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Abstract

The spin modules for the Lie algebras of type Dn and Bn are constructed
through minuscule systems. It is shown that the unique (up to multiplication
by a nonzero scalar) g-invariant bilinear form on the modules is nondegenerate.
By defining an equation for the height of weights of the modules, it is shown
that the bilinear form is symplectic when n = 1 or 2 (mod 4), and orthogonal
when n = 0 or 3 (mod 4).
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1 Introduction

Lie algebras were originally introduced by S. Lie for the study of Lie groups.
The focus of this paper is on the finite dimensional simple Lie algebras over
the complex field, which were classified between 1890–1900 with the work of
E. Cartan and W. Killing. We construct the spin modules on the Lie algebras
of type Dn and Bn, and our main result defines an equation for the height
of weights on these modules. We then use these equations to prove that the
g−invariant bilinear form on the modules alternates between orthogonal and
smyplectic depending on the the choice of n. For the simple Lie algebra of type
Bn, the bilinear form on the spin module is orthogonal when n = 0 or 3 (mod 4)
and symplectic when n = 1 or 2 (mod 4). For the simple Lie algebra of type Dn,
there are two spin modules, and the bilinear form on both is orthogonal when
n = 0 (mod 4) and symplectic when n = 2 (mod 4). Both the equations and the
proofs are original to the best knowldge of the author.

The strategy of the paper is as follows. In Section 1 we introduce general
results in Lie algebra. We define the simple Lie algebras Bn and Dn through
matrices under matrix multiplication, as subalgebras of the general linear al-
gebra gl(n,C), and derive their root systems and bases via the root space de-
composition. We then show that these algebras can be constructed using only
generators, relations, and their associated simple roots.

In Section 2, we begin by introducing general results of modules. We then
introduce minuscule systems and show that they have the structure of weights
of irreducible modules. We use these to construct the spin modules for the Lie
algebras Dn and Bn, based on the method introduced in [1].

In Section 3, we define a g-invariant bilinear form on the spin modules,
and show that it is unique up to multiplication by a nonzero scalar. Using the
construction of the spin modules from Section 2, we then provide an equation for
the height of weights of these modules. Finally, we use these equations to prove
that the bilinear form alternates from orthogonal to symplectic as discussed
above.

Definition 1.1. A Lie algebra is a k-vector space g equipped with a k-bilinear
map called the Lie bracket,

g × g→ g (x, y)↦ [xy]

satisfying the conditions:

[xx] = 0 for all x ∈ g,
[x[yz]] + [z[xy]] + [y[zx]] = 0 for all x, y, z ∈ g.

These are known as antisymmetry and the Jacobi identity respectively.
A Lie algebra g is said to be abelian if [xy] = 0 for all x, y ∈ g.

Definition 1.2. Let A be an associative k-algebra and let x, y ∈ A. We define
a new k-bilinear operation [ , ] such that [x, y] ∶= xy − yx under the usual
operations on the right.
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Lemma 1.3. Let Mn(k) denote the associative k-algebra of all n × n matrices
under matrix multiplication, and let gl(V ) denote the algebra of all k-linear
endomorphisms of a k-vector space V under composition of functions.
(i) The algebra Mn(k) endowed with the operation [ , ] from Definition 1.2 is
a Lie algebra over k, denoted gl(n, k).
(ii) The algebra gl(V ) endowed with [ , ] is a Lie algebra over k.

Proof. (i) Let x, y, z ∈Mn(k). Then [x, y] = xy−yx ∈Mn(k) so the set is closed
under the operation. We have: [x,x] = xx − xx = 0, and

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]

= x(yz − zy) − (yz − zy)x + y(zx − xz) − (zx − xz)y
+ z(xy − yx) − (xy − yx)z

= xyz − xzy − yzx + zyx + yzx − yxz − zxy − xzy
+ zxy − zyx − xyz + yxz

= (xyz − xyz) + (xzy − xzy) + (yxz − yxz) + (yzx − yzx)
+ (zxy − zxy) + (zyx − zyx)

= 0

satisfying both conditions of Definition 1.1.
The proof for (ii) is identical when considering multiplication as composition of
functions.

Definition 1.4. A subspace h of a Lie algebra g is called a subalgebra of g if
[xy] ∈ h whenever x, y ∈ h. We call h an ideal if [xy] ∈ h for all x ∈ h, y ∈ g.

Lemma 1.5. Let h1, . . . , hk ∶ V → V be diagonalizable linear transformations
such that h1, ..., hk commute. Then the maps h1, ..., hk can be simultaneously
diagonalized.

Proof. This is a general result in linear algebra, and is proved in [3, Lemma
16.7].

Definition 1.6. Let g be a Lie algebra. We say that an element h ∈ g is
semisimple if it can be represented by a diagonal matrix.

Definition 1.7. Let g and h be Lie algebras over k. A Lie algebra homomorphism
is a k-linear map

ϕ ∶ g→ h

such that ϕ([xy]) = [ϕ(x)ϕ(y)] for all x, y ∈ g. A Lie algebra isomorphism is a
bijective homomorphism.

Definition 1.8. Let g be a Lie algebra. We define the adjoint homomorphism
as the linear map

ad ∶ g→ gl(g) ad(x)(y) ∶= [x, y]
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Lemma 1.9.
(i) Suppose h is a semisimple element of g. Then adh is semisimple.
(ii) Suppose the elements h1, . . . hn form an abelian subalgebra of a Lie algebra
g. Then the maps adh1, . . . ,adhn form an abelian subalgebra of gl(g).

Proof. The proof for this is contained in [4, §6.1].

Proposition 1.10. Let s ∈ gl(n, k). The set h = {x ∣ sx = −xts, x ∈ gl(n, k)}
endowed with [ , ] is a subalgebra of g; xt denotes the transpose of x.

Proof. The set h is a subspace of gl(n, k). Satisfaction of the two axioms of
Definition 1.1 is inherited from gl(n, k). Therefore, it is sufficient to show that
h is closed under [ , ].
Let x, y ∈ h. Then

s[x, y] = s(xy − yx)
= sxy − syx
= −xtsy + ytsx
= xtyts − ytxts
= (xtyt − ytxt)s
= ((yx)t − (xy)t)s
= (yx − xy)ts
= −[x, y]ts.

Definition 1.11. Let Il be the l × l identity matrix. Let sd and sb be matrices
of dimension 2l × 2l and 2l + 1 × 2l + 1 respectively, such that

sd = (0 Il
Il 0

) and sb =
⎛
⎜
⎝

1 0 0
0 0 Il
0 Il 0

⎞
⎟
⎠
.

(i) The subalgebra so(2l,C) of gl(2l + 1,C) is defined as the following:

so(2l,C) = {x ∈ gl(2l, k) ∣ xtsd = −sdx},

and is known as the orthogonal Lie algebra of type Dn.

(ii) The subalgebra so(2l + 1,C) of gl(2l,C) is defined as the following:

so(2l + 1,C) = {x ∈ gl(2l + 1, k) ∣ xtsb = −sbx},

and is known as the orthogonal Lie algebra of type Bn.

5



Lemma 1.12. We have:

so(2l,C) = {(m p
q −mt) ∣ p = −pt and q = −qt} , (1)

so(2l + 1,C) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 −bt −ct
b m p
c q −mt

⎞
⎟
⎠
∣ p = −pt and q = −qt

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (2)

Proof. For (1), sdx = −xtsd implies

(0 Il
Il 0

)(m p
q n

) = (−m
t −qt

−pt −nt)(0 I
I 0

)

( q n
m p

) = (−q
t −mt

−nt −pt ) ,

showing that q = −qt, p = −pt, and n = −mt as required.

