rabi frequency.” For an electric dipole-allowed transition, the Rabi frequency Ω is given

by

Ω = 〈g|d̂ ·E0|e〉/~, (1.2)
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Figure 1.2: Spectroscopic lineshapes obtained via Ramsey and Rabi spectroscopy in a 87Sr lattice
clock. Both techniques are utilized in optical clocks. The temporal width of the features in both
Ramsey and Rabi spectroscopy are inversely proportional to the total spectroscopy time. For
the Rabi spectroscopy lineshape shown at right, the probe time was 160 ms, corresponding to an
expected frequency full-width at half-maximum (FWHM) of 5 Hz.

where d̂ is the dipole operator d̂ ≡ er̂, e is the electron charge, and r̂ is the position operator. Here

E0 is the amplitude of the laser electric field. As can be seen in Fig. 1.1, the population of atoms

in e undergoes periodic collapses and revivals depending on the laser detuning from resonance, and

the duration the pulse is applied. This is the hallmark of coherent spectroscopy; the atom-field

coupling is the relevant part of the interaction, while spontaneous emission occurs so infrequently

that it does not play a large role in the dynamics of the population evolution. Figure 1.2 shows an

example of each Rabi and Ramsey spectroscopy utilized in the 87Sr optical lattice clock. The fit

lineshapes represent the ideal case of an isolated two-level system and are derived in Appendix A.

In order to consider a given ultranarrow resonance in an atom or ion a good candidate

for a frequency standard, the transition of interest should exhibit strong immunity to external

perturbations, such as magnetic fields. Additionally, atoms or ions serving as optical standards are

typically trapped sufficiently tightly that problems such as Doppler broadening and recoil shifts

can be mitigated by the tight trap.1 These traps consist of RF Paul traps for ions [24] and

1 In RF frequency standards, the effect of recoil is negligible and the Doppler effect is vastly reduced.
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Figure 1.3: Schematic diagram of a frequency standard. The local oscillator (LO) probes the atomic
system used as a frequency reference (solid line). The information gained from this measurement
is used to correct the LO frequency such that it is actively locked to atomic transition.

engineered, standing-wave optical dipole traps at the “magic-wavelength” for neutral atom optical

clocks [25, 26], also known as optical lattices. In addition to these general considerations, the

transition used for the clock must be sufficiently narrow to provide a sharp frequency discrimination

signal. This last condition is met by using multiply forbidden transitions in the clock atoms or

ions, resulting in extremely long excited state lifetimes (in some cases > 100 s) and correspondingly

very narrow resonance linewidths.

Atomic clocks of all types (microwave, optical trapped ion, and optical neutral atom) all rely

on the same principle of operation. An oscillator with good short-term stability, the local oscillator

(LO), is used to interrogate a transition in the ion or atomic ensemble as shown in Figure 1.3. The

LO very precisely probes the transition, and the information is then used to correct the LO such

that it is maintained on resonance.

Optical atomic clocks have now reached unprecedented levels of stability and accuracy. At

the forefront of accuracy, a clock located at the National Institute of Standards and Technology
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(NIST), based on a single aluminum ion and probed via quantum logic spectroscopy now has a

fractional frequency uncertainty of 8.6×10−18 [27]. A second clock based on a mercury ion, also at

NIST, is at the 2×10−17 fractional frequency uncertainty level [28]. Additionally, a Sr+ ion operated

by the National Research Council of Canada has recently attained an uncertainty of 2.2 × 10−17

[29]. Finally we note that the PTB Yb+ ion clock has reached an uncertainty of 7.1 × 10−17 [30].

These remarkable advances in ion-based clocks are followed closely by a new class of optical clocks

based on ensembles of ultracold neutral atoms held tightly in optical lattices. The most accurate

at the level of 1× 10−16 fractional uncertainty [31, 32, 33, 34], with the 87Sr lattice clock currently

the most accurate of the neutral atom-based clocks. The Sr lattice clock also has the best record of

international agreement in measurements against the Cs primary frequency standard of any optical

standard [35, 34].

1.2.1 Ultrastable lasers in optical clocks

Central to the performance of any frequency standard is the stability of its local oscillator.

The task of the local oscillator is twofold: it must probe the reference transition in the quantum

reference while introducing minimal noise through an aliasing process known as the Dick effect

[36, 37], and it must act as a “flywheel” to maintain the short- to medium-term stability of the

frequency reference. These two considerations alone have spurred massive development efforts in

ultrastable lasers for use with optical standards (e.g., [38, 39, 40, 41, 42, 43]), which stand the most

to gain from improvements in the local oscillator.

From a broader standpoint, optical interferometers are found at the heart of many diverse ex-

periments that perform the highest-precision laser-based measurements, from quantum mechanical

to cosmological scales. Chapter 3 explores key limitations to optical interferometers: the detrimen-

tal thermal coupling to the environment arises as a direct consequence of mechanical losses in the

interferometer substrates and coatings, which in turn limit laser stability. Chapter 4 specifically

discusses the development of three ultrastable laser systems for use with optical clocks, including

the construction of an ultrastable laser with fractional instability at 1 × 10−16 from 1–1000 s and
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Noise type Gν (f) σ2

y (τ)

White h0
h0
2τ

Flicker h−1f
−1 2 log 2h−1

Random walk h−2f
−2 2π2h−2τ

3

Table 1.1: Common Allan variances for different noise spectra (as in [45]).

a linewidth as low as 26 mHz.

1.3 Characterizing the stability of clocks

Forming metrics for the stability of atomic clocks is important in order to characterize their

performance. By performance we mean “how long does it take to make a measurement with a

given statistical uncertainty.” This question is distinct from, but related to, the clock uncertainty.

Systematic uncertainty, by contrast, characterizes the absolute (dis)agreement we expect be-

tween two systems due to our limited knowledge of perturbing effects that introduce subtle, sys-

tematic differences in the operating conditions of each clock. Ultimately, it is these effects that

limit the accuracy of a frequency standard.

In order to characterize the performance of a frequency standard, the most common and

widely-used metric is the Allan deviation [44]. The Allan deviation is a procedure to characterize the

time-dependence of the noise in a string of frequency measurements. Unlike the standard deviation,

which can become divergent for certain noise spectra, the Allan deviation can characterize data

described by a wider range of underlying noise processes [45]. For a continuous measurement, the

Allan deviation is defined as

σ2
y (τ) =

1

ν2
0

〈(νi+1 − νi)2

2
〉. (1.3)

Here, each quantity νi etc. is averaged over the time interval τ at the ith such time interval, as

illustrated in Fig. 1.4. Equation 1.3 represents the expected value of the pair deviation for a given

continuous measurement when it is averaged in bins with width τ .

The power of Eq. 1.3 is that it allows easy identification of the underlying noise process.

Table 1.1 shows the behavior of the Allan deviation for different types of underlying frequency noise
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Figure 1.4: Graphical depiction of the sampling method employed to calculate the Allan deviation
of a continuous measurement. Here, the data is averaged in bins of time-width τ . The data is
centered around frequency ν0.

(see, e.g., [45]), where Gν (f) is the single-sided frequency noise power spectral density. For example,

one can easily distinguish between noise spectra of the type Gν (f) = hαf
α for α ∈ {0,−1,−2}.

Here Gν (f) is the one-sided power spectral density of frequency fluctuations. Throughout this

thesis we will use Gξ (f) for one-sided spectral densities and Sξ (f) for two-sided spectral densities

of an arbitrary quantity ξ (e.g., frequency, phase, position, electric field, etc.). In Chapter 6 we

will discuss the Allan deviation and its relation to frequency noise spectrum more thoroughly, and

elucidate the relationship between atomic spin observables and the local oscillator frequency noise

power spectral density.

1.4 Performance of neutral-atom clocks

While the accuracy of single ion-based clocks is extraordinary, there is a compelling reason

to pursue in parallel standards based upon ensembles of atoms: signal to noise. Roughly speaking,

making N parallel measurements versus one single measurement should yield a
√
N enhancement of

the signal to noise ratio (SNR). The
√
N -dependence of the noise—which allows the corresponding

SNR gain of
√
N— is known as quantum projection noise [46] (discussed in detail in Chapter 2).

The quantum projection noise–limited stability of an optical atomic clock based on a quantity, N ,



9

of quantum references (neutral atoms or ions) is given by [47, 48]

σy (τ) =
χ

πQ
√
N

√
Tc
τ
. (1.4)

Here, χ is a constant of order unity that accounts for the details of spectroscopy and fraction of

atoms excited, and Q is the fractional line quality factor, which for optical standards can be > 1014,

and is one of the key motivating factors for their development. For even modest input parameters,

an instability of σy (τ) < 10−16/
√
τ/1 s is possible.

Until recently, no neutral atom-based optical standards were able to achieve quantum limited

performance due to broadband laser noise, which ends up contaminating the clock correction signal

through the Dick effect (discussed in Chapter 2). In Chapter 4 we will describe development of

a next generation ultrastable laser local oscillator for the 87Sr clock, which has allowed the 87Sr

clock to operate in the near-quantum limited regime. This development represents an important

milestone in the history of optical standards.

1.5 Frequency combs

Femtosecond laser-based optical frequency combs are important tools for optical metrology

and have revolutionized the field [49, 50]. With laser media ranging from bulk Ti:Sapphire and

optical fibers to microtoroidal resonators, the frequency comb revolution shows no signs of slowing

down. The spectral coverage of frequency combs has been demonstrated to span the mid-IR to the

vacuum ultraviolet [51, 52, 53].

At the heart of a comb’s utility is the equation that describes the optical frequency of a given

mode, νn, as

νn = nfrep + f0. (1.5)

Here, frep = 1/τ is the comb pulse repetition rate, where τ is the time between successive pulses.

f0 is the carrier envelope offset frequency which arises due to the fact that the group and phase

velocities inside the laser cavity are different and is related to the pulse-to-pulse carrier envelope
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Figure 1.5: Frequency comb and optical clocks. The time-domain picture at left leads to a
frequency-domain spectrum of evenly spaced spectral components or “teeth.” Here, a fully sta-
bilized frequency comb is depicted comparing two optical clocks at disparate optical frequencies.
By measuring the RF beats, f1 and f2, the two optical frequencies can be compared. By measuring
the comb repetition rate, frep, an absolute determination of the optical frequencies ν1 and ν2 can
be made.

phase slippage (∆φ in Figure 1.5) by

f0 = ∆φfrep/ (2π) . (1.6)

In principle, frep and f0 are the comb’s only degrees of freedom when describing the frequency of

a given “tooth” in the frequency domain.

Figure 1.5 depicts a frequency comb as utilized in the direct comparison of optical clocks,

or in the absolute frequency measurement of a clock (see, e.g., [1] for an absolute frequency mea-

surement of 87Sr utilizing an optical frequency comb). By locking a frequency comb to an optical

source and stabilizing f0 by the self-referencing technique [54, 50], the comb degrees of freedom are

completely constrained and directly related to the optical phase of the reference laser. By making

a heterodyne beat with a second laser, the phase of the two optical sources can be directly com-

pared (Figure 1.5b), often across > 100 THz of spectral bandwidth [55, 56]. This technique can be
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used to compare optical atomic clocks based upon different atomic species to constrain the drift

of fundamental constants [28], and also allows optical frequencies to be measured against primary

frequency standards with sub-Hz accuracy [57, 1, 32, 33, 30, 34]. Paired with frequency combs,

phase-stabilized fiber links [58, 59, 60] allow frequency comparisons of clocks hundreds of kilometers

removed and separated by hundreds of THz of bandwidth.

Even at the single-clock level, frequency combs will remain relevant and perhaps even play

a more direct role in clock operation as local oscillator ultrastable lasers are developed over a

broad spectral range. We will briefly discuss ongoing development of frequency combs to connect

lasers hundreds of THz apart and to support the 87Sr optical lattice clock in Chapter 4. In Chap-

ters 3 and 4, we will see some of the motivating factors for developing ultrastable lasers in the

1.5 µm region to connect lasers in the near-IR wavelength region to visible wavelengths.

1.6 Beyond timekeeping: Clocks in modern physics

Because they represent some of the most precise measuring device ever built, optical clocks

are important tools for modern science. Due to their high precision and accuracy, optical clocks are

the ideal devices for measuring spatio-temporal variations in the laws of physics, such as testing

for gravitational coupling to fundamental constants in tests of local position invariance, and the

time invariance of the fundamental constants of nature [61, 35, 34]. Another application of ultra-

precise clocks is geodesy. A clock’s sensitivity to the gravitational redshift allows it to be an

extremely sensitive probe to differences in the earth’s gravitational potential due to the gravitational

redshift effect [62]. However, clocks employing many particles are also interesting systems in and of

themselves from a quantum measurement perspective. Equation 1.4 is valid for uncorrelated atoms,

but in the case that the atoms were maximally entangled (i.e., spin squeezed), the instability would

be lower by approximately an additional factor of
√
N [63].

Many body quantum systems comprised of quantum gases of atoms [64, 65, 66, 67, 68, 69]

and molecules [70, 71, 72] show promise for realizing novel quantum phases of matters and for

the simulation of intractably complex condensed matter analogues. Alkaline-earth atoms possess
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SU(N) symmetry in the nuclear spin degrees of freedom, which could facilitate frustrated quantum

magnetic models [73, 74, 75, 76]. Even “open” quantum systems subject to inelastic losses can

enable new opportunities for studying quantum entanglement [77]. Chapter 5 explores many-body

interactions between atoms in the 87Sr optical lattice clock, where spin correlations emerge as

a consequence of collective elastic and inelastic p-wave interactions. The correlations manifest

themselves in the decay of Ramsey fringe contrast and as quadrature-dependent quantum noise in

the effective spin degree of freedom encoded in the 1S0 and 3P0 clock states.

1.7 Overview of this thesis

This thesis describes the development and implementation of ultrastable lasers for spec-

troscopy in a 87Sr lattice clock, and for exploring the many-body nature of the interactions between

87Sr in a one-dimensional optical lattice. We demonstrate a 10-fold improvement in clock stability

over any previous optical clock system, either ion- or neutral atom-based, allowing a 100-fold reduc-

tion in the time required for evaluating systematic effects. In Chapter 2, we describe the optical lat-

tice clock system used in this work. Chapter 3 explores thermal noise in optical interferometers—a

key limitation in developing stable lasers with performance at the 10−16 level. Chapter 4 describes

the design and implementation of ultrastable laser systems. Chapter 5 explores the many-body

nature of the optical lattice clock, utilizing the 10-fold improved stability of the next-generation

local oscillator laser. Chapter 6 describes a theoretical framework and experimental demonstration

of utilizing the optical clock as a frequency discriminator by utilizing pulse sequences, allowing

unprecedented precision for characterizing the broadband noise of a single ultrastable laser system.



Chapter 2

The 87Sr optical lattice clock

The Sr lattice clock was the first optical lattice clock to be developed, and is now by far the

most prolific and well-characterized neutral atom optical frequency standard. This fact is reflected

in its acceptance as a secondary representation of the second by the Bureau International des Poids

et Mesures (BIPM) and the strong record of international agreement of the optical frequency of

the 1S0 →3P0 clock transition in 87Sr . In this chapter, we review the properties that enable 87Sr

to be a successful optical lattice clock, the experimental apparatus utilized in the JILA 87Sr lattice

clock, and key limitations to both stability and uncertainty.

2.1 Introduction

The features that make Sr an interesting and productive species for wide-ranging studies in

ultracold quantum gases also make it a highly suitable candidate for an optical clock. In the 1990s,

the first experiments to laser cool Sr were performed, and were motivated by the novelty of the J = 0

ground state and the potential for precision spectroscopy [78, 79]. As seen from the level structure

diagram in Fig. 2.1, strontium possesses two transitions from the 1S0 ground state that are suitable

for laser cooling: the broad 1S0 →1P1 permits magneto-optical traps (MOTs) with > 109 atoms

at temperatures at the level of 1 mK (which was used in the initial laser-cooling experiments), and

the narrow 1S0 →3P1 transition permitting a quantum-limited minimum temperature of ∼ 250 nK

[80]. Furthermore, the lowest-lying state of the triplet manifold is metastable with an estimated

lifetime of ∼ 100 s, for 87Sr, whereas in 88Sr, the transition lifetime is estimated at nearly 6000 years
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Figure 2.1: Strontium level diagram. Solid lines indicate laser-driven transitions. The dashed black
lines are the problematic decay processes from the MOT at 461 nm that must be closed via optical
pumping at 679 nm and 707 nm. The grey boxed transitions indicate the manifolds of primary
relevance for the 3P0 polarizability at the lattice wavelength and also the DC polarizability. Details
of these states are given in the main text.

[81]! In both isotopes, therefore, this level can truly be considered metastable, and is thus the 1S0

→3P0 transition is suitable for ultra-high precision optical spectroscopy and forms the basis of

the strontium lattice clock. Finally, the alkaline earth-like level structure of the triplet and singlet

manifolds possess sufficient complexity such that they support “magic wavelengths” for the 1S0

and 3P0 states, and this was a key component of the first lattice clock proposal based on the 1S0

→3P0 transition [82].
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In a magic-wavelength trap, the AC stark shift of a probe or dipole trapping optical field

perturbs each state equally [26]. Within the context of precision spectroscopy, the presence of a

magic wavelength permits the construction of an optical dipole where the transition between the

metastable clock states is unperturbed by the trapping field. This permits a very elegant conceptual

simplification of the dynamics of an atom in a magic-wavelength dipole trap. We consider the

coherent superposition

|ψ〉 = α|g,n〉+ β|e,n〉. (2.1)

Here, g represents the 1S0 ground state, e represents the 3P0 metastable state and n ≡ {nx, ny, nz}

labels the motional state of the atom in a three-dimensional harmonic trap. At exactly the magic

wavelength, the motional and electronic quantum states are decoupled, so that we may instead

write Eq. 2.1 as

|ψ〉 = (α|g〉+ β|e〉)⊗ |n〉. (2.2)

The success of the clock based on the 1S0 →3P0 transition relies directly on the decoupling of the

motional and electronic degrees of freedom, such that the spectra obtained in the lattice clock are

free from AC Stark shifts or broadening as a result of thermally-distributed motion of the atoms.

This Chapter describes in detail the apparatus used to cool 87Sr into a magic-wavelength

optical lattice dipole trap. We will explore the details of the magic wavelength trapping including

limitations due to lattice photon scattering. Details regarding the ultrastable clock laser are given

later, in Chapter 4. In Chapter 4 we also demonstrate operation of the clock in a near-quantum-

limited regime.

2.2 Narrow-line laser cooling

As mentioned in the previous discussion, one feature of the level structure of Sr that makes

it appealing for use in an optical standard, as well as for quantum gas research, is the presence of

the narrow 1S0 →3P1 transition. In fact, the exploration of narrow-line cooling in Sr and other

Alkaline earth/Alkaline earth-like atoms represents an important milestone in the history of laser
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cooling. To date, ∆J = 1 intercombination transitions (i.e. the 1S0 →3P1 transition) have been

utilized to trap and cool a large array of species and isotopes of alkaline earth and alkaline earth-like

atoms. Examples include Sr [83, 84, 85], Calcium ([86]), and Ytterbium [87]. Due to the breakdown

of LS-coupling towards jj-coupling in heavier atoms [88], the intercombination transitions coupling

in Mercury [89, 90] and Radium [91] are well suited for single-stage laser cooling, and have been

used for this purpose, but are too broad to be considered narrow-line cooling transitions. In this

section, we briefly describe some of the important features of narrow-line laser cooling.

The expression “narrow line cooling” is typically used to denote a laser-cooling on a cycling

transition for which the recoil frequency shift of the transition, given by

ωrec =
~ω2

a

2mc2
, (2.3)

where ωa is the optical transition angular frequency and m is the atomic mass, is comparable to

the linewidth of the transition that is utilized for cooling. In the case of Strontium, the narrow 1S0

→3P1 transition is a nearly ideal transition for laser cooling. For Sr, ωrec/ (2π) = 4.8 kHz and is

thus comparable to the 7.5 kHz natural linewidth of the 1S0 →3P1 transition. In a sense, this is

the ideal situation. For laser cooling on transitions where ωrec . Γ, the minimum temperature is

expected to be in the quantum-limited regime set by the recoil energy [92],

kBT = ~ωrec. (2.4)

At the same time, the peak force of the cooling beams, given by Fmax = ~kΓ/2 and which determines

the velocity capture range, must be large enough to provide robust trapping. Thus, there is

no real benefit to performing traditional optical molasses laser cooling on a transition for which

Γ� ωrec with respect to a transition for which Γ ' ωrec. Specifically, in narrow-line MOTs, Fmax

can be dangerously close to the force exerted by gravity, mg. In the case of strontium, where

Γ = 2π × 7.5 kHz, Fmax ' 16 × mg [85], allowing the atoms to be trapped against gravity. In

Calcium, for example, where the 1S0 →3P1 transition has Γ = 2× 103 1/s, Fmax is only 1.5×mg,

necessitating the use of an optical quenching technique to artificially increase Γ [86].
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The nearly ideal parameters of the Sr 1S0 →3P1 led to successes in laser cooling with this

transition, yielding temperatures as low as ∼ 250 nK [80] and in-MOT phase-space densities of ∼0.1

[93]. Further work to overcome the detrimental effect of photon rescattering has recently led to

the production of a directly laser-cooled Bose-Einstein condensate (BEC) [94] in 84Sr, a technique

that shows great promise in creating a continuous source of BEC (i.e., a continuous atom laser)

and facilitating other quantum gas experiments that benefit from fast repetition.

2.3 Lattice dipole trapping

Trapping and manipulating neutral atoms with intense light fields is a well-established and

extremely powerful technique [95, 96]. In contrast to magnetic trapping, optical dipole traps can

produce intricate trapping potentials with sub-wavelength precision, the most prolific of which are

optical lattices. In an optical lattice, the interference of two or more several phase coherent laser

beams (or a single retro reflected beam) can give rise to periodic light patterns in one, two, and

three dimensions. Among other uses, the use of such highly periodic potentials can aid quantum

simulation of condensed matter systems [97], and serve as a test bed for exploring quantum phase

transitions [64, 98], frustrated quantum systems [99], quantum Hall physics [100], and quantum

gases and polar molecules in reduced dimensionsionality [101, 71]—and this is only to name a few.

In the context of optical lattice clocks, the periodicity of the potential is actually not a neces-

sary, or even desired feature. Rather, the interferometric nature of the optical trapping field allows

extremely tight local trapping potentials, with trapping frequencies & 100 kHz easily accessible.

This in turn enables spectroscopy in the Lamb-Dicke regime [102, 103, 104], where the recoil en-

ergy is much less than the harmonic oscillator zero-point energy of the trap. In the Lamb-Dicke

regime, Doppler broadening effects are well-resolved from the unperturbed carrier transition, while

the recoil momentum is absorbed by the trapping field (we will return to the topic of Lamb-Dicke

confinement in Section 2.5). This is an essential requirement for a precise optical atomic clock,
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given that Doppler broadening of an atomic transition is (see e.g., [88])

∆ν

ν
=

√
8kBT log 2

mc2
, (2.5)

which corresponds to ∆ν/ν ' 1 × 10−10 for 87Sr at 1 µK, corresponding to a Doppler-broadened

linewidth of 30 kHz. Of course, Doppler-free spectroscopy techniques have existed since nearly the

advent of the laser. For instance, Doppler-free Ramsey [11, 12] and Ramsey-Bordé spectroscopy

can be performed on narrow-line transitions within atomic beams and MOTs [105, 106], allowing

sub-kHz features to be observed [20] and forming the basis of the calcium neutral-atom standard

[107]. However, the natural linewidths of highly forbidden atomic transitions in Alkaline-earths,

such as the ∼1 mHz 1S0 →3P0 transition is 87Sr are still many orders of magnitude below the best

linewidths achieved with free-space Doppler-free techniques, such as Ramsey Bordé spectroscopy.

The role of the optical lattice then is not just to remove the effects of Doppler broadening and

the potential systematics associated with Doppler-free Ramsey-Bordé spectroscopy, but to enter

a regime where a large fraction of the atoms can be sufficiently localized to be probed at the

one-second timescale.

2.3.1 Atomic polarizability calculation

In general, the utility of dipole trapping as a scientific technique lies in the favorable scaling

of scattered radiation, which causes heating and decoherence, to the total depth of the trapping

potential. If we consider an isolated resonance in the rotating wave approximation, and for detun-

ings small compared to the transition’s optical frequency, the ratio of scattered radiation to the

dipole potential is [96],

~Γ =
γ

∆
U. (2.6)

where Γ is the rate of scattered radiation, γ is the decay rate of the atomic transition considered,

∆ is the trapping laser detuning (∆ ≡ ωL − ωa), and U is the induced dipole potential. We note

that although Eq. 2.6 is utilized quite frequently to estimate the photon scattering rate in optical

lattice clocks, where often |∆| ∼ ωa, the expression given in Eq. 2.6 fails badly because it does not
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take into account the wavelength-dependence of the density of states for the scattered photon and

Fermi Golden Rule energy scaling, nor does it include the counter-rotating term if we do not make

the rotating wave approximation. Including both these effects for a two-level system yields [96]

~Γ = U

(
ωL
ωa

)3( γ
∆
− γ

ωL + ωa

)
, (2.7)

which can yield fairly accurate results for the ground state scattering of 87Sr , where the 1P1

level dominates the scattering. We also note that, while U is straightforward to calculate for a

simple two-level system, there are regimes where no single atomic resonance dominates and thus

determining U requires summing over many atomic levels. The significance of Eqs. 2.6 and 2.7

is that the ratio of trapping strength (good) to rate of photon scattering (bad) gets better and

better as the detuning is moved farther away from resonance. This is the motivation behind the

far off-resonance trap [95]. We will study the limitations to the Sr lattice clock due to photon

scattering in Section 2.6.

To accurately calculate the trapping potential for a general system, where the two-level

approximation does not necessarily apply, we begin by considering a monochromatic optical field

with a spatial amplitude dependence such that

E (r, t) =
1

2
E0 (r) e−iωt +

1

2
E∗0 (r) eiωt. (2.8)

The term E0 (r) can further be expressed as

E0 (r) = εE0 (r) , (2.9)

where ε and E0 (r) are the field polarization and amplitude, respectively. Both of these quantities

are complex. For a monochromatic plane wave with linear polarization, Eq. A.1 reduces to the

familiar expression E (r, t) = εE0 cos (kx− ωt).

For the electric field given in Eq. A.1, the dipole trapping potential is given by

U (r) = −1

2
α (ε) 〈|E (r, t)|2〉 = −1

4
α (ε) |E0 (r)|2 (2.10)
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Here the 〈. . .〉 represents a time average over an optical cycle so that α is defined with respect

to the mean square electric field. This allows consistency with the definition in the case of a dc

electric field [88].

The polarizability is found from second-order perturbation theory [88, 108] as

α (ε) = 2
∑
k

ωik

∣∣∣〈φi|ε · d̂|φk〉∣∣∣2
~
(
ω2
ik − ω2

) . (2.11)

Here, the polarizability is determined by summing over all dipole-allowed upper states, {φk} where

d is the dipole operator that connects the atomic level of interest, φi to upper atomic levels that

are responsible for the induced dipole moment. Here, ωik is the frequency difference between the

state φi and the states {φk}. The dependence on the light polarization follows fundamentally from

the tensorial nature of the polarizability operator. In fact, we can write α (ε) = ε∗µεναµν (repeated

indices are summed), where αµν is the polarizability tensor. As with any cartesian tensor operator,

we can decompose αij into a spherical tensor basis, which will allow us to make some general

statements about the light- and atom-polarization dependence of the polarizability. Thus, as it is

writte, Eq. 2.11 does not cast the polarizability in its most useful form.

2.3.1.1 Scalar, vector, and tensor light shifts

While Eq. 2.11 is perfectly valid for calculating the dipole trapping potential and light shifts,

the tensorial nature of the polarizability is not apparent, nor can we make any qualitative statements

regarding its behavior. It is the goal of this section to summarize the most useful results regarding

the polarizability tensor. Specifically, we can write [109]

U (r) = −E(−)
µ E(+)

ν αµν (2.12)

where

αµν = 2
∑
k

ωik〈φi|d̂µ|φk〉〈φk|d̂ν |φi〉
~
(
ω2
ik − ω2

) . (2.13)

The electric field is now expressed with slightly different parameters such that E(+) ≡ E0 (r) /2 =[
E(−)

]∗
. In Appendix C, we follow the approach of [108, 109] to reduce the tensorial αµν into
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contributions of irreducible spherical tensors to derive the standard expression for scalar, vector,

and tensor light shifts (see, eg, [110])

α (ε) = αs + iαv (ε× ε∗) · ez
m

F
+ αt

(
3 |ε · ez|2 − 1

)
2

[
3m2 − F (F + 1)

F (2F − 1)

]
. (2.14)

Here, we have introduced αs, αv, and αt, the “scalar”, “vector”, and “tensor” polarizabilities,

respectively. In terms of the reduced matrix elements, the polarizabilities are [108, 109]

αs (ω) =
∑
n′F ′

2ωnF→n′F ′
∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2

3~
(
ω2
nF→n′F ′ − ω2

) '
∑
n′J ′

2ωnJ→n′J ′
∣∣∣〈nJ ||d̂||n′J ′〉∣∣∣2

3~
(
ω2
nJ→n′J ′ − ω2

) , (2.15)

αv (ω) =
∑
n′F ′

(−1)F+F ′+1

√
6F (2F + 1)

(F + 1)

1 1 1

F F F ′


ωnF→n′F ′

∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2
~
(
ω2
nF→n′F ′ − ω2

) , (2.16)

αt (ω) =
∑
n′F ′

(−1)F+F ′

√
40F (2F − 1) (2F + 1)

(1 + F ) (2F + 3)

1 1 2

F F F ′


ωnF→n′F ′

∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2
~
(
ω2
nF→n′F ′ − ω2

) . (2.17)

We can relate the reduced matrix element 〈F ||d̂||F ′〉 to 〈J ||d̂||J ′〉 by [111, 108, 109]

〈F ||d̂||F ′〉 = 〈J ||d̂||J ′〉
√

(2F ′ + 1) (2J + 1) (−1)F
′+J+I+1

 J J ′ 1

F ′ F I

 . (2.18)

Here, the terms in curly brackets are the Wigner 6-j symbols and ωnF→n′F ′ is the transition

frequency between the state with quantum numbers n and F to the state with quantum numbers

n′ and F ′. In Appendix B, we describe the procedure for relating the reduced matrix elements

〈J ||d̂||J ′〉 and 〈F ||d̂||F ′〉 to transition lifetimes commonly reported in the literature.

There are several special cases worth considering for αv and αt. The first interesting scenario

is the case where F = 0, which describes the clock states for 88Sr. Here, it is immediately clear

that αv = 0 and αt = 0. This matches the intuitive picture of an F = 0 as a state devoid of a

specific orientation—not to mention that there are no mF levels, rendering the very notion of a

vector or tensor shift invalid. The second case is very similar, but more relevant for this work. This

is the case where J = 0 but there is nuclear spin I, such that F = I. If we insert the result of

Eq. C.26 for 〈F ||d||F ′〉 into Eqs. C.23–C.25 and perform the sum over F ′ for any J ′ value, we get
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a number that is very nearly zero for αv and αt as long as the laser detuning is much larger than

the hyperfine splitting. If we ignore the hyperfine splitting completely, then the result for αv and

αt is identically zero. Finally, the last case of interest, and one that is relevant for the 171Yb clock

[32], is the case1 where F = 1/2 and J = 0. Here we see that αt = 0. Again, this makes intuitive

and pragmatic sense because with only two mF levels, the concept of a tensor shift is ill-defined.

Finally, it is worth mentioning that, due to the hyperfine state mixing between the 3P0

clock state and the 3P1 and 1P1 states, the clock state does acquire a small but finite vector and

tensor shift. These quantities have been theoretically explored [112] and thoroughly measured by

the SYRTE Sr lattice clock group [110]. As seen in Eq. 2.14, as long as the light polarization is

controlled with respect to the quantization axis, these shifts can be removed by including them in

the definition of the magic wavelength, or by a post-correction, and should pose no threat to clock

accuracies below 10−17 [110].

2.3.1.2 Numerical results for Sr

The 1S0 and 3P0 clock states of 87Sr both have J = 0, thus based on the discussion of

the previous section the polarizability should only have a contribution for αs. Ignoring hyperfine

structure, it is straightforward to calculate αs for both the 1S0 and 3P0 states from Eqs. C.23 and

C.26 (see appendix B) asSpecifically,

α3P0
(ω) = 2πε0~c3

∑
n′,J ′

ωnF→n′F ′AT (n′, J ′)

ω̃3
n′J ′

(
ω2
nF→n′F ′ − ω2

) (2L′ + 1)

3
(2.19)

α1S0
= 6πε0~c3

∑
n′,J ′

AT (n′, J ′)

ω2
nF→n′F ′

(
ω2
nF→n′F ′ − ω2

) . (2.20)

Here, AT (n′, J ′) is the total decay rate of the excited state labelled by quantum numbers n′ and

J ′, where n′ is shorthand for the electronic configuration and J ′ is the total angular momentum

(for all dipole-allowed transitions from the clock states, J ′ = 1); and ω̃n′J ′ is an effective transition

1 This instance is seemingly covered by the J = 0 rule, which precludes both vector and tensor shifts. It turns
out the origin of the vector and tensor shifts in the clock state arises from hyperfine-induced state mixing between
levels of like F [112]. Thus, for the case of J = 0, F = 1/2, the statement that there is no tensor shift is a rigorous
one, while the statement that for J = 0 levels αv = αt = 0 is not.
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States used for 3P0 scattering rate calculation

State A-coefficient Detuning from 3P0

5s6s 3S1 8.5∗ 2.773∗

5s7s 3S1 1.75∗ 4.356∗

5s8s 3S1 0.822 4.984
5s9s 3S1 0.453 5.303
5s10s 3S1 0.277 5.487
5s4d 3D1 0.0345 0.724
5s5d 3D1 6.1 3.899
5s6d 3D1 2.67 4.781
5s7d 3D1 1.42 5.192
5s8d 3D1 0.851 5.419
5s9d 3D1 0.551 5.59
5p5p 3P1 12.7 3.982

States used for 1S0 polarizability

State A-coefficient Detuning from 1S0

5s5p 1P1 19.05 4.08998
5s6p 1P1 0.186 6.42732
5s7p 1P1 0.319 7.33361
4d5p 1P1 1.2 7.76074
5s8p 1P1 1.49 7.76074
5s9p 1P1 1.16 8.0039
5s10p 1P1 0.76 8.16695
5s11p 1P1 0.488 8.28212

Table 2.1: Upper states used in calculating the polarizability of the 1S0 and 3P0 clock states. The
Einstein A-coefficient is given in units of 107 1/s, and the detuning is given in units of 1015 rad/s
(i.e., 10−15 ×∆ω, where ∆ω is the transition frequency). The numerical values are obtained from
[112] and references therein, with the exception of the data marked with an asterisk, which is from
[113].

frequency from the upper state connecting to 3P1 that takes into account the relativistic correction

due to the fine structure energy splitting within the 3P manifold. This latter correction is derived

in Appendix B. With these particularly simple expressions for the J = 0 clock states, we calculate

the polarizability employing the decay rates of a subset of the upper-lying states, given by the

values in Table 2.1. The results of this calculation are shown in Fig. 2.2. As expected from several

calculations and measurements spanning the history of the Sr clock’s development, we find a magic

wavelength in the vicinity of 813 nm, where the discrepancy between experiment arises from an

incomplete knowledge of the transition rates and also the fact that we do not treat continuum
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Figure 2.2: Polarizability of the 1S0 (blue line) and 3P0 (red line) clock states in atomic units
(a.u.). The insets show two regions where the polarizabilities of the 1S0 and 3P0 clock states are
matched.

states in this calculation [114, 115]. Interestingly, another magic wavelength crossing occurs in

the vicinity of 505 nm. As conveyed qualitatively by Eq. 2.6, one might expect that using this

as a lattice wavelength would lead to unacceptably large lattice scattering. We will treat photon

scattering from the lattice in Section 2.6. Surprisingly, we find that the magic wavelength at 505 nm

will have acceptable scattering rates for an equivalent trapping frequency, indicating that this may

be an interesting magic wavelength for use with relatively low-power optical sources.

2.3.2 One-dimensional optical lattice

Now that we have calculated the polarizabilities, we consider the specific case of a one-

dimensional optical lattice formed by a retro-reflected laser beam. We consider a focused input
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beam with electric field amplitude profile

Ein (r; t) =
1

2
Ein

0 (r⊥) e−ikz−iωt + c.c. (2.21)

with the radially-dependent amplitude

Ein
0 (r⊥) =

√
4P0

πε0cw2
0

e−r
2
⊥/w

2
0 , (2.22)

where P0 is the total input power. If the beam is perfectly retro-reflected to the same focus, the

electric field profile will be

E (r; t) =
1

2

[
2 cos (kz)Ein

0 (r⊥)
]
e−iωt + c.c. (2.23)

and thus according to Eq. 2.10 the lattice potential will be

U (r) = −α cos2 (kz)
∣∣Ein

0 (r⊥)
∣∣2 . (2.24)

If we expand the potential along the z-direction at r⊥ = 0 we can treat the potential as a harmonic

oscillator. The longitudinal trap frequency associated with this profile is easily found to be [112]

νz =
1

2πw0λ

√
32παP0

cε0M
=

1

λ

√
αIpeak

ε0cM
. (2.25)

where Ipeak = 2ε0c
∣∣Ein

0 (0)
∣∣2 = 8P0/

(
πw2

)
. Similarly, the trap frequency associated with the radial

confinement is given by

νr =
1

2πw2
0

√
16αP0

πε0cM
=

1

2πw0

√
2αIpeak

ε0cM
. (2.26)

We find that at 813.428 nm, the calculated Sr clock-state polarizability is 2.8×102 a.u. (a.u. stands

for atomic units of polarizability, 1 a.u. = 4πε0a
3
0). For νz = 80 kHz, Ipeak = 3.4 × 104 W/cm2

corresponding to P0 = 140 mW for w0 = 32 µm, which is beam waist utilized in the experiment

(we describe the lattice setup in Section 2.4.3 and the details of lattice spectroscopy in Section 2.5).

2.4 Experimental apparatus

The experimental apparatus used in this work has been extensively described elsewhere [112,

114, 80]. For completeness, we describe the essential details here. The vacuum system used to cool
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and trap 87Sr is shown in Fig. 2.3. An effusive oven loaded with high-purity strontium is operated

at a maximum temperature of 575◦ C.2 Earlier measurements of the beam flux indicated a beam

flux of 3 × 1011 atoms/s [80]. We measure similar loading rates and MOT sizes, so we estimate

that our current flux is also consistent with this number despite the fact that the oven has been

disassembled and reloaded in the intervening decade. As depicted in Fig. 2.3, a rotary feedthrough

actuates a cylindrical atomic beam shutter, which can be used to extinguish the atomic beam

during operation of the experiment if desired. Interestingly, we observe no detrimental effect due to

the atomic beam except that it leads to an additional background signal that must be subtracted.

A total of three 40 L/s ion pumps maintain a pressure estimated in the low 10−10 Torr level

in the main chamber. This represents a four-fold improvement from the previously-reported experi-

mental design [112, 114, 80], as indicated by in-trap lifetime measurements. The main improvement

permitting these significantly lower pressures is the addition of a secondary differential pumping

tube. In the original experiment, there was a single differential pumping tube, separating the oven

from the main chamber, and permitting an order of magnitude difference in the pressures. With the

addition of the second differential pumping region, we maintain an almost two order of magnitude

difference between the oven and main chamber, for a vacuum-limited trap lifetime of 8 s [116].

A pair of Anti-Helmhotz coils (not pictured in Fig. 2.3) are placed so that the axial field

direction is oriented vertically. They are capable of producing an axial field gradient of 50 G/cm

for an input current of approximately 60 A. The current in these coils is servo-controlled and capable

of being switched at ms timescales. This fast and precise control is utilized to perform programmed

field-ramps for different stages of optical cooling. Small Helmholtz coil pairs oriented along the H1,

H2 directions as labeled in Fig. 2.3 (horizontal direction 1 and 2, respectively) provide fine tuning

to null stray fields in the horizontal plane. A third Helmholtz coil pair in the vertical direction (V)

provides fine-tuning of the magnetic field in that direction.

During operation of the experiment, stray magnetic fields are nulled to < 10 mG by coils in

2 The nozzle (front) part of the oven is operated at 575◦ C, while the back end of the oven is maintained at 365◦ C.
This ensures that the nozzle region does not accumulate Sr and clog.
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Figure 2.3: Experimental apparatus for trapping ultracold 87Sr . A collimated atomic beam is
emitted from the oven region and is subsequently transversally cooled by transverse cooling beams
and slowed by a Zeeman slower (ZS). A MOT is formed in the octagonal main chamber (anti-
Helmhotz coils not depicted). A total of three 40 L/s ion pumps are attached to the apparatus
(pump located nearest the oven is not pictured), and each pump is separated from the others
by a differential pumping tube, supporting a nearly two orders of magnitude difference in the
oven vacuum pressure with respect to the main chamber. The optical lattice enters from the top
viewport with an angle of approximately 19◦ with respect to gravity and is retroreflected after
passing through the top and bottom viewports of the chamber. The lattice polarization is aligned
along the H2 axis. Dichroic mirrors (DM) in the H1-axis MOT arms permit a secondary horizontal
optical lattice to be overlapped with the vertical lattice.

the H1 and V directions. A residual field of ∼ 500 mG is applied along H2 for spectroscopy, while

a smaller field of (∼ 100 mG) is applied for an optical pumping phase to spin-polarize the atoms if

desired. As a result, H2 is the de facto quantization axis in the experiment.

Optical access is provided at several locations. Immediately after the oven nozzle, a cube with

2 3/4” flanges provides access for transverse cooling beams. The next location in the apparatus with
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significant optical access is the main chamber itself, which is octagonal in shape (in fact, it is called

a “spherical octagon” by the manufacturer, Kimball Physics). Here, two large 6” flange-mounted

viewports allow a wide range of optical access from the top and bottom of the chamber. The top

viewport serves multiple functions, including providing optical access for florescence detection, the

optical lattice, and MOT beams. Almost all of the sides of the octagon also have 2 3/4” flange-

mounted viewport, utilized for the mot beams and optical imaging, as in Fig. 2.3. The viewport

labelled “imaging viewport” in Fig. 2.3 provides access for an amplified CCD camera. All viewports

are anti-reflection coated for visible wavelengths.

The trapping and cooling of 87Sr is performed using two transitions for laser cooling. The

atomic cloud is directly cooled into a far off resonance optical lattice comprising a standing wave

of laser light at 813 nm. To avoid uncontrolled vector and tensor light shifts—which will be

further described later—the dipole trap polarization is aligned with H2 with a high extinction-

ratio polarizer (∼104). The first transition for laser cooling is the 1S0 →1P1 transition at 461 nm,

which is used for both slowing the beam and trapping and cooling 87Sr in a magneto-optical trap

(MOT). The second transition employed is the narrow 1S0 →3P1 intercombination transition,

which permits direct laser cooling to sub µK temperatures. These stages of laser cooling and

trapping are described in detail in the next sections.

2.4.1 Laser cooling at 461 nm

The first stage of laser cooling is performed on the broad 1S0 →1P1 transition, which is shown

in Fig. 2.1 and the hyperfine structure of which is shown in Fig. 2.4. We note that the presence of

hyperfine structure in 87Sr complicates the cooling dynamics, and can lead to sub-Doppler cooling

[117]. In clock operation, we use the first-stage 461 nm MOT to quickly accumulate ∼ 2 × 105

atoms in 500 ms. This quantity is approximately 10% of the maximum 87Sr 461 nm MOT peak

atom number.

The laser light utilized for the 461 nm MOT is derived via second harmonic generation. An

external-cavity laser diode (ECDL) seeds a tapered amplifier, which provides approximately 1.6 W
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Figure 2.4: Hyperfine structure of the 5s5p1P1 and 5s5p3P1 levels.

of power at 922 nm. After being spatially filtered via a single-mode fiber, approximately 350 mW of

power at 922 nm is delivered to two separate doubling cavities employing KNbO3 crystals. Phase

matching is achieved via temperature, with an operating temperature of approximately 150◦ C.

Details can be found in Refs. [112, 114]. Each cavity produces approximately 150 mW of power at

461, which is utilized for slowing, cooling, and trapping with the 1S0 →1P1 transition, as described

below.

After exiting the oven, the atoms are cooled transversally by elliptical beams tuned 10 MHz

below the 1S0 →1P1 F = 11/2 (Fig. 2.3). After the transverse cooling stage, they are subsequently

slowed in a Zeeman slower with a peak field of 600 G, optical power of ∼60 mW, and detuning of

-1030 MHz below the 1S0 →1P1 F = 11/2 transition. Finally, upon reaching the main chamber the

atoms are collected in a MOT operating on the 1S0 →1P1 transition. The horizontal MOT beams

have ∼3 cm diameter and the horizontal beams have 8 mW of power, while the vertical beam has

3 mW of power. The field gradient utilized for the 1S0 →1P1 MOT (AKA “blue mot”) is 50 G/cm

in the vertical direction.

While the 1S0 →1P1 transition is nearly closed, as shown in Fig. 2.1, there is a decay pathway
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to the metastable 3P2 level. In order to maintain efficient MOT operation, the 3P2 level must be

repumped by a separate laser at 679 nm connecting the 5s5s 3P2 and 5s6s 3S1 levels. Due to the

fact that the 5s6s 3S1 level employed in the repump scheme can in turn decay to the metastable

3P0 state, an additional repump laser must be utilized to cycle these atoms out of 3P0 , again

via 5s6s 3S1. Since the hyperfine manifolds of the 5s5s3P2 and 5s6s 3S1 are quite large, we scan

the repump lasers so that all the hyperfine levels are reached by a single laser. Finally, in order

to prevent dark states from forming, the repump lasers are propagated along both the H1 and V

MOT axes. Ultimately, the repumps make a huge difference, with a factor of ∼40 improvement in

the observed fluorescence, and an order of magnitude increase in the MOT lifetime.

2.4.2 Narrow line cooling with 87Sr

A significant body of literature exists that explores the qualitative differences and challenges

of laser cooling 87Sr as opposed to its bosonic counterpart, 88Sr [118, 112, 114]. Here we briefly

summarize some of the key differences and describe the experimental methods used to cool and

trap 87Sr on the 1S0 →3P1 transition.

2.4.2.1 The 87Sr 689 nm MOT: principle of operation

In 88Sr, the narrow line cooling transition is an ideal J = 0→ J = 1 cycling transition, which

allows the MOT to operate very efficiently. In the case of 87Sr , with nuclear spin I = 9/2, one must

consider the hyperfine levels of the 3P1 level, with quantum number F ∈ {7/2, 9/2, 11/2}. At first

glance, it might seem straightforward to operate the MOT on the 1S0 (F = 9/2)→ 3P0 (F = 11/2)

transition. However there is a large disparity between the ground state g-factor of gS = −6×10−4 '

0 and the excited state g-factors of g7/2 = −1/3, g9/2 = 2/33, and g11/2 = 3/11 [118, 112]. This

means that the Zeeman shift in an applied magnetic field is almost exclusively restricted to the

excited state manifold. This has two important implications for the MOT operated on the 1S0

→3P1 F = 11/2 transition. First, the differential Zeeman shift of the 87Sr 1S0 →3P1 (F = 11/2)

transition, as depicted in Fig. 2.5, has significant implications for MOT operation. To simplify
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Figure 2.5: Schematic depiction of the 689 nm MOT for the F = 9/2→ F = 11/2 transition. Due
to the absence of an electronic magnetic moment in the ground state, several mF sublevels are not
trapped. The relative σ+/σ− transition strengths play a role in optical pumping and maintaining
the MOT restoring force as well.

the discussion, we consider only one MOT axis. For a cooling laser detuned below the zero-field

resonance with detuning δ, if the motion of the atom brings it into a region of the MOT with B > 0,

there are a large number of ground-state mF levels that are not trapped (specifically mF ≥ 3/2).

This is because the increasing magnetic field will tune the Zeeman shift in the “wrong” direction

for these states, and they will sail away without scattering any photons. An example of such a

non-trapped state is depicted with blue arrows in Fig. 2.5. An identical effect prevents the states

with mF ≤ −3/2 in the region with B < 0 from being trapped (assuming we use the same definition

of quantization axis as before).

A second important implication of the 87Sr 1S0 →3P1 (F = 11/2) Zeeman structure arises

when the atom is brought into resonance by the Zeeman shift. As depicted for the mF = −9/2 state

in Fig. 2.5, both σ+ and σ− transitions are allowed. An immediate concern is that the position

dependent light force could be artificially small or even nullified by scattering photons from both

MOT beams. However, it turns out that the Wigner-Eckart theorem effectively eliminates this
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concern [118]. We can write the ratio of transition probabilities for a σ− transition with respect to

a σ+ transition for a general F → F + 1 transition as

r
(−)
F+1 (mg) =

|〈F,mg; 1,−1|F + 1,mg − 1〉|2

|〈F,mg; 1, 1|F + 1,mg + 1〉|2
=

(2 + F −mg)! (F +mg)!

(2 + F +mg)! (F −mg)!
(2.27)

Similarly, r
(+)
F+1 (mg) is defined as the ratio of σ+ to σ− transitions, and is related to r

(−)
F+1 (mg)

simply as r
(+)
F+1 (mg) = 1/r

(−)
F+1 (mg). Both r

(−)
F+1 (mg) and r

(+)
F+1 (mg) are plotted with respect to

mg in Fig. 2.6. Remarkably, for the situation in Fig. 2.5 with B > 0 and mg = −9/2 the ratio

of “good” σ− photons absorbed to “bad” σ+ photons absorbed is 55 : 1. As seen from Fig. 2.6,

if a state is trappable, the ratio of “good” absorptions to “bad” absorptions is greater than unity.

Furthermore, we can expect that as a result, the atom will be quickly pumped to the stretched

state, which causes the ratio to be maximized.

As we’ve seen, nature already provided one built-in solution to multi-level alkaline earth

atoms to permit their trapping, in that the relative transition strengths play an essential role in

ensuring the MOT operates stably. However, the first complication that we briefly discussed, namely

that there are untrapped ground state mg levels, requires more direct intervention. The technique

developed by the Sr group at U. Tokyo was to utilize a second laser, termed the “stirring laser”

[118]. In contrast to the trapping laser, which operates on the F = 9/2→ F = 11/2 transition, the
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stirring laser operates on the F = 9/2 → F = 9/2 transition. The effect of this second laser is to

randomize the ground state mg distribution so that trappable mg states are occupied.

The F = 9/2 → F = 9/2 transition is ideal as a “stirring” transition for two reasons. The

first is that the g-factor is much smaller for the F = 9/2 level meaning that a near resonant laser

will scatter over a larger range of magnetic field. Secondly, and unlike the F = 9/2 → F = 11/2

transition, the ratio of σ+ absorptions to σ− absorptions is fairly uniform. To quantify this, we

can define r
(±)
F (mg) as in Eq. 2.27. This quantity is plotted in Fig. 2.6, and it is clear that there

is very little variation with mg, meaning that the atoms are indeed efficiently stirred through the

ground state mg manifold, and also that the pumping slightly favors moving atoms away from the

untrappable mg levels.

2.4.2.2 The 87Sr 689 nm MOT: experimental details

To operate the 689 nm MOT, we employ two cooling lasers whose use was motivated above:

the “trapping” laser and the “stirring” laser. These two systems are phase locked with variable

frequency offset from a master laser, with linewidth of ∼500 Hz and whose central frequency is

locked to the 88Sr 1S0 →3P1 (m = 0 → m = 0) transition via a Doppler-free spectrometer based

on a heat-pipe vapor cell with 25 mTorr of Ar buffer gas, which keeps the Sr from coating the

windows. Details can be found in [80, 112, 114]. As depicted in Fig. 2.4, the trapping and stirring

lasers’ frequencies are chosen such that they are near-resonant with the F = 11/2 and F = 9/2

hyperfine states, respectively.

In order to enable efficient transfer from the 461 nm MOT into the 689 nm MOT, three

distinct MOT phases of the 689 nm MOT are utilized. In the first stage, the trapping and stirring

lasers are modulated with a few MHz bandwidth. The modulation parameters are chosen such that

the spectrum extends from just below resonance with the 9/2 → 9/2 and 9/2 → 11/2 transitions,

to several MHz below. The modulation is chosen to provide good overlap with the Doppler profile

of the atoms after being pre-cooled in the 461 nm MOT, with final temperatures of ∼1 mK.

