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Abstract

The character theory of the group UTn(q) of unipotent upper triangular matrices over a
finite field of order q is known to be wild. However, in a generalization of character theory
called supercharacter theory, one finds that there is a connection between the representation
theory of UTn(q), the combinatorics of set partitions, and the algebra of symmetric function
in non-commuting variables. The relationship is reminiscent of the relationship between the
symmetric group Sn, integer partitions and the algebra of symmetric functions.

In this thesis I begin by giving a brief review of representation theory and Hopf monoids.
I then introduce a particular supercharacter theory of UTn(q) and its connection to set
partitions. A Hopf monoid is then constructed out of supercharacters of the infinite family
of groups, UTn(q), and the powersum basis of this Hopf monoid is reviewed. The product,
coproduct, pointwise product, and antipode are then computed for the powersum basis and
a q-deformation of this basis.
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1 Introduction

Let UTn(q) be the group of unipotent upper triangular n× n matrices over a finite field Fq
of order q,

UTn(q) = {u ∈ GLn(Fq)|uii = 1, 1 ≤ i ≤ n, uij = 0 if i > j} (1)

where, for example, a typical element of UT4(5) is
1 2 0 3
0 1 0 4
0 0 1 1
0 0 0 1

 .
The representation theory of this infinite family of groups is known to be an extremely
difficult, so called wild problem, and has prompted the introduction of supercharacter the-
ory. Supercharacter theory generalizes the character theory of a finite group by replacing
irreducible characters with certain sums of irreducible characters called supercharacters and
conjugacy classes with certain unions of conjugacy classes called superclasses.

For a fixed n and q, the set of supercharacters of UTn(q) span the space of superclass
functions f : UTn(q) → C which are constant on superclasses. In certain supercharacter
theories, including the one we work with here, there is a relation between the supercharacters
and the set partitions of [n] = {1, 2 . . . , ...n} which connects the representation theory of
UTn(q) to the combinatorics of the set partitions. In the supercharacter theory used here,
the supercharacters and superclasses are indexed by set partitions in an explicit manner
in which representatives of the superclasses can be chosen so that their nonzero entries
correspond to arcs in an arc diagram, a combinatorial object representing a set partition.

In representation theory, one has methods of taking characters of a subgroup to characters of
the larger group and vice versa. The subgroups of interest here are direct products of smaller
copies of UTn(q). By the nature of matrix multiplication, UTn(q) contains as subgroups
groups that are isomorphic to direct products UTm1(q) × UTm2(q) × . . . × UTm`(q) where∑̀
i=1

mi = n. In fact there is one such group for each set partition of [n]. Using representation

theory to take superclass functions on these subgroups to superclass functions on the larger
group and vice versa allows us to endow these vector spaces of functions with additional
structure.

Taken as an infinite dimensional graded vector space, the space of all superclass functions on
UTn(q) for all n and fixed q is a graded Hopf algebra under the operations of inflation and
restriction. This Hopf algebra is known to be isomorphic to the Hopf algebra of symmetric
functions in non-commuting variables. A related object, the Hopf monoid of supercharacter
functions, has a finer structure because it includes information on the order on the set [n]
and working with it instead of the algebra simplifies some computations.

Various bases for these spaces are known, including the defining basis of supercharacters and
the superclass indicator functions, but we will be primarily concerned with the powersum
basis. The powersum basis is defined in terms of a partial order on the set of set partitions
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of [n] (or later of any finite set I), and it was shown in [4] that certain q-deformations of this
basis give a triangular decomposition of the supercharacter table of UTn(q). In this thesis
explicit formulas in the will be proven for the product, coproduct, pointwise product, and
antipode of powersum functions defined by the inclusion order on arc diagrams.

Section 2 of this thesis will cover some basic definitions and theory of Hopf monoids and
representation theory that are helpful in understanding later material. Further information
on Hopf monoids can be found in [1] and further information on representation theory of
finite groups in [6].

Section 3 sets up the context of our topic by outlining the particular supercharacter theory
of UTn(q) that is used in the final section. In this section, a brief outline of the relationship
between this supercharacter theory and a known Hopf algebra is given.

Section 4 contains the theorems that are the main focus of this thesis and are the only
original contributions to this theory. There we compute the structure constants of the Hopf
monoid of supercharacters for various products and coproducts as well as the antipode. In
particular, the computation of the restriction, pointwise product, and q-powersum functions
are original results.

2 Background Material

When constructing the Hopf monoid of supercharacters, it is helpful to have an understanding
of the representation theory of finite groups and of the general theory of Hopf monoids. Here
we give only a very brief introduction which includes some of the more relevant theorems.

2.1 Representations and Characters of Finite Groups

Since the definition of supercharacters and the operations in the Hopf monoid rely ultimately
on some ideas from representation theory we give a brief recollection of the basic definitions
and theorems. A basic reference is [6]. Assume throughout this section that G is a finite
group.

Definition 2.1. A representation (ρ, V ) of degree n of a group G is a group homomorphism
ρ : G→ GLn(C) into the matrix algebra GLn(C) of invertible n× n matrices over C.

One can also view a representation as a module. To do so, we first need a ring.

Definition 2.2. For a group G and a field C, the group ring CG is defined to be the set of
formal finite linear combinations of elements of G

CG =

{∑
g∈G

λgg|λg ∈ F

}
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together with an addition and multiplication given by

1.
∑
g∈G

λgg +
∑
g∈G

µgg =
∑
g∈G

(λg + µg)g

2.

(∑
g∈G

λgg

)(∑
g∈G

µgg

)
=
∑
g∈G
h∈G

λgµhgh.

Let ρ : G → GLn(C) be a representation of G. Then we can associate with it a module
in the following way. Let V be an n-dimensional vector space over C and choose a basis
B of V . Since Cn ∼= V via this basis, every matrix A ∈ GLn(C) corresponds to a unique
linear transformation on V in the usual way. Thus we can view CG as acting on V via
(λg) · v = λψg(v) for v ∈ V, g ∈ G, λ ∈ C where ψg is the linear map on V associated to the
matrix ρ(g). This action makes V in to an CG module.

One can also go the other way. Given an CG module V , choosing a basis gives an action
on Cn and hence a representation. Because of this correspondence we will often refer to an
CG-module V as a representation.

Definition 2.3. A CG-module M is said to be irreducible if it has no CG-submodules other
than {0} and M itself.

In our case, this means that if V is an CG module, then it has no proper, nontrivial subspaces
that are invariant under the action of all g ∈ G. That is, a subspace of W ⊆ V is a submodule
if and only if g · w ∈ W for all g ∈ G and w ∈ W . These irreducible CG modules are the
basic building blocks of representations since it turns out that for finite groups every finite
dimensional CG module is isomorphic to a direct sum of irreducible modules of which there
is a finite list. These irreducible modules are also referred to as irreducible representations.

It turns out that a great deal of the information about CG modules is contained in relatively
simple maps from G to C called characters.

Definition 2.4. A character of a group G is a function θ : G→ C such that θ(g) = tr(ϕ(g))
for some representation ϕ of G where tr denotes the trace of the matrix ϕ(g).

There is a notion of irreducible character corresponding to that of irreducible representations.

Definition 2.5. An irreducible character of a finite group G is the trace of some irreducible
representation of G.

Every character is constant on the conjugacy classes of G. This is a consequence of the fact
that similar matrices have the same trace.

Definition 2.6. A class function on a group G is a function that is constant on conjugacy
classes. Equivalently, a class function ψ : G→ C satisfies ψ(ghg−1) = ψ(h) for all g, h ∈ G.
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Some of the important properties of characters are summarized in the following theorem,
which is well known in representation theory.

Theorem 2.1. Let G be a finite group. Then

1. There are the same number of conjugacy classes of G as there are irreducible characters.

2. The set of irreducible characters of G form a basis of the vector space of class functions.

3. The set of irreducible characters is orthonormal with respect to the inner product

〈ψ, φ〉 =
1

|G|
∑
g∈G

ψ(g)φ(g)

for ψ, φ class functions where the bar denotes complex conjugation.

A CG module is determined up to isomorphism by its character. The character information
of a finite group G can be summarized in the form of a matrix called the character table.

Definition 2.7. The character table S of a finite group G is the matrix whose rows are
indexed by irreducible characters and whose columns are indexed by conjugacy classes of G
and for C a conjugacy class, χ an irreducible character, Sχ,C = χ(g) where g ∈ C. It is also
customary to put the trivial character as the first row and the conjugacy class {1} as the first
column.

There are several important operations one can do on characters and/or representations of
a group G.

Given a group G, it is a natural enough question to ask what the relationship is between
representations of subgroups H ≤ G and representations of G. This leads to the notion of
restriction. The key observation is to note that CH is a subring (even subalgebra) of CG,
the group ring, so CH acts on V giving a CH module.

Theorem 2.2 (Restriction). Let G be a finite group with subgroup H ≤ G and ψ a character
of G. Then the restriction of this character to H, ResGH(ψ) is a character of H.

Two other useful operations for us are pointwise product and inflation.

Theorem 2.3 (Pointwise Product). Let G be a finite group and ψ a character of G. Then
the pointwise product of them ψ � ϕ, defined by

ψ � ϕ(g) = ψ(g)ϕ(g).

for all g ∈ G, is a character of G.

