
1

Flatter is better: Percentile Transformations for
Recommender Systems

MASOUD MANSOURY, DePaul University, USA
ROBIN BURKE, University of Colorado, Boulder, USA
BAMSHAD MOBASHER, DePaul University, USA

It is well known that explicit user ratings in recommender systems are biased towards high ratings, and that
users differ significantly in their usage of the rating scale. Implementers usually compensate for these issues
through rating normalization or the inclusion of a user bias term in factorization models. However, these
methods adjust only for the central tendency of users’ distributions. In this work, we demonstrate that a lack
of flatness in rating distributions is negatively correlated with recommendation performance. We propose a
rating transformation model that compensates for skew in the rating distribution as well as its central tendency
by converting ratings into percentile values as a pre-processing step before recommendation generation.
This transformation flattens the rating distribution, better compensates for differences in rating distributions,
and improves recommendation performance. We also show that a smoothed version of this transformation
can yield more intuitive results for users with very narrow rating distributions. A comprehensive set of
experiments, with state-of-the-art recommendation algorithms in four real-world data sets, show improved
ranking performance for these percentile transformations.

CCS Concepts: • Information Systems→ Recommender Systems; Retrieval effectiveness;

Additional Key Words and Phrases: recommender systems, rating distribution, percentile transformation,
flatness

ACM Reference Format:
Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2020. Flatter is better: Percentile Transformations
for Recommender Systems. ACM Trans. Intell. Syst. Technol. 1, 1, Article 1 (January 2020), 16 pages. https:
//doi.org/10.1145/3437910

1 INTRODUCTION
Recommender systems have become essential tools in e-commerce systems, helping users to find
desired items in many contexts. These systems use information from user profiles to generate
personalized recommendations. User profiles are either implicitly inferred by the system through
user interaction, or explicitly provided by users [Adomavicius et al. 2005; Adomavicius and Tuzhilin
2015]. In the latter case, users are asked to rate different items based on their preferences and may
have individual differences in how they use explicit rating scales: some users may tend to rate
higher, while some users may tend to rate lower; some users may use the full extent of the rating
scale, while others might use just a small subset. [Herlocker et al. 1999].

Authors’ addresses: Masoud Mansoury, DePaul University, School of Computing, Chicago, IL, USA, ; Robin Burke, University
of Colorado, Boulder, Department of Information Science, Boulder, CO, USA, robin.burke@colorado.edu; BamshadMobasher,
DePaul University, School of Computing, Chicago, IL, USA, mobasher@cs.depaul.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
2157-6904/2020/1-ART1 $15.00
https://doi.org/10.1145/3437910

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3437910
https://doi.org/10.1145/3437910
https://doi.org/10.1145/3437910

1:2 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Fig. 1. Rating distribution of CiaoDVD and MovieLens data sets.

Table 1. Rating profiles with percentile transformation

Alice rating ⟨1, 1, 2, 2, 3, 3, 3, 4, 5⟩
Bob rating ⟨3, 3, 4, 4, 4, 5, 5, 5, 5⟩
Alice percentile ⟨20, 20, 40, 40, 70, 70, 70, 80, 90⟩
Bob percentile ⟨20, 20, 50, 50, 50, 90, 90, 90, 90⟩

When a user concentrates his or her ratings in only a small subset of the rating scale, this often
results in ratings distributions that are skewed – most often towards the high end of the scale. This
is because items are not rated at random, but rather preferred items are more likely to be selected
and therefore rated due to selection bias [Marlin et al. 2007]. Figure 1 shows the overall rating
distribution of two data sets that exhibit typically right-skewed distributions. Users in the CiaoDVD
data set, for example, have assigned less than 10% of the ratings to ratings 1 and 2 and some 70% of
ratings are values 4 and 5. We can assume this is not because there are so many more good movies
than bad, but rather than users are selecting movies to view that they are likely to enjoy and the
ratings are concentrated among those selections. A drawback of this skew to the distribution is
that we have more information about preferred items and less information about items that are not
liked as well. It also means that a given rating value may be ambiguous in meaning.
As an example, assume that Alice and Bob both purchase an item X and rate it. Alice is a user

who tends to rate lower and tends to use the whole rating scale, while Bob is a user who tends
to rate higher and never uses ratings at the bottom of the scale. Their profiles, sorted by rating
value, are shown in Table 1. After using item X, Alice is fully satisfied with it, but Bob is only
partially satisfied. As a result, both rate the item X as 4 out of 5 although they have different levels
of satisfaction toward that item. These ratings, while identical, do not carry the same meaning. A
transformation based on percentiles, shown in the bottom rows of the table, captures this distinction
well: a rating of 4 for Alice is percentile 80; whereas for Bob, the same score has a score of 50. In
addition, unlike the original profiles, where the users’ ratings are distributed over different ranges,
these profiles span the same numerical range from 20 to 90.

Rating normalization in neighborhood models [Resnick et al. 1994] and inclusion of a bias term
in factorization models [Koren 2008; Koren et al. 2009] are two common techniques for managing
rating variances among users. However, these techniques adjust only for the central tendency of
users’ rating distributions and do not fully compensate for different patterns of rating behavior that

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:3

Table 2. An example of user-item matrix

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 Similarity to U1
rating z-score Gaussian Decoupling percentile

U1 1 1 1 - 1 1 - 2 2 3 3 - - - - -
U2 1 2 3 - - - 3 4 - 5 5 0.914 0.914 0.914 0.940 0.916
U3 - - - - 1 3 - 2 5 - 4 0.567 0.567 0.567 0.580 0.567
U4 1 4 4 - 4 4 - 5 5 5 5 0.606 0.612 0.606 0.909 0.966
U5 3 3 - 3 2 2 - 2 4 5 - 0.734 0.758 0.734 0.564 0.571
U6 5 5 5 - 5 5 - 2 2 4 4 -0.531 -0.549 -0.531 -0.426 -0.933

users exhibit. On the other hand, the percentile transformation proposed in this paper takes into
account the whole shape of the distribution, not only its central tendency, and therefore retains
more information from the original user profile.
Table 2 shows a hypothetical rating matrix. In this table, users with different rating patterns

