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Spatial variation of the rain–snow temperature
threshold across the Northern Hemisphere
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Despite the importance of precipitation phase to global hydroclimate simulations, many land

surface models use spatially uniform air temperature thresholds to partition rain and snow.

Here we show, through the analysis of a 29-year observational dataset (n= 17.8 million), that

the air temperature at which rain and snow fall in equal frequency varies significantly across

the Northern Hemisphere, averaging 1.0 °C and ranging from –0.4 to 2.4 °C for 95% of the

stations. Continental climates generally exhibit the warmest rain–snow thresholds and

maritime the coolest. Simulations show precipitation phase methods incorporating humidity

perform better than air temperature-only methods, particularly at relative humidity values

below saturation and air temperatures between 0.6 and 3.4 °C. We also present the first

continuous Northern Hemisphere map of rain–snow thresholds, underlining the spatial

variability of precipitation phase partitioning. These results suggest precipitation phase could

be better predicted using humidity and air temperature in large-scale land surface model

runs.
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Precipitation phase plays a critical role in the global hydrologic
cycle and climate system, with snowfall and rainfall having
divergent effects on land surface water and energy fluxes.

Snow accumulation increases surface albedo, acting as a primary
driver on the climate system1, while winter snowpacks provide water
storage for more than one billion people globally2,3. Climate
warming has decreased the proportional amount of snowfall versus
rainfall4–6, reduced snow water equivalent (SWE) accumulation5,7–
10, shifted snowmelt earlier in spring11–13, and diminished annual
streamflow14,15. A greater proportion of future precipitation is
predicted to fall as rain, further reducing snow accumulation in cold
regions across the globe16–21. Climate warming is also predicted to
increase the frequency and intensity of rain-on-snow events22, which
may significantly increase flood risks23.

In this context, many land surface models (LSMs) estimate
precipitation phase based on a simple, spatially uniform air
temperature threshold and/or a range between two air tempera-
tures in which a mix of rain and snow falls24,25. Incorrectly
partitioning precipitation phase leads to significant biases in
SWE, snow depth, and snow cover duration at both the point and
basin scale26–32. These biases then propagate into errors in
streamflow, land surface albedo, and surface–atmosphere energy
exchange26,29,30,33. According to the Intergovernmental Panel on
Climate Change, modeling the snow-albedo feedback—a function
of snow cover extent and duration—represents a large source of
uncertainty in LSM simulations of future hydroclimatic condi-
tions34. There is therefore a need to critically analyze the way
LSMs partition rain and snow.

Another method for predicting precipitation phase is through
the application of atmospheric models with microphysics
schemes that track a hydrometeor from its formation in the upper

atmosphere to its deposition at the land surface25. Such an
approach has been used to accurately simulate snowfall in several
locations, including the Colorado Rocky Mountains35 and the
French Alps26. However, this manuscript focuses exclusively on
methods that partition precipitation phase at the land surface due
to the greater availability of surface forcing and validation data,
the computational challenge of producing high-resolution,
hemispherical-scale atmospheric model simulations, and the very
wide use of LSMs using surface-based precipitation phase parti-
tioning methods (greater than 2000 combined citations for the
VIC and NOAH LSMs alone, according to the Web of Science).
Furthermore, coarse-scale global circulation models (GCMs),
such as those used in the Coupled Model Intercomparison Pro-
ject36, employ either surface or microphysics precipitation phase
partitioning methods. Thus, a critical examination of rain–snow
thresholds stands to benefit both the land surface and climate
modeling communities.

Given the impact precipitation phase has on LSM output, it is
essential that models accurately partition rain and snow. How-
ever, such a task is nontrivial, particularly at air temperatures near
0 °C37. Observational work indicates the temperature dependence
of rain–snow partitioning follows a sigmoidal S-shaped curve
with snowfall common above a surface air temperature (Ts) of 0 °
C and increasingly less probable when approaching 4 °C38–40.
Previous studies have developed rain–snow partitioning schemes
based solely on Ts41,42 or on Ts plus near-surface humidity and/or
air pressure43–49; yet, the broader applicability of these analyses is
hindered by the limited spatial extent and range of conditions
explored. In this regard, detailed analyses of phase partitioning—
as well as its spatial variability and meteorological controls—over
hemispherical scales have yet to be conducted.
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Fig. 1 The observed 50% rain–snow Ts threshold over the Northern Hemisphere for 6883 land stations from 1978 to 2007. Each point represents one
station and only stations with a sufficient number of snowfall events were analyzed. a Thresholds mapped by station location. b Thresholds plotted by
station longitude. The horizontal dashed line represents the Northern Hemisphere mean threshold (1.0 °C), the shaded gray box covers thresholds within
±2 standard deviations of the mean, and the blue line is a generalized additive model fit to the threshold data by longitude. Regions of interest are denoted
by text within vertical dashed lines
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A useful metric for defining the partitioning of precipitation
phase at a given location is the 50% rain–snow Ts threshold42,48.
At this temperature precipitation occurs as rain and snow with
equal frequency, while above the threshold precipitation is pri-
marily rain and below primarily snow. The objectives of this
study are to quantify the 50% rain–snow Ts threshold over the
Northern Hemisphere land surface, to assess how it varies with
relative humidity (RH) and surface pressure (Ps), and to evaluate
the impact of threshold selection on simulated snowfall fre-
quency. We accomplish this through an analysis of a compre-
hensive 29-year (1978–2007) observational precipitation phase
and meteorological dataset from 11,924 stations across the
Northern Hemisphere (nobs= 17.8 million), the application of a
binary logistic regression phase prediction model using a spatially
and temporally continuous reanalysis product in the Northern
Hemisphere, and simulations of snowfall frequency using rea-
nalysis data and a selection of precipitation phase methods. This
study provides the most extensive empirical evaluation of pre-
cipitation phase over land, and the results have implications for
predicting the response of rain–snow partitioning to climate
change and discriminating between rain and snow in LSMs.