In the initial broadband phase of the red MOT, the field gradient is reduced from the 50 G/cm
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Figure 2.7: Field gradient programming during the three MOT stages: 461 nm (blue) MOT,
broadband red MOT, and single-frequency (SF) red. After the single-frequency red mot, the anti-
Helmholt (A-H) coils are turned off to prepare the system for optical pumping and spectroscopy.

employed in the 461 nm MOT, to ∼4 G/cm. This provides good spatial overlap, or mode-matching,

between the blue MOT atomic density distribution and the broadband red MOT. Subsequently,

the field is ramped to ∼11 G/cm over 100 ms. The ramp compresses the MOT in all three spatial

dimensions. When the field gradient reaches 11 G/cm, the broadband frequency modulation is

switched off, and both the trapping and stirring laser are tuned near resonance, to form the final

stage of MOT cooling, the single frequency red MOT. This field ramping procedure and MOT

stages are depicted in Fig. 2.7.

The transfer efficiency from the blue MOT is approximately 15%, and results in a sample of

atoms with µK temperatures. When the atoms are cooled in the presence of the optical lattice, an

additional fraction of the atoms in the red MOT are cooled into the lattice. Due to poor spatial

mode-matching between the optical lattice and the red MOT density distribution, the transfer

efficiency between the lattice and red MOT is also approximately 15%. Ultimately, we can load

approximately Ntot = 5000 87Sr atoms into ∼ 100 lattice sites. The distribution of population in

the lattice sites is derived in Appendix F, and on average, atoms share lattice site with ∼ 20 other
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atoms for Ntot = 5000.

2.4.2.3 Nuclear spin-polarizing for spectroscopy

The final step prior to clock spectroscopy on the lattice-trapped sample is to nuclear spin-

polarize the 87Sr so that a single mF level is occupied. This serves two purposes: first it prepares

an ensemble of identical fermionic 87Sr atoms, meaning that collisional interactions due to the s-

wave channel should be suppressed or completely eliminated, which is important for clock accuracy.

We will discuss the collisional interaction in detail in Chapter 5.Second, spin-polarized atoms all

contribute to the useful spectroscopy signal utilized to operate the clock.

As a consequence of the differential g-factor between the clock ground and excited states,

the clock transition possesses a small magnetic field sensitivity, even for mF preserving transitions

between 1S0 and 3P0 are resolvable in a few hundred mG magnetic bias field. Specifically, there is

a Zeeman shift between the clock states given by [119]

∆νπ = −δgmFµ0B/h, (2.28)

where δg is the differential g-factor, µ0 is the Bohr magneton, and the subscript π indicates

that the formula is for non-mf changing transitions (“π” transitions). The quantity −δgµ0/h =

108.4(4) Hz/G [119]. In order to clearly resolve each nuclear spin sublevel via clock spectroscopy,

a ∼500 mG field is applied during spectroscopy.

In order to prepare the atoms in the single nuclear spin state, we employ optical pumping

on the 1S0 →3P1 F = 9/2→ F = 9/2 transition with circularly polarized light (both σ+ and σ−

orientations) along a bias field applied along H2, which is the same axis as the bias field applied

during clock spectroscopy. During the polarizing, a small bias field of ∼100 mG is applied to define

a quantization axis. A liquid crystal wave plate allows us freedom to switch between σ+ and σ−

polarization. This freedom to switch polarization is important for removing 1st-order sensitivity to

magnetic fields; by alternating between mF = +9/2 and mF = −9/2 states, the average of the two

transition frequencies, as indicated by Eq. 2.28, will be first-order insensitive to magnetic fields [31].
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Figure 2.8: Clock operation with stretched nuclear spin states for first-order Zeeman insensitivity.
Two independent locks are averaged to find the linear Zeeman shift-free center frequency, f0.

Figure 2.8 shows the principle of operation for the dual-spin clock operation. Two independent

PID locks—one for mF = +9/2 and the other for mF = −9/2—are used to extrapolate the linear

Zeeman shift-free center frequency, f0.

2.4.3 Optical dipole trap and clock spectroscopy: experimental configuration

As described in the previous section, the atoms are directly cooled from the 689 nm MOT

into the optical lattice, for which the basic principle of operation was described in Section 2.3. Here

we describe the experimental apparatus utilized to create the optical lattice trapping potential.

The lattice optical dipole trap potential is formed by a Gaussian beam retro-reflected upon

itself, such that the foci of the input beam and retro-reflected beam coincide. As depicted in

Fig. 2.9, the input lattice beam is focused to a 1/e2 radius of 32 µm by an input lens with focal

length of 14 cm such that the beam waist lies at approximately the geometric center of the main

chamber. The lattice beam then passes out through the bottom viewport after which it is folded

onto a curved retro-reflector mirror with 20 cm radius of curvature. The longitudinal position of
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Figure 2.9: Optical lattice dipole trap and clock laser pathway. The lattice is approximately 19◦

from vertical. The focusing lens has a focal length of 14 cm and the radius of curvature of the
retro-reflector is 20 cm.

the mirror is translatable, and its position and orientation are chosen such that a maximum of the

lattice light is back-coupled into the single-mode from which the lattice beam originates.

The lattice light is produced by an amplified external cavity laser diode. Approximately

35–40 mW derived from a Littrow-configuration laser diode are injected into a tapered amplifier

(Eagleyard EYP-TPA-0808), which produces 800 mW of output power. The output of the tapered

amplifier is spectrally filtered with a ∼ 1 nm spectral bandwidth interference filter. An optional

filter cavity with Finesse ∼ 100 can further spectrally filter the output of the tapered amplifier
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chip. These precautions are taken because tapered amplifier chips are known to possess amplified

spontaneous emission (ASE) spectral pedestals. This uncontrolled stark shift due to these pedestals

has been recognized as an important effect to be controlled in lattice clocks [34]. To date, all

published systematic evaluations of the JILA 87Sr lattice clock uncertainty were performed with a

Ti:Sapphire laser, which will not suffer from an ASE problem.

In order to perform clock spectroscopy, the clock laser light is injected through the lattice

retro-reflector with 99% transmission. A focusing lens ensures that the clock laser is concentrated at

the atoms, while the waist of the clock light is kept several times larger than the lattice waist, thus

ensuring that inhomogeneities due to the k-vector spread of a tight focus are minimized (discussed

more fully in Section 2.5).

2.4.3.1 Clock laser path and RF phase chirp cancellation

The clock laser light is derived from an ultrastable laser system in a separate room, which we

describe in Chapter 4. This separate room was chosen for its temperature stability, acoustic noise

levels, and relative calm, from which the name “Jan’s quiet room” is derived. The clock laser light

is delivered to the “distribution center” (Fig. 2.10). In the distribution center, the clock laser light

is amplified by injection locking a second diode with ∼ 500 µW of optical power. The output power

of the injection system is around 35 mW, which provides ample power for multiple experiments, as

well as interface with a femtosecond frequency comb.

After exiting the distribution center, a fiber delivers clock laser light near the experimental

chamber. An acousto-optic modulator (AOM) provides the frequency shift for scanning the clock

laser onto the atomic resonance, as shown in Fig. 2.10. The delivery of pulsed light to the atoms that

is free from switching transients and phase chirp errors is a challenging problem [120]. As shown

schematically in Fig. 2.9, care is taken to cancel phase shifts due to RF-induced heating of the

AOM, by referencing the light for the fiber noise cancellation system [121] through the AOM, using

the 0th-order diffracted light. In this way, the fiber noise cancellation system is always engaged,

yet samples approximately the same optical path deviations as the −1st diffracted order, which is
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Figure 2.10: The clock laser delivery system. The ultrastable laser is operated in a separate room
and is delivered via noise-cancelled fiber to the distribution center. In the distribution center,
∼ 500 µW of clock laser light are used to injection lock a laser diode. A second “fiber noise eater”
(FNE) system ensures that the light is faithfully delivered to the atoms. Importantly, the effect of
RF-heating of the spectroscopy acousto-optic modulator (AOM) is mitigated by including it in the
fiber noise cancellation loop.

used for spectroscopy. We have tested that phase chirp-induced frequency shifts can be reduced to

−3(8) mHZ, corresponding to a fractional frequency shift of -0.7(2)×10−17 with the AOM diffracting

at ∼ 50% efficiency (corresponding to ∼ 1 W RF drive) and with short 10 ms pulses. We expect

that reducing the RF drive and elongating the clock pulses, as typically utilized in clock operation,

can further reduce this shift by an order of magnitude. The 10 ms pulse duration was specifically

chosen to emphasize the effect, and an experimentally relevant “cooling off” period of 1 s was used

between cycles. In contrast, we measure a large phase chirp when the fiber noise cancellation plane

is moved before the AOM, thus the cancellation pathway does not “see” the phase chirp. In this

case, the frequency shift was measured at −129(14) mHz, corresponding to a fractional frequency

shift of 3.0(3) × 10−16. This indicates that an active cancellation or characterization of the AOM

phase chirp is indeed necessary for a high-accuracy clock.
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2.4.4 Atom state detection and measurement

In order to detect the fraction of atoms in the metastable clock state, a series of fluorescence

measurements are performed. As depicted in Fig. 2.11, the first step in the detection process is to

count the number of ground state atoms, Ng. This is achieved by measuring the fluorescence from

a strong probe beam that completely overlaps the lattice-trapped atoms and is retro-reflected, so

that each atom cycles many times before being lost. The power in the probe beam is ∼ 30 mW,

which is enough to strongly saturate the transition. On average, we collect & 6 useful photons

per atom in the trap in a photo-multiplier tube (PMT). This quantity already includes the PMT

quantum efficiency. The effect of the probe is to completely remove the lattice-trapped ground

state population. We then repump the excited state atoms to the ground state using the 707 nm

and 679 nm repumping transitions. The ground state population is again counted, but represents

the number of atoms that were in the excited state, Ne. In between the measurements of Ng and

Ne, a third fluorescence measurement characterizes the signal background, Nbg, so that Ne and

Ng are accurate representations of the lattice-trapped populations. The fraction of atoms in the

excited state can then be calculated from Ne, Ng, and Nbg as

fexc =
Ne −Nbg

Ne +Ng − 2Nbg
. (2.29)

2.5 Lattice spectroscopy

The precision of the 87Sr optical lattice clock arises from the pairing of an ultrastable laser

with sub-Hz linewidth, with an extremely narrow optical transition, whose fundamental limit is the

natural linewidth of 87Sr . However, in order to realize the potential of such a precise spectroscopy

system, interaction times between the atoms and probing optical field must be at the 1 s timescale.

While it might be possible to envision a multi-pulse Ramsey-Bordé optical fountain clock, there

are systematics such as the wave-front curvature of the beams leading to first-order Doppler shifts,

that will limit the ultimate accuracy of this technique [107, 122], not to mention that the apparatus

for 1 s interrogation would be quite large and complex.
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Figure 2.11: Atomic state detection scheme. After the atoms are placed in a superposition of
1S0 and 3P0 by the clock laser, the state detection proceeds in three steps: (1) the ground state
population is counted (2) the excited state population is moved to 1S0 via repumping and (3) the
ground state population is again counted.

A better way to realize long-term optical and atomic coherence times is to strongly localize

the atoms. This technique was used to demonstrate recoil-free optical spectroscopy [103] and

subsequent record-breaking line-Q (Q ≡ ∆ν/ν) with a single trapped Hg+ ion, tightly localized in

a quadrupole trap [22]. In fact, the Hg+ ion was so localized, that the characteristic length scale

of its thermal motion was much less than the wavelength of the spectroscopy laser. This regime

of spectroscopy is known as the Lamb-Dicke regime, where the characteristic energy scale of the

confining potential is larger than the photon recoil energy.

During free-space spectroscopy, conservation of momentum requires that as an atom absorbs

a photon, it receives an impulse of ~k, resulting in a shift of the frequency of

Er = ~ωr =
(~k)2

2m
, (2.30)

where ωr is the recoil frequency, k = λ/ (2π) and m is the mass of the atom. In general, when an

quantum emitter/absorber is more localized than a wavelength of light, its absorption spectrum

will be strongly modified. For example, a bound atom or ion with quantized motional eigenstates

(e.g. harmonic oscillator eigenstates) can only emit or absorb between initial and final quantized

eigenstates, leading to a quantized energy spectrum. Early demonstrations of recoil-free spec-
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troscopy were performed with Mössbauer spectroscopy, where the recoil momentum is absorbed by

the crystalline lattice of the absorbing or emitting material [123] and can lead to extremely high

line Q ' 1015 [124], which has only recently been matched by the 87Sr lattice clock reported in this

thesis with a Q of 9× 1014 [125].

Optical lattices used in optical lattice clocks play an analogous role to the crystal lattice in

Mössbauer spectrscopy in the sense that they can tightly localize the atoms and also absorb the

recoil momentum. We consider the case where the optical potential is harmonic, such that

V (x, y, z) =
1

2
mωxx

2 +
1

2
mωyy

2 +
1

2
mωzz

2, (2.31)

where ωx = ωy = 2πνr, ωz = 2πνz, and νz(νr) is the longitudinal (radial) trapping frequency given

by Eq. 2.25 (Eq. 2.26). In a one-dimensional optical lattice, as depicted in Fig. 2.12, ωz � ωx ' ωy

The corresponding motional eigenstates of the system are the harmonic oscillator energy eigenstates,

which we label as |~n〉 ≡ |nx〉|ny〉|nz〉. These will be discussed in detail in Chapter 5.

When performing spectroscopy in a trap with motional eigenstates given by |~n〉, there are two

classes of laser-driven transitions possible. The first is where the motional states are left unchanged,

such that |~n〉 → |~n〉 and is referred to as the carrier transition. The second class of transition is

where one or more motional quantum numbers are changed such that |~n〉 → |~n′〉, and is referred

to as a sideband transition. The simplest and most experimentally relevant cases are the carrier

transition and the sideband transitions for which a harmonic oscillator level is changed by one

vibrational quanta, as depicted in Fig. 2.12. Fig. 2.13 shows the measured sideband transitions

with respect to the carrier transition in both the radial and longitudinal directions. In this way, we

are able to quantify our trap frequencies fairly accurately, which in turn gives us precise knowledge

of the harmonic potential in which the atoms sit.

The motional states of an atom in a harmonic trap will also affect its interaction with a

radiation field. The relevant dipole moment for a general transition in a quantized trap is given by

[15]

d~n~n′ = 〈~n|eik·r̂|~n′〉〈g|d̂|e〉. (2.32)
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Figure 2.12: Spectroscopy in a one-dimensional optical lattice. The clock probe beam is aligned
along the lattice propagation axis. The frequency of the transition is modified according to the
change in motional quanta. A blue sideband transition excites an additional motional quanta, while
the red sideband transition de-excites a motional quanta.

As a result, we can write the mode-dependent Rabi frequency as a function of the bare Rabi

frequency Ω0 ≡ 〈g|E · d̂|e〉/~ as [15, 126]

Ω~n~n′ = Ω0〈~n|eik·r̂|~n′〉 = Ω0

∏
j

e−η
2
j /2

√√√√ n<j(
n<j + ∆nj

)
!
(iηj)

∆nj L
∆nj
n<j

(
η2
i

)
. (2.33)

Here, j ∈ {x, y, z}, ∆nj =
∣∣∣n′j − nj∣∣∣, n<j is the lesser of nj and n′j , and ηj is the Lamb-Dicke

parameter in the jth direction. Specifically, the Lamb-Dicke parameter is defined as

ηj = kjaj/
√

2 (2.34)

where aj is the characteristic length for the jth harmonic degree of freedom aj =
√
~/ (mωj).

Finally, kj is simply the probe k-vector projection along the jth direction.

As clearly seen from Eq. 2.34, the Lamb-Dicke parameter scales as the ratio of the harmonic

confinement length to the wavelength of the probe light. One general statement is that if ηj � 1,

the Rabi frequency for an nj changing transition is suppressed relative to the carrier by a factor of
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Figure 2.13: Spectroscopic resolution of longitudinal and radial sidebands in a 1D optical lattice
potential. (a) The laser frequency is scanned over 100 kHz on either side of the carrier transition,
revealing ∆nz = ±1 sideband transitions. The asymmetric shape of the sidebands arises from
coupling between the radial and longitudinal optical potential. (b) Radial sidebands with ∆nr =
±1. In order to excite the radial sideband transition, the clock laser was misaligned from the lattice
by ∆θ ' 10 mrad.

η
∆nj
j . Furthermore, in the case where ~n = ~n′, Eq. 2.34 simplifies significantly, such that

Ω~n = Ω0

∏
j

e−η
2
j /2Lnj

(
η2
i

)
' Ω0

∏
j

1− (nj + 1) η2
j , (2.35)

where the final approximation is valid in the limit η2
j � 1. Equation 2.35 demonstrates a dependence

of the Rabi frequency on |~n〉. In general, for a one-dimensional lattice, the optimal situation is to

align the spectroscopy laser along z (the axis of strong confinement) to minimize radial sideband

excitation and Rabi frequency inhomogeneity.

One final detail to address is the effect of tunneling on lattice spectroscopy. Tunneling in an

optical lattice can give rise to frequency shifts and line broadening due to the band structure of the

lattice [127, 128]. In order to circumvent this problem, it was prescribed to work in an accelerated

frame, achieved by tilting the lattice so that a component of gravity lies along the standing wave.

In the so-called Wannier-Stark ladder, tunneling effects are effectively detuned by the ∼ 1 kHz

energy detuning between adjacent sites due to the effect of gravity [127].
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Figure 2.14: Spectroscopic lineshape obtained with Rabi spectroscopy performed on the 1S0 →3P0

clock transition at 429 THz with a π-pulse time of Tpulse = 160 ms. Inset: High-resolution scan
taken with Tpulse = 3 s. Both scans were taken without any averaging. The ultra-high resolution
of these lineshapes is enabled by the clock laser described in Chapter 4.

2.5.1 Lattice spectroscopy: experimental

When performing spectroscopy on the lattice-trapped atoms, the three main parameters of

relevance are the duration of the clock pulse(s), the number of clock pulses applied, and the intensity

of the clock laser beam. The most common form of spectroscopy employed is Rabi spectroscopy.

As seen from the preceding discussion, care must be taken to make sure that the clock probe beam

is well-aligned with the optical lattice so that the atoms are well within the Lamb-Dicke regime.

Ideally, for the 1D optical lattice, the clock probe has no projection along the x or y directions, such

that ηx = ηy = 0. In principle, there are small deviations from this due to a beam misalignments,

such that, e.g., ηx = k sin (θ) ax. Here, typical misalignments are at the few mrad level.
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Figure 2.15: Rabi flopping as a probe of the spread in Rabi frequency. (a) Rabi flopping with
a longitudinally cooled (Tz = 1.5 µK) and radially hot (Tr = 3.0) µK sample. The circles are
experimentally recorded data and yield an effective misalignment of 2.5 mrad, resulting in ∆Ω/Ω =
0.02 (b) Series of Rabi flopping curves taken with Tz ' Tr ' 4 µK. The extrapolated effective
misalignment varied from 3 mrad to 8 mrad (∆Ω/Ω between 0.06 and 0.11.) Inset: Theory curve
for the best-aligned case.

Clock spectroscopy is performed by sending a pulse or pulses of clock laser light onto the

atoms along the z axis—the direction along which the atoms are strongly confined by the lattice.

In the case of Rabi spectroscopy, the applied pulse is chosen such that the Rabi frequency satisfies

ΩTpulse = π. (2.36)

This results in unity excitation probability on resonance. After the pulse is applied, the excited

state fraction of the atoms is detected as described in Section 2.4.4. An example of a Rabi lineshape

with τ = 160 ms is shown in Fig. 2.14. The full-width at half-max (FWHM) of the rabi lineshape is

related to Tpulse by ∆νFWHM ' 0.8/Tpulse, resulting in a 5 Hz FWHM for the 160 ms pulse duration

depicted in Fig. 2.14. The theoretical lineshapes and details of both Rabi and Ramsey spectroscopy

are discussed in Appendix 1.

In order to experimentally measure the ~n-dependence of the Rabi frequency, we performed

several experiments. With our best alignment at Tr = 3 µK and Tr = 1.5 µK (temperature along

the longitudinal and radial directions, resctively), we measured very long Rabi coherence, as a

function of the number of on-resonance Rabi “flops” (i.e. excitation cycles |g〉 → |e〉 → . . ., where
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the population returns to the ground state). In order to provide a theoretical fit for the data,

we calculate a Boltzmann-weighted sum of different evolution frequencies, whose n-dependence is

given by Eq. 2.35a. We assume a fixed misalignment between the clock probe, which is assumed

to be a perfect plane wave, and the lattice. The data for the cold, well-aligned case, is shown in

Fig. 2.15. The theoretical fit indicates that the effective misalignment is as small as 2.5 mrad, and

that for these conditions, the RMS spread of Rabi frequencies ∆Ω is about 2%. This is a significant

improvement over previously reported results from our group [112, 114]. At hotter temperatures,

we measure much faster decay due to the larger number of motional states that are populated. We

took numerous traces, as shown in Fig. 2.15b, with varying misalignment. Again, at the optimal

alignment, we find an effective misalignment of 3 mrad, while the most severe misalignment shown

here is only about 8 mrad. As seen from the figure, probe misalignments are most visible at hotter

temperatures, and we used this to our advantage when trying to optimize alignment between the

probe and the lattice.

While the agreement between the theory and the data shown in Fig. 2.15 is qualitatively

quite good, there are minor discrepancies. There are several reasons for this. The first is that

2-body inelastic losses can affect the evolution of the atomic coherence at longer times (we describe

the inelastic losses in detail in Chapter 5). A second reason is that we assume that the only

wavefront misalignment between the lattice and the clock probe is due to an angular misalignment.

In fact, the probe itself is focused, and the act of focusing the clock probe results in a Gaussian

spread of wave-vectors k. It can be shown that for a probe with 1/e2 intensity radius w0, the

mode-dependence of the Rabi frequencies is

Ω~n

Ω0
= πw2

0e
−η2z/2Lnz

(
η2
z

) ∫
dfxdfye

−π2(f2x+f2y)(w2
0+a2x)Lnx

(
2π2fxa

2
x

)
Lny

(
2π2fxa

2
y

)
. (2.37)

A more complete description of the sidebands would include this effect as well, but for all practical

purposes the measured ∆Ω/Ω ' 0.02 is more than sufficient for high-precision spectroscopy, and

we choose to characterize the misalignment as an “effective” one.
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2.6 Limits to atom-laser coherence due to photon scattering

The question as to whether optical-atomic coherence in an optical lattice suffers due to photon

scattering is of central concern for optical frequency standards employing optical lattices. In the

case of Sr, some estimates have placed the scattering rate as high as ∼3 Hz for a lattice depth

of ∼100 Erec [129], which would already have negative consequences for the clock and precision

spectroscopy reported in this thesis. It is the purpose of this section to calculate the rate of photon

scattering from the two clock states.

We begin by noting that the question of decoherence due to light scatter is a nuanced one,

primarily because there are two scattering processes that can occur. The first type of light scattering

is Rayleigh scattering, where a photon is scattered from the lattice beam but the internal state of

the atom does not change. In a recent study of a qubit formed by the ground-state spin of a Be+

ion, it was found that even if the Rayleigh scattering rates of the two qubit states were matched, the

relative sign of the Rayleigh scattering amplitude was the important quantity for the decoherence

of the qubit [130]. In a magic wavelength lattice, the AC polarizability and the Rayleigh scattering

rate are intimately linked, as it is the induced dipole that both allows the atom to be trapped and

that causes Rayleigh scattering.

The second kind of scattering is Raman scattering. Here, the “color” of the absorbed photon

and the emitted photon are different, implying that the internal state of the atom has been changed.

In the case of Sr, the only Raman scattering processes that are relevant are 3P0 →3P1 and 3P0

→3P2 . Of these two, it is the first process that is harmful for the coherence of the clock state,

since the 3P1 state can decay back to the ground state. Thus, this process can be considered

as a modification of the clock state lifetime due to a small but finite optical pumping from the

lattice. The 3P0 →3P2 simply appears as loss from the excited clock state, and thus should not

significantly affect the coherence.
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2.6.1 Kramers-Heisenberg formula

In order to calculate all the relevant scattering rates, we begin with the Kramers-Heisenberg

formula3 which describes the cross section for scattering between two internal states of an atom—

labelled by a and b and connected via an intermediate state j—as [88]

dσ

dΩ
= r2

0ωω
′3 m

2

~2e4

∣∣∣∣∣∣
∑
j

[
(ε̂′ · dbj) (ε̂ · dja)

ωja − ω
+

(ε̂ · dbj) (ε̂′ · dja)
ωja + ω′

]∣∣∣∣∣∣
2

. (2.38)

Here, r0 is the “classical electron radius” and is given by r0 = e2/(4πε0mc
2); ω′ is the wavelength

of the (energy conserving) scattered radiation; ε̂ and ε̂′ are the polarizations of the incoming and

scattered photons, respectively; and ωja is the complex transition frequency between states a and

n, given by

ωja = ωj − ωa + iAT, j/2, (2.39)

where AT, j is the Einstein A-coefficient of the excited state j (inverse the excited state lifetime).

When a = b we have Rayleigh scattering, and ω = ω′. When a and b differ, we have Raman

scattering, and ω′ differs from ω to conserve energy. Here, j is a shorthand notation for all possible

intermediate states connected by the dipole operator. The dipole matrix elements, are given by,

e.g.,

dja = 〈j|er̂|a〉, (2.40)

where a, b, and j are shorthand for a specific state, with each described by a term symbol SLJ ,

electronic configuration, and angular momentum projection, mJ . Since we consider the clock states,

the initial and final states a and b are restricted to be ∈ {5s2 1S0, 5s5p 3P0, 5s5p 3P1, 5s5p 3P2}. To

determine the photon scattering rate, we multiply the cross section by the incoming photon flux

such that

dγ

dΩ

(
ε̂, ε̂′

)
=

I

~ω
× dσ

dΩ
(2.41)

=
Iω′3

(4πε0)2 c4~3

∣∣∣∣∣∣
∑
j

[
(ε̂′ · dbj) (ε̂ · dja)

ωja − ω
+

(ε̂ · dbj) (ε̂′ · dja)
ωja + ω′

]∣∣∣∣∣∣
2

. (2.42)

3 A good derivation of this formula is found in [131]
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The interpretation of dγ/dΩ is photons scattered per second into a solid angle dΩ. This quantity

depends on the incoming intensity.

At first glance, Eq. 2.42 looks fairly intractable. After all, we want the total scatter rate

given by the integral over 4π of solid angle, namely

γ =

∫
dγ

dΩ

(
ε̂, ε̂′

)
dΩ. (2.43)

However, we can modify Eq. 2.42 to look more reasonable. Focusing on the sum, we note that

∑
j

[
(ε̂′ · dbj) (ε̂ · dja)

ωja − ω
+

(ε̂ · dbj) (ε̂′ · dja)
ωja + ω′

]
= ε̂′ ·

∑
j

[
(dbj) (ε̂ · dja)
ωja − ω

+
(ε̂ · dbj) (dja)

ωja + ω′

]

≡ ε̂′ ·D. (2.44)

The term D (no subscript) can be thought of as a net induced dipole for the scattered radiation.

Now the angular integral can be performed, and we must also sum over the two final polarization

states which we label as ε̂′1 (n) and ε̂′2 (n). This can be written as

Iω′3

(4πε0)2 c4~3

∫
dΩ
[∣∣ε̂′1 (n) ·D

∣∣2 +
∣∣ε̂′2 (n) ·D

∣∣2] . (2.45)

It turns out that the integral in Eq. 2.45 is exactly the same equation that appears in the treatment

of spontaneous emission (see problem 4.2 of Ref. [88]), and the final result for γ is given by

γ =
Iω′3

(4πε0)2 c4~3

(
8π

3
|D|2

)
, (2.46)

where the term in parentheses is the evaluated integral of Eq. 2.45 and D is defined as

D ≡
∑
j

[
dbj (ε̂ · dja)
ωja − ω

+
dja (ε̂ · dbj)
ωja + ω′

]
. (2.47)

We proceed by noting that in Eq. 2.46, we have a simple expression that depends on |D|2, which

is defined in Eq. 2.47. The meaning of |D|2 is simply

|D|2 = |Dx|2 + |Dy|2 + |Dz|2 =
1∑

q=−1

|Dq|2

Here, Dq is given by

Dq =
∑
j

[
〈b|erq|j〉

(ε̂ · dja)
ωja − ω

+ 〈j|erq|a〉
(ε̂ · dbj)
ωja + ω′

]
. (2.48)
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Figure 2.16: Raman scattering rate as a function of wavelength for scattering from 3P0 into 3P1

(solid), and 3P2 (dashed). The lattice peak intensity is 3.4 × 104 W/cm2, corresponding to νz =
80 kHz for an 813.428 nm lattice. The inset (span indicated by a grey bar) shows a detailed view
of two magic wavelengths, including the 813 nm magic wavelength used for clock operation.

At this point, if we assume linear polarization of the input beam (lattice), there is a natural

choice of quantization axis that simplifies things even more. If we choose the quantization axis

to be along the direction of the lattice polarization (also realized in the experiment, conveniently)

then Eq. 2.49 becomes

Dq =
∑
j

[
〈b|er̂q|j〉

〈j|er̂0|a〉
ωja − ω

+ 〈j|er̂q|a〉
〈b|er̂0|j〉
ωja + ω′

]
. (2.49)

At this point we can use Eq. 2.46 along with Eqs. 2.48 and 2.49 and the treatment in Appendix B

to calculate the scattering rate for a lattice frequency ω and scattered photon frequency ω′. In this

calculation, the sum over intermediate states n is carried out for the states given in Table 2.1 for

scattering from 3P0 and 1S0.
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Figure 2.17: Rayleigh scattering rate as a function of wavelength for 3P0 (solid) and 1S0 (dashed).
The lattice peak intensity is 3.4 × 104 W/cm2, corresponding to νz = 80 kHz for a lattice at
813.428 nm. As before, the inset (span indicated again by a grey bar) shows a detailed view of two
magic wavelengths, including the 813 nm magic wavelength used for clock operation.Note that the
Rayleigh scattering rate is the same at the magic wavelength, as expected.

Finally, we extrapolate the lattice laser intensity, I, from the observed sideband frequencies.

For the purposes of this work, we assume that the atoms are at the very bottom of the wells,

such that they are subject to the maximum lattice intensity. In principle, the finite temperature

of the sample will reduce the average intensity seen by the atoms, and the fractional reduction is

approximately the same as the ratio of the atomic temperature to the trap depth.

As presented previously, we assume a lattice intensity profile given by

I (x, y, z) =
8P0

πw2 (x, y, z)
e−2r2/w2(x,y,z) cos2 (kz) , (2.50)

where P0 is the power of a single beam. The longitudinal trap frequency associated with this profile
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Results at 813.428 nm.

3P0 →3P0 7.3× 10−2 × (νz/80 kHz)2 [1/s]
3P0 →3P1 6.4× 10−2 × (νz/80 kHz)2 [1/s]
3P0 →3P2 4.4× 10−2 × (νz/80 kHz)2 [1/s]
1S0 →1S0 7.3× 10−2 × (νz/80 kHz)2 [1/s]

Results at 505 nm.
3P0 →3P0 4.9× (νz/260 kHz)2 [1/s]
3P0 →3P1 1.7× 10−1 × (νz/260 kHz)2 [1/s]
3P0 →3P2 8.2× 10−1 × (νz/260 kHz)2 [1/s]
1S0 →1S0 4.9× (νz/260 kHz)2 [1/s]

Table 2.2: Scattering rates from 3P0 into the 3P fine structure manifold and 1S0 Rayleigh scattering
at the magic wavelength. The Rayleigh rates agree at the magic wavelengths, as expected. The
Raman process 3P0 →3P1 is expected to be the most detrimental to clock coherence. In all relevant
conditions at both magic wavelengths we find that this rate is well below 1 Hz.

is given by

νz =
1

2πw0λ

√
32παP0

cε0M
=

1

λ

√
αIpeak

cε0M
(2.51)

where Ipeak = 8P0/
(
πw2

)
. For νz = 80 kHz, Ipeak = 3.4 × 104 W/cm2 corresponding to P0 =

140 mW. Using this value for intensity, we find the scattering rate into the 3P fine structure

manifold from 3P0 as a function of wavelength as shown in Fig. 2.16., while the comparison of the

Rayleigh rates of scattering out of 1S0 and 3P0 is shown in Fig. 2.17. It is important to note that

no saturation effects are taken into account, so only the far-off resonant segments of this plot are

valid for such high intensity.

2.6.1.1 Numerical values and experimental confirmation

The wavelengths of greatest practical importance are the magic wavelengths near 813 nm

and 505 nm. For both these magic wavelengths, we tabulate the scattering rates for a lattice

depth corresponding to νz ' 80 kHz with λlat = 813.428 nm, which corresponds to 140 mW input

power and a lattice depth of 130 Er (22 µ K). In order to calculate the scattering rate at 505 nm,

we simply assume the same input power (140 mW), but due to the difference in wavelength and

polarizability, νz is significantly larger than for the lattice formed with the equivalent power at
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Figure 2.18: Experimental measurement of optical pumping due to lattice scattering. The extrap-
olated 3P0 →1S0 decay rate is due to the both spontaneous decay and optical pumping due to
Raman scattering of lattice photons in addition to spontaneous emission from the metastable clock
state.

813 nm. In Table 2.2, we summarize the result of the scattering rate for 140 mW input power.

The rate will scale with the total input power, and we show the scaling as a function of trap

frequency. We note that for 80 kHz sidebands at 505 nm, only 15 mW of optical power are

required and all scattering rates—especially the Raman rates—are small. Thus, we anticipate that

a lattice at this wavelength could be an intriguing possibility, especially for applications requiring

low power consumption. Finally, we note that an important modification must be considered when

the ensemble average of the scattering rate is desired; instead of using the Ipeak obtained by inverting

Eq. 2.51, it is necessary to find the RMS intensity averaged over the thermal density-distribution

of the atoms. This effect roughly scales as the ratio of the total trap depth to kBTr and kBTz. For

Tz = Tr = 3.5 µK, the average scattering rate is 70% of the peak scattering rate given in Table 2.2.

In order to test the accuracy of the scattering rate calculation, we performed a measurement

of the 1S0 population as a function of hold time of the lattice. In order to initialize the system,

we first excited close to 100% of the atoms to the 3P0 state with a clock pulse and subsequently

removed residual ground-state atoms by using the 461 nm probe beam as a method to “blow-away”

ground state atoms. We observed that the ground state population grew at a rate proportional

to the excited state population. Due to the effects of two-body inelastic collisions between 3P0
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atoms (described in Chapter 5), the excited state population also decayed while the ground state

population was being populated due to 3P0 →3P1 Raman scattering, and we took this effect

into account. By fitting the rate of accumulation in 1S0 , we were able to extrapolate that the

atoms in 3P0 were decaying with Γe→g = 5.0(5) × 10−2 1/s. We expect this to be consistent

with the temperature corrected 3P0 →3P1 Raman rate in Table 2.2, of ΓRaman
e→g = 4.4 × 10−2 1/s.

Interestingly, while there is fairly good agreement between these numbers, there is one effect that

we have not taken into account: the natural lifetime of 87Sr due to spontaneous emission. The

3P0 →1S0 natural decay rate has been calculated as ΓSpont
e→g = 9(3) × 10−3 1/s, and thus there is

good agreement between the predicted ΓSpont
e→g + ΓRaman

e→g = 5.3(3) × 10−2 1/s and the measured

Γe→g = 5.0(5)× 10−2 1/s.

Finally, we note that this general technique of measuring decay to 1S0 should permit an

accurate evaluation of the 87Sr natural lifetime. By measuring the optical pumping rate as a

function of lattice intensity, the zero-intensity decay rate could be extrapolated, representing a

measurement of the natural lifetime. This measurement would benefit from the fact that its analysis

will not depend heavily upon the details of the scattering rate calculation.

2.7 In situ thermometry and cooling

As described in the previous section, the atomic temperature can have direct and noticeable

impact on degree of dephasing between atoms during the laser excitation process. As we will see

in Chapter 5, knowledge of and control of excitation inhomogeneity is important for characterizing

density-dependent frequency shifts. Furthermore, the atomic density itself is dependent on the

temperature, which is also important for characterizing density-dependent effects. In this section,

we describe the techniques used for measuring the temperature of the atomic sample in the longi-

tudinal direction (Tz) and in the radial direction (Tr), as well as additional cooling we can perform

on the lattice-trapped atoms.

In order to extract Tz, the red and blue longitudinal sidebands are compared in size. Since

atoms with nz = 0 cannot lose any further motional quanta, atoms in the longitudinal ground do
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Figure 2.19: Temperature extraction and effect of additional cooling. (a) Uncooled (red) and cooled
(blue) longitudinal sideband structure. (b) Uncooled (red) and cooled (blue) Doppler-broadened
clock transition. The black line is a Gaussian fit to each temperature condition.

not contribute to the red sideband, thus creating a temperature-dependent asymmetry between the

red and blue sidebands. This is in contrast to the other motional states with nz > 0 that contribute

to each sideband equally4 . It can be shown that the ratio of the sideband areas is related to the

temperature as [126]

σtotal
red

σtotal
blue

= 1− e−E0/(kBTz)∑
nz=0 e

−Enz/(kBTz)
. (2.52)

Here, the sum is taken over the approximate number of bound states in the longitudinal direction,

which is approximately 6 for a typical 80 kHz lattice. The mode dependent energy, Enz , includes

the effects of quartic distortion of the cos2 (kz) potential and is given by [126]

Enz = hνz

(
nz +

1

2

)
− νrec

2

(
n2
z + nz + 1

)
, (2.53)

where νrec = ωrec/ (2π), where ωrec is the recoil frequency as defined by Eq. 2.30. In order to find

Tz, we simply numerically solve Eq. 2.52 for Tz.

The technique we employ to find Tr is more straightforward. A secondary clock laser beam

pathway along the H2 axis (see Fig. 2.3) probes the lattice-trapped atoms along the weakly-confined

axis, resulting in a Doppler-broadened transition profile. We fit the doppler width of the profile

4 From Eq. 2.33 it might be expected that there would be an asymmetry between the excitations of each sideband.
Experimentally, we utilize pulses that “over-drive” the transition, meaning that the excitation saturates to a constant
value due to the dephasing explored in the previous section
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using a Gaussian distribution Pe (ν) ∝ exp [−(ν − ν0)2 / (2σ)] where [88]

σ = ν0

√
kBT

mc2
. (2.54)

Typical values for the frequency width σ are 15–30 kHz, representing temperatures in the 1–4 µK

range.

In order to reduce the temperature of the lattice-trapped 87Sr , we employ two techniques.

In order to cool the longitudinal temperature, we employ additional cooling on the lattice-trapped,

spin-polarized sample using MOT on the 1S0 →3P1 , F = 9/2 → F = 11/2 transition, and whose

frequency is tuned to optimize the longitudinal temperature. During this sideband cooling stage,

the optical pumping beam and bias magnetic field used in the spin-polarizing procedure are left

on, ensuring that the atoms cycle primarily on the mF = 9/2→ mF = 11/2 transition and do not

depolarize. Since the optical pumping beam (along H2) and the MOT beam along this same axis

compete, we must disable this MOT beam pathway during the cooling. In order to cool the atoms

in the polarizing transverse dimension, we optionally apply an additional cooling beam along the

imaging axis, which cools the atoms transversally along that axis. Figure 2.19 shows the effect of

these extra cooling steps on the measured Tz and Tr.

2.8 Systematic uncertainty

The 87Sr optical lattice clock was the first neutral atom standard to surpass the Cs primary

frequency standard in its reported systematic uncertainty. In a series of measurements in 2007–2008,

we characterized many relevant clock systematics of the Sr lattice clock below the 10−16 optical

lattice clock by comparing the 87Sr clock frequency with the NIST Ca clock [31]. The comparison

was facilitated by the use of an ultrastable octave spanning frequency comb [132] in order to connect

the 87Sr clock frequency to a transfer laser at 1064 nm. The transfer laser was transmitted through

a noise-cancelled ∼ 3.5 km fiber to NIST [55] where a second frequency comb allowed comparison

with the Ca clock, which served as a stable reference at intermediate timescales. Due to slow

drifts in the Ca clock, data was typically taken in an interleaved fashion, with 100 seconds per
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Contributor Correction (10−16) Uncertainty (10−16)

Lattice Stark (scalar/tensor) -6.5 0.5
Hyperpolarizability (lattice) 0.1 0.1
BBR Stark 54.0 1.0
AC Stark (probe) 0.2 0.1
1st order Zeeman 0.2 0.2
2nd order Zeeman 0.36 0.04
Density 3.8 0.5
Line pulling 0 0.2
Servo error 0 0.5
2nd order Doppler 0 �0.01

Systematic total 52.1 1.36

Table 2.3: Systematic frequency shifts and their uncertainties for the 87Sr frequency standard (as
in Refs. [1, 2]). The largest contributor to clock uncertainty, the black-body radiation (BBR) shift,
is marked in red.

condition (e.g., high-density vs. low-density operation). The net result of the evaluation is shown

in Table 2.3. Using the same fiber for microwave frequency transfer, we measured the 87Sr lattice

clock against the NIST F1 primary frequency standard, and obtained [1]

νSr = 429, 228, 004, 229, 873.65(37) Hz. (2.55)

We note that this value is in good agreement with all previous and subsequent measurements

[133, 33, 134, 34].

In the intervening four years, the optical lattice setup was changed from an injection-locked

Ti:sapphire system to an all-solid state one. Additional improvements to the lattice were made

at that time, allowing better overlap between the input and retro-reflected lattice beams, thus

increasing the longitudinal trap frequency from ∼ 40 kHz, to ∼ 80 kHz. This change greatly

facilitated the collisional physics studied in Chapter 5 of this thesis, but will require a re-evaluation

of systematics. However, as we show in Chapter 4, a new ultrastable laser system permits evaluation

of a systematic through interleaved measurement (as utilized in [135]) on a very rapid timescale. In

contrast to the result presented in [135], where data records spanning several weeks were required

for systematic evaluation at the 1 × 10−17 level, the new laser system presented in Chapter 4 of

this thesis allows for similar measurement precision to be obtained in 30 minutes. Thus, one could



59

Figure 2.20: Two-dimensional lattice geometry. Here, the single-site occupancies are mainly re-
stricted to zero, one, or two atoms.

envision doing a complete clock systematic evaluation at the 10−17 level in one day if averaging

time were the only impediment to such a measurement!

As will be shown in Chapter 5, a high-density lattice clock does not make the best frequency

reference due to the strong interactions between atoms in the optical lattice. The current ex-

perimental configuration is best suited for experimental studies of collisional physics due to the

high operating density. However, we have still been able to evaluate the density shift to the low

2.4×10−17 fractional frequency uncertainty in the current experimental configuration with a reduced

operating atom number of Ntot = 1000. In the meantime, a second 87Sr clock under development

at JILA employs a much lower-density operating condition by utilizing a buildup cavity for the

lattice, allowing a large reduction of density. This second system has been able to demonstrate a

density shift uncertainty for operation with 1000 atoms of 8× 10−19 [43].

A second approach to reducing the density shift that we employed was to confine the atoms

in a 2D lattice, depicted schematically in Fig. 2.21. Here, a reduction of the density shift to the

1× 10−17 was observed, which was made possible primarily by the single-site occupancy combined
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with strong interactions for the particles in doubly- and triply- occupied sites [135]. The additional

operational complexity of the 2D lattice is not favorable for robust clock operation, but this work

was an important demonstration of methods for reducing density shifts by reducing the chance an

atom resides in a multiply-occupied site. A three-dimensional lattice would be a natural extension

of this technique, and we note that 3D lattice geometries have also been realized with bosonic

88Sr [136]. For the remainder of this thesis, we restrict ourselves to the one-dimensional lattice

geometry. In this configuration, the single site occupancies are large enough to constitute quantum

many-body systems, and we study them in this context in Chapter 5.

We note that a significant exploration of all lattice-induced shifts has been presented in [110],

where effects such as hyperpolarizability (two-photon-induced stark shifts which scale with lattice

intensity as I2) and shifts due to magnetic dipole and electric quadrupole transitions [137], which

scale as
√
I. The conclusion of Ref. [110] is that lattice systematics can be controlled at below the

1× 10−17 level for the lattice depths we employ in the clock.

2.8.1 Blackbody radiation

As seen from the systematic uncertainties listed in table 2.3, black-body radiation is the

largest contributor the 87Sr clock uncertainty (highlighted in red), and this is the case for all 87Sr

lattice clocks currently at the 1 × 10−16 uncertainty level [31, 33, 34]. The frequency shift arises

due to room-temperature radiation coupling to the AC-polarizability of the clock states. To first

order, however, the black body radiation (BBR) depends primarily on the DC polarizability of the

clock states as [138, 139, 115]

h∆νBBR = −1

2
〈E2〉T∆α (0) [1 + η (T )] . (2.56)

Here, 〈E2〉T = (8.319 V/cm)2 (T/300 K)4 is the average squared electric field magnitude for a

given temperature; ∆α (0) = αe (0) − αg (0) is the differential DC polarizability, where αe (0) and

αg (0) are defined in Eqs. 2.19 and 2.20, respectively; and η (T ) is the dynamic correction, which

takes into account shifts due to corrections beyond the DC polarizability. Until recently, lack
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of knowledge of several oscillator strengths utilized for the calculation of αe (0) had limited the

theoretical uncertainty of the room-temperature BBR correction at 7× 10−17 [140].

Two experiments have successfully measured ∆α (0) in Yb [139] and Sr [115] optical lat-

tice clocks. In the case of Sr, a discrepancy between the theoretical Sr blackbody frequency cor-

rection calculated in Ref. [138] and the measured value was discovered by Middelmann et al.

[115]. The discrepancy amounts to an additional fractional frequency correction of −1.8 × 10−16

at 300 K. Additional theoretical work has resolved the discrepancy [141], indicating the mea-

sured values should supersede the original calculation. For Sr, the measurements of Middel-

mann et al. indicate ∆α = 4.07865(11) × 10−39 C m2/V, resulting in a static BBR shift of

− 1
2h〈E2〉T∆α (0) = −2.130186(60)×

(
T

300 K

)4
Hz. Additionally, Refs. [115] and [141] agree regarding

the contribution of the dynamic polarizabilities to the frequency shift as − 1
2h〈E2〉T∆α (0) η (T ) =

−0.1477(23) × ( T
300 K)6 Hz (Middelmann et al., [115]) and −0.1492(16) × (T/300)6 Hz (Safronova

et al., [141]).

The measurements have essentially eliminated the systematic uncertainty associated with

knowledge of the static polarizability of Sr. However, the total BBR uncertainty quoted in Table 2.3

includes two contributions: the now-irrelevant uncertainty in ∆α (0) and the uncertainty in the

BBR environment experienced by the atoms. The latter effect still contributes the largest and

most difficult-to-characterize systematic shift to the 87Sr lattice clock. A 1 K uncertainty in the

temperature induces a 7×10−17 systematic effect. This reflects the unfortunate fact that Sr has the

largest BBR shift coefficient of all lattice clock atomic species. Future work will undoubtedly focus

on providing a well-characterized, or possibly cryogenic [142] environment for the lattice-trapped

atoms.

2.9 Quantum projection noise and the Dick effect

One of the strongest motivating factors for developing optical lattice clocks is the potential for

extremely high stability due to the large signal-to-noise ratio provided by the parallel interrogation

of > 103 atoms. For a clock operated at average excitation fraction given by p, the number of atoms
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Figure 2.21: Ramsey (dashed) and Rabi (solid) lineshapes compared for quantum projection noise
calculation. (a) Here, the ratio of Rabi to Ramsey pulse times is 1.6, such that the full width at
half maximum (FWHM) of the Rabi and Ramsey lineshapes are equivalent. In this scenario, the
slope at p = 0.5 is nearly identical. (b) Tpulse is the same for both traces. For a given Tpulse, the
FWHM of the Ramsey lineshape is a factor of ' 1.6 narrower.

found in the excited state follows a binomial distribution, assuming the atoms are uncorrellated

(i.e., the system is not spin-squeezed). It then follows that the variance of the measured excitation

fraction, (see Eq. 2.29) is

δf2
exc ≡ Var [fexc] =

p (1− p)
N

. (2.57)

This relationship between the noise and the total atom number is known as quantum projection

noise. In fact, measuring quantum projection noise is the method we employ to calibrate the

constant of proportionality between our fluorescence detection and the actual total number of

atoms in the lattice.

Equation 2.57 is a key result for noise in optical lattice clocks: as the number of atoms

increases the noise decreases. However, this is only part of the story. One must convert the atomic

noise into frequency noise by use of the spectroscopic lineshape. Typically, clocks are operated

with p = 0.5, as depicted in Fig. 2.21, where the slope of the excitation probability with respect to

frequency is maximized. From the analytic shapes of the Rabi and Ramsey lineshapes, it can be



63

shown that

σRabi
y (τ) ' ∆νRabi

3.03ν0

√
Ntot

√
Tcycle

τ
, (2.58)

σRamsey
y (τ) =

∆νRamsey

πν0

√
Ntot

√
Tcycle

τ
, (2.59)

where Tcycle is the experimental cycle time, ν0 is the frequency of the transition, and ∆νRabi

(∆νRabi) is the FWHM of the spectroscopic feature used for feedback. ∆νRabi and ∆νRabi are

given by

∆νRabi ' 0.80/Tpulse, (2.60)

∆νRamsey = 1/ (2Tdark) , (2.61)

where Tdark is the Ramsey free evolution time. Thus, even for a modest spectroscopy time of 200 ms

and only Ntot = 1000, quantum-projection noise limited clock operation is still 1× 10−16/
√
τ/1 s

for Rabi spectroscopy.

One roadblock to benefiting from the SNR afforded by thousands of atoms is broadband laser

noise, which ends up contaminating the error signal through the Dick effect. The Dick effect is a

process through which a periodic clock interrogation with spectroscopic dead time writes noise onto

the correction signal, degrading long term stability [36, 143]. For example, for every 1 s of time

per clock interrogation cycle a neutral atom system might spend cooling and trapping atoms in an

optical lattice, the time during which is spectroscopy is performed might only by 100 ms. Thus,

there is an inevitable dead time between spectroscopy sequences, resulting in a periodic sampling

of the laser phase noise, and leading to aliasing of higher-frequency laser noise, deteriorating the

stability.

Specifically, it can be shown that the Dick effect-limited Allan deviation due to the aliasing

mechanism is given by [37]

σ2
y (τ) =

1

τ

∞∑
m=1

|R (m/Tc)|2

|R (0)|2
Gν (m/Tc)

ν2
0

. (2.62)

Here Tc is the clock cycle time, including both atom loading and spectroscopy time; R (f) is given
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Figure 2.22: Fourier and time-domain representation of the Dick sensitivity function and its im-
plications for reaching quantum-limited clock performance. (a) Fourier sensitivity for Rabi (red)
and Ramsey (blue) corresponding to the sensitivity functions shown in the inset. Here the time T0

corresponds to Tpulse (Tdark) in the case of Rabi (Ramsey) spectroscopy. For the frequency-domain
plots, T0 = 200 ms. (b) Here, the loading time is 1 s, such that the cycle time Tc = 1+T0. We plot
the quantum projection noise-limited instability for Ntot = 1000 for both Rabi and Ramsey spec-
troscopy (red and blue, respectively) and the Dick-limited instability for lasers with σy (τ) = 10−15

(dashed black/grey) and σy (τ) = 10−16 (solid black/grey). The black (grey) lines are using the
Rabi (Ramsey) Dick sensitivity function to calculate the Dick-limited performance. In all cases the
instability has been extrapolated to 1 s, so that σ (τ) = σ (1) /

√
τ/1 s.



65

by

R (f) = F [r (t)] , (2.63)

where F [. . .] is the Fourier transform operation; and Gν (f) is the laser frequency noise power

spectral density. The function r(t) describes the spectroscopic sensitivity to a phase shift in the

local oscillator laser and is defined through [36]

δfexc =
1

2

∫ T0

0
dt∆ω (t) r (t) , (2.64)

where ∆ω (t) is time varying laser detuning (i.e., noise) and δfexc is a fluctuation about the expected

excitation fraction due to laser noise. The upper limit of the integral is simply the duration of the

spectroscopy, which is assumed to start at t = 0. We will return to a detailed discussion of

sensitivity functions in Chapter 6. For the moment it is sufficient to give g (t) for Ramsey and Rabi

spectroscopy. The Rabi sensitivity function is given by

rRabi (t) = −
(

∆0Ω2
0

Ω3

){
sin (Ωt)− sin

(
π

Ω

Ω0

)
+ sin

[
Ω

Ω0
(π − tΩ0)

]}
, (2.65)

where generalized Rabi frequency Ω is related to the bare Rabi frequency Ω0 by Ω =
√

Ω2
0 + ∆2

0,

and ∆0 is a static laser detuning from the transition chosen so that p = 0.5. The Ramsey sensitivity

function is given by

rRamsey (t) ' rect

[
t

Tdark
− 1/2

]
. (2.66)

A derivation of Eq. 2.65 is given in Appendix A. In Chapter 6, we additionally show that Eq. 2.66

is a simple case of the class of sensitivity functions that arise from spin-echo sequences with fast

π/2- and π-pulses. Figure 2.22a shows the time and frequency-domain behavior of these functions.