are exhibited. Some users tend to rate lower (e.g., U1), some users tend to rate higher (e.g., U4 and
U6), some users show normal rating pattern (e.g., U2 and U5), and finally, some users do not show
any pattern (e.g., U3). For illustration purposes, we show how different normalization methods
affect the computation of user-user similarities (in this case similarities to user 𝑈 1). Note that for
calculating the similarity values based on z-score, Gaussian, Decoupling, and percentile, first we
created z-score, Gaussian, Decoupling, and percentile matrix from Table 2, and then we used the
corresponding matrix for calculating similarity values for each technique.
Based on users’ characteristics and rating patterns, certain similarity values between users are

expected. For example, U1 and U4 show different behavior when providing ratings to items. Based
on their rating patterns, a rating of 3 provided by U1 can be mapped to a rating of 5 provided by U4,
or rating 1 provided by U1 can be mapped to rating 3 provided by U4. Hence, a good transformation
technique should be able to capture these differences in these users’ behaviors. For this case, our
percentile1 technique assigns high similarity value to U1 and U4. The same result can be observed
between U1 and U6. However, the other transformation techniques are unable to capture these
differences when calculating similarity values. In other cases, where users have normal rating
patterns or do not show a specific rating pattern, our percentile technique behaves similarly to
other normalization techniques.
The above example also shows that in general, original ratings, z-score, and Gaussian normal-

ization techniques behave similarly even when comparing rating patterns that are very different.
Decoupling normalization technique also does not work consistently well in these cases. However,
our percentile technique yields more intuitive results for disparate profiles, while behaving similarly
to the other transformations in other cases.

One can imagine the most informative rating distribution would be a flat, uniform, distribution.
Users would provide ratings for items sampled uniformly across all of the items and the profiles
would then represent their preferences across the whole inventory, and across all possible rating
values. One way to think about the difference between the typical, skewed, distribution and a
uniform one is in terms of information entropy. The worst case, a profile where every item is rated
the same, carries no information that distinguishes the different items, and the assignment of a
rating to an item has low entropy. A profile where the rating values are distributed across the items
with equal frequency has maximum entropy.

In this paper, we formalize a rating transformation model as above that converts users’ ratings
into percentile values as a preprocessing step before recommendation generation. Each value

1Results are based on first index percentile transformation. The same results are observed for median and last index
percentile transformation.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

associated with an item therefore reflects its rank among all of the items that the user has rated.
Thus, the percentile captures an item’s position within a user’s profile better than the raw rating
value and compensates for differences in users’ overall rating behavior. Also, the percentile, by
definition, will span the whole range of rating values, and as we show, gives rise to a more uniform
rating distribution. To handle cases in which users use only a small part of the rating range, we also
introduce a smoothed variant of the percentile transformation that preserves distinctions among
users with different rating baselines.
We show that these two properties of the percentile transformation – its ability to compensate

for individual user biases and its ability to create a more uniform rating distribution – lead to
enhanced recommender system performance across different algorithms, different data sets, and
different performance measures. We also show that the percentile transformation creates flatter
rating distributions and that this is correlated with improved recommendation performance.

This paper makes the following contributions:

1. We propose a rating transformation model that converts users’ ratings into percentile values
to compensate for skew in rating distributions and variances in users’ rating behaviors.

2. We empirically evaluate the proposed percentile technique using state-of-the-art recom-
mendation algorithms on four real-world data sets. Our experiments include both overall
recommendation performance and recommendation performance on long-tail items.

3. We show the relationship between the uniformity of the rating distribution and the quality of
recommendation; with flatter distributions being correlated with better recommendations.

4. We show that the smoothed version of the transformation overcomes the issue of identical
ratings in rating transformations, and provides further improvement over the percentile alone.

2 BACKGROUND
It has long been noted that users differ in their application of explicit rating scales. Resnick’s
algorithm, perhaps the most well-known prediction method in recommendation, normalizes ratings
by user mean when computing its predictions [Resnick et al. 1994]. Herlocker, et al. [Herlocker et al.
1999] used z-scores instead of absolute rating values in recommender systems and investigated
its effectiveness on quality of recommendations. In this research, they compared the performance
of three rating normalization techniques and showed that bias-from-mean approach performs
significantly better than a non-normalized rating approach and slightly better than the z-score
approach in terms of mean absolute error. This result is consistent with our findings.
Kamishima in [Kamishima and Akaho 2010] proposed a ranking-based method that replaces

the existing rating scheme with a ranking scheme. In this method, instead of rating the items,
users order the items based on their preferences. Based on order statistics theory, preference orders
expressed by users are converted into scores and then recommendation algorithms are applied
on these scores to generate recommendations. This method proved effective, but it is not widely
applicable because order-based input is rare in recommender system interfaces, and requires more
effort from users than rating assignment.

Jin, et al. [Jin and Si 2004] compared the impact of two normalization techniques for user ratings,
namely Gaussian and Decoupling normalization techniques on the performance of recommender
systems. This research found that Decoupling normalization is more effective than Gaussian
normalization. A more recent study by [Kim et al. 2016] proposed a normalization model that learns
the differences in users’ rating dispositions using two phases of clustering and normalization. At the
clustering phase, users are clustered based on their rating disposition and then at the normalization
phase, users’ ratings are normalized through predicting their rating disposition and adjusting their
neighbors’ ratings based on that disposition.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:5

Adamopoulos and Tuzhilin [Adamopoulos and Tuzhilin 2013] incorporated weighted percentile
into the neighborhood model to assign weight to the ratings provided by neighbors of the target user
on the target item. In their approach, depending on the rank of the ratings provided by neighbors
on a target item, when calculating the predicted ratings in traditional neighborhood model, the
ratings will be weighted by a predefined percentile weight. Also, Dixit and Jain [Dixit and Jain 2019]
applied this weighted percentile technique on context-aware recommender systems to improve the
quality of recommendations. Neither of these techniques involve transformation of rating inputs.

In the domain of trust relations in social networks, it has been shown that percentile values are
more effective than absolute trust ratings. Hasan et al. in [Hasan et al. 2009] showed that using
percentile values instead of absolute trust ratings improves the accuracy of trust propagation model.
They applied a method introduced by NIST2 for converting predicted percentile values into trust
rating in social networks.

