

Building a Prototype Analog Computer for Exact-1-in-3-SAT (*)

Michael G. Main

Department of Computer Science

University of Colorado at Boulder

Boulder, CO 80309-0430

Technical Report CU-CS-1035-07

October 2007

Abstract

This report describes theoretical work on the design of analog computers to solve discrete

combinatorial problem. The approach is to convert a combinatorial problem into a

dynamic system that can be simulated by piecewise linear analog circuits. Each instance,

P, of a the original combinatorial problem corresponds to placing the analog computer in

a particular known equilibrium state. If the equilibrium is stable, that implies that P has

no solution. However, if the equilibrium is unstable, then the analog voltages along that

instability (the “downhill” direction of the dynamical system) provide a solution to the

problem P.

In addition to the theoretical description of the analog approach, this report also provides

a detailed analog schematic for one particular combinatorial problem: Exact-1-in-3-SAT

(an NP-complete problem). The design is modular, requiring O(n
2
) components for an n-

variable instance of Exact-1-in-3-SAT. The construction of a prototype of this machine

is underway for the 8-variable version of the problem, and this report describes some

specific questions that can be answered by the prototype and a larger wire-wrapped 16-

and 24-variable versions.

* This work is supported by a grant from the Engineering Excellence Fund of the College

of Engineering at the University of Colorado in Boulder.

Building a Prototype Analog Computer for Exact-1-in-3-SAT 1

1. Background

During the age of transistor electronics, just at the birth of integrated circuitry, the design

of analog computing components was motivated by analog computations in which

voltages represent some physical quantity and the computing components manipulate

voltages to carry out various numerical operations such as addition or definite integration.

But by the time analog components—specifically the op-amps of the 1960s—had

matured enough to implement such operations, it was already clear that digital

components had the advantage in both speed and accuracy for the kinds of numerical

problems that analog computer designers had hoped to solve. This is underscored by the

fact that principle texts on analog computer programming all date from the 1960s [9].

Digital algorithms have their limits, too, particularly in large, well-known combinatorial

problems. The NP-complete problems [5] share the trait of having no known polynomial-

time algorithms despite decades of intense study. Many other important combinatorial

problems, such as prime factorization, graph isomorphism and various pattern matching

problems also run up against combinatorial barriers. These problems have motivated

recent alternative computation proposals such as DNA computation [1] and quantum

computers [3] that may take advantage of natural massive parallelism.

This report describes theoretical work and one detailed design for analog computers that

solve combinatorial problems. The approach is promising because it explicitly does not

depend on the relative inaccuracy of analog computations, but instead depends only on

the ability of an analog computation to fall out of an unstable equilibrium.

The analog work has its origins in a physical machine given by Anastasios Vergis,

Kenneth Steiglitz and Bradley Dickinson [13]. Their idea starts with an instance of

Boolean Satisfiability [10], and from the specification of the instance they describe how

to build a contraption of gears and other mechanical parts. One of the gears in the

machine has a crank handle attached to it. Their analysis shows how the ability or

inability of the handle to turn provides an answer to the given instance of Boolean

Satisfiability. If the handle turns, we infer one answer to the problem; if it fails to turn,

we infer a different answer.

An analysis of the gear machine [7] shows that the machine is analogous to a ball that

rests in equilibrium in a multi-dimensional dynamic state space. The act of trying to turn

the handle puts a downward force on the ball. If the equilibrium is a local minimum in

the state space, then this force cannot budge the ball (the handle does not turn). On the

other hand, if the equilibrium is not a local minimum, then the hope is that noise will

soon jiggle the ball out of the equilibrium so that the downward force accelerates it away

from the initial location (and the handle turns).

