Phases in Branch Targets of Java Programs

Technical Report CU-CS-983-04

Matthias Hauswirth
Computer Science
University of Colorado
Boulder, CO 80309

hauswirt@cs.colorado.edu

ABSTRACT

Recent work on phase detection indicates that programs be-
have differently at different points in their execution. This
paper looks at phases in more detail with respect to indirect
calls, which are common in object-oriented programs. We
divide phases into three categories: code dependent, context
dependent, and data dependent. Of these, code-dependent
phases are the easiest to exploit and require no special hard-
ware or compiler support. Data-dependent phases, on the
other hand, do require significant hardware or compiler sup-
port. Fortunately, we find that at least for indirect calls,
data-dependent phases are rare for a collection of Java bench-
marks.

Keywords

phase behavior, branch target prediction, feedback-directed
optimization

1. INTRODUCTION

Recent studies on phase detection [9, 10, 11, 7, 6, 2, 3] in-
dicate that programs behave differently at different points in
their execution. For example, consider a long-running server
application that handles a continuous sequence of requests.
Some of the requests may require intense computation while
others may require many memory or disk accesses. There
are two ways of achieving the best performance from these
applications: (i) The underlying hardware mechanisms can
adapt to the changing behavior of the application. For ex-
ample, the hardware branch predictor observes the sequence
of executed branches and their outcome and can therefore
adapt its predictions based on the behavior that it observes.
(ii) A feedback-directed optimizer may observe program be-
havior using low-overhead sampling and reoptimize the code
when the behavior changes [1]. Both approaches have their
strengths and weaknesses. Hardware approaches are gen-
erally more efficient than software approaches (e.g., code
reoptimization is expensive) but software approaches know
more about global program behavior than hardware.

Technical Report CU-CS-983-04
University of Colorado at Boulder
December 2004

Amer Diwan
Computer Science
University of Colorado
Boulder, CO 80309

diwan@cs.colorado.edu

The relative strengths and weaknesses of the hardware
and software approaches suggest that for rapidly changing
program behavior, hardware approaches, and more specif-
ically speculation mechanisms, will probably be most suit-
able. On the other hand, for behavior that changes more
slowly, software approaches, and more specifically feedback-
directed optimizations, may be more suitable since there
is more time between behavior changes to recover the cost
of the reoptimization. To better understand this tradeoff,
this paper explores how the behavior of method invocations
changes over time during program runs.

To conduct this study, we compiled and ran a number of
Java programs using a modified version of the Jikes RVM.
Our modifications to the Jikes RVM allow us to get detailed
information about both low and high level events during an
application run. To increase the generality of our results,
we present data for not just the commonly-used SPECjvm98
benchmark suite but also for four more realistic applications.

Our results reveal that as far as method invocations are
concerned, few of them exhibit any change in behavior: i.e.,
most method invocations are monomorphic and call the same
method every time. This was a surprise to us: we expected
Java programs, and particularly the real Java programs in
our test suite, to exhibit significant polymorphism. Since
few of the method invocations are actually polymorphic, a
hardware or software mechanism designed to exploit vary-
ing behavior over time should be tightly focused on the few
invocations that actually need the mechanisms.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background of our work. Section 3
describes our infrastructure and benchmarks. Section 4 an-
alyzes our results. Sections 5 and 6 describe related and
directions for future work. Finally Section 7 concludes.

2. BACKGROUND

A program phase is a period of time over which some as-
pect of program behavior (e.g. the call targets of virtual
method invocations) is relatively stable. We classify pro-
gram phases into three classes:

Code-dependent phases . Loops and function calls in
programs lead to the repetitive execution of the same
code. If a block of code behaves the same whenever
it is executed but different blocks may have different
behavior, we get code-dependent phases.

Optimizing for code dependent phases is trivial: each
block of code can be optimized based on the aggregate
profile (over the complete program run).

Since many speculation mechanisms index their infor-
mation using the PC value, even the simplest mech-
anisms (e.g., last value instead of ones that use more
context or history information) can easily handle code-
dependent phases.

Context-dependent phases . If the behavior of a block
of code depends on its calling context (e.g., its imme-
diate caller) it yields context-dependent phases.

Software approaches can exploit context-dependent phases

by using some form of specialization. Specialization
effectively turns context-dependent phases into code-
dependent phases.