Theorem 2.4 (Inflation). Let G be a finite group with subgroup H and ρ a surjective group
homomorphism φ : G → H. Let ψ be a character of H. Then the inflation of ψ from H to
G, InfGH (ψ) defined by

InfGH(ψ)(h) = ψ(ρ(g)).
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is a character of G.

A supercharacter theory of a finite group is similar to its character theory, but is derived
by clumping conjugacy classes and irreducible characters in a compatible manner. The
definitions given here follow [5].

Definition 2.8. Let G be a finite group and Irr(G) = {ψ1, ψ2, . . . , ψ`} be the set of distinct
irreducible characters of G. A supercharacter theory for G is defined by the following data

1. A set of superclasses of G which consists of a partition K of G into nonempty subsets
such that for for every set K ∈ K, K is a union of conjugacy classes, and {1} ∈ K

2. A partition X of Irr(G) into nonempty subsets such that |X | = |K|

3. A set of supercharacters χX , one for each X ∈ X such that the χX are constant on
superclasses.

Definition 2.9. A superclass function of a finite group G with a supercharacter theory
(K,X , {χX}) is a function f : G→ C such that if K ∈ K and g, h ∈ K then f(g) = f(h).

In particular supercharacters are superclass functions. Some important properties of super-
characters are carried over from the character theory.

Theorem 2.5. Let G be a finite group with supercharacter theory (K,X , {χX}). Then

1. |K| = |{χX}|

2. The set of supercharacters χX of G form a basis of the vector space of superclass
functions.

3. The set of supercharacters characters is orthogonal with respect to the inner product
given for characters.

2.2 Hopf Monoids

A Hopf Monoid is in some sense a generalization of a Hopf algebra and is defined in the
language of category theory.

A monoidal category is a category together with a “bifunctor” ⊗ : C × C → C which is a
functor on the product category. The functor must satisfy various properties that loosely
amount to

1. Multiplication of objects is associative, (c⊗ d)⊗ e ∼= c⊗ (d⊗ e) for c, d, e in C

2. There is a unit object I in C such that I ⊗ c ∼= c⊗ I ∼= c

The important examples of monoidal categories for us here are the categories C−Vect of
vector spaces over C and linear transformations with the tensor product ⊗, and Sp the
category of vector species (defined later) and natural transformations.
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In algebra a monoid is typically presented as a set M with one distinguished element 1 ∈M
and an associative binary operation ∗ : M ×M →M usually though of as a multiplication.
The distinguished element 1 acts as an identity. For any m ∈ M , 1 ∗m = m ∗ 1 = m. In
this sense, a monoid is simply a group in which inverses are no longer guaranteed.

If C is a monoidal category, we can choose an object A in C and know that there exists an
object A⊗A in C. It may happen that there is a morphism µ : A⊗A→ A that satisfies a
diagram much like the associative axiom in the definition of an algebra. Such a pair (A, µ)
would then be a nonunital monoid in the monoidal category C. A unital monoid is similar
to an algebra as it also requires a morphism i : I → A from the unit object that satisfies an
almost identical diagram to the unit axiom in an algebra. Such a triple (A, µ, i) is called a
monoid in the monoidal category C.

Definition 2.10. A monoid A in a monoidal category C is a triple (A, µ, i) with A an
object of C, and morphisms µ : A⊗A→ A, and i : I → A such that the following diagrams
commute

A⊗ A⊗ A

A⊗ A

A⊗ A

A

µ⊗ id

id⊗ µ

µ

µ

A⊗ A

A

I ⊗ AA⊗ I µ

i⊗ id

∼=∼=

id⊗ i

Here the isomorphism ∼= represents an isomorphism in the category. A dual construction
leads to the notion of a comonoid.

Definition 2.11. A comonoid A in a monoidal category C is a triple (A,∆, ε) with A an
object in C, and morphisms ∆ : A→ A⊗A and ε : A→ I such that the following diagrams
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commute

C ⊗ C ⊗ C

C ⊗ C

C ⊗ C

A

∆⊗ I

I ⊗∆

∆

∆

C ⊗ C

C

I ⊗ CC ⊗ I ∆

ε⊗ I

∼=∼=

I ⊗ ε

One should now ask what the morphisms of monoids and comonoids are. A morphism
f : (A, µ, i) → (A′, µ′, i′) in the category C is a morphism of monoids if f ◦ µ = µ′ ◦ (f ⊗
f).. Similarly a morphism g : (A,∆, ε) → (A′,∆′, ε′) in the category C is a morphism of
comonoids if (g ⊗ g) ◦∆ = ∆′ ◦ g.

If A is a monoid (comonoid), we will need a monoid (comonoid) structure on A ⊗ A in
order to define a bimonoid. This requires us to work in a slightly more restrictive type
of category called a braided monoidal category. A braiding in a monoidal category C is a
natural isomorphism β between A ⊗ B and B ⊗ A for all objects A,B in the category C.
A natural isomorphism is simply a natural transformation between these two functors with
every morphism being an isomorphism. We say (C, β) is a braided monoidal category if it
is a monoidal category with an associated braiding β.

Definition 2.12. A bimonoid A in a braided monoidal category (C, β) is a tuple (A, µ,∆, i, ε)
such that (A, µ, i) is a monoid, (A,∆, ε) is a comonoid, µ, i are comonoid morphisms and
∆, ε are monoid morphisms.

Definition 2.13. Let C be a braided monoidal category with bifunctor ⊗ : C ×C → C and
(A, µ,∆, i, ε) a bimonoid in C. Then the set Hom(A,A) of endomorphisms of A together
with a map ∗ : Hom(A,A)→ Hom(A,A) given by

f ∗ g = µ ◦ (f ⊗ g) ◦∆

for f, g ∈ Hom(A,A) is the convolution monoid associated with A.

Definition 2.14. A Hopf monoid in a braided monoidal category C is a bimonoid A in C
such the identity morphism IA : A→ A has an inverse S : A→ A under ∗ in the convolution
monoid Hom(A,A). The map S is called the antipode.

We will now look at Hopf monoids in the category of vector species which will be the only
Hopf monoids we have occasion to use. Set× is the category of all finite sets in which the
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morphisms are bijective functions. A species is a functor T : Set× → C into some other
category C. We will be exclusively concerned with finite dimensional vector species in which
C = C-Vect, the category of vector spaces and in which T (S) is finite dimensional for any
set S ∈ Set×. There is a category Sp of all vector species in which the objects are vector
species and the morphisms are natural transformations between species.

More concretely, suppose we have two finite dimensional vector species h,p : Set× → C-Vect.
Given a set I in Set× we we write h[I] and p[I] to denote the vector space that is the image
of I under the functors h and p respectively. Likewise, for a set map σ : I → J between
finite sets I and J , we will write h[σ] to denote the linear isomorphism that is the image of σ
under the functor h. A morphism of vector species from h to p is a collection of linear maps
{fI : h[I] → p[I]}, one for each finite set I in Set× such that for any set map σ : I → J
between finite sets I and J we have

fJ ◦ h[σ] = p[σ] ◦ fI .

The category Sp can be made into a monoidal category in various ways, but we will use the
Cauchy product. Define a multiplication of species such that for a finite set, I and bijective
set map σ : I → K,

(h · p)[I] =
⊕
StT=I

h[I]⊗ p[I]

and
(h · p)[σ] =

⊕
StT=I

h[σ|S]⊗ p[σ|T ].

A Hopf monoid in vector species then, is a species h in Sp together with morphisms of
species µ : h ·h→ h, ∆ : h→ h ·h, i : 1→ h, and ε : h→ 1 where 1 is the identity element
in Sp which is the functor

1[I] =

{
C if I = ∅
0 if I 6= ∅

for all I. Here 0 refers to the trivial, zero dimensional vector space.

3 A Supercharacter Theory of UTn(q)

As mentioned before, the general representation theory and character theory of UTn(q)
is known to be equivalent to another problem that is intractable. Supercharacter theory
simplifies the problem by coarsening the usual character theory. This is done by replacing
characters with sums of characters and conjugacy classes by unions of conjugacy classes. In
some supercharacter theories of UTn(q), the vector space of superclass functions can be given
the structure of a Hopf algebra in which the operations are the inflation and restriction of
characters. This algebra in turn has a combinatorial description in terms of the arc diagrams.
This connection is due to the fact that the supercharacters are indexed by such diagrams
in a fairly natural way that relates to a chosen representative of the superclass a specific
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partition of a set. It turns out that the Hopf algebra constructed out of the supercharacters
is isomorphic to the Hopf algebra of symmetric functions in non-commuting variables, which
in turn is related to the Hopf algebra of symmetric functions in commuting variables, as is
shown in [2].

The situation here is reminiscent of the relationship between the representation theory and
character theory of the symmetric group Sn and the Hopf algebra of symmetric functions in
commuting variables.

3.1 Modules

Recall from the introduction that UTn(q) is a matrix subgroup of GLn(Fq). The group
UTn(q) is closely related to the algebra n = UTn(q)− 1 of strictly upper triangular matrices
with zeros along the main diagonal. The associated algebra n can also be made into a Lie
algebra with the commutator bracket [t, s] = ts − st. There is a bijection between n and
UTn(q) which amounts to adding or removing the 1’s from the diagonal. The constructions
here work for algebra groups in general, see [5].