3 PERCENTILE TRANSFORMATION
In statistics, given a series of measurements, percentile (or quantile) methods are used to estimate
the value corresponding to a certain percentile. Given the P th percentile, these methods attempt to
put P% of the data set below and (100-P)% of the data set above. There are a number of different
definitions in the literature for computing percentiles [Hyndman and Fan 1996; Langford 2006].
Although they are apparently different, the answers produced by these methods are very similar
and the slight differences are negligible [Langford 2006]. In this paper, we use a definition from
[Hyndman and Fan 1996] .
The percentile value, 𝑝 , corresponding to a measurement, 𝑥 , in a series of measurements,𝑀 , is

computed with regard to the position of 𝑥 in the ordered list𝑀 , 𝑜 (𝑀), as follows:

𝑝𝑧 (𝑥,𝑀) = 100 × 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 (𝑥, 𝑜 (𝑀))
|𝑀 | + 1

(1)

where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑧 (𝑥, 𝑜 (𝑀)) returns the index of occurrence of 𝑥 in 𝑜 (𝑀), or the position in the order
where 𝑥 would appear if it is not present, and |𝑀 | is the number of measurements in𝑀 . For more
details see [Hyndman and Fan 1996].
This transformation assumes that values are distinct and there is no repetition in the series.

However, with rating data, we often have a different situation. User profiles usually contain many
repetitive ratings, and it is unclear how to specify the position of a rating. For example, in a series
of ratings 𝑣 = ⟨2, 3, 3, 3, 3, 3, 5, 5, 5⟩, it is not clear what the position of rating 3 should be. We could
take the first occurrence, position 2, or the last occurrence 6, or something in between.

We explore the performance of our percentile technique by taking the index of the first, median,
and last occurrence of repeated ratings in the ordered vector. Hence, the parameter 𝑧 determines
the index rule that we want to use for percentile transformation and can take values 𝑓 ,𝑚, and 𝑙 as
first, median, and last index assignments, respectively. Each of these index assignments signifies
a particular meaning when transforming rating profiles. The index of the last occurrence, for
example, is the highest rank (most preferred) position occupied by an item with the given rating.
We experiment with all index assignments and show that the rule that yields a more uniform
distribution will provide greater recommendation performance3.
Even in contexts where ratings are gathered implicitly, they are often converted into numeric

scores representing user preference or relevance. For example, time spent on a page is often
considered a measure of user interest [Yi et al. 2014] or number of seconds watched of a video

2National Institute of original and Technology, http://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm
3See https://github.com/masoudmansoury/percentile for the code for computing these and other transformations described
in this paper.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

[Zhao et al. 2019]. Profiles generated in these ways can also be normalized using the percentile
transform as well, although they are less likely to have repeated entries.

For our purposes, the entire set of ratings provided by a user 𝑢 is considered a rating vector for
𝑢, denoted by 𝑅𝑢 with an individual rating for an item 𝑖 , denoted as 𝑟𝑢𝑖 . Let 𝑝 (𝑣, ℓ) be the percentile
mapping in Equation 1 from a rating value 𝑣 in a list of values ℓ , using the first, median, and last
index method. Then, the percentile value of a rating 𝑟 provided by user 𝑢 on an item 𝑖 is computed
by taking the rating 𝑟𝑢𝑖 and calculating its percentile rank within the whole profile of the user. For
example, based on the last index rule, for the user Bob from Table 1, an item rated 3 would have
percentile rank 100 ∗ 2/(9 + 1) = 20. We define the user-percentile function, 𝑃𝑒𝑟𝑧𝑢 , as follows:

Per𝑧𝑢 (𝑢, 𝑖) = 𝑝𝑧 (𝑟𝑢𝑖 , 𝑅𝑢) (2)

Analogously, we can consider profiles for an item, denoted by 𝑅𝑖 , to be all of the ratings provided
for that item by users, and we can define a similar transformation for item profiles in which the
transformation takes into consideration the rank of the rating across all ratings for that item, an
item-percentile function.

Per𝑧𝑖 (𝑢, 𝑖) = 𝑝𝑧 (𝑟𝑢𝑖 , 𝑅𝑖) (3)
Note that 𝑃𝑒𝑟𝑧𝑢 and 𝑃𝑒𝑟𝑧

𝑖
might be quite different for the same user-item pair. For example,

user 𝑥 might be a strong outlier relative to the data set, liking an item 𝑦 that no one else does.
𝑃𝑒𝑟𝑧

𝑖
(𝑥,𝑦) would therefore be quite high. However, if user 𝑥 has a strong tendency to high ratings

in general, 𝑃𝑒𝑟𝑧𝑢 (𝑥,𝑦) might be significantly lower. This paper concentrates on the user-oriented
transformation: we plan to explore the properties of the 𝑃𝑒𝑟𝑧

𝑖
transformation in future work.

3.1 Measuring distribution uniformity
One of our claims in this paper is that the flatness of the rating distribution in a data set is an indicator
of how well collaborative recommendation will perform, and that the percentile transformation
achieves flatter distributions. In order to test this hypothesis, we need a measure of how close a
rating distribution is to uniformity.

One common technique for measuring the shape of a distribution is kurtosis. Kurtosis is regularly
used for determining the normality of a distribution. A normal distribution has a kurtosis value of
34, and a value below 3 indicates a distribution closer to uniform. Although kurtosis can be used
for measuring the uniformity of a distribution, it is not a robust measure and may be misleading.
Therefore, to overcome this issue, we introduce a new technique for measuring the flatness of a
distribution as an alternative along with kurtosis.