In order to recognize and exploit context-dependent
phases in hardware, the hardware needs to keep track
of some form of context information (e.g., correlated
branch prediction instead of last-direction-taken).

Data-dependent phases .

If the behavior of a block depends on data values it
leads to data-dependent phases.

Software approaches to exploit data-dependent phases
need feedback-directed optimizations. In other words,
the compiler must reoptimize code while it is running
based on its recent history.

We do not know of any hardware designed to specifi-
cally exploit data-dependent phases.

The above classes are not mutually exclusive. Many phases
in a realistic program may fit more than just one class. The
above classification helps to focus on phases which need to
be detected dynamically. For feedback-directed reoptimiza-
tion, dynamic phase detection might be required because
phases of a given class can not be delineated statically (for
data-dependent phases), or because the collection of an of-
fline profile is too costly (context-dependent phases). Since
data-dependent phases are the most difficult to exploit, the
rest of the paper focuses on on them.

Phase Indicators

To study when the same code exhibits different behavior
due to different data we focus on indicators which signal
differences in data and are potentially exploitable by opti-
mizations.

The following list shows examples of possible indicators
and how they might signal a phase transition:

Indirect call targets . An indirect call site that has been
calling one target for a while starts to call another
target.

Return addresses . A return instruction that has returned
to a specific caller for a while suddenly returns to a dif-
ferent caller.

Conditional branch outcomes . A conditional branch
that has been going one way for a while starts to go
the other way.

Load values . A load instruction that has been loading
values with a certain property starts to load values
with another property.

Load addresses . A load instruction that has been load-
ing from a certain set of addresses starts to load from
another set of addresses.

3. APPROACH

We now describe how we perform our measurements and
our benchmark programs.

Infrastructure

We use our Vertical Profiler for the Jikes Research Virtual
Machine (JikesRVM) to analyze the phase behavior of a set
of Java benchmark programs. Our Vertical Profiler is an
extension to JikesRVM 2.2.0 on Linux/Intel. Vertical pro-
filing denotes the concept of profiling low-level events (like
indirect calls) and relating them to high-level causes (like
polymorphic method invocations).

JikesRVM is a virtual machine that runs Java programs
by compiling them to native code at runtime. It comes with
two Java bytecode to native code compilers. The fast base-
line compiler does not perform any optimizations. The op-
timizing compiler performs a complete set of optimizations,
most importantly inlining and register allocation.

JikesRVM, including its compilers and memory managers,
is mostly written in Java. Only wrappers around system
calls, and the loader, is written in C. Thus, our results in-
clude the entire execution of the system (except for the small
amount of code written in C), including garbage collection
and compilation.

We use the BaseBaseMarkSweep configuration of JikesRVM.
This means that all the code is baseline compiled®, and that
the configuration uses a mark and sweep garbage collector.

Instrumentation

In this paper we focus on one phase indicator: indirect call
targets. This indicator is particularly interesting since vir-
tual method invocations, which cause significant overhead in
object-oriented programs, are usually compiled to indirect
calls.

Our Vertical Profiler places an instrumentation right be-
fore each indirect call. The instrumentation writes a unique
program point ID, identifying the instruction, and the target
address of the call into the trace buffer.

We analyze the trace buffer at every buffer overflow. We
summarize the events found in the trace buffer, and write
out that summary at the end of the run.

The online analysis for indirect calls keeps a list, for each
call site, of all target addresses with corresponding edge
counts. It also simulates a branch target predictor and
counts the mispredictions for each call site over time.

Additionally, our Vertical Profiler gathers structural in-
formation about the program. This includes descriptions of
all the types, the methods of each class, the units of code
that are assembled, and the program points that are instru-
mented.

Our infrastructure can collect data for other phase indica-
tors (such as branch outcomes) as well. We hope to report
on the outcome of using other phase indicators in the future.

Benchmarks

Table 1 presents our extensive benchmark suite which con-
sists of a few micro benchmarks, the SPECjvm98 suite,
SPECjbb2000, and an additional set of more complex Java

1'We expect opt-compiled code to have fewer monomorphic
method calls, because the optimizing compiler can use in-
lining at monomorpic call sites. We plan to quantify this
difference in future work.

programs.

We use at least the size 100 inputs for the SPECjvm98
benchmarks. For some of them we chose even bigger and
more interesting inputs, with the goal of provoking the phase
behavior we expect to find in server applications.