In a perfect world, though, the handle would never turn. Trying to turn the handle is

analogous to exerting a straight down force on the ball that is precisely balanced at the

apex of a perfect hill: There is no sideways force to jiggle the ball off the hill. The hope

with the gear machine is that noise in the system will kick it into a downhill direction,

even when the force is straight down and even when that downhill direction is

exponentially small in terms of the total size of the state space. The machine was never

Building a Prototype Analog Computer for Exact-1-in-3-SAT 2

built, so we don’t know whether the hope is valid or whether the expected time for that

hope to occur is exponentially long.

Building the actual gear machine would be hard to prototype and test, but an analogous

electronic circuit, described in this report, is feasible. The analog machine simulates the

state of the gear machine by voltages in a circuit. The machine that is given here is to

solve the NP-Complete problem, Exact-1-in-3-SAT, which we describe next.

2. Exact-1-in-3-SAT

The NP-complete problem, Exact-1-in-3-SAT [10] is defined here:

Let V be a set of Boolean variables. A 3-clause is any set of three of

these variables. An assignment for V is a function A:V�{true, false}.

For an assignment A and a variable u in V, we say that u is a true

variable if A(u) = true; otherwise, we say that u is a false variable.

Exact-1-in-3-SAT: Given a finite set C of 3-clauses in which no two

variables appear together in more than one clause, does there exist an

assignment such that every 3-clause in C contains exactly one true

variable?

For an instance P of Exact-1-in-3-SAT, an assignment that results in exactly one true

variable for each 3-clause is called a valid assignment. If P has at least one valid

assignment, then P is called satisfiable; otherwise it is unsatisfiable.

3. Defining a Function fP from an Instance P of Exact-1-in-3-SAT:

Let P be an instance of Exact-1-in-3-SAT with variables V = {x1, x2, …, xn} and clauses

C. From P, we can define a continuous piecewise quadratic function fP:R
n+1

�R (where

R is the set of real numbers). For this definition, let x ∈ R
n+1

 be a vector of n+1 real

numbers. We will use the notation x1, x2, …, xn for the first n components of x

(distinguished from the elements of V by context only). The n+1st component of x is

denoted by w.

3.1. The value of fP(x) is the sum of these pieces:

a. For each xi ∈ V, fP(x) includes the sum of these four terms:

0.5w
2
 - xi

 2

+

if (xi > 0) then 0.75 xi
 2

 else 0

+

if (w - xi < 0) then 0.5(w - xi)
2
 else 0

+

if (w + 2xi < 0) then 0.5(w + 2xi)
2
 else 0

b. For each { xi , xj , xk } ∈ C, fP(x) includes the term (xi + xj + xk)
2

c. fP(x) includes the single term -0.2w
2

Building a Prototype Analog Computer for Exact-1-in-3-SAT 3

The function fP has a local minimum at the origin if and only if the instance P is

unsatisfiable. In fact, if P is unsatisfiable, then fP(0) is a global minimum; otherwise, any

downhill direction away from the origin provides an assignment that satisfies P defined

by A(xi) = (xi > 0) for all xi ∈ V.

3.2. There are two dynamic systems that may be useful in determining whether fP has a

local minimum at the origin. The two systems are defined by the following differential

equations.

a. Gradient Dynamic: x’ = -δfP/δx. Intuitively, the gradient dynamic is a system

where the instantaneous velocity of a particle at position x is always equal to the

direction of steepest descent.

b. Mechanical Dynamic: x’’ = -δfP/δx. Intuitively, the mechanical dynamic is a

system where the instantaneous acceleration of a particle at position x is always

equal to the direction of steepest descent.

The idea is to build an analog computer in which voltage lines represent the components

of a position x, and to allow the state of the machine to vary under one of these dynamics.

If we start the machine at the origin, and the origin is not a local minimum, then noise in

the system may eventually kick the machine into an path away from the origin. The

gradient dynamic is intuitively simpler, although in simulations, the additional variation

in the mechanical dynamic caused it to move away from the origin more often than the

gradient dynamic. In any case, the hardware difference between the gradient and

mechanical dynamics is small (replacing n inverting integrators with n inverting adders),

so both machines can be built and tested with the same basic design.