Figure 2.22b shows the implications of the Dick effect on the long-term stability of an optical

frequency standard. Here, two different flicker-noise limited local oscillator spectra are considered,

representing a laser with σy (τ) = 1× 10−15, as originally used in the 87Sr lattice clock [40], and a

laser with σy (τ) = 1 × 10−16, which is the thermal noise floor of the ultrastable laser reported in

this thesis and described in Chapter 4. As seen from Fig. 2.22, only the laser with σy (τ) = 1×10−16
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is not limited by the Dick effect over wide range of spectroscopy times, and furthermore the overall

clock performance is better by an order of magnitude. Here, flicker noise is chosen because it

corresponds to the frequency noise caused by thermal noise in optical interferometers, and is the

subject of the next chapter.

As the preceding discussion indicates, laser stability is a crucial aspect of an optical atomic

clock. Through the Dick effect, the stability of the local oscillator laser always impacts the sta-

bility of the clock. Furthermore, the short term stability of lasers greatly impacts the amount

of time required to make systematic evaluations via interleaved measurements. Here, a factor of

10 improvement in laser stability yields a 100-fold reduction of the measurement time necessary,

reducing month-long measurement campaigns to mere hours. In the next two chapters, we explore

some challenges to improving laser stability, and present three separate laser systems that perform

at or near the 1× 10−16 level of instability.



Chapter 3

Thermal noise in optical interferometers

The goal of this chapter is to introduce the concepts of thermally-driven noise in (opto)-

mechanical systems in a qualitative manner; we then proceed into detailed equations that describe

noise in optical interferometers. A careful consideration of the sources of noise is necessary for

developing state of the art ultrastable lasers, and we use the detailed formalism summarized here

to motivate current highly successful optical cavity designs, as well as potential future ultrastable

laser systems with instability at the level of 1× 10−17.

3.1 Introduction

Optical interferometers are found at the heart of experiments that probe the physical world,

from quantum mechanical [144, 145, 146] to cosmological scales [147]. As introduced in Chapter 2,

cavity-stabilized lasers are essential components of the most precise optical atomic clocks [43] and

their performance directly impacts the ultimate stability of clocks employing thousands of atoms.

The mechanism that currently sets the stability limit for interferometers—from µm to km length

scales—is detrimental thermal coupling to the environment. This coupling is a direct consequence

of mechanical losses in the interferometer substrates and coatings and causes a mechanical displace-

ment which directly impacts the optical phase. In the case of Fabry-Pérot interferometer-based

laser stabilization, the length stability of the interferometer directly impacts the frequency noise of

the stabilized laser, leading to frequency noise that is directly proportional to the fractional length
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change of the interferometer as1

∆ν

ν
= −∆L

L
. (3.1)

Here, L is the length of the Fabry-Pérot interferometer and ν is the central frequency of the laser

stabilized to it.

In this chapter, we describe the mechanism by which both Brownian noise and thermodynam-

ical temperature fluctuations in the interferometer components become effective length fluctuations

of optical interferometers. We emphasized that understanding these mechanisms is important for

designs which mitigate the effect of thermal noise. We also describe a second thermal noise mech-

anism that arises due to statistical temperature fluctuations in the bulk of optical substrates and

coatings. This in turn will also drive length changes in the interferometer through thermal ex-

pansion and the thermo-optic effect. In Chapter 4 we will extensively discuss systems developed

utilizing these insights.

3.2 Thermo-mechanical noise in physical systems

According to the fluctuation-dissipation theorem, the thermally-driven displacement fluctu-

ations of a system are directly proportional to the admittance of the system such that the single-

sided displacement power spectral density for any mechanical degree of freedom with dissipations

is [148, 149, 150, 151]

Gx (f) =
kBT |< [Y (f)]|

π2f2
. (3.2)

Here, < [Y (f)] is the real part of the systems complex admittance, which is defined as

Y (f) = V (f) /F (f) , (3.3)

where V (f) is the velocity response to an applied force F (f) in the Fourier domain.

Since Gx (f) depends directly on Y (f), the displacement noise in a system depends directly

on the type of mechanical damping model that is employed. In the case of bulk mechanical samples,

1 In Chapter 4 we rigorously derive the relationship.
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M

(1 + iφ) k

Figure 3.1: Modified Hooke’s law system. Here the addition of the loss angle φ creates a
displacement-dependent dissipation such that the energy dissipated in one period of motion is
2πφ and thus Q = 1/φ.

such as mirror substrates and optical coatings, a type of damping called “internal damping” applies,

which can be thought of as a modification of Hooke’s law such that [150]

F (f) = − (1 + iφ) kX (f) . (3.4)

Here, φ is the loss angle, which parameterizes the energy dissipated in the material. It is straight-

forward to show that the fraction of energy dissipated in a cycle is 2πφ, such that Q = 1/φ, where

Q is the material quality factor.

Equation 3.4 represents the simple case where we consider one mechanical degree of freedom.

For the mass on a spring depicted in Fig. 3.1, it is easily shown that

Y (f) =
2πif

(1 + iφ) k −m (2πf)2 . (3.5)

In the low-frequency limit, where 2πf �
√
k/m and φ� 1, < [Y (f)]→ 2πfφ/k and thus for the

simple mass-on-a-spring system considered in Fig. 3.1,

Gx (f)→ 2kBT

πf

(
φ

k

)
. (3.6)

In Eq. 3.6 lie all of the essential considerations for a mechanical system driven by Brownian noise:

the low-frequency limit of the noise is 1/f in its frequency dependence, it is proportional to the

loss angle φ (and thus inversely proportional to Q) and T , and it is inversely proportional to the

material stiffness k.

While the case of a mass on a spring is instructive for building a basic understanding of

thermally driven fluctuations in a mechanical system with one degree of freedom, the components
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of optical systems, such as mirrors, are much more complicated. The mechanical displacement of

a bulk object such as a mirror can be decomposed into normal modes, each of which are effec-

tive degrees of freedom with a generalized displacement amplitude. Early attempts to apply the

fluctuation-dissipation theorem of Eq. 3.2 to such systems relied upon a decomposition into these

normal modes, whose frequencies were numerically calculated [152]. In this approach, the beam

profile is weighted by the normal mode displacement amplitude to properly evaluate the optical

phase shift due to a given mode. In general, this sum-over-modes method should work, but it is

computationally intensive and converges slowly [152, 151]. To solve these issues a new approach

was developed, and is the subject of the next section.

3.2.1 Fluctuation-dissipation theorem and Levin’s “direct approach”

In 1997, Levin published a landmark work describing a new approach to calculating the effect

of Brownian motion on the stability of optical interferometers [151]. At the heart of this method

lies the use of a generalized coordinate. It can be shown that the quantity which affects the optical

phase of a reflected beam with electric field amplitude profile E (x, y) ∝ ψij (x, y) at the mirror’s

surface is [152]

∆φ =

∫
|ψij (x, y)|2 k · ~uS (x, y) dxdy. (3.7)

Here ∆φ indicates the resulting optical phase shift cause by ~uS (x, y) (and is distinct from the loss

angle φ), the mirror displacement evaluated at the mirror surface; and k is the laser propagation

wave-vector with |k| = 2π/λ. It is assumed that the laser is propagating in the z-directions. The

mode profile is normalized such that∫
ψij (x, y)ψ∗kl (x, y) dxdy = δikδjl, (3.8)

where δ is the Kroeneker delta. The indices i and j could in principle label Laguerre-Gauss modes

for the case of a spherical mirror resonator, or other solutions to the paraxial Helmholtz equation for

other types of boundary conditions (e.g. the case of conical or Mesa beams [153]). For the remainder

of this Thesis, we will consider only Gaussian beams (i.e. the TEM00 mode of a spherical-mirror
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optical resonator), as these are the lowest-order stable solution in a resonator formed by spherical

mirrors, such that

|ψ (x, y)|2 = |ψ00 (x, y)|2 =
2

πw (z)
e−2(x2+y2)/w(z), (3.9)

where w (z) is the beam waist at the mirror under consideration.

The phase shift ∆φ of Eq. 3.7 can be used to define an effective displacement—essentially

the mirror displacement weighted by the beam intensity profile—as

x = ∆φ/ |k| . (3.10)

Thus, even though the mirror itself is a complicated object with many relevant degrees of freedom,

it is thus possible to reduce this to a single relevant coordinate, x, via Eq. 3.10.

Levin’s technique allows direct computation of the displacement of this coordinate via the

fluctuation-dissipation theorem. The whole point of the calculation is to calculate the behavior of

< [Y (f)] at frequencies well below the lowest-frequency resonant mode. However, it is not clear

what the generalized force should be with respect to the generalized coordinate. The approach that

Levin developed was to define a generalized force via a pressure of the form

P (x, y; t) = F0 |ψij (x, y)|2 cos (2πft) ez. (3.11)

Here, f is the Fourier frequency of the oscillating pressure. In this way, the total hamiltonian for

the generalized force and generalized displacement is

H = −F0 cos (2πft)

∫
|ψij (x, y)|2 ez · ~uS (x, y) = −F0 cos (2πft)x (3.12)

which shows that the generalized force enters the Hamiltonian as in the case where only a single

mechanical degree of freedom was considered.

The next step of Levin’s procedure is to calculate < [Y (f)] from the generalized force and

displacement. Here, the admittance is now defined with respect to the generalized variables. For

the admittance defined in Eq. 3.3, it is easily seen that that the average dissipated power (by which
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we mean the total energy lost in one cycle divided by the cycle time) is2

Wdiss =
1

2
<{F0 × [F0Y (f)]∗} =

1

2
F 2

0< [Y (f)] . (3.13)

Thus, we can quite simply solve for the generalized < [Y (f)] such that [151]

< [Y (f)] =
2Wdiss

|F0|2
=

4πfUmaxφ

|F0|2
. (3.14)

Here, the last equality simply relates the dissipated energy to the maximum elastic energy stored,

Umax, via the loss angle. This follows directly from the modified Hooke’s law of Eq. 3.4. Finally,

by applying Eq. 3.2 to the case of generalized displacement we obtain Levin’s result [151]

Gx (f) =
kBT |< [Y (f)]|

π2f2
=

2kBTφ

πf

(
2Umax

|F0|2
)
, (3.15)

which is anologous to the simple spring case of Eq. 3.6, where Umax = |F0|2 / (2k).

The final step of the procedure requires a “simple” calculation of Wdiss for the generalized

force given by Eq. 3.11 via a calculation of Umax for a static generalized force. The use of a static

force is allowed as long as the frequency is well below any resonant frequencies of the system. In

principle this can be done numerically very straightforwardly [155]. However, analytic solutions for

the case of a Gaussian beam profile on a cylindrical mirror have been obtained [151, 156]. Finally,

we note that the calculation method is easily extended to include the surface contribution due to a

thin dielectric coating film [156]. As it turns out, this aspect of the mirror is absolutely crucial to

consider, as the loss angle can be from one to four orders of magnitude larger than the bulk mirror

substrate, depending on the substrate material.

Before proceeding further, we can make some qualitative statements. As in Eq. 3.6, we see

that the noise of the generalized coordinate x will scale linearly with the temperature and loss

angle, while it will scale inversely with the material stiffness, which is parameterized by an effective

spring constant k̃ = |F0|2 / (2Umax). In the case of the bulk substrate, which can be thought of as

an infinite half-plane, dimensional analysis indicates that k̃ ∝ w0E, where E is the bulk Young’s

modulus and w0 is the beam 1/e2 intensity radius.

2 This computation is similar to time averages performed in electrodynamics. See, e.g., Jackson [154] for a
derivation of the time average formula for oscillatory fields.
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rspacer

L

Thermal noise

Rspacer

Figure 3.2: Schematic of the relevant optical components for calculating the thermal noise of an
optical cavity. The mirrors substrates (blue), optical coatings (thin red line), and spacer (tan) all
contribute to thermally-driven displacement noise at the mirror surface.

3.2.2 Brownian motion in optical cavities

As seen in the previous section, a powerful formalism exists for evaluating Brownian thermal

noise in optical components. In the case of a cavity, the components of concern are the spacer,

mirror substrate, and mirror coatings, as depicted in Fig. 3.2. In each case, the thermally driven

fluctuations of the effective displacement are calculated as outlined in the previous section. While

we do not go into the details of the calculation, we note that in the specific case of a Gaussian beam,

it entails calculating the stored energy in an infinite half-plane (which approximates the mirror)

when subject to a Gaussian pressure profile. It has been found that the one-sided power spectral

density of position fluctuations (in units of m2/Hz) arising from each of the cavity components at
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Fourier frequency f are3 [156, 157, 155]

Gsubstrate
x (f) =

2kBT

π3/2f

1− σ2

w0Es
φs, (3.16)

Gcoating
x (f) =

2kBT

π3/2f

1− σ2

w2
0Es

{
1√
π

d

EsEc (1− σ2
c ) (1− σ2

s )

×
[
E2

c (1 + σs)
2 (1− 2σs)

2 φ‖ + EsEcσc (1 + σs) (1 + σc)
(
φ‖ − φ⊥

)
+ E2

s (1 + σc)
2 (1− 2σc)φ⊥

]}
, (3.17)

Gspacer
x =

2kBT

f

L

π2R2
spacer − r2

spacer

(
φspacer

Espacer

)
. (3.18)

Some of the parameters used in these equations are defined in Table 3.1. We note that for the

purposes of calculations in this Thesis, we assume that the coating parallel loss angle (φ‖) and the

coating perpendicular loss angle (φ⊥) are equivalent.

Two qualitative remarks can be made at this point, the first of which is that both the

substrate and coating displacement noise power spectral densities, given by Equations 3.16 and 3.17,

respectively, do not depend on the length of the cavity. This is due to the fact that the fluctuations

are localized to the mirror surface and this property can be exploited in order to reduce frequency

noise. By increasing the cavity length, the fractional length fluctuations decrease, resulting in

a substrate and coating thermal noise-induced optical frequency noise spectral density that is

proportional to 1/L2. Secondly, while the spacer thermal noise contribution scales with length, and

inversely with R2
spacer. Thus, for a spacer with constant aspect ratio, the spacer contribution to the

total thermal noise in fact decreases with length. This is due to the fact that to convert the power

spectral densities to fractional frequency fluctuations, they must be divided by L2. Additionally,

longer optical cavities typically have larger radii in order to maintain favorable mounting geometry,

meaning that as L increases, so too does Rspacer.

One clear avenue to decrease this noise limit is to decrease the material losses, lower the

temperature, or do both. However, the situation is not so simple. For example, the loss angle

of fused silica—a commonly-utilized mirror substrate material—begins to increase sharply at tem-

peratures below ∼ 250 K, ultimately suffering an almost four orders of magnitude increase before

3 There has recently been an important correction to the spacer contribution [155].
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Definition of parameters

w0 Beam 1/e2 intensity radius

d Coating thickness

φs Substrate loss angle

φ⊥(‖) Coating loss angle perpendicular (parallel) to substrate

Es(c) Substrate (coating) Young’s modulus

σs(c) Substrate (coating) Poisson ratio

αs(c) Substrate (coating) coefficient of thermal expansion

κs(c) Substrate (coating) thermal conductivity

Cs(c) Substrate (coating) heat capacity

ω
sub(coat)
c Substrate (coating) cutoff frequency

Rspacer(rspacer) Spacer (spacer central bore) effective radius

Table 3.1: Summary of the parameters used in the text.

Substrate and spacer materials

Material φ E (GPa) σ

Fused silica (SiO2) 10−6–10−8 72 0.17

ULE glass 1.7× 10−5 68 0.18

Silicon 10−8 130–190∗ 0.05–0.35∗

Sapphire 3× 10−9 400∗ 0.29∗

Dielectric multilayers

Material φ E (GPa) σ

SiO2/Ta2O2 Bragg stack 4× 10−4 110 0.2

GaAs/Al92Ga8As Bragg stack 2.5× 10−5 85∗ 0.32∗

Table 3.2: Mechanical properties of typical optical materials. Values are obtained from [163, 164,
156, 165, 157, 166, 167]. ∗Orientation-dependent

it levels off at 50 K, completely eliminating the benefit of operating at these temperatures [158].

However, crystalline materials such as sapphire [159], calcium fluoride [160], and silicon [158] offer

the benefits of low thermal expansion and low loss angle at cryogenic temperatures. Unfortunately,

typical coating loss angles exhibit an approximate factor of 3 increase at cryogenic temperatures

[161], which offsets some of the gains of operating at low temperatures. We note in passing that

there is an active search for low-loss coating materials or dopants to reduce the mechanical loss of

the existing coating technolgy [162]. It should also be noted that it becomes increasingly difficult

to shield cryostat vibrations at very low temperatures, due to the large cooling powers required.

A powerful and ground-breaking approach to the coating noise problem—which currently
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sets the ultimate noise floor of ultrastable optical cavities [155, 168, 43]—is to use a fundamentally

different coating material for the high-reflectivity dielectric coating. The standard material is an

alternating structure of λ/4 layers of SiO2 and Ta2O5. However, as seen in Table 3.2, the loss angle

of a SiO2 and Ta2O5 is large [169] compared to fused silica, a commonly-utilized substrate material.

Indeed, for a typical optical cavity employing fused silica mirror substrates, a ULE glass spacer,

and SiO2/Ta2O5 coatings, & 80% of the Brownian thermal noise power spectral density results

from the excess mechanical loss of the conventional coating. The benefit of SiO2/Ta2O5 coatings is

their extremely low optical loss, which is at the few ppm level [170]. However, recent breakthroughs

in engineering both high-reflectivity and low-mechanical-loss structures for use in optomechanics

have lead to simultaneously high optical- and high mechanical-quality microresonators employing

AlGaAs heterostructures[171]. As seen from the mechanical quality factor listed in Table 3.2, the

loss angle of AlGaAs structures is at least an order of magnitude lower than SiO2/Ta2O5 coatings.4

With a recent demonstration of optical losses of order ∼ 15 ppm [172], these coatings promise an

order of magnitude reduction of coating thermal noise. Experimental developments along this front

will be discussed further in Chapter 4.

Finally, it is worth mentioning that a final alternative approach to reduce Brownian coating

and substrate thermal noise relies not on reducing the temperature or utilizing novel materials, but

instead on using specially shaped beams, such as mesa, conical, or higher order Laguerre-Gauss

beams [153]. This has the effect of better averaging the position fluctuations of the mirror surface

due to thermal noise. While one could simply envision working near the stability edge of an optical

cavity with typical spherical mirrors to create larger mode-areas on the mirrors, the input pointing

stability requirements become more stringent in these regimes. Specially shaped beams also have

their own challenges as well; controlling the manufacturing process to create satisfactory mirror

profiles and alignment (including linear displacement) in small-scale optics used in optical cavities

is difficult, limiting the optical quality [173].

4 These measurements of the loss angles of AlGaAs were performed on free-standing micro-scale structures. We
present evidence in Chapter 4 that verifies that the loss angle is still valid when applied to a macroscopic coating
bonded to a substrate.
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3.3 Thermodynamic noise

Brownian motion is not the only thermally-driven source of effective length fluctuations in

optical interferometers. For any thermodynamical system comprising a bulk material, there are

temperature fluctuations whose magnitude is given by [174]

〈δT 2〉 =
kBT

2

ρCV
. (3.19)

Here ρ is the material density, C is the heat capacity, and V is the volume over which the tempera-

ture fluctuations are considered. In materials for which the coefficient of thermal expansion (CTE)

and the thermo-refractive coefficient are non-zero, these statistical temperature fluctuations can

couple to the reflected phase of the optical field by two mechanisms. The first involves both the

thermo-refractive and thermal expansion response of the coating itself and is know as thermo-optic

noise. Thermo-optic noise is usually restricted to describing only the coating. The second mecha-

nism involves the thermal expansion of the substrate alone and is known as substrate thermo-elastic

noise.

In the theoretical treatment of both thermo-optic and thermo-elastic noise, the general ap-

proach is to calculate the effect of the bulk fluctuations as described by Eq. 3.19 on the effective

degree of freedom, x, as introduced in Section 3.2.1. The general approach is to solve the heat

equation in the mirror with a Langevin driving term that reproduces equation 3.19 for an arbitrary

volume [174]. The solution for the heat equation then acts as a driving term for elastic expansion,

and in the case of thermo-optic noise, the thermo-refractive effect. The final solution for the spec-

tral density of fluctuations is the net result of this process. In the case of thermo-optic noise, the

thermo-refractive effect and the elastic displacement must be added coherently, because they share

the same driving temperature fluctuations [175].

Substrate thermoelastic and coating thermo-optic noise have been studied as a noise source

for gravitational wave detectors [176, 177, 175]. There are two Fourier frequency regimes in the

analysis of thermo-optic noise. The first is where the thermal diffusion length scale is smaller than

the laser spot size, allowing an averaging effect to take place. This regime is known as the adiabatic
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limit and only applies to time-domain Fourier frequencies f that satisfy 2πf � ωc where the cutoff

frequency, ωc, is given by

ωc =
2κ

w2
0ρC

. (3.20)

Here, κ is the thermal conductivity and w0 is the intensity 1/e2 radius of the laser beam. Due

to the small beam sizes (∼ 100 µm) and interest in the frequency noise spectrum all the way to

DC in cavity-stabilized laser systems, one must be aware that ωc is typically in the 1 Hz range.

Thus, consideration of thermo-optic noise in the semi isothermal regime, at Fourier frequencies

2πf < ωc, is necessary for a complete picture of the various contributions to the frequency noise of

cavity stabilized lasers. Typically the coating cutoff frequency and the substrate cutoff frequency

are different.

3.3.1 Substrate thermoelastic noise

To date, many optical cavities have employed mirrors made from ULE substrates [40, 178].

As a result, consideration of substrate thermoelastic noise is not necessary for these systems, as the

material coefficient of thermal expansion (CTE) is close to zero. This approximation has also been

made in the case of fused silica substrates [179]. In fact, while alarming predictions for substrate

thermoelastic noise can be obtained by extrapolating the high–frequency behavior of fused silica

thermoelastic to 1 Hz-level frequencies, using the appropriate expression for the low-frequency

behavior verifies that the substrate thermoelastic noise is at least an order of magnitude below the

Brownian noise of the substrates and coatings in the case of fused silica. For other materials such

as sapphire at room temperature, this will not be the case.

It has been shown that the one-sided power spectral density of mirror length fluctuations due

to the substrate is [174, 176]

GTE,sub
x (f) =

4√
π
α2

s (1 + σs)
2 KBT

2w0

κs
J [Ω (f)] . (3.21)
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Here, Ω (f) = 2πf/ωsub
c , and J [Ω] is given by

J [Ω] =

√
2

π3

∫ ∞
0

du

∫ ∞
−∞

dv
u3e−u

2/2

(u2 + v2)
[
(u2 + v2)2 + Ω3

] . (3.22)

While the integral can be evaluated numerically, it is more instructive to calculate thermal noise

in the low and high frequency limits. Specifically,

GTE,sub
x → 8

√
2

3π
α2

s (1 + σs)
2 KBT

2

√
2πfκsρsCs

, Ω� 1 (3.23)

GTE,sub
x → 16√

π
α2

s (1 + σs)
2 KBT

2κs

(2πfρsCsw0)2 , Ω� 1. (3.24)

These equations indicate that at low frequencies, thermoelastic noise rises less rapidly than extrap-

olated from the high-frequency behavior. Qualitatively, this effect can be explained as a crossover

from the regime where the thermal diffusion length is smaller than the spot size to one where it

is larger. Thus, this change in behavior can be thought of as an averaging effect that is no longer

valid at low frequencies [176, 177].

3.3.2 Coating thermo-optic noise

A second way that optical cavities are sensitive to thermodynamic temperature fluctuations

are through a pair of correlated mechanisms present in the mirror coatings: thermorefractive and

thermoelastic effects, collectively called thermo-optic noise. Typical dielectric mirrors are made of a

stack (also known as a Bragg stack) of alternating high- and low-index materials whose thicknesses

are chosen such that the optical path length in each layer is λ/4, where λ is the vacuum wavelength

of the optical frequency of interest. For ultra-low loss coatings comprised of alternating quarter-

wave layers of SiO2, and Ta2O5, 20 pairs of such layers will give a transmission loss of 1 ppm (see,

e.g., [180]). For such a mirror, it has been shown that the typically opposite signs of these coherent

mechanisms reduces their impact and the total effect can be written as [175]

GTO
x (f) = G∆T (f)

(
ᾱcd− β̄cλ− ᾱsd

Cc

Cs

)2

. (3.25)

The term in parentheses is the coherent sum of thermoelastic and thermorefractive effects; the

thermo-optic noise. The parameter ᾱc (ᾱs) is the effective coating (substrate) coefficient of ther-
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mal expansion, and β̄c is the effective coating thermo-refractive coefficients, as defined in [175].

Modifications to the mirror Bragg stack, such as depositing an extra 1/2 λ cap on the surface (a

“half wave cap”), can be used to modify β̄c and thus in principle the thermo-refractive noise can

be coherently cancelled or reduced via Bragg stack engineering [181, 182]. Table 3.3 lists thermal

and thermo-optic parameters for relevant materials.

As shown in Ref. [183], the averaged thermodynamic fluctuations that contribute to coating

thermo-optic fluctuations coupled through the CTE are

GTO
∆T (ω) =

8KBT
2κ

(ρcCc)

∫ ∞
0

2πk⊥dk⊥

(2π)2

∫ ∞
−∞

dkz
2π

k2
z + k2

⊥

a4
(
k2
z + k2

⊥
)2

+ ω2
e−k

2
⊥r

2
0/2

(
1

1 + k2
z l

2

)
(3.26)

Here, r0 = w0/
√

2, a =
√
κ/ (ρcCc) and l is the optical penetration depth in the coating and is

typically < 1 µm. The rightmost term in parentheses is only present in the treatment of thermore-

fractive noise [183, 165], and is not present for thermoelastic coating fluctuations. However, since

the penetration depth, l is much smaller than w0. Ignoring this term only introduces an error of

order l/w0. This expression can therefore be written

GTO
∆T (ω) =

2
√

2KBT
2

πκω0
[K (Ω) +O (l/w0)] , (3.27)

with

K (Ω) = <
[∫ ∞

0
du ue−u

2/2

√
u2 + iΩ√
u4 + Ω2

]
. (3.28)

Here, Ω = ω/ωcoat
c , where ωc is the cutoff frequency defined in Eq. 3.20 applied to the coating

material properties. Two important limits for K (Ω) are

K (Ω)→
√
π

2
, Ω� 1 (3.29)

K (Ω)→ 1√
2Ω

, Ω� 1 (3.30)

Thus, the two corresponding limits for the temperature fluctuations are

GTO
∆T →

2KBT
2

√
πw0κc

, Ω� 1 (3.31)

GTO
∆T →

2
√

2KBT
2

πw2
0
√
κcρcCcω

, Ω� 1 (3.32)
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Material α [ppb/K] β [1/K] κ [W/m-K] ρ× C [J/m3-K] n

Fused silica (SiO2) 2.6× 103 8× 10−6 1.4 1.6× 106 1.45

ULE glass ∼ 0 NA 1.31 1.7× 106 1.48

Ta2O5 3.6× 103 1.4× 10−5 33 2.1× 106 2.06

Silicon (124 K) ∼ 0 NA 6 8×105 3.96

Sapphire 6× 103 NA 46 3.1×106 1.77

GaAs 5.7× 103 3.66× 10−4 55 1.8× 106 3.48

Al92Ga08As 5.2× 103 1.79× 10−4 70 1.8× 106 2.98

Table 3.3: Thermal and thermo-optic/optical properties of common optical materials at room
temperature and at 1064 nm. The symbols are α, the thermal expansion; β, the thermo-refractive
coefficient; κ, the thermal conductivity; ρ × C, the per-volume heat capacity; and n, the index
of refraction. Values are obtained from [165, 175, 184]. For GaAs the material properties were
found from [185, 186, 187, 188, 189]. Full temperature dependent material values for many of the
materials listed above can be found in [184]. The thermo-refractive coefficients of ULE, Sapphire,
and silicon are not applicable to the discussion because they are not used as coating materials.

A final correction comes about due to the finite thickness of the coating. We do not go into

detail here, but for large coating thicknesses, the coherence between the thermo-optic and thermo-

refractive effects is reduced at higher Fourier frequencies. The effect is parameterized by a function

Γ (f) as described in Ref. [175], such that GTO
x (f)→ Γ (f)GTO

x (f).

3.4 Total thermal noise contribution to cavity frequency stability

The total thermally-driven (effective) displacement noise is given by

Gtot
x =

∑
L,R

GTO
x +

∑
L,R

GTE
x +

∑
L,R

Gsubstrate
x +

∑
L,R

Gcoating
x +Gspacer

x , (3.33)

where the sum over left and right (L, R) takes into account that the beam waist is potentially

different at the left and right mirrors. The noises directly sum because they are statistically

independent.

Converting the total length fluctuation power spectral density, Gtot
x (f), into optical frequency

deviations can be accomplished by use of Equation 3.1, which directly relates fractional length

change to frequency fluctations. We obtain

Gtot
ν (f) = ν2

0G
tot
x (f) /L2, (3.34)
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where L is the length of the cavity and ν0 is the laser’s optical frequency.

3.4.1 Examples of thermal noise floor

We consider several test cases utilizing two different types of cavity materials and two different

types of coatings: SiO2/Ta2O5 and GaAs/Al92Ga8. We perform calculation utilizing Eqs. 3.21,

3.25, 3.33, and 3.34. In order to calculate the Allan deviation from the power spectral densities, a

transfer-function approach is used (see, e.g., [45] Eqn 5.12). Two spacer geometries are considered

due to their relevance for future experiments. Plots of the calculated Allan deviations and frequency

noise power spectral densities are shown on pages 84–89. The two cavities considered are

• Cavity A: The spacer 25 cm in length, cylindrical in shape, with a diameter of 10 cm.

The spacer material is ULE glass, while the mirror substrates are fused silica glass, each

with 1 m radius of curvature (mirror radii set the beam size on each mirror, as we show in

Chapter 4). The operating wavelength is 1064 nm and we consider operation at 300 K.

• Cavity B: The spacer is 22 cm in length, shaped as a tapered cylinder 8 cm in diame-

ter at its widest point. The spacer material and mirror substrates are both made from

single-crystal silicon, and the mirror substrates each have 1 m radius of curvature. This

design is identical to the one considered in [168] (aside from the slightly different mirror

radii we utilize here for clarity). The operating wavelength is 1542 nm and the operating

temperature is 124 K, so that the Si coefficient of thermal expansion is nulled as in [168].

As seen from Figs. 3.3–3.8, the use of crystalline materials at cryogenic temperatures can

result in a gain of an order of magnitude of stability for thermal-noise limited performance of a

cavity-stabilized laser. Also, the use of a coating half-wave cap is an effective strategy to reduce

the thermo-optic noise in the mirror coatings. The thermo-optic noise manifests itself at higher

frequencies, and thus does not affect the long term laser stability. However, frequency noise in this

band is still important for reducing the noise in atomic clocks, as described in Chapter 2, and also

for gravitational wave detectors [147].



83

3.5 Conclusion

In this Chapter, we explored the relevant thermal noise sources for optical cavities. As shown

in the results plotted in Figs. 3.3–3.8, the cavity materials are an important factor in determining

the magnitude and character of the noise. The summary given in this chapter should hopefully serve

as a useful reference for future cavity designs. In the next Chapter, we describe high-precision laser

stabilization using optical cavities. Using the insights developed in this chapter, we will describe

the construction of four ultrastable laser systems, three of which operate at the level of 1×10−16. A

fourth system is described in which the new coating material described in this chapter—AlGaAs—is

tested, verifying its very promising optical properties and paving the way for lasers with thermal

noise-limited instability at 1× 10−17.
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Figure 3.3: Thermal noise of cavity A with SiO2/Ta2O5 mirrors, T=300 K. The Bragg stack is
assumed to be 20 high/low index pairs for a coating thickness of 6 µm. The beam radius at each
mirror is w0 = 360 µm. (a) Allan deviation of a laser stabilized to this cavity configuration. (b)
Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic
and thermo-elastic noise. In this case, the coating contributes ∼ 85% of the total Brownian noise.
Here, the substrates contribute 13% of the Brownian noise, the coatings 84%, and the spacer 2%.
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Figure 3.4: Thermal noise of cavity A with GaAs/AlGaAs mirrors, T=300 K. The Bragg stack is
assumed to be 40 high/low index pairs for a coating thickness of 7 µm. The beam radius at each
mirror is w0 = 360 µm. (a) Allan deviation of a laser stabilized to this cavity configuration. (b)
Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic and
thermo-elastic noise. In this case, the coating only contributes ∼ 25% of the total Brownian noise.
Here, the substrates contribute 64% of the Brownian noise, the coatings 24%, and the spacer 12%.
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Figure 3.5: Thermal noise of cavity A with GaAs/AlGaAs mirrors and a half-wave cap , T=300 K.
The Bragg stack is assumed to be 40 high/low index pairs for a coating thickness of 7 µm. The
beam radius at each mirror is w0 = 360 µm. (a) Allan deviation of a laser stabilized to this cavity
configuration. (b) Frequency noise power spectral density due to thermo-optic noise in the mirror
coatings (blue), thermo-elastic noise in the mirror substrate (red), and Brownian noise (black).
The orange curve is the sum of all these noise sources, while the green curve is the sum of only the
thermo-optic and thermo-elastic noise. The half-wave cap dramatically reduces the thermo-optic
noise contribution. Again, the substrates contribute 64% of the Brownian noise, the coatings 24%,
and the spacer 12%.
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Figure 3.6: Thermal noise of cavity B with SiO2/Ta2O5 mirrors, T = 124 K. The Bragg stack is
assumed to be 20 high/low index pairs for a coating thickness of 9 µm. w0 = µm. The beam radius
at each mirror is w0 = 415 µm. (a) Allan deviation of a laser stabilized to this cavity configuration.
(b) Frequency noise power spectral density due to thermo-optic noise in the mirror coatings (blue),
thermo-elastic noise in the mirror substrate (red), and Brownian noise (black). The orange curve
is the sum of all these noise sources, while the green curve is the sum of only the thermo-optic and
thermo-elastic noise. Over 99% of the Brownian noise arises from the coatings.
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Figure 3.7: Thermal noise of cavity B with GaAs/AlGaAs mirrors, T = 124 K. Since the AlGaAs
parameters are not well-known, extrapolated values based on the literature were used in the calcu-
lation. The Bragg stack is assumed to be 40 high/low index pairs for a coating thickness of 10 µm.
w0 = µm. The beam radius at each mirror is w0 = 415 µm. (a) Allan deviation of a laser stabilized
to this cavity configuration. (b) Frequency noise power spectral density due to thermo-optic noise
in the mirror coatings (blue), thermo-elastic noise in the mirror substrate (red), and Brownian
noise (black). The orange curve is the sum of all these noise sources, while the green curve is the
sum of only the thermo-optic and thermo-elastic noise. The thermal fluctuation noise is dominated
by the thermo-optic noise, as the temperature is chosen to be near the CTE null for silicon, which
also nulls the substrate thermo-elastic noise. Even with the high-Q crystallin coatings, 98% of the
Brownian noise is due to the coatings.



89

� � � � � � � � � � � � � � � � �

0.1 1 10 100 10001�10�17

2�10�17

5�10�17

1�10�16

2�10�16

5�10�16

1�10�15

2�10�15

Averaging time �s�

A
lla

n
de

vi
at

io
n

0.01 0.1 1 10 100 1000 104
10�9

10�8

10�7

10�6

10�5

10�4

Frequency �Hz�

G
Ν�f
��

H
z2 �

H
z�

a

b

Figure 3.8: Thermal noise of cavity B with GaAs/AlGaAs mirrors and an additional half-wave
cap, T = 124 K. Since the AlGaAs parameters are not well-known, extrapolated values based on
the literature were used in the calculation. The Bragg stack is assumed to be 40 high/low index
pairs for a coating thickness of 10 µm. The beam radius at each mirror is w0 = 415 µm. (a) Allan
deviation of a laser stabilized to this cavity configuration. (b) Frequency noise power spectral
density due to thermo-optic noise in the mirror coatings (blue), thermo-elastic noise in the mirror
substrate (red), and Brownian noise (black). The orange curve is the sum of all these noise sources,
while the green curve is the sum of only the thermo-optic and thermo-elastic noise. The thermal
fluctuation noise is dominated by the thermo-optic noise, as the temperature is chosen to be near
the CTE null for silicon, which also nulls the substrate thermo-elastic noise. Again, the addition of
the half-wave cap dramatically reduces the thermo-optic contribution. Again, even with the high-Q
crystalline coatings, 98% of the Brownian noise is due to the coatings.



Chapter 4

High-precision laser stabilization with optical cavities

As discussed in Chapter 2, ultrastable lasers are central to the operation of atomic clocks.

Importantly, the most precise optical lattice clocks in existence today are limited by the noise

of these lasers, which arises from thermally-driven fluctuations of the optical cavities to which

they are stabilized. This chapter gives a detailed description of the technology required for high-

precision laser stabilization and describes the development of three ultrastable laser systems that

perform at the level of 1× 10−16. Additionally, we describe a new coating technology and present

experimental results that show that the 1×10−17 level of laser stabilization is within reach. Finally,

we briefly summarize key results with optical frequency combs, as they will play an essential role

in transferring the stability of ultrastable lasers that operate in the near-IR wavelength region to

the visible spectrum.

4.1 Introduction

Optical cavities are extremely useful devices in laser-based research. Within the context of

precision measurement, they enable tests of the laws that govern the macroscopic structure of the

universe, embodied in the search for gravitational waves [147]. At the other end of the length scale,

cavity-stabilized lasers are powerful tools for precision spectroscopy that probes nature at the

quantum mechanical level, through tests quantum electrodynamics [190]. Furthermore, cavities

enable high-sensitivity broadband spectroscopy [191], which has practical applications in trace

gas sensing; exploration of new light-matter interaction regimes in cavity QED [192]; tests of
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fundamental physical principles including relativity [193, 194, 195], local position invariance [196],

and the time invariance of the fundamental constants of nature [61]; and nonlinear optics, including

coherent light build-up for studies of extremely nonlinear effects [51, 52]. In general, optical cavities

have become indispensable tools at the heart of many modern experiments.

As discussed in Chapters 1 and 2, cavity-stabilized laser systems have enabled the develop-

ment of highly precise frequency standards based on neutral atoms [197, 198, 199, 200, 31, 32] and

trapped ions [201, 202, 203, 28]. In recent years, several ion-based standards [57, 27, 30, 29], and

neutral atom clocks [31, 32, 33] have surpassed the fractional frequency uncertainty of the primary

cesium frequency standards that define the SI second [204, 205].

Accuracy is not the only benefit of optical standards; ultrastable lasers paired with ultra-

narrow atomic transitions in the optical domain have allowed the realization of optical clocks that

are orders of magnitude more stable than current microwave-based frequency references, with the

87Sr clock now operating at 3 × 10−16/
√
τ/1 s [43], and which we discuss in this chapter. With

increased stability, highly precise measurements of intricate physical effects can be made in short

periods of time. For example, in Chapter 5, we will explore collisional effects between ultracold at

the 10−17 level. This precision can now be attained within a few thousand seconds due to a 10-fold

improvement of the Sr clock laser, which we describe in detail in this chapter.

As discussed in Chapter 3, thermal fluctuations set the ultimate limit to the stability of a

given interferometer. The desire to further improve the stability of optical clocks will continue to

drive advances in cavity-stabilized laser systems, and the next milestone will be a laser with thermal

noise-limited fractional stability at 10−17. In this chapter, we also discuss exciting new results that

indicate that this regime should be within reach.

We begin this chapter by reviewing the basics of optical cavities and Pound-Drever-Hall

(PDH) laser frequency locking. We then proceed to a detailed discussion of cavity design consider-

ations, which are applied to several systems.
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4.2 Review of optical cavities

A basic optical cavity is formed by an array of two opposite-facing mirrors (Figure 4.1). For

high-precision frequency stabilization, these mirrors are typically held apart by a rigid spacer and

are kept under vacuum to eliminate a varying intra-cavity index of refraction due to air. Although

more complicated cavity geometries exist, including ring-type cavities (e.g. a cavity formed from

a triangular mirror configuration) where the optical field is a running wave, we consider only this

basic configuration as it is most common for precision frequency stabilization. For an incident laser

of electric field amplitude Einc, the steady-state electric field inside such a cavity, ESS, is obtained

by enforcing the condition

ESS = ESSe
iϕR+ Einc

√
T . (4.1)

Here, ϕ is the round-trip phase accumulated by the light, T is the mirror intensity transmission

coefficient and R is the corresponding reflectivity. In the absence of mirror absorption and scatter,

it is possible to relate the magnitude of the R and T coefficients by R+T = 1. However, we choose

to allow for the real-world situation, where mirror losses are influential, by leaving these distinct.

The cavity phase shift, ϕ, can be re-written in terms of the cavity length, L, and the laser’s optical

frequency, ω = 2πν, as1

ϕ =
2Lω

c
+ ϕ̃m,n. (4.2)

The term ϕ̃m,n is due to an additional mode-dependent diffraction phase term and is given by

ϕ̃m,n = −2 (m+ n+ 1) ∆ζ. (4.3)

Here, the indices m and n label higher-order transverse modes (e.g., TEM01, TEM11, TEM02,

etc.), while for the TEM00 (Gaussian) mode, m = n = 0. ∆ζ is the differential Gouy phase, which

is given by

∆ζ = tan−1 (z2/z0)− tan−1 (z1/z0) (4.4)

1 We also note that the cavity length, L, includes the effects of optical field penetration into the mirror coating,
which typically requires a correction to the physical length on the order of an optical wavelength. For macroscopic
cavities, this effect is negligible, but it becomes important for cavities whose size is of the order of an optical wavelength
[180].
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Figure 4.1: Schematic of an optical cavity in the standing wave configuration. The mirror amplitude
reflectivity and transmission coefficients are given by r and t, respectively. ESS is the steady-state
electric field for a given incident field, Ei. Some of Ei is transmitted as Et, while some is reflected
as Er. For simplicity, we assume the mirror properties are identical.

where z2(1) is the position of right (left) mirror and z0 is the Raleigh range of the stable mode within

the optical cavity, whose waist is defined to occur at position z = 0. In general, for a resonator

comprised of a pair of opposite-facing, concave, spherical mirrors, the Rayleigh range is given by

[206],

z2
0 =

d (R1 − L) (R2 − L) (R2 +R1 − L)

(R2 +R1 − 2L)2 , (4.5)

which is related to the beam waist at the center of the cavity as

w0 =

√
λz0

π
, (4.6)

where, as usual, w0 is the 1/e2 intensity radius. It can also be shown that [207]

z1

z0
= −

√
L (R2 − L)

(R1 − L) (R2 +R1 − L)
(4.7)

and similarly

z2

z0
=

√
L (R1 − L)

(R2 − L) (R2 +R1 − L)
, (4.8)

allowing us to find the beam waist at the end mirrors as

w
(
z1(2)

)
= w0

√
1 +

(
z1(2)

z0

)2

. (4.9)
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Commonly, R1 = R2 = R0 and thus

∆ζ = 2 tan−1

(√
L

2R1 − L

)
. (4.10)

By solving Equation 4.1 for the steady-state field, we find that the transmitted field ampli-

tude, given by Et =
√
T ESS is

Et(ω)

Einc(ω)
=

eiϕ/2T
1− eiϕR. (4.11)

Similarly, the reflected field, Er, is given by

Er(ω)

Einc(ω)
≡ R (ω) = r

[
1− eiϕ (T +R)

1− eiϕR

]
. (4.12)

The cavity reflection transfer function, R (ω), is plotted in Fig. 4.2. As can be seen from Equa-

tions 4.11 and 4.12, the transmission (reflection) is maximized (minimized) when the round trip

phase is a multiple of 2π. When this condition is met, the cavity is said to be on resonance. This

results in the resonance condition

νq =

[
q + (1 + n+m)

∆ζ

π

]
c

2L
, (4.13)

where q is the longitudinal mode index, L is the distance separating the mirrors, c is the speed of

light, and ∆ζ is given by Eq. 4.4. We note that there are geometrical configurations of the cavity

such that ∆ζ is a rational multiple of π. In these configurations, it is easy to see that there will

be accidental frequency degeneracies of modes. One such example is the confocal geometry, where

R0 = d. Here, every even mode (i.e., m + n is even) is frequency degenerate with the TEM00

mode. Another example is R0 = 2d, which results in degeneracy for every third higher-order

mode. It should be stressed that these accidental frequency degeneracies should be avoided, as

exact degeneracies are unlikely, but line-pulling due to near-degeneracies is a possibility and can

be problematic.

From Eq. 4.13, it is obvious that the longitudinal modes are spaced in frequency by c/2L, a

quantity known as the free spectral range (FSR). By analyzing the denominator of Eq. 4.12, the

width of the cavity resonance in units of intensity (i.e. the width of a dip in |R|2), denoted as
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Figure 4.2: Reflection coefficient and corresponding phase shift of the reflected light incident upon
an optical cavity. If there are no mirror losses, there is a discontinuity in phase as the reflected
light drops to zero. Here, a small mirror loss term has been included, causing the reflection dip to
not reach zero.

∆νFWHM, is related to the FSR by

F =
∆νFSR

∆νFWHM
=

πr

1− r2
=

π
√
R

1−R '
π

1−R, (4.14)

where the last equality is accurate if F > 100. This ratio, F , is known as the cavity finesse and, as

Eq. 4.14 shows, depends only on the mirror reflectivity.

4.2.1 Measuring Finesse

In order to measure the finesse of an optical cavity, one approach is simply to scan a tunable

laser across the cavity resonances as depicted in Fig. 4.2 and measure the width of the resonance

dips. However, for very high finesse cavities, this is not a feasible approach as the resonance dip

can be extremely narrow with respect to the FSR and even with respect to the laser linewidth.
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The general approach used to circumvent this problem is to use a time-domain measurement.

Quite generally, if an oscillatory system loses energy at a rate proportional to the amount of energy

stored, then the associated time dynamics are exponentially decaying such that U (t) = U0e
−t/τ ,

where U (t) is the energy stored. Many physical systems can be described in this way. We then

associate a field, u (t), with the stored energy U (t), such that U (t) = |u (t)|2. The time dynamics

of u (t) are then [154]

u(t) = u0e
iω0t−t/(2τ), (4.15)

and the transfer function of the system is given by

|H (ω)|2 ∝ 1

1 + 4 (ω − ω0)2 τ2
. (4.16)

Thus, the FWHM of the resonance in frequency is given by

∆νFWHM = 1/ (2πτ) . (4.17)

The decay constant τ is related to the quality factor, Q, as

Q = ν0/∆νFWHM = ω0τ. (4.18)

The Q-factor can also be understood as the rate of stored energy loss divided by ω0.

In an optical cavity we can calculate τ very easily. We assume that in a time L/c, the stored

energy will have been reduced by (1−R). This implies that the intensity loss rate is given by

1/τ = (1−R)c/L such that

dI

dt
= −(1−R)c

L
I (4.19)

We can thus calculate the finesse by noting that ∆νFWHM = c/(2LF) = 1/(2πτ). We thus find

that

F =
πcτ

L
. (4.20)

Equation 4.20 implies that finding the photon decay time of the optical cavity allows a

determination of the cavity finesse, assuming the length is well-characterized. One way to measure

τ is to stabilize a laser to the optical cavity under test and then very quickly switch off the power.
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Figure 4.3: Measurement of cavity photon storage lifetime. Here, a laser was actively stabilized to
the optical cavity and its power abruptly extinguished. The red solid trace is the intensity ringdown
data with a exponential fit (dash-dotted line). The agreement between the measured data and the
exponential fit is excellent. Also shown is the combined response time of the detector and optical
power switching (dashed grey line). The photon storage time is found to be τ = 81.3(1) µs.

This method assumes that the the laser stabilization has already been achieved—making this

method technologically complicated—but the results are exceedingly easy to interpret. Figure 4.3

shows an example of such a procedure. Here, a laser was locked to a high-finesse optical cavity of

length L = 39.4 cm (which we will later describe in detail) and a ringdown time of τ = 81.3(1) µs

was measured. This results in a finesse of F = 194, 000.

In many instances, it is desirable to make a finesse measurement without the added com-

plications of locking. An alternative approach is to sweep the laser frequency across the cavity

resonance and record either the transmitted or reflected time-domain signal. However, when the

laser stays near the cavity resonance for a duration that is comparable to the photon storage time,

interference effects can emerge which make interpreting the signal difficult. Specifically, the field

inside the optical cavity given by E (t) can be described by a simple differential equation for a

linearly swept laser [208] as

dE

dt′
= −

(
1− iν̃t′

)
E + iη. (4.21)
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Here t′ = t/τs is the time normalized by the field ringdown time (as opposed to the intensity

ringdown time) where τs = 2τ . The constant η is the drive rate, given by η =
√
T FEi/π (here T

is the input mirror transmission as in Fig. 4.1). The sweep rate is parameterized by ν̃, where

ν̃ =
2Fdω̇τs
πc

, (4.22)

with the laser frequency sweep rate denoted by ω̇ (in units of radians/s2). Here, t′ = 0 when the

laser is on resonance with the cavity.

While Eq. 4.21 is trivially solved numerically, it turns out that closed-form solutions exist

for any initial condition. In the limit that the laser sweep starts far off resonance and we ignore all

other cavity modes, the solution for the reflected and transmitted power are

|Er (t)|2 = |Ei|2
∣∣∣∣1− β√

ν̃

[√
π

2i
e−t

′+iν̃t′2/2−i/(2ν̃) +
√

2iD

(
i+ t′ν̃√

2iν̃

)]∣∣∣∣2 (4.23)

and

|Et (t)|2 =
β2 |Ei|2

ν̃

∣∣∣∣√π

2
e−t

′+iν̃t′2/2−i/(2ν̃) + i
√

2D

(
i+ t′ν̃√

2iν̃

)∣∣∣∣2 . (4.24)

Here, D (x) is the Dawson integral2 , and β is the cavity contrast parameter, given by

β = T / (1−R) . (4.25)

On cavity resonance, the fraction of transmitted power is β2 while the fraction of reflected power

is (1− β)2. The closed-form solutions to Eq. 4.21 facilitate extracting τ from swept-laser ringdown

measurements. As an example of a swept-laser cavity finesse measurement, Eqs. 4.24 and 4.23 were

used to fit time-domain transmission and reflection signals from two different optical cavities. As

seen in Fig. 4.4, the agreement with the data is excellent.

The reason T and R typically differ is due to absorption or scatter in the mirror coatings,

leading to extra losses beyond those due to light exiting the cavity through transmission (see e.g.,

[180] ). Measurements of β and cavity finesse allow T and R to be extracted. In steady-state, the

2 The Dawson integral is D (x) = e−x
2 ∫ x

0
eξ

2

dξ and is built into Mathematica as the DawsonF function.
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Figure 4.4: Measurement of photon storage time with a swept-frequency optical field. (a) Time-
domain signal of the reflected optical power from a swept ringdown measurement of the cavity
presented in [40]. Here the photon storage time is 14 µs, indicating a finesse of 180,000 (b) Swept-
frequency transmission signal of the cavity presented in [56]. Here, the photon storage time is 10 µs,
indicating the finesse is 280,000.

power that enters the cavity is related to the power leaving the cavity and the total input power,

P0 by

Pin = P0

[
1− (1− β)2

]
and Pout = P0β

2. (4.26)

We can solve for β as

β =
2

1 + Pin/Pout
. (4.27)

Thus, a simple measurement of Pin, Pout, and cavity photon storage lifetime is sufficient to determine

the mirror properties.

4.2.2 Pound-Drever-Hall Locking

As seen in the previous section, an optical cavity defines a series of narrow resonances in the

frequency domain. A common way to stabilize a laser to such a resonance is through a frequency

modulation locking technique. The most commonly used and successful frequency modulation

technique for laser stabilization is the Pound-Drever-Hall (PDH) stabilization scheme [209], where

the frequency modulation is performed at a much higher frequency than the cavity linewidth.

There are several reasons for the widespread adoption of PDH locking. First, there are no
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restrictions upon the phase modulation frequency, as long as it is larger than the cavity linewidth.