Results
Spatial variability of observed rain–snow thresholds. Observed
50% rain–snow Ts thresholds show marked spatial variation in
the Northern Hemisphere (Fig. 1). We calculated an average
threshold of 1.0 °C across 6883 stations (the remaining stations
did not have enough data to fit the hyperbolic tangent as detailed
in Methods), with 95% of observations falling in the range of
−0.4 to 2.4 °C. Continental areas and mountain ranges generally
exhibit the warmest thresholds, while maritime areas and low-
lands exhibit the coolest thresholds. This is evident in the western
United States, where values increase from approximately 0.6 to
1.5 °C near the Pacific Coast, Cascades, and Sierra Nevada to
temperatures approaching 3.8 °C in the Intermountain West and
Rocky Mountains. Thresholds east of the Rockies drop pre-
cipitously in areas influenced by the Gulf of Mexico, where rain is
commonly observed below the freezing point.

In Europe, thresholds are generally near the Northern Hemi-
sphere average of 1.0 °C, with higher values observed in the
Pyrenees, Alps, and Scandinavian Mountains. Few observations
in these longitudes are either extremely high or low ( ±2 standard
deviations of the mean). Areas with weather patterns influenced
by the Mediterranean, Black, and Caspian Seas exhibit some of
the lowest thresholds in Eurasia. In Kazakhstan the threshold is
typically less than 1.2 °C, except in upland areas near the Tien
Shan mountains in the eastern portion of the country. Due to the
low humidity of the region, central Asia—particularly the areas in
and surrounding the Tibetan Plateau—consistently exhibits the
highest observed thresholds, approaching 4.5 °C.

Generally, the highest 50% rain–snow Ts thresholds are
observed at upland elevations in continental regions, such as
the Rocky Mountains and Tibetan Plateau. An exception is Japan,
where thresholds are typically greater than the Northern Hemi-
sphere average despite a maritime climate. This is largely
attributable to synoptic-scale processes governing snowfall in
the region, namely cold, continental air masses from Siberia
acquiring heat and moisture from the Sea of Japan as they flow
southeast. While in transit, the temperature lapse rate steepens,
cloud top heights increase, and hydrometeors are formed in the
masses’ upper layers50–52. Surface observations, therefore,
indicate markedly warmer conditions than where the hydro-
meteors formed aloft, while the high lapse rate reduces the
probability that snow crystals will melt, giving Japan anomalously
high 50% rain–snow Ts thresholds. This unique synoptic setup

underscores the inadequacy of partitioning precipitation phase
with a uniform threshold in global applications.

Meteorological controls on precipitation phase partitioning.
Based exclusively on the observational data, precipitation events
that occur at low RH are more likely to fall as snow at higher Ts
than events coinciding with high RH (Fig. 2a). For example, the
probability of precipitation falling as snow at 2.5 °C is over
30-times greater in the lowest RH bin compared to the highest. At
0.0 °C all snowfall frequency values are greater than 70% across
the RH bins; however, as Ts increases the curves exhibit a stark
separation with the snowfall frequency of the higher RH curves
dropping quickly toward zero, whereas the lower RH curves
maintain greater snowfall frequency values at higher Ts. RH also
exerts a strong control on the 50% rain–snow Ts threshold, which
ranges from 0.7 °C in the 90–100% RH bin to 4.5 °C in the
40–50% RH bin. Each 10% increase in RH is associated with a 0.8
°C decrease in the 50% rain–snow Ts threshold. These findings
are consistent with hydrometeor energy balance theory, in that a
low ambient RH facilitates evaporative cooling through latent
heat exchange, thus enabling a snow crystal to maintain its frozen
state in an above-freezing atmosphere. Additionally, 50%
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Fig. 2 Snowfall frequency curves calculated using observations from
11,924 stations across the Northern Hemisphere (1978–2007). a Snowfall
frequency curves plotted by RH bin. b Snowfall frequency curves plotted by
Ps bin. The 50% rain–snow Ts threshold for each of the RH and Ps bins are
as follows: 4.5 °C (40–50%), 3.7 °C (50–60%), 2.8 °C (60–70%), 2.2 °C
(70–80%), 1.4 °C (80–90%), 0.7 °C (90–100%), 1.9 °C (60–70 kPa);
1.7 °C (70–80 kPa), 1.3 °C (80–90 kPa), and 0.9 °C (90–105 kPa). Standard
error bars are not plotted due to the large number of observations per RH,
Ps, and Ts bin (all standard errors are less than 0.9%). (The snowfall
frequency curves for all Northern Hemisphere observations by Ts, Tw, and
Td are available in Supplementary Fig. 1.)
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rain–snow wet bulb temperature (Tw) and dew point temperature
(Td) thresholds are colder than Ts thresholds given that the for-
mer are lower relative to Ts when conditions are unsaturated
(Supplementary Fig. 1).

