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Abstract 

While electricity demand is rising quickly in the Southern African Power Pool 

(SAPP), the nations involved struggle to build the necessary infrastructure to meet the 

demand. In addition, the principal member—the Republic of South Africa—has made 

ambitious targets to reduce emissions via renewable energy technology. In this dissertation, 

three stand-alone studies on this subject are presented that address the future reliability of 

renewable energy in southern Africa, considering climate variability as well as long-term 

trends caused by climate change. In the first study, a suite of models are used to assess the 

vulnerability of the countries dependent on resources from the Zambezi River Basin to 

changes in climate. The study finds that the sectors most vulnerable to climate change are: 

hydropower in Zambia, irrigation in Zimbabwe and Mozambique, and flooding in 

Mozambique. In the second study, hourly reanalysis data is used to characterize wind power 

intermittency and assess the value of interconnection in southern Africa. The study finds that 

wind potential is high in Kenya, central Tanzania, and southern South Africa. With a closer 

look, wind power resource in South Africa is unreliable (i.e. intermittent) and is weak when 

power demand is highest on all relevant time-scales. In the third study, presented in Chapter 4, 

we develop a risk profile for changes in the long-term mean of wind and solar power sources. 

To do this, we use a statistical relationship between global mean temperature and each local 

gridded wind speed and solar radiation from the GCMs. We find that only small changes in 

wind speed and solar radiation are predicted in the median of the distributions projected to 

2050. Furthermore, at the extremes of the distribution, relatively significant changes are 



iv 
 

predicted in some parts of southern Africa, and are associated with low probability. Finally, 

in the conclusion chapter, limitations and assumptions are listed for each of the three studies, 

South Africa’s options for reducing emissions are revisited, power trade and interconnection 

are discussed broadly, and future research is suggested.  
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CHAPTER 1     

INTRODUCTION 

As the threat of climate change builds, there is a push towards lower emissions. 

Ironically, the energy sources available with no emissions are usually climate dependent, 

which is especially the case for wind, solar, and hydro resources. Even with our advances in 

the fields of climate measurement and modeling, much of our past climate variability remains 

mysterious. Furthermore, as future climates begin to behave less like past climates, modeled 

predictions of changes in the long-term future state are attractive for national energy 

investment planning. These undertakings are complicated for wealthy countries with excess 

funds for research, development and measurement, as well as a reliable base of existing 

infrastructure. For developing countries, on the other hand, planning of this nature poses a 

different set of obstacles—funds are limited and infrastructure is sparse or nonexistent, so 

minimizing costs and maximizing benefits, as well as avoiding investment risk, are 

paramount. Methods of original policy development geared toward the needs of these nations 

need to be developed that consider the full academic spectrum—namely climate science, 

engineering, and economics. 

Access to modern energy is one of the basic preconditions of development and 

poverty reduction. Many developing countries have the potential to produce substantial 

amounts of renewable energy. In fact, the majority of these countries could produce much 

more electricity than they currently use, or will need in the near future, from accessible 

renewable sources—specifically hydro, wind, solar, and biomass. Furthermore, once the 

infrastructure needed to tap into these sources has been built, these countries would no longer 

be reliant on foreign oil and natural gas, making them less vulnerable to global price 

variability. However, taking advantage of these renewable sources requires significant up-
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front cost and careful planning. Also, investing in these resources means taking on the risks 

of technologies that are not well tested on a large scale, which is especially the case with 

harvesting solar and wind power, or causing adverse effects to the natural ecosystem, as is 

often the case with hydropower. In addition, the climate is unpredictable and climate 

dependent resources do not always produce electricity when households or industries wish to 

use it, which can result in unexpected blackouts and the need to build expensive quick-start 

units such as gas-fired plants. Herein lies the tension. Is it cost-effective for developing 

countries to invest in climate dependent renewable resources? What are the risks and what are 

the hidden costs? The beginning of answering these questions lies in understanding the local 

climate behavior from a renewable energy planning perspective. Southern Africa, in 

particular, provides a unique and diverse region for unpacking these issues, as well as the 

beginning of uncovering viable solutions.  

In the following chapters, future reliability of the major climate-dependent renewable 

resources for southern Africa is assessed, considering state-of-the-art science and engineering 

in three separate but related studies, which are described in Chapters 2-4 of this manuscript. 

In Chapter 1, the dissertation is introduced, providing general motivation as well as the 

current and potential state of hydro, solar, and wind resources in southern Africa. The first 

study, which is contained in Chapter 2, evaluates the impact of climate change on the 

Zambezi Basin, with emphasis on future hydropower reliability. The second study is 

presented in Chapter 3, where the goal is to characterize wind intermittency in southern 

Africa and evaluate the possibility of interconnecting wind farms as a way to mitigate 

intermittency. The third study attempts to evaluate the risk of climate change on wind and 

solar resources in southern Africa, and is presented in Chapter 4. And finally, in Chapter 5, I 

summarize and conclude the three studies as well as suggest a way forward.    
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Figure 1: Map of the Southern African Power Pool (SAPP 2012) 

Current state of the power sector in southern Africa 

In sub-Saharan Africa, renewable energy, specifically hydropower, plays a unique 

role. As shown, many of the nations rely almost entirely on a few large hydropower plants for 

energy production. The continent is divided into either three or four power pools: West 

African Power Pool, East African Power Pool, Southern African Power Pool (SAPP), and 

Central African Power Pool (CAPP, often combined with SAPP). This study focuses on the 

Southern Africa Development Community (SADC) because this list of countries has been 

well established. The SADC includes all of the countries part of the SAPP at the time this 

manuscript was written. Table 1 shows the generation mix for the major utility companies in 
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this region that reported data to the SAPP for the most recent annual report. There are four 

utilities not shown in this table, two of which only produce power through hydro, and one of 

which is a transmission-only utility. As shown in Table 1, all but three of these utilities rely 

on hydropower for the majority of their power generation. However, Eskom, the state-owned 

power company in South Africa, produces the majority of electricity in this region using coal-

fired plants. Eskom produces 45% of the electricity used in Africa as a whole (Ekom 2013), 

and close to 80% of the electricity used in southern Africa (SADC 2012). 

Table 1: SAPP Utility Generation Mix for hydro and coal, installed capacity, and peak 
demand in 2011 

Utility  Country Installed 
Capacity (MW) 

Base Load 
Hydro 

Coal  Peak Demand in 
2011 (MW) 

BPC Botswana 202 0% 65% 542 
EDM Mozambique* 233 91% 0% 616 
ENE Angola 1,508 64% 22% 870 
ESCOM Malawi 287 100% 0% 277 
Eskom South Africa 44,170 5% 86% 36,664 
LEC Lesotho 72 100% 0% 125 
NamPower Namibia 393 61% 34% 611 
SEC Swaziland 70 88% 13% 200 
SNEL DRC 2,442 100% 0% 1,050 
TANESCO Tanzania 1,008 50% 0% 890 
ZESA Zimbabwe 2,045 37% 63% 2,029 
ZESCO Zambia** 1,812 99% 0% 1,562 
This shows the utility generation mix of hydro and coal, the remainder includes nuclear, CCGT (combined cycle 
gas turbine), or distillate (oil). Data is for 2011 / 12 based on data reported in SAPP (2012).  
* Data for HCB (with installed capacity of 2,075 MW) or MATRACO, both in Mozambique, are not included in 
these values 
** Data for the Copperbelt Energy Coorporation (ITC) or Lunsemfwa Hydro Power Company (LHPC), both in 
Zambia, are not included in these values 

The countries in southern Africa will need to invest about 2-3% of GDP annually at 

least through 2015 to meet the growing power demand (Rosnes and Vennemo 2008). 

Understandably, power reliability is a constant struggle in southern Africa. Most of the 

people in these countries who are connected to the electric grid frequently experience 

blackouts due to a limited or unreliable electricity supply. Even the wealthiest country in the 
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region, South Africa, struggles to meet demands. In fact, South Africa has a long history of 

rolling blackouts (i.e. load shedding), the most recent of which occurred in 2007 and 2008 

and was attributed to a lack of funds and poor planning. In spite of these shortcomings in 

South Africa, the Department of Energy has adopted aggressive national renewable energy 

targets. These aspirations are particularly noteworthy given that the country is heavily reliant 

on energy-intensive industry and coal-fired electricity. Of course, these plans are likely 

politically motivated, where the hope is to give South Africa a reputation as an 

environmentally friendly nation. One can certainly imagine the benefits of such a reputation. 

However, investments in national renewable energy infrastructure are not likely cost-

effective, and the true cost of such a massive revamping of the energy sector is highly 

uncertain.  

With 80% of the electricity capacity of the Southern Africa Power Pool (SAPP 2012), 

South Africa is one of the most carbon-intensive countries in the world (DEA 2011). 

Economic growth has been driven largely by the abundance of local coal resources, which 

currently satisfies about 77% of South Africa’s primary energy needs (DOE 2011). The 

accessibility of coal has resulted in a dependence on low-cost coal-fired electricity, energy 

intensive mining, and heavy industry (Alton et al. 2012). Regardless, the South African 

government aims to reduce greenhouse gas emissions significantly, hoping to cut down on 

emissions by 42% by 2025 compared to a business-as-usual scenario (RSA 2010), and the 

Department of Energy in South Africa plans to achieve 30% clean energy by 2025 (DOE 

2011). In order to satisfy these goals, enormous changes in infrastructure must take place. 

One essential change in infrastructure is a move from coal-fired electricity to electricity 

generated from renewable sources—namely biofuels, wind, solar, and imported hydropower. 

The major players in the electricity sector of South Africa are Eskom and the Department of 
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Energy. Eskom generates approximately 95% of the electricity used in South Africa and 45% 

of the electricity used in Africa, and was converted from private to public in 2002 (Eskom 

2012). With stakes in the Cohora Bassa hydroelectric scheme in Mozambique, South Africa 

can import 1,400MW firm energy plus an additional 300MW non-firm energy (Wilson and 

Adams 2006). Although renewable sources are occasionally used for rural areas that cannot 

feasibly connect to the national grid, commercially viable renewable energy capacity is not 

yet exploited on a large scale. Domestic hydropower capacity is small compared to other 

sources—less than 2% of current energy production—and has been almost fully developed 

(DEA 2011).  

Renewable energy potential in southern Africa 

Renewable energy potential in southern Africa is abundant. The area can be split into 

two regions. In the “hydro northern network,” including both the Congo and Zambezi basins, 

potential is primarily in hydropower. In the “thermal southern network,” which includes 

Botswana, Namibia, South Africa, Lesotho, and Swaziland, power potential lies in the vast 

coal reserves in South Africa, as well as the promising solar energy potential in the area 

around the Kalahari Desert (SAPP 2013). Of course, wind power potential is not included in 

this regionalization, which exists mostly in South Africa and in the East in Tanzania and 

Kenya. 

Hydropower potential: Of the estimated 1.16 Million GWh/yr technically feasible 

hydropower potential in Africa, only about 0.10 Million GWh/yr are utilized (intpow 2010). 

The Zambezi has an estimated potential of 13,000 MW of hydropower generation capacity, 

with almost 5,000 MW installed. A total of 53 projects have been proposed which would 

increase installed capacity by 7,300 MW for a potential production of firm power from 
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22,776 to 43,000 GWh/year, and increase average energy production from 30,000 to 60,000 

GWh/year (World Bank 2010). In the Congo basins, there are currently about 40 hydropower 

plants constructed, the majority of which are small (Showers 2009). The largest single 

untapped resource is the Inga, located near the mouth of the Congo River in the Democratic 

Republic of the Congo. The Inga includes 4 dams, 2 existing and 2 planned, which together 

make the largest single resource of hydropower in the world. The Grand Inga, the largest of 

the 4, is estimated to have 324,900 GWh of gross energy capacity, when constructed 

(Tshome and Ferreira 2007).  

Wind Power Potential: In this region, only small, experimental wind farms have been 

constructed. Most of these are in South Africa where there are currently 3 that are operational, 

although there are a few large-scale wind farms in planning. The largest of which is the Sere 

Wind Farm, which is proposed to be built near the city of Vredendal in the Western Cape 

(Savannah Environmental 2007). Based on mean wind speed calculated from the MERRA 

data, shown in Figure 2, wind resource potential is highest in Kenya, central Tanzania, and 

southern South Africa, with scattered moderate potential throughout Namibia, Botswana, 

Zambia, Zimbabwe and Mozambique. Angola and the DRC, as well as the countries in the 

northwest of the map, have low wind power potential.    
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Figure 2: Mean wind speed for southern Africa, calculated from the MERRA data 

 

Solar Power Potential: Also using the MERRA data, the mean of near-surface solar 

radiation was calculated for this region and is shown in Figure 3. This value is often used to 

demonstrate solar resource potential. As shown, there are basically two areas of high 

potential: one in the northeast of the map, including mostly Tanzania and Kenya; and one in 

the southwest of the map, including mostly Namibia, Botswana, and Zimbabwe, with the 

edges of the region stretching to Angola and South Africa. Again, South Africa has shown 

the most interest in investing in solar power infrastructure. Eskom has recently invested in 

planning a 100 MW CSP plant in the Northern Cape near the city of Upington (Eskom 2012), 

and the South African government is promoting a 5,000 MW solar park, also to be built in the 

Northern Cape (Zawilska et al. 2012). 
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Figure 3: Geographic variation of mean incident solar radiation (W/m2) over southern Africa 
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CHAPTER 2     

IMPACT OF CLIMATE CHANGE ON CROPS, IRRIGATION AND HYDROPOWER IN 

THE ZAMBEZI BASIN 

 

Abstract: Reliance on observed weather patterns for future investment in basic infrastructure 

planning (e.g. irrigation schemes, hydropower plants, roads, etc.) has been questioned 

considerably in recent years. For this reason, efforts to study the impacts of a changing future 

climate based on climate projections from Global Circulation Models (GCMs) has been 

popular, where the Coupled Model Intercomparison Project (CMIP) models, used in the 

Intergovernmental Panel for Climate Change (IPCC) Assessment Reports, are typically used. 

Studies tend to focus either on climate sensitivity, ignoring specific GCM predictions, or an 

effort is made to select a set of GCMs for use in an impact study. Here, we present a method 

for quantifying the impacts on biophysical measures—surface water supply, crop production, 

flooding events, and hydropower generation—of the Zambezi Basin countries using a large 

pool (6,800) of climate projections, which are based on the full set of the CMIP-3 GCMs and 

projected to 2050. This study estimates that, due primarily to increases in near-surface 

temperatures and reductions in precipitation, the Zambezi Basin will experience risks 

associated with drought. Surface water availability will reduce, rainfed crop yields will 

decrease, irrigation demand will increase, damaging floods will happen more often, and 

hydropower generation will decrease basin-wide–although these results vary considerably 

both spatially and throughout the distribution of future climates. Studies like this can help 

decision makers develop an informed risk-based strategy for national policy decisions and 

help to direct further studies where local detail is considered.   
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Introduction 

There has been a growing interest in better understanding the economic impacts of 

climate change on future investment in areas with a large potential for basic infrastructure 

growth. Due to the lack of existing development in these areas, options for planning are 

numerous and the present decisions are principal to future economic progress. Also, these areas 

tend to have a limited set of historical records both spatially and temporally, which presents 

problems. Past studies have typically involved one of two approaches: (1) a climate sensitivity 

analysis on existing or planned infrastructure using a wide, unguided range of future climate 

possibilities (e.g., Kurukulasuriya 2006, Wilks 1992); or (2) use of select Global Circulation 

Models (GCMs) from the Coupled Model Intercomparison Project (CMIP) used in the 

Intergovernmental Panel for Climate Change (IPCC) fourth Assessment Reports applied directly 

to assess the impacts of climate change resulting in a limited set of future scenarios (e.g., Liu et. 

al 2013, Arndt et. al 2010, World Bank 2009, Immerzeel 2008).   