Building a Prototype Analog Computer for Exact-1-in-3-SAT 4

4. Schmatics for the Analog Machine (Mechanical Dynamic)

This section provides schematics for a prototype analog computer that can simulate the

mechanical dynamic for any 8-variable instance of Exact-1-in-3-SAT. The design is

modular, so that it can scale up to 16-, 24-, 32-… variable instances. The prototype

version is programmed for a particular instance P via manually set switches. In the larger

versions, these switches will be programmed by a microcontroller. The format of the

individual computing elements comes from [9].

4.1. Overall Structure

The overall structure of the analog machine in shown in Figure 1. Details of the separate

block components are given in Sections 4.2 through 4.4.

Figure 1: Block Diagram for

the Mechanical Dynamic

Analog Computer

n x n switch matrix

under microprocessor control

for a particular instance P of

EXACT-1-IN-3-SAT

bi = sum of those xj that

share a clause with xi

Inverting integrators

.

.

.
b1, b2, …, bn c1, c2, …, cn

Computes

-x1’’(δfP/δx1)
and c1

-x1’’ x1’ -x1

b1

bn

Computes

-xn’’(δfP/δxn)
and cn

-xn’’ xn’ -xn

cn

c1

Computes

w’’(-δfP/δw)

-w’’ w’ -w

Inverting integrators

-x1, -x2, …, -xn

-xn

-x1

Inverting integrators

Inverter

w-w

ci =

contribution of xi to δfP/δw =

 w

 +

if (w - xi < 0) then (w - xi) else 0

+

if (w + 2xi < 0) then (w + 2xi) else 0

-w

-w

w

w

For the prototype, n=8

Building a Prototype Analog Computer for Exact-1-in-3-SAT 5

4.2. Subcircuit for Each Variable xi

Each variable xi has circuitry from Figure 1. The inputs to this circuitry are the current

values of – xi, w, -w and bi. This circuitry, along with inverting integrators that compute

xi’ and -xi , is shown in Figure 2. Altogether, it produces outputs of bi , ci , -xi and xi’ and

Within the figure, the definitions of bi , ci and -xi’’ are given as:

bi =
{ }
∑

∈

+
Cxxx

kj

kji

xx
,,

 This is the sum of all the variables that share a clause with xi.

ci = the contribution of xi to δfP/δw

 = w

 +

 if (w - xi < 0) then (w - xi) else 0

 +

 if (w + 2xi < 0) then (w + 2xi) else 0

-xi’’ = δfP/δx

 = the sum of the following six pieces:

1. 2m xi , where m is the number of clauses that contain xi

2. -2xi

3. if (xi > 0) then 1.5 xi else 0

4. if (xi – w > 0) then (xi – w) else 0

5. if (w + 2xi < 0) then (w + 2xi < 0) else 0

6. 2bi

The primary job of the circuit in Figure 2 is to maintain the value of -xi via the inverting

integrator A6, which continually integrates xi’ . The value of xi’ is itself maintained by

inverting integrator A5, which continually integrates -xi’’. The inputs to A5 are the

components of xi’’ , which are computed by the adders and rectifier circuits (1) through

(6). Also, two of the components ((5) and (4)) are combined in a differencing circuit A7

to produce ci.

The two switches at the top of the inverting integrators must be manually closed to

discharge the capacitors before the circuit is run. They are then opened for the actual

computation. In addition, the potentiometer P1 must be manually set to 2500mΩ, where

m is the number of clauses that contain xi in the instance P.

Building a Prototype Analog Computer for Exact-1-in-3-SAT 6

Building a Prototype Analog Computer for Exact-1-in-3-SAT 7

4.3. Subcircuit for w

The circuitry to maintain the value of w (and –w) is shown in Figure 3. The use of the

two inverting integrators A1 and A2 is similar to the use for the variables xi, so the output

of A1 is w’ and the output of A2 is –w. An inverter is used to also provide an output of

w.