To determine the flatness of a ratings distribution we calculate Kullback-Leibler divergence (KLD)
between the observed rating distribution and a uniform distribution in which each rating value
occurs the same number of times. If there is a discrete set of rating values𝑉 (for example, 1,2,3,4,5),
then we define the flatness measure F as

F (𝐷 ∥ 𝑄) =
∑
𝑣∈𝑉

𝐷 (𝑣) log 𝐷 (𝑣)
𝑄 (𝑣) (4)

where 𝑉 is the set of discrete rating values in rating matrix 𝑅, and 𝐷 is the observed probability
distribution over those values. 𝑄 is a uniform distribution which associates a probability 1/|𝑉 | for
each possible value in 𝑉 (i.e., for each 𝑣 ∈ 𝑉 , 𝑄 (𝑣) = 1/|𝑉 |). Therefore,

F (𝐷) =
∑
𝑣∈𝑉

𝐷 (𝑣) log(|𝑉 |𝐷 (𝑣)) (5)

4In some references, kurtosis is defined such that 0 reflects a normal distribution

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:7

Table 3. Flatness calculation of BookCrossing data set.

rating frequency 𝐷 (𝑣) log(|𝑉 |𝐷 (𝑣))

1 349 0.0029 -3.5275
2 606 0.0051 -2.9757
3 1,300 0.0109 -2.2125
4 1,944 0.0164 -1.8101
5 11,322 0.0953 -0.0481
6 8,934 0.0752 -0.285
7 19,776 0.1665 0.5096
8 29,233 0.2461 0.9005
9 21,221 0.1786 0.5802
10 24,113 0.203 0.7079

F=0.448

The F function measures the distance between the two distributions and hence how close
the observed distribution is to the flat ideal, with a lower KLD value being indicative of a flatter
distribution.
Table 3 illustrates the flatness calculation of BookCrossing data set for original ratings. In this

data set, there are ten rating values, |𝑉 | = 10. 𝐷 (𝑣) is the probability distribution over each rating
values calculated as

𝐷 (𝑣) = 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑣)∑
𝑣∈𝑉 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑣) (6)

By using equation 5, the flatness of this data set will be F = 0.448. Comparison between this
flatness and the flatness of a uniform distribution (i.e., F = 0) shows that the distribution of original
ratings in BookCrossing data set is far from a flat ideal.
The percentile, z-score, Gaussian, and Decoupling transformations yield real valued ratings,

unlike the original discrete ratings chosen by users in these data sets. Evaluating our flatness
measure at every point in these distributions yields results that are not comparable to the original
discrete distribution.

In order to have comparable calculations of the F value across types of distributions, we created
binned versions of the percentile, z-score, Gaussian, and Decoupling distributions, using the same
number of bins as present in the original ratings. In a 10-star rating system, such as found in the
BookCrossing data, the rating distribution covers ten values, hence we created ten equal length
bins for percentile, z-score, Gaussian, and Decoupling values and aggregated each bin by its mean5.
Figure 2 shows the percentile distribution (last index illustrated here) and its aggregated distri-

bution for the BookCrossing data set. The black curve is the percentile distribution and red line is
its aggregated distribution with ten bins. It shows that aggregating by mean retains the shape of
the percentile distribution, while being comparable to the original ratings for computing flatness.

4 EXPERIMENTS
We evaluated the performance of percentile transformation on four publicly available data sets:
BookCrossing, CiaoDVD, FilmTrust, and MovieLens. The characteristics of the data sets are sum-
marized in Table 4. These data sets are from various domains and have different degrees of sparsity.

5As an example, we know that percentile values are between 0-100. Thus, we create ten bins each of which with the length
of 10 and aggregate each bin by mean of its distribution.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Fig. 2. Raw and binned percentile distributions for BookCrossing data set.

Table 4. Statistical properties of data sets

Dataset #users #items #ratings density ratings

BX 7,033 9,441 118,798 0.179% 1-10
CiaoDVD 17,595 16,113 72,042 0.025% 1-5
FilmTrust 1,508 2,071 35,497 1.137% 0.5-4.0
ML1M 6,040 3,706 1,000,209 4.468% 1-5

The ML1M is movie ratings data and was collected by the MovieLens6 research group. The
CiaoDVD7 includes ratings of users for movies available on DVD. The FilmTrust is a small data set
collected from the FilmTrust website [Guo et al. 2013]. It contains both movie ratings and explicit
trust ratings. Finally, the BX data set is a subset extracted from the BookCrossing data set8 such
that each user has rated at least 5 books and each book is rated by at least 5 users. The ML1M has
the highest density and CiaoDVD has the lowest density.

4.1 Flatness
To evaluate the percentile transformation for its distributional properties, we evaluated its flatness
and kurtosis compared to the original ratings distribution and a distribution based on the z-score,
Gaussian, and Decoupling transformations over four data sets: BX, CiaoDVD, FilmTrust, ML1M.

First, we converted the original ratings into percentile, z-score, Gaussian, and Decoupling values.
Then, we applied the binned flatness and kurtosis measures described above to these data sets
to evaluate the transformations for their distributional properties. Table 5 shows the flatness
(F) and kurtosis (K) values for each type of transformation on the four data sets (user profile
transformation). As shown, the values for both measures are consistent across all three percentile
transformations and data sets. As anticipated, the proposed percentile model makes the rating
values flatter than rating transformations.

Thus, the proposed percentile transformation approach reduces skew in the rating distribution
over the original ratings, z-score, Gaussian, and Decoupling values. Given these results, we expect to
see better recommendation performance when we use percentile values as input for recommender
systems since they have lower F and K values.

6https://grouplens.org/datasets/movielens/
7https://www.cse.msu.edu/ tangjili/trust.html
8http://www.informatik.uni-freiburg.de/~cziegler/BX/

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:9

Table 5. Flatness (F) and kurtosis (K) of rating distribution

Dataset method rating z-score Gaussian Decoupling Per𝑓𝑢 Per𝑚𝑢 Per𝑙𝑢

BX F 0.449 0.661 0.144 0.173 0.110 0.120 0.101
K 3.371 3.679 4.354 2.660 2.099 1.907 1.909

CiaoDVD F 0.317 0.468 0.339 0.267 0.208 0.218 0.153
K 3.619 3.781 4.919 2.470 2.384 2.343 2.044

FilmTrust F 0.355 0.248 0.2 0.122 0.053 0.034 0.086
K 3.206 3.317 4.839 2.611 1.938 1.831 1.850

ML1M F 0.153 0.562 0.881 0.213 0.057 0.055 0.130
K 2.648 2.920 7.380 2.687 2.078 1.829 1.961

Flatness of a uniform distribution is F = 0.
Kurtosis of a uniform distribution is K < 3.