For (2), sbx = −xtsb implies

⎛
⎜
⎝

1 0 0
0 0 Il
0 I 0

⎞
⎟
⎠

⎛
⎜
⎝

a d e
b m p
c q n

⎞
⎟
⎠
=
⎛
⎜
⎝

−at −bt −ct
−dt −mt −qt
−et −pt −nt

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 0 Il
0 I 0

⎞
⎟
⎠

⎛
⎜
⎝

a d e
c q n
b m p

⎞
⎟
⎠
=
⎛
⎜
⎝

−at −ct −bt
−dt −qt −mt

−et −nt −pt
⎞
⎟
⎠
,

showing as required that c = −dt, b = −et, q = −qt, p = −pt,m = −nt, and a = −at =
0 as it is a 1 × 1 matrix.

Definition 1.13. A Lie algebra is said to be simple if it has no ideals other
than 0 and itself, and it is not abelian. A Lie algebra is semisimple if it can be
written as a direct sum of simple Lie algebras.

It is well known that the orthogonal algebras are simple. Formal proofs of
this may be found in [4, §11] or [3, §10].

Definition 1.14. Let g be a Lie algebra. A Lie subalgebra h of g is said to
be a Cartan subalgebra if h is abelian, every element h ∈ h is semisimple, and
moreover h is maximal with these properties.

Proposition 1.15. Let g = so(n,C). The subspace of g consisting of all diagonal
matrices in g is a Cartan subalgebra of g.

Proof. By Definition 1.14 we must show (i) that every element of h is semisim-
ple, (ii) that h is abelian, (iii) that it is a subalgebra of g, and (iv) that h
is maximal with these properties. Since h consists entirely of diagonal ma-
trices, every element is obviously semisimple by Definition 1.6, satisfying (i).
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Since multiplication of diagonal matrices is commutative, for h1, h2 ∈ h we have
[h1, h2] = h1h2 − h2h1 = 0, showing that it is abelian and satisfying (ii). Fur-
thermore, this satisfies (iii) by Definition 1.4, since 0 ∈ h.

Now for (iv), suppose that h is not maximal and is contained in a maximal
Cartan subalgebra H. Let a ∈H and h ∈ h. Since H is abelian, we have [h, a] =
ha − ah = 0 which implies ha = ah. Suppose a is a matrix with entries (ai,j),
and h has diagonal entries (h0, . . . , hn−1). Then ha = (hjai,j) and ah = (hiai,j).
Since this is true for all h ∈ h, this implies that i = j and a is a diagonal matrix.
Therefore, H = h, completing the proof.

Let g be a Lie algebra and let h be the Cartan subalgebra of g. We denote
the dual space of h by h∗. Since every element h ∈ h is diagonalizable and h
is abelian, by Lemma 1.9 the maps adh = {adh ∣ h ∈ h} are both abelian and
diagonalizable. Therefore, as a consequence of Lemma 1.5, the map

ad ∶ h→ gl(g)

induces the following decomposition on g:

g = g0 ⊕⊕
α∈Φ

gα

where Φ is the set of α ∈ h∗ such that α ≠ 0 and gα ≠ 0,

gα = {v ∈ g ∣ [h, v] = α(h)v for all h ∈ h},

and
g0 = {z ∈ g ∣ [h, z] = 0 for all h ∈ h}.

It is a well known result that g0 = h, and this is proved in [4, Proposition 8.2].
We call this the Cartan decomposition. We say that an element α ∈ Φ is a root
of g with associated root space gα.

There is a natural isomorphism between a finite dimensional euclidean dot
product space V with its dual space V ∗, given by

ϕ ∶ V → V ∗ v ↦ ⟨v,−⟩.

The kernel of the map is zero since the dot product is nondegenerate. Since
dim(V ) = dim(V ∗), it follows immediately from the first isomorphism theorem
of linear algebra that the map is an isomorphism.

By imposing a dot product on the elements of h, we obtain the following
isomorphism:

ϕ ∶ h→ h∗ 2
(ei, ej)
(ej , ej)

≡ ⟨εi, εj⟩,

where ei, ej and εi, εj are the standard basis elements of h and the standard
basis elements of h∗ with respect to h, respectively. We omit the details of
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this derivation, but the reader is referred to [3, §10.5] or [4, §8.5] for further
discussion. It is a major result that the Cartan decomposition produces roots
that form a root system as defined below in Definition 1.17, and we refer the
reader to [4, §8] for further discussion.

Definition 1.16. Let E be a finite-dimensional euclidean space with the regular
bilinear dot product written (−,−). Let λ,α ∈ E. We define

⟨λ,α⟩ ∶= 2(λ,α)
(α,α) α,

where ⟨λ,α⟩ is only linear in the first variable. We let σα denote the reflection
in the hyperplane normal to α. That is, for some λ ∈ E,

σα(λ) ∶= λ − ⟨λ,α⟩α.

Definition 1.17. A subset Φ of a euclidean dot product space E is called a
root system in E if the following axioms are satisfied:
(R1) Φ is finite, spans E, and does not contain 0;
(R2) if α ∈ Φ, the only multiples of α in Φ are ±α;
(R3) if α ∈ Φ, σα is invariant under Φ;
(R4) if α,β ∈ Φ, then ⟨β,α⟩ ∈ Z.

Definition 1.18. A subset ∆ of Φ is called a base if:
(B1) ∆ is a basis of E;
(B2) each root β ∈ Φ can be written as β = ∑

α∈∆
kαα with kα ∈ Z, where the

coefficients kα are all nonnegative or all nonpositive.
The elements of ∆ are called simple roots.

Definition 1.19. We say that a root α ∈ Φ is positive with respect to ∆, if
the coefficients given in (B2) of Definition 1.18 are positive, and otherwise it is
negative with respect to ∆.

Though it is not obvious, every root system has a base. However, a base is
not unique. This is not proved and the reader is referred to [3, Theorem 11.10].

Proposition 1.20. Let g = so(2l + 1,C). A root system of g is given by the
following set:

Φ = b ⊍ c ⊍m ⊍ n ⊍ p ⊍ q,
where

b = {εi ∈ h∗ ∣ 0 ≤ i ≤ l − 1}
c = {−εi ∈ h∗ ∣ 0 ≤ i ≤ l − 1}
m = {(εi − εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}
n = {(εi − εj) ∈ h∗ ∣ 0 ≤ j < i ≤ l − 1}
p = {(εi + εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}
q = {−(εi − εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}.
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Proof. This is derived in detail in [3, §12.3].

Proposition 1.21. Let g = so(2l,C). The root system of g is given by the
following set:

Φ =m ⊍ n ⊍ p ⊍ q,
where

m = {(εi − εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}
n = {(εi − εj) ∈ h∗ ∣ 0 ≤ j < i ≤ l − 1}
p = {(εi + εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}
q = {−(εi − εj) ∈ h∗ ∣ 0 ≤ i < j ≤ l − 1}.

Proof. This is derived in detail in [3, §12.4].

Proposition 1.22. Let g = so(2l + 1,C), and let Φ be the corresponding root
system as in Proposition 1.20. A base for Φ is given by the following set:

∆ = {αi ∈ h∗ ∣ 0 ≤ i ≤ l − 1},

where

αi = εi − εi+1 for 0 ≤ i ≤ l − 2, and

αl−1 = εl−1.

The positive roots with respect to Φ are the elements of the sets b, p,m ⊆ Φ of
Proposition 1.20.

Proof. We must show that axiom (B1) of Definition 1.18 is satisfied, and that the
elements of b, p, and m can be written as nonnegative integer linear combinations
of ∆. We first observe that the elements of ∆ are linearly independent and that
dim(∆) = l =dim(h∗). This satisfies (B1). Now, the elements of b,m and p can
be written as follows, respectively:

εi = (εi − εi+1) + (εi+1 − εi+2) + ⋅ ⋅ ⋅ + (εl−2 − εl−1) + εl−1

= αi + αi+1 + ⋅ ⋅ ⋅ + αl−1 + αl
εi − εj = (εi − εi+1) + (εi+1 − εi+2) + ⋅ ⋅ ⋅ + (εj−2 − εj−1) + (εj−1 − εj)

= αi + αi+1 + ⋅ ⋅ ⋅ + αj−1

εi + εj = (αi + αi+1 + ⋅ ⋅ ⋅ + αl−2 + αl−1) + (αj + αj+1 + ⋅ ⋅ ⋅ + αl−2 + αl−1)

This shows that the elements of the sets b, p,m are positive roots by Defini-
tion 1.19. As the elements of the sets c, n, q are all negatives of those of b, p,m,
this satisfies condition (B2), completing the proof.
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Proposition 1.23. Let g = so(2l,C), and let Φ be the corresponding root system
as in Proposition 1.21. A base for Φ is given by the following set:

∆ = {αi ∈ h∗ ∣ 0 ≤ i ≤ l − 1},

where

αi = εi − εi+1 for 0 ≤ i ≤ l − 2, and

αl−1 = εl−2 + εl−1.