In this study, we present a method for quantifying the impacts on biophysical measures 

(surface water supply, crop production, flooding events, and hydropower generation) of the 

Zambezi Basin countries using a large pool (6,800) of climate projections, which are based on 

the full set of the IPCC AR4 GCMs. The Zambezi River Basin in southern Africa provides a 

problem area suitable for this type of study both because of the hydrologic and agricultural 

importance for the people who live in the basin and due to previous studies concluding that the 

impact of climate change will be economically significant (World Bank 2010).  
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This study is divided into four interdependent efforts: climate scenario analysis, surface 

water modeling, crop modeling, and water resource modeling. This division is used in the 

following sections: materials and methods in section 2, results and discussion in section 3, and 

the conclusion in section 4.     

Spatial scale of the analysis 

The majority of the basin is contained in four countries: Malawi, Mozambique, Zambia, 

and Zimbabwe. Regionalization, spatial resolution and aggregation are adapted separately to 

meet two different sub-goals of this study. The first, water resource modeling, splits the Zambezi 

Basin into 29 hydrologically significant sub-basins as shown in Figure 4. The second 

regionalizes the study area using politically and economically significant boundaries (primarily 

by country borders, and secondarily splitting each country into regions), as shown in Figure 5. 

 

Figure 4: Sub-basin division of Zambezi River basin with superimposed half-degree grids 
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Figure 5: Political division of Zambezi river basin by country boundaries and sub-regions with a 
superimposed 1-degree square grid  

 

Climatology overview 

The Zambezi is a large, multi-country basin that spans portions of southern Africa and is 

characterized by great seasonal climatic swings, from rainy to dry, which are highly variable 

from year to year.  The climate in these four countries varies from hyper-arid in western Zambia 

to semi-humid in Malawi and northern Mozambique. This region experienced food shortages 

caused primarily by drought in the 1980s and 1990s, which stressed the importance of research 
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and planning in the area of food and water security. Mean annual precipitation ranges from about 

500 to over 1,200 mm/year, with an average for the basin of about 925 mm/year. The larger 

amounts of rainfall occur around Lake Malawi in Tanzania, while the west of the basin near 

Botswana and Namibia is drier (FAO 2011). The seasonality in the basin is characterized by a 

strong, 4 to 6-month rainy season when the Inter Tropical Convergence Zone moves over the 

basin from the north around October and continues through the valley until around March 

(Beilfus and dos Santos 2001).   

Biophysical background 

Agriculture is essential for most of these economies and accounts for a significant portion 

of GDP, including about 50% in Zimbabwe and 20% in Mozambique. 85% of the 5.2 million ha 

of cultivated land in the Zambezi Basin is contained in Malawi, Zambia, and Zimbabwe– only 

about 180,000 ha of which are equipped for irrigation (World Bank 2010).  

Agriculturally, the year is split into two productive seasons—a wet summer season and a 

dry winter season. The average cereal yield is about 1 tonne per hectare basin-wide, while some 

estimate a potential irrigated yield of 5 to 8 tonnes per hectare (World Bank 2010). Over 100 

irrigation projects have been proposed in the basin, which would, in total, increase the equipped 

irrigated area by 366,000 ha., effectively tripling the irrigated area. Still, irrigated agriculture in 

the basin would remain far short of the total potential, which FAO estimates to be more than 3 

million ha (Tilmant et al. 2010). Given the importance of agriculture to local economies, the 

need for food security, current dependence on subsidence agriculture, and the irrigation potential 

in the basin, investment in irrigation infrastructure will be an important issue in future planning.  
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Hydropower is another greatly untapped resource in the basin. Currently there is nearly 

5,000 MW of installed hydropower generation capacity in the region, while the potential is 

estimated to be about 13,000 MW (World Bank 2010). Although hydropower has many 

advantages compared to other energy sources, there are many challenges as well: environmental 

sensitivity, complications related to reservoir filling, dependence on an uncertain climate, high 

capital costs of the infrastructure, and losses through evaporation, which are estimated by Beck 

and Bernauer (2011) to be as large as 10 percent of total potential basin flow, relative to a river 

with no manmade reservoirs). Given the high demands for electricity, a total of 53 projects have 

been proposed which would increase installed capacity by 7,300 MW for a potential production 

of firm power from 22,776 to 43,000 GWh/year, and increase average energy production from 

30,000 to 60,000 GWh/year (World Bank 2010).  

Material and methods 

Climate scenarios 

Monthly near-surface temperature and precipitation data at a half-degree by half-degree 

spatial scale were obtained from the Climatic Research Unit (CRU) of East Anglia (Mitchell and 

Jones 2005). The data are available for 1901-2002, but only the data from 1951 to 1990 were 

used in this study. Daily climate data, required for the crop modeling, were sourced from the 

Land Surface Hydrology Research Group at Princeton University (Sheffield et al. 2006) in 

August 2011. These data are at a scale of 1-degree by 1-degree and are corrected to match the 

CRU mean monthly data.  
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The future climate scenarios used in this study are based on GCM ensemble results from 

the CMIP-3, but are expanded to represent a larger range of possible outcomes following that of 

previous work (Schlosser et al. 2011). The MIT Integrated Global Systems Model (IGSM; Reilly 

et al. 2012) developed near-surface temperature and precipitation projections to 2050 at the zonal 

spatial scale. A Taylor expansion technique, described by Schlosser et al. (2011), was used to 

expand from the zonal level of detail in the longitudinal direction. This transformation requires 

the construction of climate-change pattern kernels, which vary through time as global 

temperature changes. The full ensemble of climate change projections is produced through a 

numerical hybridization of the IGSM zonal trends with pattern kernels of regional climate 

change from the IPCC AR4 models. This ensemble of future climate projections is called 

“hybrid frequency distributions” (HFDs). Using this framework, 6,800 climate projections are 

produced for each of the five CO2 emissions policy scenarios, although only the “unconstrained 

CO2 emissions” scenario is used in this analysis. In order to reach a reasonable computation time 

for all subsequent modeling, the number of projections was reduced using the methods described 

in Arndt et al. (2012), which reduced the climate projection pool to 421 statistically significant 

scenarios. The changes in climate were calculated as changes in precipitation and near-surface 

temperature, and were then applied to the historical data on a monthly basis. This technique 

maintains the daily distribution of precipitation by adding the changes proportionally by daily 

intensities. In this study, future climate changes from 2011 to 2050 are used in the modeling 

efforts described in the remainder of this section. Although climate change is predicted to be 

more drastic after 2050, a 40-year planning horizon is apt for investment decisions. 
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Runoff model 

Runoff modelling converts the climate changes into changes in surface water availability 

important for the water resource modelling endeavour. Surface water runoff was modeled with 

the rainfall-runoff model CLIRUN-II, the latest available model in a family of hydrologic models 

developed specifically for the analysis of the impact of climate change on runoff, first proposed 

by Kaczmarek (1993). CLIRUN-II models runoff with a lumped watershed defined by climate 

inputs and soil characteristics averaged over the entire watershed, simulating runoff at a gauged 

location at the mouth of the catchment. For this analysis, a monthly time step is used to simulate 

the runoff from provided weather variables.  

CLIRUN-II has adopted a two-layer approach following the framework of the SIXPAR 

hydrologic model (Gupta and Sorooshian 1983, 1985).  Although CLIRUN-II can model 

headwater catchments or interflow catchments, interflow catchments were modeled in this study 

for the sake of accuracy in the calibration process. In the observed runoff data, many of the 

interflow basins had negative flows over long periods likely caused by the many wetlands in the 

Zambezi Basin. Negative flows cannot be modeled in CLIRUN-II. An extension to CLIRUN-II, 

“CLIRUN-II-WET”, was developed to better model the losses caused by the wetland areas. The 

model simulates wetland hydrology based on the work of Sutcliffe and Park (1987) for the White 

Nile Sudd wetland, Yates and Strzepek (1998) for the White Nile wetlands generally, and 

Kashaigili et al. (2006) for the Usangu Plains wetlands in Tanzania. The wetland area is modeled 

in each catchment using a reservoir-based hydrologic response, where the estimated ET and 

runoff at the catchment is used to simulate the water balance, including inflow, outflow and 

storage.  
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A unique conditional calibration procedure was used to determine the coefficient values 

that characterize each of the 29 catchments. This procedure optimizes via a pattern search 

algorithm developed by MATLAB minimizing the sum of square errors of the simulated and 

observed runoff. This parameter estimation requires observed runoff at each catchment outflow. 

The observed runoff was provided by Charly Cadou through personal communication.  

Crop model 

The purpose of the following analysis is to assess the changes in crop yields (to be used 

in economic models in subsequent work to assess investment opportunity), and to estimate 

changes in irrigation demands to feed into the water resource model.  Nine crops were chosen to 

represent the agriculture sector across all four countries. The 9 crops are maize, wheat (used to 

represent other cereals), cassava (used to represent root crops), horticulture (i.e. a generic 

vegetable crop), tobacco, cotton, sugarcane, and tea (used to represent other export crops). A 

variation of the CliCrop model (Fant et al. 2012) was used to estimate the variability of the 

impact on crop water requirement and rainfed crop yields caused by the range of climate 

projections present in the HFDs. 

The CliCrop model is an attempt to balance accuracy and simplicity with an emphasis on 

estimating the effects of the changing climate on irrigation demand and rainfed crop yield. 

CliCrop is a generic crop water deficit model. The version of CliCrop used in this study uses the 

soil properties and precipitation amount to calculate the infiltration using a version of the USDA 

Curve Number method (USBR 1993). The model then calculates the soil moisture in each soil 
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layer, calculates the amount of moisture allowed to percolate into the deep soil layers, and 

calculates a yield coefficient at the end of the growing season. 

The effects of climate on crop production are modeled by estimating water stress on 

crops. Water stress is related to the estimate of evapotranspiration (ET), and more specifically, 

the extent by which the actual ET (AET) falls short of the crop demand ET (DET). In CliCrop, a 

yield ratio (Y) is reported as a measure of water stress. Y is calculated from a set of yield ratios 

(y) representing the ratio of actual yield to a theoretical maximum yield, and is based on the ratio 

of AET to PET. The theoretical maximum yield is the yield obtained in the complete absence of 

water stress. Four yield ratios are calculated, one for each of the four development stages (d): 

initial, crop development, mid-season, and late season (Allen, et al. 1998). y is weighted using a 

yield response factor (K), as follows:  

𝑦! = 1− 𝐾! 1− !"#!
!"#!

    (EQ-1) 

The final reported yield ratio (Y) is calculated using the multiplicative model proposed 

by Rao et al (1988). 

𝑌 = 𝑦!    (EQ-2) 

Here, Y represents the ratio of actual yield to the theoretical maximum yield due to water 

stress, and therefore, is unitless. This value is reported for each year of the simulation. 

Actual ET is calculated as a function of precipitation, temperature, PET, soil moisture, 

root depth, crop type, and atmospheric CO2 concentration. This calculation is done each day, for 

each soil layer. The model uses a daily form of the Modified Hargreaves equation to calculate 

PET (Farmer et al. 2011). Soil moisture is calculated using a bucket-type scheme similar to the 
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method used in the SWAT model (Neitsch et al. 2005), details are given in Fant et al. (2012). 

Crop specific parameters similar to the ones used in CROPWAT (Allen et al. 1998) are used in 

this calculation, as well as in the calculation of the daily ET crop demand. The atmospheric CO2 

concentration affects the daily ET crop demand, which follows the methods explained in 

Rosenzweig and Iglesias (1998). The crop parameters are adjusted from year to year using 

methods developed by Allen et al. (1998)–adjusting crop ET demand–and Wahaj et al. (2007)–

adjusting crop stage durations, which estimate the local crop’s reaction to deviations from 

“average” climate conditions.  

The rainfed yield shocks are used in economic modeling in subsequent studies and the 

changes in irrigation demand are used in the water resource model, discussed next.  

Water resource system model 

The water resource modeling in this study attempts to simulate the sequence of existing 

and planned reservoir activity and demand nodes along the system. The focus of this modeling 

effort is on three main indicators of future impact: assessing possible changes in flood risks, the 

operation of major hydropower plants, both existing and planned, and maintaining agricultural 

production, taking into account changing irrigation demands over time. Three demand types, or 

nodes, are modeled throughout the system, which are in competition for water dependent on the 

sequence (upstream/downstream). The node types are municipal and industrial (M&I) water use, 

hydropower generation, and irrigation withdrawal. M&I demands increase over time, consistent 

with projections used in the World Bank Economics of Adaptation to Climate Change study 

(EACC; World Bank 2009). Hydropower production is calculated for existing and planned 
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projects based on expected investment and construction schedule using the relevant scenario data 

from the World Bank study (2010). And the existing and planned irrigation infrastructure 

changes over time are also obtained from World Bank (2010). The analysis projects 

perturbations, or “shocks,” to hydropower production and irrigated crop yield resulting from 

these conflicts from 2011 to 2050 across the Zambezi Basin using the Water Evaluation And 

Planning (WEAP) model (Sieber and Purkey 2007), the software for integrated water resources 

planning. WEAP provides a mathematical representation of the river basins encompassing the 

configuration of the main rivers and their tributaries, the hydrology of the basin in space and 

time, existing as well as potential major diversion schemes, and the various demands for water.   

Computations are performed on a monthly time scale for 40 years for a base-case 

scenario (i.e., no climate change) and the HFD climate change scenarios. Each climate change 

scenario is characterized by unique inflows, evaporation, and irrigation demand. Unmanaged 

inflows are modeled using CLIRUN-II; the output runoff projections from CLIRUN-II are used 

as the available runoff in WEAP.   

Surface water inflows from CLIRUN-II were used as inflows to an aggregated river in 

each basin modeled in WEAP. Water supplies and demands are linked between upstream and 

downstream basins, and reservoirs, irrigation, and municipal and industrial demand locations 

were sequenced consistent with their actual locations. If hydropower is generated in a basin, the 

reservoir and turbine characteristics are calibrated to ensure that the power produced is validated 

with historical values. While the reservoir and aggregate demands are physically located within 

each basin, they are not located to represent any specific reservoir or demand site. In Section 3.4, 

the indicator results are discussed from this analysis.  
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Results and Discussion 

Future climate scenarios 

Median changes in temperature are fairly uniform across the basin, showing an increase 

between 1.5 and 2 degrees Celsius by the later half of the 2040s (see Figure 6). The coastal 

regions tend to show slightly less warming, while the temperature in the western regions is 

predicted to increase about 0.2 degrees Celsius. The distribution tails generally range from 

slightly less than 1 degree to about 3 degrees. Alternatively, changes in annual precipitation vary 

considerably across the basin with a tendency toward a precipitation decrease basin-wide (see 

Figure 7); although, in northern Malawi and northeastern Zambia, the median precipitation is 

predicted to be between a 3% and 8% increase. The remaining regions in the basin countries 

generally show a median reduction in precipitation ranging from almost no change to around 8% 

less, while the tails of the distribution show an alarming range of about -20% to +20% basin 

wide.  
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Figure 6: Climate scenario distribution of near-surface temperature (in °C) over the political 
regions of the four Zambezi Basin countries averaged over the last 5 years simulated, 2046-2050 
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Figure 7: Climate scenario distribution of percent changes in precipitation over the political 
regions of the four Zambezi Basin countries averaged over the last 5 years simulated, 2046-2050 

 
Changes in Climate Moisture Index (CMI) are shown in Figure 8. The CMI is an 

indicator of aridity, which depends on average annual precipitation and average annual Potential 

Evapotranspiration (PET). If PET is greater than precipitation, the climate is considered to be dry, 

whereas if precipitation is greater than PET, the climate is wet. When PET is greater than 

precipitation, CMI = (Precip./PET)-1, and when precipitation is greater than PET, CMI = 1-

(PET/Precip.). A CMI of –1 is very arid, and a CMI of +1 is very humid. As a ratio of two depth 

measurements, CMI is dimensionless. As shown in the figure, almost all of the Zambezi country 

regions are predicted to be drier in more than half of the climate scenarios. Only the three 
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northernmost regions are predicted to be wetter, while the driest are predicted in the regions 

around the mouth of the Zambezi River in Mozambique.  