Since n is an algebra it is in particular a vector space and we can consider its dual space. This
allows us to use the notions of coadjoint orbits and other such constructions. In particular
we can define a right action of G = UTn(q) on n via right multiplication, i.e. if j ∈ n, g ∈ G
then g = 1 + t for some other t ∈ n and

j · g = j(1 + t) = j + jt

We can define in a similar manner a left action, a two-sided action and a conjugation action
of G on n

n∗ = {λ : n→ C| λ is linear }.

In addition to this we can have G act on n∗, the dual space of n consisting of all Fq valued
linear functionals on n. If λ ∈ n∗, g = 1 + t for g ∈ G, t ∈ n, then

(λ · g)(j) = λ(jg−1).

Again we can define left, two-sided, and conjugation actions in a similar manner.

Considering Fq as an abelian group, fix θ a nontrivial complex valued character of Fq. Given
λ ∈ n∗ a linear functional, θ◦λ : n→ C. By pre-composing this with the bijection g 7→ g−1,
we can now associate with every Fq linear functional λ ∈ n∗ a function λ̃ : G→ C,

λ̃(g) = θ(λ(g − 1)).

Consider now the negative of the right orbit of a fixed λ ∈ n∗, Yλ = −λG, where we take
the negative for convenience. We can transfer this orbit to a subset of F(G,C) the set of
complex valued functions on G by the correspondence

λ 7→ λ̃.
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We can turn Ỹλ = C−span{λ̃|λ ∈ Y } into a CG module by the usual action

(λ̃ · g)(x) = λ̃(x · g−1).

A variant of the Theorem 3.1 below is proven in [5].

Theorem 3.1. Let {u1, u2, . . . u`} be a set of representatives for the two sided orbits
UTn(q)\n/UTn(q). Then

1. Ỹui
∼= Ỹλ if λ, ui belong to the same two sided orbit, i.e. GuiG = GλG

2. dimC(HomCG(Ỹui , Ỹuj)) = 0 if i 6= j and in particular the the two modules do not
contain any of the same isomorphism types of irreducible constituents.

3. if M is any irreducible CG module of UTn(q), then dimC(HomCG(M, Ỹui) 6= 0 for
exactly one i.

This theorem says that these modules are prime candidates for obtaining supercharacters
because they partition the irreducible modules. In fact they do give a supercharacter theory
which is finer that the one we will be using. The modules that give our supercharacters are
simply direct sums of these modules. The sums are are determined by outer automorphisms
of UTn(q) corresponding to diagonal matrices.

3.2 Supercharacters and Superclass functions

As mentioned before, a supercharacter theory of a finite group G is a partition K of the
group and a partition X of the irreducible characters Irr(G). Our superclasses, Kλ, will be
unions of the two sided orbits UTn(q)\n/UTn(q) + 1, and we will have one for each λ a set
partition of [n]. The supercharacters are then the trace of modules that are the direct sums
of Ỹu as constructed in the previous section.

We first investigate the two sided orbits to give a more explicit description of them and to
describe their connection with set partitions and arc diagrams. Recall that

n = UTn(q)− 1 = {u− In|u ∈ UTn(q)}

where In is the n× n identity matrix and that |n| = |UTn(q)| and the map ϕ : UTn(q)→ n
given by ϕ(g) = g − In for any g ∈ UTn(q) is a bijection between them. Fix t ∈ n. Then a
typical element of UTn(q)\t/UTn(q), the two sided orbit of t, is utv for some u, v ∈ G. We
can view u, v as performing row and column operations and then “reduce” t to a standard
form which we will take to be our superclass representative. Since u, v ∈ UTn(q), there are
ũ, ṽ ∈ n such that 1 + ũ = u and 1 + ṽ = v. Then

tv = t+ tṽ

A basis for n is given by
{Eij|i < j}
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where (Eij)kl = δikδjl is the matrix with all zeroes and a 1 in the (i, j) spot. With this basis
we can write

tv = t+ t
∑
i<j

ṽijEij

with
∑
i<j

ṽijEij = ṽ. We now describe an algorithm that takes an element t ∈ n and returns

an element λ ∈ n with the property that there is at most one nonzero element in each column
and each row.

Algorithm 1 (Superclass representatives). Fix t ∈ n.
Let i = 1.

While: i ≤ n

If ith column nonzero, Then set j = index of last nonzero row in column i. Set k =
j − 1

While: k ≥ 0

Set the k, i entry to zero by right multiplying t by In − (tji)
−1tkiEkj

k = k − 1

End While.

Set k = i+ 1

While: k ≤ n

Set the j, k entry to zero by right multiplying t by In − (tji)
−1tjkEik

End While.

End If.

i = i+ 1

End While.

For example, if in UT4(5)

t =


0 0 2 1
0 0 2 3
0 0 0 0
0 0 0 0




0 0 2 1
0 0 2 3
0 0 0 0
0 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 =


0 0 2 3
0 0 2 0
0 0 0 0
0 0 0 0


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
1 4 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·


0 0 2 3
0 0 2 0
0 0 0 0
0 0 0 0

 =


0 0 0 3
0 0 2 0
0 0 0 0
0 0 0 0


which now only has at most one nonzero element in each row and column. Every matrix in n
can be reduced to a unique matrix of with no more than 1 nonzero element in each row and
column. In our supercharacter theory we take this one step further and allow rescaling of
columns and rows so that every nonzero entry is a 1. This amounts to conjugating by diagonal
matrices with elements in Fq. These conjugations correspond to outer automorphism of
UTn(q) and corresponds to unioning two sided orbits. Thus in our example, the superclass
representative for t would be 

0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 .
It is now possible to see the connection between superclasses and the arc diagrams of set
partitions. Let [n] denote the set {1, 2 . . . n}. A set partition (I1|I2| . . . |In) of a finite set I
is a set of pairwise disjoint, nonempty subsets of I, {In} such that

n⋃
i=1

Ii = I.

If I has a an associated total order τ then we call a pair (i, j) ∈ I × I such that i < j an arc
in I with respect to τ and depict it pictorially as an arc i_j or

• •
i j

.

If arc(I) ⊂ I × I is the set arc(I) = {(i, j) ∈ I × I|i < j} of all possible arcs in I, then there
is a bijection between set partitions (I1|I2| . . . |In) of I and sets of arcs, π ⊆ arc(I) such that

1. if i _ j ∈ π and i _ k ∈ π , then j = k

2. if m _ l ∈ π and k _ l ∈ π , then m = k.

Let
Sτ (I) = {sets µ of arcs in I with respect to τ | µ satisfies 1 and 2}

be the set of all such sets of arcs. Given a set of arcs µ, the corresponding set partition is
found by taking two elements of i, j ∈ I to be in the same part if there is an arc i_j ∈ µ.
For instance, if I = [5] and ε is the usual order, then π = {1_ 2, 2_ 4, 3_ 5, } ∈ Sε([5]),
but λ = {2_4, 2_3} 6∈ Sε([5]). We would depict these in arc diagrams as

π =
• • • • •
1 2 3 4 5

λ =
• • • • •
1 2 3 4 5

. (2)
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Diagrams such as that of λ where an arc that appears underneath another arc but shares
an endpoint are disallowed by conditions 1 and 2. The set partition corresponding to π
is (1, 2, 4|3, 5) = {{1, 2, 4}, {3, 5}}. The parts here correspond exactly to the connected
components of the graph. Because of the bijective correspondence between these sets of arcs
and set partitions we will often refer to a set of arcs such as π as a set partition.

Let t ∈ n and let t̃ be the reduced matrix that is the superclass representative of the two
sided orbit containing t. If we assign to every nonzero entry (i, j) of t̃ the arc i_j, we end
up with a set partition since no row or column can have two nonzero entries. This gives
a bijection between the set of strictly upper triangular matrices with at most one entry of
1 in any column or row and the set of all set partitions of [n], or the corresponding arc
diagrams. Since these matrices are also in bijection with the two sided orbits and hence
our superclasses, this describes a bijection between our superclasses and set partitions of
[n]. We will index our superclasses by arc diagrams, so for example the superclass with
unique representative given by 1 + t̃ as in the previous example above corresponds to the set
partition

• • • •
1 2 3 4

.

We will call this the partition type of 1 + t.

We will be using several operations on set partitions, the simplest of which are restriction
and concatenation. Given µ ∈ Sτ (I), and a subset J ⊆ I, define the restriction of µ to J to
be

µ|J = {i_j ∈ µ | i, j ∈ J}.

There is also an implied restriction on the total order as well, since µ|J ∈ Sτ |J (J) where τ |J
is simply the subposet of I with elements in J . In diagrams, restriction removes all dots that
are not in J and removes any arc that does not have both endpoints in J .