The additional benchmarks are more realistic applications.
They are either server-centric or have an object-oriented de-
sign. We chose large and complex inputs to reflect the inputs
a real server application might see.

[Benchmark [Description

Empty One class with empty main method. To measure

VM overhead.

PolyPhased One call site with phased polymorphic method in-
vocations.

PolyPhaseless | One call site with phaseless polymorphic method
invocations.

Compress Compresses and decompresses five different
1...3MB files. Repeats this five times.

Jess Java expert system shell. Solves the
wordgames.clp number puzzle problem.

Raytrace Raytracer, rendering a dinosaur scene into a 600

by 200 color bitmap.

Db Runs a sequence of queries (mostly sorts) in mem-
ory on an 1MB database.

Javac Java compiler, compiling JavaLex.java four times
in a row.
Mpegaudio MPEG audio decoder decoding a 3.2MB mp3 file.
Mtrt A multithreaded version of raytrace, rendering the
same scene with 4 threads in parallel.
Jbb Multithreaded server application, predominantly
simulating the middle tier of a 3-tier application.
Xalan XSLT processor, applying different XSL stylesheet
to different XML files.
Pdom Persistent DOM database, running a sequence of
XPath-like queries on various Pdom database files.
Soot Object-oriented Java bytecode optimizer.
SableCC Highly object-oriented compiler compiler.
Table 1: Description of benchmarks
Benchmark # of # of | Assembly Unit # of
‘ Classes ‘ Methods | Base RT | Ind. Calls ‘
[Bootimage [380 | 6394 [6394 | 41] 38900 |
Empty 230 130 130 291 1340
PolyPhased 235 139 139 301 1370
PolyPhaseless 235 139 139 301 1370
Compress 252 198 198 436 2481
Jess 398 605 605 1134 5446
Raytrace 265 315 315 627 3892
Db 247 201 201 457 2733
Javac 411 937 937 4433 9933
Mpegaudio 292 357 357 767 5113
Mtrt 265 317 317 627 3897
Jbb 448 1014 1014 3113 11272
Xalan 877 2091 | 2091 13473 20857
Pdom 378 597 597 1621 4329
Soot 969 1145 | 1145 3748 17506
Sablecc 613 1523 | 1523 6940 13452

Table 2: Static structure of benchmarks

Table 2 shows the structure of those benchmarks. For each
benchmark we show the number of classes, methods, assem-
bly units, and instrumented program points. An assembly
unit is a chunk of machine code produced by the assem-
bler. An assembly unit often corresponds to the code of a
compiled method. There are different clients of JikesRVM’s
assembler: the baseline compiler (Base) and the optimiz-
ing compiler are the most important ones. There are other
clients, all of them part of the JikesRVM runtime system
(RT). Of those, the lazy compilation trampoline generator

(which generates tiny stubs for dynamically loaded meth-
ods) is the most prevalent one. We also show the number of
instrumented program points (indirect calls).

The first line in Table 2 shows the structure of the bootim-
age. Since the bootimage is part of every benchmark, and
always looks exactly the same, we factored it out into a sep-
arate line. The subsequent lines only contain information
about individual benchmark programs. For individual pro-
grams we only show data for classes and methods that are
actually used in our runs. To get the complete information
for a benchmark, one has to add the Bootimage and the
respective benchmark’s lines.

The Empty micro benchmark shows the startup overhead
of the virtual machine. The application consists of only one
class, with just an empty main() method. Thus, when com-
paring two benchmarks, one can subtract the numbers of
Empty from the numbers of the respective benchmark, to get
the numbers that are specific to that benchmark. Since the
startup behavior depends on the context (command line ar-
guments, heap sizes, whether benchmark classes are loaded
from files or from JAR archives) to some degree, we did not
factor out the startup costs shown in Empty from the other
benchmarks.

We use the PolyPhased and PolyPhaseless microbench-
marks as a bounds and sanity check in our analysis of in-
direct calls. PolyPhased consists of one frequently executed
virtual method invocation site and exhibits four distinct
phases. Each phase uses a different call target, but during
a phase the target is constant. Thus we can clearly observe
four phases, each with different behavior. PolyPhaseless is
similar in that it also has one important virtual method in-
vocation site with four distinct targets. But it exhibits no
phase behavior since successive invocations always have dif-
ferent targets.