A higher modulation frequency gives the lock immunity to common laser amplitude noise offsets

and also permits the use of resonant electro optic modulators (EOMs). Additionally, in the PDH

scheme, the lock bandwidth is not restricted by the cavity linewidth, allowing extremely narrow

cavity resonance features to provide high-bandwidth stabilization.

Given the reflection spectrum of Fig. 4.2, one could imagine that a very simple locking scheme

would be to slowly frequency modulate the probing beam and use this signal to determine where

on the reflection dip the laser frequency lies. However, one main reason not to take this approach

for high-finesse cavities is that laser relative intensity noise (RIN) increases at lower frequencies,

in addition to electronic noise floors. These amplitude fluctuations would contaminate the locking

signal, affecting the lock stability. Additionally, the lock bandwidth would be severely limited.

One way around this noise problem is to increase the laser modulation frequency well above

the cavity bandwidth and beyond the spectral region with significant laser amplitude noise. In this

configurations, it is best to think of the laser electric field distributed as shown in Fig. 4.5. When

the modulation sidebands are well outside the cavity transmission bandwidth, the PDH locking

configuration [209].

Several reviews of PDH locking and laser feedback control theory exist [210, 211, 212, 213].

Here, we briefly discuss the important results of the PDH locking technique. In order to mea-

sure the PDH error signal from an optical cavity, the laser must first be phase modulated. A

phase modulated signal can be decomposed into a carrier and sidebands using the Jacobi-Anger

expansion [214]:

E0e
−iω0t−i∆ϕ sin(Ωt) = E0J0 (∆ϕ) e−iω0t

+ E0

∞∑
n=1

Jn(∆ϕ)
[
e−i(ω0+nΩ)t + (−1)ne−i(ω0−nΩ)t

]
. (4.28)

Here, the term ∆ϕ is the phase modulation (PM) depth and Ω is the PM frequency. From this

expansion, it is clear that the first order sidebands are 180 degrees out of phase (as are all odd

order sidebands), as pictured in Figure 4.5. When the PM frequency is well outside the cavity
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Figure 4.5: Pound-Drever-Hall sidebands and error signal. (a) Electric field amplitude in Fourier
space in the presence of phase modulation of depth ∆ϕ. (b) Pound-Drever-Hall error signal as a
function of laser detuning from the cavity resonance.

bandwidth, these sidebands are sufficiently detuned from the cavity resonance such that they are

promptly reflected from the cavity unaffected. The carrier, which is near the cavity resonance, is

affected by the complex response of the cavity (as shown in Figure 4.2 and given in Equation 4.12)

and interferes with the PM sidebands upon reflection.

This interference term can be explored by assuming that the PM sidebands are completely

reflected and finding the time-dependent reflected optical power, Pref(t), when the carrier is near

resonance. Making use of only the first order sidebands of Equation 4.28,

Pref(t) =
1

2

∣∣Ec, ref + Ese
−iΩt − Ese

iΩt
∣∣2

= Pc, ref + 2Ps − 2Im {Ec, refE
∗
s } sin (Ωt) + 2Ω terms. (4.29)

Here, Ec, ref (Pc, ref) is the reflected electric field amplitude (power) in the carrier and Es (Ps) is

the reflected electric field amplitude (power) in the sidebands. Keeping everything that oscillates

at Ω or below, and making use of Equations 4.28 and 4.12,

Pref(t) = P0

[
J2

0 (∆ϕ) |R|2 + 2J2
1 (∆ϕ)

]
+ 4P0J0 (∆ϕ) J1 (∆ϕ) Im {R} sin (Ωt) . (4.30)
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When the carrier is less than a cavity linewidth from resonance,

Im {R} ' −2βF
∆νFSR

δν (4.31)

Here, δν is the laser detuning from cavity resonance given by δν = νlaser − νcavity and β the cavity

contrast parameter defined in Eq. 4.25. The term in equation 4.30 that oscillates as sin (Ωt), is

thus given by

Dδν sin (Ωt) , (4.32)

where we have used the definition

D ≡ −8βP0J0 (∆ϕ) J1 (∆ϕ)

∆νFWHM
, (4.33)

along with the relationship ∆νFSR/F = ∆νFWHM to derive Equation 4.33.

Equation 4.32 gives the component of optical power that oscillates at the phase modulation

frequency. For small detunings, the amplitude is linear in δν, and can thus be used to lock the laser

to the optical cavity after the optical power has been detected on a photodiode and demodulated.

The degree to which the amplitude changes for a given detuning is characterized by the parameter

D, which, as should be expected, varies inversely with cavity linewidth and is proportional to the

product of the zero and first-order Bessel functions. In passing, we note that this can be used to

define an optimal modulation depth, given by ∆ϕ = 1.08. By measuring this oscillating RF signal,

and demodulating by mixing in the proper quadrature at the frequency Ω, a linear control signal

can be obtained with which to feedback upon the laser frequency.

While Equation 4.32 describes the behavior of the error signal near the cavity resonance, one

may go a step further and include the frequency dependence of Im{R} to calculate the shape of

the error signal over a broader range, as shown in Figure 4.5 [211]. When this detail is included,

it can be shown that the frequency response of Eq. 4.31 needs to be multiplied by a single–pole

low-pass filter function with a corner frequency equal to the cavity half–width in order to provide

a better approximation of the system’s frequency response. This effect can be compensated for by

appropriate servo design, such that the lock bandwidth need not be limited by the cavity linewidth.
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Physically, this low-passing effect represents a transition from a regime in which the cavity is

sensitive to frequency fluctuations of the laser to one in which the error signal is proportional to

phase fluctuations of the laser. As expected, this transition occurs at the cavity half-width.

4.2.3 Sources of lock error

There are two important considerations when frequency stabilizing the laser. The first is

that the reference cavity optical length must be as stable as possible and will be discussed later.

However, an equally important question is whether there are any effects that can prevent a laser

from precisely tracking the reference cavity resonance, due to either technical or quantum effects.

The most fundamental but least important source of error in cavity locking systems is quan-

tum noise (see e.g. [215, 210]). The optical power spectrum of shot noise on the light at the detector

is given by the single-sided power spectral density

GP = 2hνPopt

[
W2/Hz

]
. (4.34)

Thus, assuming β = 1, the expected frequency noise due to shot noise in the most ideal case (and

with an ideal demodulator) is

Gν =
GP

ηD2
=
hν∆ν2

FWHM

16ηP0J2
0

[
Hz2/Hz

]
, (4.35)

where η takes into account the detector quantum efficiency and ν = c/λ is the optical frequency.

Substituting in the very modest parameters λ = 1 µm, P0 = 10 µW, η = 0.5, and ∆νFWHM =

10 kHz, the very low shot noise floor of Sν = 4×10−7 Hz2/Hz can be achieved. This can be related

to the locked laser linewidth by

∆νlocked = πGν , (4.36)

where it is assumed that Gν is white noise. For the parameters given above, this results in a

locked linewidth of 1 µHz. Thus, for high-finesse cavities, the shot noise locking limit is far below

any cavity locking result, even in experiments designed to exclude other technical and thermal

effects [215]. This indicates that in practical situations, “technical” effects are most important.



104

Residual amplitude modulation (RAM) is a term that collectively describes a variety of effects

that induce amplitude modulation at the phase modulation frequency. For example, temperature-

dependent parasitic etalons within the optical system can induce RAM which is then demodulated

along with the cavity error signal. This causes an offset to be introduced in the locking system.

Other effects that can cause RAM are typically related to the phase modulation device, most often

an electro-optic crystal-based (e.g. LiNbO3, ADP, KDP) modulator. For instance, stress-induced

birefringence in crystal devices can rotate the principle crystal axis, creating not only an electric

field-dependent phase shift, but also a corresponding polarization rotation, which can be distributed

across the optical wave front.

While in many cases a temperature-controlled electro-optic (EO) crystal has low enough

RAM for acceptable performance, a certain degree of success has been achieved by using a DC

electric field on crystal-based EO modulators to actively servo the RAM [216]. However, beam

pointing deviations can cause slightly different regions of the crystal to be sampled, causing the

phase of the RAM to shift, and limiting the effectiveness of the active system.

It is important to note that the effect of RAM on laser stability is reduced for cavities with

narrower resonances due to the fact that a given fractional change in RAM results in a smaller

change in frequency for a narrower resonance. Thus, for a given cavity length, higher cavity finesse

is always desirable to help mitigate RAM-induced line pulling.

4.2.4 Choice of EOM crystal

In many cases, limiting RAM is of central importance for high-precision locking. As new

materials continue to be developed to lower the fundamental thermal noise limitations to cavity

locking (see Chapter 3 for a detailed description of thermal noise in interferometers), RAM-induced

lock error will continue to be an important factor in high-precision laser stabilization. Here we

discuss strategies for mitigating EOM-induced RAM.

Crystal symmetry plays a big role in the properties of an EOM. Lithium niobate and lithium

tantalate are uniaxial crystals that both belong to the trigonal 3m crystal group, while ammonium
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Figure 4.6: LiNbO3 and ADP modulator configurations. In the case of ADP, the beam that receives
the phase modulation (horizontally polarized in this figure), walks off from the vertically polarized
component.

dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP), also uniaxial, belong to

the tetragonal 42m crystal group. While a full discussion of the crystal symmetries and implications

for electro-optic modulation of light is beyond the scope of this section, we note that in general

the electro-optic coefficients—the coefficients that modify the crystal impermiability tensor in the

presence of an applied field—depend directly on the type of crystal symmetry. For example, the

r33 coefficient in trigonal 3m crystals—which produces an index change for light polarized along

the extraordinary axis with an applied electric field along the same axis and is widely used in

LiNbO3-based EOMs—is zero for tetragonal 42m crystals, such as ADP.

We begin our discussion of the most conceptually simple of the two classes of crystals con-

sidered, the trigonal 3m crystal group, to which LiNbO3 and LiTaO3 belong. For light polarized

along the z-direction and with a modulation electric field also applied along z, the change of the

index of refraction can be shown to be [207]

ne (E) ' ne −
1

2
n3
er33Ez. (4.37)

Here, ne ' 2.2 is the index of refraction of the extraordinary axis (z-axis). This configuration is also
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shown in figure 4.6. For the specific case of LiNbO3, the r33 coefficient is approximately 30 pm/V

and is the largest electro-optic coefficient among all of the LiNbO3 EO coefficients [217].

One of the most important intra-EO sources of RAM is a polarization-rotation at the drive

frequency that gets converted to RAM by polarization-sensitive optics in the PDH system later

on [216]. Specifically, if there is any misalignment between the incoming light polarization and

the LiNbO3 extraordinary axis (z)-axis, there will be a RAM effect. Temperature fluctuations

can couple to stress-induced birefringence to make the z-axis a moving target. Thus, temperature

control and a very high quality, carefully aligned input polarizer are necessary for reducing the

time-dependent RAM in LiNbO3 crystals.

It turns out that ADP largely addresses the issue of polarization rotation. Due to the different

crystal symmetry of tetragonal 42m crystals3 the EO coefficient of interest is r41 and the crystal

should be cut as in Fig. 4.6. It can be shown that the index change for the ray polarized along the

y′ axis is [218]

ny′ (E) ' ny′ +
1

2
n3
y′r41Ex, (4.38)

where ny′ is given by

ny′ =
√

2

(
1

n2
y

+
1

n2
z

)−1/2

' 1.5. (4.39)

In the case of ADP, r41 is approximately 25 pm/V [218], thus it is competitive with LiNbO3 in

terms of phase modulation.

Due to the qualitatively different orientation of the axes for phase modulation, ADP can

serve as its own polarizer. As shown in Fig. 4.6, the polarization component along the y′ axis has

a walk-off due to the fact that this axis is not a principle axis. On the other hand, the (unwanted)

polarization component along x has no walk-off due to the fact that x is a principle axis. The angle

between the y′ polarization k-vector and the x polarization k-vector is approximately 1.8◦ [219].

This means that the two polarization components can be spatially separated after transmission

through the crystal, as depicted in Fig. 4.6, effectively eliminating the polarization rotation effect.

3 The reader should be aware that the orientation of ADP discussed here is not common in the literature due to
the fact that a different configuration is commonly utilized for amplitude modulation.
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Figure 4.7: Experimental setup for active control of residual amplitude modulation (RAM) in a
waveguide electro-optic modulator. The RAM is detected using the same local oscillator as is used
to drive the crystal.

4.2.5 Active control of residual amplitude modulation

As discussed in the previous section, RAM can crucially depend on the polarization alignment

into crystals of the trigonal 3m family. In general, it is possible to control the polarization alignment

by careful control of the input light polarization, and to mitigate temperature-dependent stress-

induced birefringence. Wong and Hall [216] devised a further step, based upon applying a DC

electric field in addition to the RF drive, in order to actively cancel the polarization-rotation

induced RAM. Specifically, they show that for misaligments between the crystal extraordinary axis

and the input and output polarizers, given by angles θ1 and θ2, respectively, there will be RAM

that scales as [216]

∆P (t) = A0 sin (Ωt) sin [∆φ (Edc)] . (4.40)

Here

A0 = −P0 sin (2θ1) sin (2θ2) J1 (∆ϕ) , (4.41)

where P0 is the input power, and Ω and ∆ϕ are the same quantities as utilized in Eq. 4.28; and

∆φ (Edc) is the phase shift between the ordinary (o) and extraordinary (e) polarization components

within the crystal. This phase shift depends on the crystal length, the crystal temperature, the dif-

ference between ne and no, and importantly the applied electric field. The electric field dependence
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Figure 4.8: Experimental demonstration of reduced residual amplitude modulation (RAM).(a)
RAM-induced frequency offsets in a lock. Here, the free running lock baseline signal was con-
verted to frequency by the known slope of the cavity frequency discriminant. Engaging the RAM
servo reduces the effect to the few-Hz level. (b)Allan deviation of the extrapolated RAM-induced
frequency offset.

was exploited in Ref. [216] to actively maintain ∆φ (Edc) = 0.

Equation 4.41 suggests that if θ1 = θ2 can be enforced, there will be no RAM. While free

space modulators can come close to attaining this condition if temperature-dependent effects are

carefully controlled, it rules out a fairly attractive class of modulators: waveguide-based EOMs.

Waveguide EOMs can provide high modulation depth for very low applied voltage, allowing easy

optimization of cavity locking systems. However, fiber based devices do not offer precise control of

the input polarization due to manufacturing difficulty of aligning the polarization axes of the fiber

to crystal.

Despite this difficulty, we have had great success employing the technique of Wong and Hall

to null RAM-induced frequency noise. Modern fiber-based waveguide EOMs have the advantage

that the waveguide defines a precise interaction region. As a result, waveguide modulators are free

from beam-pointing fluctuations that can be converted to RAM. We attribute the success of this

technique to this key difference and we implemented RAM servos in several optical cavity systems,

most notably those described in Ref. [168]. For one cavity, the RAM servo allowed the cavity

resonance to be tracked with a fractional imprecision less than a part in 105. Figure 4.8 shows
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an example of such a RAM servo in action, where the frequency offset of the non RAM-controlled

case would be at the kHz level. Engaging the RAM servo increases the stability by two orders

of magnitude. Since the RAM servo technique is insensitive to RAM beyond the RAM detection

photodiode, it is quite possible that the level of stability of the data shown Fig. 4.8 was limited in

part by optical etalons.

4.3 Mechanical design of optical reference cavities

Despite the considerable challenges present in building a high-quality cavity locking system

that is free from residual frequency offsets, these effects are not what limit most high-finesse optical

cavity frequency references. Instead, perturbations to the length of optical reference cavity are

ultimately what limit the frequency stability. These perturbing effects fall into two categories:

mechanical and thermal perturbations that are not fundamental, i.e. that are non-statistical in

origin; and fundamental statistical fluctuations in the cavity spacer, substrate, and coatings that

arise from their contact with a thermal reservoir at room (or cryogenic) temperature.

In this section, we discuss non-statistical perturbing effects and describe methods for their

mitigation. These mechanical effects can be divided into two categories: those caused by vibrations

(accelerations) that structurally deform the cavity, and those that couple through the coefficient of

thermal expansion (CTE) of the cavity materials. Use of finite element analysis to optimize cavity

geometries and choice of materials has drastically reduced and elucidated these effects.

4.3.1 Vibration sensitivity

Although optical cavity mirrors and spacers are typically made out of an extremely rigid

substance, such as ultra low expansion glass (ULE), the length stability requirements are stringent

for sub-Hz lasers. As can be seen from Equation 4.13, the fractional frequency change of a cavity

resonance is directly related to the fractional length change by

∆ν

ν
= −∆L

L
. (4.42)
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A world record for cavity stabilization—and one that stood for over a decade—was set in 1999 with

1-second stability at 3× 10−16, and employed a very impressive vibration isolation scheme in order

to keep the cavity length constant: the entire optical table was suspended on giant rubber bands,

resulting in a highly-effective seismic isolation system [38]. Although the cavity length in Eq. 4.42

is the effective length sensed by the optical field, which is averaged over the mirror surface, it is

still astounding that the length stability needed for a sub-Hz laser is sub-fm (10−15 m)—the length

scale of the proton radius! It should thus come as no surprise that length stability at or below one

part in 1015 takes significant engineering effort.

One approach that significantly reduces the dependence on vibration-isolating structures is

to design the cavity spacer such that mirror-spacer system is insensitive to vibrations. An intuitive

way to achieve this is to mount the cavity at its midplane in the vertical direction [39]. In this

way, the top and bottom mirrors move equal amounts when subject to vibrations along the vertical

axis. However, one can only get so far exploiting intuitive geometry for the simple reason that

the support structure breaks perfect vertical symmetry. Thus to finalize any cavity design finite

element analysis (FEA) must be employed [220]. This technique can be applied to a variety of

cavity geometries and tailored to a specific design goal, such as insensitivity in a specific direction,

and was employed to design the vertical cavity reported in [40], and which is still operating in the

lab as of the time of this thesis. Further improvements of the technique have yielded even better

results for a vertical design, with vibration sensitivty at the level of 10−11/
(
m/s2

)
[221]. These

results are quite good given that the highest grade commercial isolation platforms can give isolation

performance at the 50 ng/
√

Hz level, resulting in a vibration-limited frequency noise performance

of order 10 mHz/
√

Hz for the sensitivities exhibited by modern cavities in the visible spectrum.

In principle, one is not restrained to vertical configurations. In fact, there may be good reason

to choose a horizontal configuration, especially if it is expected that the majority of vibrations will

be in the vertical direction. Other motivating factors include structural stability, especially for

larger cavities, and the experimental ease of access for horizontal geometries. Most importantly, in

the horizontal configuration, the coupling of vertical accelerations to deviations along the optical
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axis is reduced by the Poisson ratio, representing roughly an 80% reduction in sensitivity. However,

horizontal accelerations can still couple into mirror displacement, although the inherent symmetry

in the two horizontal axes limits this effect.

4.4 Designing two ultrastable lasers for the 10−16 level performance

In this section, we discuss the design of two ultrastable optical cavities for laser stabilization

using finite element analysis. In both cases, the ULE glass spacers were pre-existing (i.e., they were

not ordered expressly for the purpose of creating a design with insensitivity to vibrations). As a

result, the geometry was fixed, permitting fewer degrees of freedom to explore in the modeling.

Despite this constraint, we find support configurations that yield immunity to vibrations.

4.4.1 Design of the “Big ULE” cavity

The cavity lovingly nicknamed the “Big ULE” is one of the largest ultrastable cavities to be

implemented in a force-insensitive configuration [2]. This cavity first joined our lab in the early

2000s to fulfill another role. Jason Jones et al. employed it for direct frequency comb stabilization,

and its length chosen such that the free spectral range matched the repetition rate of a Ti:Sapphire

laser [222]. At 39.4 m in length, it is over six times as long as the well-known (American) “football”-

shaped cavity of Ref. [199]. Its mass is over 20 kG. This author can assure the reader that every

moment transporting this cavity, often with nothing more than a steady grip, was a religious

experience!

In order to perform finite element modeling, we consider a symmetric half-cavity shown in

Fig. 4.9. The support strategy was chosen to give the feet a uniform surface on which to sit, yet

still be easy to machine. The support strategy that we decided to implement was based on milling

vertical shafts with a flat support surface into the sides of the cavity (see Fig. 4.9a).

Additionally, we wanted to take a risk and use fused silica (FS) mirrors. As seen from the

discussion in the previous chapter, fused silica has a much lower loss angle that ULE, and thus can

lower the thermal noise floor of a cavity by about a factor of two over an equivalent design with
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Figure 4.9: The finite element model considered for the “Big ULE” cavity. It is important to
note that the teflon legs shown here are no longer in use. (a) One half of the cavity was used in
the modeling due to the axis of symmetry in the midplane (b) Front view of the model used and
optimal support depth, d. (c) Top view of the model, and optimum support axial displacement z.

ULE mirrors. The risk comes in the mismatch of coefficients of thermal expansion (CTEs) of the

two materials. In order to mitigate the problems arising from the mismatch, we included ULE rings

in the design, which were assumed to be contacted to the back surface of the FS mirrors. This had

been shown to tune the the thermal expansion properties in a way that helps offset the difference

in CTEs [223] (we will discuss this in more detail in Section 4.4.4.1). We note parenthetically, that,

while the ULE rings were included in the mechanical modeling, their effect is not very significant,

and shifts the zero crossing points by only ∼ 0.1 mm.

4.4.1.1 Finding the optimal support strategy

In order to find the optimal support strategy, we modeled the cavity’s response to vertical

accelerations using finite element analysis (FEA). The modeling goal was to eliminate both the

mirror tilt and the mirror displacement in response to vertical accelerations. The two parameters

that were tuned to find the vibrationally insensitive points are shown in Fig. 4.10. They represent

the position of the support surfaces with respect to the lower surface of the spacer (d), and the

distance of the support surfaces to the end of the spacer (z). In this modeling, teflon rods were

assumed as the support structure. During the modeling, the distance from the optical axis to the
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bottom of the foot was kept at 105 mm to fit into the vacuum assembly. We note that the teflon

rods were later abandoned after the first implementation of the cavity because they led to high-Q

resonances (in Chapter 6, we will see how these resonances manifested themselves in atom-based

measurements).

We performed simulations for varying z and d and recorded the simulated tilt (as measured

along the mirror vertically) and average mirror displacement. We assumed linear coupling between

{z, d} and, the tilt and displacement (given by θ and ∆, respectively), such that ∆

θ

 =

 a11 a12

a21 a22

×
 z

d

+

 ∆0

θ0

 . (4.43)

More compactly, this can be written

Y = AX + Y0. (4.44)

When the displacement vector, Y, satisfies Y = 0, the optimum parameter set is given by

X = −A−1Y0 (4.45)

The planes shown in Fig. 4.10 are fits to a total of 11 different simulations, each for a different

combination of z and d. The extrapolated optimal support points are found, via Eq. 4.45, to be

z = 80.36 mm and d = 53.37 mm. Figure 4.11a shows the final support configuration of the Big

ULE cavity, where the problematic teflon has been replaced. Since a soft material between the

optical cavity and the support structure is always necessary, we used Viton hemispheres with a

radius of ∼ 1 cm (these can be obtained from McMaster-Carr, part 3645K7). Figure 4.11b shows

the exaggerated deformation due to the acceleration of gravity in the vertical direction for the

optimal support configuration.

Once the optimal support points were chosen, we checked the sensitivity to horizontal accel-

erations via FEA. Due to the presence of horizontal symmetry, we expected that the displacement

sensitivity should be zero, and it was (to within error). However, the mirror tilt due to horizontal

accelerations was quite large. We show mirror displacements due to accelerations in the vertical and

horizontal directions in Fig. 4.11c. If the optical mode forms at the center of the mirror, horizontal
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a b

Figure 4.10: Two dimensional planar fits to offset (a) and tilt (b) as a function of z and d. The
data points are obtained via finite element analysis, and a planar surface was fit to them.

accelerations would not couple to the net optical path length change. However, if the optical mode

forms (or if the mirrors are optically contacted) a few mm away from the geometric center of the

spacer, a residual sensitivity of 10−9/g is possible, where g is the acceleration of gravity. In fact,

this is closer to the value we estimate for the sensitivity to vibrations in the horizontal direction,

and this seems to be the dominant mechanism by which vibrations perturb the optical path length.

Figure 4.12 (page 116) shows the Big ULE installed safely within its double-vacuum enclosure.

The outer rough vacuum is kept below 10 Torr to provide thermal isolation from the outside

world and promote temperature homogeneity over the surface of the inner vacuum chamber. The

measured time constant between the inner vacuum chamber and the cavity is 1.6 days, and the

actively controlled temperature of the inner chamber maintains sub-mK stability over the 1 hour

timescale, and few-mK stability temperature stability over the course of a day. Figure 4.13 (page

117) shows the new support structure and heat shield of the Big ULE. This new support structure

was installed after we discovered the problems with the original support structure.
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Figure 4.11: The Big ULE cavity and Zerodur support structure. (a) The final design of the Big
ULE removed the teflon legs in favor of a Zerodur support shelf. The cavity rests on Viton hemi-
spheres (not pictured). (b) Exaggerated cavity deformation in response to a vertical acceleration
and when held at the optimal points via finite element analysis (FEA). (c) FEA-predicted mirror
displacement per acceleration as a function of vertical (left) and horizontal (right) displacement
along the mirror surface when the cavity is supported optimally.
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Figure 4.12: The double-layer vacuum system for the Big ULE. The inner vacuum chamber is
actively temperature stabilized by Peltier elements (visible at right) to the level of several mK
(sub-mK) per day (hour). The outer vacuum is kept below 10 Torr to provide thermal isolation
from the outside world and promote temperature homogeneity over the surface of the inner vacuum
chamber. A vacuum level of 2 × 10−8 Torr is maintained in the inner chaber with a 75 L/s ion
pump. The measured time constant between the inner vacuum chamber and the cavity is 1.6 days.
Inset: Measurement of the thermal time constant of the system. A large temperature change was
applied to the system and the optical beat of the laser stabilized to the Big ULE was measured
with a second stable laser system.
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Figure 4.13: The Big ULE cavity with new Zerodur glass support structure. The cavity rests upon
Viton hemispheres (not shown). Due to the change in support structure, we constructed a new
heat-shield box out of polished aluminum to replace the copper one shown in Fig. 4.12.
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4.4.2 Design of the “JILA cavity”

In order to support the testing of a new cavity constructed from monocrystalline silicon in

collaboration with PTB,4 which we discuss in Section 4.6, we set out to design a second cavity

that would perform at the low 10−16 level. The name, “JILA cavity” comes from its time at PTB,

as this was an easy way to differentiate it from the other systems there. Since this system was

supposed to be transportable, we attempted to make the design as compact as possible. The basic

design is shown in Fig. 4.14 and uses a support scheme similar to that of [224]; the spacer is a

horizontally mounted cylinder, with a diameter of 10 cm and a length of 25 cm. Support shelves,

whose exact positions were chosen via FEA, extend the entire length of the spacer with four support

points defined by small Teflon cylinders. In order to save space, the support scheme involving such

a lip along the edge of the cavity allows the cavity to rest on a rigid rectangular support structure

made of ULE glass through which the bottom half of the cavity hangs. The vacuum system is

thus considerably smaller than the Big ULE, and is compact enough so that it can fit onto a single

Minus-K commercial isolation platform, as shown in Fig. 4.14d. As with the Big ULE, the mirrors

are fused silica and the ULE rings have been added.

4.4.2.1 Finding the zero crossing point

By tuning the depth of the cuts and z-position of support points, we extrapolated the best

values from a total of 9 FEA simulations. We found that the data had a quadratic distortion due

to the fact that changing the position of the support shelf removes material along the entire length

of the cavity, changing the effective cross section. We therefore included couplings up to quadratic

4 Physikalisch-Technische Bundesanstalt, Germany’s standards institute. http://www.ptb.de.
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Figure 4.14: The “JILA” cavity design and vacuum system. (a) Model used for performing finite
element analysis (FEA). Only 1/4 of the total cavity is shown, as there are two planes of symmetry
that were exploited for the FEA modeling. The support is a small teflon cube. (b) Head-on view
of the model. As depicted here, the support shelf optimal distance with respect to the optical axis
was d = 7.18 mm. (c) Top-down view of the cavity and optimal z displacement of 49.13 mm.
(d) Cavity installed inside its vacuum chamber. The inner heat shield is made of copper and its
temperature is actively controlled with four Peltier on which the heat shield directly rests. Thermal
contact between the heat shield and the Peltier elements is facilitated with indium foil. The cavity
is supported by four small teflon supports which rest upon a secondary ULE support structure. The
support structure rests upon the heat shield with four additional teflon stand-offs. The entire system
including ion pump was small enough to rest on a single commercial Minus-K platform.
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Figure 4.15: FEA simulation of the “JILA cavity.” Here, a fit up to quadratic order was used to
describe the mirror (a) displacement and (b) tilt as a function of the support positions.

order in the fit to the FEA data, such that the displacement surface is described by

 ∆

θ

 =

 a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

×



z

h

z2

h2

hz


+

 ∆0

θ0

 . (4.46)

The fits to the FEA data are shown in Fig. 4.15. The quadratic dependence on the support positions

is clearly seen.

As before, we can write Eq. 4.46 in a more compact form: it becomes

Y = AX + Y0. (4.47)

Since A is not a square matrix, we can’t invert it as before (we are still only solving for two unknown

quantities), but rather find the family of solutions for

AX = −Y0. (4.48)

Only one of the solutions is physical, and the the extrapolated values for the vibrationally insensitive

mounting are z0 = 49.13 mm and h0 = 7.18 mm.
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Big ULE Nezrick

Tilt 5.5 nrad/mm-g 4.3 nrad/mm-g

Displacement (fractional) 1.3× 10−10/mm-g 1.0× 10−10/mm-g

Table 4.1: Zero-crossing sensitivities obtained from the finite element modeling. Note that the
z-position affects almost exclusively the mirror tilt, while the depth of the support affects almost
exclusively the displacement. All values in this table are quoted against these major contributors
for the parameter (tilt or displacement) of interest.

4.4.2.2 Sensitivity compared to the “Big ULE”

Having two sets of modeling results allows a comparison of how sensitive the zero-crossings

are to placement errors of the support points. Using the linear models from both the JILA cavity

and the Big ULE modeling (in the case of the JILA cavity, we use the linear coefficients of the

model), these sensitivities can be expressed at 1 g and per mm of placement error. This is relevant

for defining how accurately the support points must be defined. These quantities are listed in

Table 4.1. We find that in general the Big ULE and JILA cavity have very similar sensitivity to

placement errors of the support points, and even 1 mm of placement error is quite tolerable, at

least in the FEA. Probably a more insidious problem is that the FEA assumes complete symmetry

amongst all support points; it is easy to imagine that three of the four support positions are

supporting the weight. This is why we use soft materials between the support surfaces and the

rigid support strucure in both the Big ULE and the JILA cavity.

4.4.3 Mesh size effect

As a final test of the modeling, we wanted to make sure that the FEA did not have a strong

dependence on the discretization mesh (as in Ref. [220]). The mesh size was limited by this author’s

laptop RAM, which was 2 GB (at the time of this writing already this value sounds obsolete). In

the case of the Big ULE, the optimal support positions were extrapolated based upon data obtained

with a 3 mm mesh. The red curve in Fig. 4.16 shows that this extrapolation is quite good, with

a fractional cavity length change on the order of 1 × 10−12/g. However, changing the mesh to

smaller values perturbs this result, meaning that the optimum values of z and d in the limit of zero
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Figure 4.16: Effect of mesh size on the FEA-predicted mirror displacement. The optimal placements
were calculated with a mesh size of 3 mm (red curve). The smallest mesh size of 2.25 mm is closer
than 2.5 mm mesh results, indicating a turning point in the mesh size effect.

mesh size (which we hope would then be equivalent to reality) are something different. However,

by reducing the mesh size to a minimum of 2.25 mm, we can see that the perturbation does not

increase monotonically and that at this smallest mesh size it is even heading back in the right

direction. This could indicate that our residual error based on mesh size alone could be of order

1 × 10−11/g. This is still quite small compared to what are considered “good” sensitivities to

acceleration, typically on the order of 10−10/g. From this we conclude that numerical errors due

to mesh size effects will not be a dominant source of error in the modeling.

4.4.4 Thermo-mechanical perturbations

The most common cavity spacer and mirror substrate materials for ultrastable reference

cavities are ULE, fused silica (FS), sapphire, and silicon. The CTEs of these materials are shown

in Figure 4.17. Due to large room-temperature CTEs, the latter two materials have primarily been

used at cryogenic temperatures [225, 226, 227].

In general, a cavity made of a uniform-CTE material will experience a fractional length
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Figure 4.17: Temperature dependence of coefficients of thermal expansion (CTEs) of common cavity
spacer and substrate materials. (a) CTEs of fused silica and ultra low expansion glass (ULE) [228]
near room temperature. The gray band on the ULE curve represents the manufacturer’s stated
uncertainty in the zero-crossing temperature. (b) CTEs of sapphire [229, 230] and silicon [231].
The inset shows that silicon has a second zero-crossing 17 K in addition to the zero-crossing at
123 K.

change given by

∆L/L = α(T )δT +
1

2
α′(T )δT 2 +O

(
δT 3

)
, (4.49)

where α(T ) is the CTE at the operating temperature, T ; α′(T ) is its first derivative; and δT

are small temperature variations. Ideally, one operates a reference cavity around a zero-crossing

temperature of a material’s CTE, TZC, defined as

α (TZC) = 0. (4.50)

In the case of sapphire, which has no zero crossing, optimal operation is at cryogenic temperatures

which reduce the CTE to an acceptable level. Taking Equation 4.49 in the vicinity of a zero crossing

and substituting in α′ (TZC) = 1.7 ppb/K2 for ULE, it can be seen that the temperature needs to

be stable below 1 mK for stability at the 10−16 level. While this is in principle quite difficult,

the large thermal mass of the ULE spacer tends to limit temperature effects to longer time scales.

Mechanical coupling from the vacuum chamber itself, not the CTE of the spacer material, can also

induce temperature-dependent frequency shift. Thus, care should also be taken to mechanically

decouple the cavity support structure from the chamber. In the case of the Big ULE and JILA
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Figure 4.18: Deformation of mixed-material optical cavities. These images show the qualitative
effect of the additional ULE ring as first demonstrated in [223]. At left, the effect of the CTE
mismatch is seen by the bowing outward of the fused silica mirror in response to an increase in
temperature. At right, this effect has been partially mitigated by the addition of a ULE ring.

cavity, this was accomplished by using Zerodur or ULE baseplate structures that were only weakly

coupled to the cavity via Viton or Teflon. In this way, the baseplate support serves as a mechanical

buffer between the cavity and the aluminum vacuum chamber.

4.4.4.1 Numerical thermo-mechanical modeling

In the case of a cavity with a mirror substrate made out of a different material than the

spacer, extra complications arise. The two materials are typically optically contacted very firmly,

such that the mismatch of CTEs causes an auxiliary mechanical effect, effectively causing the mirror

substrate to bend. This modifies the effective CTE, αnet, such that [228]

αnet = αspacer + 2δ
R

L
(αmirror − αspacer) + Γ. (4.51)

Here, R is the mirror radius and L is the cavity length. The term δ describes thermo-mechanical

stresses coupling into length change and Γ accounts for deviations from the ideal model [228].

Thermo-mechanical finite element analysis can be used to find δ for a given cavity geometry, such
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Figure 4.19: Net coefficient of thermal expansion for the Big ULE assuming a spacer T0 of 15.4◦ C.
The addition of a ULE ring raises the temperature of the CTE zero-crossing of the BIG ULE (solid
red vs. solid black). We find a dependence of the zero-crossing temperature on the cavity assembly
(i.e., the temperature at which the mirrors/rings are optically contacted to the cavity) temperature
(solid black vs. dashed black). The assumed assembly temperatures, Tc are given in the legend. For
the case where the contact is performed at 20◦ C, the ULE ring raises the zero-crossing temperature
to 16.9◦ C.

that αnet can be found and minimized by operating at the new zero-crossing temperature [228, 223].

Finally, it is worth noting that there has been success tuning the zero cross point by contact-

ing an additional piece of ring-shaped ULE glass to the back of the mirror substrate, effectively

“sandwiching” the substrate between two equivalent CTE materials. By varying the parameters of

the ring-shaped piece of glass, one can engineer a more favorable T0 [223].

In order to calculate the effect of the coupling indicated by Eq. 4.51, we performed simulations

of the thermo-mechanical deformation of the Big ULE. With the help of Rich Fox at NIST, we

were able to measure the Big ULE spacer’s CTE zero-crossing temperature as T0 = 15.4 K using a

speed of sound measurement technique. We then used this information to model the net thermal

expansion of the Big ULE spacer with fused silca (FS) mirrors. Figure 4.18 shows the deformation

with and without the extra addition of a ring due to a temperature change. As explored in [223],
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we find that the net CTE of the ULE-FS mixed-material cavity is shifted colder. When we add a

ULE ring to the FS mirror, we find that T0 shifts to higher temperatures. Additionally, we find

that the temperature at which the cavity is assembled is a crucial parameter. In general, the net

zero-crossing gets pulled in the direction of the temperature at which the cavity was assembled.

This general effect is illustrated in Fig. 4.19. We ultimately assumed that the assembly temperature

for the Big ULE was 20◦ C, which led to a T0 of 16.9◦ C, and this is the temperature at which we

maintain the Big ULE enclosure.

We note in passing that the JILA cavity spacer had a very cold T0 ∼ 0◦ C. We could not

be sure if this result was reliable, since the speed of sound measurement had not been tested in

that regime, but subsequent measurements with the JILA cavity at PTB indicated that its T0 was

colder than 5◦ C, which is inconvenient but not insurmountable.

4.5 A near quantum-limited lattice clock

In this section, we describe how the Big ULE cavity has allowed the 87Sr lattice clock(s) at

JILA to demonstrate the highest precision of any neutral atom clocks in the world. Crucially, the

1×10−16 near-thermal noise limited performance of the Big ULE has enabled the 87Sr lattice clock

to operate close to the quantum projection noise (QPN) limit (QPN in lattice clocks is discussed

in detail in Chapter 2). Furthermore, we demonstrate that single-system systematic evaluations—

typically carried out with an interleaved measurement scheme—can resolve systematic effects at

1× 10−17 fractional uncertainty with only 1000 s of measurement time.

4.5.1 Experimental details of the Big ULE

We discussed the support strategy and mounting structure of the Big ULE cavity in Sec-

tion 4.4. Here, we describe the specific details regarding the Pound-Drever-Hall stabilization,

environmental isolation, and delivery of the stable light to the 87Sr lattice clock.

While the finite element analysis was performed to optimize the vibration sensitivity of the

Big ULE, we find that a residual sensitivity to accelerations remains at the level of 1− 2× 10−9/g
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in the horizontal direction. The vertical direction seems to be an order of magnitude smaller, but

this is difficult to measure with precision. While this is somewhat far from the design goal of

low 10−10/g, this value still reflects favorably on the technique; even though the cavity is almost

seven times larger than the “football” cavity design, the vibration sensitivity is only 2–3 times as

large. However, a vibration sensitivity at this level requires the best vibration isolation that is

commercially available, as well as good acoustic shielding.

In order to provide the highest levels of vibration isolation, we placed the double-layer vacuum

chamber that contains the Big ULE onto an actively stabilized optical table (Herzan, model 350S).

The accelerations of the top surface are actively sensed and cancelled at Fourier frequencies as low

as 2 Hz via piezo-actuated legs. Remarkably, the system can support very heavy loads, and in

the current configuration the maximum capacity including the optical breadboard is 600 kG. We

measure that the system is capable of reducing the vibrations to the level of 50 ng/
√

Hz to Fourier

frequencies of approximately 20 Hz, above which it appears the acoustic environment begins to

affect the measurement.

The laser that we eventually stabilize to the Big ULE cavity (see Fig. 4.20 for a schematic

overview of the setup) is an external cavity laser diode (ECDL) comprising an anti-reflection laser

diode (Opnext/Oclaro part HL7001MG) in the Litmann-Metcalf external cavity configuration [232].

The output power is approximately 40 mW. We lock this laser first to a pre-stabilization cavity

using the Pound-Drever-Hall (PDH) locking techniques as in [40], which narrows the laser spectrum

to the sub kHz level. Originally we utilized a small portion of the laser output power for the lock,

but recently we altered the configuration so that nearly all the laser power is now used for the

pre-stabilization lock. The mirrors for the prestabilization cavity are ultra-high finesse mirrors

(F > 100, 000), and they are spaced only ∼ 1 cm apart so that the linewidth of the prestabilization

cavity is not so narrow as to affect the ECDL lock to it. Of the 30 mW that arrives at the

prestabilization cavity, & 10 mW of optical power is transmitted through it when the cavity is

locked. The transmitted light is used for locking to the Big ULE cavity; the linewidth of the pre-

stabilization cavity (∼ 100 kHz) allows extra filtration of the optical spectrum past this frequency.



128

λ/4

PDH det.

Int. servo det.

λ/4

LD current
and external
cavity length

ECDL

Prestab. cav.
length (slow)

AOM freq.
(fast)

AOM

To Sr distribtion
center

AOM drive power

Actively stabilized platform

ADP 
EOM

Temperature-controlled devices:

-ECDL diode

-ECDL baseplate

-EOM crystal

-Inner vacuum 
 chamber of Big ULE 

Figure 4.20: Two-stage Pound-Drever-Hall (PDH) locking for laser stabilization with the Big ULE.
A fast loop locks the external cavity diode laser (ECDL) to the prestabilization cavity (lock details
not pictured). The transmitted light double-passes an acousto-optic modulator (AOM) before
traveling to the actively stabilized platform. The PDH lock to the Big ULE employs an ammonium
dihydrogen phosphate (ADP) electro-optic modulator (EOM). Part of the ∼ 100 µW sent to the big
ULE is sampled for active control of the intensity arriving at the Big ULE. A 30 m noise-cancelled
fiber delivers ∼ 500 µW of power to the Sr distribution center, which is described in Chapter 2.

The laser frequency actuation for the lock to the pre-stabilization cavity is performed via feedback

to the laser diode current and the external cavity length via a piezo-actuated mirror. We achieve

close to a 2 MHz lock bandwidth, which allows robust tracking as the pre-stabilization cavity length

is tuned by a piezo-actuated mirror.

After the prestabilization stage, the laser light goes through a double-pass acousto-optic

modulator (AOM) before entering a single-mode fiber that delivers it to the actively controlled

optical table and onto a secondary platform near the level of the Big ULE optical axis. We find

that the double-pass configuration introduces minimal amplitude noise onto the light as the AOM
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frequency is tuned over several MHz.5 The fiber collimator is chosen (based on the known mode

field diameter within the optical fiber) such that the properly sized beam waist forms at ∼ 50 cm

from the fiber tip without the need of additional mode-matching optics. The Big ULE has one

flat mirror, which serves as the input mirror, and one curved mirror, which serves as the output

mirror. The beam waist on the input mirror is 330 µm. As shown in Section 4.2.1, the finesse is

measured to be 194,000, resulting in a 2 kHz cavity resonance full-width at half-maximum and thus

a resonance Q-factor of 2 × 1011. As we describe in Chapter 6, our estimate for the locked-laser

linewidth is 26 mHz, indicating that we have achieved a lock precision of nearly 1 part in 105.

The phase modulation sidebands are provided by an ADP-crystal electro-optic modulator.

We find that the ADP modulator produces no noticeable residual amplitude modulation (RAM) for

the reasons discussed in Section 4.2.4. We do find it necessary to include an optical isolator in front

of the ADP modulator, as parasitic etalons can form between the crystal face and other optical

elements. As a further step to reduce RAM, we stabilize the crystal temperature. We measure that

the RAM and electronic drifts induce lock baseline noise below the level of the expected thermal

noise floor of the Big ULE from Fourier frequencies of 10−2 Hz to 100 Hz.

We engage the second-stage PDH lock by feeding back to the double-pass AOM with a high

bandwidth voltage-controlled oscillator (Mini-Circuits ZX95-78-S+, chosen for its large modula-

tion bandwidth). In order to limit potential optical-power to frequency-offset conversion (i.e., the

instance where a laser power change gets converted to a frequency jump), we actively control the

power of the light being delivered to the Big ULE for frequency stabilization by additionally feeding

back the the RF drive of the double-pass AOM. We do not find that the frequency stability has a

sensitive dependence on the optical power being delivered to the Big ULE for PDH locking, but

we typically keep it in the 100–200 µW range so that the PDH photodetector is near photon shot

noise limited (as explained in Section 4.2.3, fully reaching the shot noise limited regime is overkill).

A portion of the light prior to the EOM is diverted towards a noise-cancelled, 30 m, polarization-

5 In fact, the double-pass AOM setup is so robust that the AOM alone can lock the free-running laser diode to
the Big ULE cavity for tens of seconds before the ECDL drifts out of acquisition range.
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Figure 4.21: Effect of the sound-proof box on the optical frequency spectrum. The purple trace
was a frequency measurement against the football cavity and is limited by that systems thermal
noise floor at low frequencies (dashed red line). The dashed black trace is a model spectrum for
the Big ULE system in the presence of the acoustic noise. The brown trace is the frequency noise
spectrum after the installation of the sound-proof box. It is evident that the addition of this
enclosure provides & 20 dB of isolation at frequencies above 50 Hz. We attribute the small, sharp
resonances at 22 Hz, 30 Hz, and 42 Hz to acoustic resonances within the “quiet room.”

maintaining, single-mode optical fiber. This fiber delivers light to the injection lock in the Sr

“distribution center,” and this system, including the details of how light is delivered to atoms, is

discussed in Chapter 2, Section 2.4.3.1.

As a final step to isolate the Big ULE from the world, have constructed a large (4′ × 6′ × 3′)

acoustic enclosure around the actively controlled optical breadboard. We utilized multiple layers

of damping material, including a high-density polymer and large, textured sound absorbing panels.

This enclosure serves to drastically reduce acoustic noise > 50 Hz by & 20 dB. Figure 4.21 shows the

before-and-after optical frequency noise spectra when comparing the big ULE to the old clock laser

(i.e., the football cavity), indicating that the large noise peak in the vicinity of 50–100 Hz is almost

completely eliminated. Small, sharp resonances remain at 22 Hz, 30 Hz, and 42 Hz. Remarkably,

we attribute these to acoustic resonances inside “Jans quiet room” (this is the name for room in
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which the clock laser resides), as the frequencies agree remarkably well with the expected resonant

frequencies corresponding to the dimensions of the room. This leads the author to believe that

small rooms are optimal for high-precision work, so that the room resonant frequencies can be

more easily isolated by acoustic enclosures!

4.5.2 Verification of thermal-noise limited performance

As a test of the laser’s performance, we locked the clock laser to the 87Sr transition frequency

as described in chapter 2. We record the frequency corrections necessary to keep the laser on

resonance with the Zeeman-insensitve frequency of the average 87Sr |F = 9/2,mF = ±9/2〉 clock

transition. These corrections are equivalent to to the difference between the laser frequency and

the 87Sr clock frequency with a constant drift and offset removed. The in-loop error signal averages

down quickly indicating that at the 10 s and beyond timescale the measured fluctuations should

correspond with the laser frequency fluctuations. As seen in Fig. 4.22, the laser stability is at the

level of σy (τ) = 1× 10−16, which is consistent with the theoretically predicted value of 7× 10−17.

In order to test the frequency resolution of the system, we scanned out ultra-narrow Rabi

lineshapes. A composite scan of such lineshapes is shown in Fig. 4.23 (page 133). We observe

that a line-broadening that is correlated with the atomic density, which we explore in detail in

Chapter 5. At the lowest densities and using a 3 s Rabi pulse, we are able to repeatedly resolve

500 mHz lineshapes in a single scan, representing a line Q of 9 × 1014, representing a significant

milestone in optical lattice spectroscopy.

4.5.3 High stability for rapid systematic evaluation

As seen in the previous section, the Big ULE performs at the level of thermal noise. One

exciting application of such a high-precision system is the possibility to quickly measure a systematic

shift via interleaved measurements. The procedure is to operate two independent locks, timed such

that their measurements are interleaved with one-another (e.g., lock 1, lock 2, lock 1... etc.) and

such that two separate experimental conditions are utilized for each lock. For instance, lock 1
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Figure 4.22: Demonstration of a thermal-noise limited laser at fractional instability of 1 × 10−16

from 1–1000 s. The laser performance is measured by analyzing the frequency corrections necessary
to keep it on-resonance with the 87Sr clock transition (blue). The in-loop error signal is shown in
transparent red, indicating that at time scales > 10 s, the applied correction signals track the clock
laser frequency, thus demonstrating that the clock laser performs with stability of 1× 10−16. The
dashed black line is a 1/

√
τ guide to the eye, indicating that the in-loop error signal averages down

faster than 1/
√
τ . (Inset) Time-domain measurement of the clock laser frequency via the 87Sr

lattice clock. Each point represents approximately 2 s. Removing the clear quadratic drift results
in sub 10−16 performance.
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Figure 4.23: Ultra-narrow Rabi lineshapes demonstrating 3-s optical-atomic coherence. The line-
shape shown in the main figure is a composite linescan comprised of a total of 20 scans. The
750 mHz linewidth is broadened from the Fourier-limited value of 400 mHZ by density-dependent
effects. We explore these effects in detail in Chapter 5. Inset: an extremely low density single scan
with 3 s probe time. The linewidth is 500 mHz and was repeatable as long as the atomic density
was kept extremely low. Here, the line Q ' 1015, representing a milestone in optical lattice clock
spectroscopy.
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might be a high density condition while lock 2 corresponds to a low density condition. The rapidity

with which the difference between these two locks can reach a given measurement precision sets

the time scale for measuring systematics in the optical lattice clock. For instance, in the work

reported in [135], many days’ of averaging were required to make measurements at the level of

1× 1017. However, with the stability of the Big ULE-stabilized clock laser, such measurements can

be made at the 1 hour timescale. To test the ultimate performance of the techniques, we operated

two independent locks to the same atomic peak (i.e., spin state) and compared the stability of their

frequency difference. In order to obtain the highest precision, we used a Rabi pulse time of 500 ms.

We compared the central frequency of lock 1 to lock 2 such that

∆ν (t) = ν2 (t+ ∆τ)− ν1 (t) . (4.52)

To remove biases from residual first- and second-order drift, we used a three-point string approach

as in [233, 135], as this is the method used for systematic evaluations and is necessary for eliminating

systematic errors due to linear and higher-order frequency drifts of the local oscillator. As shown

in Fig. 4.24, the precision of a systematic evaluation measurement can reach 1 × 10−17 at 1000 s.

The faster than 1/
√
τ averaging in Fig. 4.24 indicates that the measurement has not yet reached

the Dick effect-limited noise floor, at which point it will average down with a 1/
√
τ dependence.

4.5.4 Clock comparison

At the same time that the Big ULE cavity stabilized laser system was being perfected, a

second 87Sr lattice clock came to life in the Ye lab. This second system, lead by Travis Nicholson

and Jason Williams, is based on a similar design to the system discussed in Chapter 2 (we will

henceforth refer to the system that is described in Chapter 2 and that is the subject of this thesis

as “Sr1”; we will call the Nicholson/Williams system “Sr2”). The main difference between Sr1

and Sr2 is the lattice geometry; Sr2 has a cavity-enhanced horizontal lattice with a 160 µm beam

waist, such that the trapping frequencies are 100 kHz in the longitudinal direction and 120 Hz

in the radial direction. Due to the fact that overlapping the red MOT and the lattice with the
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Figure 4.24: Stability of interleaved measurements for systematic evaluation with Rabi pulse dura-
tion of 500 ms. A three-point string was used to analyze the data. A new value of δν is calculated
with the point string analysis every experimental cycle, thus the first few points on the Allan de-
viation are low due to correlations between subsequent point-string filtered data points. At longer
averaging times the correlations are minimal and the Allan deviation represents the true stability
of lock 1 compared to lock 2.

lattice perpendicular to gravity—as opposed to along it—loads the atoms much more diffusely along

the lattice, the densities of Sr2 are approximately a factor of 100 lower than those of Sr1, when

combined with the reduced radial trap confinement. The better spatial overlap with the red MOT

afforded by the lattice geometry, Sr2 is also capable of loading a factor of 10 more atoms into the

lattice than Sr1. We note that the results discussed here can be found in [43].

In order to test the relative stability of the clocks, we used the laser stabilized to Big ULE as

the clock laser for both systems. As depicted in Fig. 4.25, Sr1 and Sr2 each have an independent

AOM to shift the frequency onto resonance with each clock, with frequencies f1 and f2, respectively.