Concatenation on the other hand simply joins arc diagrams side by side. Given two disjoint
finite sets J1, J2 with τ1, τ2 total orders on J1, J2 respectively, let J = J1 ∪ J2 and τ be the
total order determined by min(J2) > max(J1). Let µ1 ∈ Sτ1(J1) and µ2 ∈ Sτ2(J2). Then the
concatenation of µ1 and µ2 is given by

µ1 · µ2 = µ1 ∪ µ2

as sets of arcs. Let π be as in the above example and let γ = {6_8, 8_9} ∈ Sε({6, 7, 8, 9}).
Then the concatenation of π and γ would be, in arc diagrams

π · γ =
• • • • •
1 2 3 4 5

·
• • • •
6 7 8 9

=
• • • • • • • • •
1 2 3 4 5 6 7 8 9

A succinct way to express our superclasses is via an equivalence relation; for u, v ∈ UTn(q)
we define u to be equivalent to v if u = t−1x(v − 1)yt + 1 for some matrices x, y ∈ J and
some diagonal matrix t ∈ GLn(Fq). Since supercharacters are constant on conjugacy classes,
we can define a supercharacter by giving its values on representatives for the superclasses.
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In particular, we can write the values of the supercharacters in terms of the statistics of the
set partition types of our group elements. To do so we need some statistics defined for set
partitions. Let α, µ ∈ Sε([n]). Then these statistics are defined to be

nstµα = #{i < k < l < j|i_j ∈ µ, k_l ∈ α} (3)

dim(µ) =
∑
i_j∈µ

(j − i) (4)

The first counts how many times a set of arcs is nested (lying entirely underneath) within
another set of arcs in an arc diagram. The second sums the “sizes” of all the arcs, where
size is the number of dots that lie entirely underneath the arc plus one. Let

µ =
• • • • • •
1 2 3 4 5 6

λ =
• • • • • •
1 2 3 4 5 6

.

Then nstµµ = 1, nstλµ = 1, nstλλ = 2, and nstµλ = 1. As well dim(µ) = 4 + 1 + 2 = 7 and
dim(λ) = 5 + 2 + 1 = 8.

An important property of nestings is that they are additive in the sense that

nstβα =
∑
i_j∈α
k_l∈β

nstl_k
i_j (5)

In our supercharacter theory the supercharacter indexed by the set partition λ thought of
as a set of arcs is given by

χλ(u) =


(−1)|λ∩µ|qdim(λ)−|λ|(q−1)|λ−µ|

qnst
λ
µ

,
if i ≤ j ≤ k, i_k ∈ λ
implies i_j, j_k /∈ µ,

0, otherwise.

(6)

where to evaluate it on u ∈ UTn(q) we find the partition type µ of u and then calculate
as given in terms of arcs. These supercharacters are characters of UTn(q), but are not
irreducible in general. One that is, is the supercharacter corresponding to the set partition
with no arcs (which corresponds to the partition (1|2|3| . . . |n− 1|n)). It takes value 1 on all
elements and hence is the trivial character of UTn(q).
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3.3 Hopf Monoid of Superclass functions on UTn(q)

One can make a Hopf algebra from these superclass functions, but it is more convenient to
perform computations in the more general Hopf monoid we now construct. We will later
describe how this relates to the associated Hopf algebra. Let I be a finite set and denote by
L[I] the set of all linear (total) orders on I. Choose φ ∈ L[I]. We will write i ≺φ j to denote
that i is less than j in order φ. We also need to define a copy of UTn(q) for an arbitrary
finite set I and linear order on I, so we let

Uφ =
{
u ∈ UT|I|(q)| for all i ∈ I, uii = 1, uij = 0 if i �φ j

}
which is basically UTn(q) with columns and rows indexed by elements of I and written in
the order φ. These form a group in the same way that UTn(q) is a group and so in particular
we can consider its supercharacters, χ(φ,λ), given by formula (6) with ≤ replaced by �φ and
λ a set partition of I.

The Hopf monoid will be a monoid in species, so it is a functor scf(U) : Set× → C−Vect.
Let

scf(Uφ) = C−span{χ(φ,λ)|λ ∈ Sφ(I)}

be the vector space spanned by the supercharacter functions. Every function here is a
superclass function, and every superclass function is a linear combination of supercharacter
functions. The functor scf(U) is then given by

scf(U)[I] =
⊕
φ∈L[I]

scf(Uφ).

This assigns to every finite set a vector space. A typical element of this vector space is a
linear combinations of arc diagrams on |I| dots with various linear orders. For example, an
element of scf(U)[4] is

χ
••••
1 2 3 4 + 2iχ

••••
1 2 3 4 + 4χ

••••
2 3 1 4 + χ

••••
4 3 2 1 .

Since scf(U) is a functor if I, J are finite sets with the same cardinality, and σ : I → J is a
bijection,

scf(U)[σ] : scf(U)[I]→ scf(U)[J ]

is an isomorphism of vector spaces.

Recall, to specify a Hopf monoid we need to specify natural transformations

µ : scf(U) · scf(U)→ scf(U) (7)

∆ : scf(U)→ scf(U) · scf(U) (8)

i : 1→ scf(U) (9)

ε : scf(U)→ 1 (10)
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The natural transformation µ in turn is specified by providing one map

µ̃K :
⊕

ItJ=K

(scf(U)[I]⊗ scf(U)[J ])→ scf(U)[K]

for every K ∈ Set×. Since µ̃K is a linear map from a direct sum it suffices to define maps on
each of its summands. Because the union of two disjoint sets is unique, this means we can
specify one map µI,J for each pair of disjoint finite sets to completely specify µ. The notion
of inflation given in Theorem 2.4 will provide these maps.

Let φ ∈ L[I] for some finite set I. For a partition (J1|J2| . . . |J`) of I, the group Uφ has a
subgroup isomorphic to

Uφ|J1 × Uφ|J2 × . . .× Uφ|J`

with isomorphism given by ι : Uφ|J1 × Uφ|J2 × . . .× Uφ|J` → Uφ

[ι(u1, u2, . . . u`)]i,j =

{
[um]i,j if i, j ∈ Jm for some m

0 otherwise
. (11)

For the subgroups that correspond to block diagonal matrices there is a surjective homo-
morphism,

ρ : Uφ|J1φ|J2 ...φ|J` → ι(Uφ|J1 × Uφ|J2 × . . .× Uφ|J` ) (12)

that simply sets a matrix entry i, j to zero if i and j are not both in the same part of
Jm of the partition of I. Theorem 2.4 tells us that that inflation will take a character of
Uφ|1 × Uφ2 × . . . × Uφ` and give a character of Uφ1φ2...φ` . It also sends supercharacters to
supercharacters.

For two sets S, T let F(S, T ) = {f : S → T} be the set of all functions between them. Given
two finite sets, I, J there is a vector space isomorphism F(I,C) ⊗ F(J,C) ∼= F(I × J,C)
given by (f⊗g)(i, j) = f(i)g(j). Since scf(Uφ)⊗scf(U τ ) is a vector subspace of F(Uφ,C)⊗
F(U τ ,C) we can use this isomorphism. Given I tJ = K, φ, τ ∈ L[K] we define the inflation
of two superclass functions to be

InfU
φτ

Uφ×Uτ : scf(Uφ)⊗ scf(U τ )→ scf(Uφτ ) (13)

InfU
φτ

Uφ×Uτ (ψ ⊗ ϕ)(u) = (ψ ⊗ ϕ)(ι−1(ρ(u))) (14)

with the identification of ψ⊗ϕ with a function on Uφ×U τ via the isomorphism given above.

Thus our maps µI,J will be

µI,J(ψ ⊗ ϕ) = InfU
φτ

Uφ×Uτ (ψ ⊗ ϕ) (15)

Now for the coproduct maps. We need one map for every K ∈ Set×

∆̃K : scf(U)[K]→
⊕

ItJ=K

(scf(U)[I]⊗ scf(U)[J ])
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and we can define this map by defining a map into each component scf(U)[I] ⊗ scf(U)[J ].
Thus we can again completely specify the natural transformation ∆ by giving one map ∆I,J

for each pair of disjoint sets I, J ∈ Set×. Restriction will give us these maps. Given disjoint
finite sets I, J such that I t J = K, we can define ∆I,J on each of its component subspaces

Res
scf(U)[K]

scf(Uφ)
(∆I,J) : scf(Uφ)→ scf(U)[I]⊗ scf(U)[J ] (16)

ψ 7→ ResU
φ

ι(Uφ|I×Uφ|J )(ψ), (17)

where Res is the restriction of functions.

3.4 Bases for scf(U)

To describe the operations on scf(U) it is easiest to do so by describing what happens to
a basis of each vector space scf(U)[I]. This amounts to specifying a basis for each scf(Uφ)
for each φ ∈ L[I] and finite set I. We have already given one such basis in defining scf(U),
namely that of the supercharacters χ(φ,λ). The results in this section are proved [2] and [7].

Proposition 3.1. Let I, J be finite sets such that I ∩ J = ∅ and I t J = K. Let φ ∈ L[I],
τ ∈ L[J ] and λ ∈ Sφ(I), ν ∈ Sτ (J). Then

χ(φ,λ) · χ(τ,ν) = χ(φτ,λ∪ν).

The restriction and antipode on the supercharacter basis is considerably more complicated
and we will not consider it here.

A second natural basis is given by the superclass characteristic functions.

Definition 3.1. Given φ ∈ L[I] and λ ∈ Sφ(I), the superclass characteristic function cor-
responding to (φ, λ) is given by

κ(φ,λ) : Uφ → C, (18)

where κ(φ,λ)(u) =

{
1, if u is in the superclass indexed by λ

0, otherwise
. (19)

Then clearly {κ(φ,λ) | λ ∈ Sφ(I)} is a basis for scf(Uφ) since they span the vector space of
superclass functions. The product and coproduct for the κ basis are fairly simple.