Observations indicate Ps also influences the 50% rain–snow Ts
threshold, but to a lesser extent than RH (Fig. 2b). The threshold
ranges from 0.9 °C in the 90–105 kPa bin to 1.9 °C in the 60–70
kPa bin, and each 10 kPa increase in Ps is associated with a 0.3 °C
decrease in the 50% rain–snow Ts threshold. Thus, lower Ps is
associated with an increased probability of snowfall at a given Ts,
indicating higher elevation sites are likely to see snowfall at a
warmer Ts than lower sites. The 1.0 °C spread in the 50%
rain–snow Ts thresholds between the highest and lowest Ps classes
is significantly lower than the 3.8 °C spread in the Ts thresholds
between the highest and lowest RH classes. These results indicate
that RH, as opposed to Ps, is a greater determinant of the 50%
rain–snow Ts threshold and the probability of snowfall at a given
temperature.

As noted in the introduction, some LSMs employ a
temperature range in which rain and snow are proportionally
allocated in order to represent mixed-phase precipitation events.
The difference between the minimum and maximum Ts values
for these ranges is generally between 1.0 and 3.0 °C25,42. Although
values of rain–snow proportions are not included in the
observational dataset, we used the precipitation phase data to
evaluate the temperature ranges in which rain and snow were
probable for the different RH and Ps bins. In this case, we
considered the 90 and 10% rain–snow Ts thresholds to define the
minimum and maximum Ts values for mixed-phase events,
respectively. For this part of the analysis, the 90% threshold

represents the Ts value at which 90% of observed precipitation
falls as snow and 10% as rain, and vice versa for the 10%
threshold. Similar to the 50% rain–snow Ts thresholds, the 90%
and 10% thresholds are warmer for lower RH and Ps bins,
meaning drier and higher sites consistently experience more
snowfall at higher Ts (Supplementary Table 1). In addition to the
thresholds occurring at higher Ts, the ranges are also wider for the
lower RH bins, indicating rain and snow are probable over a
larger Ts range for storm events with low RH. Overall, the
computed Ts range between the 90 and 10% thresholds has a
minimum width of 2.6 °C and a maximum of 4.6 °C, indicating
that LSMs may benefit from using wider Ts range parameters
when prescribing rain–snow proportions.

Furthermore, our finding of snowfall occurring at higher Ts
under dry ambient conditions, as presented above, stands in
contrast to Dai40, who found snowfall to be more likely over the
ocean than over land at a given Ts despite the higher humidity of
marine environments. Dai40 posited that this phenomenon was
likely a function of the increased temperature lapse rate above the
ocean marine layer, which leads to lower freezing levels and
reduces the time a hydrometeor spends falling through the warm
lower troposphere. The discrepancy may also arise from the two
different analysis methods. In this regard, Dai40 aggregated all
land-based observations into one group, whereas our method bins
the land stations into humidity and pressure classes and we did
not quantify spatial variation in the 50% rain–snow Ts threshold
over the ocean. Additionally, Dai40 suggested no pressure-phase
relationship above 75 kPa, whereas our analysis showed clear
divergence in the snowfall frequency curves at the examined
pressure bins.
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Fig. 3 The simulated 50% rain–snow Ts threshold across the Northern Hemisphere and the difference between simulated and observed thresholds. a The
simulated 50% rain–snow Ts threshold is computed using a hyperbolic tangent fit to simulations of precipitation phase using a binary logistic regression
model applied to gridded MERRA-2 reanalysis data (see Methods). Hatching indicates there were not enough data to compute the threshold using a
hyperbolic tangent and the resultant threshold was calculated using a linear regression based on snow probability between 0.5 and 6.5 °C. Areas shaded in
gray had some modeled snowfall, but there were not enough total events and/or snowfall days per temperature bin in order to identify a 50% rain–snow Ts
threshold using either method. Note that this may occur for regions that are typically cold (e.g., central Greenland) or warm (e.g., northern Africa). Areas
with no shading did not have any modeled snowfall in the −8 to 8 °C temperature range. b Differences between the simulated and observed 50%
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We also note the majority of observations were recorded in the
higher RH (i.e., 90–100%) and Ps (i.e., 90–105 kPa) classes. For
example, records in the 90–100% RH bin outnumber those in the
lowest three RH bins by more than an order of magnitude
(12.7–1). For Ps, the distribution is similar in that observations in
the 90–105 kPa bin outnumber those in the three other bins by
more than 8.6–1. This sampling bias results from a combination
of the increased probability of precipitation at higher RH and the
greater representation of lower elevations in the observations (i.e.,
higher Ps). The latter introduces uncertainty into the results as the
stations were not strategically located to cover the full range of
hydrometeorological conditions in an unbiased manner. This
uncertainty is a candidate for further research, particularly in
mountainous regions where seasonally snow covered areas—vital
to water resources—are located at high elevations with low Ps.

Simulations of rain–snow partitioning. Figure 3a presents a
spatially continuous product simulating the 50% rain–snow Ts
threshold over land in the Northern Hemisphere as produced by
a logistic regression model run on 27 years of MERRA-2 reana-
lysis data (see Methods). Here station precipitation phase
observations were used to optimize a bivariate model with the
predictor variables Ts and RH. As with the station observations,
the simulated 50% rain–snow Ts threshold displays marked
spatial variability with the highest values in the Rocky Mountains
of North America and the Tibetan Plateau of central Asia. The
lowest thresholds are generally simulated in areas with maritime
climates such as the Pacific Northwest of the United States and
northern Europe. Figure 3b displays the difference between the
simulated threshold at each grid cell and the corresponding
observed station threshold, where available. The simulated
threshold is generally within ±1 °C of the observation and the
mean bias is 0.5 °C across the Northern Hemisphere. Notwith-
standing, prominent over-estimates of the Ts threshold occurred
in the southeastern United States and central Eurasia (Fig. 3b, red
dots), while under-estimates were less common (Fig. 3b, purple
dots). In addition to the low bias, model standard deviation (0.45

°C) is similar to the observations (0.68 °C) but variability is lower
overall.