Building a Prototype Analog Computer for Exact-1-in-3-SAT 8

4.4 The Switch Matrix

Figure 4 shows the schematic for the n x n switch matrix from Figure 1 for the prototype

case where n = 8. The inputs are the n voltages –xi, and the outputs are the n voltages bj

(which is the sum of all the variables that share a clause with xj.)

The switch matrix contains n x n switches that will be set by hand in the prototype, but

will be set by a microcontroller in a larger version. Switch Si,j is closed if xi shares a

clause with xj; otherwise it is

open.

Building a Prototype Analog Computer for Exact-1-in-3-SAT 9

5. Questions for the Study to Address

These are some specific questions that building the hardware will answer:

5.1. Does the analog computer always stay in a stable equilibrium for an unsatisfiable

instance of Exact-1-in-3-SAT?

5.2. Does the analog computer always fall off the equilibrium for a satisfiable instance of

Exact-1-in-3-SAT? If so, how quickly? If not, what state is the machine in when it gets

stuck?

5.3. How does the time to fall off the equilibrium vary with increasing n. For this

question, 16-variable and 24-variable versions of the machine will be built, controlled by

a microcontroller processor.

5.4 How do the frequency responses and voltage supplies of the amplifiers affect the

speed of falling off an equilibrium?

In addition, the study will continue theoretical work to develop dynamic systems for

other combinatorial problems. Of particular interest are computing prime factorizations

(a problem with a fast quantum algorithm [11]), large pattern matching problems

(relevant, for example, in DNA analysis [4]), determining whether two given graphs are

isomorphic (the fundamental I-complete problem [12]), linear programming problems [8]

and convex quadratic programming [6].

Building a Prototype Analog Computer for Exact-1-in-3-SAT 10

Bibiography

[1] Leonard M. Adelman. “Molecular Computations of Solutions to Combinatorial

Problems,” Science 266 (11), pp. 1021-1024.

[2] Martin Amos. Theoretical and Experimental DNA Computation. Springer-Verlag

(2005).

[3] Iona Burda, An Introduction to Quantum Computation. Universal Publishers (2005).

[4] Lei Chen, Shiyong Lu and J. Ram. “Compressed pattern matching in DNA

sequences,” Computational Systems Bioinformatics Conference, pp. 62-68 (2004).

[5] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company (1979).

[6] M.K. Kozlov, S.P. Tarasov and L.G. Hacijan. “Polynomial solvability of convex

quadratic programming,” Dokl. Akad. Nauk SSSR 248 (1979), pp. 1049-1051.

Translated to English in Soviet Math Dokl. 20, pp. 1108-1111.

[7] Michael Main. “Analog Solution of NP-Hard Problems,” Department of Computer

Science Technical Report, (Jan 5, 1994).

[8] David J. Pannell. Introduction to Practical Linear Programming. Wiley (1996).

[9] Michael G. Rekoff, Jr. Analog Computer Programming. Charles E. Merrill Books,

Inc. (Columbus, Ohio, 1967).

[10] T.J. Schaefer. “The complexity of satisfiability problems,” Proc. 10
th

 Ann. ACM

Symposium on Theory of Computing. Association for Computing Machinery (New York,

1978), pp. 216-226. Note that the Exact-1-in-3-SAT problem remains NP-complete even

if negative literals are forbidden and no two variables appear together in more than one

clause.

[11] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer,” SIAM J. Sci. Statist. Computing 26, p. 1484.

(1997)

[12] S. Skiena. “Graph Isomorphism,” Implementing Discrete Mathematics:

Combinatorial and Graph Theory with Mathematica, pp. 181-187, Addison-Wesley

(1990).

[13] Anastasios Vergis, Kenneth Steiglitz and Bradley Dickenson. “The Complexity of

Analog Computation,” Mathematics and Computers in Simulation 28, pp. 91-113 (1986).