The positive roots with respect to Φ are the elements of the sets b,m ⊆ Φ of
Proposition 1.21.

Proof. We proceed as in Proposition 1.22. The elements of ∆ are linearly inde-
pendent and dim(∆) = l =dim(h∗), satisfying condition (B1) of Definition 1.18.
The elements of the sets b and m can be expressed as follows, respectively:

εi − εj = (εi − εi+1) + (εi+1 − εi+2) + ⋅ ⋅ ⋅ + (εj−2 − εj−1) + (εj−1 − εj)
= αi + αi+1 + ⋅ ⋅ ⋅ + αj−1 + αj−1

εi + εj = ((εi − εi+1) + (εi+1 − εi+2) + ⋅ ⋅ ⋅ + (εj−2 − εj−1) + (εj−1 − εj))
+ ((εj − εj+1) + (εj+1 − εj+2) + ⋅ ⋅ ⋅ + (εl−2 − εl−1) + (εl−2 + εl−1))

= (αi + αi+1 + ⋅ ⋅ ⋅ + αj−2 + αj−1) + (αj + αj+1 + ⋅ ⋅ ⋅ + αl−2 + αl−1),

which satisfies Definition 1.19. As the elements of the sets n and p are negatives
of the elements of b and m, this satisfies condition (B2) of Definition 1.18, and
completes the proof.

Definition 1.24.
(i) Let g = so(2l + 1,C).
We denote ΦB to be the root system of g as in Proposition 1.20.
We denote ∆B to be the base of ΦB , with the fixed order of elements as in
Proposition 1.22.
(ii) Let g = so(2l,C).
We denote ΦD to be the root system of g as in Proposition 1.21.
We denote ∆D to be the base of ΦD, with the fixed order of elements as in
Proposition 1.23.

Definition 1.25. Let ∆ be a base for a root system Φ. Fix an order on the
elements of ∆, say (α0, . . . , αl−1). The Cartan matrix of ∆ is defined as the l× l
matrix with (i, j)th entry ⟨αi, αj⟩.
Lemma 1.26. (i) The Cartan matrix of ∆B is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 ⋯ 0 0 0
−1 2 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 2 −1 0
0 0 ⋯ −1 2 −2
0 0 ⋯ 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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(ii) The Cartan matrix of ∆D is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 ⋯ 0
−1 2 ⋱ ⋱ ⋱ 0
0 ⋱ 2 −1 0 0
0 ⋱ −1 2 −1 −1
⋮ ⋱ 0 −1 2 0
0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof. We must show that the (i, j)th entry of each matrix is equal to ⟨αi, αj⟩
in its respective algebra, thereby satisfying Definition 1.25. Given our selected
bases in Propositions 1.22 and 1.23 respectively, the majority of calclations are
the same.

Since ⟨αi, αi⟩ = 2(αi,αi)
(αi,αi) = 2, the diagonal entries are justified.

With two exceptions, we have the following hold for both algebras:

⟨αi, αj⟩ = 2
(αi, αj)
(αj , αj)

= 2
(εi − εi+1, εj − εj+1)
(εj − εj+1, εj − εj+1

= −1 if ∣i − j∣ = 1, and 0 otherwise.

The first exception is for αl−2 and αl−3 ∈ ∆B , as

⟨αl−2, αl−1⟩ = ⟨εl−2 − εl−1, εl−1⟩

= 2
(εl−2 − εl−1, εl−1)

(εl−1, εl−1)

= 2
−1

1
= −2,

and the second exception is for αl−1, αj ∈ ∆D, as

⟨αl−1, αl−3⟩ = ⟨εl−2 + εl−1, εl−3 − εl−2⟩

= 2
(εl−2 + εl−1, εl−3 − εl−2)
(εl−3 − εl−2, εl−3 − εl−2)

= 2
−1

2
= −1 = ⟨αl−3, αl−1⟩,

showing that all the entries are as required by Definition 1.25.

We have thus far considered Lie algebras, particularly the orthogonal Lie
algebras, as vector spaces consisting of matrices. Though this is a convenient
method to intuitively derive preliminary results, a more comprehensive and
applicable way to describe them is through generators and relations, as is intro-
duced in the following theorem.
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Theorem 1.27 (Serre’s Theorem). Fix a root system Φ, with base

∆ = {α1, . . . , αl−1}.

Let g be the Lie algebra generated by the 3l elements {eαi , fαi , hαi ∣ 0 ≤ i ≤ l−1}
subject to the following relations,
(S1) [hαi , hαj ] = 0 for all i, j;
(S2) [hαi , eαj ] = ⟨αj , αi⟩eαj and [hαi , fαj ] = −⟨αj , αi⟩fαj for all i, j;
(S3) [eαi , fαj ] = δijhαi ;
(S4) [eαi , [eαi , . . . [eαi ,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1 − ⟨αj , αi⟩ times

eαj ] . . . ]] = 0;

(S5) [fαi , [fαi , . . . [fαi ,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1 − ⟨αj , αi⟩ times

fαj ] . . . ]] = 0;

where δ is the Kronecker delta. Then g is a (finite dimensional) semisimple
algebra with Cartan subalgebra h spanned by the hαi , with corresponding root
system Φ.

Proof. This is proved in [4, §18.3].

Definition 1.28. Let {eαi , fαi , hαi ∣ αi ∈ ∆} be the generating elements of
the Lie algebra g as defined in Theorem 1.27. We call these elements Serre
generators.

2 Modules

In this section we define and construct the spin modules for the simple Lie
algebras Bn and Dn. We begin by defining modules and representations and in-
troducing standard results associated with these structures. We then introduce
the concept of a minuscule system, which is not conventional and is introduced
in [1]. We show that a minuscule system imposes the structure of a module on
a vector space. Next, we introduce classification theorems of finite dimensional
irreducible modules. Combining these results, we are able to explicitly con-
struct the required spin modules, and explicitly observe their interaction with
the Serre generators, which allows further study of their structures in Section 3.

Definition 2.1. Let g be a Lie algebra over k and let V be a finite-dimensional
k-vector space. A representation of g is a Lie algebra homomorphism

ϕ ∶ g→ gl(V ).

Definition 2.2. Let g be a Lie algebra over k. A g-module V is a finite-
dimensional k-vector space V with a map

g × V → V (x, v)↦ x ⋅ v
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satisfying:

(λx + µy) ⋅ v = λ(x ⋅ v) + µ(y ⋅ v),
x ⋅ (λv + µw) = λ(x ⋅ v) + µ(x ⋅w),

[xy] ⋅ v = x ⋅ (y ⋅ v) − y ⋅ (x ⋅ v),

for all x, y ∈ g, v,w ∈ V, and λ,µ ∈ k.

Given a representation, ϕ, we can make a corresponding g-module by defin-
ing x ⋅ v ∶= ϕ(x)(v) for x ∈ L, v ∈ V . Conversely, given a g-module V and a basis
of V , we can use the same equation to define a representation of g.

Definition 2.3. Let V be a g-module. A submodule of V is a subspace W of
V such that x ⋅w ∈W for all x ∈ g, w ∈W .

Definition 2.4. Let V be a g-module. We say that V is simple or irreducible
if it is non-zero and it has no submodules other than 0 and V .

Definition 2.5. Let V and W be g-modules. A module homomorphism from
V to W is a k-linear map

θ ∶ V →W

such that θ(x ⋅ v) = x ⋅ θ(v) for all v ∈ V,x ∈ g. A module isomorphism is a
bijective module homomorphism.