4. RESULTS

While most method invocations in Java have the poten-
tial to be polymorphic, only a few of them may exhibit in-
teresting phases. Broadly speaking, there are three kinds of
polymorphic method invocations; only the last kind (Phased
polymorphism) is amenable to techniques that exploit phases.

Polymorphism for modularity Polymorphic method in-
vocations may exist in a program to facilitate future
extensions. Even though these method invocations
have the potential to be polymorphic, they will always
call the same target at run time. The literature con-
tains many techniques (e.g., class hierarchy analysis
or preexistence-based inlining) for removing the ineffi-
ciencies associated with these method invocations.

Phaseless polymorphism The second form of polymor-
phism actually leads to indirect call sites that invoke
multiple targets at runtime. We call it phaseless be-
cause invocations to the different targets are heavily
interleaved, such that no longer phase of consecutive
invocations of the same target method does appear.

We created the PolyPhaseless micro benchmark to demon-

strate this behavior. PolyPhaseless has a call site with
four different target methods (plus four lazy compila-
tion trampolines). The call site is inside a loop, and
the target method in every iteration is different from
the previous one.

Phased polymorphism The last form of polymorphism
appears, when there are clear phases, and in each phase
there is a clear bias toward a different call target.

We created the PolyPhased micro benchmark to ex-
hibit this behavior. PolyPhased is similar to PolyPhase-
less except that it has four distinct and equal phases in
each of which the target method of the virtual method
call is the same.

Of the three categories described above, phased polymor-
phism and polymorphism for modularity can be exploited
with software and hardware mechanisms. Phaseless poly-
morphism, on the other hand, is difficult to optimize for
both software and hardware approaches.

Low-level Behavior

Data-dependent phase behavior is only visible in call sites
with more than one target. The number of targets observed
at a call site at runtime is called its target arity. We call
sites with arity 1 runtime-monomorphic, and sites with arity
>1 runtime-polymorphic.

Table 3 shows the percentage of calls executed at call sites
with the given target arities. We can see that the over-

whelming majority of calls happens from runtime-monomorphic

call sites. From the real benchmarks, only Compress, Mpe-
gaudio and Xalan have more than 10% runtime-polymorphic
call executions. This significantly limits the benefit that can
be gained by reoptimizing a block of code due to a runtime-
polymorphic call site changing its bias towards a different
target.

To focus our search for call sites amenable to phase-based
optimizations, we measure the miss rates of two theoretical
branch target predictors. A branch target predictor [5] pre-
dicts where a branch instruction is going to jump to. We
look at the miss rates of a bias predictor and a last value
(LV) predictor. The bias predictor statically predicts an in-
direct call instruction to always have the biased target (the
target with the highest probability determined by an offline
profiling run). The LV predictor predicts the call site always
to have the same target it had the last time it was executed.
The size of our LV predictor is unlimited, which means that
it keeps track of the last target of every call site.

Table 4 shows the percentage of runtime-polymorphic call
executions. It also lists the percentage of indirect call exe-
cutions that are mispredicted by the bias predictor. Indirect
calls that have a low bias miss rate are uninteresting with re-
spect to phase behavior because a low-bias miss rate means
that one of the targets is called most of the time. Finally
the table shows the percentage of call executions that miss in
the LV predictor. High LV predictor miss rates are an indi-
cation of constantly changing behavior. Since the behavior
most amenable to optimization is a heterogeneous sequence
of phases, where each phase has internally homogeneous be-
havior, we are most interested in situations with high bias
miss rates (heterogeneous sequence) and low LV miss rates
(homogeneous phases).

To see how the bias and LV miss rates can help to iden-
tify programs with phases, let’s examine the data for the
PolyPhased and PolyPhaseless benchmarks. We see that
PolyPhaseless has both a high bias and LV miss rate indi-
cating that it does not have distinct phases, at least at the
level of indirect calls. On the other hand, PolyPhased has a
high bias miss rate but a low LV miss rate indicating that

that it has distinct phases with respect to indirect calls.