The difference frequency between the systems is derived from the record of f1 and f2. As demon-

strated in Ref. [234], frequency comparisons between two clocks that sample the same frequency

noise should be immune to the Dick effect. Thus, in order to test the level of instability due to the

Dick effect, we performed the experiment with the clock pulses applied synchronously and a with a



136

Sr1 Sr2

f1 f2

Figure 4.25: Clock comparison scheme. Two independent frequency shifts are applied to the clock
laser to steer it to each clock’s central frequency. As schematically depicted here, the density of
Sr2 is much lower than Sr1 due to both the wider lattice waist and the longitudinal distribution of
atoms.

timing offset of 10 ms longer than a single pulse duration. Additionally, in order to limit sensitivity

to density-dependent shifts, Sr1 operated with 1000 atoms, while Sr2 operated with 2000 atoms.

In order to eliminate first-order sensitivity to magnetic fields both clocks were operated using the

two-spin-state procedure as detailed in Chapter 2. Additionally, Sr1 operated at approximately

50% the usual lattice power, such that νz = 55 kHz. This was necessitated by the addition of a

cavity in the lattice beam to act as a spectral filter, which reduced the optical power, but it also

served to better control time-varying density-dependent effect, as the density was decreased with

lower trap depth corresponding to νz = 55 kHz.

We find that the Dick sensitivity function for comparing two clocks that sample the same

laser frequency with a timing offset is related to that of a single clock as derived in Chapter 2 as

R(2) (f)→ 4 sin2 (πfT0)R(1) (f) ' 2R(1) (f) . (4.53)

Here, R(1) (f) is the sensitivity function considered for the single clock case, and R(2) (f) is the

clock comparison case. The most notable change is the sin2 (πfT0) term, which accounts for the

fact that the laser noise is coherently sampled with a time delay and can be derived using the

Fourier shift theorem. If the time delay is large enough, this term is rapidly oscillating and we can
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Figure 4.26: Clock comparison Allan deviations and pulse timing. (a) Allan deviations of the clock
difference frequency with with synchronous (blue data points) and asynchronous clock interrogation
(red data points). The solid black line is the predicted quantum projection noise floor for the
measurement, and the red dashed line is the Dick limit for a laser with thermal noise floor of
1×10−16. Here, the total Rabi pulse time was 160 ms. (b) Timing diagrams for asynchronous (top)
and synchronous (bottom) interrogation of the two clocks. For the data shown in (a), T0 = 170 ms.

replace it with its average (as is done for the rightmost expression in Eq. 4.53). This represents

the limit where the two clocks are operated with independent lasers. We find that the inclusion

of the sin2 (πfT0) term affects the predicted Dick noise limit with respect to the assumption of

uncorrelated clocks, at the level of 5%. Thus, the unsynchronized comparison is a robust indicator

of independent clock performance.

As shown in Fig. 4.26, the synchronous interrogation averages as σsync. (τ) ' 3×10−16/
√
τ/1 s,

while the asynchronous one averages down with only slightly larger instability, at σasync. (τ) '

4 × 10−16/
√
τ/1 s. This indicates that the Dick noise plays only a small role in the clock in-

stability. From these data, we were able to demonstrate an independent clock comparison (i.e.,

asynchronously operated clock comparison) to within a factor of 2 of the expected quantum pro-

jection noise limit. This represents an important milestone in the history of lattice clocks and is

an order of magnitude improvement over the best comparison of ion clocks, which have attained
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measurement precision of σy (τ) = 2.8 × 10−15/
√
τ [27]. Thus, a given frequency measurement

would take a factor of nearly 100 less averaging time when performed with the 87Sr lattice clock

vs. a single-particle clock! This turns a solid month of measurement into an afternoon.

We note that at the level of 1 × 10−16, many other noise sources besides laser noise are

also possible, including fast bias magnetic field noise (which creates its own Dick effect) and other

technical sources of noise. Finally, we note that the laser is not expected to be thermal noise

limited for all Fourier frequencies. In Fig. 4.22, we demonstrate that the long-term behavior of the

clock laser is consistent with 1/f noise that produces a flicker-floor limited instability at 1× 10−16.

However, we will see in Chapter 6 that simple spectroscopic tests indicate the presence of white noise

of Gwhite
ν (f) = 3.3×10−3 Hz2/Hz, in addition to the flicker floor of f ×Gflicker

ν (f) = 1.3×10−3 Hz2

that corresponds to a σ (τ) = 1×10−16 instability. We will show the presence of additional coherent

noise features, which do not affect the Dick floor significantly for the operating conditions considered

here, so we save discussion of these features for Chapter 6. The addition of the extra white noise

floor, which we rigorously verify in Chapter 6, is sufficient to completely describe the measured

instability in the clock comparison of Sr1 and Sr2.

4.6 PTB Si cavity and JILA cavity intercomparison

As discussed in the previous section, improvements in ultrastable lasers can have a huge im-

pact on optical lattice clocks. This is embodied in the reduction of clock systematic measurement

times from weeks to mere hours and the attainment of near QPN-limited clock performance. How-

ever, the reader may have gotten the feeling that conventional technology is approaching its limits;

after all, the Big ULE is nearly 40 cm in length, so to gain another factor of 10 improvement, one

would need a 4 m cavity! There are other tricks one can play, including operating in near-concentric

or near Fabry-Pérot (i.e., flat-flat mirror combination) geometries, but the fact remains: gaining a

factor of 10 is extremely challenging. Clearly novel technologies are needed.

One such avenue opened in 2007 in collaboration between JILA (Ye Lab) and PTB. The

idea was to use single-crystal silicon as a cavity spacer and mirror substrate material. Silicon has
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Figure 4.27: The silicon cavity. (a) Silicon cavity with inset showing the Si crystal lattice structure.
The green surfaces on the mirrors are from the anti-reflection coatings applied to the Si. (b) The
PTB-designed cryogenic vacuum system and support strategy. The cavity is held vertically and
is supported by three symmetrically placed Teflon posts. An outer heat shield is cooled to 124 K
within the vacuum envelope, while a second heat shield increases the thermal time constant between
the temperature-controlled outer shield and the optical cavity to 10 days.

several advantages. Firstly, the loss angle is 1–2 orders of magnitude smaller than fused silica and

doesn’t suffer increase at lower temperatures as does fused silica. Secondly, the Young’s modulus is

also larger than that of glass by about a factor of two, which reduces thermal noise. Additionally,

the stiffness of the material, or ratio of Young’s modulus to density E/ρ is about a factor of

2.5 larger than ULE or fused silica, indicating that one should expect a comparable decrease in

vibration sensitivity. Finally, the coefficient of thermal expansion (CTE) has two zero-crossings, of

which the one at higher temperature is at 124 K. At the zero crossing, the cavity length should be

extremely stable in the long-term as the crystalline nature eliminates the material creep observed

in amorphous glass.

The original FEA simulations for the cavity were performed at JILA and subsequently PTB,

with Lisheng Chen performing the finite element analysis on the JILA side. After several years,

the design work culminated in the construction of a vibrationally insensitive high-finesse optical

cavity comprised of a monocrystalline silicon spacer and optically contacted silicon mirrors with

SiO2/Ta2O5 coatings. The spacer geometry is shown in Fig. 4.27a. In order to exploit the crystal
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Figure 4.28: Direct optical beat between the JILA cavity and the Si cavity. (a) The time-domain
signal of the optical beat mixed to near DC exhibits a ∼10 s coherence time. (b) The power
spectrum of the optical beat between the two systems displays a repeatable 50 mHz linewidth
(different colors correspond to separate measurements).

symmetry, the cavity is oriented with the Si 〈111〉 crystal axis pointed vertically. The mirrors

are contacted with the crystal axes nominally aligned, so that the entire ensemble simulates a

single-crystal. The cavity is supported on Teflon legs, each along one of the three equivalent 〈110〉

directions [168].

To reach the CTE zero-crossing, PTB colleagues designed a novel low-vibration cryostat to

house the silicon cavity and cool it to 124 K in-vacuum (the apparatus is shown in Fig. 4.27b).

The cryostat uses nitrogen gas boiled off from a liquid nitrogen dewar to cool a heat shield inside

the system’s vacuum chamber, achieving sub-mK stability on an outer thermal shield within the

vacuum envelope. The time constant between this envelope and the cavity is 10 days, indicating

that fast-temperature fluctuations will be heavily suppressed [168].

In order to test the performance of the silicon cavity, we transported the “JILA cavity,”
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Figure 4.29: Modified Allan deviation of the stabilities extrapolated via the three-cornered-hat
analysis. Here, the modified Allan variance is used to reduce sensitivity to higher frequency phase
noise and better reveal the thermal noise floor.

described in Section 4.4.2 of this thesis, to Braunschweig, the charming German town on whose

outskirts PTB is located. With a predicted thermal noise floor 2 × 10−16, this cavity would be

close to the predicted noise floor of the Si cavity of 7 × 10−17. The cavity was installed in its

vacuum chamber and, despite the presence of non vacuum-compatible Peltier elements and wires

(we drew inspiration from Ref. [178]), we were able to pump the system to the level of 10−7 Torr

and were able to cool the cavity to ∼ 10◦ C with the in-vacuum Peltier elements. Any attempt

to reach colder temperatures induced the system (which was inside a sound-proof and rather well

thermally-insulated box) to go into thermal run-away.

An early setback for the JILA cavity was the discovery that the finesse of the mirrors was

only 80,000. In fact, a similar problem was observed with the Si cavity for the TEM00 mode,
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but fortuitously the TEM01 mode had a finesse of 240,000. Unfortunately for the JILA cavity,

we had no such luck with higher order modes. This meant that any residual amplitude modu-

lation would create a proportionally larger frequency offset, due to the small slope of the cavity

frequency discriminant. However, both cavities employed waveguide modulators with the active

RAM cancellation system whose development we described in Section 4.2.5. When both systems

were working successfully, which took two weeks of hunting down parasitic effects, we were able to

observe a 50 mHz beat between the two systems, and near 10 s optical coherence times, as shown in

Fig. 4.28, and which represents a record for a measured optical linewidth between two independent

lasers. This corresponds to a coherence length beyond 1× 109 m, the length scale of the proposed

Laser Interferometer Space Antenna (LISA). This result additionally demonstrates the success of

the RAM servo; in order to achieve a linewidth of 50 mHz, the JILA cavity RAM cancellation servo

permitted lock precision sufficient to split the cavity resonance better than 1 part in 105. In the

field of cavity stabilization, this level of lock precision is among the best reported (see, e.g., [215]).

We additionally note that the intercomparison between the JILA cavity verified the success

of the finite element analysis. By shaking the Minus-K platform on which the JILA cavity sat and

measuring both the frequency of the beat signal and magnitude of the accelerations, we found that

the vibration sensitivity was < 5× 10−10/g.

In order to isolate the performance of the silicon cavity, we included a third cavity-stabilized

laser system in the measurement. This laser was designed and constructed by PTB colleague

Thomas Legero (thus we will call this laser “T. L. cavity” system) and was designed to be trans-

portable. It is similar to the system described in [235]. Due to its smaller size and ULE mirrors,

the thermal noise floor of this cavity is 6× 10−16.

We performed three simultaneous beat measurements between all two-way permutations

amongst the Silicon cavity-, JILA cavity-, and T. L. cavity-stabilized laser systems. The beats

were performed at a common location connected by noise-cancelled fibers to all three systems.

We analyzed the beat record using the “three-cornered-hat” method [236]. Assuming uncorrelated

noise between three laser systems, the instability of one of the systems at a given time can be
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calculated from the other two as

σi =

√
1

2

(
σ2
ij + σ2

ik − σ2
kj

)
, (4.54)

where i, j, and k can represent any laser we listed above: silicon, JILA, or T. L. In order to

remove the possibility of correlations amongst the lasers, we used the extended technique described

in Ref. [237]. The result of this analysis is shown in Fig. 4.29. The Si cavity-stabilized laser

has extrapolated performance at the level of 1 × 10−16 from 0.1 s to 10 s, showing the promise

of cryogenic cavities. As mentioned previously the expected thermal noise floor of the Silicon

cavity in 7 × 10−17, and which is entirely dominated by the coating (> 99.8%). The JILA cavity

also performed at a near-thermal noise limited level from 0.1 s to 2 s. The
√
τ rise evident in

the JILA cavity’s stability in Fig. 4.29 is indicative of random walk frequency noise. We believe

that this originates from material stresses in the machined ULE support structure for the JILA

spacer. We have mitigated this problem in the Big ULE cavity (where it had also initially been

evident) by using large, soft Viton hemispheres to only weakly couple the baseplate and cavity.

Future implementations of the JILA cavity would also benefit from this support strategy. Another

possible reason for the rapid increase the Allan deviation of the JILA cavity is the fact that the

temperature was maintained about 10◦ C above the nominal zero-crossing temperature for that

spacer, leading to a possible first-order temperature sensitivity of approximately 1.8× 10−8/K.

Finally, we note that subsequent tests of the long-term stability of the Si cavity are very

promising, already demonstrating the best long-term stability of any passive optical etalon. This

verifies the expectation that a crystalline material should be free of the “creep” that seems to be

intrinsic to amorphous materials. For instance, the big ULE cavity is elongating at approximately

1 nm/year (or 5× 10−17m/s), as extrapolated by the predictable day-to-day frequency drift.6 In

contrast, the measured long term frequency stability of the silicon cavity indicates that its long-

term drift is below 200 µHz/s [168], indicating that the mirrors are stable with respect to each other

on the scale of 1 fm over the course of the day. Paired with an atomic clock, this level of stability

6 It is remarkable to think that one can measure these extremely slow velocities with atomic clocks. This would
also seem to dispel the myth that the ripples in old windows are caused by amorphous creep!
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could yield an extremely precise Kennedy-Thorndike test of relativity due to the unprecedented

combination of short- and long-term stability in an optical resonator [238].

4.7 Crystalline mirrors

The results of the previous section serve to demonstrate that a cryogenic system can perform

at the highest levels of stability, approaching the level of the best conventional cavities, such as the

“Big ULE” cavity demonstrated in Section 4.5. However, the improvement in laser stability due to

operating at 124 K alone is less than a factor of two. The real gain from silicon, which has better

material properties, but requires operation at 124 K, is that the substrate thermal noise is almost

entirely removed, leaving only the coating contribution. Indeed, for the silicon cavity described in

the previous section, > 99.8% of the thermal noise is due to the coating itself. This implies that

even modest improvements in coating loss angle will result in significant advances in laser stability.

In this section, we report such an advance, where we extend the use of high-Q crystalline materials

to the high-reflectivity mirrors themselves.

The desire to engineer cavities with components possessing the lowest possible mechanical loss

shares connections with the field of quantum optomechanics, where coupling to a thermal bath via

mechanical losses can impede measurement precision and quantum coherence. [171, 144]. As men-

tioned in Chapter 3, Section 3.2.2, heterostructures based on GaAs and AlxGa1−xAs semiconductor

materials (the subscripts stand for doping concentrations) have demonstrated high mechanical Q’s

when used as isolated optomechanical structures, with Q-factors of up to 40,000, corresponding to

a loss angle of 2.5 × 10−5 [167]. Thus, crystalline mirrors made from a multilayer GaAa/AlGaAs

would be a powerful new technology for high-precision laser stability.

Luckily the group of Markus Aspelmeyer along with colleague Garrett Cole were already

thinking along those lines, and provided us with the opportunity to test the feasibility of their

coating technology—which works so well at the nanoscale—in macroscopic mirrors. They developed

a technique to remove a film of of multilayer GaAs/Al0.92Ga0.08As from its growth substrate and

to directly bond it to a separate substrate of any other material via optical contacting. In this way,
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Figure 4.30: Crystalline mirror and cavity. (a) GaAs/Al0.92Ga0.08As crystalline mirror bonded to
a fused silica mirror substrate. (b) Completed cavity 3.5 cm in length employing two optically
contacted GaAs/Al0.92Ga0.08As mirrors for operation at 1064 nm. The cavity spacer is Zerodur (c)
Optical ringdown signal with a swept input field. The extrapolated finesse is 150,000.

the film can be grown as a crystal, and the crystalline properties transferred to a host substrate,

which could be crystalline silicon or sapphire, or even fused silica glass. Figure 4.30a shows a

completed mirror crystalline mirror on a fused silica substrate that was constructed using this

bonding method. With this technique established, all that remained was to test the optical and

mechanical properties of such a composite mirror.

In order to test the optical and mechanical properties of the mirrors, a new postdoc, Wei

Zhang, and this author constructed the cavity as shown in Fig. 4.30b. Here, the cavity spacer mate-

rial is Zerodur glass, which was chosen due to its convenience (i.e., we already had the spacer in the

lab). The length is 3.5 cm. The operating wavelength was 1064 nm, which is important given that

with the semiconductor material interband optical absorption can be an issue, although in principle

mirrors constructed with AlGaAs could work to 650 nm with different doping concentrations than

those utilized for the 1064 nm mirrors [172]. The mirrors with the transferred crystalline coatings

are optically contacted to the spacer. This particular cavity has a long history of making thermal

noise measurements in the Ye lab, and was utilized in some of the first measurements to explore

the effect of cavity material properties on thermal noise [239]. The first measurements that we

performed with this crystalline-mirror cavity were to test the optical quality factor. The cavity
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Figure 4.31: Comb frequency-transfer and stability of a laser locked to the cavity employing
GaAs/AlGaAs crystalline mirrors. (a) The optical frequency comb is stabilized by locking it to
the clock laser at 698 nm and locking the carrier envelope offset frequency, f0, to a RF reference.
(b) Allan deviation of the measured beat between the crystal-mirror cavity and the comb. (c)
Frequency noise power spectral density of the beat at 1064 nm (grey line). The contribution of
Brownian noise is indicated by the dashed blue line. The solid red line shows the contribution of
all thermal noise, including substrate thermo-elastic and coating thermo-optic.

was placed inside a temperature controlled vacuum enclosure, and we performed optical ring-down

measurements. It was exciting to see measure a finesse of 150,000 (Fig. 4.30c). This, in fact, was

exactly consistent with measurements of the absorption, scatter, and transmission losses, which

were measured to be 13.5 ppm, 4 ppm, and 4 pmm, respectively [172].
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The second test we performed on the cavity was to measure the stability of a laser locked

to it. The laser source was a non-planar ring oscillator (NPRO) YAG, with excellent short-term

stability, corresponding to a free-runnning linewidth of ∼1 kHz. The NPRO was stabilized to the

crystalline cavity. Notably, this setup also employed a waveguide modulator and RAM servo for the

PDH lock, as described in Section 4.2.5. In order to measure the stability of the crystalline-mirror

cavity-stabilized laser, we compared it to the Big ULE clock laser described in Section 4.9 and

whose performance at the level of 1 × 10−16 was verified in Section 4.5.2. In order to span the

spectral gap, we employed the Yb:fiber frequency comb described in [240]. This setup is depicted

schematically in Fig. 4.31; the Yb comb is locked to the clock laser at 698 nm using fast actuation

to an intra-cavity EOM, a piezo-mounted semiconductor saturable absorber mirror (SESAM), and

to a fiber-stretching drum piezo. The carrier envelope offset frequency, f0, is also stabilized using

an AOM external to the laser cavity.

Figures 4.31b and 4.31c show the measured Allan deviation at 1064 nm, and the frequency

noise at 1064 nm, respectively. At 1 s, the measured Triangle deviation is σΛ
y (1 s) = 1.05(1)×10−15.

The reason we measure Triangle deviation is because we use an Agilent 53131A counter in “time

arming” mode, which corresponds to a Λ-type sensitivity function, as defined by Dawkins et al.

[241]. By summing the thermal noise contributions of all the components as detailed in Chapter 3,

we find that given the measured σΛ
y (1 s) the loss angle of the bonded AlGaAs mirrors is φAlGaAs =

0(4)× 10−5, where the error bar includes an assumed 10% error in the measured σΛ
y (1 s), and 20%

errors in the loss angles of the relevant materials, namely Zerodur and fused silica.7

Figure 4.31c shows the measured frequency noise power spectral density. The contribution of

Brownian noise alone (dashed blue line) is compared to the total thermal noise, including thermo-

optic and thermo-elastic noise, and the measured data. Importantly, we begin to see the effect of

thermo-optic noise in this measurement, although it is not well resolved. This noise is at high enough

Fourier frequencies that it is not a significant problem for optical clocks, but might have important

7 We utilized the standard loss angle for fused silica of φFS = 10−6. If instead we used φFS = 10−7, the
extrapolated loss angle of the crystalline coating is φAlGaAs = 4(4) × 10−5.
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implications for LIGO, as the spectral region where thermo-optic noise dominates is LIGO’s relevant

detection band. As discussed briefly in Chapter 3, the addition of a half-wavelength cap of AlGaAs

will potentially drastically reduce the contribution of thermo-optic noise. Thermo-elastic noise will

be eliminated by eventually operating a cavity with Si mirrors at the CTE zero-crossing, such that

the coefficient of thermal expansion of the mirror substrates is zero.

In conclusion, these measurements indicate that AlGaAs coatings are the future of high-

precision laser stabilization and interferometry. AlGaAs heterostructures bonded to substrates can

retain the low mechanical losses of free-standing structures. With a silicon cavity with AlGaAs

mirrors, one could expect a thermal-noise limited laser stability at the level of 1 × 10−17 using

the already-established cryogenic silicon system and AlGaAs crystalline coatings. Thus, instead

of the daunting task of improving the thermal noise limitations of conventional cavities, the all-

crystalline-cavity approach should allow rapid attainment of the next factor of 10 improvement in

laser stability.

4.8 Frequency comb development: bridging spectral gaps coherently

As seen from the measurement of the crystalline-mirror cavity performance in the previous

section, optical frequency combs will play a central role in the direct operation of atomic clocks. To

date, frequency combs have been used primarily to connect clocks of disparate optical frequencies

[31, 242] or for optical frequency measurements e.g., [1] (or even to reverse the process for ultrastable

microwave generation from ultrastable optical resonators [243]). However, the recent developments

in creating ultrastable lasers based on cavities constructed from crystalline mirrors have restricted

the wavelengths over which ultrastable lasers can operate. A frequency comb [244] (or perhaps

second harmonic generation if the appropriate wavelength is obtained) is required to connect the

ultrastable laser, which may operate in the telecom spectral region, to the optical clock transition of

interest. In this section, we summarize some key tests of comb stability that have been performed.
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Figure 4.32: Spectrum of the ultra-broadband Yb:fiber comb and optical beats. (a) Measured
optical spectrum of the comb supercontinuum (solid line) and simulated spectrum based upon the
nonlinear fiber input pulse parameters (dashed). (b) Optical beat with a CW laser at 698 nm. (c)
Optical beat with a CW laser at 1020 nm. (d) Optical beat with a CW laser at 1.54 µm. Plots (b–
d) indicate varying levels of amplitude noise. This is evident from the beat signal-to-noise without
(solid) and with (dashed) balanced detection. No excess amplitude noise was visible at 1.54 µm
while at 698 nm the noise floor rose by 20 dB in the absence of balanced detection, indicating
significant amplitude noise at this wavelength.

4.8.1 Ultra-broadband Yb:fiber comb

To take advantage of the relative robustness, compactness, and a gain medium that does not

need to be pumped with lasers that cost O($100, 000), we extended a collaboration with IMRA

America Inc. to include medium power Yb:fiber laser systems. Already, a 10 W system from IMRA

had shown extremely low-noise operation [245]. With the new system, we did not need 10 W optical

power; instead we set out to see if we could connect the telecom and the visible wavelength regions

in a single step. We briefly describe the system and results here.

The frequency comb comprised Yb-fiber similariton oscillator [246] and linear chirped pulse

amplifier. Starting with 80 fs 1.4 nJ pulses at a repetition rate of 150 MHz, we broadened the

spectrum to 1.5 octaves (Fig. 4.32) in a single piece of suspended-core highly nonlinear fiber [247].

As seen in Fig. 4.32a, the spectrum was highly featured. We found that these features were well
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described by the theory of supercontinuum generation in optical fibers, including the phenomena of

soliton fission (responsible for the two “bumps” in the spectrum at right) and self-phase modulation.

As shown in Figs. 4.32b–4.32c, balanced detection of optical heterodyne beats between the comb and

CW laser sources indicated that certain spectral regions of the supercontinuum had large amounts of

amplitude noise, but no phase noise. We were able to explain this phenomenon through modeling of

the supercontinuum generation process, and found that quantum-seeded input noise is responsible

for the presence of amplitude noise. While we do not go into detail here, these measurements

also indicated that the higher fraction of Raman gain in the fiber played an important role in

maintaining phase coherence [56].

In order to test the broadband comb coherence, we performed the experiment depicted in

Fig. 4.33. With the carrier envelope frequency, f0, stabilized, we locked the broadened comb to

the “football cavity”-stabilized clock laser at 698 nm [40] and analyzed the beat signal with a
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second cavity-stabilized laser at 1542 nm. We found that the comb supports the coherent transfer

of optical phase from 698 nm to 1542 nm at or below the level of 1.5 Hz linewidth, consistent with

the expected performance of the 1.5 µm laser. This represents the largest spectral gap directly

spanned between two ultra-stable lasers by a frequency comb to date. While this may not be the

best way to connect lasers that are separated by over an octave of optical spectrum, it does serve

to define a boundary of what is possible.

4.8.2 Ultimate limits of comb performance

In the previous section, we described an experiment where the test of comb coherence was

limited by the ultrastable lasers used as references. Here, we describe an experiment performed

with an octave spanning Ti:Sapphire frequency comb, where the octave-spanning comb locked to

a reference laser and compared the same laser’s second harmonic. Thus, the test was of the comb

properties alone, since the reference laser’s noise was common to its first and second harmonic.

Viewed alternatively, this measurement represents a precision test of second harmonic generation

[248].

We begin by describing the noise sources that the experiment was designed to test. A complete

description of the frequency of a comb mode, including the possibility of mode-dependent noise, is

given by

νn(t) = nfrep(t) + f0(t) + εn(t). (4.55)

Here n is the index labeling the harmonic of the repetition rate, frep(t); f0(t) is the carrier envelope

offset frequency; and εn(t) accounts for mode-dependent frequency noise that is not correlated by

the mode locking process. It is the terms εn(t) that we set out to test.

Perfect mode-locking occurs when εn(t)→ 0 in Eq. 4.55. To test this residual comb error, we

consider the case where we phase lock the heterodyne beat between comb mode n and a continuous

wave (CW) laser, fb,n, and f0 to radio frequency (RF) references. The comb thus ideally acquires

the optical phase information of the reference laser with added locking errors, δfb,n(t) and δf0(t),

due to finite servo gain and shot noise. However it is possible to check for any residual noise
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described by εn(t) by comparing the second harmonic of the CW reference laser to the comb. This

yields an “out-of-loop” (OL) beat frequency

fb,2n(t) = 2fb,n − f0 − δf0(t) + 2δfb,n(t) + ε2n(t)− 2εn(t). (4.56)

The term ε2n(t)− 2εn(t) accounts for relative noise introduced across the spectral gap n→ 2n due

to imperfect mode-locking and is indistinguishable from technical noise. In principle, the locking

error due to finite servo gain given by δflock(t) = −δf0(t) + 2δfb,n(t) can be estimated from the

in-loop error signals, excluding consideration of shot noise.

The experiment was performed as schematically shown in Fig. 4.34a; we utilized the octave

spanning Ti:sapphire described in [249] and which is similar to the system described in [250]. Part of

the spectrum is used to lock f0, while the remaining optical spectrum was rebroadened to an optical

octave centered near 750 nm using photonic crystal fiber (PCF) and combined with a Nd:YAG non-

planar ring oscillator (NPRO) at 1064 nm. The co-propagating comb and 1064 nm CW light passed

through a temperature stabilized periodically poled lithium niobate (PPLN) crystal, frequency

doubling a portion of the 1064 nm CW light to produce 0.5 mW of 532 nm CW light while

overlapped with the comb. The co-propagation of the light paths was important for reducing

differential-path noise. A λ/2 at 1064 nm, λ at 532 nm wave plate overlaps the 532 nm CW and

comb light polarization, while ensuring no 1064 nm comb light is doubled. The RF signal generated

by the beat between the comb and ∼ 1 mw of CW power at 1064 nm was used to stabilize the comb

mode at νn (n ' 3× 106). The resulting beat between comb mode 2n and CW light at 532 nm was

the out-of-loop signal.

The frequency stability beat at 532 nm was analyzed. In Fig. 4.34b we show the frequency

stability, which represents the comb’s intrinsic ability to transfer optical stability. As seen from

the figure, the comb performs better than any laser currently in operation, and should be sufficient

for next generation ultrastable lasers that operate with fractional instability of 1 × 10−17. We

furthermore measured the optical linewidth of the beat. In order to amplify the phase noise, we

employed a step-recovery diode to create the 10th harmonic of the beat signal. The power spectrum
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Figure 4.34: Experimental test of the intrinsic limits of the an optical frequency comb. (a) Ex-
perimental setup. An self-referenced octave-spanning frequency comb is re-broadened to an optical
octave with a piece of photonic crystal fiber (PCF). It is phase locked to monolithic isolated single-
mode end-pumped ring laser (MISER, also known as NPRO). The second-harmonic of the MISER
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the comb, fb,532, is the out-of-loop test signal. (b) Allan deviation of fb,532. (c) Fourier power
spectrum of the 10th harmonic of fb,532 with a ∼ 250 µHz measurement bandwidth.
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shown in Fig. 4.34c is the 10th harmonic of the beat measured with a fast Fourier spectrum analyzer

employing digitization record nearly 1 hour long, resulting in a 244 µHz measured linewidth. If we

assume a white frequency noise power spectrum, then this indicates that the first harmonic could

be as narrow as 2.4 µHz. Thus, as far as we can tell, the comb is a perfect device to the extent

that technical sources of noise can be mitigated. These results are described detail in Ref. [132].

4.9 Outlook and conclusion

While this chapter has focused entirely on optical cavities as a means for precision laser

stabilization, we mention in passing that other techniques may contribute to ultrastable optical

sources for atomic clocks and precision spectroscopy. Lasers stabilized via spectral hole-burning

in Eu3+:Y2SiO5 represent a promising new technology for which the fundamental limits should

be at the 10−17 level of stability [251]. Active and passive systems employing clock atoms as a

continuous source for either active lasing [252] or spectroscopy [253] should be free of thermal noise

contributions, as they rely solely on the atoms themselves for spectral discrimination.

As discussed in Chapter 2, the stability of current state-of-the-art neutral atom clocks is

directly tied to the thermal noise present in ultrastable cavity mirror coatings and substrates. In

this chapter, we demonstrated that with careful cavity design and high precision locking, we have

obtained near-QPN limited clock performance with a spectroscopy time of 160 ms. While this is a

significant milestone, achieving QPN-limited operation with an order of magnitude more atoms and

1 s probe times still leaves a large space for future improvements in ultrastable laser technology.

While reducing the experimental dead time alone is also a promising step [254], reducing the thermal

noise-induced laser frequency noise has had, and will continue to have, the largest immediate impact

on neutral atom clocks. The new crystalline mirror technology we have demonstrated leaves us very

confident that another factor of 10 improvement is now within reach.

In the context of systematic evaluation, the current stability of the Big ULE cavity-stabilized

laser would allow a full clock evaluation at the level of 10−17 in one day, assuming that statistical

averaging were the sole limiting factor. As we will see in the next chapter, the improvement
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brought by the Big ULE cavity has already allowed rapid exploration of density-dependent effects

in the 87Sr lattice clock. Thus, as we will show, in addition to making better clocks, ultrastable

lasers become precise tools for probing inter-atomic interactions at the sub-Hz energy scale and

performing quantum state manipulation between optically separated quantum degrees of freedom,

or optical qubits.



Chapter 5

The optical lattice clock as a quantum many-body system

It has long been expected that the use of identical fermions in ultracold neutral atom clocks

would eliminate density-dependent frequency shifts entirely [255] . In 2008, it was found that even

in a 87Sr lattice clock at µK temperatures, a significant frequency shift remained, creating, at

that time, a mystery as to the collision mechanism. In this chapter, we explore the fundamentally

many-body collisional interactions between identical fermionic atoms in the optical lattice clock.

Through precise spectroscopic tests, we elucidate the quantum many-body aspects of the clock and

uncover the dominant role of the p-wave interaction channel for many-particle interactions in the

optical lattice. We present the first observations of the emergence of spin correlations between the

clock’s optically-separated spin degrees of freedom that arise from the effective spin-spin interactions

between 87Sr atoms in the optical lattice.

5.1 Atomic collisions at ultracold temperatures

At ultracold temperatures, matter behaves quantum mechanically. It is the goal of this

section to briefly review the basic implications of this statement. Here, we summarize the results of

the partial wave theory of quantum collisions, which allows collisions to be characterized according

to their angular momentum and vastly simplifies theie treatment. We also discuss treatment of

inter-atomic interactions using pseudopotentials.
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5.1.1 Partial wave treatment of atomic interactions

Collisions at ultralow temperatures are simplified due to their quantum mechanical nature.

One can represent the effect of an inter-atomic scattering event on the asymptotic wave function

of a scattered particle as [88]

ψ (r →∞) ∝ e(ik·r) + f (k, θ, φ)
eikr

r
. (5.1)

The asymptotic wave function is the sum of two components. The first component is the incident

plane wave, while the second term represents the outgoing wave with an angular dependence that

reflects the details of the interaction potential. The differential cross section for identical particles

is related to this angular dependence as [88]

dσ

dΩ
= |f (k, θ, φ)± f (k, π − θ, φ+ π) |2. (5.2)

Here the “+” and “-” correspond to the case of identical bosons or fermions, respectively, and they

are a direct consequence of the necessary (anti)symmetrization of the outgoing wave function for

bosons (fermions). This distinction between the bosons and fermions will be crucial in determining

by which partial waves bosons and fermions can interact.

Assuming an isotropic interaction potential (i.e., the potential has no angular dependence),

we can write a general azimuthally symmetric wave function in the limit of r →∞

ψ (r →∞) =
∑
l

Cl (k)Pl (cos θ)
sin [kr − lπ/2 + δl (k)]

kr
, (5.3)

for which the angular dependence of the outgoing scattered wave can be expressed as [256]

f (k, θ) =
1

2ik

∑
l

(2l + 1)Tl (k)Pl (cos θ) . (5.4)

The quantity Tl (k) relates the asymptotic phase shifts of the scattered partial waves, δl (k), to the

cross section of Eq. 5.2 and is related directly to the asymptotic phase shift of the scattered wave

by

Tl (k) = 1− exp (2iδl) . (5.5)
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An important consequence of the form of Eq. 5.4 is that we can write Eq. 5.2 as a sum of

cross sections for a specific partial wave, and this property follows directly from the orthogonality

of Pl’s. Additionally, due to the parity of the Pl’s, the cross section is identically zero for odd

(even) partial waves in the case of identical interacting bosons (fermions). We can express these

statements as

σboson
total =

∑
l even

σl, σfermion
total =

∑
l odd

σl. (5.6)

More emphatically, we can now state that identical bosons (fermions) only interact via even

(odd) partial waves. This is a crucial difference between bosons and fermions in ultracold

quantum gas experiments.

At ultralow temperatures, and for the case of a van der Waals-type interaction, the collisional

phase shift is proportional to k3 for partial waves with l ≥ 1 [256]. In the specific case of s and p

wave interactions (l = 0 and l = 1, respectively), the phase shift varies as [256]

δl ∝ k2l+1, for l ∈ {0, 1}. (5.7)

For collision energies well below the centrifugal barrier, the true interaction potential can be replaced

by an approximation of the atomic interaction that depends only on the relevant scattering length

[257, 65]. For s- and p-wave interactions, which are the most significant contributors to ultracold

collisional interactions, the scattering lengths are defined as

a = lim
k→0

− tan [δ0 (k)]

k
, b3 = lim

k→0

− tan [δ1 (k)]

k3
, (5.8)

where a is the s-wave scattering length and b3 is the p-wave scattering volume.

Using definitions of Eq. 5.8, one can construct artificial potentials that encapsulate the low-

energy limit of the scattering [258, 259, 260]. This technique is extremely powerful because it allows

a parameterization of the low-energy interaction via a single number, and reduces the extended

inter-particle interaction potential to a more tractable point-like potential. This sort of treatment

is valid in the limit where the collisional energy is well below the centrifugal barrier and there are
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no accidental resonances with bound states [65]. For s-wave interactions, the potential is given by

V αβ
s (r) =

4πaαβ~2

m
δ (r) . (5.9)

Here, r = r1 − r2, where r1(2) is the position of atom 1(2). This is the potential employed in

the prolific Gross-Pitaevski equation for the description of single-mode Bose-Einstein condensates

[261]. The subscript αβ indicates that the interaction can be dependent upon the internal states

of the colliding particles.

Similarly, the p-wave interaction potential can be expressed as [260]

V αβ
p (r) =

2π~b3αβ
m

←−∇r
∂3

∂r3
r3δ (r)

−→∇r. (5.10)

Here r ≡ |r1−r2| and the “←” or “→” symbols over the gradient operator indicate that it acts only

to the left or right, respectively; the subscript on the gradient operator indicates that it acts on the

center of mass coordinate, r = r2 − r1. Higher order expressions for partial waves in a Cartesian

basis become cumbersome due to the fact that the angular dependence is more naturally expressed

in spherical harmonics. Luckily, our consideration of partial-wave interactions in the 87Sr clock will

stop with p-wave—but surprisingly will still include s-waves, even for identical fermions.

5.1.2 Considerations for clock shifts

A direct consequence of Eq. 5.8 is that in the ultracold regime, collisional phase shifts based

upon s-waves can dominate over p-wave phase shifts as the collisional momentum goes to zero (i.e.

k → 0). Specifically, the ratio of the phase shifts is

lim
k→0
|δ1 (k) /δ0 (k) | = (kb)2 b/a. (5.11)

This implies that the ratio of p-wave collisions to s wave collsions becomes small assuming kb is

also small. A similar statement can be reached by considering the action of the pseudopotentials of

Eqs. 5.9 and 5.10 in Fourier space; in the case of the p-wave interaction, the two gradiant operators

will result in a k2 scaling.
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This relative scaling of both the scattering lengths and interaction strengths is a well-known

phenomenon which, for example, limits the efficacy of evaporative cooling for gases of ultracold

identical fermions [262]. For thermal gases, k2 ∝ kBT via the equipartition theorem. Thus for µK

temperatures

|δ1 (k) /δ0 (k) | ∝ T. (5.12)

This property of p wave energy shifts led to the conclusion that fermionic species of atoms make more

ideal frequency references than their bosonic counterparts due to their insensitivity to collisional

shifts at ultralow temperatures [255].

5.2 First observations of cold-collisions in an optical lattice clock

Five years ago, as part of the effort to develop the world’s first neutral-atom clock with

fractional uncertainty at 1× 10−16, we engaged in a measurement campaign in collaboration with

the NIST Time and Frequency division, where the short-term stability of a Ca neutral atom clock

[197] was used to evaluate frequency shifts in the JILA Sr lattice clock [31, 114]. In this work,

we used a two-state spin mixture, comprised of the |F = 9/2, mF = ±9/2〉 spin states. A

modest fractional frequency shift of −8.9(8) × 10−16 (-480 mHz frequency shift) was measured at

an operating density of ρ0 ∼ 1011 cm−3. In the case of a density shift measurement in the presence

of a “spectator” atom, we can write the shift due to s-wave interactions [263, 264, 265]

∆ν =
2~
m

(ãeg − agg) ρ. (5.13)

Here, ãeg represents the effective scattering length for collisions in an incoherent mixture of e and

g atoms in different nuclear spin states. In the case considered here, there is an equal population

in |F = 9/2, mF = +9/2〉 and |F = 9/2, mF = −9/2〉, such that, ρ = ρ0/2. Using the measured

frequency shift, we find that ãeg − agg ' −99a0, where a0 = 5.29× 10−11 m. Combining this result

with the known 87Sr g-g internuclear spin-state scattering length of 97a0 [266], we can deduce that

a rough estimate for ãeg ' −2a0. Here, the error in this determination of the scattering length is
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Figure 5.1: First observation of a density shift with a spin-polarized 87Sr lattice clock. Here
ρ0 ∼ 1011/cm3.

quite large due to the uncertainty in the absolute density calibration, and also because it neglects

other relevant interactions on which we will further elaborate.

Although the uncertainty due to operating with a two-state mixture was small, the seemingly

favorable ratio of s-wave to p wave interaction strengths in an ultracold regime implied by Eq. 5.11

indicated that spin-polarized 87Sr should eliminate s-wave collisions, which should dominate over

the p-wave interactions, thus eliminating the shift entirely [198]. However, our first experiments

to measure the density-dependent frequency shift with spin-polarized 87Sr found that the shift did

not disappear as expected [31, 265].

The measurement of the density shift for the identical particles was performed by optically

pumping to the |F = 9/2,MF = 9/2〉 spin state. A fast clock pulse with a large Fourier width was

employed for driving the g → e transition for the atoms in the |F = 9/2,MF = 9/2〉 spin state

only. Subsequently, all remaining ground state atoms were removed with a clean-up pulse resonant

with the 1S0 → 1P1 transition. This ensures that the atomic polarization into the stretched spin
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state is highly pure. The clock was then operated with an 80-ms π-pulse from e → g. Despite

operating in this highly spin-purified configuration, a shift was still observed. As can be seen in

Fig. 5.3, the magnitude was similar to the spin-mixture case and has a nontrivial dependence on

the final excitation fraction p (as defined in Chapter 2), which was varied by changing the width

of the lock points on the de-excitation lineshape.

The measurement of these frequency shifts generated a fair amount of puzzlement. If s-

wave interactions were forbidden and p-waves should have been frozen out, how can there be

frequency shifts in the clock? The consideration of this question led to the discovery of an interesting

mechanism that permits s-wave interactions to occur in spin polarized ultracold 87Sr , although it

will end up being only part of the story.

5.2.1 An s-wave collisional mechanism in a spin-polarized 87Sr lattice clock

The basic idea behind the presence of s-wave shifts relies on the fact that the clock excitation is

slightly inhomogeneous, as discussed in Chapter 2. This means that two fermions initially prepared

in the same quantum state have the potential to evolve differentially as they are (de)excited from

g → e (e→ g). To illustrate this, we consider two hypothetical colliding atoms in quantum states

|ψ1〉 and |ψ2〉 given by

|ψ1〉 = α|g〉+ β|e〉 (5.14)

|ψ2〉 = γ|g〉+ δ|e〉 (5.15)

and such that the factors α, β, γ, and δ are time-dependent. The total wavefunction is initialized

with both atoms in the ground state, which we denote as |gg〉. However, in order for the total

wavefunction to be anti-symmetric under exchange, as is required for fermions, we need to include

the lattice motional states labeled by |n1〉 and |n2〉. When the clock laser excites the atoms, |ψ〉
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dynamically evolves from |ψ0〉 = |gg〉 ⊗ (|n1n2〉 − |n2n1〉) /
√

2 as

|ψ0〉 → (|ψ1ψ2〉|n1n2〉 − |ψ2ψ1〉|n2n1〉) /
√

2 (5.16)

= |ψ−〉 ⊗ (|n1n2〉+ |n2n1〉)︸ ︷︷ ︸
even

/
√

2 + |ψ+〉 ⊗ (|n1n2〉 − |n2n1〉)︸ ︷︷ ︸
odd

/
√

2 (5.17)

Only the part with the even dependence on the spatial functions n1 and n2 can collide via s-wave

interactions. Since the wavefunction for fermions must be antisymmetrized, the electronic part of

the wave function also carries a symmetry under particle exchange labeled by the “+” or “-”. It is

straightforward to show that

〈ψ−|ψ−〉 = |αδ − γβ|2 = 1− |αγ∗ + βδ∗|2, (5.18)

which is in general nonzero only when α 6= γ and β 6= δ. Furthermore, we can identify this quantity

as the zero-range second order correlation function often encountered in the mean-field theory of

quantum gas interactions, G(2) (0). In a final step, we can then apply this G(2) (0) to the mean field

density shift formula and get a time-dependent frequency detuning [265, 126],

∆ν (t) =
2~a−eg
m

G(2) (t) (ρg − ρe) . (5.19)

Here, the minus sign in a−eg indicates that this collision is occurring between the antisymmetric

electronic total wavefunction [73] and ρg(e) is the atomic density of atoms in the ground (excited)

state.

While Eq. 5.19 gets a lot right, there are aspects of the interaction that it misses entirely. The

main problem with the mean-field energy of Eq. 5.19 is that it is, for lack of a better expression, the

mean of the interaction energy. Specifically, it is only the part of the wavefunction with |ψ−〉 that

feels the s-wave interaction, yet we proceeded as if |ψ+〉 also feels the mean energy shift. While this

is a good approximation if |ψ−〉 and |ψ+〉 are not well-resolved (i.e., the mean field shift is much

smaller than the Rabi frequency), this condition is not necessarily satisfied in the clock. If we really

want to treat the problem right, we must keep track of the evolution of the entire wave function; in

this better approach |ψ−〉 would feel the full interaction, while |ψ+〉 would feel no interaction—and
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we will not take the mean. Also, in this example, we used a two-particle wave function, so this

means keeping track of only a few states. The problem with generalizing this approach to the

ensemble is the exponential growth of complexity as we wish to treat the many-atom system. This

is the subject of the next section.

5.3 Treatment of the clock shift in a many-body framework

Strongly correlated quantum many-body systems have become a major focus of modern

science. Researchers are using quantum-degenerate atomic gases [64, 65, 66, 67, 68, 69], ultracold

polar molecules [70, 71, 72], and ensembles of trapped ions [267, 268] to realize novel quantum phases

of matter and simulate complex condensed matter systems. In particular, the SU(N) symmetry in

the nuclear spin degrees of freedom of fermionic alkaline earth atoms may allow implementation of

unconventional frustrated quantum magnetic models including spin-orbital interactions [73, 74, 75,

76]. Degenerate gases of alkaline earth(-like) atoms have been also achieved [269, 270, 271, 272],

but have not yet reached the levels of entropy required to observe these novel magnetic phases is

currently not feasible in ultracold atom experiments.

In this section, it is our goal to unite these novel quantum systems with the collisional physics

within the 87Sr lattice clock. Atomic interactions in optical lattice clocks were first studied in the

context of density-dependent frequency shifts that contribute to the clocks’ systematic uncertainty

[265, 273, 135]. In the previous section we presented a potential mechanism by which s-wave shifts

can enter into the clock, and that even at this basic level the mean-field shift treatment might

have shortcomings. Here we explore a powerful formalism to address clock shifts arising from

partial wave interactions in the clock. Following the experimental discovery of the 87Sr clock shift

for identical fermions, the first work to pioneer this many-particle approach to treat s-wave shifts

was from A. M. Rey and co-workers [274]. The two-body physics of the interacting particles was

elucidated by K. Gibble [275]. A description similar to that of [274] was subsequently explored by

Z. Yu and C. Pethick [276].
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5.3.1 Second quantization

In order to develop the formalism for a many-body system of interacting fermionic atoms, we

appeal to the substantial machinery already developed to treat interacting electrons in condensed

matter systems, although the techniques we employ can be used for interacting bosons as well. We

start by replacing the wavefunction with an operator, ψs (x)→ ψ̂s (x), such that [277]

〈x′s′|ψ̂†s (x) |0〉 = δss′δ
(
x− x′

)
. (5.20)

Here, ψ̂†s (x) creates an atom at position x from the vacuum ket0 and the label s signifies its internal

quantum state. In our case, these “spin” states will actually signify e (↑) or g (↓), where we have

restricted our consideration to a single nuclear spin state, leaving only the electronic and motional

degrees of freedom.

We can decompose ψ̂†s (x) and its Hermitian conjugate ψ̂ (x) in any orthonormal basis set as

ψ̂†s (x) =
∑
i

φ∗i (x) ĉ†i,s. (5.21)

Its conjugate, ψ̂s (x) can be written by conjugating Eq. 5.21. Here, the spatial functions φi (x)

are the basis functions and ĉ†i,s and ĉi,s are the creation and annihilation operators for mode i,

respectively, with the spin denoted by s. Correspondingly, the number operator is given by

n̂i,s = ĉ†i,sĉi,s. (5.22)

An important property of ψ̂s (x) is that it obeys (anti)commutation relations that depend on bosonic

(fermionic) nature of the particles described by the field. Since we wish to describe fermionic atoms

in the clock, we therefore have

{ψ̂†s (x) , ψ̂†s′
(
x′
)
} = δ

(
x− x′

)
δss′ . (5.23)

Here, {. . .} represents the anticommutation operation, defined as {α̂, β̂} ≡ α̂β̂+ β̂α̂. It is important

to note that these relations are responsible for enforcing the necessary symmetries of the wavefunc-

tion and, as a direct consequence, they will play a direct role in determining by which partial waves

the atoms are permitted to interact.
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5.3.2 Many-body Hamiltonian

We are now prepared to write the two-atom interaction potential. The standard expression

for decomposing an interaction potential into the second-quantized basis is [277, 278]

V̂ =
1

2

∫
d3x d3y

∑
ss′

ψ̂†s (x) ψ̂†s′ (y) vss′ (x,y) ψ̂s′ (y) ψ̂s (x) , (5.24)

where V̂ is the inter-atomic interaction component of the total Hamiltonian and vss′ (x,y) is the

two-body spin-dependent inter-particle interaction. We can therefore write the Hamiltonian of the

entire interacting system as

Ĥ = Ĥ0 + V̂, (5.25)

where Ĥ0 is the single-particle Hamiltonian given by

Ĥ0 =
∑
s

∫
d3x ψ̂†s (x)

[
− ~2

2m
∇2 + V (x)

]
ψ̂s (x)︸ ︷︷ ︸

motional

+
~ωa

2

∫
d3x

[
ψ̂†↑ (x) ψ̂↑ (x)− ψ̂†↓ (x) ψ̂↓ (x)

]
︸ ︷︷ ︸

electronic

,

(5.26)

where ωa/(2π) is the clock frequency. At this point it is beneficial to select a basis for ψ̂ (x) that

diagonalizes Ĥ0 (see Eq. 5.21). For the case of atoms confined in a harmonic potential

V (x) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (5.27)

The eigenstates are therefore eigenstates of the three-dimensional harmonic oscillator parameterized

by ni ≡ {nx,i, ny,i, nz,i}, such that

φi (x) = φni,x (x)φni,y (y)φni,z (z) , (5.28)

where φnξ,i (ξ), with ξ ∈ {x, y, z}, is an eigenfunction of the one-dimensional harmonic oscillator.

With this choice of basis, the “motional” part of Ĥ0 in Eq. 5.26 is a constant of motion, and we

will therefore neglect it. This is justified because the energy scale of Ĥ0 is comparable to the trap

frequencies, which are much larger than the interaction energy scale. The remaining part of Ĥ0 is

the electronic energy between ↑ and ↓, with the clock transition frequency of ωa/(2π) = 429 THz.
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Thus, Ĥ0 becomes

Ĥ0 →
~ωa

2

∑
i

(n̂↑,i − n̂↓,i) . (5.29)

We now turn our attention to the inter-atomic interaction characterized by V̂. For an arbitrary

interaction potential vss′ (x,y), we can write

V̂ =
∑
ss′

∑
ijkl

U ss
′

ijklĉ
†
i,sĉ
†
j,s′ ĉk,s′ ĉl,s. (5.30)

Here [277],

U ss
′

ijkl =
1

2

∫
d3x d3y φ∗i (x)φ∗j (y) vss′ (x,y)φk (y)φl (x) (5.31)

It is clear from the form of Eq. 5.30 that we won’t get very far without some simplifications. Luckily,

the trap frequencies ωx, ωy, and ωz (2π × 450 Hz, 2π × 450 Hz, and 2π × 80 kHz, respectively) are

larger than any other scale in the problem, so we will first consider processes only which conserve

total motional quanta. We also assume that ωz is so large that it is frozen out (i.e., nz = 0),

so we only consider modes labeled as n = {nx, ny}, where nx and ny are the harmonic oscillator

quantum numbers in x and y. Conservation of total motional quanta still leaves a large number

of possible combinations of the creation and annihilation operators. As an example we consider

two colliding particles with initial motional states n1 = {n1,x, n1,y} and n2 = {n2,x, n2,y}. In a

perfectly harmonic trap, a range of final motional states are permitted, with motional quantum

numbers given by n′1 = {n1,x + l, n1,y + m} and n′2 = {n2,x − l, n2,y − m}. In the case that

the potential is perfectly isotropic (i.e., ωx = ωy), the final states n′1 = {n1,x + l, n1,y + m} and

n′2 = {n2,x−m,n2,y− l} are also permitted. As a first step, we assume a small but finite difference

between ωx and ωy so as to preclude the latter process. However, even with ωx 6= ωy, there are

still a great many final states allowed for a given initial state due to the range over which l and m

can vary. Given that the thermally averaged values for nx and ny ∼ 100, this means that l and m

could span > 100 final states each, meaning that for the average collision between two particles,

there are > 10, 000 final states into which to scatter!