Let g be a simple Lie algebra with Cartan subalgebra h, and suppose that
the k-vector space V is a finite dimensional g-module. Since every element of h
is semisimple by Definition 1.14, by Lemma 1.5 the map

h ∶ V → V

induces a decomposition of V into simultaneous eigenspaces for h as follows:

V = ⊕
λ∈Ψ

Vλ,

where Ψ is the set of λ ∈ h∗ such that λ ≠ 0 and Vλ ≠ 0, and

Vλ = {v ∈ V ∣ h ⋅ v = λ(h)v for all h ∈ h}.

Definition 2.6. Maintain the notation of the previous paragraph. The decom-
position of V is known as the weight space decomposition. The elements λ ∈ Ψ
are known as weights with corresponding weight space Vλ. The elements of Vλ
are known as weight vectors of weight λ.

The concept of a minuscule system in the following definition is not standard,
and is introduced in [1].
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Definition 2.7. Let ∆ be the set of simple roots of a simple Lie algebra g.
Suppose that Ψ is the set of elements dual to the Cartan subalgebra h of g, such
that for all α ∈ ∆ and λ ∈ Ψ,
(i) ⟨λ,α⟩ ∈ {−1,0,1}, and
(ii) ⟨λ,α⟩ = −1 if and only if λ + α ∈ Ψ, ⟨λ,α⟩ = 1 if and only if λ − α ∈ Ψ, and
⟨λ,α⟩ = 0 if and only if λ ± α ∉ Ψ.
We say that Ψ is a minuscule system with respect to the simple system ∆.

Definition 2.8. Let Ψ be a minuscule system with respect to the simple system
∆ and let λ ∈ Ψ. We define bλ to be the vector indexed by λ, and we define VΨ

to be the k-vector space with basis bΨ, where

bΨ = {bλ ∣ λ ∈ Ψ}.
Definition 2.9. We define the action of the Serre generators on VΨ by specifying
a k-linear endomorphism on the elements of bΨ, such that for all λ ∈ Ψ,

eαi ⋅ bλ =
⎧⎪⎪⎨⎪⎪⎩

bλ+αi if λ + αi ∈ Ψ;

0 otherwise.

fαi ⋅ bλ =
⎧⎪⎪⎨⎪⎪⎩

bλ−αi if λ − αi ∈ Ψ;

0 otherwise.

hαi ⋅ bλ = ⟨λ,αi⟩bλ.
These maps impose the structure of a g-module on VΨ, where g has base

∆. This is because by construction, VΨ has a basis of weight vectors for the
Cartan subalgebra h of g. However, this is not a sufficient condition, as we
must also show that the axioms of Definition 2.2 are satisfied. That is, we
must check that (x ⋅ y − y ⋅ x) ⋅ v = [x, y] ⋅ v for all x, y ∈ g and all v ∈ VΨ.
It is enough to show that this holds for all Serre generators of g and all basis
elements of VΨ, because every element in g can be expressed as iterated brackets
and linear combinations of the Serre generators, and every element in VΨ can
be expressed as linear combinations of its basis elements. It then follows by
induction, bilinearity in [ , ], and linearity in VΨ that this holds for all elements
of g and VΨ. The calculations for this are done in [1], and we introduce this
result in the following theorem.

Theorem 2.10. Let Ψ be a minuscule system with respect to the simple system
∆, and let g be the corresponding simple Lie algebra. The C-vector space VΨ

has the structure of a g-module, where the Serre generators act on VΨ as in
Definition 2.9.

Proof. This is proved in [1, §3].

Definition 2.11. Let Ψ be a minuscule system with respect to the simple
system ∆. We define a partial order ⪯ on Ψ such that µ ⪯ λ if and only if
λ − µ = ∑

αi∈∆
aiαi, where ai ∈ Z and ai ≥ 0. We say that Ψ has highest weight λh

if µ ⪯ λh for all µ ∈ Ψ. Similarly, we say that Ψ has lowest weight λl if λl ⪯ µ
for all µ ∈ Ψ.
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Definition 2.12. Let h be the Cartan subalgebra of the simple algebra g with
base ∆, spanned by elements {hαi ∣ αi ∈ ∆} as defined in Theorem 1.27. Let
{ωi ∣ αi ∈ ∆} be the basis of h∗ dual to {hαi ∣ αi ∈ ∆}. That is, ωi(hαj) = δij .
The weights ωi are known as fundamental weights.

We can now introduce a well known result which classifies all finite dimen-
sional irreducible modules.

Proposition 2.13. (i) Let g be a simple Lie algebra over C. If λ is a nonnega-
tive Z-linear combination of the fundamental weights ωi then up to isomorphism
there is a unique finite dimensional irreducible g-module L(λ) where vλ is of
weight λ and is the unique nonzero highest weight vector of L(λ). The modules
L(λ) are pairwise nonisomorphic and exhaust all finite dimensional irreducible
modules of g.
(ii) Suppose that V is a finite dimensional g-module containing a nonzero high-
est weight vector vλ of weight λ, and that dim(V ) = dim(L(λ)). Then V is
isomorphic to L(λ).

Proof. Part (i) is a special case of [5, Theorem 10.21]. Part (ii) is proved in [1,
Proposition 1.4 (ii)].

We are now able to define the spin modules.

Definition 2.14. Maintain the notation of Proposition 2.13.
The spin module for the simple Lie algebra of type Bn (for n ≥ 2), is the algebra
L(ωn−1). By [6, 60.E.2], it has dimension 2n.
The two spin modules for the simple Lie algebra of type Dn (for n ≥ 4), are
the modules L(ωn−2) and L(ωn−1). By [6, 60.E.2], each of the modules has
dimension 2n−1.

According to [5, Proposition 10.17], the fundamental weights can be obtained
by the formula

ωi =∑
j

(A−1)jiαj ,

where (A−1)ji is the (j, i)th entry of the inverse of the Cartan matrix associated
with a fixed base ∆. This motivates the following result.

Lemma 2.15. Let h be the Cartan subalgebra of the simple Lie algebra so(2l +
1,C) with base ∆B, as defined in 1.27. The fundumental weights of h are given
by the following:

ωi =
i

∑
j=0

(j + 1)αj +
n−i−1

∑
k=1

(i + 1)αi+k

= α0 + 2α1 + ⋅ ⋅ ⋅ + (i + 1)αi + (i + 1)αi+1 + ⋅ ⋅ ⋅ + (i + 1)αn−1

= ε0 + ε1 + ⋅ ⋅ ⋅ + εi−1
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for 0 ≤ i < l − 1, and

ωn−1 =
1

2

n−1

∑
i=0

(i + 1)αi

= 1

2
α0 + α1 + ⋅ ⋅ ⋅ +

n

2
αn−1

= 1

2
ε0 +

1

2
ε1 + ⋅ ⋅ ⋅ +

1

2
εn−1.

Proof. The inverse of the Cartan matrix associated with ∆B is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ ⋯ 1 1
1 2 2 ⋯ 2 2
1 2 3 ⋯ 3 3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 2 3 ⋯ 2l 2l
1
2

1 3
2

⋯ 2l−1
2

2l−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which yields the identity matrix when multiplied by the Cartan matrix in
Lemma 1.26 (i). The fundumental weight ωi is obtained by summing all of
the simple roots αi ∈ ∆B with respect to the fixed order, with coefficients from
the ith row. This induces the above equations, completing the proof.