4.2 Methodology
We performed a comprehensive evaluation of the effect of the percentile transformation on the
ranking performance of a number of recommendation algorithms. Due to the nature of our percentile
technique, we experimented only with algorithms that make use of rating magnitude. The percentile
transformation rescales rating values without changing their relative ordering, so it will have no
effect when applied to ranking-based algorithms (for example, ListRank [Shi et al. 2010]). Implicit
feedback algorithms that use unary data, such as Bayesian Personalized Ranking [Rendle et al. 2009],
would also be inappropriate to use with percentile transform because they use binary interaction
information and ignore rating values.
Our experiments included user-based collaborative filtering [Resnick et al. 1994], item-based

collaborative filtering [Sarwar et al. 2001], biased matrix factorization (BiasedMF) [Koren et al.
2009], singular value decomposition (SVD++) [Koren 2008], and non-negative matrix factorization
[Lee and Seung 2001] However, in this paper, for the purpose of presentation, we only report
results on BiasedMF and SVD++9. None of the other conditions showed the percentile transform
performing worse than the others. In some cases, it was not significantly different and in these
cases, all transformation methods yielded the same results.

We performed 5-fold cross validation, and in the test condition, generated recommendation lists
of size 10 for each user. Then, we evaluated nDCG and precision10 at list size 10. Results were
averaged over all users and then over all folds. A paired t-test was used to evaluate the significance
of results and based on paired t-test, the results shown in bold are statistically significant with a
p-value of less than 0.05.

Before reporting on the results here, we performed extensive experiments with different param-
eter configurations for each algorithm and data set combinations. To determine sensible values
for parameters, we followed the settings reported in the literature. In factorization models, for
instance, we approximately set the number of factors and iterations based on the density of the
data set and convergence of the loss function, and we tested these parameters for sensitivity. We
performed a grid search over bias11 ∈ {0.0001, 0.001, 0.005, 0.01}, factor ∈ {50, 100, 150}, iteration
∈ {30, 50, 100}, and learning rate ∈ {0.0001, 0.001, 0.005, 0.01}. Results of extensive experiments
show that, in general, across on all settings, our percentile technique works significantly better
than the original ratings, z-score, Gaussian, and Decoupling values in terms of ranking quality.

9Results on all algorithms and datasets are available at https://github.com/masoudmansoury/percentile.
10In addition, we evaluated recall and F-measure, also finding significant improvement in these metrics.
11User, item, implicit feedback, and overall bias terms.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Table 6. Performance of recommendation algorithms at nDCG@10 and precision@10

algorithm input BX CiaoDVD FilmTrust ML1M
precision nDCG precision nDCG precision nDCG precision nDCG

BiasedMF

rate 0.005 0.009 0.005 0.019 0.039 0.078 0.107 0.116
z–score 0.004 0.008 0.002 0.005 0.047 0.092 0.106 0.116
Gaussian 0.001 0.002 0.001 0.001 0.014 0.031 0.007 0.007
Decoupling 0.005 0.009 0.006 0.019 0.092 0.138 0.068 0.076
Per𝑓𝑢 0.007 0.014 0.007 0.027 0.158 0.317 0.132 0.151
Per𝑚𝑢 0.007 0.014 0.006 0.024 0.160 0.314 0.137 0.156
Per𝑙𝑢 0.006 0.012 0.005 0.016 0.165 0.302 0.136 0.156

SVD++

rate 0.005 0.009 0.003 0.009 0.024 0.049 0.125 0.145
z–score 0.003 0.006 0.003 0.011 0.035 0.072 0.125 0.145
Gaussian 0.001 0.002 0.001 0.004 0.016 0.036 0.003 0.003
Decoupling 0.005 0.009 0.006 0.013 0.048 0.085 0.012 0.011
Per𝑓𝑢 0.006 0.012 0.006 0.022 0.044 0.079 0.129 0.153
Per𝑚𝑢 0.006 0.012 0.006 0.019 0.049 0.087 0.133 0.157
Per𝑙𝑢 0.005 0.010 0.004 0.017 0.070 0.124 0.131 0.153

4.3 Results
We include results for fourteen experimental conditions: two recommendation algorithms evaluated
over seven different inputs: the original ratings, the results of the three percentile transformations,
the results of the z-score transformation, and the results of the transformations based on the
Gaussian and Decoupling normalization introduced in [Jin and Si 2004]. Table 6 shows the results
for all the data sets and both algorithms, reporting the best-performing configuration for each
dataset, algorithm, and input value12.
Results in Table 6 show that in terms of ranking quality (i.e., nDCG), the percentile technique

produces recommendations that are consistently better than the other transformation techniques13
over all the recommendation algorithms and data sets except for Per𝑙𝑢 as input for BiasedMF on
CiaoDVD data set. On the densest data set (ML1M), the average improvement by our percentile
technique on BiasedMF is 33% and on SVD++ is 7%. The improvement on the FilmTrust dataset
is 268% and 66%, on the CiaoDVD dataset is 182% and 95%, and on BX dataset is 58% and 48%,
respectively.

In addition to nDCG, Table 6 shows the performance of the transformation techniques in terms
of precision, another measure of recommendation accuracy (without considering the ranking of
recommendations). Again, our percentile technique outperforms other transformation techniques
in most cases with significant results on denser datasets, FilmTrust and ML1M.

4.4 Flatness analysis
Note that, in most cases, the results in Table 6 are consistent with our flatness hypothesis: flatter
profiles yield better recommendation quality. We hypothesize that a transformation that produces
a flatter distribution will compensate for skew in the rating distribution and generate improved
recommendation performance. As we have seen, the percentile transformation generally leads
to better performance and to flatter distributions, and the less-flat transformations have lower
performance.