 

Figure 8: Climate scenario distribution of changes in Climate Moisture Index (CMI) over the 
political regions of the four Zambezi Basin countries averaged over the last 5 years simulated, 

2046-2050 

 

Runoff modeling results 

The precipitation and near-surface temperature data described above (the HFD approach), 

along with potential ET calculated using the Modified Hargreaves equation (Hargreaves et al. 

2003) were used to represent the future climate scenarios. The percent change in mean annual 

runoff, aggregated to 5 major basins, is shown in Figure 9. In this figure, the baseline mean 
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annual runoff is shown as a proxy for the hydrologic significance of each basin. The majority of 

the climate scenarios predict an increase in runoff in the Shire River Basin and basically no 

change in the Zambezi at Cahora Bassa, while the remaining three basins are showing a very 

likely decrease in runoff. The Upper Zambezi, where almost half of the runoff is generated, is 

predicted to dry in over 68% of the climate scenarios. Based on this analysis, the flows in the 

Zambezi Basin as a whole are likely to decrease, suggesting adverse impacts associated with 

drought. These results will be used in the water resource modeling, discussed in Section 3.4.  

 

 

Figure 9: Climate scenario distribution results of the predicted percent change in runoff for the 
five major sub-basins of the Zambezi Valley averaged over the last 5 years simulated, 2046-2050 
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Crop modeling results 

Using the same baseline scenario (1951-1990) as the runoff analysis, the changes in 

climate variables were adjusted based on the future projections to produce a range of possible 

impacts on the agriculture sector. The average predicted changes in the rainfed yield for the 

Zambezi countries are shown in Figure 10. This study suggests a decrease in rainfed yield for all 

of the crops in at least 75% of the climate projections. Figure 11 shows the changes in rainfed 

yield for maize across all of the four countries. Compared to the baseline scenario, rainfed yields 

are predicted to be worse for Zimbabwe and Mozambique than for Malawi and Zambia, although 

all countries show a decrease in yield. The range of impacts for Zimbabwe is drastic, from 

almost -30% to +30%, which makes planning for the future difficult. Figure 12 shows that the 

irrigation demand is predicted to increase by the 2040s for all of the 9 crops modeled in more 

than 75% of the climate scenarios. The distribution of the changes in irrigation demand for 

sugarcane is shown for the four Zambezi counties in Figure 13. There is only a slight difference 

across the countries where Malawi’s irrigation demand is predicted to change the least, and 

Zimbabwe the most, due to much stronger drying in the southwest than the northeast of the 

Zambezi Basin.  
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Figure 10: Climate scenario distribution of the four-country mean percent change in the rainfed 
yield of all Crops for the Zambezi countries averaged over the last 5 years simulated, 2046-2050 

 

 

Figure 11: Climate scenario distribution of the country mean percent change in the rainfed yield 
of Crops for the Zambezi countries averaged over the last 5 years simulated, 2046-2050 
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Figure 12: Climate scenario distribution of the four-country mean percent change in the 
irrigation demand of all Crops for the Zambezi countries averaged over the last 5 years 

simulated, 2046-2050  

 

 

Figure 13: Climate scenario distribution of the country mean percent change in the irrigation 
demand of all Crops for the Zambezi countries averaged over the last 5 years simulated, 2046-

2050  
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Water resource modeling results 

Three measures are used here to present the changes in predicted impacts to the 

hydrologic system: maximum monthly runoff predictions, used as an indicator for changes in 

flood risk; hydropower generation changes; and the changes to the unmet irrigation demand. 

First, percent change in maximum monthly runoff is shown by country mean in Figure 14. Since 

the nature of the analysis restricts us to monthly changes in runoff, the indicators presented here 

correspond to large-scale (typically causing river inundation) flooding events rather than local 

flash flooding events, which occur on a shorter time-scale. As shown, flooding impact is 

predicted to increase in Malawi for the majority of the climate scenarios with a range from -20% 

to +40%. In Zimbabwe, flooding is predicted to decrease significantly in most of the climate 

scenarios, although there is a long, thin tail reaching an alarming 150% increase. Mozambique 

and Zambia both show a fairly normal distribution somewhat centered on no change, but the 

range (-20% to +30%) does favor an increase in flooding events. Using a Gumbel distribution 

fitting, we can make claims on the recurrence of damaging flood events. Figure 15 shows the 

recurrence of high-damage flood events, greater than the 50-year event intensity, could increase 

significantly in Mozambique, according to this study. Considering that 1 high-damage flood 

event occurs in the base scenario, Mozambique is likely to have a significant increase in high-

damage flood events in the future with a likelihood of triple the base occurrence, and a tail that 

suggests there will be between 6 and 8 times more high-damage flood events. 
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Figure 14: Climate scenario distribution of the percent change in maximum monthly runoff (used 
as an indicator for changes in flood events) is shown by country mean over the last 5 years 

simulated, 2046-2050  

 

 

Figure 15: Distribution of flooding events over the 50-year return period intensity in 
Mozambique normalized by regions. The black line represents the base scenario 
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The impacts on hydropower generation by country are presented in Figure 16. Malawi is 

the only country where a positive impact is predicted in the majority of scenarios. Alternatively, 

in Zambia, hydropower generation is predicted to decrease in most of the future climates. With 

runoff decreasing in Zambia in the west, upstream of the majority of the hydropower plants, 

these results are expected. In Zimbabwe, where hydropower is generated downstream of Zambia, 

hydropower production is predicted to decrease slightly in most of the scenarios, suggesting that 

no significant impact would be expected. In Mozambique, where there are a few large 

downstream hydropower plants, there is expected to be no significant change in energy 

production. The reservoirs behind these hydropower plants are large, with significant storage, 

and they are downstream of a large portion of the Zambezi Basin dampening the resulting inflow 

changes. Further, the hydropower demand is small in proportion to the generating capacity. If 

power trade with neighboring countries were considered, these results might change since 

Mozambique would likely export excess power when the electricity price is high. With these 

results, we can see that the upstream hydropower plants located in Zambia and Malawi are much 

more sensitive to changes in local runoff, while the downstream plants located in Zimbabwe and 

Mozambique are less sensitive, since they have the luxury of a large contributing area–where a 

combination of increasing and decreasing runoff is expected.  
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Figure 16: Climate scenario distribution of the percent change in hydropower generation is 
shown by country mean over the last 5 years simulated, 2046-2050  

 

The impacts on irrigation availability are presented as the changes in shortage volume, 

where the shortage volume is defined as the volume of water delivered to the irrigation node in 

the WEAP model subtracted from the volume of water demanded by the particular irrigation 

node. In the upstream countries, Malawi and Zambia, the irrigation shortage remained 

insignificant in almost all of the scenarios (i.e., the amount of water delivered equaled the 

amount of water demanded). Due to mostly increasing predicted runoff in Malawi, and very 

small irrigation shortages in the base scenario, the impact of climate change on irrigated 

agriculture is expected to be small. In Zambia, the effect on irrigation demands is also expected 
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to be small which is mostly attributed to the spatial distribution of irrigation schemes (i.e., areas 

with more irrigation demands are drying less than areas with more hydropower generation 

capacity). In contrast, irrigation shortage in Zimbabwe and Mozambique is affected negatively 

by the predicted drying. Figure 17 shows the distributions for Zimbabwe and Mozambique, 

where here an increase infers a negative impact. In Zimbabwe, irrigation shortage is predicted to 

increase about 25% (between 5% and 50%) in most of the scenarios with a full range from a 50% 

decrease to a 75% increase. For Mozambique, the impacts are predicted to be less severe where, 

again, the decrease in runoff in the west is balanced in part by the increases in runoff in the north. 

But the impacts to Mozambique are predicted to be negative in more than 98% of the scenarios 

with the most common around 15%.  

 

Figure 17: Climate projection distribution of the percent change in irrigation shortage in 
Mozambique (left) and Zimbabwe (right)  
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Conclusions 

Based on this study of the Zambezi valley system, the future climate is likely to be drier 

in the basin as a whole, although there is a tendency toward a wetter climate in a small section in 

the north. Drier climate means more risk related to drought impact. We have quantified how a 

range of predicted climate (with a tendency toward drying) will likely reduce surface water 

availability basin-wide, increase irrigation demand, and decrease rainfed crop yields. And finally, 

using a water resource system model, we have shown a range of possible impacts on 

economically significant outcomes, namely changes in flood probability, hydropower generation, 

and unmet irrigation demand. Of the four countries in the region, Malawi is the least sensitive to 

climate change. Based on the study, the only concern for Malawi is a slight increase in flood risk. 

Alternatively, Zambia is predicted to experience losses in terms of hydropower generation, 

caused mostly by expected decreases in runoff in the west, as well as upstream irrigation 

demands. Also, large increases in flooding risk are not likely but possible for the country as a 

whole. In Zimbabwe, since hydropower plants are mostly upstream of the irrigation projects, 

changes in hydropower generation are not likely to be impacted, although there is about an equal 

chance of increase as decrease. In contrast, the future irrigation investments could be at risk of 

water shortage. The impacts to Mozambique are likely to be fairly mild because it has the benefit 

of a large contributing area with varying types of impact (both increases and decreases in surface 

water availability), but large-scale, high-damage flood events will happen much more often.  

As mentioned, climate changes after 2050 are generally predicted to be more drastic. 

Changes in the latter part of the century, not included in his study, might be useful in future 

planning. Also, since all of the impacts are discussed here as changes from a baseline scenario, 
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inter-annual variability, which can be the cause of major impacts, is not considered in this 

analysis. Regardless, studies like the one presented here can help decision makers develop an 

informed risk-based strategy for national policy decisions, and help to direct locally detailed 

studies and designing large projects in the area.   
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CHAPTER 3     

CHARACTERIZING WIND POWER RESOURCE RELIABILITY IN SOUTHERN AFRICA 

 

Abstract: Producing electricity from wind is attractive because it provides a clean, low-

maintenance power supply. However, wind resource is intermittent on various timescales, thus 

introducing variability in power output that is difficult for electric grid planning. In the following 

study, wind resource is characterized using metrics that highlight these intermittency issues, 

therefore identifying areas of high and low wind power reliability in southern Africa at different 

time-scales. After developing a wind speed profile, these metrics are applied at various heights in 

order to assess the added benefit of raising the wind turbine hub. Furthermore, since the 

interconnection of wind farms can aid in reducing the overall intermittency, the value of 

interconnecting near-by sites is mapped using three distinct methods. Of the countries in this 

region, the Republic of South Africa has shown the most interest in wind power investment. For 

this reason, we focus parts of the study on wind resource in the country. The study finds that, 

although Wind Power Density is high in South Africa compared to its neighboring countries, 

wind power resource tends to be less reliable than in other parts of southern Africa—namely, 

central Tanzania and parts of Kenya. We also find that South Africa’s potential varies over 

different timescales, with higher potential in the summer than winter, and higher potential during 

the day than at night. This study is concluded by introducing a variety of methods and measures 

to characterize the value of interconnection, including the use of principal component analysis to 

single out areas with a common signal. 
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Introduction 

As the threat of climate change builds, there is a push towards lower emissions. One 

strategy for reducing emissions is to build away from carbon intensive electricity production and 

toward clean energy sources like the energy produced from wind and solar. These clean energy 

resources are dominated by new technologies that are dependent on intermittent, locally unique 

sources not yet well understood. Understanding past variability of climate in relation to potential 

renewable resources can steer investment towards beneficial sustainable ventures and avoid poor 

investment decisions. In the following paper, we present a study of historical wind patterns with 

the hope that these patters persist in the future. The methods presented here could, for the most 

part, be applied to solar resource as well.   

In the last few decades there has been a growing interest in wind-generated electricity. 

However, due mostly to the uncertainty caused by the chaotic characteristics of wind near the 

earth’s surface, wind power generation is intermittent on useful operating time scales (hours and 

days), and likely inconsistent in the long term (years and decades). Southern Africa provides an 

interesting case study for this analysis, specifically the Southern Africa Development 

Community (SADC) countries, which include the Democratic Republic of Congo, Tanzania, and 

all countries south of these two. Energy demand in this region of the world is rising quickly, with 

an average of 6.5% per year in Mozambique and 9% per year in Angola, for example (SAPP 

2012). Of the countries in this region, South Africa has shown the most interest in wind 

technology investment. 
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Wind Resource Characterization 

Wind resource study is often characterized by a time and spatial scale, which is driven by 

the overall purpose. Due to the relatively high inertia of wind turbines, changes in wind speed 

that occur on time scales less than 1 minute (ultra high frequency) are typically considered 

negligible. This sets the limit on the lower time-scale extremes. Large time scales are limited by 

the expected life of a wind turbine, which is generally about 20 years. Therefore, useful wind 

resource assessment falls between a time scale of high frequency (minutes) and inter-annual 

frequency (years). The relevant spatial scale largely depends on the study objectives. In a project 

scale, or local scale study (less than 1 km), the effects of trees, buildings, and hills are significant. 

On larger scales, these effects can be generalized into a roughness length coefficient and 

aggregated over time to avoid false precision (Peterson et al. 1997).  

Typically, for national planning purposes, wind resource is characterized following a few 

similar steps. First, an annual mean wind speed dataset is used to specify wind resource 

geographically. In the past, this has been a collection of wind station data, as in Diab (1995) for 

South Africa. Then, the estimated annual mean wind speed is used, along with assumed or 

estimated shape parameter/s, to represent the distribution of wind speed over time using a fitted 

distribution (Cavallo 1993). The Weibull distribution is most widely used (Ucar and Balo 2009; 

Pryor and Barthelmie 2010; Zaharim et al. 2009; Eskin et al. 2008, among others) because it fits 

wind speed distribution fairly well, reproducing the positive skewness, and only requires two 

parameters for fitting (Tuller and Brett 1984). Recently, some doubt has been raised about using 

the Weibull distribution as noted recently in Gunturu and Schlosser (2011). Jaramillo and Borja 

(2004) found that the Weibull distribution could not be generalized to two parameters for fitting 
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some wind regimes. Morrissey et al. (2010) also found the Weibull fitting to be inaccurate for the 

wind speed distribution at a particular site. The study found that the Weibull fitting 

underestimated lower wind speed frequencies and overestimated higher wind speed frequencies. 

Furthermore, buoyancy fluxes have been found by He et al. (2010) to distort typical wind 

behavior away from a fitted Weibull distribution. The study also found that the Weibull 

distribution does not reproduce the positive skewness typically observed in nighttime winds.  

Once the typical behavior of wind is generalized, a reference wind turbine is typically 

used to estimate the power theoretically generated, applying the limitations of cut-in and cut-out 

wind speeds. Cut-in wind speed is the minimum speed at which wind turbines generate power, 

while cut-out speed is the maximum speed at which, for various reasons, power cannot be 

generated. An example of a typical power curve is shown in Figure 18 to illustrate the 

importance of cut-in and cut-out wind speed in power generation. 
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Figure 18: Power curve for a Vestas V80 2000/80 2MW turbine at 1.225km/m3 (in black and on 
right axis; data from Hagemann 2008) and MERRA wind speed distribution from a location in 

South Africa with high potential 

 

In order to avoid the limitations of choosing a specific wind turbine, others have 

described the wind resource in a more generalized form. The wind power generated by wind 

turbines is related to the cube of wind speed (V) and air density ( ). A common value used to 

express this relationship is wind power density (WPD) using the following equation: 

€ 

WPD =
1
2
ρV 3          (EQ-3) 

Due to the cubic relationship of wind power generated and wind speed, higher wind 

speeds are important to identify, both spatially and temporally. Due to the wind turbine 

mechanics as well as a means to protect the turbine itself, the efficiency of power produced by a 
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wind turbine decreases as wind speed increases, resulting in a relationship that is almost linear, 

although piecewise, with four distinct stages: no power from 0 to 4 m/s; a steep increase from 4 

m/s to about 14 m/s; a flat relationship from 14 m/s to 25 m/s, independent of incremental 

changes in wind speed; and no power produced above the cut-out wind speed of 25 m/s. As 

shown in Figure 18, the majority of the power produced remains in the range between 4 m/s and 

14 m/s, where small changes in wind speed result in large changes in power produced, thus 

resulting in highly intermittent output.   