Luckily, there is a solution to this problem, and it arises from the two sources. The first is

that the values of the mode-dependent coupling constants given by the overlap integral of Eq. 5.31
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Figure 5.2: Harmonic approximation compared to the true radial profile of the trap.

tend to be much larger for the cases where motional quantum numbers are preserved or swapped

[274]. The second is that for the pseudo-harmonic trap formed by the Gaussian laser profile, we

can solve for the perturbed energies for radial eigenmodes labeled by nx and ny including quartic

distortion as

E (nx, ny) = ~ωxnx + ~ωyny +
~2

4mw2
0

[
3
(
n2
x + n2

y

)
+ 4nxny + 5 (nx + ny)

]
(5.32)

Here, the first two terms are the usual harmonic oscillator eigen-energy for modes with

quantum numbers nx and ny. The second term comes from the quartic distortion due to the

gaussian beam profile, with 1/e2 intensity radius w0. Figure 5.2 shows the range of validity of the

harmonic trap approximation in the radial direction. For 2 µK temperatures, the approximation

is fairly good, but the quartic corrections are still significant. With one exception (the case where

n′1 = n2 and n′2 = n1), the quartic distortion of the trap breaks the symmetry and enforces

l = m = 0. Thus, we are left with only two possible energy-conserving final states:

(1) n′1 = {n1,x, n1,y} and n′2 = {n2,x, n2,y}: The trivial case. No modes are changed.

(2) n′1 = {n2,x, n2,y} and n′2 = {n1,x, n1,y}: Exchange of both motional eigenstates.

Thus, in general, for atoms i and j with initial motional states ni and nj we have two processes:

{ni,nj} → {ni,nj} (direct) and {ni,nj} → {nj ,ni} (exchange). This allows us to vastly simplify
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Figure 5.3: Interaction motional eigenstates within a single trap site. The functions φ (x) are
harmonic oscillator motional eigenstates. The interaction strengths, depicted schematically as Vgg,
Veg, and Vee are mode- and spin-dependent.

Eq. 5.30 as

V̂ →
∑
ss′

∑
ij

U ss
′

ijjiĉ
†
i,sĉ
†
j,s′ ĉj,s′ ĉi,s︸ ︷︷ ︸

direct

+
∑
ss′

∑
ij

U ss
′

ijij ĉ
†
i,sĉ
†
j,s′ ĉi,s′ ĉj,s︸ ︷︷ ︸

exchange

. (5.33)

Equation 5.33 represents a key result for the treatment of the many body shift. We will find that

permutation symmetries of U ss
′

ijji will further allow simplification of the problem. Additionally,

connections with SU (2) angular momentum algebra will allow significant conceptual simplification

of the problem, and allow us to make connections with the quantum theory of angular momentum.

This is the subject of the next section.

5.3.3 Writing the many-body Hamiltonian with spin operators

A particularly straightforward way to form combinations of the creation and annihilation

operators for spin e(↑) and g(↓) particles that obey the SU(2) spin algebra commutation relations



170

are [277]

Ŝ =
1

2

∑
ss′

ĉ†s~σss′ ĉs′ (5.34)

Here, Ŝ ≡
(
Ŝx, Ŝy, Ŝz

)
and ~σ = (σx, σy, σz), where σx, σy, and σx are the Pauli matrices. A general

property of operators constructed as in Eq. 5.34 is that they obey the commutations relation

[
Ŝi, Ŝj

]
=

1

2

∑
ss′

ĉ†s
[
σi, σj

]
ss′
ĉs′ . (5.35)

In the specifice case of S, we have [
Ŝi, Ŝj

]
= iεijkSk. (5.36)

As seen from Eq. 5.36, the operators Ŝx, Ŝy, and Ŝz map directly onto the spin operators for

spin-1/2 systems. If we write them out fully, they are

Ŝx =

N∑
n=1

(ĉ†↑ĉ↓ + ĉ†↓ĉ↑)/2, (5.37)

Ŝy =

N∑
n=1

(ĉ†↑ĉ↓ − ĉ
†
↓ĉ↑)/2i, (5.38)

Ŝz =

N∑
n=1

(ĉ†↑ĉ↑ − ĉ
†
↓ĉ↓)/2, (5.39)

We will now attempt to use these operators to simplify Eq. 5.33. We begin by writing Eq. 5.33

in a slightly different way

V̂ =
∑
ss′

∑
i 6=j

U ss
′

ijji

(
ĉ†i,sĉi,s

)(
ĉ†j,s′ ĉj,s′

)
−
∑
ss′

∑
i 6=j

U ss
′

ijij

(
ĉ†i,sĉi,s′

)(
ĉ†j,s′ ĉj,s

)
. (5.40)

Here, we’ve made use of the anticommutation relations for the fermionic operators to rearrange the

operators into pairs enclosed by parentheses. Finally, we will relate the interaction energy terms

U ss
′

ijji and U ss
′

ijij to one another. Specifically, for the s- and p-wave interactions considered in Eqs. 5.9

and 5.10, respectively, U ss
′

ijji will have opposite parity under exchange of a given pair of ij → ji.

Thus, we can write

U ss
′

ijji =
1

2
Ueg
ij (1− δss′) +

1

2
Vss′
ij , (5.41)

U ss
′

ijij =
1

2
Ueg
ij (1− δss′)−

1

2
Vss′
ij . (5.42)
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Equations 5.41 and 5.42 define U and V. The interaction term U (V) are even (odd) under motional

state exchange (i.e. i→ j and j → i). As a direct consequence, the corresponding spin states must

have the opposite parity under exchange of s and s′. Therefore, we drop the superscript on U

and simply call it U−ij because it only applies to colliding atoms in an antisymmetric electronic

superposition, of which there is only one possibility for two colliding atoms. Here, the (1− δss′)

term serves to emphasize that the even-parity terms for which s = s′ cancel in Eq. 5.40. This is

similar to the simple s-wave case considered before, where s-wave interactions between the identical

fermions were only able to occur in the eg channel.

Inserting the potentials Eqs. 5.9 and 5.10 into Eq. 5.31, we find

Ueg
ij =

4πa−eg~2

m

∫
d3x |φi (x)|2 |φj (x)|2 (5.43)

Vss′
ij =

12πb3ss′~
2

m

∫
d3x

∣∣∣φi (x) ~∇φj (x)− φj (x) ~∇φi (x)
∣∣∣2 (5.44)

A discussion of the mode-dependence of these is given in Appendix D.

We can rearrange Eq. 5.40 by making use of the spin operators of Eqs. 5.37–5.39, to arrive

at the result

V̂ =
∑
i 6=j

J⊥ij Ŝi · Ŝj + χijŜ
z
i Ŝ

z
j +

Cij
2

(
Ŝzi + Ŝzj

)
+
Kij

4
, (5.45)

where

J⊥ij = Veg
ij −Ueg

ij , (5.46)

χij = Vgg
ij + Vee

ij − 2Veg
ij , (5.47)

Cij = Vee
ij −Vgg

ij , (5.48)

Kij = Vgg
ij + Vee

ij + Veg
ij + Ueg

ij . (5.49)

Interestingly, this Hamiltonian links the spin dynamics of interacting thermal fermions at µK

temperatures to those of two-mode Bose-Einstein condensates (BEC) and it has been shown both

theoretically [279, 280, 281, 282] and experimentally [283, 284, 285] to give rise to non-trivial many-

body correlations and quantum noise-squeezed states. It is also relevant in trapped-ion quantum

simulation experiments [286, 267, 268].
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5.3.4 Adding the atom-laser interaction

At this point, we have a general Hamiltonian that describes two-level fermions that are

subject to both s- and p-waves shifts. Writing out the full Hamiltonian, we have so far developed

yields

Ĥ = ~ωa
∑
i

Ŝzi +
∑
i 6=j

J⊥ij Ŝi · Ŝj + χijŜ
z
i Ŝ

z
j +

Cij
2

(
Ŝzi + Ŝzj

)
+
Kij

4
. (5.50)

The first term is from the electronic energy separation between g and e given in Eq. 5.29. Here,

we have simply expressed it in our new spin language.

In order to account for the laser excitation, we add the atom-laser interaction to this Hamil-

tonian. We treat the laser field classically, and the atom-laser Hamiltonian is given by [274]

ĤI = −Ω0

2

∫
d3xψ̂†↑ (x) ei(k·x−ωt)ψ̂↓ (x) + H.C. (5.51)

Here, k is the laser propagation vector, ω is the laser angular frequency and “H.C.” indicates

the hermitian conjugate of the previous expression. We note that the minus sign in front simply

represents a specific phase convention for the probe laser electric field, and we keep it in order to

be consistent with the literature. The mode-dependent Rabi frequency Ωi is given by

Ωi = Ω0

∫
d3x φ∗i (x) eik·xφi (x) . (5.52)

By moving to a frame co-rotating with the laser, we finally obtain [125]

Ĥ = −δ
∑
i

Ŝzi +
∑
i

ΩiŜ
x
i +

∑
i 6=j

J⊥ij Ŝi · Ŝj + χijŜ
z
i Ŝ

z
j +

Cij
2

(
Ŝzi + Ŝzj

)
+
Kij

4
. (5.53)

Here, δ ≡ ω − ωa. Equation 5.53 is the key result of this section. It expresses the relevant

elastic many-body dynamics in a spin language that makes broad connections to quantum magnetic

systems.

5.4 S-wave model

In the previous section, we derived a powerful machinery to treat collisional shifts in an

optical lattice clock. It is the goal of this section to develop an intuitive understanding of the



173

|gg

(|ge |eg ) /
√
2

(|ge + |eg ) /
√
2

|ee

∝ U−

Ω/
√
2

Ω/
√
2

∆Ω/
√
2

−∆Ω/
√
2

Triplet manifold

s-wave interacting
singlet

Figure 5.4: Two-particle illustration of the s-wave shift mechanism.

s-wave shift mechanism only. Eventually, we will present evidence that shows that, despite the

beautiful mechanism that allows s-wave shifts in a fermion clock, s-waves are not a dominant

collisional channel in the one-dimensional optical lattice clock if the excitation is performed in a

very homogeneous manner. This has coincided with significant experimental progress in the last

several years, resulting in the extremely small inhomogeneities reported in Chapter 2, and allowing

peak atomic excitation fractions of nearly 100%. However, we will find that the s-wave interactions

will still play an important auxiliary role in the many-body dynamics.

To begin, we consider Eq. 5.45 with only s-wave interactions so that V eg
ij = V gg

ij = V ee
ij = 0.

This was the original context in which many-body shifts were considered in the lattice clock [274].

In this limit, Eq. 5.45 reads [274]

V̂ =
∑
i 6=j
−Ueg

ij

(
Ŝi · Ŝj − 1/4

)
. (5.54)

This result is particularly easy to understand if we appeal to the simple picture we developed

earlier employing the even and odd spatial and electronic wavefunctions of Eq. 5.17. There, the

electronic wavefunction evolved via inhomogeneous excitation into a symmetric and antisymmetric

part, corresponding to antisymmetric and symmetric spatial wavefunctions. There, we enforced that

only the part of the wavefunction with a symmetric spatial component was allowed to “feel” the s-
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Figure 5.5: Two-particle lineshapes with s-wave interaction energy. (a) U−12 = 0 (b) U−12 = 1Ω (c)
U−12 = 2Ω (d) U−12 = 5Ω.

wave collision. We then applied this energy shift as a mean-field energy shift for the g → e transition.

Likewise, in Eq. 5.54, we see that the interaction energy depends on the dot-product of the two spins

of atom i and j. Since these spin operators directly map onto a spin-1/2 system, we can easily see

that there are two possible values for Ŝi · Ŝj , namely 1/4 and −3/4, corresponding to the S = 1 and

S = 0 total spin eigenstates of the total spin operator Ŝi+ Ŝj . We see then that only the state with

S = 0 (the spin-singlet |S = 0,mS = 0〉 = (|ge〉 − |eg〉) /
√

2) interacts with energy Ueg
ij , while the

three possible states of the triplet, |S = 1,mS = −1〉 = |gg〉, |S = 1,mS = 0〉 = (|ge〉+ |ge〉) /
√

2,

and |S = 1,mS = 1〉 = |ee〉 are non-interacting.

A relevant question to ask is what causes the excitation of the singlet state? As an example,

we consider the case of the spin Hamiltonian of Eq. 5.53 with only s-wave interactions for two

particles. We then have

Ĥ = −δŜztot +

2∑
i=1

ΩiŜ
x
i +−Ueg

12

(
Ŝ2

tot − 2
)
. (5.55)
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The Hamiltonian can be written in a slightly different way

Ĥ → −δŜztot + ΩŜxtot + ∆Ω
(
Ŝx2 − Ŝx1

)
−U−12

(
Ŝ2

tot − 2
)
, (5.56)

where Ω = (Ω1 + Ω2) /2, ∆Ω = (Ω1 − Ω2) /2, Sztot = Ŝz1 + Ŝz2 and Ŝtot = Ŝ1 + Ŝ2. If Ω1 = Ω1, then

we see that the hamiltonian can be written in terms of total spin operators, namely

Ĥ → −δŜztot + ΩŜxtot −U−12

(
Ŝ2

tot − 2
)
. (5.57)

Figure 5.4 schematically depicts this simple two-particle picture. In this instance, the initially non

s-wave interacting |gg〉 (|S = 1,mS = −1〉 in the spin parlance) state satisfies
(
Ŝ2

tot − 2
)
|S =

1,mS = −1〉 = 0. Furthermore, since Ŝ2
tot commutes with the other total spin operators, it is a

constant of motion and
(
Ŝ2

tot − 2
)

is always equal to zero. Thus inhomogeneities in the atom-clock

laser interaction (e.g., Ω1 6= Ω2) are key to the s-wave shift mechanism.

We can gain further insight if we project the Hamiltonian of Eq. 5.55 into the basis formed

by |S = 1,mS = −1, 0,+1〉 and |S = 0,mS = 0〉. In this basis, the hamiltonian becomes [287]

Ĥ →



δ 0 Ω/
√

2 ∆Ω
√

2

0 −δ Ω/
√

2 −∆Ω
√

2

Ω/
√

2 Ω/
√

2 0 0

∆Ω
√

2 −∆Ω
√

2 0 2U−12


(5.58)

Figure 5.5 shows the solution of the two particle Hamiltonian given above in the presence of

increasing U−12. For U−12 ' Ω, we have the situation that the interacting spin-singlet is not well-

resolved from the central carrier. However, when U−12 � Ω, the interacting singlet emerges as a

sideband, leaving the carrier nearly unperturbed. This is immediately a qualitative difference from

the mean-field model of Eq. 5.19, and shows the necessity of a true many- (or in this case two-)

body model for the s-wave interaction. Specifically we see that in the limit U−12 � Ω, we can

treat the term ∆Ω
(
Ŝx2 − Ŝx1

)
as a perturbation and find that the |gg〉 and |ee〉 levels are shifted

∝ ∆Ω2/U−12. In the N -atom case, this effect can be generalized to the condition U−N � Ω.
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With the insights gained from the 2-atom case in mind, we re-write the Hamiltonian of

Eq. 5.54 as [274]

Ĥ = −δŜztot + ΩŜxtot +
∑
i

(
Ωi − Ω

)
Ŝxi −

∑
i 6=j

Ueg
ij

(
Ŝi · Ŝj − 1/4

)
. (5.59)

Here, it is the term
∑

i

(
Ωi − Ω

)
Ŝxi that perturbatively couples the maximally-symmetric non

s-wave interacting manifold to the family of states with Stot = N/2 − 1 that do interact via s-

waves [274]. However, in the strongly interacting limit, defined for the N -atom case as NU−12 �

Ω, excitation of the non fully-symmetric states via inhomogeneity is suppressed via a protective

energy gap. Furthermore, the coupling to the interacting manifold is governed by the degree

of inhomogeneity in the system—in this specific case excitation inhomogeneity parameterized by

∆Ω2 =
∑

i

(
Ωi − Ω

)2
/ (N − 1).

5.4.1 Concluding remarks regarding s-wave interactions

In the preceding discussion, we explored some of the non-trivial aspects of the s-wave in-

teraction in a lattice clock of initially identical fermions. Most importantly, a criterion for strong

interactions was identified: the strongly interacting regime is reached when the Si · Sj term in the

Hamiltonian becomes large enough to block excitation of the interacting state. As an illustration
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of this principle, we plot the analytical solution to the shift of the peak of Rabi lineshape as derived

by Rey et al. [274] in Fig. 5.6. The peak of the resonance is maximally shifted when 2NU ' Ω. In

the strongly interacting regime, the line center as defined by the peak becomes less affected as U

increases.

These theoretical results were sufficient to explain all phenomena that had been experi-

mentally observed, including the 2009 density shift [31, 265], reduced density shifts in a strongly

confining 2D lattice [135], and resolved interaction sidebands in the 2D lattice clock [288]. However,

this is not the end of the story with interaction in the 87Sr lattice clock.

5.5 New experimental evidence for p-wave interactions

The results of the previous section were well-established when the new laser came on line

(see Chapter 4 for a description of the new laser, also known as the “Big ULE” cavity.). With the

promise of 10-fold improved stability the prospect of a high-resolution probe of the density shift

via sub-Hz spectroscopy was a reality. However, we began to see evidence that was not consistent

with the predictions of the model employing solely s-wave interactions. Here we describe the initial

experimental evidence for beyond s-wave collisional physics.

5.5.1 Inelastic loss

Inelastic losses between atoms in the 3P0 state of 88Sr were measured in 2009 by two separate

groups [289, 290]. The collision rate is important for determining the feasibility of producing BEC

using metastable states (3P0 or 3P2 ), whose elastic collisional properties are potentially more

favorable for evaporative cooling. In these experiments, loss coefficients of γee = 4.0 ± 2.5 ×

10−12 cm−3s−1 in a quasi two-dimensional trap [290] and 1.9 ± 1.2 × 10−11 cm−3s−1 in a three-

dimensional trap [289] were measured. In Ref. [290], large elastic effects on the clock transition

in 88Sr were also observed, including a strong collisional dephasing and a density shift an order of

magnitude larger than for 87Sr .

These collisions had not been observed in 87Sr and it had been assumed that the large
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Figure 5.7: Atom loss as a function of lattice hold time. Atoms in 1S0 have a lifetime of 8 s,
and the time-dependence is exponential, indicating that the primary loss mechanism is residual
gas collisions. Atoms is the 3P0 |F = 9/2,mF = +9/2〉 state decay an order of magnitude more
quickly. The time-dependence of the decay is consistent with that of a two-body inelastic loss
mechanism, and clearly does not fit an exponential decay model.

centrifugal barrier of 75 µK for 3P0 [81] should strongly suppress such collisions. Our previous

experimental tests with 87Sr had not shown any loss from 3P0 consistent with two-body decay due

mainly to the dominant residual gas collisional lifetime of 2 s in the experimental chamber.

After adding an additional differential pumping stage on the oven-side of the experiment (see

Fig. 2.3 Chapter 2), we were able to increase the vacuum lifetime to 8 s. This allowed us to clearly

resolve the effect of 2-body collisions in the excited state. As shown in Fig. 5.7a, the inelastic decay

proceeds approximately an order of magnitude more rapidly than the residual gas collision limited

case. The equation for the density decay due to two-body inelastic collisions in the presence of a

background one-body loss due to residual gas collisions, with a rate Γ, is

dn

dt
= −Γn− γeen2. (5.60)

Here, n is the density and γee is the two-body loss term. By integrating over the spatial density

profile, the excited state population within a single trap site (labelled with the index i) as a function
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of time is given by [290]

Ni (t) =
Ni (0) exp (−Γt)

1 +
[
Ni (0) γee/

(
π3/2Γw2

rwz
)]

[1− exp (−Γt)]
. (5.61)

Here, Ni (0) is the initial population within a trap site i at t = 0, wr(z) is the radial 1/e2 density

radius in the radial (axial) direction. Explicitly, the density profile is

ni (x) = Ni

(
2

π

)3/2 exp
[
−2
(
x2 + y2

)
/w2

r − 2z2/wz
]

w2
rwz

, (5.62)

for which the density-weighted average density is given by

ni =
1

Ni

∫
d3x [ni (x)]2 =

Ni

π3/2wxwywz
. (5.63)

We fit the loss for atoms initially prepared in e with the model of Eq. 5.61 averaged over the site

occupancy. As seen in Fig. 5.7a, the model fits the data extremely well, while at the same time

ruling out any purely single-particle decay mechanism, as might be caused by photon scattering

from the lattice, which we also independently ruled out (see Chapter 2).

In order to test for the presence of an eg inelastic loss channel, as measured for the case of

88Sr by Lisdat et al., we created a mixture of coherently prepared e and g atoms by using a π/2

laser pulse on resonance and measured the resulting decay. Figure 5.7b shows the result of a pure

e a sample and a 50/50 e/g mixture with an equivalent number of atoms in e (i.e., the sample

initially started with twice the number of atoms, 50% of which were in the excited state). We were

unable to resolve any inelastic loss process between e and g, which is evident from the excellent

agreement between the data and theoretical curves for the mixture state as compared to the pure

e mixture.

To further probe the loss dynamics we took inelastic loss data under varying atomic tem-

perature and in the presence of a second nuclear spin state. In order to explain the observation

of inelastic loss in the identical, non-spin mixture fermi sample, a p-wave model was necessary,

because the atoms were unquestionably prepared in a pure quantum state. Our theory colleagues

(G. Quéméner et al.) were able to use a model with two fit parameters: the unknown phase shift of

the short range potential, and the probability that an atom is lost during its penetration into the
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|F = 9/2,mF = −9/2〉

short-range regime. It was found that the loss probability, pls, was significantly below unity, with a

best-fit value of pls = 0.4 for the short-range regime of 30 a0. The same parameters described the

inelastic loss rate in the spin-mixture case, giving us confidence in the model, and also reproducing

the s-wave losses observed in 88Sr. Importantly, the relatively inefficient loss at short ranges means

that the s- and p- wave inelastic loss channels are comparable in magnitude, whereas normally s-

wave losses would be expected to dominate by nearly two orders of magnitude [116].

As shown in Fig. 5.8, the agreement between the theory and the temperature dependent loss

rates for the pure spin-state and spin-mixture cases is quite good. The generalization for Eq. 5.61

for the case with the spin mixture is

dnα
dt

= −Γnα − γeen2
α −

(
Kdist
s +Kdist

p

)
nαnβ. (5.64)

Here, nα and nβ represent the densities of the two components of the gas. The additional two-

body loss coefficients, Kdist
s and Kdist

p , represent s- and p- loss channels for two-body inelastic

collisions between the two different spin states, which are distinguishable. This can be simplified

somewhat due to the decoupling of the electronic and nuclear degrees in 87Sr , and so we expect

that Kdist
p = γee/2 [291]. The parameters we theoretically extract for 87Sr are ultimately γee =
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Figure 5.9: Broadened lineshape with 1 s atom-light interaction time. The observed linewidth of
approximately 5 Hz is more than a factor of five broader than expected from the Fourier linewidth,
and the asymmetry effectively excludes laser noise.

T × (4±2)10−6 cm3/s/K and Kdist
s = T × (4±2)10−6 cm3/s/K. The agreement with the measured

loss rates as a function of temperature is quite good. The simple model also reproduced the 88Sr

e-e inelastic loss rate reported by Lisdat et al. [290].

5.5.2 Lineshape distortion and loss of Ramsey fringe contrast

The observation of a p-wave inelastic loss mechanism was an important additional piece of

information to add to our knowledge of the nature of the interactions between 87Sr in an optical

lattice. This observation was made directly possible by an increased vacuum lifetime. Similarly,

with the new laser described in Chapter 4, the “Big ULE,” we were prepared to make frequency

shift and spectroscopy measurements with an order of magnitude increase in precision. In these

initial investigations, we found signatures of elastic interactions that also deviated from the s-wave

picture that had previously been developed.

Upon installing the new laser, we decided to perform a demanding test of the optical-atomic

coherence of the system. We also set out to beat the long-standing record of 2 Hz spectroscopic
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Figure 5.10: Low density lineshape vs. high density lineshape with lattice depth consistent with
νz = 80 kHz (purple circles). The blue line is a Lorentzian fit. The data from Fig. 5.9 (black
circles) is shown for comparison.

features with coherent spectroscopy in 87Sr , which had stood for around half a decade [40]. As

a first test, we performed Rabi spectroscopy with a π-pulse duration of 1 s, which should result

in a Rabi lineshape with full width at half-maximum (FWHM) of 0.8 Hz. Instead, we observed

the lineshape shown in Fig. 5.9 with a FWHM of approximately 5 Hz! Here, the temperature was

approximately 4 µK and the density was ρ = 6× 1011 cm−3. Another striking difference was that

the peak excitation fraction, which should theoretically be unity, was nearly an order of magnitude

lower than expected. The data in Fig. 5.9 is comprised of approximately 20 individual scans of the

line which were subsequently centered upon one another and binned using a bin size of 250 mHz.

This has the effect of allowing a high resolution lineshape to be formed in a way that is insensitive

to slow laser excursions. Linear laser drifts were removed to the 5 mHz/s level, but to be sure there

was no biasing due to scan direction, we altered the sign of the frequency stepping for the laser

within a given scan.

We then reduced the atom number by an order of magnitude, such that the density was
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Figure 5.11: Narrow line scan (1 s probe time) with 40% the typical lattice power and a sample
temperature of 1 µK. Here, despite the density of ρ = 1 × 1011/cm3, a narrow line is recovered.
(Inset) Representative single-scan with no binning or averaging.

ρ = 5 × 1010 cm−3. Under this condition, the line dramatically narrowed to nearly the expected

linewidth, with a FWHM of 820 mHz. The linescan is show in Fig. 5.10 along with the high-density

data for reference. Also shown is a Lorentzian fit to the data, which indicates an asymmetry similar

in shape to the high-density case, but far less pronounced.

In a final test, we pre-cooled the sample using Doppler and sideband cooling (see Chapter 2,

Section 2.7) and subsequently reduced the lattice intensity to 40% of the typical operating intensity

using an adiabatic ramp, which had the simultaneous effect of lowering the density, temperature,

and total atom number such that the final temperature was 1 µK and the density reduced to

ρ = 2×1011 cm−3. Under this condition, the line was also narrowed to near the expected lineshape,

as shown in Fig. 5.11. For both this condition and the low-density condition described previously,

the data was processed and binned as described for the high-density and high-lattice case.

From the three experimental conditions that we explored, we were able to deduce that the

dominant line-broadening mechanism was density. This is an important distinction because some

calculations of the lattice photon scattering rate had estimated scattering rates as high as ∼3 Hz



184

−50 −40 −30 −20 −10 0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−30 −20 −10 0 10 20 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
a b

200 ms 750 ms

~30% loss

Ex
ci

ta
tio

n 
fr

ac
tio

n

Detuning (Hz) Detuning (Hz)

Ex
ci

ta
tio

n 
fr

ac
tio

n

Figure 5.12: Comparison of two lineshapes taken under similar atom number conditions of Ntot '
5000. The upper data (black circles) is the total population scaled by the off resonant atom
number. The lower traces (red circles) are plots of excitation vs laser detuning. These lineshapes are
composites formed from approximately 20 scans each that have been centered upon one another. (a)
The probe (and resonant π-pulse) time is 200 ms. The peak excitation of the line is approximately
60% of that of the non-interacting case. (b) The probe (and resonant π-pulse) time is 200 ms. The
peak excitation of the line is approximately 20% of that the non-interacting case. Here, almost no
inelastic loss is observed, as can be seen from the discrepancy between the upper data points and
the horizontal line indicating the loss from the 200 ms case. The line is also significantly broadened
beyond the ∼1 Hz linewidth expected for a 750 ms probe time.

for a lattice depth of ∼120 Erec [292]. However, in addition to ruling out lattice photon scattering

as a contributing mechanism to line broadening, as described above, we have rigorously—both

experimentally and theoretically—ruled this mechanism out entirely for all lattice depths currently

accessible to us (see Chapter 2, Section 2.6).

Beyond the general observations discussed above, the lineshapes gave us initial evidence that

the s-wave dominated picture of interactions might not be the end of the story. One mechanism that

was initially considered was the effect of two-body inelastic loss. However, the observed broadening

was much larger than could be accounted for by simply inelastic collisions alone. Furthermore,

the two-body loss under conditions with the most severely broadened lineshape under the longest

π-pulses was minimal, while the two-body loss for shorter π-pulses was increased. The difference

between a 200 ms π-pulse and a 750 ms π-pulse is shown in Fig. 5.12, where in the case of the
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Figure 5.13: Ramsey fringes contrast and two body-loss. (a) Ramsey lineshape observed using the
parameters listed in the inset of the figure. A marked decrease in the contrast was observed (bottom
trace, red), along with a net atom loss when near resonance (top trace, blue curve; 1 count= 5 atoms.
(b) Density matrix model fit to the Ramsey lineshape with ee inelastic losses as the only collisional
mechanism. The ee loss rate was tuned to match the net observed atom decay. The effect on the
Ramsey fringe constrast is minimal.

latter pulse duration, the two-body loss has been almost completely inhibited.

Finally, we observed strong decoherence of Ramsey fringes during a Ramsey experiment (see

Appendix A for a description of Ramsey spectroscopy) where two-body losses were responsible for

∼20% losses of total atom number while the fringe contrast decayed to only 30% of the theoretical

value of unity. These experimental data are shown in Fig. 5.13a. Under a typical Ramsey experi-

ment, it can be shown that for small two body losses, the fringe contrast should decay quadratically

with fraction of atoms lost via excited state two-body loss if this is the only inelastic loss channel.

A numerical solution to the optical Bloch equations is shown in Fig. 5.13b for the case of only

inelastic two-body loss. For the appropriate two-body decay coefficient, the fringe decay is so small

that it is hardly apparent.

These strong pieces of evidence ultimately led us to believe that there was a blockade

mechanim of elastic origins at work. Since the effect on the carrier was so dramatic, we could

rule out s-wave elastic collisions, which should be reduced in strength with respect to the carrier

by ∆Ω/Ω, which is � 10% for all experimental conditions probed, as shown in Chapter 2. The
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natural way to include beyond s-wave effects is via the next partial wave: p-waves. p-wave shifts

were observed in a neutral atom clock based on fermionic 171Yb [273, 293], which operates at close

to an order of magnitude higher temperatures than the 87Sr lattice clock. However, these results

were another important indicator that p-wave interactions can be important, even for collisional

energies well below the centrifugal barrier.

5.6 p-wave many-body model

As discussed in the previous section, the s-wave model fails to describe the qualitative features

of the spectroscopic lineshapes, even when inelastic p-wave collisions are included. Therefore, it is

natural to seek answers from the next available partial wave. In this section, we will apply successive

simplifying approximations to the p-wave many-body model, which allows good agreement between

the observed lineshapes and density shifts in the linear response regime. We find, however, that

certain experimental observables require that beyond mean-field effects within the p-wave theory are

retained in order to agree with experiment. Ultimately, these measurements allow us to benchmark

the effectiveness of describing the system via a many-body spin-Hamiltonian, opening the door to

exploring many-body effects and entanglement between optical degrees of freedom in lattice clocks.

5.6.1 Collective model

We begin our consideration of elastic p-wave effects in the clock by considering the Hamilto-

nian of Eq. 5.53, given by

Ĥ = −δ
∑
i

Ŝzi +
∑
i

ΩiŜ
x
i +

∑
i 6=j

J⊥ij Ŝi · Ŝj + χijŜ
z
i Ŝ

z
j +

Cij
2

(
Ŝzi + Ŝzj

)
+
Kij

4
. (5.65)

Here, the mode-dependent constants are given by Eqs. 5.46–5.49. The p wave component of the

interactions parameters is characterized by the Vαβ
ij terms. As shown in Appendix D, the mode-

dependence of the s- and p-wave coefficients is smoothly varying. In the case of the p-wave interac-

tion parameter for two-dimensional traps, the thermal average is independent of the temperature

[125].
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Figure 5.14: Visual depiction of the collective model. The many-body Hamiltonian has eigenstates
comprised of maximally symmetric superpositions (Dicke states, for which S = N/2) of electronic
ground and excited states, depicted as purple shells. Because of the weak inhomogeneities in the
coupling strengths, the maximally symmetric manifold is coupled to the next lowest manifold with
S = N/2 − 1, depicted as a nested blue shell. However, this coupling is prevented by an energy
gap present in the many body Hamiltonian as a result of the J⊥~S · ~S term, which is depicted by an
offset of the two manifolds in this figure. Two-body inelastic losses (dashed black arrow) connect
maximally symmetric manifolds of S → S − 1, and thus are not a strong decoherence mechanism.

Motivated by the weak dependence of the interaction parameters on the mode, we make a

simplifying assumption that will be verified by the experimental evidence subsequently presented.

We replace all the interaction parameters by their mode-averaged quantities given by, e.g.,

C =
∑
i 6=j

Cij/ [N(N − 1)] (5.66)
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and the averaged laser excitation term is

Ω =
1

N

∑
i

Ωi. (5.67)

Here, the sums are averaged over thermally populated distributions of the harmonic oscillator

states, {|ni〉}. Using the averaged quantities, Eq. 5.65 becomes

Ĥ = −δŜz + ΩŜx + J⊥Ŝ · Ŝ + χ
(
Ŝz
)2

+ CNŜz︸ ︷︷ ︸
collective

+
∑
ij

ε̂ij . (5.68)

Here, the operators without mode subscript are collective operators such that

Ŝ{x,y,z} ≡
∑
i

Ŝ
{x,y,z}
i . (5.69)

We have also moved all the residual mode-dependence to the last term of Eq. 5.68. This term

is a perturbative parameter that is small compared to the collective part of the Hamiltonian. It

is interesting to note that the collective part of the Hamiltonian in Eq. 5.68 maps onto that of a

Bose-Einstein in a double-well potential [294, 295].

The collective Hamiltonian of Eq. 5.68 is nearly diagonal in the Dicke state basis, |J,m〉,

J ∈ {N/2, N/2− 1, ...} [296, 297] in the case that there is no laser excitation, e.g., Ωj → 0. Fully

symmetric Dicke states are formed by the fully symmetric permutations of ground and excited state

atoms subject to the constraint Sz|N/2,m〉 = m. Specifically [297],

|N/2,m〉 =

[
N !

(N/2 +m)! (N/2−m)!

]−1/2∑
S

∏
n∈S
|g〉n

∏
n/∈S

|e〉n. (5.70)

Here, S represents the set of all permutations for N atoms with the total number of atoms in the

excited state given by Ne = N/2 +m.

When an ideal rotation is applied via a spectroscopy pulse, the prepared state is given by a

product state of single particle states given by

|θ, φ〉N =

N∏
n=1

[
eiφ/2 sin (θ/2) |e〉n + e−iφ/2 cos (θ/2) |g〉n

]
(5.71)
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The Bloch states can be written as sums of the Dicke states as

|θ, φ〉N =

N/2∑
m=−N/2

[
N !

(N/2 +m)! (N/2−m)!

]−1/2

×eimφ sinN/2+m (θ/2) cosN/2−m (θ/2) |N/2,m〉 (5.72)

The states |θ, φ〉N can easily be prepared via fast excitation such that Ω� N{Vee, Veg, Vgg}. This

is the case for Ramsey spectroscopy.

5.6.2 The collective model and density shifts in a 2D optical lattice

As mentioned in Chapter 2, Section 2.8, a two-dimensional lattice (which creates quasi-

one-dimensional trap sites) was employed to enter the strongly interacting regime (i.e., where

atom-laser and atom-atom interactions are energetically comparable), at the expense of reducing

the occupancy to one or two atoms per site [135]. Here p-wave effects were not considered and

the excitation inhomogeneity was much higher [135, 288]. Within the many-particle collective

model, the role of s-wave interactions in the absence of excitation inhomogeneity is limited to an

enlargement of J⊥, thus enhancing the gap protection and enforcing the validity of the collective

spin Hamiltonian.

5.7 Mean-field and perturbative tests of the many-body dynamics

In this section we consider only the collective part of the Hamiltonian of Eq. 5.68. This is

a significant assumption, but one we can validate through experiment. These approximations are

important for the beyond mean-field treatment of the model as well. Theoretically, there are several

aspects of the collective Hamiltonian that justify its use. They are

(1) The atoms are initialized in the fully symmetric |J,−J〉 state and will remain in the fully

symmetric manifold under laser excitation as long as ∆Ω� J⊥.

(2) In a quasi-2D trap, χ and C are highly insensitive to the sample temperature T for a fixed

atom number, given that the linear growth of the p-wave interaction with T is compensated
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Figure 5.15: Temperature dependence of the p-wave interaction energies and their thermal distri-
bution. (a) Temperature-dependence of the average p-wave interaction parameters. They exhibit
a large insensitivity to the temperature due to the quasi-2D confinement. (b) Histogram of the
distribution of p-wave interaction parameters at 5 µK. In both cases a Boltzmann distribution of
the populated modes was used [125].

by a corresponding 1/T decrease of the density. The validity of this assumption in shown

in Fig.. 5.15a.

(3) The interaction parameters have a weak dependence on the thermally populated modes i

and j, which is reflected on the fact that that their thermal distributions are peaked about

their averages (see Fig. 5.15b) [125].

(4) There is a protective gap given by the J⊥Ŝ · Ŝ term, which should be larger than the p-

wave interactions due to the s-wave term in J⊥ij , where J⊥ij = Veg
ij −Ueg

ij . This energetically

forbids J → J − 1 due to the inhomogeneous term in Eq. 5.68,
∑

ij ε̂ij , which is � J⊥.

5.7.1 Perturbative tests of the many-body Hamiltonian

If the system is excited such that only a small fraction of the atoms are promoted from the

ground to exited states, the shift of the line center in a single trap site is

∆νiLRR ' (C − χ)(Ni − 1), (5.73)
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Figure 5.16: Spectroscopy of the clock transition in the linear response regime with pulse area fixed
to θ = 0.2π. (a) Spectroscopy in the linear response regime with tR = 250 ms. The high atom
number curve (red triangles) is shifted to lower detuning with respect to the high frequency curve
(teal blue circles). The low atom number is Ntot ' 2000 and high atom number is Ntot ' 5000 (b)
Spectroscopy in the linear response regime with tR = 500 ms. The low atom number is Ntot ' 1500
and high atom number is Ntot ' 4000.

where the index i labels the individual site. The total shift in the linear response regime is given

by an average of ∆νiLRR over the site occupancy distribution. The site occupancy distribution is

described in Appendix E.

In order to probe the linear response regime experimentally, we reduced the clock laser probe

intensity such that for a given probe time, the pulse area was θ ≡ ΩtR = 0.2π. We then took

lineshape measurements under four conditions. In the first condition, we set the pulse duration

to tR = 250 ms and took scans with low (Ntot ' 2000) and high (Ntot ' 5000) atom number

conditions. These data are depicted in Fig. 5.16a. We then increased the total probe time to

tR = 500 ms, but decreased the probe intensity so that, as before, θ = 0.2π. This longer-probe

time data is shown if Fig. 5.16b. Under this second condition, the low atom number was Ntot ' 1500

and the high atom number was Ntot ' 4000.

Importantly, as seen in Fig. 5.16, the data support the simple description of the shift given

by Eq. 5.73. Here, the theoretical lineshapes are formed by averaging the linear-response shift over
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the average site occupancy distribution as described in Appendix E. Two important features are

immediately evident. The first is that the line center is clearly shifted, even with the weak excitation.

This is in clear contradiction with the s-wave-dominant picture of the density shift, where sidebands

create a line-pulling effect, and should be negligibly small for such weak excitation. The second is

that the line centers are shifted approximately the same, even though the probe time is different

by a factor of two. We note that this statement is not completely rigorous because the total atom

numbers in both cases, in addition to the difference in atom number between the high and low

conditions, were not exactly the the same. However, the fact that there is no dramatic difference

between 250 ms data and the 500 ms data reproduces the universal behavior we expect of the shift

in the limit of weak, perturbative probing of the linear response. The data is fit according to a

composite lineshape formed of Lorentzians shifted according to Eq. 5.73 and weighted by the atom

numbers distribution. The data are consistent with a C − χ = −0.3(1) Hz.

5.7.2 Mean-field solution of the collective model

Even in its vastly simplified form, the collective Hamiltonian of Eq. 5.68 still represents a

formidable calculation. In the absence of the laser driving (i.e. Ω = 0), the Hamiltonian is diagonal

in the maximally symmetric Dicke state [296] basis, and exact solutions for the time dynamics have

been obtained [280]. However, in the presence of a laser drive, the dynamics of the collective spin

model are complicated, but numerically tractable [125]. It is our goal to analyze the dynamics

in a simplified regime. Here, we will find several experimental observables that are well-described

by using a so-called mean-field treatment of time evolution so-called because it considers only the

evolution of field operators by making the simplifying assumption that no correlations form.

We begin by defining new operators based upon the previously-defined spin operators. The

first two operators are the number of atoms “spin-up” (i.e. in the excited state) and conversly

“spin-down,” given by

N̂↑ = Ŝz +N/2, N̂↓ = N/2− Ŝz. (5.74)
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The second operators we define are the canonical angular momentum raising and lowering operators

formed by linear combinations of Ŝx and Ŝy, and which are given by

Ŝ± = Ŝx ± iŜy. (5.75)

We find the time evolution of these operators under the action of the collective Hamiltonian via

the Heisenberg equation of motion and obtain

∂

∂t
Ŝ± = i

[
H/~, Ŝ±

]
= ±ΩSz ± i [−δ + C (N − 1)] Ŝ± ± iχ

(
Ŝ±Ŝz + ŜzŜ±

)
(5.76)

and

∂

∂t
N̂↑ = − ∂

∂t
N̂↓ = iΩ

(
Ŝ+ − Ŝ−

)
/2. (5.77)

We then replace operators by their expectation values, thus removing quantum fluctuations

associated with operators and arising from their commutation relations. This will be our op-

erational definition of mean-field dynamics. We will use the convention that 〈Ô〉 ≡ O. To

the mean field limit to the dynamics of the many-body equations of motion we additionally add a

inelastic two body loss term (as in Refs. [290] and [116]), Γee, to properly account for the inelastic

loss described previously. The mean-field equations of motion become

∂

∂t
S± ' ±iΩ

2
Sz ± i

[
−δ + 2χSz + CN ± iΓee

2
N↑

]
S±, (5.78)

∂

∂t
N↓ = iΩ

(
S+ − S−

)
/2, (5.79)

∂

∂t
N↑ = iΩ

(
S− − S+

)
/2− ΓeeN

2
↑ . (5.80)

Without loss (i.e., Γee → 0), these equations behave as if there is an effective magnetic field-like

term in the hamiltonian, with magnitude given by B (N) = NC + 2χSz.

5.7.3 Density shift in the mean field limit

We begin our consideration of Eqs. 5.78–5.80 by treating the case of Ramsey spectroscopy,

which provides a clean way to decouple the time evolution. Specifically, during the dark time,
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analytic expressions for Ne (t) and S± (t) can be found and then used as driving terms for Eq. 5.78.

We start by noting that the general expression for S± is given by

S± (t) = S±0 exp

[
±i
∫ τ

0
dt u± (t)

]
, (5.81)

where

u± (t) '
[
−δ + 2χSz (t) + CN (t)± iΓee

2
Ne (t)

]
. (5.82)

From this expression, the frequency shift with respect to the non-interacting case is easily inferred.

Specifically,

∆ω =
1

τ

∫ τ

0
dt [2χSz (t) + CN (t)] = 2χSz + CN. (5.83)

Here, Sz and N are the time-averaged values of Sz and N , respectively. Thus, only knowledge

of Sz and N is required in a given measurement to find χ and C, and knowledge of the specific

time-dependence of these quantities is not strictly necessary. Stated another way,

∆ω = N
[
2χ
(
f − 1/2

)
+ C

]
. (5.84)

Here, f is the average number-weighted excitation fraction and is given by f ≡ Nf/N . This value

is approximately equal to the time-averaged value of the time-dependent excitation fraction, f (t)

as used in Ref. [293].

5.7.4 Measuring the density shift with a Ramsey interrogation scheme

As can be seen from Eq. 5.84, the shift in Ramsey spectroscopy should be linear with f as

long as the mean-field expression is valid. This suggests a very straightforward way to extract the

interaction parameters: by performing Ramsey spectroscopy using a modified sequence, one can

vary f by varying the initial Ramsey pulse area, θ1, while keeping the second pulse area, θ2 fixed

to be θ2 = π/2 and thus maximizing fringe contrast and therefore measurement precision. This

was the general approach employed in Refs. [273] and [293], and was the first conclusive proof of

p-wave collisions in a fermionic 171Yb optical lattice clock.
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Figure 5.17: Effect of two-body losses on the density shift measurement for two test cases, with
χ = 2π × 0.2 Hz, C = −0.3χ, and Γee = 2π × 0.07 Hz. “High” corresponds to an initial single-site
atom number of 20, while “low” corresponds to an initial number of 10. (a) Atom-number weighted
average excitation fraction, f , as a function of initial atom number with an initial excited state
fraction of 72%. Due to the nonlinearity of the two-body loss, f depends upon the initial atom
number. (b) Annulment of the density shift between “high” and “low” atom number conditions.
The annulment between the two conditions is achieved as desired, but the shift with respect to
vanishing density is still finite due to the influence of the two-body on f between the two conditions.

Due to the two-body inelastic loss, however, measuring the Ramsey shift in a self-consistent

way is potentially fraught with peril. To illustrate the problems, we consider a Hypothetical

measurement, with a “high” atom condition, corresponding to an initial site occupancy of 20 atoms,

and a “low” atom condition, corresponding to an initial site occupancy of 10 atoms. The idea is

to use the relative shift between the high and low condition to extrapolate χ and C. However, as

shown in Fig. 5.17a, the two-body loss couples total atom number to f , such that when the atom

number is varied between the high and low conditions, f is inadvertently varied.

A given density shift measurement is obtained by comparing the Ramsey fringe central fre-

quency under the high density condition to the low density case, such that

∆ωmeas = ∆ωhigh −∆ωlow = 2χNhigh

(
fhigh − p∗

)
− 2χN low

(
f low − p∗

)
. (5.85)

Here, Nhigh and N low represent the ensemble- and time-averaged single-site occupancy for the high
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and low density conditions, respectively. The explicit goal of our measurement is to extract the

zero-crossing fraction, p∗, which can be written as a function of χ and C (see Eq. 5.84) and also

the nonlinear parameter χ. By forming a new weighted quantity of fhigh and f low we can achieve

this goal. We define a new average quantity of the excitation fraction, which represents a weighted

average of both average excitation fraction as

f ≡ Nhighfhigh −N lowf low

Nhigh −N low

(5.86)

such that it is algebraically true that

∆ωmeas = 2χ
(
Nhigh −N low

) (
f − p∗

)
. (5.87)

Equations 5.86 and 5.87 are important because they are universal as long as Eq. 5.84 is valid. It also

gives us an unambiguous way to plot the data. By defining f in this manner, which is a derived

quantity rather than a directly measured one, we have removed the effect of the cross-coupling

between Nhigh(low) and fhigh(low).

One important conclusion of the analysis presented above is that a measurement of a null

shift between two different density conditions for a given initial excitation fraction does not imply

that the total shift is zero at this initial excitation fraction, nor does it give an accurate value for p∗.

This is true even when the fraction of total atoms lost is only at the level of several percent. To see

this, we assume that χ = 2π × 0.2 Hz, C = −0.3χ, and Γee = 2π × 0.07 Hz, resulting in p∗ = 0.65

(these will turn out to be very nearly the measured values for 87Sr ). Next, the measurement is

performed using an initial “high” initial site occupancy of 20 and an initial “low” site occupancy of

10. This will yield f = p∗ = 0.65 for a properly nulled shift, while on the other hand fhigh = 0.67 and

f low = 0.70. Thus, if we were to choose the “high” conditions as our operating point, the remaining

shift with respect to the zero-density limit would be ' 2χNhigh × 0.02, which represents a shift

of 4 × 10−16. This is a huge error and nearly four times larger than the entire clock uncertainty.

Interestingly, if we had instead chosen to use the “low” conditions as our operating parameters

(leading to a frequency error of ' 2χN low × 0.05) we would still have exactly the same frequency
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Figure 5.18: Timing sequence and example of inter-sequence excitation fraction measurement.
(a) Timing diagram for the multiplexed Ramsey density shift measurement. Two independent
PID locks are utilized to measure the differential frequency between the high and low density
condition. After four locking cycles, which are alternated for each PID, an atom–decay measurement
is performed. During this measurement, three delays are utilized to extrapolate the two-body loss
curve: short (S), medium (M), and long (L). (b) Example of experimental data for the measurement
of 2-body losses during the Ramsey measurement sequence. The low and high density conditions
are fit with two-body loss curves. Error bars are standard deviations and therefore represent the
scatter of the data, not the uncertainty of the mean.

error of 4× 10−16. This in fact must be true, since the shift was indeed measured as a relative null

between the high and low operating conditions. Figure 5.17b illustrates this mechanism, whereby

the relative shift is nulled but the total shift is not. The conclusion we must draw from this

example is that we can only use density shift measurements to extrapolate the proper operating

fraction of the clock, given by f = 0.65. In the presence of two-body loss, one cannot directly rely

on a measured null shift alone to determine either the location of the true zero-crossing lies, and

care must be taken when using such a measurement as proof that the clock has achieved a target

operating uncertainty.

We performed a modified density shift measurement to extract the density shift as a function

of f . The technique is based upon that used in Ref. [135]. As depicted schematically in Fig. 5.18,

we operate two independent locks to the atoms and modulate the relative density between them.

The frequency difference between periodically modulated conditions is recorded. After four pairs of
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Figure 5.19: Measured Ramsey shift as a function of the scaled excitation fraction f . The vertical
error bars are standard errors calculated from the statistical scatter of the measured shift coeffi-
cient. The horizontal error bars are the standard error of f calculated from separate measurement

sequences inserted into the density shift measurement sequence. Fluctuations in f mainly arise
from fluctuations in the total atom number. The reduced χ2 statistic for the linear fit is 1.3.
As described in the text, this measurement yields p∗ = 0.640(6), χ = 2π × 0.21(4) Hz, and thus
C = −0.280(12)χ.

high-low measurement cycles, we devote six experimental cycles to measuring the two-body losses

during the Ramsey experiment. Briefly, this decay-measuring cycle proceeds with a single pulse of

area θ1, which is identical to the first pulse of the Ramsey sequence. The time between this pulse

and the atom number measurement phase is varied, allowing excited state atom decay as a function

time to be measured. We then fit the decay curves, which consist of three points taken at each

density condition, with two-body decay lineshapes. This allows us to calculate the the relevant

quantities, namely f , Nhigh, and N low.
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The results of the Ramsey density shift measurement are shown in Fig. 5.19. As seen from

the data, the linear dependence of the shift predicted by Eq. 5.87 agrees extremely well with the

experimental observation, over the full range of excitation fractions. From these measurements we

extract p∗ = 0.640(6). The extracted slope is measured with comparable fractional precision, but

converting the experimentally measured shift parameter to χ introduces extra uncertainty due to

the uncertainty in atom number calibration and axial intra-site distribution. If we fix the atom

number such that the total time-averaged atom number is Ntotal = 4×103, then the slope plotted in

Fig. 5.19 is 6.96(15) Hz. For the same value of Ntotal, the ensemble-averaged single-site occupancy

will be N ' 16.3 (see Appendix E). This yields χ = 2π × 0.21(4) Hz. Here the uncertainty comes

mainly from the atom number and site distribution uncertainty. Finally, knowledge of p∗ allows us

to relate C to χ, with C = −0.280(12)χ.

As a final note, it is interesting to consider exploiting the measured zero-crossing to can-

cel density-dependent shifts as proposed in [293]. With a relatively short three-day sequence of

measurements, resulting in the data shown in Fig. 5.19, we are able to locate the zero-crossing to

better than 1%. If we operate with a total number of atoms Ntotal = 1 × 103, then the resulting

frequency uncertainty is 2.4 × 10−17. However, other effects such as repump efficiency and spin

polarization efficiency would need to be considered before firmly claiming a final number. It is nice

to know however, that even under very high-density operating conditions there are no fundamental

impediments to operating with a density shift contribution at the 10−17 level. In fact, a day of

focused density shift measurements could push the statistical uncertainty of the zero-crossing point

below 1× 10−17, if a shift uncertainty at this level were to become necessary.