Proposition 3.2. Let K be a finite set such that I t J = K, φ ∈ L[K] and λ ∈ Sφ(K).
Then

∆I,J

(
κ(φ,λ)

)
=

{
κ(φ|I ,λ|I) ⊗ κ(φ|J ,λ|J ) if λ|I ∪ λ|J = λ

0 otherwise
(20)
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Proof:

Let u1 ∈ Uφ|I and u2 ∈ Uφ|J and let µ1, µ2 be the partition types of u1 and u2 respectively,
then by definition of κ,

∆I,J(κ(φ,λ))(u1 ⊗ u2) = ResU
φ

i(Uφ|I×Uφ|J )

(
κ(φ,λ)

)
(ι(u1, u2))

= κ(φ,λ)(ι(u1, u2)) =

{
1 if µ1 ∪ µ2 = λ

0 else
.

If λ|I ∪ λ|J 6= λ, then there is an arc i_j ∈ λ such that one endpoint is in I and the other
in J . Thus for any µ1, µ2, µ1 ∪ µ2 6= λ so in that case ∆I,J(κ(φ,λ)) = 0 is the zero map.

If, on the other hand, λ|I ∪ λ|J = λ, then we must have µ1 = λ|I and µ2 = λ|J in order for
the function to be nonzero. This is equivalent to saying

∆I,J(κ(φ,λ)) = κ(φ|I ,λ|I) ⊗ κ(φ|J ,λ|J ). �

By virtually the same argument, one can also show that a similar relation holds for arbitrary
restrictions.

Proposition 3.3. If J1, J2, . . . J` are pairwise disjoint subsets of K such that
⋃̀
s=1

Js = K,

then restriction on the κ basis is given by

Res
UTφK(q)

UT
φ|J1
J1

×UT
φ|J2
J2

×...×UT
φ|J`
J`

(
κ(φ,λ)

)
=


κ(φ|J1 ,λ|J1 ) ⊗ κ(φ|J2 ,λ|J2 ) ⊗ . . .⊗ κ(φ|Jl ,λ|J` ) if λ|J1 ∪ λ|J2 . . . ∪ λ|J` = λ

0 otherwise
.

Proposition 3.4. Let I, J be disjoint finite sets such that I t J = K, and φ ∈ L[I],
λ ∈ Sφ(I), and τ ∈ L[J ], µ ∈ Sτ (J). Then

µI,J(κ(φ,λ) ⊗ κ(τ,µ)) =
∑

ν∈Sφτ (K)
ν|I=λ, ν|J=µ

κ(φτ,ν). (21)

Proof:

Let u ∈ Uφτ such that π ∈ Sφτ (K) is partition type of u. Then ι−1(ρ(u)) = (u1, u2) for some
u1 ∈ Uφ and u2 ∈ U τ and has partition types π|I , π|J .

InfU
φτ

Uφ×Uτ
(
κ(φ,λ) ⊗ κ(τ,µ)

)
(u) = κ(φ,λ)(u1) · κ(τ,µ)(u2) =

{
1 if π|I = λ, π|J = µ

0 otherwise

This is another way of saying

InfU
φτ

Uφ×Uτ
(
κ(φ,λ) ⊗ κ(τ,µ)

)
(u) =

∑
ν∈Sφτ (K)

ν|I=λ, ν|J=µ

κ(φτ,ν). �
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3.5 Hopf Algebra of Symmetric Functions in Non-commuting Vari-
ables

As the name suggests, Hopf monoids are related to Hopf algebras. Given a Hopf monoid such
as scf(U), one can construct several corresponding Hopf algebras by an operation similar
to forming a quotient. In this context it is helpful to think of Hopf monoids in a different
light. Essentially all of the information in scf(U) is contained in the images of [n] for all
n ∈ N. Since scf(U) is a functor from Set×, given any two finite sets I and J of the same
cardinality, there is a bijection σ : I → J such that scf(U)[σ] : scf(U)[I]→ scf(U)[J ] is an
isomorphism of vector spaces. A choice of bijection between [n] and each other finite set of
size n allows one to identify them all with [n].

In addition, if I = J = [n] these same vector space isomorphisms give an action of the
symmetric group Sn on scf(U)[n] by π · v = scf(U)[π](v) where π ∈ Sn is thought of as a
bijection π : [n] → [n]. Because of this, scf(U) can be thought of as an collection of CSn-
modules {scf(U)[0], scf(U)[1], . . . scf(U)[n], . . .} together with module maps corresponding
to µI,J and ∆I,J . The corresponding Hopf algebras will be the infinite direct sums of these
vector spaces or their quotients by the action of Sn together with canonical maps that reindex
the sets to keep them in the algebra.

Let K be the functor from Sp to gVect the category of graded vector spaces

K(h) =
∞⊕
n=0

h[n]Sn

for any species h where h[n]Sn denotes the vector space of Sn coinvariants of h[n],

h[n]Sn = h[n]/〈v − πv|π ∈ Sn, v ∈ h[n]〉

which identifies an element with its orbit under Sn.

For scf(U),

K(scf(U)) =
∞⊕
n=0

scf(U εn)

where εn is the usual total order on [n], 1 < 2 < 3 < . . . < n. For the superclass indicator
functions this means κ(φ,λ) 7→ κλ, in essence forgetting the total order information.

The coproduct and product in K(scf(U)) are built from the the maps µ[s],[t] and ∆S,T where
s + t = n and S t T = [n]. There is a reindexing problem that must be sorted out since
µ[s],[t] : scf(U εs)⊗ scf(U εt)→ scf(U εsεt) so that the image does not lie in the Hopf algebra.
Thus one uses canonical reindexing maps

ϕs,t : scf(U εs)⊗ scf(U εt)→ scf(U εs)⊗ scf(U ε{s+1,s+2,...,n})

ψS,T : scf(U εS)⊗ scf(U εT )→ scf(U ε|S|)⊗ scf(U ε|T |)

to bring elements back into the Hopf algebra.
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The Hopf algebra K(scf(U)) is isomorphic to the Hopf algebra of symmetric functions in
non-commuting variables as is shown in [2] and [4]. We give a brief construction of a Hopf
algebra of set partitions that is also isomorphic to the Hopf algebra of symmetric functions
in non-commuting variables.

For each n ∈ Z≥1 define Sn to be the free C-vector space over Sε([n]). That is, Sn is a
complex vector space with a basis given by the set partitions of [n]. Any element of Sn we
think of as a formal finite linear combination of arc diagrams. Let

Πs = C⊕
∞⊕
i=1

Sn.

In defining the product and coproduct (aka multiplication and comultiplication) on Πs we
will do so on a basis and extend the operation linearly. A basis for this space is the union of
all Sε([n]) together with 1 ∈ C.

The map D will be our reindexing map and reindexes a set partition of I ⊆ [n] to be a
set partition of [|I|] and is related to the canonical reindexing maps ϕ and ψ we mentioned
above. For each pair of subsets I,K ⊆ [n] such that I ∩ J = ∅ and I ∪K = [n], hereafter
denoted as I t J , define a map

∆I,J : Sn → S|I| ⊗ S|J |

by

∆I,J(µ) =

{
D(µ|I)⊗D(µ|J) if µ|I ∪ µ|J = µ

0 otherwise .

Then define
∆n =

∑
ItJ=[n]

∆I,J

and finally we can define the coproduct on this basis

∆(
n∑
i=1

λnµn) =
n∑
i=1

λi∆mi(µi)

Where λi ∈ C and µi ∈ Sε([mi]). ∆ is the coproduct on our Hopf Algebra. An example is in
order, for the actual operation on a given basis vector is fairly easy despite the multi-layered
definition. Consider the π from equation (2). Since π is a set partition of [5], we in principle
have to worry about all 52 ways to partition it. However, ∆I,J is only nonzero when it does
not “break any arcs” meaning that every arc in π must have both end points in either I or
J . In particular, this means that connected components must stay together, so that

∆(π) = 1⊗ π + π ⊗ 1 +
• • •
1 2 3

⊗
• •
1 2

+
• •
1 2

⊗
• • •
1 2 3

.

The product m : Πs ⊗ Πs → Πs, on the other hand simply concatenates arc diagrams and
reindexes the dots to be a partition of [n]. Let Up be the map that takes set partitions of
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[n] and shifts them up by a given amount m to be a partition of [n+ 1, n+ 2, . . . n+m]. If
µ ∈ Sε([n]) and λ ∈ Sε([m]) then

m(µ, λ) := µ · Up(λ)

as arc diagrams. For example

• • •
1 2 3

· Up

(
• •
1 2

)
=
• • • • •
1 2 3 4 5

.

The κ basis of scf(U) gives the isomorphism to this Hopf algebra of set partitions as one
might have guess considering their product and coproduct. The antipode on Πs can be writ-
ten down in some bases and we will prove one such formula later in the context of the Hopf
monoid.

4 The Powersum Basis and its q-Deformations

A third basis is given by the powersum functions and is the main focus of this thesis. One can
impose various partial orders on the the set of set partitions of a finite set over some linear
order Sφ(I). In general, powersum functions P�(φ,λ) sum the superclass indicator functions

over an upwards closed ideal of Sφ(I) in some partial order �. Perhaps the simplest partial
order is that given by inclusions. If µ, ν ∈ Sφ(I) then we write µ ⊆ ν if this is true as sets
of arcs (i.e. every arc in µ is also in ν). This defines a partial order on Sφ(I).

