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The Uniform California Earthquake Rupture Forecast version 3-Time Dependent is a complex 
mathematical model of where California’s seismic faults are and how frequently they produce 
earthquakes. The model is represented by a logic tree with 5,760 leaves, each representing one 
combination of modeling choices to represent epistemic uncertainties. To use the model in risk 
analysis, one must often add epistemic uncertainties, such as which of several ground-motion-
prediction equations to use. Doing so can increase the model size to 172,800 leaves. Each leaf still 
has explicit uncertainties, often called aleatory uncertainties, such as whether each of 6 million 
possible earthquakes will occur and the resulting map of spatially correlated shaking. To use the 
model in practice with all these uncertainties can be computationally demanding. It is desirable to 
find a subset of epistemic uncertainties that preserve the distribution of important dependent 
variables. We previously showed how to trim the logic tree to preserve the distribution of expected 
annualized repair cost to a large portfolio of California buildings. Here we show how to trim the 
logic tree to preserve the distributions of expected annualized repair cost and of loss with various 
rare exceedance frequencies: 1 time in 100 years, 250 years, 400 years, 550 years, and 2,500 years. 
It appears that one can reduce the logic tree to as few as 15 logic tree leaves (from 172,800), 
varying only ground motion model and ground motion model added epistemic uncertainty, at least 
for the 400-year and 550-year losses. A hypothetical risk calculation that takes 24 hours for the 
full model (evaluating all 172,800 leaves) can be reduced to a calculation that takes 8 seconds (for 
a reduced-order model with 15 leaves). But in all cases examined here, one can trim the logic tree 
by at least three variables. Because of the exponential relationship between the number of logic 
tree branches and the size of the model, even trimming three variables can produce a huge savings 
in computational effort, reducing the number of logic tree leaves to 4% of the size of the full model. 
Model order reduction can have important financial benefits. With more study, it may be possible 
to reduce uncertainty around the choice of ground motion model and of added epistemic 
uncertainty in the ground motion model. Lower uncertainty means thinner tails to the distribution 
of loss, that is, lower loss associated with rare exceedance rates. If an insurer can reduce its 
estimate of rare loss, it can buy less reinsurance and save money.  

1. Introduction 
1.1 Model order reduction for functions that include nominal random variables 
The Uniform California Earthquake Rupture Forecast version 3-Time Dependent (UCERF3-TD, Field et al. 
2015) mathematically models seismic activity in California. UCERF3-TD can be represented using a logic 
tree with eight modeling choices—branches in the logic tree—often called epistemic uncertainties. 
Some of the uncertainties have to do with an uncertain scalar quantity such as the maximum magnitude 
of earthquake that can occur off the fault. Some are presented by nominal variables, meaning variables 
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that can take on different values, but the values have neither scale nor order, such as the choice 
between two depictions of the physical geometry of the larger and more active faults. Each added 
epistemic uncertainty multiples the size if the model—the number of possible logic-tree leaves—by the 
number of possible values the uncertainty can take on. The model grows exponentially with the number 
of variables. Using the full model can be computationally expensive if one wants to quantify the tails of a 
distribution of a function of those variables.  

How expensive? Consider the insurance loss to a portfolio of 1 million policies subject to 6,000,000 
possible ruptures on 15,700 known faults, with a model that comprises 172,800 combinations of model 
elements. (UCERF3-TD has 5,760 possible combinations, but one needs three more variables to estimate 
uncertain ground motion, increasing the model by a factor of 30.) Despite Moore’s Law, quantifying the 
tails of a distribution of a function of such a complex model can cost so much that the analyst must 
resort to simplifications, while trying to maintain the shape of the distribution of the function. How can 
the analyst best reduce the model without introducing bias into the tails of the distribution?  

Most model order reduction techniques work when the model is a function of scalar random variables. 
In a prior work, we offered a path-search technique that can reduce a model that has nominal random 
variables too. One starts with the full model and one at a time trims off variables that do not strongly 
affect the distribution of the output function. In that prior work we illustrated the technique by 
trimming the UCERF3-TD logic tree to maintain the distribution of expected annualized loss, which 
matters to the premium rates that insurers charge their policyholders. This time we care about a value 
at a high tail of the distribution. Insurers care about the tails of the distribution of loss in a coming year 
because they must buy reinsurance to ensure they can financially survive the coming year with high 
confidence. 

1.2 Objectives 
This document adapts our previous path-search model-order reduction technique to maintain the 
distribution of a value on the tail of the model’s dependent variable. Let L denote the dependent 
variable, for example the largest loss that an insurer will suffer in the coming year. Let Lp denote a point 
on the high tail of the distribution of L, for example the value of portfolio loss L that is expected to be 
exceeded only 1-p times in the coming year. If p = 1/250, for example, Lp reflects the 250-year loss.  

Lp is a function of many independent variables, many of which are nominal, each of which has a 
probability distribution with a weight or probability applied to each possible value. Variables are 
arranged as branching points in a logic tree. The problem addressed here is, how can we remove logic-
tree branches by fixing them at one of their possible values, reducing the number of leaves to minimize 
the model size without introducing unacceptable error into Lp?  

This is a problem of model order reduction for an extreme value of a high-order model that includes 
nominal uncertain variables (see e.g., Schilders et al. 2008 for general treatment). The model order 
reduction technique proposed here is illustrated using an earthquake insurance problem, but generally 
applies to extreme values in high-order models that include nominal uncertain variables. We seek to 
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show how to quantify the tradeoff between degree of model order reduction and error in Lp. We also 
repeat the demonstration for expected annualized loss, EAL. 

2. Literature review 
2.1 Logic tree model of mixed independent variables in an earthquake rupture forecast 
Field et al. (2014) offer a new earthquake rupture forecast for California (the Uniform California 
Earthquake Rupture Forecast version 3, Time-Independent, or UCERF3-TI) with seven uncertain model 
components. Field et al. (2015) add an eighth element that models aperiodicity in earthquake 
recurrence to make the model time-dependent (and hence dubbed the Uniform California Earthquake 
Rupture Forecast version 3, Time-Dependent, or UCERF3-TD). Model elements are arranged in a logic 
tree with 5,760 possible combinations (leaves) of their eight branches. See Figure 1. The eight branches 
represent uncertain variables, of which three are scalar random variables and five are nominal, meaning 
that their possible values lack scale or order. Such a large model can make calculating losses to a large 
earthquake portfolio computationally demanding, if one wants to treat all possible combinations of the 
variables and their associated weights (or Bayesian probabilities). Reducing the size of such a model can 
be challenging because most model order reduction techniques work on functions of scalar random 
variables, not on models with nominal random variables. The computation problem of estimating loss to 
an insurance portfolio is compounded by the need to treat additional uncertainties: site characteristics, 
ground motion model, and added epistemic uncertainty in ground-motion models. (There are more as 
well that are not treated here.) A model that includes all these variables has 172,800 leaves.  



Trimming the UCERF3-TD Logic Tree for Rare Portfolio Loss  September 28, 2020 
K. Porter, K. Milner, and E. Field 
 
This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The 
information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor 
the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information. 

 

4 

 

Figure 1. UCERF3-TD logic tree. Each branching point represents an uncertain variable; each branch a possible value. 