5.7.5 Describing spectroscopic lineshapes with the mean-field model

In the presence of a laser drive, the many-body system has two relevant energy scales, which

represent a boundary between a laser-drive-dominated regime, where Ω > Nχ and an interaction-

dominated regime, where Ω < Nχ. This type of transition phenomenon is observed in the dynamics

of double-well BEC systems, which are described by a Hamiltonian equivalent to the collective
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Figure 5.20: Lineshape (red circles) and normalized total atom number (black circles) as a function
of detuning and for decreasing Ω ' π/tR. In all plots, N ' 5000. (a) tR = 100 ms (b) tR = 200 ms
(c) tR = 300 ms (d) tR = 750 ms

Hamiltonian of Eq. 5.68 and can lead to phenomena such as excitation blockade or macroscopic

self-trapping [294, 298, 295]. In principle, this transition could be accompanied by a non-trivial

shift in the behavior from a system that is well-described by a mean field treatment to one in which

the true quantum many-body nature of the eigenvalues becomes important.

In order to probe the spin model in the presence of a laser coupling term, we performed

Rabi spectroscopy under a variety of atom numbers and coupling strengths, characterized by Ω.

Figure 5.20 shows both the measured spectroscopic lineshape and atomic loss curves in detail for
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Ntotal ' 5×103. Here, each lineshape is a composite of 10 individual scans that have been centered

atop one another. The theoretical fits are numerical solutions of the mean-field evolution given

by Eqs. 5.78–5.80 and are computed for a given initial atom. The results are averaged over the

site-occupancy distribution (Appendix E). In order to account for the effect of laser noise within a

given scan and also between scans, a phenomenological dephasing term, L, has been added to the

time evolution of S±, such that [116]

∂

∂t
S± ' ±iΩ

2
Sz ± i

[
−δ + 2χSz + CN ± i

(
Γee
2
N↑ + L

)]
S±. (5.88)

We find that values of L = 2π × 0.4 Hz and Γee = 2π × 0.075 Hz work well for these particular

data. With subsequent improvements we made to the laser, it is likely that L will be found to be

reduced in future measurements of this type. Additionally, while the laser-atom interaction time

is nominaly fixed such that ΩtR ' π, due to the difficulty of experimentally verifying a ΩtR = π,

the equality is only approximate, and in the numerical simulations the pulse area is left as a free

parameter, which can vary from at the level of 10%. As seen from Fig. 5.20, the quantitative

agreement between the theory and data is quite good, including the predicted total atom loss when

the spectroscopy laser is on resonance.

A more thorough display of the different interaction regimes is shown in Fig. 5.21. In this

figure, we show lineshapes obtained by varying the ratio of χN to Ω in two ways. In the first

approach, we keep Ω fixed at 2π × 2.5 Hz while varying the total atom number. At the lowest two

atom numbers, χN < Ω. For the largest three atom number conditions, χN > Ω. In the second

approach, we instead vary Ω while keeping the atom number fixed at 5 × 103. In this latter case,

all but the curve with tR = 100 ms are in the regime where χN > Ω, with the last curve satisfying

χN/Ω ' 6. Even in this extreme interacting regime, with χN/Ω ' 10, the model does a good job

describing the lineshape. In such a strongly interacting regime, effects analogous to macroscopic

self-trapping [294] are playing a role in many of the trap sites as shown in Fig. 5.21.

Finally, we note that density-dependent effects are visible in the lineshape even for very low

densities/atom numbers of < 10% of those typically utilized. Using a 2 s rabi pulse, we scanned
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Figure 5.21: Lineshape as a function of experimental parameters. Each curve is a composite
of multiple scans that have been centered atop one another and the data subsequently binned.
The curves are offset in both the vertical and horizontal directions for visual clarity. Left side:
Lineshape as a function of density (normalized by ρ0), with a π-pulse time of 200 ms. Right side:
Lineshape for ρ ' ρ0 as a function of probe time. Theoretical curves, obtained with the mean-field
treatment including loss, are shown as dashed black lines and agree well with the measurements.

out the lineshape shown in Fig. 5.22a. The linewidth of this composite lineshape is approximately

750 mHz. Even at the sub-Hz energy scale, the interactions manifest themselves as a clear asymme-

try in the lineshape. As shown in Fig. 5.22b, we have verified that as the atom number decreases,

the observed linewidth approaches the ideal Fourier-limited value for a 2 s Rabi pulse. At the very

lowest densities and with a 3 s Rabi pulse, we observe repeatable linewidths of 500 mHz (Inset,

Fig. 5.22a), representing a record for coherent atomic spectroscopy and a line Q of nearly 1015.
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Figure 5.22: Interaction effects visible at the sub-Hz energy scale. (a) Composite lineshape obtained
at an operating density of 0.1ρ0 with a 2 s clock probe, where ρ0 is the density obtained for 5× 103

atoms, and is given by ρ0 = 5(2)× 1011 cm−3. The line shape shows a clear distortion due to the
density-dependent interaction at the sub-Hz energy scale. (Inset) Extremely low density scan (
ρ = 5 × 10−2ρ0) with a 3 s clock probe, demonstrating the ultimate frequency resolution of the
system. This is a single scan thus no binning or averaging was applied. (b) measured linewidth as
a function of Atom number in the low-density regime for the scans compiled to create the figure
at left. As seen from the data, the density-dependence of the linewidth extrapolates to the 0.4 Hz
Fourier limit for the 2 s Rabi pulse used.

5.8 Beyond mean-field effects

In the previous section, we explored two experimental observables that were well-described

by the mean-field approximation of the collective spin Hamiltonian. For the Ramsey density shift

and Rabi lineshapes, spin correlations that may develop during the time-dependent evolution do

not manifest themselves in the measurement. Furthermore, we expect that in the case of Rabi

spectroscopy, the strong elastic “blockade-like” excitation-inhibition as well as two-body losses

prevent these correlations from forming. However, this was useful for us; from these measurements

we were able to extract the relevant interaction parameters for the collective spin model.

In this section we consider two experimental observables that do have a sensitivity to quan-

tum correlations, and thus require a treatment beyond the mean-field approximation. These two

observables are the Ramsey fringe contrast, and the quadrature dependence of the spin noise. We
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find that in order to accurately treat the Ramsey fringe contrast decay, we must include higher

order corrections due to virtual motional excitations. We furthermore discuss a method to capture

the beyond mean-field dynamics of the model using the truncated Wigner approximation. These

theoretical methods are briefly discussed in the next two sections. We then describe the mea-

surements that confirm the observation of quantum many-body effects that necessitate a beyond

mean-field description.

5.8.1 Perturbative corrections to the spin model

In the derivation of the collective Hamiltonian, we disregarded mode-changing terms, where

the final occupied motional states are different that the original ones (see Section 5.3.2), because

they were energetically disallowed by the trap anharmonicity. We recall that the only allowed

processes were {ni,nj} → {ni,nj} (direct) and {ni,nj} → {nj ,ni} (exchange). However, the

inclusion of virtual processes introduce higher-order corrections of order (Sz)3. A similar effect

has been observe in interacting bosons, where these processes manifest themselves as an effective

three-body interaction [299].

The additional terms can be included using second order perturbation theory. In order

to proceed, we separate the spin system into two manifolds comprised of spin wavefunctions and

motional states. The first manifold is what we considered originally, namely that no mode-changing

collisions have arisen and the total energy is conserved. Specifically, we write this manifold as

[125, 300]

|ΦΣ
~σ~n
〉 = |σn1 , σn2 , . . . , σnN 〉, Etot0 ≡

N∑
j=1

Enj . (5.89)

Here, the σnj terms label the spin in the g-e basis for the particle in the nj motional state. The

second manifold, which is connected to the first via the many body Hamiltonian, is

|ΨΥ
~σ~k
〉 = |σk1 , σk2 , . . . , σkN 〉, Etot

k̃
≡

N∑
j=1

Ekj 6= Etot0 . (5.90)

Since these two manifolds are connected by a virtual excitation process, these can be included via
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second-order perturbation theory. The effective Hamiltonian, Ĥ(2), is given by

〈ΦΣ
~σ~n
|Ĥ(2)|ΦΣ

~σ′~n
〉 = −

∑
σ~k

〈ΦΣ
~σ~n
|Ĥ|ΨΥ

~σ~k
〉〈ΨΥ

~σ~k
|Ĥ|ΦΣ

~σ′~n
〉

Etot
k̃
− Etot0

, (5.91)

When ĤS2 is written in terms of spin operators and is projected into the collective Dicke manifold

as above, it can be shown [125, 300] that it gives rise to terms proportional to Ŝz,(Ŝz)2 and (Ŝz)3.

Among those corrections, the first two can be absorbed into the spin Hamiltonian given by Eq. 1,

and are included in the measured quantities χ and C. Thus, only the third correction proportional

to (Ŝz)3 gives rise to additional corrections.

5.8.2 Truncated Wigner approximation

In order to solve fo the many-body dynamics beyond the mean-field level, several approaches

can be used. We note that, in general, solutions to the elastic part of the collective Hamiltonian

are well-known (e.g., [280]). The difficulty comes when including the inelastic two-body loss, which

requires a master equation approach. We note that under certain approximations, the master-

equation approach restricted to solving the collective part of the dynamics governed by Eq. 5.68,

while computationally intensive, is still tractable [125, 300]. A master equation approach for solving

Eq. 5.65 in the presence of inelastic losses for the experimentally relevant atom numbers is not

possible due to the exponential scaling of the Hilbert space. Here, we describe a flexible and

powerful approach to treating beyond mean-field effects in the spin model.

For a spin system with N � 1, we can write [301, 300]

〈Ô (t)〉 '
∫
d3S0W (S0)OMF (t) , (5.92)

where OMF (t) is the time-dependent mean field solution for the operator expectation value, and

W (S0) is the Wigner function for the spin system’s initial state. This forms an approximation

known as the Truncated Wigner Approximation (TWA) [301]. For

S0 ≡ (Sx0 , S
y
0 , S

z
0) =

N

2
(sin θ1, 0,− cos θ1) (5.93)
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Figure 5.23: Ramsey contrast decay measurement scheme and the failure of mean-field model.
(a) The sequence employed to measure the contrast decay. An initial pulse tips the Bloch vector
by an angle θ (the pulse area). (b) Examples of contrast extraction from measured excitation
probabilities. The red points are an example of contrast data taken with very little dark time,
while the blue line is taken with longer dead time. Even though the laser phase noise washes
out the sinusoidal nature of the fringe, its amplitude is still resolvable. (c) Failure of the mean
field model (dashed lines) to match the experimentally observed Ramsey fringe contrast decay as a
function of Ramsey time τ . The legend indicates the initial pulse area used for the measurement.

(i.e., the initial state is prepared in the x-z plane) W (S0) is given by [301, 300]

W (S0) =

(
2

πN

)
δ (Sz0 cos θ1 − Sx0 sin θ1 +N/2) e−2(Sy0 )

2
/Ne−2(Sz0 sin θ1+Sx0 cos θ1)

2
/N . (5.94)

We note that if we wish to compute products of operators, such as the case where Ô = Ô1Ô2, that

Eq. 5.92 still applies, with OMF (t) = OMF
1 (t)OMF

2 (t).

This approach successfully describes the evolution of the expectation values of spin operators

〈Ŝx,y,z〉 as well as products of spin operators such as 〈
(
Ŝz
)2
〉, 〈ŜxŜz〉 etc. in the limit where

√
Nχτ � 1 [125, 300].
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5.8.3 Ramsey fringe contrast decay

Many-body effects can manifest themselves as periodic collapses and revivals of the Ramsey

fringe contrast, which reflect the quantized structure of the many-body spectrum. Specifically, for

a fixed N and neglecting both the losses and the (Ŝz)3 term, the amplitude of the Ramsey fringe

evolves as ZN−1 with Z2 ≡ 1 − sin2(θ1) sin2 (χτdark). At short times (i.e.,
√
Nχτdark � 1), the

contrast is approximately 1−(N − 1)χ2 sin2(θ1)τ2
dark/2 [125]. On the contrary, the mean-field model

at the single-site level (with fixed N) predicts no decay of the Ramsey fringe contrast, as a magnetic

field B(N) can only lead to a pure precession of the collective Bloch vector. By summing over the

atom distribution among lattice sites and properly treating two-body loss during the Ramsey dark

time, the mean-field model does show a decay of the contrast, as shown in Fig. 5.23c. However,

this decay is associated mainly with dephasing arising from different precession rates exhibited by

sites with different N and, as seen in Fig. 5.23c, fails badly for θ1 > π/2. This dephasing effect is

most relevant for low excitation fractions where B(N) is large and the inelastic loss is suppressed.

In order to observe beyond mean-field effects, we performed measurements of the Ramsey

fringe contrast for different experimental conditions, as illustrated in Fig. 5.23. The initial pulse

area θ1 = ΩTR, was chosen such that 0 < θ1 < π, controlled the initial value of 〈Ŝztot〉. Here,

Ŝztot is the sum of Ŝz over the ∼ 100 relevant sites, such that −Ntot/2 ≤ 〈Ŝztot〉 ≤ Ntot/2, where

Ntot is the total number of atoms loaded into the lattice. After applying a pulse of area θ1, we

allowed the system to evolve for time τ . We then applied a final pulse of area π/2 and measured

the resulting excitation fraction as a function of the optical phase of the second pulse relative to the

first pulse. The Ramsey pulse durations were < 6 ms, satisfying Ω� Nχ, to suppress interaction

effects during the pulses. We applied the final π/2 readout pulse with a variable relative optical

phase of 0◦ – 360◦. We recorded the fraction of excited atoms as a function of the readout phase,

which constituted the Ramsey fringe.

For τ & 100 ms, there is a significant additional random phase added due to the frequency

fluctuations of the ultrastable clock laser. A given excitation fraction measurement pi will yield pi =
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Figure 5.24: Ramsey fringe contrast decay vs. initial pulse area. The pulse area values for the data
and corresponding theory are given in the legends of the plots. Error bars represent the statistical
error of each contrast measurement, and thus do not account for systematic drifts that occur over
the course of the experiment. The solid lines (top panels) are the many-body calculations, while
the dashed lines (bottom panels) are using the mean-field approximation of the theory. The many-
body model and the mean-field approximation agree in the limit of small initial pulse area (i.e.,
Bloch vector polar angle), but disagree for pulse areas & π/2. This is an important confirmation of
the dominance of many-body effects in this parameter regime. (a, b) νZ = 80 kHz, νR = 450 Hz,
and Ntot = 4000; (c, d) νZ = 65 kHz, νR = 370 Hz, and Ntot = 4000; and (e, f) νZ = 80 kHz,
νR = 450 Hz, and Ntot = 1000.
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Figure 5.25: Effect of the (Sz)3 term on the Ramsey fringe contrast. Its inclusion improves agree-
ment between the measured fringe contrast and the theory.

C sin2 (∆φi), where C is the contrast and ∆φi is the ith realization of the both deterministically and

randomly varied laser phase. Here we have assumed that the contribution of quantum projection

noise is small in comparison, which is true for all experimental conditions we explore. By analyzing

Var [p] = C2/8, and assuming a uniform distribution of ∆φi, we obtain the contrast in a way that

is insensitive to the laser noise, yielding a powerful technique for exploring many-body effects.

We explored three distinct experimental conditions to rule out single-particle decoherence

mechanisms and thoroughly test the model. The first condition represents the typical operating

parameters of the lattice clock, with Ntot = 4×103 and νZ = 80 kHz. In the second case, we reduced

the lattice intensity such that νZ = 65 kHz, which results in a reduction of the density by a factor of

∼1.8. Finally, we maintained νZ = 80 kHz but reduced the atom number to Ntot = 1× 103. Under

all conditions, the predictions of the collective many-body model, calculated using the TWA as

described in Section 5.8.2, are supported by the experimental observations (Figs. 5.24a, 5.24c, and

5.24e). The inclusion of the (Ŝz)3 correction improves the theory-experiment agreement, especially

for pulse areas θ1 > π/2 and for the high-density conditions, as shown in Fig. 5.25. While the need
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for the (Ŝz)3 was rigorously derived (see Section 5.8.1), its magnitude was left as a fit parameter.

We also observe a striking breakdown of the mean-field model for θ1 & π/2 where many-body

corrections are expected to be dominant.

5.8.4 Quadrature-dependent noise measurement

The frequency shift, lineshape, and Ramsey fringe contrast are quantities that all depend on

the first-order expectation values of the spin operators 〈Ŝx,y,z〉. We now turn our attention to the

distribution of quantum noise, which depends on the second-order moments of the spin operators,

e.g., 〈
(
Ŝx
)2
〉 − 〈Ŝx〉2, 〈ŜxŜz + ŜzŜx〉 − 2〈Ŝx〉〈Ŝz〉, etc. Given that the form of the Hamiltonian in

Eq. 5.68 is known to produce squeezed and entangled states [280], the distribution of the quantum

noise becomes a compelling measurement to probe physics beyond the mean field. However, until

now, optical clocks have lacked the requisite laser precision to probe the quantum noise distribution.

The recent advance in the Sr clock laser has allowed access to this regime.

To minimize single particle decoherence effects and dephasing due to the distribution of site

occupancies, we added a spin-echo pulse to the Ramsey sequence. As a result, the sensitivity to

low-frequency laser noise was reduced at the expense of increased sensitivity to high-frequency

laser noise. With atoms initialized in |g〉, we followed the pulse sequence shown in Fig. 5.26 to

manipulate and measure the spin noise of the many-body state. The theoretical evolution of the

spin distribution using the TWA is shown in more detail for evolution times of 0 ms–60 ms is shown

in Fig. 5.27. For each value of the final rotation angle, representing a specific quadrature in which

we measure the spin noise, we repeatedly recorded 〈Ŝztot〉/Ntot via measurements of the final atomic

excitation fraction after the Ramsey sequence. From the data, we determine σ2 ≡ 〈
(
Ŝztot

)2
〉/N2

tot−

〈Ŝztot〉2/N2
tot by analyzing the pair variance for successive measurement of 〈Ŝztot〉/Ntot. We note that

the quantum limit of σ2 is important for defining the ultimate stability of lattice clocks [43]. For

an ideal coherent spin state of the entire ensemble, the standard quantum limit of σ2 is given by

σ2
sql = p (1− p) /Ntot, where p is the probability of finding an atom in the excited state, and can

be estimated as p = 〈Ŝz〉/Ntot + 1/2.
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Figure 5.26: Spin noise measurement sequence. An initial pulse prepares a coherent state along ŷ,
which then evolves for τdark/2. An echo pulse then rotates the many-body state 180◦ about −x̂.
After and additional evolution time of τdark/2, a final pulse rotates the state about −ŷ and the spin
noise is measured. The many-body state depicted here represents the spin evolution of a 20 atom
ensemble in a single trap site with τdark = 40 ms.

We performed quadrature-dependent spin noise measurements, as described above, at a given

target atom number Ntot = 1×103 or Ntot = 4×103. During the course of these measurements, we

typically observed slow fluctuations of the atom number on the order of ±10% as we operated the

experiment and measure spin noise over the course of ∼10 hours. In most instances, these fluctua-

tions were negligible due to the normalization techniques we employ as part of clock spectroscopy.

However, the atomic spin noise depends directly on the atom number, and a slowly varying atom

number could result in unintended systematic biases. Specifically, spin noise for the coherent spin

state typically considered in optical clocks scales as 1/
√
Ntot. Thus, the deviations in atom number

can cause variations on the order of ±5% in the measured spin noise. Ideally, these fluctuations are

randomly distributed and should not result in interpretation as a false-positive for non-trivial spin-

noise correlations. In the unlikely possibility that these fluctuations were correlated with a specific

measurement quadrature, they could cause a spurious phase shift in the spin noise minimum. We
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Figure 5.27: Bloch sphere evolution as a function of dark time for Ntot = 20. Due to the two-body
inelastic loss, the Bloch vector shrinks in length as a function of hold time. The lines represent the
mapping of a contour of the spin probability distribution within the truncated Wigner approxima-
tion.

thus take care to analyze the data in a way that is immune to this potential bias. In the following

section, we describe our process for removing the variability in the spin noise data due to a slowly

fluctuating total atom number.

5.8.4.1 Data analysis methodology for measuring quadrature-dependent noise

A given measurement of 〈Ŝztot〉/Ntot is accomplished by independently measuring Ne(g), the

number of atoms in the excited (ground) state after a single Ramsey experimental sequence (see

Chapter 2, Section 2.5). We determine its ith value, 〈Ŝztot〉i/N i
tot, by measuring the ith value of

Ne(g) (which we denote as N i
e(g)) and obtain

〈Ŝztot〉i/N i
tot =

N i
e

N i
e +N i

g

− 1/2. (5.95)

From the jth set of measurements of 〈Ŝztot〉, denoted {〈Ŝztot〉1, . . . , 〈Ŝztot〉i, . . . 〈Ŝztot〉nj}j , we estimate

σ2
j ≡ 〈(Sztot)

2〉/N2
tot − 〈Ŝztot〉2/N2

tot using a pair variance, such that

σ2
j =

1

2 (nj − 1)

i=nj∑
i=1

(
〈Ŝztot〉i+1 − 〈Ŝztot〉i

)2
. (5.96)
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For white noise, the pair variance is a good estimator for the standard deviation [45], while remain-

ing insensitive to noise processes that only manifest themselves on long time scales. The number of

measurements in a set, nj , was typically nj ' 80. For a given measurement quadrature, we average

the results of many such measurement sets to produce one experimental data point.

In order to maintain insensitivity to slow fluctuations in atom number between sets j and j′,

we consider the standard expression for quantum noise for the case of a coherent spin state, σsql,

which is expected in the absence of many-body interactions. The explicit goal is to remove any

mechanism by which the trivial case—where the spin noise is described by σsql—can mimic the

many-body effect we predict from the theory. We calculate the jth value of σsql as

(
σjsql

)2
= pj (1− pj) /N j

tot, (5.97)

where pj = Mean
[
{N1

e /
(
N1
e +N1

g

)
, . . . , N i

e/
(
N i
e +N i

g

)
, . . . , N

nj
e /

(
N
nj
e +N

nj
g

)
}j
]
. We addition-

ally consider a technical noise term, which represents the effect of intrinsic technical detection noise,

given by ∆sj . This noise is characterized by a separate measurement. The detection noise accounts

for 10% of the observed noise at typical low atom numbers, while at high atom number it is only

∼ 1% of the observed noise, and is therefore negligible. It is quadrature-independent in all cases.

From the σ2
j , we subtract the atom-number-dependent

(
σjsql

)2
such that

σ̃j
2 = σ2

j −
(
σjsql

)2
−∆s2

j . (5.98)

Here, σ̃j
2 represents only the effects of non-trivial spin noise and laser noise.

The many-body theory for a given measurement condition is calculated at fixed atom num-

ber. To facilitate comparison with the many body theory, we add a noise term back to σ̃j
2 that

corresponds to σ2
sql for the mean atom number over the entire data set, σ2

sql. We emphasize that

σ2
sql is a constant number, with no quadrature dependence. The many-body theoretical prediction

is calculated based upon the same mean atom number used to calculate σ2
sql. Ultimately, the net

effect of this process is to remove the variability due to slow fluctuations in atom number, but to

retain the part of the noise that departs from σsql due to both laser noise and many-body effects.
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5.8.4.2 Observation of spin-correlations

We performed measurements under three conditions in order to probe the time evolution of

the quantum noise distribution: τdark = {20 ms, 40 ms, 60 ms}. For these dark times, we used

π-pulse times of TR = {10 ms, 20 ms, 20 ms}, respectively. We found that utilizing long π pulses

reduces the sensitivity to spurious high-frequency components of laser noise. As shown in Fig. 5.28,

for Ntot = 1 × 103, the quantum noise contribution to the spin noise is comparable to that of the

laser noise. However, with Ntot = 4× 103, the laser noise is responsible for a larger fraction of the

noise in repeated measurements of 〈Ŝz〉. There are qualitative differences between the low and high

atom number cases; for example, for Ntot = 4 × 103 with τdark = 20 ms and 40 ms, we observed

a phase shift for the minimum of the spin noise. We have verified that in the limit of small τdark,

the phase shift is no longer prevalent. To compare the predictions of the full many-body master

equation with the experiment, we add the effect of laser noise in quadrature with the calculated spin

quantum noise. We additionally find it necessary to fully treat the effects of interactions during the

laser pulses, which can still be accomplished within the TWA formalism. As shown in Figs. 5.28

and 5.29, the theory predicts a direction and magnitude of the phase shift of the noise minimum

that agree with the experimental observations. The theory also predicts significant spin noise for

rotations near ±90◦ due to an effect analogous to anti-squeezing. Despite the high sensitivity to

laser noise at this rotation quadrature, the measurements of the total noise are consistent with

theory.

5.9 Conclusion

In this Chapter, we have explored the many-body nature of interactions between atoms in the

87Sr lattice clock as revealed in the density shifts, lineshape distortion, and Ramsey fringe contrast

decay. We have shown evidence that spin-correlations develop during the Ramsey spectroscopy via

measurement of a quadrature-dependence of the spin noise. Interestingly, these spin correlations

still manifest themselves in the presence of the excited state loss mechanism. In a sense, the lattice
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Figure 5.28: Spin noise vs. rotation quadrature. In all plots, the dashed line is the pure laser
noise extracted from a fit to the data. The solid line is the laser noise plus the full many-body
prediction of the spin noise. This full theory is simultaneously fit to both the low and high atom
number curves to extract the commohn laser noise for a given dark time. Vertical arrows indicate
significantly phase-shifted minima in the experimentally measured spin noise, consistent with the
predictions of the many-body theory. Plots (a, b): Spin noise for Ntot = 1×103 and Ntot = 4×103,
respectively, with an interaction time of τdark = 20 ms and a π-pulse time of 10 ms. A clear phase
shift is observed near the origin for plot (b), the high atom number case. (c, d): Spin noise for
Ntot = 1× 103 and Ntot = 4× 103, respectively, with τdark = 40 ms and a π-pulse time of 20 ms. In
plot (d), a clear phase shift is also observed near the origin. (e, f): Spin noise for Ntot = 1× 103

and Ntot = 4× 103, respectively, with τdark = 60 ms and a π-pulse time of 20 ms.
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clock can be considered an “open” quantum system and can thus open up experimental exploration

of the intricate competition between coherent interactions and dissipation as a means to enhance and

engineer many-body correlations—an emerging theme in modern quantum science [302, 303, 304].

The capabilities demonstrated here, such as near-quantum limited spin resolution, will develop

into important tools to explore the rich interplay between many-body effects and dissipation in

alkaline-earth atoms confined in optical lattices, and possibly other systems such as polar molecules

[70, 71, 72, 305, 306]. Furthermore, as a matter of practical importance, these techniques could

be used to generate interaction-induced spin squeezing in an optical lattice clock [77]. Although

the investigation described here is restricted to nuclear-spin-polarized gases, exploration of similar

many-body effects in a clock making use of additional nuclear spin degrees of freedom is a promising

first step towards the investigation of SU(N) orbital magnetic models in ultracold atoms and future

experiments are already being prepared to explore SU(N) physics using the precision of the 87Sr

optical lattice clock.



Chapter 6

Measuring laser noise via quantum state manipulation

It is the goal of this chapter to present a general theoretical treatment of laser noise in

multi-pulse spin echo sequences. This analysis yields information concerning the laser frequency

noise power spectral density. The consideration of the effect of noise during these operations can

be important for quantum state manipulation, as well as for pulse sequences utilized to study

many-body effects as in the previous chapter.

6.1 Introduction to the general formalism

In Section 5.8.4 of the previous chapter, we utilized the spin echo technique, which allows a

sample of inhomogeneously broadened quantum systems to “rephase” after an appropriate period

of time evolution. This technique was first demonstrated in the context of nuclear magnenetic

resonance spectroscopy [307]. In the case of the lattice-trapped 87Sr atoms, the different density

shifts between each lattice site introduced an effective inhomogeneous broadening that the spin

echo was able to remove, thus leaving only the nonlinear part of the Hamiltonian. The spin echo

technique represents a simple example of the powerful technique of dynamic decoupling, where such

echo pulses can be used to decouple a quibit from a noisy bath [308, 309, 310, 311, 312, 313]. If the

bath itself is a quantity to be measured, such as in the case of magnetometry, where the “bath”

might be a time-varying magnetic field, such dynamical decoupling pulse sequences can be used

to measure field amplitudes at specific Fourier components [314, 315] and even phase quadratures

[316].
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In this chapter, our goal is not to measure the background fluctuations, but rather to measure

the frequency spectrum of the local oscillator laser; we expect that in comparison, any background

fluctuations (e.g., magnetic field noise) will be small compared to the frequency noise of the clock

laser. The techniques we will use draw direct analogy to dynamical decoupling and spin manipu-

lation because the Hamiltonian for a two-level atom in the presence of a detuned laser field can be

written (see Appendix A)

Ĥ =
1

2
~Ω (r) σ̂φ −

1

2
~∆ (t) σ̂z. (6.1)

In this Chapter, we treat the atoms as non-interacting two-level systems governed by the above

Hamiltonian, which maps directly onto the case of a spin-1/2 qubit in a magnetic field. This is

the case considered in, e.g., [311]. Here, the laser detuning ∆ (t) = ωL (t) − ωa takes the place

of the magnetic field term (often called an “effective” magnetic field). The Rabi frequency is the

magnitude of the interaction between the atoms and the laser field, and φ is the relative phase of the

laser field. We can change this phase by applying deterministic phase shifts to the light, and thus

we choose to keep it separate from ∆ (t) (instantaneous phase changes of the laser can be inserted as

Dirac Delta functions in ∆ (t), if desired [36]). Throughout this Chapter and treatment, we assume

that the atoms are spin-polarized, and we will only consider a single spin state (mF = +9/2).

Our theoretical approach will be as follows: for a given pulse sequence, the spectroscopy

laser may be on for a small segment of times (e.g., to produce the Ramsey pulses). As a result,

we can split up the evolution into two different stages in the limit of where the Rabi frequency is

much larger than ∆ (t), which is almost always the case for multi-pulse sequences where the Rabi

frequency � 2π × 10 Hz. The two phases of evolution are

(1) Ω (t) = 0. Here the evolution is determined solely by the −∆ (t) σ̂z term of the Hamiltonian.

(2) Ω (t) = Ω0 � ∆ (t). In this case, we can treat ∆ (t) using the theory of time-dependent

perturbations.

In the end, we will effectively stitch the solutions together to determine the evolution of the wave-

function.
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Figure 6.1: The spin echo sequence being considered. (a) The spin echo pulse sequence we consider
here. First, a π/2 pulse rotates the quantum state to point along |y〉 [red arrow in (b)]. Then,
a series of echo pulses, which alternate between π rotations about x̂ and −x̂, constitute the echo
sequence [blue arrow in (b)]. Finally, a final π/2 pulse is applied about ŷ (green). This final pulse
serves to rotate variations in the azimuthal angle that are due to local oscillator noise onto the
polar angle. (b) Bloch sphere depiction of the rotation operations. The colors in (a) correspond to
the operation depicted by the same color in (b). Measurements of total excited state population,
fexc reveal fluctuations in polar angle Θ with respect to the x-y plane.

Finally, we mention that although our treatment is completely general, and can be applied

to arbitrary pulse sequences, in this chapter we consider only periodic pulse sequences. This is

because periodic sequences are the most experimentally relevant types for measuring noise at a

specific Fourier frequency. They also have clean closed-form analytic solutions. Specifically, we

consider a π/2 preparation pulse, followed by a series of even spaced π-pulses. This sequence is

depicted in Fig. 6.1a, and the corresponding rotations on the Bloch sphere in Fig. 6.1b. We note

that the sequence with evenly spaced pulses is different from the typical multi-pulse spin-echo

sequence, where the spacing between the first and last π pulses and the preparation and readout

π/2 pulses are half the spacing between π-pulses1 .

1 The timings for the normal echo sequence are so chosen so that there is no residual sensitivity to dc magnetic
fields/laser noise.
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6.2 Limit of infinitely short pulses

In this section we consider the limit where the spin manipulation pulses are infinitely short,

such that we do not need to consider dynamic noise processes occurring during the pulse. During

the time when Ω (t) = 0, the formal solution to the Hamiltonian of Eq. 6.1 is given by

ψ (t) = R̂z

[
−
∫ t

t0

dt′∆
(
t′
)]
ψ (t0) , (6.2)

where R̂z (Φ) is simply the SU(2) rotation operation about the z-axis, given by

R̂z (Φ) = exp

[
− i

2
σ̂zΦ

]
. (6.3)

Therefore, a general solution to a spin echo sequence as depicted in Fig. 6.1a is given by

ψ (t) = Ry [π/2] R̂z [Φn] R̂x [π] R̂z [Φn−1] . . .

R̂z [Φ2] R̂x [π] R̂z [Φ1] R̂x [π/2]ψ (t0) (6.4)

In this particular case we do a final rotation about y as the last pulse. The quantity Φi is given by

Φi = −
∫ ti+1

ti

dt′∆
(
t′
)

(6.5)

Equation 6.4 can be simplified in the limit of perfect echo pulses to

ψ (t) = R̂y [π/2] R̂z [Θ] R̂x [π/2]ψ (t0) (6.6)

= R̂x [Θ] R̂x [π/2]ψ (t0) . (6.7)

In the last equality, the accumulated rotations about z have been converted to a rotation about

x by the final π/2-pulse about y. Thus, the atomic population becomes a readout of laser noise.

Specificically, in Eq. 6.7, Θ is given by

Θ = Φ1 +
n−1∑
j=1

(−1)jΦj + (−1)n Φn, (6.8)

where n is the total number of echo pulses. Equation 6.8 can be simplified to

Θ = −
∫ t

t0

dt′r
(
t′
)

∆
(
t′
)
. (6.9)
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Figure 6.2: The sensitivity function, r (t) of a four-pulse echo sequence in the limit of infinitely
short π-pulses. The x-axis has been normalized to T0, the total duration of the echo sequence.

Here, r (t′) is a sensitivity function that in the limit of infinitely short pulses looks like a square

wave train. An example of a three-pulse echo sequence is shown in Fig. 6.2.

Ultimately then, in the limit of perfect pulses, our echo sequence under consideration has

the effect of integrating frequency fluctuations of the laser with the weighting function r (t) and

then converting these azimuthal fluctuations into polar angle fluctuations that are characterized

by the angle Θ. We have only considered a single experimental cycle in this section, it will be

our goal in the next section to treat the noise over many experimental runs and predict 〈Θ2
i 〉

and 〈(Θi+1 −Θi)
2〉/2 (Allan variance), where i represents the ith measurement of Θ via a direct

measurement of Sz (via measurements of atomic excitation fraction).

6.2.1 Computing variances from the sensitivity function

A large class of time-domain filtration operations can be described via a transfer function

approach [45], where, in contrast to performing operations on the time-domain data, a power

spectral density is weighted by the appropriate transfer function in order to calculate statistical
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quantities such as the variance. We consider as our experimental observable the accumulated phase

difference between a Ramsey atomic coherence and the probe laser that has been rotated into polar

angle by the final π/2 pulse. At the end of a given sequence, the polar angle on the Bloch sphere

for the ith measurement is (see Eq. 6.9)

Θm = −
∫ ∞
−∞

∆ (t) rm (t) dt. (6.10)

Here, rm (t) is related to r0 (t), the sensitivity function for the first measurement and which is

assumed to occur at t = 0 (e.g., the sensitivity function shown in Fig. 6.2) by

rm (t) = r0 (t−mTc) . (6.11)

Here, Tc is the clock measurement cycle time, which includes the time necessary to prepare a new

atomic sample.

6.2.2 Computing the variance

As a first step, we might want to compute the quantity

Var [φ] = 〈Θ2
i 〉 − 〈Θi〉2 = 〈Θ2

i 〉. (6.12)

For the last equality, we assume that the that the noise has no mean value. We can rewrite 〈Θ2
i 〉,

by making use of Eq. 6.10, as

〈Θ2
i 〉 =

〈∫ ∞
−∞

∫ ∞
−∞

dt1dt2 ∆ (t1) ri (t1) ∆ (t2) ri (t2)
〉
. (6.13)

Equation 6.13 can be simplified in terms of autocorellation functions as

〈Θ2
i 〉 =

∫ ∞
−∞

∫ ∞
−∞

dt1dt2 R∆ (t1 − t2) r0 (t1) r0 (t2) (6.14)

=

∫ ∞
−∞

dt (R∆ ? r0) r0 (t) (6.15)

where we have used the relation

〈ξ (t1) ξ∗ (t2)〉 = Rξ (t1 − t2) , (6.16)
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where Rξ is the autocorrelation function. The star represents the convolution operation. We will

drop the “0” subscript on r0 (t) for the remainder of this section, although it is implied. In practice,

it will not matter which rm (t) we use, since rm (t) is just a time-shifted version of r0 (t).

Parseval’s theorem states that∫ ∞
−∞

dt x (t) y∗ (t) =

∫ ∞
−∞

df X (f)Y ∗ (f) , (6.17)

where x (t) [y (t)] and X (f) [Y (f)] are related by a Fourier transform. Thus Eq. 6.15 becomes,∫ ∞
−∞

dt (R∆ ? r) r (t) =

∫ ∞
−∞

dfF [R∆ ? r]R∗ (f) , (6.18)

where R (f) ≡ F [r (t)], and F represents the Fourier transform operation which we define, for

completeness, as

F [ξ (t)] =

∫ ∞
−∞

dt e−i2πftξ (t) . (6.19)

Finally, we apply both the convolution theorem and the Wiener-Khinchin theorem to Eq. 6.18 to

obtain

〈Θ2
i 〉 =

∫ ∞
−∞

dfS∆ (f) |R (f) |2. (6.20)

Here, S∆ (f) is the (two-sided) laser frequency noise power spectral density in units of angular

frequency. We can relate this to the more commonly reported laser frequency noise power spectral

density in units of Hz as S∆ (f) = (2π)2 Sν (f), leading to the final result

〈Θ2
i 〉 = (2π)2

∫ ∞
−∞

dfSν (f) |R (f) |2 = (2π)2
∫ ∞

0
dfGν (f) |R (f) |2, (6.21)

Where Gν (f) is the single-sided power spectral density, as usual. At this point, the function r (t)

is completely general, and this treatment applies to any valid r0. We note that since the expression

depends only on the magnitude of R (f), the expression is time-shift invariant.

In general, however, the variance is a bad way to characterize the noise. This is because it

will become infinite for noises that diverge as f → 0 for any function r (t) such that∫ ∞
−∞

dt r (t) 6= 0, (6.22)
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or in other words if R (0) > 0. This is in fact one of the main reasons that the Allan variance

and similar methods have superseded the variance as a way to characterize time-domain stability.

So while it is helpful to go through the procedure to calculate the variance, for many sensitivity

functions r (t) we will get something that diverges due to the 1/f character of the laser frequency

noise. In the next section, we consider the connection between Allan Variance and the sensitivity

function.

6.2.3 Computing the Allan variance

As introduced in Chapter 1, the Allan Variance [44] is a useful tool for characterizing fre-

quency noise. One of the reasons that it is so useful is that it does not diverge for many noise

processes that diverge as f → 0. We begin our calculation of the Allan variance by first considering

the two-sample case, and then generalize to the n sample case. The quantity we wish to compute

for the two-sample Allan variance is

σ2
Θ (Tc) =

〈(Θi+1 −Θi)
2〉

2
. (6.23)

Here, Θi is defined as in Eq. 6.10. It is straightforward to see that we can perform the operation

Θi+1 −Θi by an extension of Eq. 6.10 if we make the replacement [317]

ri (t)→ r̃i (t) =
ri+1 (t)− ri (t)√

2
. (6.24)

We may thus write

Θi+1 −Θi√
2

=

∫ ∞
−∞

∆ (t) r̃i (t) dt. (6.25)

From this point, the same analysis of Eqs. 6.13–6.21 applies with r → r̃. The result for the two-point

Allan variance is

σ2 (Tc) =
1

2

〈
(Θi+1 −Θi)

2 〉 (6.26)

= (2π)2
∫ ∞
−∞

dfSν (f) |R̃ (f) |2. (6.27)
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Here, in analogy to Eq. 6.21, R̃ ≡ F [r̃ (t)]. For the two-point case, we can relate
∣∣∣R̃ (f)

∣∣∣2 to |R (f)|2

by an application of the Fourier shift theorem, such that

∣∣∣R̃ (f)
∣∣∣2 =

∣∣1− ei2πfTc∣∣2
2

|R (f)|2 = 2 sin2 (πfTc) |R (f)|2 . (6.28)

Here, Tc is the time between consecutive measurements of Θi.

If we wish to calculate the Allan deviation for longer averaging times, we make use of the

definition of the Allan deviation

σ2
Θ (nTc) =

1

2

〈 (
Θ(i+1)n −Θin

)2 〉
(6.29)

=
1

2

〈( 1

n

n−1∑
k=0

Θ(i+1)n+k −
1

n

n−1∑
k=0

Θin+k

)2 〉
. (6.30)

It is then straightfoward to see that

r̃(n) (t) =
1

n

n−1∑
k=0

rn+k (t)− 1

n

n−1∑
k=0

rk (t) . (6.31)

Again, applying the Fourier shift theorem, we find that

∣∣∣R̃(n) (f)
∣∣∣2 = 2

sin4 (πnfTc)

n sin2 (πfTc)
|R (f)|2 , (6.32)

which reduces to Eq. 6.28 for n = 1. An interesting limit for Eq. 6.32 is where n→∞. We obtain

lim
n→∞

∣∣∣R̃(n) (f)
∣∣∣2 =

comb (fTC)

nTc
|R (f)|2 , (6.33)

In this case we obtain

σ2
Θ (nTc)→

1

nTc

∞∑
m=0

|R (m/Tc)|2Gν (m/Tc) . (6.34)

Equation 6.34 has direct connections to the Dick effect, as seen in Chapter 2, specifically Eq. 2.62.

6.2.4 The sensitivity function R (f) and experimental results

In the previous two sections, we showed that essentially any measurement of the variance

or Allan deviation of Θi is directly related to the Fourier transform of the time-domain sensitivity

function, r (t). Since the sensitivity function for the instantaneous pulse approximation is always a
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Figure 6.3: Diagnosing the laser spectrum with spectroscopy. (a) Laser noise spectrum assumed
for the Big ULE-stabilized laser (solid blue) compared to the measured frequency noise spectrum
(red trace). The theoretical prediction of thermal noise-limited laser frequency noise for the football
cavity agrees with the measurement at low frequencies (dashed green), while the Big ULE thermal
noise floor is two orders of magnitude below (dashed black). (b) Prediction of Eq. 6.27 (solid
blue) versus two-point Allan deviation of the optical clock polar angle Θ, which serves as a readout
for laser phase (black points). The horizontal solid black line is the measured/predicted quantum
projection noise for 2500 atoms. The dashed lines represent the purely thermal noise-limited case
with dead time (dashed black) and in the limit where the cycle time and the spectroscopy time are
the same (dashed grey).

periodic function of square waves as shown in Fig. 6.2, it is easy to find the Fourier transform for

the whole “train” by utilizing the Fourier shift Theorem. Then, all we need to know is the Fourier

power spectrum of a single square pulse, which is a sinc2 function. We find that the power spectrum

of the time-domain sensitivity function for arbitrary numbers of infinitely short echo pulses is

|R (f ;n)|2 =
1

f2π2
sin2

[π
2

(1 + n+ 2fT0)
]

tan2

(
πfT0

1 + n

)
. (6.35)

One important limiting case is where n = 0, which is the case of Ramsey spectroscopy. Here, we

obtain the Ramsey sensitivity function plotted given in Chapter 2 (and for r (t) corresponding to

Eq. 2.66)

|R (f ; 0)|2 =
sin2 (πfT0)

(πf)2 (6.36)

In late 2011, we utilized this sensitivity function to diagnose the laser noise spectrum. At

this time, the laser cavity was supported by long Teflon posts. We performed Ramsey spectroscopy

on the clock transition with spin polarized 87Sr using the sequence depicted in Fig. 6.1, but with
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no echo pulses. A given measurement of Θi was obtained by measuring the population fluctuations

after the ithe spectroscopic sequence. For Θi ' π/2,

Θi ' 2pi. (6.37)

Thus, by measuring a set of {pi} at a given T0, we were able to measure σΘ (Tc) for a variety of

spectroscopy times T0. At the same time, we performed an optical beat with the “football cavity”

[40]. While the low-frequency noise of the beat was dominated by the thermal noise of the football

cavity, we could see Fourier components at discrete frequencies as seen in Fig. 6.3a. We suspected

that the first peak at 12 Hz was on the Big ULE cavity-stabilized laser and that it was caused

by a high-Q resonance in the support structure. By measuring σΘ (Tc) as a function of Ramsey

spectroscopy time, T0, we were able to confirm the existence of the 12 Hz peak from the character

of the oscillations in the noise as a function of spectroscopy time as seen in Fig. 6.3b. While the

measured data were completely consistent with the noise spectrum of the 12 Hz peak, we could

not specifically verify the presence of the other noise components at higher Fourier frequencies (we

later verified these were due to acoustic noise and removed them by constructing the sound-proof

box). However, Fig. 6.3 was such strong confirmation of the problematic mechanical resonance that

we changed the laser suspension to the configuration described in Chapter 4.

6.3 Adding the effects of frequency noise during the pulses

As we saw in the previous section, the simple treatment of Ramsey pulse sequences yielded

insights into the laser noise spectrum, and confirmed the presence of an unwanted Fourier noise

component. In order to improve upon the technique, a natural extension is to include more echo

pulses in the sequence. However, experimentally we are limited in how much optical power we

have, making π-pulse times less that 1 ms difficult. As the number of echo pulses increases, their

finite duration becomes an important modification to the transfer function derived in the previous

section. Also, it turns out that extending the time of the echo pulses effectively low-passes the

frequency sensitivity given by Eq. 6.35 to several or even tens of milliseconds, which can be useful.
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Thus, we will now treat the case where the preparation and echo pulses are long enough that we

must treat laser noise during the pulse.

We again consider the Hamiltonian of Eq. 6.1. During the periods where Ω (t) = 0, the

evolution corresponds to the rotation about the z-axis as before. Here, however, we consider the

case where Ω (t) � ∆, but not so much so that we ignore ∆ (t) during the laser pulse, as we did

before. In order to proceed, we split the Hamiltonian into two parts,

H = H0 +HI (6.38)

H0/~ =
Ω0

2
σ̂x, HI/~ =

∆

2
σ̂z (6.39)

From the theory of time-dependent perturbations we can write

ψ = e−iH0t/~ψI (6.40)

where

dψI
dt

= eiH0t/~HIe
−iH0t/~ψI . (6.41)

This becomes

i
dψI
dt

= −∆ (t)

2
[σ̂z cos (Ω0t) + σ̂y sin (Ω0t)]ψI

=
Ĥeff (t)

~
ψI (t) . (6.42)

We can write the formal solution to Eq. 6.42 by using a Dyson series [131]. However, since the

pulses are short and in general ∆ (t)×TPulse � 1, it is sufficient to keep only the first order term in

the Dyson series, such that the time evolution operator for ψI , where ψI (t) = Û (t)ψI (t0) becomes

Û (t) ' 1 + i
σ̂y
2

∫ t

t0

dt′ sin
[
Ω0 ×

(
t′ − t0

)]
∆
(
t′
)

(6.43)

+ i
σ̂z
2

∫ t

t0

dt′ cos
[
Ω0 ×

(
t′ − t0

)]
∆
(
t′
)

(6.44)

' R̂y (θQ) R̂z (θI) (6.45)
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Just to be explicit

θI = −
∫ t

t0

dt′ cos
[
Ω0 ×

(
t′ − t0

)]
∆
(
t′
)

(6.46)

θQ = −
∫ t

t0

dt′ sin
[
Ω0 ×

(
t′ − t0

)]
∆
(
t′
)

(6.47)

(6.48)

Thus, the total effect of the pulse plus noise is

ψ (tf ) = e−iH0t/~ψI = R̂x (A) R̂y (θQ) R̂z (θI)ψ (t0) . (6.49)

Here A = Ω× (t− t0). We note that this is in agreement with the result obtained by Kotler et al.

[316]. Similarly, for the final rotation about y, we can write an expression for the error introduced

in the rotation as

ψ (tf ) = R̂y (A) R̂x (−θQ) R̂z (θI)ψ (t0) . (6.50)

This expression shows the importance of considering the laser noise during quantum state manipu-

lations, as the laser noise couples to spurious rotations around both x and z axes when the rotation

is applied about y. This particular operation is important and relevant for the final rotation in the

spin echo sequence shown in Fig. 6.1. It has also been used to measure both quadratures of the

effective magnetic field term, as parameterized by θI and θQ [316] (in this reference the “effective

magnetic field” was in fact a real magnetic field).

To illustrate the full model, we consider the echo sequence with only a single echo pulse. We

have taken a considerable amount of data using this sequence, as seen in Chapter 5. The time

evolution is

ψ (t) =
[
Ry (A)Rx (−θQ) R̂z (θI)

]
R̂z (Φ2)×[

R̂x (π) R̂y (θQ) R̂z (θI)
]
R̂z (Φ1)×[

R̂x (π/2) R̂y (θQ) R̂z (θI)
]
ψ (t0) . (6.51)

Here, the composite operators in square brackets represent the first π/2 pulse, the middle π pulse,

and the final arbitrary rotation of angle A about y with noise included. The intermediate z-rotation
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Figure 6.4: The time-domain sensitivity function r(t) for the echo sequence with 80 ms duration
and 20 ms π-pulses.

operators are as before, where the dark-time evolution is described as a simple rotation about z as

in Eq. 6.3.

If we assume that ψ (t0) = |g〉, we can ignore R̂zψ (t0). Similarly, if we ignore the R̂y operation

of the second square bracketed term, which is justified if the state it is acting on is approximately

equal to an eigenstate of σ̂y (this approximation is valid when keeping only rotations to first order),

then Eq. 6.51 reduces to

ψ (t) = [Ry (A)Rx (−θQ)] R̂z

(
Φ̃
)
× | − y〉︸ ︷︷ ︸
|ψ(t0)〉

. (6.52)

Here, Φ̃ is given by

Φ̃ =

∫ t

t0

dt′ sin
[
θ
(
t′
)]

∆
(
t′
)

=

∫ t

t0

dt′r
(
t′
)

∆
(
t′
)

(6.53)

where

θ
(
t′
)

=

∫ t′

t0

dt′′Ω
(
t′′
)
. (6.54)

This is exactly the result of [316] except that since we initialize our system in |−z〉 and they in |x〉;

this difference is resolved by replacing sin→ cos in Eq. 6.53. For a typical echo sequence, A = π/2
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and thus the time-dependent Rabi frequency is given by

Ω (t) =



Ω0 if 0 ≤ t < TRabi/2

0 if TRabi/2 ≤ t < (τ − TRabi) /2

Ω0 if (τ − TRabi) /2 ≤ t < (τ + TRabi) /2

0 if (τ + TRabi) /2 ≤ t < τ − TRabi/2

Ω0 if τ − TRabi/2 ≤ t < τ

0 elsewhere

(6.55)

This procedure is generalized to any number of echo pulses, where the Rabi frequency is a

piecewise function corresponding to the periods where the laser is turned off or on, and r (t) is

given by

r (t) = sin [θ (t)] . (6.56)

Figure 6.4 shows the sensitivity function for a specific case of a single echo with a sequence duration

of 80 ms and a π-pulse time of 20 ms. Qualitatively, this has the effect of rounding out the edges of

the sensitivity function, which introduces a low-pass effect that “turns on” at the Rabi frequency.

Due to the periodic nature of the sensitivity function, we can apply the same trick that we did for

the case infinitely-short pulses: we use the Fourier shift theorem to derive the sensitivity function

for an arbitrary number of echo pulses as

|R (f ;n)|2 =
Ω2

0[
πfΩ2

0 − 4 (πf)3
]2

{
2πf cos (πfτ) + Ω0 sin

[
πf

(
τ − π

Ω0

)]}2

× sin2
[
π
2 (1 + n) (1 + 2fτ)

]
cos2 (πfτ)

. (6.57)

Here, τ is the duration of one of the periodically repeated features of r (t) and is given by τ =

T0/ (n+ 1), where T0 is the total spectroscopy time and n is the number of echo pulses as before.

Figure 6.6 on page 233 shows a large array of sensitivity functions |R (f ;n)|2 for a sequence with

T0 85 ms, and a π-pulse time of 5 ms.
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Figure 6.5: Verification of improved laser noise spectrum with a spin echo sequence. (a) Measured
Allan deviation of polar angle Θ as a function of measurement time for a π-pulse time of 20 ms
(markers). The three different solid lines correspond via color to the three noise spectra in (b). The
dashed black line is the quantum projection noise floor of the measurement. (b) The solid lines are
the three test laser noise spectra used to produce σΘ at left. The dashed line is Allan deviation

transfer function
∣∣∣R̃ (f)

∣∣∣2 (See Eq. 6.28. Arbitrary units are used.) calculated for the case of finite

pulse time and for the measurement sequence with T0 = 120 ms.