Due to recent technological advancements in wind turbines, there are more hub height 

options than in the past. For this reason, typical wind resource assessment requires an 

understanding of the changes in the potential energy generated at different hub heights. With 

these characterized, one can weigh calculated benefits against the marginal costs of increasing 

the hub height. A common approach to estimating wind speeds at different heights is to use a 

power law of the form: 

 V1
V2

⎛
⎝⎜

⎞
⎠⎟
= z1

z2

⎛
⎝⎜

⎞
⎠⎟

α

        (EQ-4) 

where V1 and V2 are the wind speeds at the reference location and the estimated location, 

respectively, and z1 and z2 are the heights at the reference and estimated location, respectively. 

This relationship is also commonly used to estimate hub height wind speeds from anemometer 

records near the surface. In most cases, the shear exponent (α) is assumed to be 1/7 (Elliott et al. 

1987, 1991; Sailor et al. 2008, among others). Schwartz and Elliot (2005) found that the actual 

value of the shear exponent is considerably greater than 1/7. They also found that windy sites 
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tend to have lower values of α than less windy sites. Using a constant value, then, might result in 

an overestimation of wind speed at higher altitudes for less windy sites.  

Wind	  resource	  mapping	  of	  South	  Africa	  

A very important intermediate step in the typical wind characterization process is 

mapping the resource. So far, wind resource has not been mapped over the entire region, but 

there have been two completed, well-documented attempts to map wind resource over South 

Africa. Diab (1995) developed an initial wind resource map, effectively classifying areas of good, 

moderate and low wind power potential. Diab used 79 long-term weather stations of varying 

geographic settings with classical methods estimating mean wind speed, wind power density, and 

Weibull distribution parameters. She also estimates mean monthly and daily wind fluctuations 

over the year. Diab found that a band covering the full coast of South Africa is likely to be the 

area where wind potential is the highest, with some moderate potential further inland. Hagemann 

(2003) points out a few problems with this early work, mostly in the use of the weather station 

data and measurement errors in the data itself. Following Diab’s work, an attempt was made by 

Eskom and other partners in the early 2000s to develop a more reliable wind resource map. 

Unfortunately, these were never made available to the public (Hagemann 2008).  

Killian Hagemann produced the second wind resource map as part of his 2008 PhD 

dissertation. Hagemann (2008) explored the value of using the regional climate model, MM5, to 

develop a high-resolution wind climatology for South Africa, representing a typical year. As a 

result, he produced a mesoscale map of wind resource, which superseded Diab’s work. This 

work has produced the most recent full map of wind resource in South Africa. Hagemann 
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estimates that South Africa has a total potential wind generation of about 80.5 TWh, 35% of total 

2007 electricity sales. 

Recently, it has become popular to map wind resources using a combined meso/micro-

scale modeling technique imploring the Karlsruhe Atmospheric Mesoscale Model (KAMM; 

Adrian and Fiedler 1991; Adrian 1995) and the microscale model WAsP (Troen and Peterson 

1989). WAsP makes use of the previously discussed Weibull distribution. This technique has 

been used in studies of Ireland, as well as Europe, Russia, and Egypt, among others (Landberg et 

al. 2003). A similar study began for South Africa around 2010 called the “Wind Atlas for South 

Africa” (WASA), coordinated by the South African National Energy Development Institute 

(SANERI). This work, slated to finish in June 2013, has made available some initial 

presentations, results, and data (Szewczuk and Prinsloo 2010). One major contribution from this 

work was the installation of proper wind measurement towers that record wind measurements at 

turbine hub heights up to 63m.  

Data and Methods 

With the advancement of satellite utility and measurements, global datasets are becoming 

more popular for areas with a limited or unreliable set of historical data. For this study, the 

MERRA (Modern-Era Retrospective for Research and Analysis) reanalysis dataset is used 

(Rienecker et al. 2011). The MERRA dataset is attractive because it attempts to represent a 

balance between satellite, station, and modeled climate gridded globally at an hourly time-step 

from 1979 to 2009. Although there are certainly limitations to the reanalysis approach, MERRA 
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improves on the representation of the hydrologic cycle and uses a large repository of 

conventional observations from various sources, as well as satellite radiance data.  

Wind speed is estimated using the following logarithmic empirical relationship, taking 

into consideration roughness length (z0), height (z), and friction velocity (u*) (Stull 1991):  
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The MERRA data provide the necessary variables for this calculation. In this equation, 

the wind is assumed to be neutrally stable, a reasonable assumption because at high wind speeds 

the boundary layer has high wind shear and is therefore approximately neutrally stable. 

The spatial scale of MERRA is set to 1/2° by 2/3°, somewhere between mesoscale and 

synoptic scale, and is hourly. One of the caveats of using data aggregated over a grid is that the 

aggregation could cause misrepresentations of the climate. Of course, a wind farm would be 

subject to the wind behavior at a much smaller spatial scale, so it is important to understand the 

differences between gridded (i.e. aggregated) and point (i.e. as measured from a station) climate. 

See Appendix A for a comparison of these types of data in South Africa as a means to describe 

these differences.	  

Mapping  

Using the MERRA dataset and EQ-3 to estimate wind speed at 50 m, mean wind speed is 

mapped to compare to Haggeman’s wind atlas. Of course, Haggeman’s wind atlas was produced 

at 10 m above ground but the logarithmic profile, in EQ-5, that is used here is not valid for 
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elevations this low. Figure 19 shows the mean wind speed in m/s at 50 m. These results look 

similar to Haggeman’s in most areas in South Africa. There are higher wind speeds in the 

southwest and lower in the northeast. Also, South Africa has relatively high mean wind speeds 

compare to its neighboring countries.  

 

Figure 19: Mean wind speed (m/s) at 50 m for southern Africa 

 

Wind power density and measures of central tendency 

Mean and median WPD for southern Africa are shown in Figure 20. Any value below 50 

W/m2 is considered to have no wind power potential and is shown as white.  
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Figure 20:  Mean (left) and median (right) wind power density (W/m2) 

Similar to the map of wind speed, there is a large area around central Africa (northwest in 

the map) where the wind power potential is poor. This area extends over the majority of the 

Democratic Republic of the Congo, into northern Angola, and east to the western parts of 

Tanzania and Uganda. The areas of good wind resource potential are in central Tanzania, the 

southwestern part of South Africa, and most of Kenya. There are also some smaller areas of 

potential along the border of Botswana and Zimbabwe, southern Mozambique, and parts of 

Zambia.   

Typically, mean wind speed or mean WPD is used to show the central tendency of wind 

resource potential. Due to the skewness of the wind power density toward lower values, Gunturu 

and Schlosser (2012) suggest that the median is a more meaningful measure of central tendency 

for national grid planning. The median is especially useful because it represents what the 

theoretical output produced at least half of the time, providing a simplified measure of reliability. 

The median also provides a closer approximation of power production since the efficiency of a 
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typical wind turbine decreases as wind speed increases, as shown in Figure 18, i.e. the median 

puts less emphasis on larger values of WPD than the mean. As shown in Figure 20, the median is 

considerably lower than the mean. In fact, the area of poor wind resource potential in the 

northwest portion of the map extends south over Angola and into most of Namibia. In the past, a 

threshold of 220 W/m2 was used to classify poor wind resource potential (Gustavson 1979). 

Although wind power technology has developed since 1979, and wind turbines are now more 

efficient, if a value of 220 W/m3 was used here, the only areas of good wind resource potential 

would be in the east—namely the grids in central Tanzania and Kenya.   

Measures of variability 

Another valuable measure of wind resource is a measure of variability. Large 

unpredictable changes in wind speed over time are problematic for power distribution planning. 

Therefore, an area with lower variability is more desirable than one with higher variability, given 

that they have comparable central tendencies. A useful measure of variability is the coefficient of 

variation (CoV), which is shown for WPD for southern Africa in Figure 21. Here, a value of 1 

means that the standard deviation is the same as the mean. A value above 1 indicates that the 

standard deviation is larger than the mean, and below 1 indicates that the mean is larger than the 

standard deviation. In general, the areas with a larger mean WPD have lower CoV. One 

exception to that would be a comparison of the central area of Tanzania with the southwestern 

area of South Africa. These two regions have similar mean WPD, but the southwestern part of 

South Africa has a significantly higher CoV suggesting that this area is less desirable for wind 

power harvesting. Another useful measure of variation is the robust coefficient of variation 

(rCoV) defined as 
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(EQ-6) 

where WPD is a timeseries of wind power density values. The interpretation of rCoV is 

similar to that of CoV, except that a value of 1 means that the median absolute difference 

between the value and the median of the timeseries is equal to the median of the timeseries. 

Therefore, a rCoV of 1 means that central tendency of the absolute difference from median of the 

WPD timeseries is greater than twice the median or zero, since WPD cannot be negative. This 

map also shows the striking difference between central Tanzania and southwestern South Africa. 

In fact, all of South Africa appears to have a highly variant WPD, even the areas where the 

median value is high. In terms of variance, eastern Africa proves to exhibit the best source for 

wind power harvesting in this region.  

  
Figure 21: Coefficient of variance (left) and the robust coefficient of variance (right) of WPD 

 

€ 

rCoV =
median(WPD −median(WPD) )

median(WPD)
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Measures of reliability 

To further our understanding of the quality of wind resource in southern Africa, we have 

decided to map two measures of reliability. First, we must choose a threshold to classify wind 

power for a given grid and hour as either usable or unusable. In the past, a value of 220 W/m2 

has been demonstrated as the minimum needed for wind power generation (Gustavson 1979). 

For this study we have chosen to follow the US Wind Resource Atlas and use a value of 200 

W/m2 to account for advances in technology (Elliott et al., 1987), which was also used in 

Gunturu and Schosser (2012). The first measure we calculated is availability. Availability is the 

number of hours with usable WPD (i.e. WPD>=200W/m2) divided by the number of total hours 

from the MERRA data. Figure 22 shows the availability fraction for southern Africa. A similar 

pattern emerges from this measure that we have seen before, where there is low availability in 

the northeastern section of the map. In fact, the majority of this region has availability close to 

zero, meaning that there are basically no hours with available wind power. Three regions with 

good availability stand out: Kenya with wind power available around half of the total time, 

central Tanzania with wind power available between one third and one half, and southwestern 

South Africa with power available between one fourth and one third of the total time.  
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Figure 22: Availability of WPD at 50 m 

 

The next measure of reliability we have calculated is wind power episode lengths. Here, a 

wind power episode is defined as a period of time where wind power is usable for consecutive 

hours. Each of these wind power episodes is found and the number of consecutive hours is 

recorded. Figure 23 shows the mean (left) and median (right) of the wind power episode lengths. 

We see that central Kenya has wind power episodes around 20 hours long on average, central 

Tanzania around 8 to 15, and southwestern South Africa around 8 to 13 hours. Unsurprisingly, 

the wind power episode lengths appear to be predominantly skewed towards lower values, 

similar to WPD, although less so. For example, the difference in the median and mean in central 

Tanzania is about 2 hours while in southwestern South Africa the difference is closer to 3 or 4 

hours.  
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Figure 23: Mean (left) and median (right) of wind power density episode lengths at 50 m hub 

height  

 

Changes over different time-scales  

Since wind speed is driven largely by various climatic states, wind power potential can 

vary somewhat consistently over the seasonal and diurnal cycles, among others. For this part of 

the study, we will focus on the Republic of South Africa as an example. First, using the same 

WPD threshold of 200 W/m2, we calculate a binary timeseries representing an hour with either 

unusable (i.d. less than the threshold) or usable (i.e. greater than the threshold) wind power. Then, 

we calculate the total area in South Africa with usable power and divide it by the total area in 

South Africa. From this calculation, we estimate the fraction of area with power, where a value 

of one means that all of the area has power in that hour, a value of 0.5 means half of the area has 

power, etc. Now, we have a single 31-year timeseries and can make claims on how the wind 

power potential changes over various timescales. Box and whisker plots showing the 
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distributions over each of the 31 years is shown in Figure 24. We again see that the distributions 

are skewed toward lower values with a central tendency around 0.2 and a very long tail reaching 

toward 1. The 75th percentile, represented by the top of the box, generally lands on 0.4 and the 

25th around 0.05. Figure 25 shows the hourly mean over the 31 years in blue. Notice that the 

value fluctuates somewhat periodically, spanning about 0.4. This fluctuation is the diurnal cycle. 

For this reason, we applied a 24-hour moving average to the hourly mean, shown in red, to 

remove the large fluctuations. There is a clear seasonal cycle in wind power usability in South 

Africa, which peaks around October / November followed by a lull around April. Also notice 

that the mean value fluctuates from about 0.1 to 0.5 in a typical 24-hour period, meaning that the 

WPD in about 40% of the area drops below the threshold within the day.  

 

Figure 24: Distributions of the fraction of area in South Africa with usable WPD for each year of 
the MERRA data 
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Figure 25: Hourly mean fraction of area in South Africa with usable power over the calendar 
year calculated over 1979-2009 in blue and with a 24-hour moving mean in red.  

 

Since Figure 25 only shows the mean of the fraction of grids with usable power in South 

Africa, we wanted to get a sense of the how the seasonal pattern is distributed over all of the 

years. Figure 26 shows the 90th(top grey line), 50th (black), and 10th(bottom grey line) percentiles 

smoothed with a 168-hour (1 week) moving median. In this case, the 90th percentile represents 

the 1-week central tendency of the highest fraction of area with usable power that could be 

expected in a 10-year period. Similarly, the 10th percentile would be the lowest expected to occur 

in a 10-year period. The 90th percentile drops to around 0.2 in April and rises above 0.5 around 

October and November, while the 10th percentile hits a long peak from November to January, 

slightly below 0.1 and a long 6-month lull near zero from the middle of March to the middle of 

September. The median finds a steady peak near the beginning of October that lasts to the middle 

of January at around 0.5 and drops close to zero at the beginning of May. As a reference, the 
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electricity-demand weekly load (as a fraction of the mean) is shown to illustrate changes in 

demand over the seasons. Unfortunately, peak demand is in the winter months, June-July-August, 

when wind power availability is low. 

 

Figure 26: Median (black line), 10th percentile (bottom grey line), and 90th percentile (top grey 
line) of the seasonal distribution of the fraction of area in South Africa with usable WPD. 

Weekly electricity demand as a fraction of the mean is superimposed in red. 

 

The availability of wind power and energy demand both fluctuate daily as well. Figure 27 

shows the distribution of the fraction of area with usable power in South Africa over 24-hours 

using box and whisker plots, in grey. The plot starts 30 minutes after midnight and ends 30 

minutes before, so the average daylight hours can be assumed to be between 6:00 and 18:00, 

although this does change seasonally. To avoid clutter, outliers are not shown in this plot. 

Outliers are assumed to be any value greater than q3 + 1.5 (q3 – q1) or less than q1 - 1.5 (q3 – q1), 

where q1 is the 25th percentile and q3 is the 75th percentile. The end of the grey line, top and 

bottom, represents these limits. The thick grey line represents q1 at the bottom and q3 at the top, 

and the black dot is the median. The red line, again, shows the mean electricity demand profile 
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across the day. As shown, South Africa has a much higher fraction of grids with power during 

the day than at night. Just after midnight, most of the grids do not have usable power, with a 

median around 0.03. Around 3:30, the wind starts to increase above the threshold in many of the 

grids, peaking around 10:00 and dropping down to around 0.1 at 15:30. The daily distribution of 

grids with power is ideal for matching the morning peak demand, but fails to meet the peak 

demand in the evening, about 20:30. Another interesting feature of this plot is the extremes. 