2.2 Model order reduction techniques 
To reduce the computational expense of UCERF3-TD, some authors have replaced the earthquake 
rupture forecast with a Monte Carlo time series called an event set. That is, one creates a sequence of 
scenario earthquakes spread over thousands of years or more, consistent with the earthquake rupture 
forecast. For example, Perkins and Taylor (2003) use a 50,000-year event set to estimate risk to a 
roadway system. They find the effort highly computationally demanding and attempted a variety of 
model order reduction techniques, including bootstrap sampling, the use of antithetic variates, the use 
of Latin Squares (or permutation) sampling, the use of control functions, a compound Poisson approach, 
and importance sampling. They find that large reductions in the number of simulations needed could be 
achieved for the mean and confidence limits of the conditional loss distribution (the loss distribution 
given some loss in a specific year). However, for the unconditional, annual-loss distribution, the 
reduction of the number of simulations achieved through post-sampling techniques was only a 
multiplicative reduction factor of slightly above 3.  

In prior work (Porter et al. 2012) we applied a deterministic sensitivity analysis technique called 
tornado-diagram analysis meant to identify the likely important variables in a complex earthquake 
rupture forecast. Later, we discussed how existing model-order reduction techniques seem to be 
intended for functions of scalar random variables (Porter et al. 2017). In that work, we offer a new 
model order reduction technique that works on models with nominal random variables. We applied it to 
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the UCERF3-TD, using the expected annualized loss, EAL, to a proxy for the California Earthquake 
Authority’s statewide insurance portfolio. (EAL measured ground-up repair cost rather than insured loss 
after deductibles and limits.) We applied what one might call a path search from the full model to a 
reduced-order model that was 3 orders of magnitude smaller (involving 60 leaves rather than 57,600) 
without significantly biasing the distribution of EAL relative to the full model. In that work, the model did 
not include an added epistemic uncertainty to the ground motion models, which with three possible 
values increases the model size to 172,800 leaves.  

3. Methodology 
3.1 Overview 
The objective of the present model-order-reduction technique is to reduce the model without greatly 
disturbing the probability distribution of a point on the tail of the dependent variable. To do so, we 
apply the path-search model-order reduction technique developed in Porter et al. (2017) to the present 
problem. To make the analysis easier to follow, let us consider it in stages: 

1. Evaluate the model output (here, the loss exceedance curve at a given non-exceedance 
probability) for one logic tree leaf. 

2. Evaluate the cumulative distribution function (CDF) of the output for the original (full) model. 
3. Evaluate the CDF of output for a reduced-order model, that is, the full model minus one 

variable, which is fixed at one of its possible values. Compare the CDF it with that of the full 
model. Do so for each possible reduction of the model by one variable. Identify the one reduced 
model whose output CDF is most like that of the full model.  

4. Apply the path-search approach to find the best reduced-order models, successively trimming 
variables from the full model. That is, repeat step 3, successively reducing the reduced order 
model until all variables are fixed, tracking the goodness of fit of the CDF of each successive 
reduced order model’s output to that of the full model.  

3.2 Evaluate the model output for one logic-tree leaf 
This model-order-reduction technique addresses a model that outputs a scalar value that can depend on 
the value of each model element, each independent variable. Each logic tree leaf can produce a 
different output value. In this step, we calculate the deterministic model output conditioned on the 
values of all the independent variables.  

In the present application, we are concerned with an extreme value on the cumulative distribution 
function of insured loss for one year. Insurers tend to view the distribution of loss in a year with the 
complement of the CDF, that is, the probability that the value of loss exceeds each of many dollar 
values. The function is referred to as a loss exceedance curve. Often the insurer is more concerned with 
the rate at which losses are exceeded (in events per year) rather than the loss with a certain exceedance 
probability in a year (which is unitless), but at values smaller than about 0.1, rate and probability take on 
almost the same numerical value and differ only by units. Let us ignore the distinction here between low 
rates and low probabilities. The extreme value we are about is the loss with a prescribed low 
exceedance probability in the coming year, for example p = 0.002, which one can think of as the 500-
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year loss (p = 1/500 = 0.002). Because the 500-year loss can vary depending on the value of the model 
variables, and because those values have prescribed weights or Bayesian probabilities, the 500-year loss 
has an associated cumulative distribution function. Let is first find its value conditioned on fixing all the 
variables at one of their possible values.    

In the case of an insurance portfolio, here is one way to evaluate the loss exceedance curve for one 
logic-tree leaf, as applied to a portfolio of earthquake insurance policies in California. In the following, 
important aspects of the leaf are implicit, such as which ground motion model is used, which Vs30 
model to use, etc. 

Nk = number of possible ruptures among full UCERF3-TD model 

k = an index to scenario ruptures (“ruptures”), k Î {0, 1, … Nk – 1}  

Na = number of assets in the portfolio 

a = an index to assets in the portfolio, a Î {0, 1, … Na – 1}  

Va = replacement cost of asset a 

V = replacement cost of the portfolio 

    (1) 

x = a measure of ground motion, e.g., 5% damaged elastic spectral acceleration response at 1.0 sec 
period  

ya(x) = mean repair cost as a fraction of replacement cost new for asset a, given ground motion x 

Xa|k = uncertain ground motion at asset a given rupture k 

fXa|k(x) = probability density function of Xa|k, evaluated at x 

µL,|k = expected value of portfolio loss L given rupture k  

    (2) 

dL|k = coefficient of variation of portfolio loss in rupture k. See Appendix 1 for a method to estimate dL|k 
as a function of µL|k. As others have found for individual assets (e.g., Porter 2010), portfolio loss 
uncertainty decreases with increasing portfolio loss, as in the exponential relationship 

    (3) 
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In the equation, the coefficient 1000/V expresses the mean loss in terms of loss per $1000 of 
replacement cost, a normalized loss measure sometimes used in the catastrophe-risk modeling 
industry. Appendix 1 presents a regression analysis that suggests coefficients c1 and c2 as 
follows. The resulting curve gradually drops from 2 (at low portfolio losses) to 0.5 (at high 
portfolio loss).  

c1 = 0.9832 

c2 = -0.117 

qL|k = median value of portfolio loss L given rupture k, assuming that L is approximately lognormally 
distributed. See Appendix 1 for evidence that this assumption is reasonable. 

    (4) 

bL|k = standard deviation of the natural logarithm of portfolio loss L given rupture k, assuming that L is 
approximately lognormally distributed 

    (5) 

rk = rate at which rupture k occurs (here and elsewhere: given logic tree leaf) 

L = uncertain portfolio loss 

l = a value of L   

G(l) = number of earthquakes per year producing L ≥ l. The relationship between G(l) and l is often called 
the loss exceedance curve. By the theorem of total probability, the rate is the sum of event rates 
rk times probability that the loss in rupture k is greater than or equal to l: 

    (6) 

Later we will be interested in the loss with a specified exceedance rate, rather than the exceedance rate 
of some value of loss, so recalling that Lp denotes the loss with exceedance rate p, it is the inverse of the 
loss exceedance curve evaluated at p: 

    (7) 
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3.3 Evaluate the CDF of the model output for the original model 
Equations (1) through (7) show how to calculate the loss exceedance curve for one leaf. Next, we 
combine the exceedance curves for the model leaves and evaluate the exceedance curve for the 
original, full, model.  

Z = number of leaves in the original model 

j = an index to leaves, j Î {0, 1, … Z – 1} 

wj = weight of leaf j in the full model 

Lp,j = loss associated with exceedance frequency p in logic-tree leaf j, from equation (7). Note that each 
leaf j can have a different loss exceedance curve and therefore a difference value of loss 
associated with exceedance frequency p, and therefore a probability distribution of Lp, as 
illustrated in Figure 2. The figure shows a suite of loss exceedance curves for many logic-tree 
leaves. It also shows a horizontal line at some exceedance rate p of interest (0.004 per year), 
and a probability density function of Lp. The probability density function has some mean value 
that we could denote by µLp and a coefficient of variation denoted by dLp. Note that it will not be 
necessary to assume a parametric form of the distribution of Lp such as normal or lognormal.   