In order to produce the map presented above, we considered
three binary logistic regression model versions: univariate
(precipitation phase predicted by Ts); bivariate (Ts and RH);
and trivariate (Ts, RH, and Ps) (for optimized model coefficients,
see Supplementary Table 2); in addition to a suite of 50%
rain–snow Ts, Tw, and Td thresholds from the literature
(Supplementary Table 3). Figure 4 displays the success rate of
each method in predicting the precipitation phase of the
validation data at a given Ts (a) and RH (b). Notably, the top
two methods are the optimized bivariate and trivariate regres-
sions and the best four methods all incorporate humidity, either
through RH or Tw. Conversely, the worst four methods rely on Ts
alone. Based on this evaluation, cool (−1.0° to 0.0 °C) and warm
(2.0–3.0 °C) 50% rain–snow Ts thresholds that under- or
overpredict snowfall are clearly inappropriate for LSM runs over
large spatial extents.

Each of the top 10 methods correctly predicts precipitation
phase > 84.0% of the time across the examined Ts and RH values.
However, this includes periods when the Ts would clearly indicate
rain or snow. All methods, except for the worst eight thresholds,
show a loss of skill between 0.6 and 3.8 °C, illustrating the
difficulty in phase partitioning at Ts near freezing. Within this
range, the dip in performance for the best Ts and RH method is
less than that for the best Ts-only method. Specifically, the
bivariate (Ts and RH) model reaches a minimum success rate of
68.7%, which is a 13.1% improvement on the 60.7% success rate
minimum for the univariate (Ts only) model. The difference is
even larger when examining the performance by RH, where the
bivariate minimum success rate is 35.3% higher than that of the
univariate model. Furthermore, the methods incorporating
humidity provide consistent performance across the RH range,
while the Ts models exhibit downgraded performance at lower
RH values. In this case, the Tw thresholds have the lowest
standard deviation in success rate (5.0%), while Ts thresholds
have the highest (15.0%). Therefore, including humidity—
whether through RH or Tw—provides a marked improvement
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in skill when precipitation phase prediction is at its most
uncertain.

Snowfall frequency sensitivity to phase partitioning method. In
order to evaluate the impact of misdiagnosing precipitation phase
on snowfall simulations, we computed the average and standard
deviation of snowfall frequency across the Northern Hemisphere
using 18 different precipitation phase methods (Supplementary
Table 3) applied to 27 years MERRA-2 reanalysis data. Pre-
dictably, average simulated snowfall frequency increases with
latitude and elevation, and is lowest in the tropics, hot deserts,
and maritime regions (Fig. 5a). The standard deviation of
snowfall frequency, an expression of uncertainty in this analysis,
is generally < 10%, notwithstanding semiarid regions where it
exceeds 30% in some cases (Fig. 5b). Precipitation phase parti-
tioning is most sensitive to method choice in lower-humidity
areas such as the Intermountain West of North America and the
Tibetan Plateau of Asia, both of which rely heavily on snowpack
for regional water resources2,3,53 (standard deviation of snowfall
frequencies are provided for major river basins in Supplementary
Table 4). Harpold et al.54 similarly noted that snowfall frequency
was sensitive to the choice of a Ts-only versus a Ts and RH
precipitation phase method in arid and semiarid areas of the
western United States. High-elevation, semiarid areas also show
the greatest difference in snowfall frequency when comparing the
trivariate (Ts, RH, Ps) to the bivariate (Ts, RH) phase regression
model (Supplementary Fig. 2).

The 18 precipitation phase methods show a large spread in
average Northern Hemisphere snowfall frequency (Fig. 6a) with
Tw and Td temperature methods producing larger snowfall
frequencies relative to the Ts methods. Figure 6b shows how the
uncertainty produced by the different phase methods scales with

the annual simulated snowfall frequency. The lowest standard
deviations are observed at snowfall frequencies near 0% and
100%, indicating the selection of the precipitation phase method
produces little variability in locations that are currently either rain
dominated or snow dominated. Most standard deviations are
<10% (Fig. 6c) with the greatest values observed near an average
snowfall frequency of 50% and an average Ts of 0.0 °C (Fig. 6b),
indicating temperate areas with a rain–snow mix are also sensitive
to the phase method selection.

Climate warming is expected to reduce snowfall frequencies
over many regions vital to water resources and the global climate
system2,54–58 with areas of average Ts near 0 °C considered most
at-risk to warming59. Our research suggests that modeling studies
may be misrepresenting the amount of simulated future snowfall,
primarily as a result of the application of spatially uniform Ts-
based precipitation phase methods. For example, the variable
infiltration capacity (VIC) macroscale model has been used for
myriad studies in snow-dominated regions worldwide3,7,55. VIC,
like many LSMs, employs a rain–snow Ts range centered around
a default 50% rain–snow Ts threshold—in this case 0.0 °C—i.e.,
1.0 °C cooler than the globally observed Ts threshold, meaning the
model will underpredict snowfall over large areas. Storck and
Lettenmaier60 found calibrating the VIC Ts threshold improved
wintertime SWE predictions while degrading spring SWE
estimates, likely an effect of the inconsistent performance of Ts-
only methods. Exacerbating the issue is that continued climate
warming will cause cold and temperate regions to see a shift to Ts
near freezing34, which will make predicting rain and snow in
these areas more uncertain, particularly if inaccurate phase
prediction methods are used.