In Table 4 we can see a considerable discrepancy between
the indirect call executions with arity >1 and the indirect
call executions missing in the bias predictor. The bias pre-
dictor miss rate is often very close to 0. The reason for this
is simple: JikesRVM'’s compilers create indirect calls for all
method invocations. The target of the call is usually the
body of the method we want to invoke. But since Java sup-
ports lazy compilation (compilation of methods when they
are invoked for the first time), JikesRVM often uses a small
block of code, the lazy compilation trampoline, as a stub for
the future method. Thus the first invocation of that method
will lead to calling the trampoline. Subsequent calls will call
the target method. This leads to many call sites that are
runtime-polymorphic, even though the corresponding Java
method invocations actually are monomorphic. And be-
cause there is just one call to the trampoline, but many
calls to the real target method, the bias miss rate of that
call site will be almost 0.

Temporal Behavior

We manually inspected the temporal behavior of indirect
call sites that have at least two call targets that are not
trampolines. We particularly focused our search on sites
with a high bias miss to LV miss ratio (sites with potentially
distinct, homogeneous phases).

The most interesting call site we found lies in method
TreeMap.rbInsert() in the Sablecc benchmark. This call
site makes up about 1.2% of the overall 10.3 billion exe-
cuted indirect calls. It has a bias miss rate of 33.56% and
an LV miss rate of only 0.01%. It is an invocation of method
Comparable.compareTo(). Figure 1 shows the behavior of
that call site over time. The X axis shows the time in inter-
vals. An interval consists of 10 million indirect call execu-
tions. The Y axis shows the number of times this call site
invokes each of its five different targets per interval.

o
=3
S

3
g + LR1ltem A B c
3 = Symbol x
£ 500 [trampoline] .
LROItemSet e
x
* LROItem
x; R o\.ooo:'oo
% oy % C et . :
400 4 xx . M
* .
g e .
s %
3 x: -
£ 300 e A . *
w - Xl - 3
2 ;x?”x *
o S x s * R
* Ty M se .
200 *T M * .
#*
¥ X
.
Fox 3 3
100 1 LR J
. xx . .
x . M
¥ &
o ‘ : s B artnton 4 o S ,
0 200 400 600 800 1000 1200

Time (Intervals of 10 Mio Indirect Calls)

Figure 1: Call targets over time

One of the call targets is a lazy compilation trampoline,
which is invoked only once (in interval 293). Two of the
targets (in class LR1Item and LROItem) are called millions of
times. And the remaining two targets (Symbol and LROItem-
Set) are only called a few thousand times. We can see that
during the first 292 intervals the call site is never executed.
Then, in phase A from interval 293 to 433, we can see many

[Benchmark [Executions [1 [2 [3 [4 [5 [6 [7 [8 [9 [>9
Empty 17,222,051 | 98.45% 0.36% | 0.02% | 0.35% | 0.30% | 0.01% | 0.00% 0.00% | 0.51% | 0.00%
PolyPhased 84,803,459 | 20.54% 0.08% | 0.00% | 0.07% | 0.06% | 0.00% | 0.00% | 79.13% [0.10% | 0.00%
PolyPhaseless 84,816,757 | 20.56% 0.08% | 0.01% | 0.07% | 0.06% | 0.00% | 0.00% | 79.12% [0.10% | 0.00%
Compress 606,605,590 | 54.91% | 45.04% | 0.00% | 0.01% | 0.01% | 0.00% | 0.00% 0.00% | 0.01% | 0.00%
Jess 1,030,430,602 | 98.23% 1.29% | 0.36% | 0.02% [0.01% | 0.01% | 0.00% 0.00% | 0.01% | 0.07%
Raytrace 667,736,259 | 97.62% 1.80% | 0.05% | 0.31% [0.14% | 0.01% | 0.07% 0.00% | 0.01% | 0.00%
Db 1,042,054,699 | 96.66% 3.31% | 0.00% [0.00% | 0.02% | 0.00% [0.00% 0.00% | 0.01% | 0.00%
Javac 1,046,457,653 | 97.28% 1.33% | 0.30% | 0.12% | 0.12% | 0.07% | 0.05% 0.03% | 0.14% | 0.54%
Mpegaudio 209,065,752 | 78.85% | 17.86% | 0.01% | 3.06% | 0.08% | 0.08% | 0.00% 0.01% | 0.04% | 0.00%
Mtrt 779,416,908 | 94.02% 5.35% | 0.04% | 0.27% | 0.12% | 0.01% | 0.19% 0.00% | 0.01% | 0.00%
Jbb 3,823,274,352 | 96.47% 3.42% | 0.02% | 0.00% | 0.06% | 0.01% | 0.00% 0.00% | 0.00% | 0.01%
Xalan 12,810,724,214 | 83.65% 7.94% | 6.29% | 0.55% | 0.01% | 1.05% | 0.00% 0.00% | 0.51% | 0.00%
Pdom 12,107,961,857 | 96.08% 3.77% | 0.10% | 0.00% | 0.03% | 0.02% | 0.00% 0.00% | 0.00% | 0.00%
Soot 261,580,829 | 97.86% 0.72% | 0.03% | 0.90% | 0.23% | 0.01% | 0.00% 0.04% | 0.11% | 0.10%
Sablecc 10,335,741,475 | 96.89% 1.78% | 0.00% | 0.02% | 1.20% | 0.01% | 0.09% 0.00% | 0.00% | 0.00%