 

Figure 2. Illustration of the probability density function of Lp. The colored curves represent loss-exceedance curves for different 
logic-tree branches. The present model-order-reduction effort aims to reduce the number of possible loss exceedance curves 
(thereby simplifying the model and reducing computational effort) without strongly affecting the PDF of large rare loss. 

FLp(l) = cumulative distribution function for Lp  

    (8) 
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where H is the Heaviside function, that is, 

    (9) 

µLp = expected value of Lp in the original model, 

   (10) 

σ2
Lp = variance of Lp in the original model, 

    (11) 

dLp = coefficient of variation of Lp in the original model: 

    (12) 

3.4 Loss exceedance curve for a reduced model 
Next let us evaluate the exceedance curve for one reduced model and measure the error in Lp. 

Ij = a binary indicator (1,0) whether a reduced model includes (Ij = 1) or excludes (Ij = 0) logic-tree leaf j 

z = model size of reduced-order model, meaning the number of leaves in the reduced model 

    (13) 

c0 = normalizing constant for weights in the reduced-order model 

    (14) 

Now find the cumulative distribution function of Lp in the reduced model:  

 = cumulative distribution function for Lp in reduced model 
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where H is still the Heaviside function.  

= expected value of Lp in the reduced model 

    (16) 

 = variance Lp in the reduced model 

    (17) 

 = coefficient of variation of Lp in the reduced model 

    (18) 

Now we check the goodness of fit for the reduced-order model, that is, how well matches that of 

the full model, FLp. We apply the two-sample Kolmogorov-Smirnov goodness-of-fit test at the 1% 
significance level. One calculates the maximum difference in the cumulative distribution functions, Dn, as 
in equation (19), and checks that it is less than the limit shown in equation (20). 

    (19) 

    (20) 

It is also desirable to ensure that errors in the mean and coefficient of variation of Lp are both less than 
some reasonable limit, say 5%: 
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    (24) 

If the reduced model passes the test specified in equation (20), we can reject at the 1% significance level 
that the two distributions differ. If it fails equation (21), the reduced model is drifting too far in the 
mean, even if the Kolmogorov-Smirnov test says that it and the full model are still drawn from the same 
distribution. If it fails equation (22), the reduced model is (probably) getting too certain, again even if 
the Kolmogorov-Smirnov test says it is drawn from the same distribution.  

3.5 Model order reduction technique: path search  
Finally, let us apply the path-search technique from Porter et al. (2017) to model order reduction for Lp. 
Here are its steps:  

1. Evaluate FLp(l), µLp, and dLp for the original model. 
2. Let a denote an index to independent variables and b denote an index to possible values (e.g., 

Table 1). For each (a, b) pair, fix variable a at value b. For each leaf j, calculate Dn, eµ, and ed from 
equations (19), (23), and (24), where Ij = 1 if the leaf has variable a equal to value b, or Ij = 0 if 
otherwise.   

3. Trim the first branch (c = 0) by selecting the (a, b) pair with the smallest value of Dn that satisfies 
the goodness of fit test in equation (20) and the additional inequalities (21) and (22). Fix variable 
a at value b. Variable a is no longer a free variable. One can say the model has been reduced by 
variable a. Record the model size z of the model with one trimmed branch.  

4. Trim the second branch (c = 1) by repeating steps 2 and 3 starting with the reduced-order model 
from step 3, but allowing every remaining (a,b) pair where a has not already been fixed.  

5. Repeat until all branches are fixed (c = 2, 3, ... Nc – 1) where Nc is the number of branches in the 
logic tree.  

4. Application to UCERF3-TD tree trimming problem 
4.1 Variables 
4.1.1 Independent variables: branches of UCERF3-TD plus three intensity-related branches 
Table 1 summarizes the independent variables considered here: their type (scalars, denoted by S, 
ordinals, denoted by O, and nominal, denoted by N), their possible values, weights (that is, their 
conditional probabilities in a Bayesian sense), and a brief description. The description explains to the 
reader who is unfamiliar with UCERF3 what the variable models. The description includes notes about 
how influential one might expect the variable to be on overall uncertainty in rare portfolio loss. These 
notes are largely drawn from observations by Field et al. (2013) on the influence each variable has on 
peak ground acceleration with 2% exceedance probability in 50 years.  

Variables 0 through 7 are elements of UCERF3-TD. They represent 2 × 4 × 5 × 2 × 3 × 3 × 2 × 4 = 5,760 
possible combinations. To calculate the repair cost to a portfolio of buildings requires additional 
variables 8 through 10, that is, variables that are exogenous to UCERF3-TD but endogenous to the 
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(broader) loss model used here to trim the UCERF3-TD logic tree using losses. Variables 8, 9, and 10 have 
2 × 5 × 3 = 30 possible combinations, for a total of 172,800 model leaves when combined with the 
UCERF3-TD leaves. Of the 11 variables, four (numbers 4, 5, 7, and 10) involve scalar quantities and the 
others are nominal, that is, a choice among values with no order or scale.  

To calculate repair cost for a single scenario and a loss exceedance curve for the suite of earthquakes in 
the rupture forecast also requires some more input information that one could consider to be 
independent variables: 

1. Portfolio. This is an estimate of the assets exposed to risk, each asset parameterized with its 
geographic location, site conditions (Vs30), replacement cost new (the cost to build a new 
facility approximately functionally and aesthetically equivalent to the existing one), and a 
building type.  “Building type” is often parameterized (as it is here) by structural material (e.g., 
wood), lateral force resisting system (e.g., shearwall), height category (e.g., 1-3 stories), and era 
of construction (e.g., pre-1940). We estimated the inventory of woodframe single-family 
dwellings in California using a 2002-era database in Hazus-MH, factored up on a statewide basis 
to account for population growth and construction costs, and then factored down on a county-
by-county basis to account for the CEA’s market penetration rate—that is, the fraction of homes 
that are insured by the CEA. We use a fixed value of the portfolio, rather than varying it. In the 
present case, the portfolio has an estimated replacement cost new of $483 billion (2019 USD).   

2. Vulnerability functions. These relate ground motion to mean (and sometimes variability) of 
repair cost as a fraction of replacement cost new. We used the Hazus-based vulnerability 
functions described in Porter (2009a, b, 2010). Vulnerability functions can be considered a 
variable that we fixed. Other models are available, but to vary the vulnerability functions seems 
relatively unimportant for the present objective of model order reduction of UCERF3-TD.   
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Table 1. Independent variables, variable types, possible values, weights (conditional probabilities), and brief description. 

a Variable 
(branch) name  Type b Possible 

value1 Weight Description. See Field et al. (2013) Table 15 for maps of size and extent of effects. 

0 Fault model N 0 3.1 0.5 Geometry of larger, more active faults. FM3.1 has 2,606 subsection and 253,706 
multi-subsection ruptures; FM3.2, 2,665 and 305,709. Modest (±12% PGA) 
differences in a few (~5) local (≤100 km) areas. Neither choice is closer to UCERF3.3 
average. 

1 3.2 0.5 

1 Deformation 
model 

N 0 Geol 0.3 Slip rates and related factors for each fault section; strain accumulation before fault 
rupture; energy released. Reflects approach to handling earthquake dynamics. 
Significant effects on 2%/50-year PGA (±25%) over many large regions (≥200 km). 
GEOL and ZENGBB are closer to UCERF3.3 average than others. 