Definition 4.1. Let µ ∈ Sφ(I) for some finite set I and φ ∈ L[I]. Then the powersum
functions are

P⊆(φ,µ) =
∑
µ⊆α

κα. (22)

We will be exclusively concerned with powersum functions in this order and their q-deformations.
By q-deformations we mean the coefficients of κα in equation (22) are no longer all 1, but is
instead some function depending on q, in our case a power of q−1. Recall that q is the order
of the finite field Fq for which UTn(q) is a matrix algebra over. The choice of constants given
in the definition below are convenient because they provide a triangular decomposition of
the supercharacter table of UTn(q) (see [4]).

Definition 4.2. Let φ ∈ L[I] for some finite set I. Then the q-powersum functions are

P⊆,q(φ,µ) =
∑
α⊇µ

1

qnst
µ
α−µ

κ(φ,α) (23)

We will shorthand P⊆,q(φ,µ) = P q
(φ,µ). A useful relation which relates the superclass characteristic

functions to the q-powersum functions is given next.
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Lemma 4.1 (from [4]). The superclass indicator functions can be written in terms of the
q-powersum functions as

κ(φ,µ) =
∑
ν⊇µ

(−1)|ν−µ|

qnst
ν
ν−µ

P q
(φ,ν). (24)

4.1 Inflation

The product on the P q basis is particularly simple and echoes Proposition 3.1.

Proposition 4.1. Let I, J be finite sets such that I ∩ J = ∅ and I t J = K. Let φ ∈ L[I],
τ ∈ L[J ] and λ ∈ Sφ(I), µ ∈ Sτ (J). Then

µI,J

(
P q
(φ,λ) ⊗ P

q
(τ,µ)

)
= P q

(φτ,λ∪µ). (25)

Proof:

By definition of the product, for u ∈ Uφτ

µI,J

(
P q
(φ,λ) ⊗ P

q
(τ,µ)

)
(u) = InfU

φτ

Uφ×Uτ

(
P q
(φ,λ) ⊗ P

q
(τ,µ)

)
(u)

= (P q
(φ,λ) ⊗ P

q
(τ,µ))(ι

−1(ρ(u)))

where the ι and ρ are from the definitions of inflation and restriction as in equations (11)
and (12). By the definiton of the P q basis then,

µI,J

(
P q
(φ,λ) ⊗ P

q
(τ,µ)

)
(u) =

(∑
α⊇λ

1

qnst
λ
α−λ

κ(φ,α)

)
⊗

(∑
β⊇λ

1

qnst
µ
β−µ

κ(τ,β)

)
(ι−1(ρ(u)))

=
∑
α⊇λ
β⊇µ

1

qnst
λ
α−λ+nstµβ−µ

InfU
φτ

Uφ×Uτ
(
κ(φ,α) ⊗ κ(τ,β)

)
.

The inflation of the κ basis is given by Proposition 3.4. Therefore

µI,J

(
P q
(φ,λ) ⊗ P

q
(τ,µ)

)
=

∑
α⊇λ, β⊇µ

ν∈Sφτ (K) s.t.
ν|I=α, ν|J=β

1

qnst
λ
α−λ+nstµβ−µ

κ(φτ,ν).

For every ν ∈ Sφτ (K) with the property that that ν ⊇ λ∪µ, there is exactly one term in the

sum since ν|I and ν|J are uniquely determined by ν. As well, nstλν|I−λ + nstµν|J−µ = nstλ∪µν−λ∪µ
since, by the additive property given in equation (5)

nstλ∪µν−λ∪µ =
∑

i_j∈ν|I−λ

nstλi_j +
∑

i_j∈ν|J−µ

nstµi_j +
∑

i_j∈ν|I−λ

nstµi_j

+
∑

i_j∈ν|J−λ

nstλi_j +
∑

i_j∈ν−ν|I−ν|J

nstµ∪νi_j
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All the sums here are zero except for the first two since in the total order we are working
in, φτ , an arc with both endpoints in I cannot be nested in an arc with both endpoints in
J since all the dots of J lie strictly to the right of all dots in I in an arc diagram. For a
similar reason an arc that has one endpoint in each set cannot be nested in an arc with both
endpoints in one of the sets. Therefore we can rewrite the sum as∑

ν⊇λ∪ν

1

qnst
λ∪µ
ν−λ∪µ

κ(φτ,ν) = P q
(φτ,λ∪µ). �

From this we can recover a previously known result.

Corollary 4.1. Let I, J be finite sets such that I ∩ J = ∅ and I t J = K. Let φ ∈ L[I],
τ ∈ L[J ] and λ ∈ Sφ(I), µ ∈ Sτ (J). Then

µI,J
(
P(φ,λ) ⊗ P(τ,µ)

)
= P(φτ,λ∪µ). (26)

Proof:
This follows directly from the theorem by setting q = 1. �.

4.2 Restriction

The coproduct is not as simple as the product on the P q basis. It will be convenient for us
to denote

∆J = ResU
φ

U
φ|J1×Uφ|J2×...×Uφ|J`

where J = (J1|J2| . . . |J`) is a set partitions of
⊔̀
i=1

Ji. Again we first prove a factorization

formula for use in calculation of the restriction.

Lemma 4.2. If φ ∈ L(K), λ ∈ Sφ(K), J ⊆ K, and (φ|J , ν) ⊇ λ|J then∑
ν⊇µ⊇λ|J

(−1)|ν−µ|

q
nst

(φ|J ,ν)
ν−µ +nst

(φ,λ)
µ−λ|J

=
∏

i_j∈ν−λ|J

(
1

qnst
(φ|J ,λ)
i_j

− 1

qnst
(φ|J ,ν)
i_j

)
.

Proof:
Fix a µ such that ν ⊇ µ ⊇ λ|J Then the corresponding term in the sum factors as

(−1)|ν−µ|

q
nst

(φ|J ,ν)
ν−µ +nst

(φ,λ)
µ−λ|J

=
∏

i_j∈ν−µ

−1

qnst
ν
i_j

∏
i_j∈µ−λ|J

1

qnst
λ
i_j

and hence gives∏
i_j∈ν−λ|J

(
1

qnst
(φ|J ,λ)
i_j

− 1

qnst
(φ|J ,ν)
i_j

)
=

∑
ν⊇µ⊇λ|J

∏
i_j∈ν−µ

−1

qnst
ν
i_j

∏
i_j∈µ−λ|J

1

qnst
λ
i_j

=
∑

ν⊇µ⊇λ|J

(−1)|ν−µ|

q
nst

(φ|J ,ν)
ν−µ +nst

(φ,λ)
µ−λ|J

. �
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Theorem 4.1. For φ ∈ L[K], λ ∈ Sφ(K) and a sequence of pairwise disjoint subsets of K,

J1, . . . , J` such that
⋃̀
i=1

Ji = K,

∆J(P q
(φ,λ)) =


∑

µ∈Sφ(K),µ⊇λ
µ=µ|J1∪···∪µ|J`

aλJ,µP
q
(φ|J1 ,µ|J1 )

⊗ · · · ⊗ P q
(φ|J` ,µJ|` )

if λ = λJ1 ∪ · · · ∪ λJ`,

0 otherwise,

where

aλJ,µ =
∏̀
k=1

∏
i_j∈µ|Jk−λ

(
1

qnst
λ
i_j

− 1

qnst
µ|Jk
i_j

)
.

Proof:
By definition,

∆J(P q
(φ,λ)) =

∑
ν∈Sφ(K),ν⊇λ

1

qnst
λ
ν−λ

∆J(κ(φ,ν))

=
∑

ν∈Sφ(K),ν⊇λ
ν=ν|J1∪···∪ν|J`

1

qnst
λ
ν−λ

κ(φ|J1 ,ν|J1 ) ⊗ · · · ⊗ κ(φ|J` ,ν|J` ).

Thus, if λ 6= λJ1 ∪λJ2 ∪ · · · ∪λJ` , then ∆J(P q
(φ,λ)) = 0. Assume that λ = λJ1 ∪λJ2 ∪ · · · ∪λJ` .

Then we can write

∆J(P q
(φ,λ)) =

∑
νk∈Sφ|Jk

(Jk)

νk⊇λ|Jk
1≤k≤`

( 1

qnst
λ
ν1−λ

κ(φ|J1 ,ν1)

)
⊗ · · · ⊗

( 1

q
nstλν`−λ

κ(φ|J` ,ν`)

)

=
⊗̀
k=1

( ∑
νk∈Sφ|Jk

(Jk)

νk⊇λ|Jk

1

q
nstλνk−λ

κ(φ|Jk ,νk)

)
.