12We used LibRec 2.0 and librec-auto for all experiments [Guo et al. 2015; Mansoury and Burke 2019; Mansoury et al. 2018]
13We can think of the original ratings as a null transformation.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:11

Table 7. Correlation between F / K and nDCG@10 for each algorithm

dataset F K
BiasedMF SVD++ BiasedMF SVD++

BX -0.28 -0.29 -0.94 -0.93
CiaoDVD -0.70 -0.69 -0.81 -0.89
FilmTrust -0.81 -0.89 -0.81 -0.89
ML1M -0.82 -0.59 -0.92 -0.73

Besides the percentile values (the flattest distribution) which provide the best recommendation
performance, our flatness hypothesis is also true about other transformations. For instance, based
on the flatness values reported in Table 5, the Decoupling values provide flatter distribution than
the original ratings, z-score, and Gaussian values on FilmTrust. Thus, we would expect better
recommendation performance when Decoupling values are used as input for recommender systems
compared to the original ratings, z-score, and Gaussian values. According to the results in Table 6,
the performance of recommendation algorithms when the Decoupling transformation is applied to
the input is significantly better than the original ratings, z-score, and Gaussian transformations
across all metrics. The same results can also be observed for the original ratings on ML1M with
slight improvement.
We examined this phenomena more closely using seven types of inputs for rating transforma-

tion: original ratings, first, median, and last percentile values, z-score, Gaussian, and Decoupling
transformations14. We examined the F andK values for the training data under the different trans-
formations and computed correlation against the recommendation performance using nDCG@10.
Table 7 shows the correlation between F and K values of each transformation (i.e., original

rating, first index percentile, median index percentile, last index percentile, z-score, Gaussian, and
Decoupling) and nDCG@10 of recommendation algorithms with those input values. It clearly
shows significant negative correlation between performance and divergence from uniformity. (Note
that a low F and K values correspond to a flatter distribution.) The flatter distributions (closer
to zero for F and below 3 for K) yield better performance for all three algorithms across all data
sets. Except for the F value of BX, the F value of CiaoDVD on SVD++, and the F value of ML1M
on SVD++, all of the observed correlations between F / K and nDCG are between -0.99 and -0.70,
indicative of a strong inverse relationship: in general, flatter distributions give better algorithmic
performance.

Further investigation showed that the low correlation of F on BX is due to the inaccurate flatness
calculation on Gaussian values. Looking at the flatness values in Table 5 for Gaussian values show
that the calculation based on F and K are inconsistent (high flatness for one measure and low
flatness for another measure on the same dataset). This can be due to the fact that the distribution of
Gaussian values is more complex and our flatness measurement techniques are unable to correctly
calculate it. Also, we observed that omitting Gaussian values in correlation calculation in Table 7
yields much higher correlation values.

4.5 Long-tail performance
One enduring challenge in collaborative recommendation is the ability to provide accurate recom-
mendation about items in the “long tail” of popularity. These items are often of great interest to
users [Brynjolfsson et al. 2006; Park and Tuzhilin 2001], but many algorithms do not recommend
them with sufficient frequency [Jannach et al. 2015]. In this section, we examine the performance

14Because a limitation in LibRec 2.0, z-score, Gaussian, and Decoupling values are shifted to positive values by the addition
of an offset.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Table 8. Performance of recommendation algorithms on long-tail items at nDCG@10

dataset algorithm rate z-score Gaussian Decoupling Per𝑓𝑢 Per𝑚𝑢 Per𝑙𝑢

BX BiasedMF 0.0008 0.0009 0.0007 0.0009 0.0018 0019 0.0034
SVD++ 0.0011 0.0009 0.0009 0.0009 0.0024 0.0024 0.0043

CiaoDVD BiasedMF 0.019 0.005 0.002 0.005 0.027 0.024 0.016
SVD++ 0.009 0.011 0.004 0.012 0.022 0.019 0.017

FilmTrust BiasedMF 0.058 0.067 0.015 0.013 0.199 0.211 0.227
SVD++ 0.0279 0.072 0.018 0.022 0.060 0.070 0.101

ML1M BiasedMF 0.036 0.036 0.003 0.034 0.036 0.038 0.039
SVD++ 0.046 0.046 0.004 0.039 0.043 0.047 0.050

of recommendation algorithms on recommending long-tail items when using different input trans-
formations. To do this, we follow the methodology in [Cremonesi et al. 2010] for analyzing item
popularity. In this methodology, for each user in test set, a list of items will be recommended,
and then ranking quality will be measured only on long-tail items in the recommended list. The
main goal of this methodology is to measure the effectiveness of a recommendation algorithm in
recommending long-tail items.

For this evaluation, we need to determine the long-tail items from training data. To do this, we
create cumulative popularity list of items sorted from most popular to less-popular items, then
we define a cutting point such that it divides the items into short-head and long-tail items. For
experiments in this paper, we used cutting point of 20%, meaning that cumulatively 20% of most
popular items are considered as short-head items and the rest of less popular items are considered
as long-tail items.
Table 8 shows the performance of recommendation algorithms on long-tail items for different

transformations. As shown in this table, some version of the percentile transform significantly
outperforms all others for each data set / algorithm combination in terms of nDCG@10. Only in
four of the 24 conditions are the improvements not significant: on CiaoDVD when Per𝑙𝑢 is used as
input for BiasedMF, on FilmTrust when Per𝑚𝑢 is used as input for SVD++, and ML1M when Per𝑓𝑢
is used as input. We can therefore conclude that the improvements in recommendation accuracy
shown on the data sets overall are not accruing only to the popular items in the distribution, but
are shared among the difficult to recommend long-tail items as well.

5 SMOOTHED TRANSFORMATION
A drawback of the percentile transform is the handling of a uniform user profile that consists
entirely of identical ratings, for example, ⟨3, 3, 3, 3, 3, 3⟩. When a user rates every item with the
same rating values, it is hard to determine user’s preferences and attitudes: if the user is generous
(tends to rate highly), a rating value of 3 can be interpreted as dislike, while if user is stingy (tends
to rate low), the same value can be interpreted as like. But in the absence of a rating distribution
for a given user, it is impossible to tell which assumption is correct15.
Figure 3 shows the percentage of users with uniform profiles at different rating values in three

data sets16: BX, CiaoDVD, and FilmTrust. In CiaoDVD as the sparsest data set, more than half of
the users have uniform profiles, with almost 40% rating all items at 5. These profiles provide little
information for a recommendation algorithm beyond the implicit association of user and item.

15Note that this issue can be even more problematic for some other transformation techniques: z-score, for example, is
undefined for uniform profiles.
16There are no uniform user profiles in ML1M.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:13

(a) BX (b) CiaoDVD (c) FilmTrust

Fig. 3. Percentage of users who provided identical ratings.