1 ABM 0.1 
2 NeoK 0.3 
3 ZengBB 0.3 

2 Scaling 
relationship 

N 0 SHAW 09m 0.2 Relates earthquake magnitude to rupture surface area or to area and rupture aspect 
ratio (length divided by width). Also relates slip length to rupture length and width. 
Effects are modest (±12%) but affects many large regions (≥200 km). ELL B SQL and 
SHAW09m closer to UCERF3.2 average 2%/50-year PGA than others.  

1 ELL B 0.2 
2 H&B 08 0.2 
3 ELL B SQL 0.2 
4 SHAW CSD 0.2 

3 Slip along 
rupture 

N 0 Tapered 0.5 Relates fault slip to location along rupture. Very little influence: modest effect (±12%) 
in a few (~5) local (≤100 km) areas.  1 Boxcar 0.5 

4 Total M>5 
event  
rate yr-1 

S 0 6.5 0.1 Small (±5%) effect throughout much of California, but mostly away from metro areas. 
7.9 closest to UCERF3.3 average 2%/50-year PGA.  1 7.9 0.6 

2 9.6 0.3 
5 Maximum off-

fault  
magnitude 

S 0 7.3 0.1 Maximum magnitude of earthquakes away from mapped faults. Almost no noticeable 
influence on 2%/50-year PGA from any of the three models.  1 7.6 0.8 

2 7.9 0.1 
6 Off-fault 

spatial  
seismicity PDF 

N 0 UCERF2  0.5 Depicts the spatial distribution of off-fault gridded seismicity. Significant (±25%) 
influence throughout much of California, but mostly away from metro areas. Neither 
choice is closer to UCERF3.3 average. 

1 UCERF3  0.5 

7 Earthquake  
probability  
model  

N 0 Low COV  0.1 Estimates how ready each fault segment is to rupture given stress accumulation since 
last rupture. Probabilities are lower on faults with recent large earthquakes, higher 
the last rupture occurred at least half the average recurrence interval. Mid to high 
COV (aperiodicity) likely closer to average than the other, more extreme, options. 

1 Mid COV  0.4 
2 High COV  0.3 
3 Poisson 0.2 

8 Vs30 model N 0 Wills (2015) 0.5 Average shear-wave velocity in upper 30m of soil based either on correlation between 
observed Vs30 and geologic unit (Wills et al. 2015) or topographic slope (Wald and 
Allen 2007). 

1 Wald & Allen 
(2007) 

0.5 

9 Ground-
motion- 
prediction  
equation 

N 0 ASK2014 0.22 Relates ground motion (e.g., 5% damped spectral acceleration response) to 
magnitude, distance, fault attributes, and site conditions. BSSA 2014 and CY2014 tend 
to be closer to the average of the four for common conditions in the middle distance 
(10-30 km) for a large (M7.8) earthquake on common site conditions (Vs30 = 300 
m/sec, D1.0 = 100 m, D2.5 = 1 km). Significant (±25%) influence statewide. 

1 BSSA2014 0.22 
2 CB2014 0.22 
3 CY2014 0.22 
4 IDR2014 0.12 

10 Added 
epistemic  
uncertainty 

S 0 Low 0.185 Adds ground motion uncertainty to account for collaboration among the NGAW-2 
developers and their use of common sets of statistical analyses and simulations to 
constrain parts of the models. Likely to have significant statewide effect. 

1 Med 0.630 
2 High 0.185 

1. Abbreviations consistent with Field et al. (2013) 

4.1.2 Intermediate variables: within- and between-event variability 
The dependent variables involve earthquake shaking-induced loss to a portfolio of assets. To calculate 
them will require propagating uncertainty in ground motion conditioned on each of many fault ruptures 
and attendant  

1. Within-event ground motion variability. Within-event positive spatial correlation of ground 
motion tends to result in within-event positive correlation of repair costs between assets. That 
makes buildings located within a few kilometers of each other experience higher or lower 
ground motion together. As a result, repair costs are not independent and identically distributed 
(IID) conditioned on median ground motion, and we cannot simply sum the variances of the 
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asset repair costs to get the variance of the total portfolio repair cost. The variance of portfolio 
repair cost will tend to be larger, potentially much larger, than this desirable simplification 
would imply. To deal with this problem we simulated within-event ground motion using 100 
realizations of spatially correlated standard normal fields at grid spacing of 1-km each way 
(north-south and east west), each field being 800 km on a side (i.e., 801 by 801 gridpoints), using 
the model of spatial correlation proposed by Jayaram and Baker (2009) for 1-second period 5% 
damped elastic spectral acceleration response. See Figure 3 for four of the 100 realizations. Why 
1 second? This is an artifact of the Hazus-based vulnerability model (Porter 2009a, b), which 
measures ground motion with a vector of 0.3-sec and 1.0-sec 5% damped elastic spectral 
acceleration response. At high excitations, which cause most of the damage, the 1-second 
component matters much more than the 0.3-sec component. Let eɸo denote the value of the 
within-event field in one realization at a location denoted by o.  

2. Between-event ground motion variability. Between-event variability affects all buildings in the 
portfolio simultaneously. A positive difference between the actual earthquake ground motion 
across the entire field and the median will tend to increase damage. The between-event 
variability is modeled with lognormal distribution where the natural logarithm of the residual 
has zero mean and standard deviation denoted by t. One can normalize the residual by dividing 
by t, and denote the normalized residual by et, which has standard normal distribution.  

Ground motion at a location o (denoted here by xo) can then be estimated as  

    (25) 

where 

 = median ground motion conditioned on magnitude, distance, Vs30, ground-motion-

prediction equation, and other parameters of the ground-motion-prediction equation 

et  = standardized residual of between-event uncertainty in ground motion   

t = standard deviation of the natural logarithm of ground motion associated with between-
event variability, the part that varies uniformly between events—the ground motion 
field is uniformly higher or lower in a single event than predicted by the ground-motion-
prediction equation, with uncertainty quantified by t.  

efo = standardized residual of within-event uncertainty in ground motion at location o.  

f = standard deviation of the natural logarithm of ground motion associated with within-event 
variability, the part that varies spatially within a single earthquake. 

We propagate uncertainty in the Gaussian et by 5-point moment matching. That is, we substitute 5 
weighted sample values for the continuous Gaussian distribution of et as shown in   Table 2. 
Why these values and weights? With 5-point moment matching, we have nine free variables (the 
positions and weights of five samples, minus one degree of freedom because the weights must sum to 

( )ˆ expo o ox x e et ft f= × + ×

ˆox
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unity). Which means one can set their values to exactly match the first nine moments of the continuous 
distribution they replace (mean, variance, skewness, etc.). If we only care about matching the first few 
moments, say the first three, the problem is underdefined. We can set some values so that the positions 
are symmetrical about zero and the weights are easy to remember. The samples shown here are 
selected for these reasons of convenience. When applied to a lognormal variable, these choices 
reproduce the first three moments in the real domain well, within a few percent.   

We propagate uncertainty in ef by Monte Carlo simulation, using 100 realizations of the map of ef, like 
those in Figure 3, centering the map at each epicenter. Given a fixed portfolio and set of vulnerability 
functions, repair costs of individual assets can be considered independent, conditioned on ground 
motion as calculated by equation (25). See Appendix 1 for evidence that this simulation approach 
reproduces the proper mean. 

Sample et weight 
0 -2 0.1 
1 -1 0.1 
2 0 0.6 
3 1 0.1 
4 2 0.1 

  Table 2. Moment matching points for et 
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Figure 3. Four realizations of a field of spatially correlated standard normal variates, with spatial correlation as suggested by 
Jayaram and Baker (2008) for 1.0-second 5% damped elastic spectral acceleration response. 