Lemma 2.16. Let h be the Cartan subalgebra of the simple Lie algebra so(2l,C)
with base ∆D, as defined in 1.27. The fundumental weights of h are given by
the following:

ωi =
i

∑
j=0

(j + 1)αj +
l−i−3

∑
k=1

(i + 1)αi+k +
1

2

l−1

∑
j=l−2

(i + 1)αj

= α0 + 2α1 + ⋅ ⋅ ⋅ + (i + 1)αi + (i + 1)αi+1 + ⋅ ⋅ ⋅ + (i + 1)αl−3 +
i + 1

2
αl−2 +

i + 1

2
αl−1

= ε0 + ε1 + ⋅ ⋅ ⋅ + εi−1

for 0 ≤ i < l − 2, and

ωl−2 =
1

2

l−3

∑
i=0

(i + 1)αi + (l)αn−1 + (l − 1)αn−1

= 1

2
α0 + α1 + ⋅ ⋅ ⋅ +

l − 2

2
αl−3 + (l)αl−2 + (l − 1)αl−1

= 1

2
ε0 +

1

2
ε1 + ⋅ ⋅ ⋅ +

1

2
εl−3 +

1

2
εl−2 −

1

2
εl−1

ωl−1 =
1

2

l−3

∑
i=0

(i + 1)αi + (l − 1)αn−1 + (l)αn−1

= 1

2
α0 + α1 + ⋅ ⋅ ⋅ +

l − 2

2
αl−3 + (l − 1)αl−2 + (l)αl−1

= 1

2
ε0 +

1

2
ε1 + ⋅ ⋅ ⋅ +

1

2
εl−3 +

1

2
εl−2 +

1

2
εl−1.
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Proof. The inverse of the Cartan matrix with respect to ∆D is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ ⋯ 1 1
2

1
2

1 2 2 ⋯ 2 1 1
1 2 3 ⋯ 3 3

2
3
2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
1 2 3 ⋯ l − 2 l−2

2
l−2
2

1
2

1 3
2

⋯ l−2
2

l l − 1
1
2

1 3
2

⋯ l−2
2

l − 1 l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which yields the identity matrix when multiplied by the Cartan matrix in
Lemma 1.26 (ii). The the rest of the proof follows the same argument as in
Lemma 2.15.

Lemma 2.17. Let h∗ be the dual space of the Cartan subalgebra h, of the simple
Lie algebra of type Bn. Define ΨB to be the subset of h∗ consisting of all vectors
of the form

±1

2
ε0 ±

1

2
ε1 ⋅ ⋅ ⋅ ±

1

2
εn−2 ±

1

2
εn−1.

Then ΨB is a minuscule system with respect to ∆B.

Proof. We must show that the axioms of Definition 2.7 are satisfied. Suppose

first that αi ∈ ∆B for some 0 ≤ i < n − 1, and let λ ∈ ΨB . Write λ =
n−1

∑
i=0

ciεi. We

note that ci − ci+1 ∈ {−1,0,1}, as ci, cj ∈ {± 1
2
}. The proof is a case by case check

according to the values of ci and ci+1. There are three cases to check.
The first possibility is that ci = ci+1. This implies that ⟨λ,αi⟩ = 0, as αi is

orthogonal to λ. The coefficients of εi and εj in λ ± αi differ by 3
2

in absolute
value, which means that λ ± α ∉ ΨB , satisfying the conditions of Definition 2.7.

The second possibility is that ci = − 1
2
= −ci+1. This implies that ⟨λ,αi⟩ = −1.

The coefficients of εi and εi+1 in λ + αi differ by 1, and differ by −2 in λ − αi.
This means that λ + αi ∈ ΨB and λ − αi ∉ ΨB , satisfying the conditions of
Definition 2.7.

The third possibility is that ci = 1
2
= −ci+1. An analysis like the previous

paragraph shows that ⟨λ,αi⟩ = 1 and λ−αi ∈ ΨB , λ+αi ∉ ΨB . This satisfies the
conditions of Definition 2.7.

It remains to show that Definition 2.7 is satisfied in the case i = n − 1.
There are two cases to check, according to the value of cn−1. If cn−1 = 1

2
, then

⟨λ,αi⟩ = 1, and λ − αi has − 1
2

as the coefficient of εn−1, whereas λ + αn−1 has

coefficient of 3
2

of εn−1, satisfying the conditions of Definition 2.7. For the case
of cn−1, a similar argument shows that Definition 2.7 is satisfied, completing the
proof.

Lemma 2.18. Let h∗ be the dual space of the Cartan subalgebra h of the simple
Lie algebra of type Dn. Let Ψ+

D and Ψ−
D be the subsets of h∗ consisting of all

vectors of the form

±1

2
ε0 ±

1

2
ε1 ⋅ ⋅ ⋅ ±

1

2
εn−2 ±

1

2
εn−1,
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with an even and odd number of occurences of − 1
2
εi respectively. Then Ψ+

D and
Ψ−
D are minuscule systems with respect to the simple system ∆D.

Proof. We prove this for Ψ+
D and Ψ−

D respectively. For the proof of Ψ+
D, suppose

first that αi ∈ ∆D for some 0 ≤ i < n − 1. Write λ =
n−1

∑
i=0

ciεi. The proof follows

an argument similar to Lemma 2.17.
It remains to show that Definition 2.7 is satisfied when i = n − 1. There are

three cases to check, according to the values cn−2 and cn−1. The first possibility is
that cn−2 = −cn−1 This implies that ⟨λ,αn−1⟩ = 0. The coefficients cn−2 and cn−1

of λ±αn−1 differ by 3
2

in absolte value, satisfying the conditions of Definition 2.7.

The second possibility is that cn−2 = cn−1 = − 1
2
. This implies that ⟨λ,αi⟩ =

−1. The coefficients cn−2, cn−1 in λ+αn−1 are both 1
2
, and the same coefficients

in λ − αn−1 are both − 3
2
, which satisfies the conditions of Definition 2.7.

The third possibility is that cn−2 = cn−1 = 1
2
. This follows a similar argument

to the case cn−2 = cn−1 = − 1
2
, satisfying Definition 2.7 and completing the proof

for Ψ+
D.

We now prove this for Ψ−
D. Suppose first that αi ∈ ∆D for some 0 ≤ i ≤ n− 3

or i = n − 1. The proof follows a similar argument to the first three cases of
Lemma 2.17.

Now, suppose that i = n − 2. The proof follows the same argument as above
for Ψ+

D in the case i = n − 1, satisfying the conditions of Definition 2.7 and
completing the proof.

To construct the spin modules, we desire the sets ΨB , Ψ+
D, and Ψ−

D to be
closed under negation, and therefore introduce the following Lemma.

Lemma 2.19.
(i) The set ΨB is closed under negation.
(ii) The sets Ψ+

D and Ψ−
D are closed under negation if and only if they are subsets

of dual spaces of dimension 2n.

Proof. For part (i), it is clear that the negative of any vector of ΨB is also of
the form ± 1

2
ε1 ± ⋅ ⋅ ⋅ ± 1

2
εn.

For part (ii), suppose Ψ+
D is a subset of a dual space of dimension n, and

λ ∈ Ψ+
D. By Definition 2.18, λ has an even number of negative coefficients, say

2x, and n−2x positive coefficients. Therefore, if n is odd, −λ will contain an odd
number of negative coefficients. The same argument applies to Ψ−

D, completing
the proof.

Corollary 2.20. The set ΨB has highest weight

λ = 1

2

n−1

∑
i=0

εi.

Proof. To satisfy Definition 2.11, we must show that the difference between λ
and and any other weight in ΨB is a nonnegative integer linear combination of
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simple roots. Since every coefficient in λ is positive, its difference with another
weight will be a linear combination of the vectors εi,0 ≤ i ≤ n−1 with coefficients
1 or 0. This is obviously a linear combination of the positive roots of the
set b ⊂ ΦB , defined in Proposition 1.20 and derived in Proposition 1.22. By
Definition 1.19, these are in turn nonnegative integer linear combinations of
simple roots, which satisfies Definition 2.11 and completes the proof.

Corollary 2.21. The sets Ψ+
D has highest weight

λ = 1

2

n−1

∑
i=0

εi.

Proof. Suppose that µ ∈ Ψ+
D. To satisfy Definition 2.11, we must show that λ−µ

is a nonnegative integer linear combination of simple roots. Since we require
Ψ+
D to be closed under negation, n is even by Lemma 2.19. Furthermore, since λ

consists entirely of components with coefficient 1
2
, this implies that λ−µ has an

even number of components with positive coefficient 1 and an even number of
components with coefficient 0. This is clearly a nonnegative linear combination
of the positive roots of the set b ⊂ ΦD, defined in Proposition 1.21 and derived
in Proposition 1.23. Since by Definition 1.19 the elements of b are in turn a
nonnegative linear combination of simple roots, this satisfies Definition 2.11
and completes the proof.