During the peak hours around 10:00, the distributions reach the full range of possible values, 

from zero to 1.  

Wind power density at different altitudes  

As wind turbine technology advances, increasing the hub height becomes more 

economically feasible. In a general sense, WPD increases as hub height increases because the 

roughness of the earth has less of an effect on the wind speed. But, as the altitude increases, the 

density of the air decreases at a rate of about 0.01% per meter. This means that an increase of 

100 m would result in a reduction of about 1% of the WPD caused by thinner air. The 

intermittency could also change at different hub heights. In the following section, we will 

explore WPD at various heights. Using EQ-5, we can estimate wind speeds at different values of 

z, then convert these to WPD using EQ-3.  
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Figure 27: Diurnal distribution of the fraction of area with usable WPD in South Africa. The load 
is superimposed in red shown as a fraction of the mean. 

 

Figure 28 shows the median WPD at different altitudes for 80 m and the difference 

between WPD at 80 m and 150 m. Generally speaking, the median WPD increases with height 

proportional to the central tendency.  
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Figure 28: Median wind power density (W/m2) at different hub heights: 80m (left) and the 

difference between 150m and 80m (right). 

 

Next, we explore how the episode lengths change with altitude. Figure 29 shows the 

mean episode length at 80 m, then again the differences between the value at 80 m and the value 

at 100 m, 120 m, and 150 m. Although episode lengths are relatively high in South Africa, the 

length of available wind power doesn’t seem to increase as much with height as the areas in 

Kenya or central Tanzania. In fact, the northern part of Zambia shows more promise at higher 

altitudes than South Africa.  
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Figure 29: Mean of wind power episode length (hours) at different hub heights: 80m (left) and 

difference between 150m and 80m (right). 

 

Mapping the value of interconnection 

One proposed method for dealing with wind power intermittency is to connect wind 

farms that have negatively correlated wind speeds. Then, theoretically, when one farm does not 

have power, the other does, and vice versa. We wanted to investigate this potential in southern 

Africa using a technique developed by Gunturu and Schlosser (2012), anti-coincidence, as well 

as a simple rank correlation and a more complex method, principal component analysis. 

Anti-coincidence 

Here, we take the full hourly timeseries of WPD for every grid point in southern Africa 

and convert it to a binary dataset, where zeros represent unusable WPD, less than 200 W/m2, and 

ones represent usable WPD, greater than 200 W/m2. For every grid, we look at the surrounding 

grids in a fixed window and determine that grid’s “score.” This score represents a measure of 
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how useful it would be to interconnect wind farms with the surrounding grids. We have decided 

to use a window of 19 X 19 grids, as shown in Figure 31. This represents a box that is 10 grids in 

each direction from the point R, and is approximately 1,000 km on each side. For each grid in 

this box, the binary values are compared between the point of interest, R, and the surrounding 

grids, P. A count is made whenever there is wind power at one of the two points and not at the 

other. If the count is at least half of the total time series, the grid is said to be “anti-coincident” to 

the reference, R. The number of grids in the window that meet the anti-coincident criteria are 

counted and that is the score given to R. 

 

Figure 30: Anti-coincidence schematic 
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Figure 31: Anti-coincidence score at different hub heights: 80m (top left); difference between 

100m and 80m (top right); difference between 120m and 80m (bottom left); difference between 
150m and 80m (bottom right). 

 

A map showing the anti-coincidence score is shown in Figure 31 for WPD at 80 m, as 

well as the difference between 80m and 150 m. Note for any grid that is at least 10 grids from the 

edge, the total number of grids in the window is 360 (19*19 - 1), so a value of 72 means that 

20% of the surrounding grids are anti-coincident. The size of the grid box is shown in the 

northwestern area of each map in Figure 31 as reference.  

For the majority of southern Africa, the anticoincidence score is zero. This is not 

surprising in the Congo area because the WPD is very low, but it is surprising in Zambia and 

Zimbabwe where there are some regions of mild potential. Also, it is surprising that central 

Tanzania is so low, except for a few grids of high anti-coincidence. Another interesting feature 

of the map at 80 m is the high score along the coast of Namibia and South Africa. This is likely 

caused by characteristically different wind patterns in the offshore grids compared to the wind 
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patterns inland. From a national planning perspective, this finding could imply that it would be a 

good investment to match each onshore wind farm with an offshore wind farm, even though 

offshore wind farms are more expensive to build. The anti-coincident score also changes 

considerably for different altitudes. In most of southern Africa, the score increases as height 

increases, especially eastern Africa and the northern coast of Namibia. But there seems to be a 

dividing line at the southern part of South Africa where the anti-coincidence score decreases with 

height, likely because the wind in the land grids starts to behave similar to the wind in the ocean 

grids nearby.  

Null Anti-coincidence 

Gunturu and Schlosser (2011) also used a relaxed criterion to characterize the value of 

interconnection that emphasizes the instances of unusable power at R. Like in the measure of 

anti-coincidence, the two binary time series that represent usable and unusable power at R and P 

are compared. Except, in this measure, only the instances when there is unusable power at R are 

considered. Every hour where there is usable power at P and unusable power at R are counted. If 

this count is at least greater than the total number of hours of unusable power at R, the grid, P, is 

considered to be “null anti-coincident” to the grid, R. These grids are counted and the total count 

represents the null anti-coincidence score. Figure 32 shows the schematic for null anti-

coincidence.  
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Figure 32: Null anti-coincidence schematic 

 

Since the criteria for null anti-coincidence is somewhat relaxed as compared to the anti-

coincidence criteria, we expect a higher null anti-coincidence score. Figure 33 shows the score at 

different hub heights. The values are highest in eastern Botswana, central Tanzania, and a large 

area in western Angola. South Africa shows a fairly low null anti-coincidence score, especially 

in the west where there is a high wind power potential. Another interesting feature of these maps 

is that the score never increases with hub height in southern Africa. The decreases are largest in 

Namibia and the cluster near the South Africa-Botswana-Zimbabwe borders. 
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Figure 33: Null anti-coincidence score at different hub heights: 80m (top left); difference 

between 100m and 80m (top right); difference between 120m and 80m (bottom left); difference 
between 150m and 80m (bottom right). 

 

Correlation with nearby grids 

Here, we take a different approach to further our exploration of the value of 

interconnection in southern Africa. In the previous approach, a threshold is assumed in order to 

transform the dataset into a binary sequence. In order to avoid assuming a threshold, we calculate 

a Spearman rank correlation. Similar to the anti-coincidence score, we find the rank correlation 

of each point with the reference in the moving window and take an average of the rank 

correlations. Figure 34 shows these window-averaged rank correlations for southern Africa. In 

this case, a point with a negative value suggests that the timeseries at the point is negatively 

correlated with the points around it in the 19 by 19 window. Therefore, a negative value implies 

a high interconnection value, and a positive value implies low interconnection value. Here we 
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see a clear separation between most of South Africa, where the rank correlations are dominantly 

positive, and the rest of southern Africa, where the rank correlation is mostly negative.  

 

Figure 34: geographic variation of the mean rank correlation with nearby grids 

 

Principal component analysis 

Interested in the difference between the results found by these two methods, we 

investigate the variance of the hourly wind speeds in southern Africa using Principal Component 

Analysis (PCA). PCA reduces the dimensionality of a set of data into vectors of dominating 

variance, where the first Principal Component explains the most variance, the second explains 

the second-most, etc. Typically the signal, or z-score, is used rather than the raw values. The z-

score is calculated by subtracting the mean and dividing by the standard deviation. We used the 

z-score here. Figure 35 shows the coefficients, or eigenvectors, of the first eight principal 

components. The first principal component explains 19% of the variance, the second explains 
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7%, and so on. There are 4,675 principal components total, in this case. The first eight principal 

components capture over half of the total variance. The areas in the maps with similar coefficient 

values exhibit the pattern captured in that particular principal component. Basically, the red areas 

in the maps are out of phase with the blue areas and the percentage value can be thought of as a 

measure of importance of that principal component. The first principal component shows 

positive values over land and some negative values in the Atlantic Ocean. This map shows that 

WPD onshore is negatively correlated with WPD in the Atlantic Ocean. When we look at this 

principal component in a timeseries, we see a strong 24-hour cycle as well as a seasonal cycle. 

The second principal component has captured variance that shows that South Africa is in phase 

with the ocean around it and out of phase with the rest of southern Africa. This second principal 

component is likely the variance that was captured in the rank correlation map shown previously. 

Principal components 3 through 7 display interesting features in the Atlantic Ocean that were 

likely captured in the anti-coincidence score.    
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Figure 35: The first 8 Principal Component coefficients from the PCA of the signal of hourly 
WPD dataset over southern Africa. The values in parentheses are the percentage of variance 

explained by that principal component.  

 

Since the grid domain affects the resulting PCA, we decided to narrow the domain to 

onshore grids in the Republic of South Africa. We also decided to use the power curve from the 

Vestas V80 2000/80 2MW wind turbine, shown in Figure 18, to produce capacity factor values. 

In this case we decided to use the raw values instead of calculating the z-score first to give more 

weight to higher energy production. Figure 36 shows the eigenvalues from this analysis for the 

first eight principal components. The percent of variance represented is shown in parenthesis. Of 

course, the PCA with a narrower domain is able to explain more variance in fewer principal 
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components. In this case, the first four principal components contain over 60% of the variance. 

The first principal component, which explains 38% of the capacity factor variance, is all in-phase, 

especially the area in the southwest where most of the wind power potential resides. This result 

is not ideal for interconnection. In the remaining principal components, we see distinct regions 

that are either in-phase or out-of-phase. Principal components 2, 4, 5, and 6 suggest that the area 

along the coast in the Eastern Cape province is out-of-phase with areas in the Western Cape and 

Northern Cape. These being out-of-phase suggest interconnection value; although, summing the 

variance explained by these principal components only gets us 24%—still much less than the 

first principal component.   

 

 

Figure 36: Geographic variation of eigenvalues from the first eight Principal Components 
performed on the onshore capacity factor in South Africa 
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Closing Remarks 

Using the MERRA data, we have mapped and identified areas of high and low wind-

resource potential. Based on this analysis, South Africa has moderate to high potential for wind 

power harvesting, especially in the west and south near the coast. Furthermore, we find that 

although South Africa’s mean WPD is close to that of central Tanzania, wind resource in central 

Tanzania is more reliable. The conclusion was not obvious in the map of mean wind speed or 

mean WPD, but is shown clearly in other measures like median, availability, and wind-power 

episode lengths. In order to understand how South Africa’s wind-power potential changes over 

various time scales, we plot the percentage of area with usable wind power based on a threshold 

of WPD. South Africa’s potential varies over the year, with higher potential in the summer and 

lower potential in the winter. We also find that a larger area of South Africa has usable WPD 

during the day than at night. We conclude the study by presenting various measures to assess the 

value of interconnection, a common method suggested to reduce intermittency. Depending on the 

measure, different results are found. In the final measure, we show maps of dominating variances 

and the regions that are contributing, either positively or negatively, by use of a Principle 

Component Analysis.  

	  

 
  



70 
 

 

CHAPTER 4     

THE IMPACT OF CLIMATE CHANGE ON WIND AND SOLAR RESOURCES IN 

SOUTHERN AFRICA 

 

Abstract: Climate change is an issue that requires global attention and cooperation. As climate 

science develops an understanding of changes to the future climate state, policymakers and 

engineering project planners beg to know what claims can be made on the subject with a 

reasonable level of confidence. A common and popular mitigation strategy for reducing 

emissions is to build away from carbon intensive electricity production to clean energy sources 

like the energy produced from wind and solar radiation. These sources themselves are climate 

dependent. In this study, we present a method to estimate the climate change impact on wind and 

solar resource potential which builds on previous studies that take a risk-based approach. The 

assessment combines climate projection output from the Integrated Global Systems Model 

(IGSM), which introduces emissions and climate sensitivity uncertainty, with 19 Global 

Circulation Models (GCMs) available from the Coupled Model Intercomparison Project phase 3 

(CMIP-3). Southern Africa, specifically those in the Southern African Development Community 

(SADC), is used as a case study. We find little agreement between GCMs and emission scenarios, 

resulting in a median change close to zero by 2050 in the long-term mean of both wind speed and 

solar radiation (used as an indicator of change in electricity production potential). Although the 

extreme possibilities range from about -15% to +15% change, these are associated with low 
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probability. These projected results in the long-term mean wind and solar variables—and their 

associated probabilities—stay true to the limitations of state-of-the-art climate system models, 

and are apt to be useful for policy and engineering planning. 

Introduction 

As the threat of climate change builds, there is a push towards lower emissions. Ironically, 

the energy sources available without emissions are typically climate dependent, which is 

especially the case for wind and solar resource. As future climates begin to behave less like past 

climates, modeled projections of changes in the long-term future state are useful for national 

energy investment planning. Southern Africa provides an interesting case study for this analysis, 

specifically the Southern Africa Development Countries (SADC), which includes the 

Democratic Republic of Congo, Tanzania, and all countries south of these two. Energy demand 

in this region of the world is rising quickly, with an average of 6.5% per year in Mozambique 

and 9% per year in Angola, for example (SAPP 2012). 

Of the countries in this region, South Africa has shown the most interest in wind and 

solar technology investment. There are currently 3 operational wind power plants in South Africa, 

all small-scale, although there are a few large-scale wind farms in planning. Sere Wind Farm, to 

be among the largest wind farms, is proposed to be built near the city of Vredendal in the 

Western Cape (Savannah Environmental 2007). There has also been interest in South Africa to 

build large-scale photovoltaic (PV) and concentrated solar power (CSP) to exploit its solar 

resource. Winkler et al (2007) found that CSP is the most affordable renewable energy option for 

decreasing emissions in South Africa. Although there are no existing large-scale CSP plants in 
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southern Africa, the South African electricity utility, Eskom, has recently invested in planning a 

100 MW CSP plant in the Northern Cape near the city of Upington (Eskom 2012), and the South 

African government is promoting a 5,000 MW solar park in the Northern Cape (Zawilska et al. 

2012). 

The implications of possible changes in usable wind and solar potential must be well 

understood for future planning purposes. Some reports have noted that wind speed and 

cloudiness are likely to change in the future. Wind speed and cloudiness are strongly influenced 

by temperature differentials. Since climate change is generally characterized by changes in 

global temperature, one can easily make a connection between increasing emissions and these 

climate parameters, concluding that changes in temperature can directly affect surface wind 

speed and solar irradiation. These climate parameters are also influenced by physical phenomena 

like El Nino Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO), which could 

behave differently in the future (Rauthe et al 2004). Meehl et al. (2007) report that peak wind 

speeds will likely increase with increasing temperatures, and Hazeleger (2005) suggests that the 

trade winds in particular are likely to change. Land surface changes can affect local cloudiness 

and could be amplified in urban areas (Denman et al. 2007), but making connections between 

climate change and changes in solar radiation is a complicated matter (Hegerl et al. 2007). In fact, 

understanding the impacts of climate change on both aerosols in the atmosphere and boundary 

layer wind speed are problematic because of the spatial scale of current Global Circulation 

Models (GCMs). Studies have been done on understanding the impact of climate change on wind 

and solar parameters, but the subject is less studied than the impacts on biophysical sectors, e.g. 

agriculture.  
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Wind speed and solar irradiation in a Global Circulation Model 

Here, we briefly address the usefulness of climate projections from GCMs. First, we must 

understand how wind and solar variables are understood in a GCM. Because wind is the 

movement of air in the atmosphere, important for tracking convective transfers of temperature 

and moisture, it is an essential process in the global climate system. Solar forcing is also essential, 

since it is the source of the majority of the energy. For these reasons, wind and solar are very 

common topics in climate science and much emphasis is placed on modeling these as accurately 

as possible. In a GCM, wind speed is modeled as an average over a large cuboid in space. The 

GCMs provide wind speed output at 10m, an estimation derived from the wind speed values of 

the atmospheric layer closest to the surface. Vertical layers in a GCM are typically defined by 

constant pressure, meaning that the layer heights change in space and time. These pressure layers 

are also unevenly distributed so that a finer resolution is achieved near the surface. In a typical 

GCM, the atmosphere is modeled with about 10 – 20 layers reaching to about 30km. GCMs also 

represent the climate at a coarse horizontal resolution of about 250 to 600 km (IPCC 2012). The 

problem with dividing the atmosphere into large cuboids is that many processes occur at a much 

smaller scale. These large cuboids are not ideal for modeling changes in small-scale wind, which 

is highly dependent on the effects of elevation, surface roughness, and convection. Clouds and 

other aerosols can also change at smaller scales than a typical GCM grid. Cloud feedbacks in 

particular are considered the highest uncertainty in current GCM practice (Randall et al. 2007). 