4.1.3 Dependent variable 1: loss L with mean exceedance probability p in one year 
Insurers commonly evaluate liquidity at the 1-in-250-year mark (p = 0.004 per year) primarily because of 
rating agencies’ target and stress-test levels since the 2004/2005 hurricane seasons. That target 
assumes a multi-line, multi-state insurer with diversification benefits. The California Earthquake 
Authority is different for exactly those reasons – one line, one state, all catastrophe risk. The California 
Earthquake Authority’s current risk transfer strategy approved by its board and in the public domain is 
to maintain a minimum of 1-in-400 and a maximum of 1-in-550-year claim-paying capacity (here, p = 
0.0025 to 0.0018). Therefore, we evaluate p Î {0.01, 0.004, 0.0025, 0.0018, 0.0004}.  

4.1.4 Dependent variable 2: expected annualized loss EAL 
Insurers commonly evaluate profitability by comparing the total amount of premiums charged to 
policyholders (called the gross premium) to the present value of future claims (called the net premium, 
and which catastrophe risk modelers sometimes call the expected annualized loss, EAL). The insurer’s 
net premium accounts for the fact that when policyholders who incur a loss pay a deductible, that is, 
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they pay for losses up to a prescribed amount and the insurer pays for the claim in excess of that 
amount. Deductibles for earthquake insurance commonly exceed 5% of the replacement cost of the 
property, so the insurer’s EAL is typically much lower than the expected present value of the total loss—
the policyholder’s payment plus the insurer’s payment—but for present purposes we ignore the 
deductible.  

4.2 Results with loss Lp as the dependent variable 
Table 3 shows the successive steps in trimming the logic tree to match the cumulative distribution function 
of the full model’s 100-year loss. Rows labeled 0 through 9 indicate the order in which the path search 
fixed the variables. Row 0 provides information about the full logic tree: the number of leaves, z = 172,800. 
The expected value of the 100-year loss, Lp, = $9.239 billion. The coefficient of variation of 100-year loss, 
dLp, = 0.34. The following rows, labeled 1 through 11, show the trimmed branches in the order in which 
they are trimmed, and the value to which each is set as it is trimmed from the model. For example, the 
first variable to be trimmed is the maximum off-fault magnitude, 7.6. It is the variable to which Lp is least 
sensitive, meaning that fixing its value has the least effect on the cumulative distribution function of Lp. 
Fixing it reduces z to 57,600 leaves, changes Lp slightly to $9.238 billion, has no effect on dLp to two 
significant figures. The column labeled Dn shows the maximum difference between the cumulative 
distribution functions of the original model and the model with the first variable trimmed. There is no 
observable difference to three significance figures. A difference up to 0.008 would be allowable. The error 
in the mean and in the coefficient of variation, eµ  and ed are both less than 0.5%. Considering the goodness 
of fit test and the two error terms, the reduced model passes the tests laid out earlier. 

The table shows that three variables can be trimmed, and the reduced-order model still reasonably 
approximates the full model. The smallest reduced-order model has 7,200 leaves, passes the goodness-
of-fit test, and differs with the full model by less than 5% in either the mean or coefficient of variation of 
100-year loss. Shaded rows below the third trimmed variable indicate that the model order reduction fails 
one or more of the three tests in those steps. The table shows that continuing to trim the tree introduces 
unacceptable error in the coefficient of variation, making it too small. If one wanted to relax the constraint 
on coefficient of variation to ±10%, one could trim 7 variables, leaving only 180 leaves, and still pass the 
goodness-of-fit and error tests.   

Figure 4A shows the mean loss exceedance curves for the full model and all the reduced-order models 
for the cumulative distribution function of the 100-year loss. Figure 4A shows that the loss exceedance 
curves for the full model and reduced-order models are virtually indistinguishable. It may seem 
surprising that the curves do not pinch to a point at the loss with 100-year mean exceedance frequency. 
Remember however that the point of the technique is not simply to match that scalar value but to 
match the cumulative distribution function of 100-year loss, which Figure 4A does not show.  

Figure 4B shows that cumulative distribution function. It shows how ever-greater model order reduction 
makes the cumulative distribution functions of the reduced-order models more and more loosely 
approximate that if the full model, but the differences tend to be small until the last three branches are 
trimmed (the lightest curves labeled 9, 10, and 11).  
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Figure 4C shows the error in the mean value of the 100-year loss, eµ as a function of model size z, along 
with ± 5% bounds. Figure 4D shows the error in the coefficient of variation of the 100-year loss, ed, as a 
function of z. In Figure 4C and Figure 4D, only the markers (the circles) have meaning; the lines 
connecting them just make it easier to see the pattern of smaller error with a larger model.  

Table 4 and Figure 5 present similar results for the 250-year loss. Table 5 and Figure 6 depict the tree 
trimming for the 400-year loss. Table 6 and Figure 7 depict the process for the 550-year loss, and Table 7 
and Figure 8 do so for the 2,500-year loss.  

 Trimmed branch z  µLp dLp  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A 172800 $9,239 0.34   0% 0%  
1 MMax Off Fault = 7.6 57600 $9,238 0.34 0.000 0.008 0% 0% TRUE 
2 Fault Model = Fault Model 3.1 28800 $9,194 0.34 0.006 0.010 0% 0% TRUE 
3 ERF Probability Model = Mid COV Values 7200 $9,256 0.34 0.008 0.020 0% 1% TRUE 
4 Scaling Relationship = Shaw (2009) Modified 1440 $9,088 0.32 0.020 0.043 -2% -6% FALSE 
5 Vs30 Model = Wald & Allen (2007) 720 $9,194 0.32 0.016 0.061 0% -7% FALSE 
6 Slip Along Rupture Model (Dsr) = Tapered Ends 360 $9,010 0.31 0.038 0.086 -2% -7% FALSE 
7 Spatial Seismicity PDF = UCERF3 180 $9,435 0.31 0.036 0.122 2% -8% FALSE 
8 Total Mag 5 Rate = 7.9 60 $9,191 0.30 0.045 0.210 -1% -12% FALSE 
9 Deformation Model = Average Block Model 15 $8,581 0.27 0.151 0.421 -7% -19% FALSE 

10 Ground Motion Model = Abrahamson, Silva & Kamai (2014) 3 $9,080 0.28 0.202 0.941 -2% -18% FALSE 
11 GMM Additional Epistemic Uncertainty = None 1 $8,763 0.00 0.387 1.630 -5% -100% FALSE 

Table 3. Trimming path for 100-year loss (p = 0.01) 
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A B  

C     D  

Figure 4. UCERF3-TD model trimmed to 100-year loss for CEA-proxy portfolio (A) loss exceedance curve; (B) cumulative 
distribution function of 100-year loss; (c) mean error eµ versus model size z; (D) coefficient of variation error ed versus model size 
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 Trimmed branch z  µLp dLp  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A  172,800  $15,144 0.34      
1 MMax Off Fault = 7.6  57,600  $15,145 0.34 0.000 0.008 0% 0% TRUE 
2 Fault Model = Fault Model 3.2  28,800  $15,255 0.34 0.011 0.010 1% 0% FALSE 
3 Vs30 Model = Wills et al. (2015)  14,400  $15,099 0.34 0.004 0.014 0% 0% TRUE 
4 ERF Probability Model = Mid COV Values  3,600  $15,015 0.34 0.019 0.027 -1% 0% TRUE 
5 Slip Along Rupture Model (Dsr) = Uniform  1,800  $15,313 0.34 0.008 0.039 1% 1% TRUE 
6 Total Mag 5 Rate = 7.9  600  $15,022 0.33 0.016 0.067 -1% -1% TRUE 
7 Scaling Relationship = Hanks & Bakun (2008)  120  $14,937 0.30 0.022 0.149 -1% -10% FALSE 
8 Deformation Model = Neokinema  30  $14,726 0.30 0.055 0.298 -3% -11% FALSE 
9 Spatial Seismicity PDF = UCERF3  15  $15,295 0.30 0.110 0.421 1% -12% FALSE 