Corollary 2.22. The set Ψ−
D has highest weight

λ = 1

2

n−2

∑
i=0

εi −
1

2
εn−1.

Proof. Suppose that µ ∈ Ψ−
D. To satisfy Definition 2.11, we must show that λ−µ

is a nonnegative integer linear combination of simple roots. Since we require
Ψ+
D to be closed under negation, by Lemma 2.19 n is even. There are two cases

to check, according to the coefficient of εn−1 in µ.
Suppose first that the coefficient is 1

2
. By Definition 2.18, this implies that

there is an odd number of components εi with coefficient − 1
2

in µ, where 0 ≤ i ≤
n−2. Since the components εi of λ have positive coefficients 1

2
where 0 ≤ i ≤ n−2,

and − 1
2

when i = n − 1, λ − µ results in an odd number of coefficients of 1 for
εi where 0 ≤ i ≤ n − 2, and one coefficient of −1 for εn−1, whereas the rest of
the coefficients are 0. This is clearly a nonegative integer linear combination
of the positive roots of the sets b,m ⊂ ΦD, defined in Proposition 1.21 and
derived in Proposition 1.23. Since by Definition 1.19 the positive roots are
in turn a nonnegative integer linear combination of simple roots, this satisfies
Definition 2.11.

It remains to check the case where the coefficient of εn−1 in µ is − 1
2
. In this

case, µ contains an even number of occurences of 1
2
εi, such that 0 ≤ i ≤ n − 2.

Therefore, the components of λ − µ have an even number of coefficients of 1,
whereas all other coefficients are 0. Thus, this is clearly a nonnegative integer
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linear combination of the positive roots in the set b ⊂ ΦD, defined in Proposi-
tion 1.21. The rest of the proof follows the same argument as the previous case,
thereby satisfying Definition 2.11 as required.

We now have all the tools to explicitly construct the modules.

Theorem 2.23.
(i) The module VΨB

is the spin module of type of type Bn.
(ii) The module VΨB

is irreducible.

Proof. By Theorem 2.10, VΨB
is a module for the simple Lie algebra of type

Bn. It has dimension 2n because it consists of n vector components each with
a positive or negative coefficient of 1

2
. By Corollary 2.20, the highest weight

vector of VΨB
is equal to the highest weight vector of the spin module defined

in Definition 2.14 and derived in Lemma 2.15. Therefore, by Proposition 2.13
(ii), the modules are isomorphic. Furthermore, by Proposition 2.13 (i), VΨB

is
irreducible.

Theorem 2.24.
(i) The modules VΨ+

D
and VΨ−

D
are the two spin modules of type Dn.

(ii) The modules VΨ+
D

and VΨ−
D

are irreducible.
(iii) The modules VΨ+

D
and VΨ−

D
are nonisomorphic.

Proof. The dimension of VΨ+
D

and VΨ−
D

is 2n

2
= 2n−1 as they each have an odd

and even number of occurrences of − 1
2
εi, respectively. The proof for parts (i)

and (ii) follows the same argument as Theorem 2.23. By Proposition 2.13 (i),
the modules are nonisomorphic.

We note that the spin modules VΨ+
D

and VΨ−
D

are not defined for Dn when
n is odd, as by Lemma 2.19, they are not closed under negation.

3 Main Result

In this section we define a bilinear form on the spin modules constructed in
the previous section. We show that this bilinear form is g-invariant, and is the
unique g-invariant bilinear form up to multiplication by a nonzero scalar on
these modules. We then introduce our original results. We define equations
for the height of weights of the spin modules and use them to prove that the
bilinear form alternates between orthogonal and symplectic depending on the
dimension of its underlying Lie algebra.

Definition 3.1. A bilinear form on a k-vector space V is a map

B ∶ V × V → k

that is linear in both components.
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Definition 3.2. Let B be a bilinear form on a k-vector space V . The radical
of B is the set rad(B) = {v ∈ V ∣ B(v,w) = 0 for all w ∈ V }. A bilinear form B
is nondegenerate if rad(B) = 0.

Example 3.3. Let V = Rn be the euclidean vector space of dimension n. The
usual dot product is a bilinear form on V . Furthermore, it is nondegenerate as
the only element orthogonal to every vector is 0.

Definition 3.4. Let g be a Lie algebra over a field k with characteristic ≠ 2,
and let B be a bilinear form on the g-module V .
(i) The bilinear form B is said to be g-invariant if B(g ⋅ v,w) +B(v, g ⋅ w) = 0
for all g ∈ g, v,w ∈ V .
(ii) The bilinear form B is said to be orthogonal if it is nondegenerate and
B(v,w) = B(w, v) for all v,w ∈ V .
(iii) The bilinear form B is said to be symplectic if it is nondegenerate and
B(v,w) = −B(w, v) for all v,w ∈ V.

Lemma 3.5. Suppose that the k-vector space V is a g-module, and suppose B
is a g-invariant bilinear form on V . Then rad(B) is a submodule of V .

Proof. It is clear that rad(B) is a subspace of V , because B is linear in the first
entry. Therefore, the proof reduces to showing that the subspace is invariant
under the action of the elements of g.
Suppose that r ∈ rad(B), g ∈ g, and w ∈ V . Then B(g ⋅ r,w) = −B(r, g ⋅ w) = 0,
completing the proof.

Lemma 3.6. Let bΨ be a basis for the g-module VΨ over k, and let S be the set
of generators for g. Suppose B is a bilinear form on VΨ such that

B(s ⋅ bλ, bµ) +B(bλ, s ⋅ bµ) = 0 for all s ∈ S, bλ, bµ ∈ bΨ.

Then B is g-invariant.

Proof. We show that the above property holds on the bracket of generators of g.
Since every element of g can be expressed by iterated linear combinations and
brackets of the elements of S, and every element of VΨ can be expressed as a
linear combination of the elements of bΨ, it follows by induction and bilinearity
in B, and [ , ], that B is g-invariant. Let s, t ∈ S, and u, v ∈ bΨ. We have:

B([s, t] ⋅ v,w) +B(v, [s, t] ⋅w)
= B((s ⋅ t − t ⋅ s) ⋅ v,w) +B(v, (s ⋅ t − t ⋅ s) ⋅w)
= B(s ⋅ t ⋅ v,w) −B(v, t ⋅ s ⋅w) +B(v, s ⋅ t ⋅w) −B(t ⋅ s ⋅ v,w)
= B(s ⋅ t ⋅ v,w) −B(v, t ⋅ s ⋅w) +B(v, s ⋅ t ⋅w) −B(t ⋅ s ⋅ v,w)
= B((s ⋅ t ⋅ v,w) +B(t ⋅ v, s ⋅w)) − (B(t ⋅ v, s ⋅w) +B(v, t ⋅ s ⋅w))
+ (B(v, s ⋅ t ⋅w) +B(s ⋅ v, t ⋅w)) − (B(s ⋅ v, t ⋅w) +B(t ⋅ s ⋅ v,w))

= 0,

completing the proof.
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Definition 3.7. Let µ be an element of one of the sets ΨB ,Ψ
+
D, or Ψ−

D, with
highest weight λh. We define the height of µ, denoted ∣µ∣, such that

∣µ∣ = ∑
αi∈∆

ai, where µ + λh = ∑
αi∈∆

aiαi.

Definition 3.7 introduces unconventional notation for the height of µ for
convenience, which is well defined in this special case due to Lemma 2.19.

Corollary 3.8. Maintain the notation of Definition 3.7.
The height of −µ is given by

∣ − µ∣ = ∣λh∣ − ∣µ∣

Proof. By Definition 3.7, ∣ − µ∣ = ∑
αi∈∆

ai such that

∑
αi∈∆

aiαi = −µ + λh

= (λh + λh) − (µ + λh),

implying

∑
αi∈∆

ai = ∣λh∣ − ∣µ∣

as required.