By Lemma 4.1

κ(φ,ν) =
∑

µ∈Sφ(K),µ⊇ν

(−1)|µ−ν|

qnst
µ
µ−ν

P q
(φ,µ),

so

∆J(P q
(φ,λ)) =

⊗̀
k=1

( ∑
µk,νk∈Sφ|Jk

(Jk)

µk⊇νk⊇λ|Jk

(−1)|µk−νk|

q
nstλνk−λ

+nst
µk
µk−νk

P q
(φ|Jk ,µk)

)

=
⊗̀
k=1

( ∑
µk∈Sφ|Jk

(Jk)

µk⊇λ|Jk

( ∑
νk∈Sφ|Jk

(Jk)

µk⊇νk⊇λ|Jk

(−1)|µk−νk|

q
nstλνk−λ

+nst
µk
µk−νk

)
P q
(φ|Jk ,µk)

)
.
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By Lemma 4.2,

∆J(P q
(φ,λ)) =

⊗̀
k=1

( ∑
µk∈Sφ|Jk

(Jk)

µk⊇λ|Jk

∏
i_j∈µk−λ|Jk

(
1

qnst
λ
i_j

− 1

qnst
µk
i_j

)
P q
(φ|Jk ,µk)

)

=
∑

µ∈Sφ(K),µ⊇λ
µ=µ|J1∪···∪µ|J`

aλJ,µP
q
(φ|J1 ,µJ1 )

⊗ · · · ⊗ P q
(φ|J` ,µ|J` )

,

as desired. �

Corollary 4.2. Let I t J = K be finite sets and λ ∈ Sφ(K). Then the coproduct ∆I,J of
scf(U) on the P q basis is given by

∆I,J(P q
(φ,λ)) =

∑
µ⊇λ

µ|I∪µ|J=µ

aλ(I|J),µP
q
(φ|I ,µ|I) ⊗ P

q
(φ|J ,µ|J ). (27)

Proof:
This is a special case of Theorem 4.1. �

Another special case results in a previously known result.

Corollary 4.3. The coproduct on the P basis is given by

∆I,J(P(φ,λ)) =

{
P(φ|I ,λ|I) ⊗ P(φ|J ,λ|J ) if λ|I ∪ λ|J = λ

0 otherwise .

Proof:

Setting q = 1 in the previous corollary and noting that aλ(I|J),µ = δµ,λ gives the result. �

The next corollary tells us that in order for a coefficient aλ(I|J),γ, γ 6= λ in Corollary 4.2 to be
non-zero, γ − λ must have all of its arcs in I nested in an arc in J and vice versa. This is
far from a complete characterization of the zero coefficients since the converse is not true.

Corollary 4.4. Let K be a finite set, φ ∈ L[K] and λ ∈ Sφ(K) with I t J = K, γ ∈ Sφ(K)
with γ ⊃ λ and suppose that suppose that there exists an arc i_j ∈ γ − λ such that either
i, j ∈ J , nst

λ|I
i_j = 0 or i, j ∈ I, nst

λ|J
i_j = 0. Then aλ(I|J),γ = 0.

Proof:
Note we can assume neither γ nor λ have an arc with one endpoint in I and the other in
J since then the coefficient is automatically zero. Assume that i, j ∈ J , nst

λ|I
i_j = 0. The

argument for the other case is the same replacing I with J and J with I. Since the set of
arcs such that such that i, j ∈ J , nst

λ|I
i_j = 0 is nonempty we can choose a maximal such arc
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k_l ∈ γ−λ (i.e. it is not nested in any other arc in γ|J−λ|J). Then nstλk_l = nst
λ|J
k_l = nst

γ|J
k_l

and hence the term in the product in Corollary 4.2 corresponding to k_l,(
1

qnst
(φ,λ)
k_l

− 1

qnst
(φ|J ,λ|J )

k_l

)
= 0. �

It is worthwhile to note as well that there is no formula for the restriction that is similar to
the formula for the supercharacters wherein

∆IJ(χλ) = α(Res
UTn(q)
UTI(q)

(χλ)⊗ResUTn(q)UTJ (q)
(χλ))

for some α ∈ C (see [7]).

Take for example the restriction of ν = {1_2, 3_4} to I = {1, 2} and J = {3, 4}. We have

∆IJ(P q
(ε4,ν)

) = P q
(ε2,1_2) ⊗ P

q
(ε{3,4},3_4)

but note that Res
UT4(q)
UTI(q)

(P q
(ε4,ν)

) = 0 and Res
UT4(q)
UTJ (q)

(P q
(ε4,ν)

) = 0, so there can be no propor-
tionality constant.

4.3 Pointwise Product

A third operation on superclass functions is the pointwise product. Since it is simply the
pointwise product of functions it is clear that the pointwise product of two superclass func-
tions will be constant on superclasses and hence be another superclass function. For any
given Uφ,

� : scf(Uφ)⊗ scf(Uφ)→ scf(Uφ)

�(ψ ⊗ ϕ)(u) = ψ(u)ϕ(u)

and as such the operation is commutative.

Proposition 4.2. Let I be a finite set, φ ∈ L[I] and λ, µ ∈ Sφ(I). Then the pointwise
product of two superclass indicator functions is

κ(φ,λ) � κ(φ,µ) = δµ,λκ(φ,λ) (28)

where δµ,λ is the Kroenecker delta.

Proof:

For u ∈ Uφ,

(κ(φ,λ)�κ(φ,µ))(u) = κ(φ,λ)(u)κ(φ,µ)(u) =

{
1 if u in the superclass indexed by both µ and λ

0 otherwise.
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so that by the disjointness of superclasses

κ(φ,λ) � κ(φ,µ) =

{
κ(φ,λ) if λ = µ

0 otherwise

= δλ,µκ(φ,λ). �

Next we compute an explicit formula for the pointwise product on the P q basis. A useful
factorization which appears in the proof is given as the following lemma.

Lemma 4.3. Let I be a finite set, φ ∈ L[I] and µ, λ, ν ∈ Sφ(I) such that λ∪ µ ∈ Sφ(I) and
ν ⊇ λ ∪ µ. Then

∑
ν⊇β⊇λ∪µ

(−1)|ν−β|

qnst
λ
β−λ+nstµβ−µ+nstνν−β

=

(
1

qnst
λ
µ−λ+nstµλ−µ

) ∏
i_j∈ν−λ∪µ

(
1

qnst
λ
i_j +nstµi_j

− 1

qnst
ν
i_j

)
(29)

Proof:
Note first that

nstλβ−λ + nstµβ−µ = nstλλ∪µ−λ + nstµλ∪µ−µ + nstλβ−λ∪µ + nstµβ−λ∪µ

by the additive property of nestings in Equation (5) and the fact that β− λ = (β− λ∪ µ)∪
(λ ∪ µ− λ) (a similar reasoning hold for β − µ). Thus

∑
ν⊇β⊇λ∪µ

(−1)|ν−β|

qnst
λ
β−λ+nstµβ−µ+nstνν−β

=

(
1

qnst
λ
µ−λ+nstµλ−µ

) ∑
ν⊇β⊇λ∪µ

(−1)|ν−β|

qnst
λ
β−λ∪µ+nstµβ−λ∪µ+nstνν−β

Fix a β such that ν ⊇ β ⊇ λ ∪ µ, then observe that the the term in the above sum
corresponding to β can be factored as

(−1)|ν−β|

qnst
λ
β−λ∪µ+nstµβ−λ∪µ+nstνν−β

=
∏

i_j∈β−λ∪µ

1

qnst
λ
i_j +nstµi_j

∏
i_j∈ν−β

−1

qnst
ν
i_j

.

Therefore∑
ν⊇β⊇λ∪µ

(−1)|ν−β|

qnst
λ
β−λ∪µ+nstµβ−λ∪µ+nstνν−β

=
∑

ν⊇β⊇λ∪µ

∏
i_j∈β−λ∪µ

1

qnst
λ
i_j +nstµi_j

∏
i_j∈ν−β

−1

qnst
ν
i_j

=
∏

i_j∈ν−λ∪µ

(
1

qnst
λ
i_j +nstµi_j

− 1

qnst
ν
i_j

)

which gives the lemma. �
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Theorem 4.2. Let λ, µ ∈ Sφ(I) for some finite set I and total order φ ∈ L[I]. Then

P q
(φ,λ) � P

q
(φ,µ)

=


∑

ν⊇µ∪λ

[(
1

q
nstλ

µ−λ +nst
µ
λ−µ

) ∏
i_j∈ν−λ∪µ

(
1

q
nstλ

i_j
+nst

µ
i_j
− 1

q
nstν

i_j

)]
P q
(φ,ν) if λ ∪ µ ∈ Sφ(I)

0 otherwise

Proof:

P q
(φ,λ) � P

q
(φ,µ) =

(∑
α⊇µ

1

qnst
λ
α−λ

κ(φ,α)

)
�

(∑
β⊇µ

1

qnst
µ
β−µ

κ(φ,β)

)

=
∑
α⊇λ
β⊇µ

1

qnst
λ
α−λ+nstµβ−µ

κ(φ,α) � κ(φ,β).

Now, by Proposition 4.2, κα � κβ is the zero function unless α = β, in which case it is κα.
This means all terms in the sum are zero except when α = β ⊇ µ ∪ ν, which in particular
tells us that if λ∪µ 6∈ Sφ(I), the sum is zero. If we now assume that λ∪µ is a set partition,
that is λ ∪ µ ∈ Sφ(I), then

P q
(φ,λ) � P

q
(φ,µ) =

∑
α⊇λ
α⊇µ

1

qnst
λ
α−λ+nstµα−µ

κ(φ,α)

=
∑
α⊇λ∪µ

1

qnst
λ
α−λ+nstµα−µ

κ(φ,α).

By Lemma 4.1,

P q
(φ,λ) � P

q
(φ,µ) =

∑
α⊇λ∪µ

1

qnst
λ
α−λ+nstµα−µ

∑
ν⊇α

(−1)|ν−α|

qnst
ν
ν−α

P q
(φ,ν)

=
∑
ν⊇λ∪µ

( ∑
ν⊇α⊇λ∪µ

(−1)|ν−α|

qnst
λ
α−λ+nstµα−µ+nstαν−α

)
P q
(φ,ν).