To overcome the problem of uniform profiles, we introduce the notion of a smoothed percentile
transformation. Our inspiration for this method is additive (Laplace) smoothing as commonly found
in naive Bayes classification. The effect of additive smoothing is to shrink probability estimates
based on counts towards a uniform probability; here our goal is to shrink the percentile estimate
towards a uniform (flat) distribution across the rating values. To create a smoothed version of the
percentile, we add a small number of artificial ratings, 𝑘 , at each rating level. In 5-star rating system,
for example, possible rating values are 1, 2, 3, 4, 5, so a 𝑘 = 2 smoothed transform of the profile
⟨3, 3, 3⟩ yields the smoothed profile ⟨1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5⟩.
After the smoothed profile is created, the percentile transformation is computed and then the

artificial rating values are removed, leaving behind the altered percentiles for the original rating
values. Thus, the profile consisting only of 3s, as in our example above, would have middling
percentile scores, being transformed to ⟨64, 64, 64⟩, using the last index method. If the profile had
been ⟨5, 5, 5⟩ instead, the transformed version would be ⟨93, 93, 93⟩. The effect of the smoothed
transform is therefore to place the user profile in the context of the full rating scale.

We formalize our smoothed version of the percentile transformation for each index assignment
as follows:

𝑝 𝑓 (𝑥,𝑀) = 100 × (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑓 (𝑥, 𝑜 (𝑀)) + (𝑘 × (𝑖𝑛𝑑𝑒𝑥 (𝑥) − 1)))
|𝑀 | + (|𝑅 | ∗ 𝑘) + 1

(7)

𝑝𝑚 (𝑥,𝑀) = 100 × (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚 (𝑥, 𝑜 (𝑀)) + (𝑘 × (𝑖𝑛𝑑𝑒𝑥 (𝑥) − 1)) + 𝑘/2)
|𝑀 | + (|𝑅 | ∗ 𝑘) + 1

(8)

𝑝𝑙 (𝑥,𝑀) = 100 × (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 (𝑥, 𝑜 (𝑀)) + (𝑘 × 𝑖𝑛𝑑𝑒𝑥 (𝑥)))
|𝑀 | + (|𝑅 | ∗ 𝑘) + 1

(9)

where 𝑖𝑛𝑑𝑒𝑥 (𝑥) returns the index of rating 𝑥 in the full list of rating values available in the
application. In rating system such as {0.5,1,1.5,2,2.5,3}, for example, 𝑖𝑛𝑑𝑒𝑥 (1) = 2 or 𝑖𝑛𝑑𝑒𝑥 (2.5) = 5.
|𝑅 | is the number of rating values available to users (i.e., in 5-star rating system, |𝑅 | = 5).
We repeated our prior experiments using these smoothed transforms, achieving the results shown

in Table 9. On the FilmTrust data set, the smoothed percentile showed significantly improvement
over the percentile technique particularly on BiasedMF algorithm. On BX data set, results are only
slightly better than percentile values. One might attribute this result to the fact that there are few
uniform profiles ratings in BX data set. However, although ML1M does not have any users with
uniform profiles, the smoothed percentile showed significant improvement over the percentile
technique, indicative of effectiveness of smoothing even on non-uniform profiles.

On the CiaoDVD data set, we expected significantly better results due to high number of users
who provided identical ratings. However, the improvement by smoothed percentile is only slightly

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Table 9. Performance of recommendation algorithms with smoothed percentile as input at nDCG@10

dataset algorithms SPer𝑓𝑢 SPer𝑚𝑢 SPer𝑙𝑢

BX BiasedMF 0.014 0.014 0.013
SVD++ 0.014 0.013 0.012

CiaoDVD BiasedMF 0.027 0.027 0.026
SVD++ 0.019 0.018 0.016

FilmTrust BiasedMF 0.352 0.345 0.335
SVD++ 0.081 0.092 0.102

ML1M BiasedMF 0.157 0.158 0.156
SVD++ 0.162 0.166 0.157

better than percentile transform. One possible reason for this result is because most of the users
who provided identical ratings are cold-start users with few items rated.

6 CONCLUSIONS
In this paper, we presented a rating transformation model that converts rating values to percentile
values as a pre-processing step before model generation. This technique addresses two well-known
problems in ratings distributions in recommender systems: the problem of user rating bias, due
to variation in rating behavior, and the problem of right-skew, due to the selection bias towards
preferred items. This simple pre-processing step produces improved recommendation ranking
performance across multiple data sets, multiple algorithms, and multiple evaluation metrics. In
addition, we introduced the smoothed percentile transformation to overcome the problem of identical
ratings in users profiles. Experimental results showed that the smoothed percentile technique can
improve recommendation performance beyond the percentile technique alone, even in cases where
uniform profiles are not present.

In introducing these transformations and demonstrating their benefits for recommender system
performance, we also introduced the concept of distribution flatness and produced suggestive
evidence that distributional flatness may be a good indicator of the benefits of such rating trans-
formations: flatter, indeed, seems to be better when it comes to rating value distributions for
recommendation.

In future work, we plan to conduct additional experiments with the percentile transform, partic-
ularly the item-based version of the transform, which was introduced here but for which no result
were presented. Early experiments indicate that on algorithms that are item-oriented (for example,
the Sparse Linear Method [Ning and Karypis 2011]), the item-oriented version of the transform is
more appropriate.

We also plan to explore alternative approaches to enhancing the flatness of user profiles including
negative sampling. Negative sampling has been shown to improve classification accuracy when
the evidence is biased [Goldberg and Levy 2014]. For example, rather than adding artificial ratings
just for the percentile computation and removing them afterwards, it may be useful to sample
items with different average rating values and use them to augment uniformity of user profiles.
This would have the effect of smoothing such low-information profiles both towards flatness and
towards the population average for item preferences.
Finally, we plan to investigate the effectiveness of the proposed percentile transformation on

generating fair recommendations to different groups of users with respect to sensitive attributes
[Ekstrand et al. 2018; Mansoury et al. 2019]. Recently, for example, it has been shown that entropy
of users profile can be one factor that leads to group unfairness in recommender systems [Mansoury
et al. 2020]. Although percentile transformation does not change the entropy of an individual user’s
profile, our initial studies indicate that it will significantly increase the entropy of the aggregate

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Flatter is better: Percentile Transformations for Recommender Systems 1:15

profiles of user groups (e.g., male or female users). Therefore, we will study the effectiveness of
percentile transformation as a pre-processing technique on improving the consumer-side group
fairness.