10 Ground Motion Model = Boore, Stewart, Seyhan & Atkinson (2014)  3  $14,033 0.27 0.167 0.941 -7% -21% FALSE 
11 GMM Additional Epistemic Uncertainty = None  1  $13,575 0.00 0.352 1.630 -10% -100% FALSE 

Table 4. Trimming path for 250-year loss (p = 0.004) 

A B    

C     D  

Figure 5. UCERF3-TD model trimmed to 250-year loss for CEA-proxy portfolio (A) loss exceedance curve; (B) cumulative 
distribution function of 250-year loss; (c) mean error eµ versus model size z; (D) coefficient of variation error ed versus model size 
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 Trimmed branch z  µLp dLp  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A  172,800  $18,820 0.34      
1 MMax Off Fault = 7.6  57,600  $18,822 0.34 0.000 0.008 0% 0% TRUE 
2 Scaling Relationship = EllB M(A) & Shaw12 Sqrt Length D(L)  11,520  $18,766 0.34 0.013 0.016 0% 1% TRUE 
3 Fault Model = Fault Model 3.1  5,760  $18,640 0.34 0.012 0.022 -1% 1% TRUE 
4 Vs30 Model = Wald & Allen (2007)  2,880  $18,827 0.34 0.015 0.031 0% 1% TRUE 
5 Total Mag 5 Rate = 7.9  960  $18,561 0.34 0.023 0.053 -1% 0% TRUE 
6 Slip Along Rupture Model (Dsr) = Uniform  480  $18,959 0.34 0.028 0.075 1% 0% TRUE 
7 Spatial Seismicity PDF = UCERF2  240  $18,288 0.34 0.020 0.105 -3% 0% TRUE 
8 Deformation Model = Neokinema  60  $17,640 0.33 0.058 0.210 -6% -2% FALSE 
9 ERF Probability Model = High COV Values  15  $18,759 0.33 0.119 0.421 0% -3% TRUE 

10 Ground Motion Model = Boore, Stewart, Seyhan & Atkinson (2014)  3  $16,840 0.28 0.184 0.941 -11% -16% FALSE 
11 GMM Additional Epistemic Uncertainty = None  1  $16,227 0.00 0.369 1.630 -14% -100% FALSE 

Table 5. Trimming path for 400-year loss (p = 0.0025) 

A B  

C     D  

Figure 6. UCERF3-TD model trimmed to 400-year loss for CEA-proxy portfolio (A) loss exceedance curve; (B) cumulative 
distribution function of 400-year loss; (c) mean error eµ versus model size z; (D) coefficient of variation error ed versus model size 
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 Trimmed branch z  µLp dLp  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A  172,800  $21,672 0.34      
1 MMax Off Fault = 7.6  57,600  $21,675 0.34 0.000 0.008 0% 0% TRUE 
2 ERF Probability Model = Mid COV Values  14,400  $21,381 0.34 0.009 0.014 -1% 0% TRUE 
3 Fault Model = Fault Model 3.2  7,200  $21,571 0.33 0.004 0.020 0% 0% TRUE 
4 Vs30 Model = Wills et al. (2015)  3,600  $21,375 0.33 0.010 0.027 -1% 0% TRUE 
5 Slip Along Rupture Model (Dsr) = Uniform  1,800  $21,788 0.34 0.019 0.039 1% 0% TRUE 
6 Scaling Relationship = Shaw (2009) Modified  360  $21,396 0.32 0.007 0.086 -1% -5% TRUE 
7 Total Mag 5 Rate = 7.9  120  $21,264 0.31 0.012 0.149 -2% -6% FALSE 
8 Spatial Seismicity PDF = UCERF2  60  $20,545 0.31 0.045 0.210 -5% -8% FALSE 
9 Deformation Model = Geologic  15  $22,216 0.32 0.080 0.421 3% -5% TRUE 

10 GMM Additional Epistemic Uncertainty = None  5  $21,436 0.15 0.202 0.729 -1% -56% FALSE 
11 Ground Motion Model = Boore, Stewart, Seyhan & Atkinson (2014)  1  $19,392 0.00 0.493 1.630 -11% -100% FALSE 

Table 6. Trimming path for 550-year loss (p = 0.0018) 

A B  

C     D  

Figure 7. UCERF3-TD model trimmed to 550-year loss for CEA-proxy portfolio (A) loss exceedance curve; (B) cumulative 
distribution function of 550-year loss; (c) mean error eµ versus model size z; (D) coefficient of variation error ed versus model size 
z 
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 Trimmed branch z  µLp dLp  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A  172,800  $37,465 0.33      
1 MMax Off Fault = 7.6  57,600  $37,470 0.33 0.000 0.008 0% 0% TRUE 
2 Total Mag 5 Rate = 7.9  19,200  $37,417 0.33 0.006 0.012 0% 0% TRUE 
3 Fault Model = Fault Model 3.2  9,600  $37,731 0.33 0.009 0.017 1% 0% TRUE 
4 Vs30 Model = Wills et al. (2015)  4,800  $37,405 0.33 0.005 0.024 0% 0% TRUE 
5 Slip Along Rupture Model (Dsr) = Uniform  2,400  $37,964 0.33 0.017 0.034 1% 0% TRUE 
6 Deformation Model = Neokinema  600  $37,257 0.32 0.013 0.067 -1% -3% TRUE 
7 Scaling Relationship = Shaw (2009) Modified  120  $36,485 0.30 0.025 0.149 -3% -7% FALSE 
8 Spatial Seismicity PDF = UCERF2  60  $35,773 0.31 0.037 0.210 -5% -6% FALSE 
9 ERF Probability Model = High COV Values  15  $37,554 0.31 0.117 0.421 0% -6% FALSE 

10 Ground Motion Model = Boore, Stewart, Seyhan & Atkinson (2014)  3  $34,062 0.27 0.184 0.941 -9% -19% FALSE 
11 GMM Additional Epistemic Uncertainty = None  1  $32,991 0.00 0.369 1.630 -12% -100% FALSE 

Table 7. Trimming path for 2,500-year loss (p = 0.0004) 

A B     

C      D  

Figure 8. UCERF3-TD model trimmed to 2500-year loss for CEA-proxy portfolio (A) loss exceedance curve; (B) cumulative 
distribution function of 2500-year loss; (c) mean error eµ versus model size z; (D) coefficient of variation error ed versus model 
size z 
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4.3 Results with expected annualized loss (EAL) as the dependent variable  
Table 8 shows the UCERF3-TD extended logic tree trimmed to maintain the distribution of expected 
annualized loss (EAL). The table shows that, just as with the loss exceedance curves, the distribution of 
EAL is most sensitive to GMM additional epistemic uncertainty, but interestingly, not the ground motion 
model, which can be trimmed and set to that of Abrahamson et al. (2014). The model can be reduced to 
720 leaves out of the 172,800 total (4% of its original size) and retain the probability distribution of EAL. 
If the user can tolerate an 8% underestimate of the coefficient of variation, the model can be trimmed 
to just 18 leaves, varying total magnitude 5 rate, spatial seismicity probability density function, and 
ground motion model addition epistemic uncertainty.  

Figure 9A shows that the cumulative distribution functions of the full and reduced-order models of EAL 
are virtually indistinguishable until the last three branches are trimmed. Figure 9B and Figure 9C show 
that error in the expected value and coefficient of variation of EAL remain within 10% bounds until z < 
18 branches. As with earlier, similar plots, only the dots in these two figures are meaningful; the lines 
connecting them just make it easier to see the trend of greater agreement with greater model size.  