In that regard, recent review papers have called for improve-
ments in the way precipitation phase is represented within
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represent both hot (e.g., India and Southeast Asia) and arid regions (e.g., the Taklamakan Desert in northwest China and the Saharan Desert) where
snowfall is rare

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03629-7

6 NATURE COMMUNICATIONS |  (2018) 9:1148 | DOI: 10.1038/s41467-018-03629-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


models across multiple Earth sciences disciplines24,25. Our work
has shown, through intensive analysis of a hemispherical-scale
precipitation phase dataset and a suite of snowfall frequency
simulations, that the marked spatial variability in 50% rain–snow
Ts thresholds is primarily a function of RH and that methods
incorporating RH are more effective at predicting precipitation
phase. Thus, modelers should employ a precipitation phase
method that represents physical processes and spatial variability,
particularly when there are no observations of precipitation phase
on which to calibrate a threshold parameter. Ultimately, these
findings have broad implications for historical and future
simulations of the hydrologic cycle, and for estimating the
impacts of climate warming on snow accumulation, land surface
albedo, streamflow, soil moisture, and land–atmosphere energy
exchange.

Methods
Observational Data. In this study, we analyzed observations from the National
Center for Environmental Prediction (NCEP) Automated Data Processing (ADP)
Operational Global Surface Observations dataset (DS464.0), hosted by the National
Center for Atmospheric Research (http://rda.ucar.edu/datasets/ds464.0/). This
dataset includes 6- and 3-hourly synoptic weather reports with measurements of
Ts, dew point temperature (Td), and Ps (collected at ~1.5–2.0 m above ground), as
well as visual observer reports of precipitation phase from meteorological stations
across the globe for the period 1978-01-01 through 2007-02-25. While records were
available from both land and ocean stations, we used data exclusively from land-
based stations in this study. Stations in regions where precipitation falls exclusively
as rain (e.g., the tropics) were not included in the analysis and we focused solely on
the Northern Hemisphere due to its greater land surface area, larger seasonal snow

cover extent, and increased number of surface observations relative to the Southern
Hemisphere.

We classified precipitation reports as either rain or snow using the World
Meteorological Organization precipitation phase categories described in detail in
Dai40,61. Precipitation amounts were not included in the dataset and we removed
sleet as well as potential mixed-phase observations from the analysis because the
relative proportions of solid and liquid precipitation during such events were not
reported (i.e., it was impossible to quantify the amount of precipitation falling as
snow versus rain). The classification of precipitation events was then used to
quantify the rain–snow frequency per 1 °C Ts bin from –8 to 8 °C at each station. In
other words, if there were 100 total precipitation observations from 1 to 2 °C, 75 of
which were snow, the snowfall frequency in that bin would be 75.0%. We then
calculated the 50% rain–snow Ts threshold for each station using the approach of
Dai40, where a sigmoidal curve is fit to observations of snowfall frequency per 1 °C
Ts bin from –8 to 8 °C using a hyperbolic tangent function:

T50 ¼
tanh�1 F

a þ d
� �

b
þ c ð1Þ

where T50 equals the 50% rain–snow Ts threshold (°C), F equals snowfall frequency
(in this case 0.5, dimensionless), and a, b, c, and d are the fitting parameters
(dimensionless). Fitting the curve required a sufficient number of precipitation
events per Ts bin, a requirement met by 57.7% of the stations. Observations from
stations where a 50% rain–snow Ts threshold could not be computed were still
utilized in assessing the meteorological controls on phase partitioning and model
optimization as outlined below. Additionally, we computed T90 and T10 to define
the range in which mixed-phase events were probable. In this case, T90 and T10
corresponded to the temperature at which 90% and 10% of precipitation,
respectively, fell as snow.

In order to quantify the effect of RH and Ps on observational snowfall frequency,
we divided all precipitation events into six RH classes (40–50%, 50–60%, 60–70%,
70–80%, 80–90%, 90–100%) and four Ps classes (60–70, 70–80, 80–90, 90–105 kPa).
RH was calculated per observation using Ts, Td, and Ps according to the methods used
by Dai62. For quality control purposes, we removed observations that had a calculated
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RH of less than 10% or greater than 100%, which was 2.6% of the dataset. In addition,
80.5% of the records did not include Ps with observations of Ts, Td, and precipitation
phase. We therefore used the 1980–2007 average wintertime
(December–January–February) Ps from the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) reanalysis dataset63,64 for the grid
cell (0.5° latitude X 0.625° longitude) in which the station observation was located. For
the stations that record Ps, the MERRA-2 reanalysis Ps data closely match the station
Ps observations (mean bias= 0.11%). After filtering the dataset for the station data
analysis, there were a total of 17.8 million precipitation phase observations from
11,924 stations that occurred within the stated Ts, RH, and Ps ranges.

Binary logistic regression phase prediction models. Given the Boolean nature of
classifying precipitation as snow or rain in this study, we optimized three binary
logistic regression models on the observed data using combinations of Ts, RH, and Ps
as predictor variables. Although precipitation falling at Ts near 0 °C can take many
forms37,65, we focused solely on rain and snow as the solid–liquid ratio of mixed-
phase events was not reported in the observational dataset. Froidurot et al.46 noted the
efficacy of binary logistic models in discriminating between rain and snow in an
analysis of precipitation phase variability in the Swiss Alps. In our study, the models
predict the probability of snow occurring (dependent variable), as a function of the
independent variables Ts (univariate model), Ts and RH (bivariate model), and Ts,
RH, and Ps (trivariate model). An event is classified as snow when the probability of
snow occurring is greater than or equal to 50% and as rain when less than 50%.