Definition 3.9. Let Ψ be a minuscule system with respect to the simple system
∆. We define a bilinear form on VΨ by specifying its effect on the elements of
the basis bΨ of VΨ, such that for all bλ, bµ ∈ bΨ,

Bg(bλ, bµ) ∶=
⎧⎪⎪⎨⎪⎪⎩

(−1)∣λ∣ if λ = −µ;

0 otherwise.

Proposition 3.10. The bilinear form Bg is g-invariant.

Proof. Let S be the set of Serre generators of g. By Lemma 3.6, it is sufficient
to show that the property Bg(s ⋅bλ, bµ)+Bg(bλ, s ⋅bµ) = 0 is satisfied for all s ∈ S
and bλ, bµ ∈ bΨ. We prove this in three parts, by showing that the condition is
satisfied for all hαi , eαi , and fαi ∈ S, respectively.

The first part reduces to a cases by case check on the value of λ relative to
µ. There are two cases to check. First, suppose that λ ≠ −µ. We then have

Bg(hαi ⋅ bλ, bµ) +Bg(bλ, hαi ⋅ bµ) = ⟨λ,αi⟩Bg(bλ, bµ) + ⟨µ,αi⟩Bg(bλ, bµ)
= ⟨λ,αi⟩(0) + ⟨µ,αi⟩(0)
= 0,
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as required by Definition 3.9. For the second case, assume that λ = −λ. We have

Bg(hαi ⋅ bλ, b−λ) = ⟨λ,αi⟩Bg(bλ, b−λ)
= −⟨−λ,αi⟩Bg(bλ, b−λ)
= −Bg(bλ, hαi ⋅ b−λ),

Thus,
Bg(hαi ⋅ bλ, b−λ) +Bg(bλ, hαi ⋅ b−λ) = 0

as required by Definition 3.9.
We proceed to check that the condition is satisfied for all eαi ∈ S. As above,

this reduces into two cases according to the values of λ in relation to µ. First,
suppose for all i that λ + αi ≠ −µ. This is equivalent to −λ ≠ µ + αi. We have

Bg(eαi ⋅ bλ, bµ) +Bg(bλ, eαi ⋅ bµ) = Bg(bλ+αi , bµ) +Bg(bλ, bµ+αi)
= 0

by Definition 3.9. Now, suppose that for all i, λ + αi = −µ. We then have

Bg(eαi ⋅ bλ, b−(λ+αi)) = Bg(bλ+αi , b−(λ+αi))
= (−1)∣λ+αi∣

= (−1)∣λ∣+1

= −(−1)∣λ∣

= −Bg(bλ, b−λ)
= −Bg(bλ, eαi ⋅ b−(λ+αi)),

as required by Definition 3.9. The proof for the elements fαi follows the same
argument as for eαi , which completes the proof.

Proposition 3.11. The bilinear form Bg is nondegenerate on VΨB
, VΨ+

D
, and

VΨ−
D

.

Proof. Let VΨ denote VΨB
, VΨ+

D
or VΨ−

D
, and suppose for a contradiction that

rad(Bg) ≠ 0. By Proposition 3.10, Bg is g-invariant. Therefore, by Lemma 3.5
rad(Bg) is a submodule of VΨ. However, by Theorems 2.24 and 2.23, VΨ

is irreducible, which by assumption implies that rad(Bg) = VΨ. By Defini-
tions 2.17 and 2.18, VΨ is not zero, and by Corollary 2.19 it is closed under
negation. Therefore, there exists an element bλ ∈ VΨ such that Bg(bλ, b−λ) =
(−1)∣λ∣ ≠ 0, which is a contradiction that implies rad(Bg) = 0, as required by
Definition 3.11.

Theorem 3.12. The bilinear form Bg is the unique g-invariant bilinear form
on VΨ up to multiplication by a nonzero scalar.

Proof. We prove this in two steps, first by showing g invariance imposes the
condition Bg(bλ, bµ) = 0 unless λ = −µ. We then show that Bg alternates sign as
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the weights increase or decrease by adding or subtracting a simple root, which
satisfies Definition 3.9.

Suppose B is a g-invariant bilinear form on VΨ. Then we must have

Bg(hαi ⋅ bλ, bµ) + (bλ, hαi ⋅ bµ) = 0 for all hαi ∈ S and bλ, bµ ∈ bΨ.

This implies

0 = ⟨λ,αi⟩Bg(bλ, bµ) + ⟨µ,αi⟩Bg(bλ, bµ)
= ⟨λ + µ,αi⟩Bg(bλ, bµ).

Since the dot product ⟨ , ⟩ is nondegenerate and the elements αi form a basis,
this implies

0 = Bg(bλ, bµ),

or

0 = λ + µ
λ = −µ,

as required.
Now, suppose that λ − αi ∈ Ψ where αi ∈ ∆. The action of eαi ∈ S gives the

following:

Bg(bλ, b−λ) = Bg(eαi ⋅ bλ−αi , b−λ)
= −Bg(bλ−αi , eαi ⋅ b−λ)
= −Bg(bλ−αi , b−(λ−αi)).

By Lemmas 2.20, 2.21, and 2.22, every element µ ∈ Ψ can be written as the
highest weight λ minus a nonnegative integer linear combination of positive
roots, ci ∈ Z. Therefore, it follows by induction that

Bg(bµ, b−µ) = (−1)ciBg(bλ, b−λ) = (−1)∣µ∣Bg(bλ, b−λ) for all µ ∈ Ψ,

as required.

The following results are original.

Definition 3.13. Let Ψ be a minuscule system with respect to the simple
system ∆, and let λ ∈ Ψ. We define the following:

bλi ∶=
⎧⎪⎪⎨⎪⎪⎩

i if εn−i in λ has coefficient of positive 1
2
,

0 otherwise.

dλi ∶=
⎧⎪⎪⎨⎪⎪⎩

i if εn−i−1 in λ has coefficient of positive 1
2
,

0 otherwise.
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Proposition 3.14. Let λ ∈ ΨB.

The height of λ is given by the function f(λ) =
n

∑
i=1
bλi .

Proof. Let λ ∈ ΨB , and let k equal the height of λ. We prove our claim by
induction on k. Let λl ∈ Ψ denote the lowest weight. For the base case k = 0,

we show that that f(λl) = 0. The weight λl = − 1
2

n−1

∑
i=0

εi. Since every coefficient

of εi in λl is negative, by Definition 3.13 every number bλi = 0, and therefore
f(λ) = 0 = k, as required.

For the inductive step, suppose that for some k > 0, k equals the height
of λ, and that f(λ) = k. We wish to show that there is an αi ∈ ∆ such that
λ − αi ∈ ΨB , and such that f(λ − αi) = k − 1.

By Definition 2.17, λ = ±
n−1

∑
i=0

εi. This is a case by case check according to the

sign of coefficients of the component vectors of λ. There are two cases to check.
First, suppose that the sign of all of the coefficients is positive. Then sub-

tracting the root αn−1 from λ yields

(1

2
ε1 + ⋅ ⋅ ⋅ +

1

2
εn−1) − εn−1 =

1

2
ε1 + ⋅ ⋅ ⋅ +

1

2
εn−2 −

1

2
εn−1 ∈ ΨB .