 Trimmed branch z  µEAL dEAL  Dn Dnmax eµ  ed Pass 
0 Full Tree = N/A  172,800  $441 0.39      
1 MMax Off Fault = 7.6  57,600  $441 0.39 0.001 0.008 0% 0% TRUE 
2 Fault Model = Fault Model 3.1  28,800  $442 0.39 0.004 0.010 0% 0% TRUE 
3 Slip Along Rupture Model (Dsr) = Tapered Ends  14,400  $436 0.38 0.012 0.014 -1% -1% TRUE 
4 Ground Motion Model = Abrahamson, Silva & Kamai (2014)  2,880  $447 0.39 0.015 0.031 1% 1% TRUE 
5 Deformation Model = Zeng B-Fault Bounded  720  $438 0.37 0.018 0.061 -1% -4% TRUE 
6 Scaling Relationship = Shaw (2009) Modified  144  $436 0.36 0.030 0.136 -1% -8% FALSE 
7 ERF Probability Model = Mid COV Values  36  $444 0.36 0.029 0.272 1% -8% FALSE 
8 Vs30 Model = Wills et al. (2015)  18  $433 0.36 0.029 0.384 -2% -8% FALSE 
9 Total Mag 5 Rate = 7.9  6  $407 0.32 0.102 0.665 -8% -17% FALSE 

10 Spatial Seismicity PDF = UCERF3  3  $437 0.31 0.281 0.941 -1% -19% FALSE 
11 GMM Additional Epistemic Uncertainty = None  1  $418 0.00 0.466 1.630 -5% -100% FALSE 

Table 8. Trimming path for expected annualized loss EAL 
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B C  

Figure 9. UCERF3-TD model trimmed to expected annualized loss for CEA-proxy portfolio (A) cumulative distribution function of 
EAL; (B) mean error eµ versus model size z; (C) coefficient of variation error ed versus model size z 

5. Summary and conclusions 
5.1 Summary 
The Uniform California Earthquake Rupture Forecast, Time Dependent, version 3 is sometimes depicted 
as a logic tree with eight modeling uncertainties, also called epistemic uncertainties, that one can think 
of as independent variables in a model of earthquake risk. To calculate risk can also require adding three 
independent variables to the logic tree: the selection of Vs30 model, the selection of ground motion 
model, and the degree of ground motion model additional epistemic uncertainty, for a total of 11 
independent variables. To evaluate earthquake loss to a building portfolio in every allowable 
combination of the 11 variables requires calculating loss for 172,800 combinations or leaves in the logic 
tree and each of 6 million earthquake ruptures—a computationally demanding task even for a 
supercomputer. (We leveraged the fact that some branches only affect earthquake occurrence rates 
rather than ground motion fields and portfolio losses, but still the effort is huge.)  

The present study seeks to reduce that computational burden by identifying a reduced-order model 
using a subset of the 11 independent variables that reproduces the probability distribution of an 
important dependent variable. We considered six dependent variables related to the building repair cost 
for a statewide portfolio of buildings that approximates that of the California Earthquake Authority’s 
insurance portfolio of insured single-family dwellings. The dependent variables are the total repair cost 
in a single earthquake with each of five exceedance probabilities, plus expected annualized loss.   

We applied a recently developed model-order reduction technique that starts by evaluating the 
probability distribution of the dependent variable for the full model, then stepwise trims one 
independent variable at a time, setting its value to one of its possible values, and testing whether the 
probability distribution of the dependent variable significantly changes, or its mean and coefficient of 
variation significantly changes relative to those of the full model. The reduced-order model with the 
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smallest change is preferred, and the process iterates until one reaches the smallest possible model that 
preserves the probability distribution of the dependent variable to the satisfaction of the two-sample 
Kolmogorov-Smirnov goodness-of-fit test at the 1% significance level and the dependent variables’ 
mean and coefficient of variation within ±5%.  

The model order reduction technique allows one to trim the UCERF3-TD model by as few as three and as 
many as nine of its 11 independent variables. But computational effort scales exponentially with the 
number of independent variables. If one independent variable out of the 11 has five possible values, 
eliminating it reduces the number of logic-tree leaves by a factor of 5—an 80% reduction in 
computational effort for a 9% reduction in the number of variables.  

Table 9 summarizes the degree of success of the model-order reduction technique. The columns refer to 
the dependent variables for which the model was trimmed: the repair cost in one year associated with 
each of five probability levels, and expected annualized loss. The rows show the size of the full model in 
terms of number of independent variables and logic-tree leaves, the same quantities for the smallest 
reduced-order model that passes goodness-of-fit and error tests, and the ratio of the latter to the 
former. 

Table 9. Summary of the degree of model order reduction for the dependent variables considered here  

Model size 
Repair cost Lp with exceedance probability p = EAL 

1/100 1/250 1/400 1/550 1/2500 
Full model Independent variables 11 11 11 11 11 11 

Logic-tree leaves 172,800 172,800 172,800 172,800 172,800 172,800 
Reduced order Independent variables 8 5 2 2 5 6 

Logic-tree leaves 7,200 600 15 15 600 720 
Reduced ÷ full Independent variables 73% 45% 18% 18% 45% 55% 

Logic-tree leaves 4% 0.3% 0.009% 0.009% 0.3% 0.4% 

 

At the annual loss-exceedance probabilities commonly used by earthquake insurers in general and the 
California Earthquake Authority in particular (1/250 to 1/550), the model allows one to trim between six 
and nine of UCERF3-TD’s 11 independent variables, reducing the number of logic-tree leaves between 
99.7% and 99.991%. A hypothetical risk calculation that takes 24 hours for the full model (evaluating all 
172,800 leaves) can be reduced to a calculation that takes 8 seconds (for a reduced-order model with 15 
leaves).   

Some variables always strongly influence the dependent variable, some one or two, some three or four, 
and some all five cases. Table 10 recaps this story, listing independent variables from least to most 
important, in the sense that the least important can be trimmed from all models without affecting the 
probability distribution of the dependent variable. The maximum off-fault earthquake magnitude can be 
set to 7.6 in all cases. The fault model can also be fixed in all cases, but the preferred value is FM3.1 in 
some cases and FM3.2 in others. One variable, ground motion model additional epistemic uncertainty, 
cannot be trimmed from the logic tree without greatly disturbing the probability distribution of any of 
the dependent variables. Others can be trimmed from the logic tree in some but not all cases. Where a 
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variable can be trimmed, the table shows the value to which it can be set without greatly disturbing the 
probability distribution of the dependent variable.  

Table 10. Variables that can be trimmed from the logic tree and set to a deterministic value 

Variable 
Preferred value of trimmed variable for exceedance probability p = 

EAL 
1/100 1/250 1/400 1/550 1/2500 

MMax Off Fault 7.6 7.6 7.6 7.6 7.6 7.6 
Fault Model 3.1 3.2 3.1 3.2 3.2 3.1 
Total Mag 5 Rate 7.9 7.9 7.9 7.9 7.9 7.9 
ERF Probability Model Mid COV Mid COV High COV Mid COV High COV Mid COV 
Vs30 Model WA2008 W2015 WA2008 W2015 W2015 W2015 
Slip Along Rupt Mod (Dsr) Tapered Ends Uniform Uniform Uniform Uniform Tapered Ends 
Deformation Model Avg Block Neokinema Neokinema Avg Block Neokinema ZengBB 
Scaling Relationship Shaw 09m ELL B SQL ELL B SQL Shaw 09m Shaw 09m Shaw 09m 
Spatial Seismicity PDF UCERF3 UCERF3 UCERF2 UCERF2 UCERF2 UCERF3 
Ground Motion Model ASK2014 BSSA2014 BSSA2014 BSSA2014 BSSA2014 ASK2014 
GMM Added Epist Uncertainty None None None None None None 

 

Table 11 recaps the order of variable trimmed for each of the dependent variables, sorted by the order 
for the 550-year loss. The order shows some consistency between loss-exceedance cases, with the least 
influential variables (the ones trimmed earliest) generally including MMax off fault, ERF probability 
model, fault model, and Vs30 model. The most influential variables are generally the spatial seismicity 
probability density function, deformation model, and the two variables related to ground motion 
models. The slip along rupture, scaling relationship, and total magnitude-5 rate generally get trimmed 
toward the middle of the model-order-reduction process. The order for EAL looks very different.  