Cloud cover fraction output is usually estimated based on relative humidity values in each GCM 

cuboid. These estimations of small-scale processes on a larger scale are called “parameterization.” 

There are many parameterization schemes for estimating changes in wind speed and aerosols in 
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the various layers of the atmosphere, and the Coupled Model Intercomparison Project Phase 3 

(CMIP-3) GCMs employ a variety of these schemes. 

Previous attempts to characterize the future wind and solar state 

In the past, climate change impact studies have typically involved one of two approaches: 

(i) a climate sensitivity analysis using a wide, unguided range of future climate possibilities (e.g. 

Kurukulasuriya 2006, Wilks 1992); or (ii) use of select climate model output, typically Global 

Circulation Models (GCMs) from the Coupled Model Intercomparison Project (CMIP), 

commonly referred to as the Intergovernmental Panel for Climate Change (IPCC) Fourth 

Assessment Report (AR4) models (e.g., Liu et. al 2013, Arndt et. al 2010, World Bank 2009, 

Immerzeel 2008). The output of these models is applied directly in a climate change impact-

modeling framework to assess the impacts of climate change, resulting in a limited set of future 

scenarios. Research on the climate change impact on wind and solar resources follows a similar 

pattern, although recently there has been more activity in (ii) than (i). These studies are discussed 

below. 

Pryor et al. (2006) attempted to estimate changes in the mean and upper percentile of 

wind speed in northern Europe. The authors used daily output from ten GCMs for the A2 

scenario, fitting a regression model that predicts Weibull distribution parameters fitted from 

station data. The model was fit using mean and standard deviation of 500 hPa relative vorticity 

and mean of daily sea-level-reduced pressure gradients from the historical GCM runs. Then, 

using future outputs of the predictors, they were able to produce estimations for 10 possible 

futures of both the wind speed and wind power state, predicting the mean and 90th percentile of 

each. They found that there was not much agreement between the GCMs, and no confident 
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conclusion could be made about changes in wind characteristics by 2050 for the wind stations 

used. Looking further in the future, their study suggests that mean and 90th percentile wind 

speeds will decrease slightly by 2100. Sailor et al. (2008) studied possible changes to wind speed 

and wind power produced over the northwestern United States. They used two GCMs and two 

Special Report on Emissions Scenarios (SRES) scenarios. They found that the historical results 

from the GCMs did not match weather station measurements in the area. Applying a statistical 

downscaling technique to the raw GCM output, they found, of course, that the agreement 

improved. They compared the two SRESs from each GCM and found that there wasn’t much 

agreement, even though the same model was used. The study suggests that mean summertime 

winds will decrease by 5-10% in the area, and winter winds will either slightly increase or stay 

the same. Using typical hub heights and a common turbine power curve, they found that the 

power produced in the summer would decrease by about 40%. Pryor et al. (2012) used a suite of 

thirteen simulations from a combination of four Regional Climate Models (RCMs) nested in 

reanalysis data and four global climate models. These simulations were compared to independent 

observations and the North American Regional Reanalysis (NARR) over the contiguous United 

States. The RCMs were found to to reproduce historical wind patterns better than the GCMs, 

although the RCM architecture seems to be the primary cause of variance between models rather 

than the lateral boundary conditions. The study goes on to estimate changes in various wind 

statistics averaged over 2041-2060, finding some agreement between models in terms of sign. 

The simulations suggest that intense wind speeds are likely to decrease, especially in the western 

U.S. by 2050. Seljom et al. (2011) links 10 GCM-scenario pairs to an RCM to estimate climate 

change effects on the Norwegian energy sector. Changes in wind, solar irradiation, and heating 
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and cooling demand, among others, were estimated by interpolating the RCM results to 20 

geographic locations: 7 for solar, and 13 for wind. The study found that while solar radiation and 

hydropower changes were significant in some of the GCM-scenario projections, changes in wind 

were minor, with the maximum change for all locations and months around 4.8% by 2050. 

Fenger et al. (2007) came to a similar conclusion of changes in wind over Norway. Pan et al. 

(2004) used a refined regional climate model to estimate seasonal changes in solar radiation 

simply by raising greenhouse gas concentrations in the regional model. A decreasing trend was 

found in the seasonal-mean of global solar radiation of about 0-20% over the entire United States. 

This trend was most noticeable in the western U.S. during fall, winter, and spring.  

We have three main observations from the literature. First, there have been few studies 

that have looked at future changes in solar resource, likely due to the uncertainties in GCM cloud 

cover estimations discussed previously. Second, the studies that have estimated changes in wind 

speed have only found small long-term mean changes, the largest at 5-10%; although, Sailor et al. 

(2008) does claim that small reductions in wind speed could result in large reductions in power 

produced. And third, these studies did not find much agreement between historical observations 

and GCM output, between the different GCMs, or the SRES scenario outputs of a single GCM.  

In general, research on the impacts of climate change has followed a similar pattern. The 

past climate state is studied briefly, and then information from climate models is applied. Next, 

climate change impact studies carefully apply a limited number of these scenarios to understand 

the future climate state. Since climate models are very computationally expensive, only a limited 

amount of scenarios can be effectively run to produce useful output, resulting in a scarcity of 

possible future scenarios. Schlosser et al. (2011) presents a method to expand the full set of 
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CMIP-3 GCMs to a large pool of climate predictions. The Integrated Global Systems Model 

(IGSM; Sokolov et al., 2009 and Webster et al., 2011) developed near-surface temperature and 

precipitation projections at the zonal spatial scale for 400 scenarios representing economic and 

climate uncertainty. A Taylor expansion technique, described by Schlosser et al. (2011), was 

used to expand from the zonal level of detail in the longitudinal direction. This transformation 

requires the construction of climate-change pattern kernels, which vary through time as global 

temperature changes. The full ensemble of climate change projections is produced through the 

numerical hybridization of the IGSM zonal trends, with pattern kernels of regional climate 

change from 17 of the CMIP-3 models. This ensemble of future climate projections is called 

“hybrid frequency distributions” (HFDs). Using this framework, 6,800 climate projections are 

produced for each of the five CO2 emissions policy scenarios. The HFDs, however, currently 

provide changes in precipitation and temperature, which are useful for biophysical impact 

modeling, but do not yet provide changes in other climate parameters. Also, the establishment of 

these HFD projections requires a selection among the SRES scenarios—namely, A2, A1b, and 

B1—because emission-forcing scenarios are already represented in the five policy scenarios. 

Fortunately, Schlosser et al. (2011) found strong correlations between the scenarios for 

precipitation and temperature, suggesting that the differences between model outputs are driven 

almost entirely by model choice, while SRES choice is insignificant. 

Data and Method 

First, a baseline needs to be established with which to compare the projected changes in 

climate. With the advancement of satellite utility and measurements, global datasets are 
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becoming more popular for areas with a limited or unreliable set of historical data. For this study, 

the MERRA (Modern-Era Retrospective for Research and Analysis) reanalysis dataset will be 

used to represent the base climate for all solar and wind characteristics (Rienecker et al. 2011). 

The MERRA dataset is attractive because it attempts to represent a balance between satellite, 

station, and modeled climate gridded globally at an hourly time-step from 1979 to 2009. 

MERRA improves on the representation of the hydrologic cycle and uses a large repository of 

conventional observations from various sources, as well as satellite radiance data. Figure 37 

shows the mean wind speed over southern Africa, calculated using the log wind profile as 

described in Gunturu and Schlosser (2012). As shown, most of the onshore wind resource is in 

the southern and northeastern parts of the SADC region, with clusters of moderate wind speed in 

between. There is a large area of low wind speeds in the northwestern part of the map, comprised 

of the countries in the Congo River Basin and almost all of Angola. Figure 38 shows the mean 

incident solar radiation at the surface. Most of the solar resource is in the southwest, surrounding 

Namibia and extending out to Zimbabwe, and in the northeast in Tanzania and Kenya.  
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Figure 37: Geographic variation of mean wind speed (m/s) at 50m over southern Africa 

 

Figure 38: Geographic variation of mean incident solar radiation (W/m2) over southern Africa 

 

The seasonal mean wind speed and solar radiation at select grids are shown in Table 2. 

The grid selected for wind speed is meant to represent the proposed Sere wind farm, previously 

discussed. Similarly, the solar radiation values were calculated from the grid containing the site 
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of the proposed large CSP plant. As shown, the December-January-February (DJF) season has 

the potential for the most power produced, while the June-July-August (JJA) season has the least 

potential for both sources; although, the March-April-May (MAM) season has equally low 

potential for wind.  

Table 2: Mean seasonal wind speed and incident solar radiation for selected wind and solar sites. 

  

Wind Speed 
(m/s) 

Solar 
Radiation 
(W/m2) 

DJF 5.5 359 
MAM 4.2 233 
JJA 4.2 184 
SON 5.1 315 

 

Now, to understand changes in the future state of these resources, we explore the 

usefulness of a risk-based approach. Previous studies have used varying techniques to better 

understand the future state of wind and solar resource, using between 1 and 13 future scenarios. 

Given the recent advances in climate science provided through the HFD method, a larger pool of 

future scenarios can likely be generated, providing a more complete picture of the risk associated 

with climate change. Basically, a connection needs to be made between the methods presented in 

Schlosser et al. (2011) and changes in both wind and solar resource.  

The first attempt to make these connections was to use the outputs provided by the HFD 

data—monthly changes in temperature and precipitation—and to relate these with wind speed 

changes. First, we needed to find a meaningful relationship between the predictors and the 

predictand in the historical data. We used the MERRA data for this investigation—monthly 

precipitation and temperature aggregated to the provincial level. Besides using the temperature 
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and precipitation data directly, we decided to use differences between onshore and offshore 

temperature. The final predictors were monthly temperature at the surface, precipitation, and 

onshore/offshore temperature gradients.  

Since the intermittency of wind and solar resource is important to energy grid planning 

that might not be captured with mean only, we decided to count hours in each month within 

certain ranges of WPD, resulting in three power-potential measurements within a month. We 

also included mean and median WPD. In the end, we have five predictands: mean wind speed, 

median wind speed, hours of no power, hours of low power, and hours of high power. At first, 

we found that there was a fairly significant relationship between all of these predictands and at 

least one of the four predictors. Then, concerned that we might be finding a false relationship, we 

removed the seasonal mean from the predictors. After removing this mean, the predictors and 

predictands seem to have no significant relationship. This method was abandoned. 

After finding that there is no significant relationship with the typical HFD output, we 

tried a new approach. A majority of the GCMs report both wind speed predictions at 10m and 

incident solar radiation at the surface. Using these outputs, we have related global temperature 

rises with the gridded wind speed and solar radiation changes for each of the GCM-SRES pairs 

where data are available from the CMIP-3 database. The seasonal mean was removed from each 

variable based on the mean of the first ten years. These differences from the mean are what we 

use for the model.  

We first checked for a relationship by calculating a Spearman rank correlation coefficient 

between these two variables for four three-month periods. Figure 39 shows an example of a 
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global map displaying these correlation coefficients. We find that in the most extreme cases, the 

correlation is about 0.5 or -0.5. These values are fairly significant given that the predictor is a 

global parameter, and given that the findings from the previous studies, mentioned in the 

literature review, find only small, if any, changes to wind speed by 2050. A qualitative 

observation from these maps is that the correlation values appear to be showing a coherent global 

pattern, implying that the correlation is at least partly driven by a natural relationship.  

 

Figure 39: Correlation of wind speed cubed and global temperature rise for the CSIRO MK3.5 
model running the A1b scenario for the four seasons. In the top left is the correlation with the 

Dec/Jan/Feb (DJF) season; in the top right is the Mar/Apr/May (MAM) season; in the bottom left 
is the Jun/Jul/Aug (JJA) season; and in the bottom right is the Sep/Oct/Nov (SON) season.  

 

We then look at two locations in South Africa with characteristically different wind speed 

patterns. The first is near the border of the Western Cape and Northern Cape. The second 

location is located in the northern part of the Limpopo province. First, although the highest 

correlation values are close to +/-0.5, the correlations are fairly low for these two locations for 

the majority of the GCM-SRES pairs. The other concern is that there is not a strong agreement 
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between the SRESs for a given model, an important finding that drove the former HFD 

framework smoothly. If there was a strong agreement, we could assume that variance across 

model output is driven by differences in model structure. Instead, we find that the variance 

across model output must also be driven by the internal variability of the chaotic climate system 

that is modeled. This kind of uncertainty is difficult to quantify and has been left for future 

research.  

We then move on to estimating changes in wind and solar resource potential. A locally 

weighted polynomial regression, as explained in Rajagopalan and Lall (1998), is used as the 

statistical model to represent the relationship of global mean temperature to changes in both wind 

speed and incident solar radiation, although other statistical models could be used. We then 

estimate the changes in wind speed and solar radiation based on global temperature changes 

produced from the 400 IGSM scenarios. Each of the CMIP-3 GCMs with wind speed output data 

are uniquely represented, which results in a maximum of 7,600 scenarios if the A1b scenario 

outputs are used. We use the CMIP-3 output data as an example because they are already well 

established, but the method could be applied to the CMIP-5 data. Also, since the model is set up 

to project changes from a modeled history, we bypass the issue of not matching the historical 

climate commonly found in previous studies. 

Results 

Results at Selected Sites 

Due to the uncertainties of GCM output previously discussed, we restrict these results to 

projections in long-term mean seasonal changes in resource potential. Wind speed changes and 
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changes in solar radiation are predicted to 2050 for southern Africa by averaging results over 11 

years, from 2045 to 2055. As an example, wind speed changes for the selected wind site are 

shown in Figure 40. Here, we present results for the Unconstrained Emissions (UE) and Level 2 

Stabilization (L2S) IGSM policy cases coupled with the models derived from each SRES 

scenario output. As shown, the changes are relatively small, with modes close to zero and 

extremes from -1.5 to +1.5 m/s. In most seasons, the results tend to suggest an increase in wind 

speed, which would increase wind power potential; although, during the June-July-August 

season (JJA), there is a slight tendency toward wind speed decreases, especially in the extremes. 

This result is undesirable because JJA is the season with the lowest wind speeds according to the 

base data, and the season of highest energy demand in South Africa. Still, the results suggest that 

wind speed changes would be insignificant by 2050 at the selected wind site for all seasons, with 

a small chance of either a positive or negative change of about 20%.    

 

Figure 40: Density distributions of projected wind speed changes (m/s) for the selected wind site, 
four seasons, two policies (L2S and UE), and three SRES scenarios (A2, A1b, and B1) 
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Figure 41 shows the changes in solar radiation for the selected solar site. The mode for all 

four seasons is slightly negative in almost all scenarios, but the solar radiation changes for the 

selected site are likely small, if not zero. In the extreme results, changes range from about -20 to 

+ 20 W/m2, which equates to approximately 10% of the mean.   