REFERENCES
Panagiotis Adamopoulos and Alexander Tuzhilin. 2013. Recommendation opportunities: improving item prediction using

weighted percentile methods in collaborative filtering systems. In Proceedings of the 7th ACM conference on Recommender
systems. 351–354.

Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexander Tuzhilin. 2005. Incorporating contextual
information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems
(TOIS) 23, 1 (2005), 103–145.

Gediminas Adomavicius and Alexander Tuzhilin. 2015. Context-aware recommender systems. In Recommender systems
handbook. Springer US, 191–226.

Brynjolfsson, Erik, Hu, Yu Jeffrey, Smith, and Michael D. 2006. From niches to riches: Anatomy of the long tail. Sloan
Management Review 47, 4 (2006), 67–71.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n recommen-
dation tasks. In Proceedings of the fourth ACM conference on Recommender systems. ACM, 39–46.

Veer Sain Dixit and Parul Jain. 2019. Weighted Percentile-Based Context-Aware Recommender System. Applications of
Artificial Intelligence Techniques in Engineering (2019), 377–388.

Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ekstrand, Oghenemaro Anuyah, David McNeill, and
Maria Soledad Pera. 2018. All the cool kids, how do they fit in?: Popularity and demographic biases in recommender
evaluation and effectiveness. In Conference on Fairness, Accountability and Transparency. 172–186.

Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding
method. arXiv preprint arXiv:1402.3722 (2014).

Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java Library for Recommender Systems. In UMAP
Workshops.

Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2013. A novel bayesian similarity measure for recommender systems. In
Twenty-Third International Joint Conference on Artificial Intelligence.

Omar Hasan, Lionel Brunie, Jean-Marc Pierson, and Elisa Bertino. 2009. Elimination of subjectivity from trust recommenda-
tion. In IFIP International Conference on Trust Management. Springer Berlin Heidelberg, 65–80.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. 1999. An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 230–237.

Rob J. Hyndman and Yanan Fan. 1996. Sample quantiles in statistical packages. The American Statistician 50, 4 (November
1996), 361–365.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. 2015. What recommenders recommend: an
analysis of recommendation biases and possible countermeasures. User Modeling and User-Adapted Interaction 25, 5
(2015), 427–491.

Rong Jin and Luo Si. 2004. A study of methods for normalizing user ratings in collaborative filtering. In Proceedings of the
27th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 568–569.

Toshihiro Kamishima and Shotaro Akaho. 2010. Nantonac collaborative filtering: A model-based approach. In Proceedings of
the fourth ACM conference on Recommender systems. ACM, 273–276.

Soo-Cheol Kim, Kyoung-Jun Sung, Chan-Soo Park, and Sung Kwon Kim. 2016. Improvement of collaborative filtering using
rating normalization. Multimedia Tools and Applications 75, 9 (May 2016), 4957–4968.

Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 426–434.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer
42, 8 (2009).

Eric Langford. 2006. Quartiles in elementary statistics. Journal of Statistics Education 14, 3 (November 2006), 1–27.
Daniel D. Lee and H Sebastian Seung. 2001. Algorithms for non-negative matrix factorization. Advances in neural information

processing systems (2001), 556–562.
Masoud Mansoury, Himan Abdollahpouri, Jessie Smith, Arman Dehpanah, Mykola Pechenizkiy, and Bamshad Mobasher.

2020. Investigating Potential Factors Associated with Gender Discrimination in Collaborative Recommender Systems. In
The Thirty-Third International Flairs Conference.

Masoud Mansoury and Robin Burke. 2019. Algorithm Selection with Librec-auto. In ECIR Interdisciplinary Workshop on
Algorithm Selection and Meta-Learning in Information Retrieval (AMIR). 11–17.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Masoud Mansoury, Robin Burke, and Bamshad Mobasher

Masoud Mansoury, Robin Burke, Aldo Ordonez-Gauger, and Xavier Sepulveda. 2018. Automating recommender systems
experimentation with librec-auto. In Proceedings of the 12th ACM Conference on Recommender Systems. 500–501.

Masoud Mansoury, Bamshad Mobasher, Robin Burke, and Mykola Pechenizkiy. 2019. Bias disparity in collaborative
recommendation: Algorithmic evaluation and comparison. In RecSys Workshop on Recommendation in Multistakeholder
Environments (RMSE).

Benjamin M Marlin, Richard S Zemel, Sam Roweis, and Malcolm Slaney. 2007. Collaborative filtering and the missing at
random assumption. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence. AUAI Press,
267–275.

Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In Data Mining (ICDM),
2011 IEEE 11th International Conference on. IEEE, 497–506.

Yoon-Joo Park and Alexander Tuzhilin. 2001. The Long Tail of Recommender Systems and How to Leverage It. In RecSys ’08
Proceedings of the 2008 ACM Conference on Recommender Systems. 11–18.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking
from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. GroupLens: an open architecture
for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work.
ACM, 175–186.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation
algorithms. In WWW’01 Proceedings of the 10th international conference on World Wide Web. 285–295.

Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-wise learning to rank with matrix factorization for collaborative
filtering. In Proceedings of the fourth ACM conference on Recommender systems. ACM, 269–272.

Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. 2014. Beyond clicks: dwell time for personalization.
In Proceedings of the 8th ACM Conference on Recommender systems. 113–120.

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy,
Xinyang Yi, and Ed Chi. 2019. Recommending what video to watch next: a multitask ranking system. In Proceedings of
the 13th ACM Conference on Recommender Systems. 43–51.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Background
	3 Percentile transformation
	3.1 Measuring distribution uniformity

	4 Experiments
	4.1 Flatness
	4.2 Methodology
	4.3 Results
	4.4 Flatness analysis
	4.5 Long-tail performance

	5 Smoothed transformation
	6 Conclusions
	References