Which, using Lemma 4.3 gives

P q
(φ,λ) � P

q
(φ,µ) =

∑
ν⊇λ∪µ

(
1

qnst
λ
µ−λ+nstµλ−µ

) ∏
i_j∈ν−λ∪µ

(
1

qnst
λ
i_j +nstµi_j

− 1

qnst
ν
i_j

)
P q
(φ,ν). �

We now give some simple corollaries of Theorem 4.5. Because the coefficients in the decom-
position of P q

(φ,λ) � P
q
(φ,µ) are so lengthy it is convenient to use the notation

P q
(φ,λ) � P

q
(φ,µ) =

∑
ν∈Sφ(I)

bνλµP
q
(φ,ν) (30)
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Corollary 4.5. An alternative expression for bνλµ is given by

bνλµ =


(

1

q
nstλ

µ−λ +nst
µ
λ−µ +nst

λ∪µ
ν−λ∪µ

) ∏
i_j∈ν−λ∪µ

(
1

q
nst

λ∩µ
i_j

− 1

q
nst

ν−λ∪µ
i_j

)
if λ ∪ µ ∈ Sφ(I), ν ⊇ λ ∪ µ

0 otherwise .

Proof:

∏
i_j∈ν−λ∪µ

(
1

qnst
λ
i_j +nstµi_j

− 1

qnst
ν
i_j

)

=
∏

i_j∈ν−λ∪µ

(
1

qnst
λ∪µ
i_j

)(
1

qnst
λ
i_j +nstµi_j − nstλ∪µi_j

− 1

qnst
ν
i_j −nstλ∪µi_j

)

=

(
1

qnst
λ∪µ
ν−λ∪µ

) ∏
i_j∈ν−λ∪µ

(
1

qnst
λ∩µ
i_j

− 1

qnst
ν−λ∪µ
i_j

)

since

nstλi_j + nstµi_j − nstλ∪µi_j = nstλi_j − nstλ−µi_j = nstλ∩µi_j . �

The advantage of this expression is that it allows one to more readily determine when a
coefficient bνλµ is zero.

Corollary 4.6. Let µ, ν, β ∈ Sφ(I) such that β 6= µ ∪ ν, and there exists an arc i _ j ∈
β − µ ∪ ν such that nstµ∩νi_j = 0. Then bβµν = 0.

Proof:
From Corollary 4.5 we need to show only that the existence of the arc i _ j implies that
there is a arc k_l (possibly the same as i_l) for which nstµ∩νi_j = nstβ−µ∪νk_l = 0. Choose an

arc k_l ∈ {r_s ∈ β−µ∪ν| nstr_s
i_j = 1}∪{i_j} that is maximal with respect to nestings.

Then nstµ∩νk_l = 0 since i_j is nested in k_l. Since k_l is maximal, nstβ−µ∪νk_l = 0. �

4.4 Antipode

A useful formula for computations of the antipode on a basis is Takeuchi’s formula for the
antipode on a connected Hopf monoid (see [1])

S(ψ) =
∑

(J1|J2|...|J`)

(−1)`m(∆J(ψ)) (31)
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where the sum is over all set partitions (J1|J2| . . . |J`) (` can vary) of a finite set K where
each Ji is nonempty. The map m is given by the `-fold composition of µI,J maps which
inflates ∆J(ψ) to an element of scf(U)[K].

The antipode on the P bases are related to a notion of atomic for set partitions. Essentially
an atomic set partition cannot be formed by concatenating set partitions.

Definition 4.3. A set partition λ ∈ Sφ(K) is atomic if there is no set composition AtB =
K such that

φ = φ|Aφ|B and λ = λA ∪ λB.

In addition there is a notion of how atomic a set partition in an order τ is with respect to
another order φ. If φ, τ ∈ L[K], then we can factor τ into subposets by considering maximal
rising subsequences of τ with respect to φ. This factorization is found by starting with the
minimal element of τ then proceeding up in the linear order of τ until one hits a descent
with respect to φ. A new sequence starts at this descent. For example if τ = 6 < 1 < 2 <
9 < 3 < 5 < 8 < 4 < 7 and φ = 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 then we get the
factorization

(6|129|358|47).

We will call a set partition (τ, λ) φ-atomic if after factoring τ with respect to φ, the restriction
to each subsequence is an atomic set partition and no arcs are lost during this restriction,
i.e. there are no arcs passing between different subsequences.

Definition 4.4. For φ, τ ∈ L[K], a set partition λ ∈ Sτ (K) is φ-atomic if the set composi-
tion (J1, J2, . . . , J`) of K coming from the factorization τ = τ |J1 · · · τ |J` into maximal rising
subsequences with respect to φ satisfies

(a) λ = λ|J1 ∪ λ|J2 ∪ · · · ∪ λ|J`,

(b) λ|Jk is atomic for all 1 ≤ k ≤ `.

Using Takeuchi’s formula, we now obtain a formula for the antipode. The proof given below
is also included in [3].

Theorem 4.3. For φ ∈ L[K], and λ ∈ Sφ(K),

S(P q
(φ,λ)) =

∑
τ∈L[K],µ∈Sτ (K)
µ⊇λ,µ φ-atomic

(−1)l
∏

i_j∈µ−λ

(
1

qnst
(φ,λ)
i_j

− 1

qnst
(φ,µ)
i_j

)
P q
(τ,µ),

where l is the number of subsequences in the factorization of τ into maximal rising subse-
quences with respect to φ.

Proof:
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By (31) and Theorem 4.1,

S(P q
(φ,λ)) =

∑
J=(J1,J2,...,J`)

(−1)`m

( ∑
µ⊇λ

µ=µ|J1∪µ|J2∪···∪µ|J`

aλJ,µP
q
(φ|J1 ,µJ1 )

⊗ · · · ⊗ P q
(φ|J` ,µJ` )

)

=
∑

J=(J1,J2,...,J`)

µ=µ|J1∪µ|J2∪···∪µ|J`
⊇λ

(−1)`aλJ,µP
q
(φ|J1φ|J2 ···φ|J` ,µ)

=
∑

τ∈L[K],λ∈Sτ (K)
µ∈Sτ (K),µ⊇λ

( ∑
J=(J1,J2,...,J`)

µ=µ|J1∪µ|J2∪···∪µ|J`
τ=φ|J1φ|J2 ···φ|J`

(−1)`aλJ,µ

)
P q
(τ,µ).

Note that aλJ,µ = aλJ ′,µ if µ = µ|J1∪µ|J2∪· · ·∪µ|J` = µ|J ′1∪µ|J ′2∪· · ·∪µ|J ′`′ and φ|J1φ|J2 · · ·φ|J` =

φ|J ′1φ|J ′2 · · ·φ|J ′`′ , so the coefficients aλJ,µ do not vary in the inner sum and

S(P q
(φ,λ)) =

∑
τ∈L[K],λ∈Sτ (K)
µ∈Sτ (K),µ⊇λ

( ∑
J=(J1,J2,...,J`)

µ=µ|J1∪µ|J2∪···∪µ|J`
τ=φ|J1φ|J2 ···φ|J`

(−1)`
)
aλJ,µP

q
(τ,µ).

The inner sum can be simplified by noting that it is summing over all factorizations of (µ, τ)
into φ-decomposable or φ-atomic parts. To see this, fix a φ-compatible µ ∈ Sτ (K). Note
that τ has at least the following two factorizations (which could coincide).

• τ = τ1τ2 . . . τl into maximal rising subsequences with respect to φ,

• τ = τ ′1τ
′
2 . . . τ

′
L where L is maximal such that each τ ′j is a rising subsequence with

respect to φ and µ = µ|τ ′1 ∪ · · · ∪ µ|τ ′L .

If C is the set of positions where new factors start in the first factorization and F is the
set of positions where the new factors start in the second, then every factorization of τ into
rising sequences that respect the arcs of µ have positions P with C ⊆ P ⊆ F . Thus,∑

J=(J1,J2,...,J`)
µ=µ|J1∪µ|J2∪···∪µ|J`
τ=φ|J1φ|J2 ···φ|J`

(−1)` =
∑

C⊆P⊆F

(−1)|P |

= (−1)|C|
∑

C⊆P⊆F

mb(P,C).

where mb(P,C) is the Möbius function of the subsets of F ordered by inclusion. Thus,∑
J=(J1,J2,...,J`)

µ=µ|J1∪µ|J2∪···∪µ|J`
τ=φ|J1φ|J2 ···φ|J`

(−1)` =

{
(−1)L if l = L,
0 otherwise.
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Therefore only terms where l = L survive. The condition that l = L says that (µ, τ) has
been factored as far as possible without breaking atomic parts, that is (τ, µ) is φ-atomic.
Thus,

S(P q
(φ,λ)) =

∑
τ∈L[K],λ∈Sτ (K)
µ∈Sτ (K),µ⊇λ
µ φ-atomic

(−1)laλJ,µP
q
(τ,µ),

as desired. �

Corollary 4.7. For φ ∈ L[K] for some finite set K and λ ∈ Sφ(K),

S(P(φ,λ) =
∑

τ∈L[K],λ∈Sτ (K)
(τ,λ) φ-atomic

(−1)lP(τ,λ).

where l is the number of subsequences in the factorization of τ into maximal rising subse-
quences with respect to φ.

Proof:
This corollary is immediate upon setting q = 1. �
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