Since f is defined in terms of the value of coefficients of components, we can
restrict our analysis only to those coefficients that change. The only coefficients
which changed were those of εn−1. Therefore, by Definition 3.13,

bλn−1 = 1 and b(λ−αn−1)n−1 = 0,

and
f(λ − αn−1) = f(λ) − 1 = k − 1,

as required.
For the second case, suppose that λ has coefficients of components not all

positive. Then there exist components in λ such that 1
2
εi − 1

2
εi+1 for some

0 ≤ i < n − 2, or 1
2
εn−1. This is a case by case check on each component. There

are two cases. The first case for 1
2
εn−1 follows a similar argument as case one

above, satisfying f .
For the second case, suppose λ has components 1

2
εi − 1

2
εi+1. We claim that

λ − αi ∈ ΨB . As above, we can restric our analysis only to components that
change. A direct check shows

(1

2
εi −

1

2
εi+1) − (1

2
εi −

1

2
εi+1) = −

1

2
εi +

1

2
εi+1 ∈ ΨB ,and

bλi = n − i, bλi+1 = 0, b(λ−αi)i = 0, b(λ−αi)i+1 = n − i − 1

Thus, f(λ) = f(λ − αi) − 1 = k − 1 as required, exhausting all possibilities and
completing the proof.
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Proposition 3.15. Let λ ∈ ΨB. The height of −λ is given by f(−λ) =
n

∑
i=1
i−bλi .

Proof. By Corollary 3.8, the height of −λ is given by ∣ − λ∣ = ∣λh∣ − ∣λ∣, where λh
is the highest weight. Therefore, using the equation of Proposition 3.14,

∣ − λ∣ = ∣λh∣ − ∣λ∣

=
n

∑
i=1

i −
n

∑
i=0

bλi

=
n

∑
i=1

i − bλi .

Example 3.16. Let λ ∈ ΨB , where Bn is such that n = 5.
Suppose λ = − 1

2
ε1 + 1

2
ε2 − 1

2
ε3 − 1

2
ε4 + 1

2
ε5.

Then bλ1 = 0, bλ2 = 4, bλ1 = 0, bλ1 = 0, bλ1 = 1, and the heights of λ and −λ are

∣λ∣ = f(λ) =
n

∑
i=1

bλi = 4 + 1 = 5

∣ − λ∣ = f(−λ) =
n

∑
i=1

i − bλi
= 1 + (2 − 4) + 3 + 4 + (5 − 1) = 10,

respectively.

Proposition 3.17. Let λ ∈ Ψ+
D or Ψ−

D.

The height of λ is given by g(λ) =
n−1

∑
i=0

dλi .

Proof. The proof follows a similar argument to Proposition 3.14, and is therefore
omitted.

Proposition 3.18. Let λ ∈ Ψ+
D or Ψ−

D.

The height of −λ is given by g(−λ) =
n−1

∑
i=0

i − dλi .

Proof. The proof follows an argument similar to Proposition 3.15, and is there-
fore omitted.

Lemma 3.19. Let n ∈ Z.
If n = 0 or 3 (mod 4), then (n)(n+1)

2
= 0 (mod 2).

If n = 1 or 2 (mod 4), then (n)(n+1)
2

= 1 (mod 2).

Proof. This is a case by case check on the value of n. There are four cases to
check.
Let n = 0 (mod 4). Then n = 4x for some x ∈ Z. We then have,

(4x)(4x + 1)
2

= (2x)(4x + 1) = 0 (mod 2)
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.
Let n = 3 (mod 4). Then n = 4x + 3. Thus,

(4x + 3)(4x + 4)
2

= (4x + 3)(2x + 2) = 2(4x + 3)(x + 1) = 0 (mod 2).

Let n = 1 (mod 4). Then n = 4x + 1. Thus,

(4x + 1)(4x + 2)
2

= (4x + 1)(2x + 1) = 1 (mod 2)

as each component of the product is odd.
Finally, let n = 2 (mod 4). Then n = 4x + 2. Thus,

(4x + 2)(4x + 3)
2

= (x + 1)(4x + 3) = 0 (mod 2)

as above, completing the proof.

Lemma 3.20. Let λ ∈ ΨB, for the orthogonal Lie algebra of type Bn.
(i) If n = 0 or 3 (mod 4), then ∣λ∣ = ∣ − λ∣ (mod 2).
(ii) If n = 1 or 2 (mod 4), then ∣λ∣ = 1 + ∣ − λ∣ (mod 2).
Proof. (i) Let n = 0 or 3 (mod 4). By Proposition 3.14 we have

∣λ∣ =
n

∑
i=1

pλi (mod 2)

= 0 −
n

∑
i=1

pλi (mod 2),

by Lemma 3.19,

= (n + 1)(n)
2

−
n

∑
i=1

pλi (mod 2)

=
n

∑
i=1

i −
n

∑
i=1

pλi (mod 2)

=
n

∑
i=1

i − pλi (mod 2),

by Proposition 3.15,

= ∣ − λ∣ (mod 2)

which proves part (i).
(ii) Now, let n = 1 or 2 (mod 4). By Proposition 3.14 we have

∣λ∣ =
n

∑
i=1

pλi (mod 2)

= 0 −
n

∑
i=1

pλi (mod 2),
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by Lemma 3.19,

= 1 + (n + 1)(n)
2

−
n

∑
i=1

pλi (mod 2)

= 1 +
n

∑
i=1

i −
n

∑
i=1

pλi (mod 2)

= 1 +
n

∑
i=1

i − pλi (mod 2),

by Proposition 3.15,

= 1 + ∣ − λ∣ (mod 2),

which proves part (ii) and completes the proof.

Lemma 3.21. Let λ ∈ Ψ+
D or Ψ−

D, for the orthogonal Lie algebra of type Dn.
(i) If n = 0 (mod 4), then ∣λ∣ = ∣ − λ∣ (mod 2).
(ii) If n = 2 (mod 4), then ∣λ∣ = 1 + ∣ − λ∣ (mod 2).

Proof. The proof follows an argument similar to Lemma 3.20, and is therefore
omitted.

We now have all the tools to prove our main results.

Theorem 3.22. Let g be the simple Lie algebra of type Bn, and let VΨB
be its

corresponding spin module. Let Bg be the g-invariant bilinear form on VΨB
.

(i) If n = 0 or 3 (mod 4),Bg is orthogonal.
(ii) If n = 1 or 2 (mod 4),Bg is symplectic.

Proof.
(i) Let n = 0 or 3 (mod 4). Then by Lemma 3.20 we have

Bg(bλ, b−λ) = (−1)∣λ∣

= (−1)∣λ∣ (mod 2)

= (−1)∣−λ∣ (mod 2)

= (−1)∣−λ∣

= Bg(b−λ, bλ).

By Proposition 3.11, Bg is nondegenerate on VΨB
. Therefore, Bg is orthogonal.
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(ii)Let n = 1 or 2 (mod 4). Then by Lemma 3.20 we have,

Bg(bλ, b−λ) = (−1)∣λ∣

= (−1)∣λ∣ (mod 2)

= (−1)1+∣−λ∣ (mod 2)

= (−1)1+∣−λ∣

= −(−1)∣−λ∣

= −Bg(b−λ, bλ).

By Proposition 3.11, Bg is nondegenerate on VΨB
. Therefore, Bg is symplectic.

Theorem 3.23. Let g be the simple Lie algebra of type Dn, where n is even, and
let VΨ+

D
and VΨ−

D
be its corresponding spin modules. Let Bg be the g-invariant

bilinear form on VΨ+
D

and VΨ−
D

.
(i) If n = 0 (mod 4), Bg is orthogonal.
(ii) If n = 2 (mod 4), Bg is symplectic.

Proof.
(i) Let n = 0 (mod 4). Then by Lemma 3.21 we have

Bg(bλ, b−λ) = (−1)∣λ∣

= (−1)∣λ∣ (mod 2)

= (−1)∣−λ∣ (mod 2)

= (−1)∣−λ∣

= Bg(b−λ, bλ).

By Proposition 3.11, Bg is nondegenerate on VΨ+
D

and VΨ−
D

. Therefore, Bg is
orthogonal.

(ii)Let n = 2 (mod 4). Then by Lemma 3.21 we have

Bg(bλ, b−λ) = (−1)∣λ∣

= (−1)∣λ∣ (mod 2)

= (−1)1+∣−λ∣ (mod 2)

= (−1)1+∣−λ∣

= −(−1)∣−λ∣

= −Bg(b−λ, bλ).

By Proposition 3.11, Bg is nondegenerate on VΨ+
D

and VΨ−
D

. Therefore, Bg is
symplectic.
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