To compare the impact of the three predictor variables on model performance,
we optimized three different empirical binary logistic regression models:

Univariate Ts model:

pðsnowÞ ¼ 1

1þ e αþβTsð Þ ; ð2Þ

Bivariate Ts and RH model:

p snowð Þ ¼ 1

1þ e αþβTsþγRHð Þ ; ð3Þ

Trivariate Ts, RH, and Ps model:

p snowð Þ ¼ 1

1þ e αþβTsþγRHþλPsð Þ ; ð4Þ

where p(snow) is the probability of snow occurring (dimensionless), and α, β, γ,
and λ are model coefficients (dimensionless). We chose to use an empirical
modeling scheme, as opposed to an analytical scheme, given the dataset’s inherent
spatial and temporal variability, and random errors, as well as a lack of physical
information regarding the conditions in the atmospheric column above ~1.5–2 m.
To obtain the model coefficients, we ran 250 training simulations using 5000
randomly selected global observations of precipitation phase and the predictor
variables. Coefficients were optimized using a generalized linear model in R and
Fisher’s Scoring Algorithm to reduce model deviation relative to the 5000 random
observations. For each of the three model types, we took the mean of the 250 sets of
optimized training coefficients to obtain the final model coefficients. To evaluate
model skill, we removed the training observations and tested the success rate of
each model in predicting precipitation phase within each Ts and RH class in the
validation dataset. The success rates for each of the rain–snow Ts, Tw, and Td

thresholds (Supplementary Table 3) were computed using the same data.
To construct a spatially continuous 50% rain–snow Ts threshold product across

the Northern Hemisphere, we applied the optimized bivariate model to the
MERRA-2 gridded reanalysis dataset63,64. Hourly 2 m Ts, specific humidity (q), Ps,
and precipitation data were accessed from 1980 through 2007 and summarized to a
daily time step. RH was calculated from the MERRA-2 data using an empirical
equation as a function of q, Ps, and Ts. Daily snowfall probability was then
simulated for each grid cell using the bivariate model when precipitation was
greater than 1 mm and Ts fell within the range of −8 to 8 °C. We then calculated
the 50% rain–snow Ts threshold by fitting the hyperbolic tangent to binned
estimates of snowfall frequency per MERRA-2 grid cell using Eq. 1.

Snowfall frequency simulations. We computed snowfall frequency, the number
of snowfall events divided by total precipitation events, using the MERRA-2 rea-
nalysis data outlined above using 18 different precipitation phase methods (Sup-
plementary Table 3) based on values from the literature and the results from the
binary logistic phase regression models. Average and standard deviation snowfall
frequencies were computed for each grid cell as well as over the Northern
Hemisphere as a whole for each of the methods. Tw methods used the Tw values
from the MERRA-2 data and Td was calculated as a function of RH and Ts.

Data availability. To access the gridded Northern Hemisphere 50% rain–snow Ts

threshold product, a formatted version of the observational dataset, and the code
used in this manuscript please visit: https://doi.org/10.5061/dryad.c9h35. MERRA-
2 reanalysis data were downloaded from the NASA Goddard Earth Sciences Data
and Information Services Center (https://disc.sci.gsfc.nasa.gov/). Country outlines
for the maps were accessed from Natural Earth (https://naturalearthdata.com).

Received: 21 August 2017 Accepted: 27 February 2018

References
1. Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K. & Tschudi, M. A.

Radiative forcing and albedo feedback from the Northern Hemisphere
cryosphere between 1979 and 2008. Nat. Geosci. 4, 151–155 (2011).

2. Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The
potential for snow to supply human water demand in the present and future.
Environ. Res. Lett. 10, 114016 (2015).

3. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a
warming climate on water availability in snow-dominated regions. Nature
438, 303–309 (2005).

4. Knowles, N., Dettinger, M. D. & Cayan, D. R. Trends in snowfall versus
rainfall in the western United States. J. Clim. 19, 4545–4559 (2006).

5. Abatzoglou, J. T. Influence of the PNA on declining mountain snowpack in
the Western United States. Int. J. Climatol. 31, 1135–1142 (2011).

6. Trenberth, K. Changes in precipitation with climate change. Clim. Res. 47,
123–138 (2011).

7. Hamlet, A. F., Mote, P. W., Clark, M. P. & Lettenmaier, D. P. Effects of
temperature and precipitation variability on snowpack trends in the Western
United States*. J. Clim. 18, 4545–4561 (2005).

8. Harpold, A. et al. Changes in snowpack accumulation and ablation in the
intermountain west. Water Resour. Res 48, 1–11 (2012).

9. Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining
mountain snowpack in western North America*. Bull. Am. Meteorol. Soc. 86,
39–49 (2005).

10. Regonda, S. K., Rajagopalan, B., Clark, M. & Pitlick, J. Seasonal cycle shifts in
hydroclimatology over the western United States. J. Clim. 18, 372–384 (2005).

11. Cayan, D. R., Dettinger, M. D., Kammerdiener, S. A., Caprio, J. M. & Peterson,
D. H. Changes in the onset of spring in the western United States. Bull. Am.
Meteorol. Soc. 82, 399–415 (2001).

12. Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain
regions. Hydrol. Process. 23, 78–94 (2009).

13. Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes toward earlier
streamflow timing across western North America. J. Clim. 18, 1136–1155 (2005).

14. Barnhart, T. B. et al. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 43,
8006–8016 (2016).

15. Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from
snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4,
583–586 (2014).

16. Dettinger, M., Udall, B. & Georgakakos, A. Western water and climate change.
Ecol. Appl. 25, 2069–2093 (2015).

17. Klos, P. Z., Link, T. E. & Abatzoglou, J. T. Extent of the rain–snow transition
zone in the western US under historic and projected climate. Geophys. Res.
Lett. 41, 4560–4568 (2014).

18. Luce, C. H. et al. Contributing factors for drought in United States forest
ecosystems under projected future climates and their uncertainty. For. Ecol.
Manag. 380, 299–308 (2016).

19. Lute, A. C., Abatzoglou, J. T. & Hegewisch, K. C. Projected changes in snowfall
extremes and interannual variability of snowfall in the western United States.
Water Resour. Res. 51, 960–972 (2015).

20. Adam, J. C., Hamlet, A. F. & Lettenmaier, D. P. Implications of global climate
change for snowmelt hydrology in the twenty-first century. Hydrol. Process.
23, 962–972 (2009).

21. Beniston, M., Keller, F., Koffi, B. & Goyette, S. Estimates of snow
accumulation and volume in the Swiss Alps under changing climatic
conditions. Theor. Appl. Climatol. 76, 125–140 (2003).

22. McCabe, G. J., Hay, L. E. & Clark, M. P. Rain-on-snow events in the western
United States. Bull. Am. Meteorol. Soc. 88, 319–328 (2007).

23. Jennings, K. & Jones, J. A. Precipitation-snowmelt timing and snowmelt
augmentation of large peak flow events, western Cascades, Oregon. Water
Resour. Res. 51, 7649–7661 (2015).

24. Harpold, A. A. et al. Rain or snow: hydrologic processes, observations,
prediction, and research needs. Hydrol. Earth Syst. Sci. 21, 1–22 (2017).

25. Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N. & Gustafsson, D.
Meteorological knowledge useful for the improvement of snow rain separation
in surface based models. Hydrology 2, 266–288 (2015).

26. Wen, L., Nagabhatla, N., Lü, S. & Wang, S.-Y. Impact of rain snow threshold
temperature on snow depth simulation in land surface and regional
atmospheric models. Adv. Atmos. Sci. 30, 1449–1460 (2013).

27. Wayand, N. E., Clark, M. P. & Lundquist, J. D. Diagnosing snow accumulation
errors in a rain–snow transitional environment with snow board observations.
Hydrol. Process. 31, 349–363 (2017).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03629-7

8 NATURE COMMUNICATIONS |  (2018) 9:1148 | DOI: 10.1038/s41467-018-03629-7 | www.nature.com/naturecommunications

https://doi.org/10.5061/dryad.c9h35
https://disc.sci.gsfc.nasa.gov/
https://naturalearthdata.com
www.nature.com/naturecommunications


28. Raleigh, M. S. & Lundquist, J. D. Comparing and combining SWE estimates
from the SNOW-17 model using PRISM and SWE reconstruction. Water
Resour. Res. 48, W01506 (2012).

29. Mizukami, N. et al. The impact of precipitation type discrimination on
hydrologic simulation: rain–snow partitioning derived from HMT-West
radar-detected brightband height versus surface temperature data. J.
Hydrometeorol. 14, 1139–1158 (2013).

30. Fassnacht, S. R. & Soulis, E. D. Implications during transitional periods of
improvements to the snow processes in the land surface scheme-hydrological
model WATCLASS. Atmosphere-Ocean 40, 389–403 (2002).

31. Essery, R., Morin, S., Lejeune, Y. & Ménard, B. C. A comparison of 1701 snow
models using observations from an alpine site. Adv. Water Resour. 55,
131–148 (2013).

32. Blöschl, G., Kirnbauer, R. & Gutknecht, D. Distributed snowmelt simulations
in an alpine catchment: 1. Model evaluation on the basis of snow cover
patterns. Water Resour. Res. 27, 3171–3179 (1991).

33. Harder, P. & Pomeroy, J. W. Hydrological model uncertainty due to
precipitation-phase partitioning methods. Hydrol. Process 28, 4311–4327
(2014).

34. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (Cambridge University Press, Cambridge and New York,
2013).

35. Ikeda, K. et al. Simulation of seasonal snowfall over Colorado. Atmos. Res. 97,
462–477 (2010).

36. Krasting, J. P., Broccoli, A. J., Dixon, K. W. & Lanzante, J. R. Future changes in
Northern Hemisphere snowfall. J. Clim. 26, 7813–7828 (2013).

37. Stewart, R. E., Thériault, J. M. & Henson, W. On the characteristics of and
processes producing winter precipitation types near 0°C. Bull. Am. Meteorol.
Soc. 96, 623–639 (2015).

38. Auer, A. H. Jr. The rain versus snow threshold temperatures. Weatherwise 27,
67 (1974).

39. United States Army Corps of Engineers. Snow Hydrology (US Army North
Pacific Division, Portland, OR, 1956).

40. Dai, A. Temperature and pressure dependence of the rain–snow phase
transition over land and ocean. Geophys. Res. Lett. 35, L12802 (2008).

41. Fassnacht, S. R., Venable, N. B. H., Khishigbayar, J. & Cherry, M. L. The
Probability of Precipitation as Snow Derived from Daily Air Temperature for
High Elevation Areas of Colorado, United States 65–70 (IAHS-AISH
Publications, Wallingford, Oxfordshire, 2013).