Table 3: Percentage of indirect call executions, by call target arity

[Benchmark [Executions [Arity >1 Executions [Bias Misses [LV Misses]
Empty 17,222,051 1.55% 0.32% 0.42%
PolyPhased 84,803,459 79.46% 59.42% 0.09%
PolyPhaseless 84,816,757 79.44% 59.41% 79.21%
Compress 606,605,590 45.09% 0.02% 0.01%
Jess 1,030,430,602 T.77% 0.32% 0.31%
Raytrace 667,736,259 2.38% 0.03% 0.02%
Db 1,042,054,699 3.34% 0.01% 0.01%
Javac 1,046,457,653 2.72% 0.43% 0.34%
Mpegaudio 209,065,752 21.15% 1.49% 0.06%
Mtrt 779,416,908 5.98% 0.03% 0.02%
Jbb 3,823,274,352 3.53% 0.02% 0.01%
Xalan 12,810,724,214 16.35% 0.57% 1.03%
Pdom 12,107,961,857 3.92% 0.04% 0.04%
Soot 261,580,829 2.14% 0.16% 0.13%
Sablecc 10,335,741,475 3.11% 0.46% 0.01%

Table 4: Percentage of indirect call executions missing in predictors

calls to LROItem (on average 288,000 per interval), together
with the few calls to Symbol (average 403) and LROItemSet
(average 47). Phase B, from interval 434 to 486, consists
of an average of 134,000 invocations of LR1Item per interval
(standard deviation: 18,400). Finally phase C, from 487 to
1030, still calls LR1Item, but on average 155,000 times per
interval (standard deviation: 177,000).

A static optimizer using an aggregate profile of this call
site would have decided to optimize for calling LR1Item.
This would have left us with 33.56% suboptimal calls at
this site. Using feedback-directed reoptimization, we could
decide to initially optimize for calling LROItem, and then re-
optimize the code in interval 434, so it is optimal for calling
LR1Item. In this ideal situation (where detecting the phase
transition, identifying the bias target for the new phase, and
reoptimizing have no cost) we would have ended up with
only 0.05% suboptimal calls.

A hardware speculation approach using the simple LV
branch target predictor would only have caused 0.01% sub-
optimal calls. But the additional information available to a
feedback-directed optimization system would allow the op-
timizer to optimize away the calling overhead completely,
and to specialize the inlined code for a further performance
gain.

5. RELATED WORK

Barnes et al. [2] sketch a general approach to detect
phases in a managed runtime environment. In their de-
scription they focus on conditional branch probabilities as a
phase indicator. They do not distinguish between the differ-

ent classes of phases we propose. In a different paper [3] they
classify conditional branches based on their phase behavior.
Their “Multi High” category consists of branches that have a
clearly different bias during different phases. Using a subset
of the SPEC CPU95 and SPEC CPU2000 benchmarks they
find that up to 3% of static branches exhibit this behavior.

The Basic Block Vectors (BBV) in [9, 10, 11] are a valu-
able tool for phase identification. But even though a BBV
indirectly captures context-dependent and data-dependent
phases (a change in the indicator for data-dependent phases,
like an indirect call target, leads to successive differences in
executed basic blocks), their direct focus is on executed code
and thus on code-dependent phases. A successor paper [11]
presents an implementation to capture an approximation of
the BBV in hardware, and to classify and predict phase
based program behavior with this metric. Applying their
approach to measuring frequent value locality they find that
overall the top 16 load values only represent 10% of loads,
whereas by using the top 16 values in each phase they can
capture almost 50% of the executed loads.