Table 11. Recap order of trimmed variables 

 
Variable 

Order of trimmed variable for exceedance probability p = 
Ditto, EAL 

1/100 1/250 1/400 1/550 1/2500 

ß
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 MMax Off Fault 1 1 1 1 1 1 
ERF Probability Model 3 4 9 2 9 7 
Fault Model 2 2 3 3 3 2 
Vs30 Model 5 3 4 4 4 8 
Slip Along Rupture Model (Dsr) 6 5 6 5 5 3 
Scaling Relationship 4 7 2 6 7 6 
Total Mag 5 Rate 8 6 5 7 2 9 
Spatial Seismicity PDF 7 9 7 8 8 10 
Deformation Model 9 8 8 9 6 5 
GMM Additional Epistemic Uncertainty 11 11 11 10 11 11 
Ground Motion Model 10 10 10 11 10 4 

 

5.2 Conclusions 
(1) This model order reduction technique can handle a model that produces a scalar dependent variable 

that is a function of both scalar and nominal independent variables. It resembles a probabilistic 
sensitivity test that allows for interaction between independent variables.  

(2) This is the first time this technique was applied to large rare losses (points on the loss exceedance 
curve) in a large building portfolio. An earlier application of the technique only examined expected 
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annualized loss. The technique worked as expected. That should be unsurprising since a value on the 
loss exceedance curve (denoted here by Lp) is not fundamentally different from expected annualized 
loss (EAL) in that like EAL, Lp is merely a scalar function of a suite of the same scalar and nominal 
independent variables.  

(3) The technique reduced the loss model from 172,800 leaves to 15 leaves in the cases of the 400- and 
550-year repair cost, or to 720 leaves in the case of EAL.  

(4) Which independent variables can be trimmed depends on the choice of dependent variable. The 
preferred value of those trimmed independent variables can also depend on which dependent 
variable one cares about. Only two variables cannot be trimmed from the logic tree for any of the 
dependent variables considered here: ground-motion-model additional epistemic uncertainty and 
ground motion model. Greater study of those two uncertainties might reduce them. Doing so would 
thin the upper tail of the loss distribution, save insurers on reinsurance costs, and indirectly save 
policyholders on premium costs that help pay for reinsurance. 

5.3 Limitations and open questions 
(1) The technique was applied only to a single deterministic statewide portfolio that approximates that 

of the California Earthquake Authority. We have not demonstrated that the same trimmed model 
will also reasonably approximate EAL or the loss exceedance curve for other insurance portfolios. 
Smaller regional portfolios might be more strongly affected by uncertainties that have a spatially 
concentrated effect, such as the difference between the two fault models. Such a test would be 
straightforward but of limited interest to the California Earthquake Authority. 

(2) We did not account for uncertainty in the seismic vulnerability functions that relate loss to ground 
motion given model building type and replacement cost.  

(3) We did not treat uncertainty in the assignment of model building type to individual assets, or 
uncertainty in asset replacement cost. Both EAL and Lp would scale linearly with an across-the-board 
under- or over-estimation of asset replacement cost, but the uncertainty might not work that way.  

(4) We did not consider the effects of spatiotemporal clustering (e.g., large damaging aftershocks), 
which can have a larger influence on expected annual losses than all the uncertainties considered 
here. 
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Appendix 1. Lognormally distributed portfolio loss  
Propagating uncertainty in between-event ground motion variability and spatially correlated within-
even ground motion variability can involve hundreds of realizations of et and ef for each logic-tree leaf 
and rupture. We assumed that 5 realizations of et and 100 realizations of ef would suffice to 
approximate the distribution of portfolio loss. The distribution would possibly converge using a smaller 
number of realizations, but we do not know what that number is. Anyhow, the computational effort of 
evaluating each rupture 500 times for each branch of the UCERF3-TD logic tree was too demanding, so 
we sought an approximation.  

It is comparatively easy to estimate the mean value of portfolio loss for a given rupture and logic-tree 
leaf using equation (2). It takes advantage of the fact that the expected value of a sum equals the sum of 
the expected values. The portfolio loss is taken as the sum of the losses to the individual assets. Even if 
the asset losses are correlated because of t and f, the expected value of portfolio loss is the sum of the 
expected values of loss to the individual assets, correlation associated with t and f notwithstanding. 

We therefore seek to estimate the distribution of portfolio loss conditioned on the mean portfolio loss. 
We do so with a large sample of portfolio losses, as follows. 

We examined many ranges of loss, referred to here as loss bins, logarithmically equally spaced from $1 
million to over $10 billion. For each combination of loss bin i, ground motion model b, ground motion 
model added epistemic uncertainty c, and Vs30 model d, we found the rupture k with the largest 
occurrence rate rk.  Let us refer to that rupture as the modal rupture. 

For each such modal rupture, we evaluate 500 ground motion fields, one for each combination of the 
five samples of et and the 100 samples of ef. We evaluate the portfolio loss conditioned on the resulting 
ground motion field using equation (25) and the portfolio loss using equation (26): 

    (26) 

where a denotes an index to portfolio assets, Va is the replacement cost new of asset a, ya(xo) denotes 
the repair cost as a fraction of replacement cost new for asset a, and xo is the ground motion at the 
location of asset a. The mean and coefficient of variation of the 500 sample of portfolio loss are 
calculated for each modal rupture and each combination of {i, b, c, d} and a curve fit to the data as 
shown in Figure 10. Weights wet are shown in   Table 2. Weights wef are all 0.01.   
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    (29) 

The relationship between dL|k and µL|k shows some structure: there appear to be upper and lower 
branches. They seem to result from the different ground motion models. Data on the upper branch tend 
to come from using the Abrahamson et al. (2014) and Chiou and Youngs (2014) ground-motion-
prediction equations, although not exclusively, and some of the data in the lower branch also use those 
ground-motion-prediction equations. We checked that the mean portfolio losses calculated by summing 
mean asset losses (“sum of means”) with equation (2) equals the average portfolio loss among the 500 
simulations of between- and within-event ground motion variability (“mean of sum”) calculated by 
equation (27), as shown in Figure 11.  

        

Figure 10. Coefficient of variation of portfolio loss dL as a function of mean loss µL. 
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Figure 11. Checking that mean portfolio loss using simulated ground motion fields equals mean portfolio loss summing over 
mean asset losses. 

We also checked that portfolio loss tends to be lognormally distributed, considering all 24 combinations 
of ground-motion-prediction equation, added epistemic uncertainty, and Vs30 model for the modal 
rupture in the $10 billion loss bin. All 24 samples passed a Lilliefors goodness of fit test at the 5% 
significant level. Figure 12 illustrates two of these checks.  

  

Figure 12. Two sample checks that portfolio loss is approximately lognormally distributed 
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