42. Kienzle, S. W. A new temperature based method to separate rain and snow.
Hydrol. Process. 22, 5067–5085 (2008).

43. Harder, P. & Pomeroy, J. Estimating precipitation phase using a
psychrometric energy balance method. Hydrol. Process 27, 1901–1914 (2013).

44. Marks, D., Winstral, A., Reba, M., Pomeroy, J. & Kumar, M. An evaluation of
methods for determining during-storm precipitation phase and the rain/snow
transition elevation at the surface in a mountain basin. Adv. Water Resour. 55,
98–110 (2013).

45. Ding, B. et al. The dependence of precipitation types on surface elevation and
meteorological conditions and its parameterization. J. Hydrol. 513, 154–163
(2014).

46. Froidurot, S., Zin, I., Hingray, B. & Gautheron, A. Sensitivity of precipitation
phase over the Swiss Alps to different meteorological variables. J.
Hydrometeorol. 15, 685–696 (2014).

47. Rajagopal, S. & Harpold, A. A. Testing and improving temperature thresholds
for snow and rain prediction in the Western United States. J. Am. Water
Resour. Assoc. 52, 1142–1154 (2016).

48. Ye, H., Cohen, J. & Rawlins, M. Discrimination of solid from liquid
precipitation over Northern Eurasia using surface atmospheric conditions*. J.
Hydrometeorol. 14, 1345–1355 (2013).

49. Gjertsen, U. & Ødegaard, V. The water phase of precipitation—a comparison
between observed, estimated and predicted values. Atmos. Res. 77, 218–231
(2005).

50. Asai, T. A numerical study of the air-mass transformation over the Japan Sea
in winter. J. Meteorol. Soc. Jpn. Ser. II 43, 1–15 (1965).

51. Murakami, M., Clark, T. L. & Hall, W. D. Numerical simulations of convective
snow clouds over the sea of Japan. J. Meteorol. Soc. Jpn. Ser. II 72, 43–62
(1994).

52. Kurooka, H. Modification of Siberian air mass caused by flowing out over the
open sea surface of northern Japan. J. Meteorol. Soc. Jpn. Ser. II 35, 52–59
(1957).

53. Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R.
Mountains of the world, water towers for humanity: typology, mapping, and
global significance. Water. Resour. Res. 43, W07447 (2007).

54. Harpold, A. A., Rajagopal, S., Crews, J. B., Winchell, T. & Schumer, R. Relative
humidity has uneven effects on shifts from snow to rain over the Western U.S.
Geophys. Res. Lett. 44, 9742–9750 (2017).

55. Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P. & Palmer, R.
N. The effects of climate change on the hydrology and water resources of the
Colorado River basin. Clim. Change 62, 337–363 (2004).

56. Addor, N. et al. Robust changes and sources of uncertainty in the projected
hydrological regimes of Swiss catchments. Water Resour. Res. 50, 7541–7562
(2014).

57. O’Gorman, P. A. Contrasting responses of mean and extreme snowfall to
climate change. Nature 512, 416–418 (2014).

58. Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change
7, 263–267 (2017).

59. Nolin, A. W. & Daly, C. Mapping “at risk” snow in the Pacific Northwest. J.
Hydrometeorol. 7, 1164–1171 (2006).

60. Storck, P. & Lettenmaier, D. P. Predicting the effect of a forest canopy on
ground snow accumulation and ablation in maritime climates. In Proc. 67th
Western Snow Conference 1–12 (Colorado State University, Fort Collins,
1999).

61. Dai, A. Global precipitation and thunderstorm frequencies. Part I: seasonal
and interannual variations. J. Clim. 14, 1092–1111 (2001).

62. Dai, A. Recent climatology, variability, and trends in global surface humidity.
J. Clim. 19, 3589–3606 (2006).

63. Global Modeling and Assimilation Office (GMAO). MERRA-2
tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation,
Single-Level Diagnostics V5.12.4. (Goddard Earth Sciences Data and
Information Services Center (GES DISC), Greenbelt, MD, 2015).

64. Global Modeling and Assimilation Office (GMAO). MERRA-2
tavg1_2d_flx_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation,
Single-Level Diagnostics V5.12.4. (Goddard Earth Sciences Data and
Information Services Center (GES DISC), Greenbelt, MD, 2015).

65. Ralph, F. M., Rauber, R. M., Jewett, B. F. & Kingsmill, D. E. & others.
Improving short-term (0-48 h) cool-season quantitative precipitation
forecasting: recommendations from a USWRP workshop. Bull. Am. Meteorol.
Soc. 86, 1619 (2005).

Acknowledgements
K.S.J. was supported by a NASA Earth and Space Science Fellowship (16-EARTH16F-
378). T.S.W. was supported by the United States National Science Foundation Graduate
Research Fellowship Program (DGE 1144083). The authors thank Drs. Aiguo Dai, Naoki
Mizukami, and Jim Steenburgh for their comments regarding the station precipitation
observations and the synoptic-scale processes governing snowfall generation. Publication
of this article was funded by the University of Colorado Boulder Libraries Open Access
Fund.

Author contributions
K.S.J., T.S.W., B.L. and N.P.M. designed the study. K.S.J. and T.S.W. performed the
analyses and wrote the manuscript. N.P.M. and B.L. provided feedback and edited the
manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-03629-7.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03629-7 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1148 | DOI: 10.1038/s41467-018-03629-7 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-018-03629-7
https://doi.org/10.1038/s41467-018-03629-7
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