Dynamic working set analysis 7] uses a bit vector to track
which basic blocks were touched. It is an abstraction of
BBYV, since the only information in the working set signature
is whether a block was executed or not (but not how many
times).

An application running in a virtual machine environment
requires considerable runtime support. Two of the key run-
time services provided by modern virtual machines are the
garbage collector and the just in time compiler. Hu and John
[8] look at the data cache performance of those two subsys-

tems compared to the actual application code. They use the
notion of JVM phase to denote a computation performed
by such a subsystem. They also show time-dependent cache
miss rates for two of their benchmarks, but do not correlate
the time-varying cache performance to higher level causes.

6. FUTURE WORK

We are currently studying different phase indicators, like
conditional branches, return addresses, load values, and load
addresses. We are interested in quantifying the opportuni-
ties for reoptimization based on those indicators.

We also would like to investigate the effects of copying
garbage collection on data-dependent phase behavior by re-
placing the mark and sweep collector with a copying collec-
tor. Since code could be moved around, call targets would
change after every garbage collection.

Furthermore we are looking at the influence of JikesRVM'’s
optimizing compiler on data-dependent phase behavior.

Multi-threading is an important factor in the manifesta-
tion of phases during program execution. If a program is
multithreaded, then different computations get interleaved
in time, and thus different phases are mingled together. It
would be interesting to investigate the phase behavior of
programs on a per-thread basis.

7. CONCLUSIONS

On the software level a runtime optimizer can exploit
larger grained phases by reoptimizing code at phase tran-
sitions. And on the architecture level speculation hardware
can be provided with information to adjust to finer grained
phases.

A system that reoptimizes code based on profiling at run
time incurs a considerable run-time cost. Blindly reoptimiz-
ing code is going to waste precious time. Our results indi-
cate that the opportunities for reoptimization are sparsely
distributed over the code. Thus an efficient reoptimization
system benefits from not just focusing its profiling and re-
optimization efforts on frequently executed code, but from
additionally focusing on the subset of code that exhibits
data-dependent phase behavior. This can not only reduce
the profiling overhead, but it can also lead to better targeted
and thus more beneficial optimizations.

Being able to detect phase changes at low cost also enables
run-time system support for hardware speculation. Previ-
ous work [4] shows that compiler support can improve load
value prediction. By exploiting knowledge about phases in
a program, we expect to be able to improve the hints the
compiler and runtime system can contribute to confidence
estimators of value predictors or branch target predictors.

8. ACKNOWLEDGMENTS

We would like to thank the Jalapeno/JikesRVM group at
the IBM T. J. Watson Research Center for developing and
maintaining the great open source Java virtual machine we
used for gathering our traces.

9. REFERENCES
[1] M. Arnold, M. Hind, and B. G. Ryder. Online
feedback-directed optimization of java. In Conference on
Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 111-129. ACM Press, 2002.
[2] R. D. Barnes, E. M. Nystrom, M. T. Conte, and W. mei
‘W. Hwu. Phase profiling in a managed code environment. In

(3]

4]

5]

6]

(7]

8]

19

(10]

(11]

First Workshop on Managed Run Time Environment
Workloads, 2003.

R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei

W. Hwu. Vacuum packing: Extracting hardware-detected
program phases for post-link optimization. In International
Symposium on Microarchitecture (MICRO), pages 233-244,
2002.

M. Burtscher, A. Diwan, and M. Hauswirth. Static load
classification for improving the value predictability of
data-cache misses. In Conference on Programming Language
Design and Implementation (PLDI), pages 222-233. ACM
Press, 2002.

P.-Y. Chang, E. Hao, and Y. N. Patt. Target prediction for
indirect jumps. In International Symposium on Computer
Architecture (ISCA), pages 274-283. ACM Press, 1997.

S. Clarke, E. Feigin, W. C. Yuan, and M. D. Smith. Phased
behavior and its impact on program optimization. Unpublished
submission to FDO, 2002.

A. S. Dhodapkar and J. E. Smith. Managing
multi-configuration hardware via dynamic working set analysis.
In International Symposium on Computer Architecture
(ISCA), pages 233-244. IEEE Computer Society, 2002.

S. Hu and L. K. John. Comparison of jvm phases on data cache
performance. In First Workshop on Managed Run Time
Environment Workloads, 2003.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE
Computer Society, 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2002.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. In International Symposium on Computer
Architecture (ISCA), 2003.