 

Figure 41: Density distributions of projected changes in surface solar radiation (W/m2) for the 
selected CSP site, four seasons, two policies (L2S and UE), and three SRES scenarios (A2, A1b, 

and B1) 

 

Notice that the results depend somewhat on the SRES scenario. This was not the case for 

the method used to produce precipitation and temperature change ensembles in Schlosser et al. 

(2011). In fact, in most cases, the differences between the results from the SRES scenario are 

about the same magnitude as the differences in IGSM policy cases, i.e., UE or L2S. The UE 

results tend to have a wider and shorter distribution than the L2S case, implying more likely 

extreme changes, but no obvious pattern was observed in the differences from the SRES scenario 

choice. Given that all of the models produce results for the A1b scenario—19 models total—and 
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only some produce results for the other two scenarios, the A1b model is selected for the 

remaining results. Also, of the three scenarios, A1b presents a medium emissions forcing case, 

while A2 and B1 represent the extremes.  

Results over southern Africa 

In the following maps, we shift focus to the JJA season because this is the season of high 

heat demand in South Africa.  Figure 42 shows the geographic variation of changes in wind 

speed for the JJA season over southern Africa modeled from the A1b output. The 20th, 50th, and 

80th percentiles are shown to represent the distribution of results over the 7,600 scenarios. The 

top row presents the L2S policy case, and the bottom row, the UE policy case. For the most part, 

wind speed changes are small in southern Africa. The most extreme wind speed changes occur in 

the ocean, where the median change ranges from about -0.5 m/s off the southern coast of South 

Africa to +0.4 m/s off the coast of Namibia to the west, and around the boarder of Mozambique 

and South Africa to the east. These same patterns emerge through all six maps. Inland, there is a 

cluster of increases in wind speed along the boarder of South Africa and Botswana that is 

especially prevalent in the UE 80th percentile. Further northwest, along the coast of the 

Democratic Republic of the Congo at the mouth of the Congo River and surrounding, is another 

area of projected increased wind speed. In general, although the differences in the results from 

the two policy cases are relatively small, the same pattern emerges—UE presents a wider range 

of possible wind speed changes, as shown in the 20th and 80th percentiles.  
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 Figure 42: Geographic and scenario distribution of wind speed changes (m/s) for Jun-Jul-Aug 
(JJA) using the A1b model results for the statistical model. Subplots a, b, and c show the 20th, 

50th, and 80th, percentiles, respectively, for the Level 2 Stabilization (L2S) policy case and d, e, 
and f show the same percentiles for the Unconstrained Emissions (UE) policy case.  

 

Figure 43 shows the geographic variation of changes in solar radiation for the JJA season. 

This figure uses the same layout as  Figure 42. Changes in solar radiation are small, even in the 

extremes. The median shows a decrease in solar radiation over most of the region, except an area 

around Malawi, west along the equator, and the southwestern tip of South Africa. The area with 

the strongest decrease extends from Kenya in the east and through Angola and Namibia in the 

west. These tendencies persist through the distribution, emerging in the 20th and 80th percentile 

maps. Also, we again see the extremes stronger in the UE policy case than the L2S policy case.  
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Figure 43: Geographic and scenario distribution of solar radiation (W/m2) changes for Jun-Jul-
Aug (JJA). Subplots a, b, and c show the 20th, 50th, and 80th, percentiles, respectively, for the 

Level 2 Stabilization policy case and d, e, and f show the same percentiles for the Unconstrained 
Emissions policy case.  

 

Although different geographic patterns emerge depending on the season modeled, 

changes in wind speed and solar radiation are relatively small for all seasons and regions of 

southern Africa. In looking at the annual mean change, some patterns do emerge. For wind, 

mean wind speeds are increasing offshore west of South Africa and Namibia and east of South 

Africa and Mozambique, but decreasing south of South Africa. These patterns persist in the 

extremes reaching a minimum of about -1.5 m/s, to a maximum of +1.5 m/s in the UE case, 

while the range for the L2S case reaches extremes of -1 m/s to +1 m/s. Onshore are smaller 

changes, with increasing wind clustering along the boarder of Botswana and South Africa 

extending to southern and central Mozambique. Decreases in wind speed extend to a larger 
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region—strongest in Kenya and Tanzania, but extending out to Angola, Namibia and western 

South Africa. The onshore changes range from about -1 m/s to +1m/s in the UE case, and -.4 m/s 

to +0.5 m/s in the L2S case.  For annual mean changes in solar radiation, we see increases along 

most of the onshore area except near the coast. The areas of largest decrease in solar radiation are 

found along the western coast, especially near the border of Namibia and South Africa, and 

another area clustering around the Tanzania-Kenya-Uganda boarders. The extremes range from 

about -35 W/m2 to +35 W/m2 in the UE case, and about -18 W/m2 to +12 W/m2 in the L2S case.  

Closing Remarks 

As a response to previous studies that have tried to dissect GCM output from a select set 

of model results in order to understand the future state of wind and solar resource potential, we 

have shown a method that introduces emissions, climate sensitivity, and regional climate 

uncertainty. A statistical model was used to expand the HFD approach to include wind and solar 

parameter estimations, effectively producing a portfolio of possible outcomes. The results, even 

in the extremes, are consistent with previous studies, which found only small changes to wind 

and solar potential by 2050. We also found that the GCMs report a wide range of results. These 

differences in output exist across the models as well as across the emission scenarios, resulting in 

a central tendency close to zero change when combined. Since the emission uncertainty in the 

presented results exists in the different models produced from the three SRES scenario outputs as 

well as the IGSM scenarios, and a commonality was not found among the SRES scenario output 

as was found in Schosser et al. (2011), further research is required. Regardless, this study has 

found that either the long-term mean wind and solar resource potential will likely remain 
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unchanged by 2050, or that the uncertainty of the GCM models is much too large, even with 

state-of-the-art climate science, to make claims on the future state of these resources.    
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CHAPTER 5     

CONCLUSIONS AND FUTURE RESEARCH 

 

In the following chapter, I take the opportunity to discuss issues and inferences that could 

not be properly included in the previous chapters. In Section 1, I comment on the studies 

presented in the previous chapters by listing the key assumptions and limitations, as well as 

suggest future research. In Section 2, South Africa’s options for reducing emissions are 

reassessed given the findings from the preceding Chapters. The prospect and current condition of 

regional trade and interconnection are discussed In Section 3. Section 4 presents the main areas 

of future research and way forward from the opinion of the author, and Section 5 presents the 

final conclusion. 

Limitations and Key Assumptions 

The following section lists the main limitations and key assumptions (i.e., what is studied 

and what is not) for the three studies presented in chapters 2-4. These lists are presented in a way 

that is meant to be concise and simple. After these lists, suggestions for future research are 

discussed for each study. Some of the suggestions involve relaxing or removing the key 

assumptions listed while other suggestions for future research involve looking into new areas.  
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The Impact of Climate Change on crops, irrigation demand, and hydropower in the Zambezi 

River Basin 

In the first study, presented in Chapter 2, a suite of models is used to assess the 

vulnerability of the countries dependent on resources from the Zambezi River Basin to changes 

in climate. We find that the sectors most vulnerable to climate change are: hydropower in 

Zambia, irrigation in Zimbabwe and Mozambique, and flooding in Mozambique. The limitations 

and key assumptions from this study are as follows: 

A-2.1. The study is dependent on accurately measured climate and streamflow data for the 

historical run as well as the future runs. For the climate data, we use observational-

reanalysis data that is dependent on climate modeling, satellite measurements, as well as 

ground measurements. For streamflow data, we use recorded, usually hand-written data 

collected from various agencies and compiled in a World Bank study. While we believe 

these are the best available, they are subject to error.  

A-2.2. The historical climate data is set to 0.5 by 0.5 degrees for monthly data and 1 by 1 degree 

for the daily pattern. Although we are consistent in the resolution of all subsequent 

modeling (e.g., lumped rainfall runoff model with large basin sizes) and result 

presentation (i.e., presenting impact results on a national scale), the coarseness of the 

historical data limits the accuracy of the results and the amount of detail considered in the 

modeling. 

A-2.3. The future climate data is also coarse. The GCMs generally have a resolution of about 2 

to 4 degrees in the latitudinal and longitudinal directions. The IGSM, which is used along 

with the GCMs to produce the HFDs, is 2 degrees in the latitudinal direction with no 



93 
 

longitudinal detail. Again, we are consistent in the presentation but this coarseness does 

limit the accuracy of the results.  

A-2.4. In the flooding impacts analysis, we use a 40-year monthly timeseries of runoff values to 

fit an extreme value distribution. We then estimate return periods for the historical and 

future scenarios, comparing all future scenarios with the base scenario. This technique is 

simple, and we believe we are arriving at a reasonable conclusion, but further analysis is 

needed to be sure that damaging floods will increase in the future, assessing shorter time 

scales—hourly, daily, weekly—and considering more detailed topography and soil 

information. We could also look into more detail on the seasonal changes in flood events, 

as that would affect the agricultural specific damages, as well as other economic activities 

that vary with season.  

A-2.5. For the water resource modeling, we use the hydropower build-out plan to 2030 including 

hydropower demands. These are static, not considering changes in power demand or the 

effects of reservoir filling.   

A-2.6. We assume a static irrigated area, set to current conditions. Future irrigation infrastructure 

could change the stressed regions as well as hydropower production.  

A-2.7. We do not consider feedback from the economy—namely, changes in food prices, energy 

prices, or infrastructure damaged by floods. Although these are handled by subsequent 

economic modeling, incremental feedback from the economy could affect investments in 

the hydropower and agriculture sectors in the region, in turn affecting the management of 

these water resources.  
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With a study like this one, in which the main goal is to identify sectors and regions where 

more detailed, project-scale studies should be directed, the list of future research suggestions is 

naturally quite long. Each sector study in this project could use a closer look. In general, a more 

extensive study of mitigation options for all sectors would be beneficial. More specifically, a 

more detailed study on both historical and projected flooding risk in this region could be 

addressed in a future research project that takes into account detailed topography and hydrology. 

A study like this would be difficult because of the limited data available, but is a risk worth the 

effort given the vulnerability of the infrastructure and people, as well as the climate and 

landscape. Also, we could use the modeling framework built in this study to analyze various 

future scenarios involving irrigated areas (A-2.6) or different hydropower build-out plans (A-2.5). 

In addition, as mentioned in A-2.7, building an input/output framework where the biophysical 

models (i.e. the models used in this study) exchange information to and from the economic 

models at intermediate time-scales would allow more realistic management adjustments in these 

sectors, especially between the water resources model, WEAP, and the economic models. 

Another aspect to consider is the value of cooperation between these countries, where the models 

could represent different levels of information exchange on food, water, and energy management 

reaching various levels of benefit for these economies.     

Characterizing Wind Power Intermittency and Reliability in Southern Africa 

In the second study, presented in Chapter 3, we use hourly reanalysis data to characterize 

wind power intermittency and assess the value of interconnection in southern Africa. We find 

that wind potential is high in Kenya, central Tanzania, and southern South Africa. With a closer 

look, we find that wind power resource in South Africa is unreliable (i.e., intermittent) and is 
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weak when power demand is highest on all relevant time-scales. The limitations and key 

assumptions from this study are as follows: 

A-4.1. We use the MERRA data as a representation of historical hourly wind speeds, which are 

a combination of model, satellite, and ground measurements. This study is dependent on 

the accuracy, quality assurance, and compilation of these measurements by the MERRA 

team.  

A-4.2. The spatial resolution of this data is set to 1/2 degree in the latitudinal direction and 2/3 

degree in the longitudinal direction. The effects of local topography are not captured well 

in data at such a coarse resolution.  

A-4.3. There are various spatial elements that are not considered in this analysis. These include 

distance to major power lines, protected areas, urban areas, ground slope, etc. These 

realistic limitations would impact areas that are ideal or not ideal for building wind farms. 

A-4.4. Although we do consider turbines at different hub heights, we do not consider rotor 

diameters, turbine spacing, the variability between turbine models, etc. 

A-4.5. We also do not consider wind direction. Wind turbines are large and require time and 

energy to turn if the wind changes direction often or too quickly.  

A-4.6. We use a wind power density threshold of 200 W/m2 for a large portion of the study to 

determine if the hour and location is producing power or not producing power. Although 

we did try most of the calculations using a threshold of 140 W/m2, and did not see much 

of a change in the results, much of these calculations are dependent on the threshold 

value selected. 
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 Future research suggestions for this study are extensive. For a better understanding of the 

variance in the wind, and for the sake of forecasting, we could investigate the effects of major 

physical phenomena like the El Nino Southern Oscillation, which has been shown to have effect 

on precipitation in the area on an inter-annual timescale, or the Maden-Julien Oscillation, which 

affects small time-scale intermittency patterns—on the order of days and months—of wind speed 

across the globe. Another area for future research would be the inclusion of differences in turbine 

technology, including the effects of turbine spacing, turbine models (A-4.5), and wind direction 

(A-4.5). Of course, we could also introduce solar power into this intermittency study, either by 

assessing solar power intermittency and/or the value of connecting solar parks to wind farms in 

various locations in southern Africa.  

The Climate Change Impact on Wind and Solar Power in Southern Africa 

In the third study, presented in Chapter 4, we develop a risk profile for changes in the 

long-term mean of wind and solar power sources. To do this, we use a statistical relationship 

between global mean temperature and each local gridded wind speed and solar radiation from the 

GCMs. We find that only small changes in wind speed and solar radiation are predicted in the 

median of the distributions projected to 2050. And at the extremes of the distribution, relatively 

significant changes are predicted in some parts of southern Africa, and are associated with low 

probability. 

A-4.1. Again, we are dependent on future climate scenarios modeled by GCMs with coarse grid 

cells. We are also somewhat dependent on the 2-dimensional IGSM, which provides the 

risk information via global temperature changes. These are both subject to the errors in 

projecting future climates. 
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A-4.2. In the statistical model, we assume that any consistent change in either wind speed or 

solar radiation that correlates with changes in global temperature is a result of climate 

change. This assumption might not always be the case, meaning that the changes in solar 

radiation or wind speed could be caused by another phenomenon unrelated to climate 

change but, by chance, be correlated to global temperature changes. 

A-4.3. We focus the study on changes in long-term mean potential because GCMs are better at 

projecting changes on larger time-scales. Changes in wind and solar intermittency (i.e. 

shorter time scales) could be significant. 

A-4.4. This study projects changes in wind and solar climate parameters. Although these are the 

drivers of power production for these technologies, they are not perfectly correlated with 

energy output. Wind resource is also affected by air density and solar resource is affected 

by many climate parameters such as humidity, wind speed, dew point, and surface 

pressure. 

There are many avenues where this research could be continued. GCMs tend to be better 

at projecting climate parameters like temperature and pressure. Since wind speed and cloud 

movement are influenced by pressure and temperature differentials, we might be able to 

represent future changes in wind and solar resource potential more accurately if we run these 

parameters through the statistical model instead of wind speed and solar radiation (addressing A-

4.1). Using a framework like this, we could also predict changes in the reliability by modeling 

changes in the occurrence of low and high wind speed, e.g. 10th and 90th percentiles, respectively, 

based on the MERRA data or station data, which would address A-4.3. Additionally, we could 

take the study a step further by predicting changes in a distribution, like the Weibull, and run the 
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distribution through a power output model, directly simulating changes in power produced, 

addressing A-4.4.  

South Africa’s options for reducing emissions 

As mentioned before, South Africa dominates the SAPP in terms of consumption and 

production, with about 80% of consumption and 81% of production. Future demands are 

expected to increase significantly in the future, about 38% across the entire SAPP from 2013 to 

2025 (3.2% / annum on average, based on projections from SAPP [2012]). On top of this, South 

Africa plans to reduce emissions significantly. If South Africa is to reach its ambitious emissions 

reduction targets, the country has three main strategy options—assuming no significant 

flexibility on the demand side—which can be implemented at varying degrees: (a) remodel 

existing thermal plants or build new plants that are more efficient and release less emissions; (b) 

build wind and/or solar power in South Africa, among other renewable options; or (c) rely on 

imported renewable energy, likely hydropower from the Zambezi and Congo basins. Option (a) 

is already happening to a certain degree in South Africa, but is a long and expensive process and 

is not likely to meet the emission reduction targets without the help of options (b) and/or (c). 