We applied the calculated sensitivity function to test the new laser suspension and acoustic

isolation. Using a sequence with a 20 ms π-pulse and one echo, we measured σΘ (Tc) as a function

of total echo sequence time T0. In order to carefully account for fringe contrast decay, we were

careful to scale each noise measurement by the measured contrast for that given condition to make

a proper estimate of set {Θi} for a given T0. As also suggested by comparing the laser to the

football cavity stabilized system, we found that the large spike at 12 Hz was gone. Also gone were

the large acoustic spikes at 50–100 Hz thanks to the sound-proof box (see Chapter 2, Fig. 4.21).

Figure 6.5 shows the measured noise and several test spectra. The old, noisy spectrum did not

even qualitatively fit the data. However, the laser was still above the noise floor predicted for a

flicker-floor stability of 1 × 10−16. One way to account for this is to add a white noise floor. We

find that good agreement with the data is obtained for a laser frequency noise of

Gν (f) =
h−1

f
+ h0 (6.58)

where h−1 = 1.5 × 10−3 Hz2 and h0 = 3.3 × 10−3 Hz2/Hz. This implies that the laser reaches a

thermal-noise dominated stability regime at Fourier frequencies below 450 mHz.
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Figure 6.6: Overview of the sensitivity functions |R (f)|2 for increasing echo pulse number (in-
creasing left to right, top to bottom). The upper left corner is the zero echo pulse condition (i.e.,
Ramsey spectroscopy). The bottom right-hand plot is the 11-echo pulse sequence. The horizontal
and vertical axes are all as labelled for the pair of plots in the upper left corner: the horizontal
axes of the plots are time in seconds and Fourier Frequency in Hz. The vertical plot axes are the
time-domain sensitivity function and its Fourier-space magnitude. Here, T0 =85 ms and the π-pulse
time is 5 ms.
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6.3.1 Sensitivity function for Rabi spectroscopy

Finally, we briefly derive the Fourier-domain sensitivity function for Rabi spectroscopy. Rabi

spectroscopy is qualitatively different than Ramsey spectroscopy in that typically it is performed

with a static detuning ∆0 ' Ω0 such that

∆ (t) = ∆0 + δω (t) . (6.59)

Thus, the perturbative approach used in the previous section is much more difficult to apply because

Eq. 6.1 becomes

Ĥ =
1

2
~Ω (r) σ̂φ −

1

2
~∆0σ̂z −

1

2
δω (t) σ̂z. (6.60)

Thus, the rotations are applied about non-orthogonal axes. While it is difficult to derive the

general rotation errors on the Bloch sphere, as we were able to do in the previous section, it

is straightforward to derive the population fluctuations caused by δω (t) for a given ∆0. This is

exactly the Rabi sensitivity function discussed in Chapter 2 and derived in Appendix A; it is defined

by

δfexc =
1

2

∫ T0

0
dtδω (t) rRabi (t; ∆0) . (6.61)

Additionally, if the spectroscopy is performed such that the expected final population is 50%, then

measured population fluctuations correspond to polar angle fluctuations via Eq. 6.37.

The time-domain Rabi sensitivity function is (see Appendix A for a derivation)

rRabi (t; ∆0) = −
(

∆0Ω2
0

Ω3

){
sin (Ωt)− sin

(
π

Ω

Ω0

)
+ sin

[
Ω

Ω0
(π − tΩ0)

]}
, (6.62)

where the generalized Rabi frequency, Ω, is given by Ω =
√

Ω2
0 + ∆2

0. The magnitude of the Fourier

transform of rRabi (t) is given by∣∣∣RRabi (f ; ∆0)
∣∣∣2 =

∆2Ω4
0

Ω4 (πfΩ2 − 4π3f3)2

[
Ω sin

(
π2f

Ω0

)
sin

(
πΩ

Ω0

)
− 4πf cos

(
π2f

Ω0

)
sin2

(
πΩ

2Ω0

)]2

(6.63)

When ∆0 ' ±0.80Ω0, the final Bloch vector points in the x-y plane. In this limit, as already

mentioned, we can calculate polar angle fluctuations on the Bloch sphere via measurement of

population fluctuations.
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Figure 6.7: Linear scale plots of the Fourier-space sensitivity functions. As in Fig. 6.6, T0 =85 ms
and the π-pulse time is 5 ms. The number of echoes are one (a), five (b), and eleven (c). As seen
in this figure, the sensitivity function is sinc2-like and is sharply peaked. The width of the peak
varies inversely with the total sequence time.

6.4 Mapping the laser spectrum: multi-echo sequences

In this final section we describe continuing work to utilize the sensitivity functions developed

in this chapter, and apply them to multi-pulse echo sequences. As this thesis was being written,

Sr1 teammates Mike Bishof and Xibo Zhang utilized a combination of Rabi, Ramsey, and echo

pulse sequences to map out the laser noise systematically [318]. As before, the spectrum was

constrained with the help of the measured spectrum between the Big ULE system and the football

cavity. Several discrete resonances were added to the model of Eq. 6.58 to better match noise spikes

observed in the laser comparison frequency noise spectrum. As shown in Fig. 6.7, the Fourier-space

sensitivity functions are rather sharply peaked when viewed on a linear scale, and it is this feature,

along with different regions of frequency sensitivity determined by the number of echoes, that makes

the transfer function a powerful diagnostic tool.

The final extrapolated spectrum is shown in Fig. 6.8a, and the corresponding noise plots

shown in Fig. 6.8b. For the single- and seven-pulse echo sequences, the computed deviation is

the standard deviation of the data sets and the theory corresponds to the same quantity. For

the Ramsey and Rabi measurements, the deviation used is the Allan deviation. The reason Allan

deviation was used for the Rabi and Ramsey cases is that the sensitivity function for the variance

diverges with 1/f noise, but the sensitivity function for Allan deviation does not.
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Figure 6.8: Multi-pulse extrapolation of laser noise spectrum. (a) Extrapolated laser spectrum
for the Big ULE-stabilized laser (solid black line). The 1/f flicker noise floor corresponding to a
stability of 1 × 10−16 is also shown (dashed red line). (b) Measured excitation noise (expressed
as noise in Θ) as a function of total spectroscopy time (T0). The pulse sequences are as indicated
in the legend. The bands indicate the range of uncertainty for the flicker and white noise floors
as indicated in the text. For the Rabi and Ramsey cases, the Allan deviation was computed. For
the echo sequences, the standard deviation of the measured {Θi} is reported. A measurement of
quantum-projection noise (QPN) is shown for reference.

Day-to-day fluctuations as well as discrepancies between different pulse sequences required

small changes in the fit parameters. Ultimately, the best fit parameters are h−1 = 1.5(5)× 103 Hz2

and h0 = 3.3(3) × 10−3 Hz2/Hz. The 1/f term agrees very well with the thermal noise floor

measured using the atomic clock correction signal as a frequency discriminator. This is gratifying

because those clock measurements were sensitive to the 1/f noise only at long time scales (see

Chapter 4, Fig. 4.22), whereas these measurements are taken over a shorter timescale. As shown

in Fig. 4.22, the flicker noise reaches 1.1(1) × 10−16, which indicates h−1 = 1.6(2) × 10−3 Hz2, in

good agreement with these measurements. We also note that this combination of flicker and white

noise indicates that the laser linewidth can be as narrow as 26 mHz [318].

The complete laser noise spectrum is directly relevant for the intercomparison reported in

Chapter 4. In Fig. 6.9 (page 238) we plot the Dick effect-limited clock stability using the new

spectrum plotted in Fig. 6.8. As seen from Fig. 6.9, the Dick effect is dominated by the 1/f and

white noise portions of the new spectrum. When we apply this spectrum to the conditions of the

clock intercomparison, we obtain that the Dick-effect-limited instability should be 5×10−16/
√
τ/1 s,
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which is close to the observed 4× 10−16/
√
τ/1 s, and approximately within the stated uncertainty

in the noise amplitudes. Thus, by characterizing the laser noise in such a detailed manner, future

clock experiments will have the benefit of precisely predicting the Dick effect or other spurious

Bloch sphere rotations.

6.5 Conclusion

In this chapter, we derived a general technique to treat errors arising from the local oscillator

frequency noise. We applied this formalism to a model laser spectrum and then used the measured

atomic population noise to adjust the model parameters. This was useful for demonstrating that the

cavity support resonance was eliminated by changing the support strategy. We were additionally

able to demonstrate that the laser 1/f noise spectrum crosses a white noise floor at approximately

450 mHz and to verify and calibrate the presence of additional resonant features in the Fourier

spectrum.

These measurements show the promise of using spin echo techniques paired with optical

standards to fully characterize the noise spectrum of ultrastable lasers. A natural next step will

be to develop a model-independent extension so that the noise can be mapped tomographically,

without need for a pre-existing model of the laser spectrum as obtained here by direct comparison

with a second system.

Finally, we note that these measurements give us confidence in something we have assumed all

along: that the atoms are “perfect” frequency references. While we know that there are perturbing

systematics, this is the first time that the clock atoms themselves have been put to such a stringent

test on short time scales. Since we only used a single spin state in these measurements, it is possible

that some of the noise that was measured is due to the small ∼ 500 Hz/G magnetic sensitivity of

the mF = +9/2. However, we note good agreement with the 1/f floor obtained from operating

the clock with both mF = ± spin states, as we did for the clock comparison measurements. Thus,

we do not foresee that technical perturbation to the atoms themselves will be an impediment to

reaching QPN-limited instabilities of 1× 10−16/
√
τ/1 s.
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Chapter 7

Conclusion

This final chapter summarizes the key results presented in this thesis, and we additionally

discuss the outlook for the 87Sr lattice clock in the context of both metrology and quantum many-

body physics.

7.1 Summary of key results

Optical lattice clocks are powerful platforms for quantum measurement. As described in

Chapter 2, the parallel interrogation of many atoms permits a
√
N enhancement of measurement

precision, where N is the total number of particles in the clock, allowing fractional instabilities of

order 10−16/
√
τ to be within reach for even modest parameters. Yet until recently, only synchronous

interrogation of clocks had demonstrated the benefit of utilizing many atoms [234]. In this thesis

we described the development of an ultrastable laser system with fractional frequency instability of

1.1(1)× 10−16. This system allowed the realization of independent clocks operating near this limit

set by quantum fluctuations. This represents an important milestone in the development of lattice

clocks, and represents an order of magnitude improvement in measurement precision over that of

ion clocks [27].

In addition to improving the local oscillator clock laser for the Sr experiments at JILA, we

reported the construction of a second laser in support of a joint PTB-JILA collaboration to construct

a laser cavity of monocrystalline silicon. The JILA support laser compared with the silicon cavity

demonstrated a record-low beat linewidth of 50 mHz [168]. While the silicon system operated
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at 1 × 10−16 stability, showing the promise of cavities constructed from crystalline materials, it

was still limited by the amorphous mirror coating. We additionally reported the success of a new

mirror technology whereby the optical coatings are replaced by GaAs/AlGaAs heterostructures.

With these new mirrors, thermal noise limitations should be as low as 1 × 10−17 for cryogenic,

all-crystalline optical cavities.

An important systematic facing clocks with many particles is the potential for collisions to

perturb the clock frequency. This is part of the motivation for the extensive study of collisional

effects that has taken place over the last several years [265, 135, 273, 293, 43]. However, the well-

characterized environment and exquisite measurement precision of lattice clocks paired interacting

many-body systems represents a new opportunity for quantum science beyond timekeeping. In

Chapter 5, we described the discovery that p-wave effects dominate the density-dependent effects

within the 87Sr lattice clock. In the many-particle trap sites, the p-wave interaction leads to strong,

collective interactions. We uncovered and elucidated the quantum many-body nature of these

interactions, and demonstrated the power and validity of a spin-model description of the many-

body interactions. Furthermore, we reported the observation of spin-noise correlations as revealed

by noise tomography. Thus, the optical lattice clock becomes a platform for studying many-body

physics.

Finally, in Chapter 6, we described how atomic measurements employing periodic spin echo

sequences can act as a spectrum analyzer for the clock laser frequency fluctuations. Via this method,

we demonstrated a characterization of the laser noise spectrum. This knowledge will benefit future

clock comparisons as well as further experiments exploring the many-body nature of the 87Sr lattice

clock, and this general technique will support the development of the next generation of ultrastable

lasers.

7.2 Outlook

The proposal for the lattice clock is barely over a decade old [82], yet in that time, remarkable

progress has been achieved. Only a few years after the first demonstration of magic wavelength
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confinement and Lamb-Dicke spectroscopy [319], the 87Sr lattice clock achieved uncertainty lower

than that of the Cs primary frequency standard [31]. In subsequent years, different groups have

tackled different different systematic effects: at JILA we focused on understanding and controlling

the collisional effects [274, 125] culminating in an evaluation of the Sr2 density shift at 1 × 10−18

[43]. Meanwhile, colleagues at SYRTE carried out a complete study of the vector and tensor

polarizabilities, in addition to the hyperpolarizability and M1/E2 effects, verifying that there are

no problems on the horizon above 1 × 10−17 due to the optical lattice [110]. Recently, colleagues

at PTB reported the first measurement of the DC polarizability and extrapolated the dynamic

polarizability, as is necessary for an accurate correction of the blackbody radiation (BBR) shift

[115]. Finally, as we report in this thesis and in Ref. [43], the 87Sr lattice clock has reached

near-quantum-limited performance due to advances in ultrastable laser technology.

As should therefore be evident, this progress owes its rapidity and breadth to the large inter-

national effort aimed at developing the Sr lattice clock. As of this writing three groups worldwide

have evaluated 87Sr lattice clock systematics at the 1×10−16 level and the international agreement

on the 87Sr frequency is superb [31, 33, 34]. Thus, as even more groups around the world continue

to develop 87Sr optical lattice clocks, we can expect further recognition of the 87Sr lattice clock’s

potential role in redefining the SI second via an optical frequency standard [320]. At the very least,

it can continue to serve as a powerful secondary representation of the second along with other

highly-successful optical clocks.

In terms of developing a working frequency standard that is competitive in systematic un-

certainty with the best ion clocks, the next biggest hurdle for 87Sr is obviously the BBR shift.

Unfortunately, Sr has the largest BBR shift coefficient of the alkine earth(-like) species being pur-

sued as lattice clocks. However, there are several avenues forward. If one could maintain a known

and well-controlled blackbody environment at room temperature and 100 mK temperature uncer-

tainty, then the BBR shift uncertainty would be below 1× 10−17. An (albeit complex) two-species

optical lattice clock (e.g., two separate but nearby lattices of 87Sr and 171Yb) could in principle

form a weighted clock transition, as proposed in [321], that is insensitive to temperature as long
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as the DC polarizabilities are known. Fortuitously, the DC polarizability for both Sr [115] and Yb

[139] have been measured to high accuracy.

One final comment with respect to clock uncertainty is that the Sr lattice clock now finds

itself in an interesting situation: the 1 s stability of the 87Sr lattice clock is very nearly equivalent

to its total systematic uncertainty, and the flicker noise of the clock laser presented in this thesis

is actually slightly below it. As we have mentioned in this thesis, this level of stability makes

measurement and control of many relevant systematic shifts a trivial undertaking; formerly month-

long measurement campaigns can be completed in one day. While this does not directly help to

solve the BBR problem, the improvement in precision will undoubtedly enable rapid progress in

reducing uncertainty through systematic measurement.

Sr and other alkaline earth atoms show great promise for quantum science beyond frequency

standards—with room for fruitful overlap at the boundaries. For example, many-particle lattice

clock systems are highly decoherence-free testbeds for quantum measurement science, and the

demonstration of an entangled lattice clock would have profound implications for the ultimate

limit of clock stability [322]. Additionally, the confluence of quantum degeneracy and many-particle

clocks will yield rich scientific opportunity. In the case of 88Sr, where the measured inelastic loss rate

is similar to that of 87Sr while the elastic interaction strength is at least an order magnitude larger

[290], degeneracy could yield an interaction-induced entanglement analogous to that obtained in

the microwave domain [284], allowing sub-standard-quantum-limit measurement precision. In the

context of atomic interactions, dipolar couplings between clock atoms in three-dimensional lattices

have been studied as a potential systematic, and could also yield rich excitation dynamics [323].

Due to their SU(N) symmetry, where N is the number of nuclear spin states, alkaline earth(-

like) atoms show promise for simulating complex condensed matter systems and realizing novel,

highly-frustrated quantum states [73, 74, 75, 76]. The presence of the metastable clock state

furthermore allows quantum simulation in the presence of an artificial gauge field [324]. The clock

transition can also serve as a readout and probe of the many-body spectrum [325]. However,

we note that while degenerate gases of alkaline earth(-like) atoms have been demonstrated [326,
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269, 270, 271, 272], including a recent demonstration obtaining quantum degeneracy by direct laser

cooling [94], they have not yet reached the levels of entropy required to observe these novel magnetic

phases, although the large numbers of spin-degrees of freedom in fermionic alkaline earth atoms

permits an effect similar to Pomeranchuk cooling to potentially reduce the entropy to the required

levels [327]. We additionally note that the large, electronically decoupled nuclear spin manifolds of

alkaline earth atoms represent a promising register for quantum information science [328, 329, 330].

Here, the electronic level structure of, e.g., 87Sr could permit manipulation and readout of nuclear

spin-encoded qubits, and the ability to spectroscopically distinguish nuclear spin sublevels via clock

spectroscopy enables the implementation of phase gates between spatially separated qubits [329].

In the specific case of many-body physics with 87Sr in a one-dimensional optical lattice,

Fermi degeneracy should more strictly enforce the approximations of the spin model, while at the

same time allowing the study of SU(N) physics via clock spectroscopy and clean readout of many-

body states. The operation of a Fermi-degenerate optical clock would be in itself an important

milestone. In the case of the one-dimensional lattice, the attainment of single-site resolution would

yield enormous gains for the study of many-body effects, since each measurement cycle would yield

many parallel measurements of the many-body dynamics and would not suffer from averaging.

Single-site resolution would be extremely challenging, but might be possible using a large magnetic

field or light-shift gradient to spectroscopically isolate the different spatial locations of each lattice

site. Additionally, a non-retroreflected lattice laser could be employed, which would enhance the

spacing between lattice sites.

Finally, we mention that alkaline earth atoms represent a novel regime for cavity QED where

both the critical photon and atom number can be far less than unity, leading to highly collective

quantum effects including steady-state supperadiance [331]. It has been proposed that such a

supperadiant system of 87Sr could operate at the heart of the ultimate laser, with linewidth of

1 mHz [252]. In that case, we could finally remove all reliance on length standards (optical cavities)

for probing the 87Sr optical lattice clock for quantum metrology and explorations of many-body

physics.
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Appendix A

Coherent atom-light interactions

In this Appendix, we derive a time-evolution operator approach for finding the time evolution

of coherent spectroscopy. We then apply the formalism to derive the lineshapes and Dick sensitivity

functions used throughout this Thesis.

A.1 Derivation of the Hamiltonian

We consider a laser with electric field

E (r, t) =
1

2
E0 (r) e−iφL(t) +

1

2
E∗0 (r) eiφL(t). (A.1)

The Hamiltonian in the dipole approximation is given by [332]

Ĥ (t) = ~ωa|e〉〈e|+
(
dge|g〉〈e|+ d∗ge|e〉〈g|

)
·E (r, t) , (A.2)

where dge is the dipole between the ground and excited states being considered. Next we write

down |ψ (t)〉 as

|ψ (t)〉 = c1 (t) |g〉+ e−iφL(t)c2 (t) |e〉. (A.3)

This represents a change of basis to the frame co-rotating with an angle equivalent to the laser

phase. Writing down Shrödingers equation yields

i~
d

dt
|ψ (t)〉 = Ĥ (t) |ψ (t)〉 (A.4)

= ~ωac2 (t) e−iφL(t)|e〉+ dge ·E (r, t) e−iφL(t)c2 (t) |g〉 (A.5)

+ d∗ge ·E (r, t) c1 (t) |e〉
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We now project onto 〈e| and 〈g|

〈g|i~ d
dt
|ψ (t)〉 = i~ċ1 (t) = dge ·E (r, t) e−iφL(t)c2 (t) (A.6)

Similarly

〈e|i~ d
dt
|ψ (t)〉 = i~ [ċ2 (t)− iωL (t) c2 (t)] e−iφL(t) (A.7)

= d∗ge ·E (r, t) c1 (t) + ~ωac2 (t) e−iφL(t) (A.8)

Here, ωL (t) ≡ d
dtφL (t). This results in

i~ċ1 (t) = dge ·
[

1

2
E0 (r) e−i2φL(t) +

1

2
E∗0 (r)

]
c2 (t) (A.9)

We now make the rotating wave approximation. The phase factor e−i2φL(t) is rapidly varying (it is

the laser’s total phase) so we drop this term. This leaves

i~ċ1 (t) =
1

2
dge ·E∗0 (r) c2 (t) =

1

2
~Ω∗ (r) c2 (t) , (A.10)

where we define the Rabi frequency as

Ω (r) = d∗ge ·E0 (r) /~ = e−iφ
∣∣d∗ge ·E0 (r)

∣∣ /~ (A.11)

Similarly, we find

i~ċ2 (t) =
1

2
~Ω (r) c1 (t)− ~∆ (t) c2 (t) (A.12)

where ∆ (t) = ωL (t)− ωa so that we can write

i~
d

dt

 c2 (t)

c1 (t)

 =

 −∆ (t) 1
2Ω (r)

1
2~Ω∗ (r) 0

×
 c1 (t)

c2 (t)

 (A.13)

Since we don’t care about global phase factors, we are free to add and subtract constants

from the diagonal. The time evolution finally becomes

i~
d

dt

 c2 (t)

c1 (t)

 =
1

2
~

 −∆ (t) e−iφ |Ω (r)|

eiφ |Ω (r)| ∆ (t)

×
 c2 (t)

c1 (t)

 (A.14)

For a real rabi frequency

i~
d

dt
~c =

[
1

2
~Ω (r) σ̂φ −

1

2
~∆ (t) σ̂z

]
︸ ︷︷ ︸

Effective Hamiltonian

~c (A.15)

where σ̂i is a Pauli matrix with i ∈ {x, y, z} and σ̂φ = cosφσ̂x + sinφσ̂y.
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A.2 Time evolution operator for lineshape calculation

We begin with the effective Hamiltonian of Eq. A.15 in the limit of constant detuning and

Rabi frequency,

Ĥ =
1

2
~Ω0σ̂φ −

1

2
~∆0σ̂z. (A.16)

We can make use of the formal solution for the time evolution operator for independent Hamilto-

nians, such that

Û (t; t0) = exp

[
−iĤ
~

t

]
= exp

[
−iΩ

2
~n · ~σt

]
. (A.17)

Here, Ω =
√

Ω2
0 + ∆2 and ~n = {Ω0 cos (φ) ,Ω0 sin (φ) ,−∆0}. The reader may recognize this

operation as an SU(2) rotation about the vector ~n. We can use the properties of the Pauli matrices

to simplify Eq. A.17

Û (t; t0) = cos

(
Ω

2
t

)
Î − iΩ0

Ω
sin

(
Ω

2
t

)
(cosφσ̂x + sinφσ̂y) + i

∆

Ω
sin

(
Ω

2
t

)
σ̂z. (A.18)

The usefulness Eq. A.18 comes from the simplicity with which it allows calculations of the time

evolution during spectroscopy sequences.

A.2.1 Rabi lineshape

We now focus on the specific case of spectroscopy. In order to calculate the excited state

population, in general we will calculate

pe (t) = |〈e|ψ (t)〉|2 =
∣∣∣〈e|Û (t; t0) |ψ (t0)〉

∣∣∣2 . (A.19)

We can choose the initial phase such that φ → 0, which simplifies the time evolution operator of

Eq. A.18. Writing Eq. A.19 in vector representation with |ψ (t0)〉 = |g〉 yields

〈e|ψ (t)〉 =

(
1 0

)
· Û (t; t0)

 0

1

 = −iΩ0

Ω
sin

(
t
Ω

2

)
. (A.20)

Thus,

pe (t; ∆0) =
Ω2

0

Ω2
sin2

(
t
Ω

2

)
, (A.21)
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Figure A.1: Rabi spectroscopy lineshape for a π-pulse time of 160 ms (line) fit to experimental
data (circles). An overall scaling factor has been applied to account for effects that reduce the peak
excitation probability.

where we recall that Ω =
√

Ω2
0 + ∆2

0. This is the Rabi result. For the normal spectroscopic

sequence used for clock operation, t = π/Ω0—the π-pulse condition—which yields unity excitation

when ∆0 = 0 and is given by

pe (∆0) =
Ω2

0

Ω2
sin2

(
πΩ

2Ω0

)
. (A.22)

An example of this function applied to real data is shown in Fig. A.1. An overall scaling factor is

applied to account for non-unity excitation due to two-body inelastic losses and slight excitation

inhomogeneity.

A.2.2 Ramsey lineshape

In this section, we again use the time evolution operator approach to calculate the lineshape

for Ramsey spectroscopy. Unlike Rabi spectroscopy, for Ramsey spectroscopy there are three

distinct periods of evolution:

(1) Initial π/2 pulse, where Eq. A.18 applies (again we are free to choose φ→ 0).
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Figure A.2: Ramsey spectroscopy lineshape. The dashed black line shows the envelope of the
rapidly-oscillating excitation. The envelope is similar, but not identical, to the Rabi lineshape.
Here, the π-pulse time is 10 ms, and the free evolution time, τ is 50 ms; this results in a total
spectroscopy time of 60 ms.

(2) Free evolution time, where the dynamics are described by Eq. A.18 with Ω0 → 0 (and thus

Ω→ ∆0). We label the free evolution time τ .

(3) Final π/2 pulse. The time evolution operator is the same as in case (1).

Mathematically, we can write this as

pe (t; ∆0) =
∣∣∣〈e|Û3 (t; t2) Û2 (t2; t1) Û1 (t1; t0) |ψ (t0)〉

∣∣∣2 , (A.23)

where the subscript indicates case 1–3 listed above. Here, the free evolution time τ is given by

τ = t2 − t1. We perform the matrix multiplication for the case where the first and last pulses are

exactly π/2 pulses (i.e., t1 − t0 = π/ (2Ω0) = t− t2) and find

pe (∆0) =
Ω2

0

Ω4

[
Ω cos

(
∆0τ

2

)
sin

(
πΩ

2Ω0

)
− 2∆ sin

(
∆0τ

2

)
sin2

(
πΩ

4Ω0

)]2

. (A.24)

This function is plotted in Fig. A.2 for a π-pulse time of 10 ms and τ = 50 ms. If desired, the

envelope (i.e., the outline of the oscillatory part) can be found by summing in quadrature the

prefactors of the cos
(

∆0τ
2

)
and sin

(
∆0τ

2

)
terms.
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A.2.3 Dick sensitivity function for Rabi spectroscopy

In Chapter 2, we discussed the Dick effect for optical frequency standards. The key element

for calculating the Dick effect is the sensitivity function for a given spectroscopic sequence. The

sensitivity function relates a given phase error at a specific time to a fluctuation in the final

population by [36]

δpe =
1

2

∫ T0

0
dt∆ω (t) r (t; ∆0) , (A.25)

where ∆ω (t) describes fluctuations in the laser’s frequency about the nominal static detuning ∆0.

Thus, we can calculate the sensitivity function as a response to an infinitesimal phase perturbation,

δφ at time t such that [36]

r (t) = 2
∂δpe
∂δφt

(A.26)

In order to proceed, we split the time evolution into two steps:

(1) Non-perturbed evolution. We use the time evolution operator of Eq. A.18 with φ→ 0.

(2) The phase perturbation occurs at time t1. We use the time evolution operator of Eq. A.18

with φ→ δφ.

This can be written as

|ψ (t)〉 = Ûδφ (t; t1) Û0 (t1; t0) |ψ (t0)〉. (A.27)

Here, the subscript indicates the phase, φ of the atom-light interaction. If we carry out the operator

multiplication for an infinitesimal phase step we find

|ψ (t)〉 =

{
Û0 (t; t0)− iδφΩ0

Ω
sin

[
Ω

2
(t− t1)

]
σ̂y × Û0 (t1; t0)

}
|ψ (t0)〉 (A.28)

= |ψ0 (t)〉+ δφ|δψ (t; t1)〉, (A.29)

where |ψ0 (t)〉 = Û0 (t; t0) |ψ (t0)〉, the unperturbed time evolution of wave function. We can then

find δpe (t1) as

δpe (t1) = |〈e|ψ (t)〉|2 − |〈e|ψ0 (t)〉|2 (A.30)

= 2δφ<{〈e|ψ0 (t)〉〈δψ (t; t1) |e〉}+O
(
δφ2
)

(A.31)
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Figure A.3: Rabi Ramsey sensitivity functions. In both cases, the detuning ∆0 is negative and
chosen such that pe = 0.5. (a) Sensitivity function for Rabi spectroscopy for an 80 ms spectroscopy
time. (b) Sensitivity function for Ramsey spectroscopy for an 80 ms spectroscopy sequence with a
10 ms π-pulse time and 70 ms free-evolution time τ .

For the usual case of a π-pulse excitation, we find

r (t1) = 4<{〈e|ψ0 (tπ)〉〈δψ (tπ; t1) |e〉} (A.32)

where tπ = π/Ω0. When we carry out the operator multiplication we find that

r (t) =
∆Ω2

0

Ω3

{
sin

(
πΩ

Ω0

)
− sin (Ωt)− sin

[
Ω

(
π

Ω0
− t
)]}

. (A.33)

A.2.4 Dick sensitivity function for Ramsey spectroscopy

In Chapter 6 we derived the perturbation of the Bloch vector angle Θ due to laser noise.

For Ramsey spectroscopy, δpe ' δΘ/2 for small fluctuations δΘ. Thus, the sensitivity function

we derived in Chapter 6 is exactly the Dick sensitivity function. We thus find, in the limit where

∆0 � 1/τ ,

r (t) = sin [θ (t)] . (A.34)

Here, as in Chapter 6, θ (t) is the total pulse area applied to the atoms. The Fourier-domain

sensitivity |R (f)|2 is given by Eq. 6.57 with n = 0. In the limit that Ω0 → ∞, we recover the

Ramsey sensitivity function of Eq. 2.66. We note that in general, the effect of longer π/2 pulses in

Ramsey spectroscopy is to provide an additional pole of low-pass filtration at the Rabi frequency
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corresponding to the π/2-pulse duration. The time-domain for both Rabi and Ramsey (finite

π-pulse case) are shown in Fig. A.3



Appendix B

Calculating the dipole moments from measured atomic lifetimes

In this Appendix, we summarize the method for relating transition dipole moments to experi-

mentally measured lifetimes. The dipole moments are necessary for computing the AC polarizability

and the scattering rate, as calculated in Chapter 2.

We begin with the Wigner-Eckert theorem applied to the dipole operator. Simply stated,

the theorem relates a dipole moment (d̂ ≡ er̂) to a scalar quantity modified by a Clebsch-Gordan

coefficient. This can be stated mathematically as [111, 108]

〈n, J,mJ |er̂q|n′, J ′,m′J〉 = 〈nJ ||er̂||n′J ′〉 (−1)J
′−1−mJ

√
2J + 1

1 J ′ J

q m′J −mJ

 . (B.1)

Here, the quantum number n indicates an electronic configuration, J is the total angular mo-

mentum, and mJ is the angular momentum projection onto the quantization axis. The term in

parenthesis is the Wigner 3-j symbol. This expression is only useful when the reduced matrix

element 〈nJ ||er||n′J ′〉 is known. Luckily, it is related to the rate, ΓJJ ′ , at which an excited fine

structure manifold decays to a lower fine structure manifold (n′J ′ → nJ) by [108]

Γn′J ′→nJ =
ω3
n′J ′→nJ

3πε0~c3

2J + 1

2J ′ + 1

∣∣〈nJ ||er̂||n′J ′〉∣∣2 , (B.2)

where ωn′J ′→nJ is the transition angular frequency. However, even this expression is not so useful.

The most commonly reported quantities in the literature are the lifetimes (or “total” Einstein A-

coefficients given by AT (n′, J ′) = 1/τ , where τ is the lifetime) of an upper fine structure state

with electronic configuration labelled by n′ and angular momentum J ′ decaying to multiple fine

structure states below.
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In order to attack this problem, there is another fact we need to know. The reduced dipole

matrix element 〈nJ ||er̂||n′J ′〉 for a given J state in an L manifold is related to the L reduced matrix

element, 〈nL||er̂||n′L′〉, by [111, 108]

〈nJ ||er̂||n′J ′〉 = 〈nL||er̂||n′L′〉
√

(2J ′ + 1) (2L+ 1) (−1)J
′+L+1+S

L L′ 1

J ′ J S

 , (B.3)

where the term in the curly braces is the Wigner 6-j symbol. Now we’re ready to use the published

AT values to actually get somewhere. Using Eqns. B.2 and B.3, we can relate AT to a sum over

all the ground fine structure states by

AT
(
n′, J ′

)
=
∑
J

Γn′J ′→nJ

=
|〈nL||er̂||n′L′〉|2

3πε0~c3

(
2L+ 1

2L′ + 1

)∑
J

ω3
n′J ′→nJ (2J + 1)

(
2L′ + 1

)L L′ 1

J ′ J S


2

. (B.4)

One important fact about Eq. B.4 is that if we ignore the J dependence of ωJ ′J , we can use the

fact that ∑
J

(2J + 1)
(
2L′ + 1

)L L′ 1

J ′ J S


2

= 1 (B.5)

to recover an expression identical to Eq. B.2, only this time for a decay L′ → L. However, we

choose not to make this assumption, and instead treat the sum as a weighted average of ω3
JJ ′ , such

that

ω̃3
n′J ′ ≡

∑
J

ω3
n′J ′→nJ (2J + 1)

(
2L′ + 1

)L L′ 1

J ′ J S


2

. (B.6)

This allows us to finally solve for |〈nL||er̂||n′L′〉|2, namely

∣∣〈nL||er̂||n′L′〉∣∣2 = AT
(
n′, J ′

) 3πε0~c3

ω̃3
n′J ′

(
2L′ + 1

2L+ 1

)
. (B.7)

We note that it is also possible to write the branching ratio between different decay pathways as

Γn′J ′→nJ
AT (n′, J ′)

=
ω3
n′J ′→nJ
ω̃3
n′J ′

(2J + 1)
(
2L′ + 1

)L L′ 1

J ′ J S


2

. (B.8)



274

The term ζ (nJ ;n′J ′) ≡ ω3
n′J ′→nJ/ω̃

3
n′J ′ has sometimes been called the relativistic correction factor

[112], because it corrects the effect of fine structure energy shifts on the dipole elements. For Sr,

this term is at most a 10% correction.

With these results, we are finally able to compute the desired matrix element given by Eq. B.1.

The final result is

〈n, J,mj |er̂q|n′, J ′,m′j〉 =

√
3πε0~c3AT
ω̃3
n′J ′

√
(2J ′ + 1) (2L′ + 1) (2J + 1)×

(−1)2J ′+L+S−mj ×

L L′ 1

J ′ J S


1 J ′ J

q m′j −mj

 . (B.9)

For φi ∈ {3P0,
1S0}, the expression for the dipole is particularly simple. It is given by

∑
q

∣∣〈φi|εqdq|n′, 1,−q〉∣∣2 =
3πε0~c3AT (n′, J ′)

ω̃3
n′J ′

(
2L′ + 1

)
×

L L′ 1

J ′ 0 S


2

, (B.10)

where the one remaining complication is the dependence on the relativistic correction factor in

ω̃n′J ′ . This simplifies for 3P0 to

∑
q

∣∣∣〈3P0|εqd̂q|n′, 1,−q〉
∣∣∣2 =

3πε0~c3AT (n′, J ′)

ω̃3
n′J ′

(2L′ + 1)

9
. (B.11)

where the polarization can be arbitrary and the result still holds.

An even simpler expression is obtained for 1S0 , and it is important to note that there is no

relativistic correction factor here due to the absence of fine structure in the 1S manifold. In this

case, the dipole depends directly on the lifetime and transition frequency as

∑
q

∣∣∣〈1S0|εqd̂q|n′, 1,−q〉
∣∣∣2 =

3πε0~c3AT (n′, J ′)

ω3
n′J ′

, (B.12)

For both 1S0 and 3P, as is expected, the is no εq dependence of the polarizability, which reflects

the isotropic nature of the J = 0 atomic states.

As discussed in Chapter 2, the hyperfine interaction breaks the symmetry and gives a mF

dependence to the polarizability. This effect is negligible due to the smallness of the hyperfine

energy splittings of 3P0 . Although this is one mechanism by which the clock states can acquire
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a vector and tensor polarizability in 87Sr , the hyperfine-induced state mixing between levels [119]

with the same principle quantum number F is the biggest contributor to orientation-dependent

light shifts [25, 112] .



Appendix C

Spherical tensor treatment of the light shift

In this Appendix, we present a detailed derivation of the scalar, vector, and tensor light

shifts. We follow the treatments of [108, 109]. It is my hope that the results of this section “take

the mystery” out of calculating vector and tensor shifts and to better elucidate the physics of lattice

trapping.

We begin our treatment with Eq. 2.12 of the main text (see, e.g., [109])

U (r) = −E(−)
µ E(+)

ν αµν (C.1)

where

αµν = 2
∑
k

ωik〈φi|d̂µ|φk〉〈φk|d̂ν |φi〉
~
(
ω2
ik − ω2

) . (C.2)

The electric field is now expressed with slightly different parameters such that E(+) ≡ E0 (r) /2 =[
E(−)

]∗
. Next, we project the tensorial operator d̂µd̂ν onto states with quantum number n′ and

angular momenta F ′, along with the state for which we wish to calculate the polarizability, labeled

by its angular momentum F such that we define an operator [333]

Λ̂n′F ′ =
∑

m,m′,m′′

|nF m′′〉〈nF m′′|d̂|n′F ′ m′〉〈n′F ′ m′|d̂|nF m〉〈nF m| (C.3)

≡ d̂n′F ′d̂n′F ′ , (C.4)

where the d̂n′F ′ are the dipole operator projected between the ground1 state and n′f ′ manifold.

1 By “ground” state we mean the state for which we intend to calculate the polarizability.
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The polarizability projection between these same manifolds is then

α̂n′F ′ = 2
ωnF→n′F ′Λ̂n′F ′

~
(
ω2
nF→n′F ′ − ω2

) . (C.5)

and thus

U (r) = −E(−) ·
∑
n′,F ′

〈nF,m|α̂n′F ′ |nF,m〉︸ ︷︷ ︸
αµν

·E(+). (C.6)

Since the tensorial operator α̂
(0)
n′F ′ is formed by a product of two vector operators, we can decompose

it into irreducible components

α̂n′F ′ = α̂
(0)
n′F ′ + α̂

(1)
n′F ′ + α̂

(2)
n′F ′ . (C.7)

The goal is to find the contributions of each of these terms to the dipole potential as written in

Eq. C.6.

We begin by first finding the jth representations of the operator Λn′F ′ , as it directly relates

to α̂n′F ′ . We begin by expressing the product of the vector operators dn′F ′ in terms of a spherical

tensors [333]

Λ̂n′F ′ = d̂n′F ′d̂n′F ′ =
∑
qq′

e∗qe
∗
q′ d̂q

(
n′F ′

)
d̂q′
(
n′F ′

)
(C.8)

=
∑
j,m

∑
q,q′

e∗qe
∗
q′ T̂

(j)
m 〈1, q; 1, q′|j,m〉. (C.9)

Here, eq are the spherical unit vectors and are related to Cartesian coordinates by e±1 = ∓ (ex ± iey)

and e0 = ez such that

d̂n′F ′ =
∑
q

e∗q d̂q
(
n′F ′

)
, d̂q

(
n′F ′

)
= eq · d̂n′F ′ , (C.10)

and

T̂ (j)
m =

∑
q,q′

d̂q
(
n′F ′

)
d̂q′
(
n′F ′

)
〈1, q; 1, q′|j,m〉. (C.11)

Thus, we find the jth irreducible component of ΛnF ′ is [333]

Λ
(j)
n′F ′ =

∑
q,q′

e∗qe
∗
q′T

(j)
m 〈1, q; 1, q′|j,m〉. (C.12)
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Since the irreducible components of αnF ′ connect states with equal m, we can restrict our-

selves to consideration of only the m = 0 components of the the spherical tensor. Thus

α
(j)
n′,F ′ ≡ 〈nF,m|α̂

(j)
n′,F ′ |nF,m〉 = 〈nF ||α̂(j)

n′,F ′ ||nF 〉〈F,m|F,m; j, 0〉︸ ︷︷ ︸
α
(j)

n′F ′ (m)

∑
q,q′

e∗qe
∗
q′〈1, q; 1, q′|j, 0〉. (C.13)

It can be shown that for the jth irreducible component of the projected operator, Λ
(j)
nF ′ , the reduced

matrix element is given by [111, 108]

〈nF ||Λ̂(j)
n′F ′ ||nF 〉 = (−1)j+F+F ′

√
(2F + 1) (2j + 1)

1 1 j

F F F ′


∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2 , (C.14)

which we can use to compute α
(j)
n′F ′ (m) as

α
(j)
n′F ′ (m) = 2

ωn′F ′〈nF ||Λ̂(j)
n′F ′ ||nF 〉

~
(
ω2
nF→n′F ′ − ω2

) × 〈F,m|F,m; j, 0〉. (C.15)

From Eqns. C.13 and C.15, we can solve for the contributions of the irreducible components of the

polarizability tensor as

E(−) ·α(0)
n′F ′ ·E(+) = α

(0)
n′F ′ (m)

1√
3
E(−) ·

(
e∗−1e

∗
1 − e∗0e

∗
0 + e∗1e

∗
−1

)
·E(+)

= −α(0)
n′F ′ (m)

∣∣E(+)
∣∣2

√
3

(C.16)

E(−) ·α(1)
n′F ′ ·E(+) = α

(1)
n′F ′ (m)

1√
2
E(−) ·

(
−e∗−1e

∗
1 + e∗1e

∗
−1

)
·E(+)

=
iα

(1)
n′F ′ (m)√

2

(
E(+) ×E(−)

)
· ez (C.17)

E(−) ·α(2)
n′F ′ ·E(+) = α

(2)
n′F ′ (m)

1√
6
E(−) ·

(
e∗−1e

∗
1 + 2e∗0e

∗
0 + e∗1e

∗
−1

)
·E(+)

=
α

(2)
n′F ′ (m)√

6

(
3
∣∣∣E(+) · ez

∣∣∣2 − ∣∣∣E(+)
∣∣∣2) . (C.18)

The dependence on the light polarization comes directly from the sum over Clebsch-Gordan coef-
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ficients in Eq. C.13. We also find

α
(0)
n′F ′ (m) =

2ωn′F ′

~
(
ω2
n′F ′ − ω2

) −1√
3

∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2 , (C.19)

α
(1)
n′F ′ (m) =

2ωn′F ′

~
(
ω2
n′F ′ − ω2

)(−1)F+F ′+1

√
3 (2F + 1)

F (F + 1)
×m

1 1 1

F F F ′


∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2 , (C.20)

α
(2)
n′F ′ (m) =

2ωn′F ′

~
(
ω2
n′F ′ − ω2

)(−1)F+F ′

√
5 (2F + 1)

F (1 + F ) (2F − 1) (3 + 2F )

×
[
3m2 − F (F + 1)

]1 1 2

F F F ′


∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2 .

(C.21)

Now all that is left is to perform the sum as in Eq. C.6. The result is

α (ε) = αs + iαv (ε× ε∗) · ez
m

F
+ αt

(
3 |ε · ez|2 − 1

)
2

[
3m2 − F (F + 1)

F (2F − 1)

]
. (C.22)

Here, ε is the light polarization and we have introduced αs, αv, and αt, the “scalar”, “vector”,

and “tensor” polarizabilities, respectively. The normalizations of the vector and tensor shifts are

chosen such that the coefficients are maximally unity for both αv and αt (e.g., the case of circular

polarization and m = F in the tensor case). We find the polarizabilities are (as in [108])

αs =
∑
n′F ′

2ωnF→n′F ′
∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2

3~
(
ω2
nF→n′F ′ − ω2

) , (C.23)

αv =
∑
n′F ′

(−1)F+F ′+1

√
6F (2F + 1)

(F + 1)

1 1 1

F F F ′


ωnF→n′F ′

∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2
~
(
ω2
nF→n′F ′ − ω2

) , (C.24)

αt =
∑
n′F ′

(−1)F+F ′

√
40F (2F − 1) (2F + 1)

(1 + F ) (2F + 3)

1 1 2

F F F ′


ωnF→n′F ′

∣∣∣〈nF ||d̂||n′F ′〉∣∣∣2
~
(
ω2
nF→n′F ′ − ω2

) . (C.25)

We can relate the reduced matrix element 〈nF |‖d̂||n′F ′〉 to 〈nJ ||d̂||n′J ′〉 by [111, 108, 109]

〈nF ||er̂||n′F ′〉 = 〈nJ ||d̂||n′J ′〉
√

(2F ′ + 1) (2J + 1) (−1)F
′+J+I+1

 J J ′ 1

F ′ F I

 . (C.26)

The procedure for calculating the reduced matrix elements 〈nJ ||d̂||n′J ′〉 from the measured lifetimes

is presented in Appendix B.



Appendix D

The s- and p-wave interaction overlap integrals

In this appendix we derive the mode-dependent overlap integrals that appear in the many-

body Hamiltonian for s- and p-wave interactions as presented in Chapter 5.

We begin by inserting the potentials of Eqns. 5.9 and 5.10 into Eq. 5.31, we find that

Ueg
ij =

4πa−eg~2

m

∫
d3x |φi (x)|2 |φj (x)|2 (D.1)

Vss′
ij =

12πb3ss′~
2

m

∫
d3x

∣∣∣φi (x) ~∇φj (x)− φj (x) ~∇φi (x)
∣∣∣2 (D.2)

We consider the specific case where the φ (x) are harmonic oscillator eigenstates such that

φi (x) = φnx,i (x)φny,i (y)φ0 (z) . (D.3)

Here it is assumed that all the atoms are in the longitudinal ground state. We can then write

Ueg
ij =

4πa−eg~2

√
2πmxz0

S (nx,i, nx,j)S (ny,i, ny,j) (D.4)

and

Vss′
ij =

6πb3ss′~
2

√
2πmxz0 (xr0)2 [P (nx,i, nx,j)S (ny,i, ny,j) + P (ny,i, ny,j)S (nx,i, nx,j)] , (D.5)

where

S (nξ,i, nξ,j) =

∫
dξ
∣∣φnξ,i (ξ)

∣∣2 ∣∣φnξ,j (ξ)
∣∣2 (D.6)

and

P (nξ,i, nξ,j) =

∫
dξ|φnξ,i (ξ)

[√
nξ,j + 1φnξ,j+1 (ξ)−√nξ,jφnξ,j−1 (ξ)

]
− φnξ,j (ξ)

[√
nξ,i + 1φnξ,i+1 (ξ)−√nξ,iφnξ,i−1 (ξ)

] |2. (D.7)
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To derive Eq. D.7, we have used the relationship between the harmonic oscillator raising and

lowering operators and a spatial derivative.

The quantities S (ni, nj) and P (ni, nj) are plotted in Fig. D.1. Due to the opposite scaling

with n for S (ni, nj) and P (ni, nj), which characterize the s- and p-wave interaction strengths,

respectively, the p-wave interaction energy is insensitive to radial temperature (see Chapter 5,

Fig. 5.15).
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Figure D.1: s- and p-wave mode-dependent interaction strength coefficients. (a) The mode-
dependent s-wave interaction strength coefficient. The function S (ni, nj) is scaled by the radial
harmonic oscillator length, xr0, to remove the xr0-dependence of S (ni, nj). (b) The mode-dependent
s-wave interaction strength coefficient. As with the s-wave case, P (ni, nj) is scaled with xr0.



Appendix E

Site occupancy distribution

In this Appendix, we derive the site occupancy distribution for an optical lattice loaded by a

Gaussian-profile atomic cloud. In the computation of density-dependent experimental observables,

such as the density shift, lineshapes, and spin noise, we have utilized the occupancy distribution

derived here to form a properly-weighted average of the desired quantity.

E.1 Sites with n

We begin by considering the situation depicted in Fig. E.1. A Gaussian-profile MOT is loaded

into a 1-D optical lattice during the red MOT stage of the experiment (see Chapter 2). Thus, if a

total of Ntot atoms are loaded into the lattice, the probability of a given site labelled i having n

atoms is given by a Poissonian distribution

pi (n) =
λni e

−λi

n!
, (E.1)

where the mean values λi are given by

λi ∝ Ntote
− x2i

2σ2 . (E.2)

Here xi is the position of the ith site with respect to the MOT center and σ is the MOT width.

For the 87Sr lattice clock, we estimate that σ ' 30 µm. The loading is depicted schematically in

Fig. E.1. The constant of proportionality should be chosen such that the sum of λi will be equal

to Ntot.
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Figure E.1: Lattice loading from the red MOT and longitudinal distribution. The red MOT has
longitudinal extent σ, which causes each trap site to have a position-dependent loading, with site-
dependent averages {λi}. The lattice sites are spaced a distance w = 813/2 nm. The figure is not
drawn to scale. In the experiment, σ ' 30 µm.

The most important quantity we need to calculate is the distribution of site occupancies (i.e.,

the average number of sites with n atoms), which we call S (n). This quantity is given by

S (N) =
∑
i

pi (n) =
∑
i

λni e
−λi

n!
. (E.3)

We note that this sum can be carried out numerically. We approximate the sum by an integral

such that ∑
i

→
∫ ∞
−∞

dx

w
(E.4)

where w is the spacing between lattice sites, and in this case w = λlattice/2. It is then obvious that

the proper continuous distribution for λi, λ (x), is given by

λ (x) =
wNtot√

2πσ2
e−

x2

2σ2 = εNtote
− x2

2σ2 , (E.5)

where we have made the substitution ε ≡ w/
√

2πσ2. We plug this continuous distribution into

Eq. E.4 and obtain

S (n) =

∫ ∞
−∞

dx

w

[λ (x)]n e−λ(x)

n!
. (E.6)
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Figure E.2: Distribution of site occupancies. (a) The average number of sites containing n atoms.
The color scheme is as labeled at right. (b) The atom-number-weighted site occupancy distribution.
As the total atom number increases, the majority of atoms reside in highly-occupied sites. The
numbers label Ntot for a given color. The color scheme is the same at left.

Inserting the continuous distribution of Eq. E.5 into Eq. E.6 and performing a Taylor expansion on

the exponential yields an infinite sum of Gaussian integrals, each with its own analytical solution.

We replace each Gaussian integral in the sum with its analytic solution to finally obtain

S (n) =
1

εn!

∞∑
j=0

(−1)j

j!

(εNtot)
j+n

√
j + n

, (E.7)

where as before ε ≡ w/
√

2πσ2. The reader is cautioned that for large Ntot and large n, the sum

converges very slowly, so high numerical precision should be used in evaluating the sum (double

precision is woefully insufficient). Finally, we note that the sum can be truncated to a total number

of terms given by ∼ 2εeNtot. For typical conditions of σ = 30 µm and Ntot = 5000, this means

that around 100 terms of the sum must be evaluated. We plot the function S (n) in Fig. E.2a. A

more useful quantity is the atom-weighted S (n) given by n× S (n). This quantity gives the total

number of atoms that share, on average, a site with n atoms. This quantity is plotted in Fig. E.2b.

E.2 Linearity of the density shift and average occupancy

In this section we show that the Poissonian site occupancy statistics enforce that the total

density-dependent shift should be linear in atom number under simplifying assumptions.
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Figure E.3: Average site occupancy as a function of total atom number.

We consider the case where the density shift scales as n (n− 1), which will generally be the

case for a many-body interaction potential of the form of Eq. 5.45 and in the absence of two-body

losses, which are nonlinear. Thus, the average interaction energy per particle when averaged over

trap occupancy is proportional to the S (n)-weighted sum of n (n− 1) as

u ∝ 1

Ntotal

∑
n

n (n− 1)S (n) =
1

Ntotal

∑
n

∑
i

n (n− 1)
[λi]

n e−λi

n!
(E.8)

From the properties of the Poisson distribution, we find that this reduces to

u ∝ 1

Ntot

∑
i

λ2
i . (E.9)

If we use the approximation of Eq. E.4 combined with the probability distribution function of

Eq. E.5 we find

1

Ntot

∑
n

n (n− 1)S (n) =
εNtot√

2
, (E.10)

where ε ≡ w/
√

2πσ2. It is then also seen then that atom-number weighted average occupancy is

given by

N =
1

Ntot

∑
n

n2S (n) =
εNtot√

2
+ 1, (E.11)

thus proving its linearity with respect to Ntot. The average site occupancy as a function of Ntot is

plotted in Fig. E.3. Thus, as seen from Eq. E.10, the average interaction energy per particle (and

thus the frequency shift) is proportional to Ntot.