The viability of option (b) is as follows. Estimations of wind potential in South Africa 

have varied from 7.9 TWh (Diab 1985) to 106 TWh (Banks and Shaffer 2006, 2007). Note that 

the more recent studies estimate higher wind power potential than the older studies. This pattern 

of increased estimates persisted from 1985 to 2007. The most detailed estimate comes from 

Hagemann (2008), who estimated South Africa’s generation potential to be: 80.54 TWh with a 

realistic estimation, 157.18 with an optimistic estimation, and 20.06 TWh with a pessimistic 
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estimation. Of course, these estimates are made by modeling the historical state of wind and do 

not consider climate change. Given the results found in Chapter 4 of this dissertation, wind 

power potential could decrease in the future in South Africa. Solar potential is estimated to be 

much higher than wind potential in South Africa, although there are fewer estimates in the 

literature. The most recent estimate found is included in Fluri (2009), who estimates CSP 

potential to be 547.6 GW, producing about 1,861 TWh annually. The majority of this potential is 

in the Northern Cape, with an estimated potential of 510.3 GW. An assessment of PV potential 

in South Africa was not found, but presumably would be on par with CSP potential. Additionally, 

considering the results found in Chapter 4 of this dissertation, solar potential is not likely to 

change in the regions with especially high potential currently. Basically, the limiting factors for 

wind and solar are not the number of sites with potential but the costs of the infrastructure and 

transmission, as well as dealing with power supply intermittency.  
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Figure 44: Map of the major sources of potential and existing power. The wind potential is the 
area in blue and the solar potential is the area in red. The hydropower potential is only based on 
large hydropower projects and the coal existing and potential capacity is based on South Africa 
only, where the potential includes the two large plants that are predicted to come online in 2015 

and 2018. 

We now take a closer look at the third option for reducing emissions, option (c). Figure 

44 shows a map of the existing and potential primary sources of power in the SAPP. The area 

with wind power potential, shown as blue, is based on wind power density at 80m, using a 

median of 100 W/m2 as the threshold. Solar power potential, shown in red, shows the areas with 

at least a median of 500 W/m2 of total solar radiation. Both wind and solar data is from the 

MERRA, discussed in Chapter 3 of this dissertation. Hydropower potential and existing capacity 

is based on the largest 11 sites in the region (data from ECA [2009]). Existing and potential coal 

power capacity is shown for comparison purposes and is based on South Africa (i.e., Eskom) 
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only. The potential coal capacity is based on two large plants that will be built in South Africa by 

2015 and 2018, respectively.  

Solar potential exists mostly in Namibia and Botswana, with some potential in northwest 

South Africa, Zimbabwe, and western Zambia, as well as in the northeast of the map, around 

Tanzania and Kenya. Wind potential exists mostly in the southwestern part of South Africa, 

central Tanzania, and along the coast of Namibia. Considerable hydropower potential exists in 

the Zambezi and Congo basins and the majority of the planned future projects in the SAPP, 

about 80%, are hydropower projects (ICA 2011). Of the 11 major hydropower sites considered in 

Figure 44, 10 are along the Zambezi. Three of these sites have hydropower plants on them. The 

only hydropower site considered in the Congo is the Inga. Although this one site would provide a 

cheap source of renewable energy for many years (in terms of $ / GWh produced), other 

complications arise. First, the up-front cost is significant for the hydropower plant and the 

transmission. Second, planning the transmission will include difficult and possibly politically 

sensitive decisions, like which countries will be connected and who pays for the connections. 

Third, if South Africa is to be connected to the Inga, Eskom would need to agree to be dependent 

on a power source in the DRC. More on this prospect is discussed in the following section. 

For the most part, these renewable sources in southern Africa rarely overlap. There is 

significant hydropower potential in the Congo basin but no potential for wind or solar. The same 

could be said for Mozambique. There is wind potential in southern South Africa, solar potential 

in the northwest, but limited hydropower potential. There are a few exceptions where these 

sources do overlap, most notably the potential for solar and wind power in central Tanzania and 

Kenya. Nonetheless, with a push towards renewable energy, and the known value of 
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interconnecting different-source sites to mitigate intermittency, there could be a growing need 

for power trade in this region. 

Interconnection and Power Trade in the SAPP 

In this section, the benefits, difficulties, and obstacles of power trade in the SAPP are 

discussed, as well as the value of interconnection on a large scale. The power trade discussed 

here is between power utilities. Other than Mozambique, with two power utilities, there is only 

one power utility per nation in the SAPP. Net imports and exports for each country are shown in 

Table 3. Power generation for each country is also shown for reference. Many of these countries 

are importing power from South Africa. In fact, Botswana, Namibia, and Swaziland import the 

majority of their power from South Africa. The only other country in the SAPP that exports more 

than it imports, besides South Africa, is the DRC (although the most recent SAPP report, as 

shown in Table 3, reports that Mozambique exports more than it imports and generates. Earlier 

studies mention that Mozambique imports more than it exports [Rosnes and Vennemo 2008; 

ECA 2009; ICA 2011; SAPP 2009, 2010, 2011]). Regional trade has proven to be significantly 

beneficial in more developed regions, such as Europe and within the USA. SAPP has already 

seen some of the benefits of regional trade. Spinning reserve requirements for most countries has 

reduced from about 20% to 15% of peak demand from 2007 to 2009 due to power trades (ECA 

2009).  

Currently, one of the most important issues limiting regional power trade in this area is 

transmission. The area with the largest congestion is the interconnection between Zambia, 

Zimbabwe, Botswana, and Namibia (ZIZABONA). Many of the projects underway currently in 
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the SAPP are transmission projects. The largest of these are the ZIZABONA project and a 

project to connect Tanzania to the SAPP grid. These projects are expected to cost $240 million 

and $330 US dollars, respectively (ICA 2011). Transmission, of course, also results in 

transmission losses, and increasing regional trade would result in more energy losses. Of course, 

power trade will likely be valuable despite these losses. Average transmission losses in the SAPP 

are about 6.4%, with large variations between countries, as shown in Table 3. Another concern 

with transmission is the possibility of the disconnection of a major transmission line. The region 

is prone to major floods that could take out a transmission line. Also, rebel groups in the past 

have destroyed major transmission as an act of war (e.g., the transmission lines of Cahora Bassa 

were sabotaged during the Mozambique Civil War). At extra cost, redundancies can be installed 

in the system that can be used in the case that transmission is disconnected. Another possibility is 

to build underground or underwater transmission lines, although either option would also entail 

extra cost as well as increased transmission losses.   

Table 3: Generation, Imports, and Exports in 2011/12 (SAPP 2012) 

	   Generation 
(GWh) 

Imports 
(GWh) 

Exports 
(GWh) 

Transmission 
Losses (%) 

Angola  5,613   36   0    10 
Botswana  372   3,180   0    3.7 
DRC  7,021   440   171  10 
Lesotho  486   49   7  11 
Malawi  1,809   -     19  9 
Mozambique  390   93   669  6.4 
Namibia  1,305   2,462   294  3.2 
South Africa  237,430   10,190   13,296  3.3 
Swaziland  288   909   0    6 
Tanzania  3,034   2,192   0    6.1 
Zambia  11,381   43   66  4.6 
Zimbabwe  6,951   1,531   1,025  4 



104 
 

 

Another concern in the region is cooperation among the SAPP members. Most of these 

countries have a long history of internal and external conflict. At present, many of these nations 

have weak administrations, high-risk profiles, and poor security arrangements. In spite of this, 

electricity trading has been rarely interrupted. The only significant interruption was the sabotage 

of the Cahora Bassa link to South Africa that interrupted supply for 17 years (ECA 2009). While 

this incident stands alone, it acts as a reminder of the security risks in the area and reinforces 

self-sufficiency. For example, connecting to the Mmamabula coal-fired power station in 

Botswana—a closer, well-managed economy—might be more attractive for South Africa than 

connecting to the Inga in DRC, with decades of war and instability. The Inga is about 2,800 km 

(about 1,700 miles) away from Johannesburg, while Cahora Basa, on the Zambezi, is about 

1,300 km (about 800 miles) away. 

With renewable energy as a focus of new capacity in the region, primarily hydropower, 

power trade might become even more valuable. We have already discussed the value of 

interconnecting wind farms to mitigate intermittency. Similarly, renewable energy of different 

sources can be interconnected. For example, in some areas, wind power generation tends to be 

stronger at night, while solar resource, of course, is only available during the day. Although 

hydropower reservoirs usually have some storage to allow flexibility of power generation, other 

demands for water and seasonal fluctuations in runoff interfere with power flexibility. For these 

reasons, interconnection and power trade in the region could offset some of these timing issues. 

And, as already discussed, there is little overlap between different types of renewable resources 

in the area. Nonetheless, power trade of this kind would need to be responsive on short time 
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scales and would require extensive planning and practice. Also, the findings in Chapter 3 of this 

dissertation, where we find that wind power in South Africa is strongest in the summer, 

combined with the fact that the rainy season in the Zambezi occurs in the summer, and that 

demand is highest in the winter, are all discouraging for the prospect of interconnection. Still, 

this is certainly an area for future research. 

Future Research 

To accompany the discussion in Section 1 of this Chapter, where future research of the 

individual studies is discussed, this section lists the main areas of research for the issues that this 

dissertation begins to address.  

• Intermittency is discussed in this dissertation mostly by identifying and 

classifying the issue. Although we present one solution to mitigate intermittency, 

by interconnection, there are many other suggested solutions in the literature, such 

as: energy storage (or batteries) of all kinds, management options of dealing with 

intermittency on the supply side, like aluminum smelters or other flexible demand 

on the industry side, or better weather forecasting. These would all be areas of 

future research. 

• We considered how climate change would affect hydropower in the Zambezi, and 

wind and solar in southern Africa, but have not yet considered how climate 

change would affect conventional sources (e.g., changes in water availability for 

cooling) or electricity demand (e.g., household heating/cooling demands, or 

industrial demands). 
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• A study of how the three renewable sources—wind, solar, and hydropower—

could be interconnected to reduce intermittency would be of paramount 

importance. This would be especially useful for impacting the hydropower plants 

in planning, as it may be the case that more turbines per dam or larger reservoir 

storage would be valuable to allow for a more control of generation. 

• Renewable energy, like wind and solar, is often in remote areas. How would this 

affect transmission costs and how might this be valuable for connecting remote 

areas to the grid? 

Conclusion 

With electricity demands rising quickly in southern Africa, determining the best viable 

options for the future infrastructure investment plan is vital for economic growth and stability. 

Renewable energy is a viable option for meeting future energy demands in this region. The 

contribution of this dissertation is an analysis of the future reliability of these energy sources, 

considering climate variability as well as the long-term trends caused by climate change—

namely, hydropower in the Zambezi basin, characterization of wind resource intermittency, and 

the future state of wind and solar resources. Although the research and findings in presented here 

are a step forward, there is still much to learn about the power sector in southern Africa. Most of 

the issues facing the SAPP are not of an engineering nature, but rely on socio-economic and 

political circumstances. For example, some of these issues are related to questions such as: What 

are the benefits of regional trade in power, and who are the main beneficiaries? How important 

is a stringent master plan of these renewable energy investments in southern Africa? Is a master 

plan, presumably administered by the SAPP, worth the costs, difficulties, or risk of failure from a 
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political point of view? The need for simple yet comprehensive modeling to address the issues 

presented in this dissertation, as well as effective communication, is important for the many 

nontechnical policy-makers.  
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APPENDIX A     

COMPARISON OF MERRA GRIDDED DATA TO WASA STATION DATA 

Here, the MERRA data are compared to recently taken wind station data from the 

ongoing Wind Atlas for South Africa (WASA) project. Data from the 10 wind masts are freely 

available from the WASA website (WASA 2012). These stations have wind speed data at a 10-

minute aggregation usually starting in the middle of 2010 to the present. Since 2011 was the only 

consecutive full year of data available at the time this paper was written, this year is used to 

compare to the MERRA data. Also, the WASA data was aggregated to an hourly time-step to 

match the MERRA data. 

There are many fundamental differences between station data recorded at a point and 

gridded data aggregated over a large region. First, wind masts are generally installed near where 

wind farms are likely to be built. This means that they are in areas of high wind potential and 

usually placed away from obstructions that might interfere with the anemometer. Therefore, we 

expect that the wind station data will represent one of the highest wind potential points in the 

MERRA grid. Keep in mind that the MERRA data represent an area roughly greater than 3,600 

km2. Also note that the MERRA data represents wind speeds from 1979 to 2009, while the 

WASA data represents 2011. Figure 45 shows the mean as a bar superimposed by box and 

whisker plots of both the WASA station data and the MERRA data at the grid where the station 

resides for the 8 stations with a full 2011 record.  
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Figure 45: Mean, shown as bar plots, and distributions, shown as box and whisker plots, for 
WASA (blue) and MERRA (red) for 8 stations  

 

As expected, the station data are always higher than the gridded data. The station data 

means are about 2 m/s higher, and the 75th percentile is about 3 m/s higher. Since the station data 

only represent 1 year and the MERRA data represent 31 years, we wanted to compare these 

using the same length of record. As an example, Figure 47 shows the 31 years, 1979-2009, from 

the gridded data compared to the station data from 2011 for the first station, labeled “Sta 1.” This 

figure clearly shows that the station data are characteristically different for station 1. In fact, the 

station data appear to have a considerably larger central tendency and variance for all stations. 

Another interesting characteristic is that the station data tend to be more skewed towards lower 

values than the gridded data. The skewness for each station is shown in Figure 46. Except for 

two stations, which are close, the skewness in the station data is considerably higher than the 

gridded data. 



117 
 

 

Figure 46: Skewness of MERRA (blue) compared to WASA (red) for 8 stations 

 

 

Figure 47: Box and whisker plots of wind speed distributions for the 31 years of MERRA (blue) 
and WASA for 2011 (brown) 
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Another important characteristic of wind for the national power grid is the distribution of 

wind over various time scales. Figure 48 shows the distribution of wind speed over the year for 

station 1, as an example. For this figure, the 10th, 50th (median), and 90th percentiles were 

calculated from the 31 years of the MERRA data, and then smoothed using a 24-hour moving 

average in order to remove the daily cycle. In this case, the 10th percentile represents the lowest 

daily mean in a 10-year period, and the 90th percentile, the highest in a 10-year period. Again we 

see that the station data is typically much higher than the gridded data, but in this figure, the 

difference in the variance is more apparent. We also found that the seasonal cycle (i.e. higher in 

DJF and lower in JJA for station 1) is fairly close between the two datasets. 

 

Figure 48: Seasonal cycle of wind speed for the station (WASA) in brown and MERRA in blue, 
green, and cyan for station 1 

 

The distribution of wind speed over the daily time-scale is also important for national 

energy planning. Figure 49 shows the daily distribution using box and whisker plots for each 
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hour for station 1 as an example. Using these plots, we were able to conclude that the two 

datasets show a similar daily distribution for all stations.  

 

Figure 49: Diurnal Cycle of wind speed for MERRA (top) and WASA for station 1 

 

This exercise illustrates some of the fundamental differences between gridded and station 

data in South Africa. First, the station data have a considerably higher central tendency than the 

gridded data. With the gridded data representing an aggregate of possible wind farm cites, some 

cites could have higher and lower wind resource potential. Second, the station data have a much 

higher variance than the gridded data (this is especially apparent in Figure 48). And third, the 

station data are more skewed toward lower values than the gridded data. Local wind is subject to 

small-scale turbulence and terrain inhomogeneities that can cause large changes in the spectra. 
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Some of these characteristics are dampened or removed in the grid aggregation. These findings 

are important to consider when estimating wind resource potential using gridded data.  

 

 


