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Abstract:
Clustering is an unsupervised learning technique that is useful when working with a large volume
of unlabeled data. Complex dynamical systems in real life often entail data streaming from a
large number of sources. Although it is desirable to use all source variables to form accurate state
estimates, it is often impractical due to large computational power requirements, and sufficiently
robust algorithms to handle these cases are not common. We propose a hierarchical time series
clustering technique based on symbolic dynamic filtering and Granger causality, which serves as
a dimensionality reduction and noise-rejection tool. Our process forms a hierarchy of variables in
the multivariate time series with clustering of relevant variables at each level, thus separating out
noise and less relevant variables. A new distance metric based on Granger causality is proposed
and used for the time series clustering, as well as validated on empirical data sets. Experimental
results from occupancy detection and building temperature estimation tasks shows fidelity to
the empirical data sets while maintaining state-prediction accuracy with substantially reduced
data dimensionality.

Keywords: Time series clustering, time series state estimation, occupancy detection,
dimensionality reduction

1. INTRODUCTION

Complex cyber-physical systems (CPS) are abundant in
engineering applications. Examples include modern build-
ings (Liu et al. (2018); Tan et al. (2019)), transportation
networks (Liu et al. (2016)), robotics (Dunbabin and Mar-
ques (2012)), smart home Internet-of-Things (IoT) (Dar-
ianian and Michael (2008)), and wind farms (Jiang et al.
(2017)). Such systems feature a large number of sensors
collecting data, which form vast multivariate time series,
while containing different types of interactions among
variables. Interactions can be both spatial and temporal,
and for the purposes of control and decision making it is
crucial to understand such interactions. It is possible to use
physics-based models for understanding these multivariate
time series, but it becomes infeasible with an increasing
number of subsystems. When considering the total number
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of states that may be used for estimation, the problem can
become intractably large without dimensionality reduc-
tion or model simplification. Data-driven techniques (Qin
(2012); Yin et al. (2012)) have started receiving attention
from industry and academia alike because they tend to be
scalable and accurate. These techniques rely on vast quan-
tities of data to learn efficient representations. Forming
efficient representations of the system for state estimation
can benefit from understanding spatiotemporal (causal)
interactions across the system. Information theoretic tech-
niques can help in this regard; e.g., Granger causality can
provide relevant insights when considering the effective-
ness of control mechanisms (Granger (1988)) or for identi-
fying key features in large-scale CPSs for anomaly detec-
tion (Saha et al. (2018)). Comparable research exists in
finance (Dimpfl and Peter (2013)), neuroscience (Vicente
et al. (2011)), and social sciences (Ver Steeg and Galstyan
(2012)); however, with focus on identifying causal inter-
actions among large-scale CPSs, many time series aspects
have not been explored sufficiently.

Time series clustering techniques can be extremely useful
in managing “state explosions” by reducing the number
of variables in multivariate observations. Current research
can be divided into three thrusts:

(1) Representation methods focus on learning efficient
representations of multivariate time series for dimen-



Fig. 1. Illustrating the process of symbolic dynamic filtering, where each partition, or bin, on the left plot is expressed
as an integer value ranging from 0 to 4, from which we obtain the symbolized time series on the right.

sionality reduction, which is achieved by transforming
the time series into a lower dimensional feature space
or by the extraction of relevant features (Lin et al.
(2003); Keogh et al. (2005); Duan et al. (2006)).

(2) Similarity measures focus on developing metrics and
finding distances among time series. Commonly used
distance metrics are Hausdorff Basalto et al. (2007),
Modified Hausdorff, HMM-based Oates et al. (2000a),
Dynamic Time Warping (DTW) Berndt and Clifford
(1994), Euclidean distance, and Longest Common
Sub-Sequence (LCSS) Górecki (2014). Herein, we pro-
pose a novel metric based on the extent of causality
to a target time series variable in multivariate series.

(3) A cluster prototype is an element in the data space
that serves to characterize a cluster. The aim is to find
appropriate cluster prototype (Rabiner et al. (1979);
Bagnall and Janacek (2005); Ratanamahatana and
Keogh (2005)), in which the quality of clustering is
often dependent on the quality of the prototype.

Existing time series clustering algorithms can be divided
into six main types: partitioning-based as in (Hautamaki
et al. (2008); Guo et al. (2008)) , hierarchical as in (Oates
et al. (2000b); Hirano and Tsumoto (2005)), grid-based
as in (Wang et al. (1997); Sheikholeslami et al. (1998)),
model-based as in (Kohonen (1990); Corduas and Piccolo
(2008); Ramoni et al. (2002)) density-based as in (Ankerst
et al. (1999); Ester et al. (1996)), and multi-step clustering
as in (Lin et al. (2005); Zhang et al. (2011)). We chose
to combine an agglomerative hierarchical clustering (Al-
Dabooni and Wunsch (2018)) approach with state esti-
mation at each level, giving rise to a multi-level state
estimation problem. While hierarchical methods generally
provide better visualization capabilities on what features
are relatively important, they do not require specifications
of the required number of clusters and are thus flexible.
Furthermore, we make the technique scalable by using a
repartitioning technique (discussed in Section 2.1) using
symbolic dynamic filtering.

Contributions:

(1) A hierarchical time series clustering technique based
on symbolic dynamic filtering and a novel Granger
causality based similarity metric is proposed.

(2) The algorithm’s performance for state estimation
problems using real data sets demonstrates its robust-
ness.

(3) An efficient dimensionality reduction technique for
time series is provided that can maintain the predic-
tion accuracy for a target variable when performing
state estimation.

2. BACKGROUND

In this section, we discuss concepts that will become a
foundation for our hierarchical clustering framework.

2.1 Symbolic Dynamic Filtering (SDF) based Encoding

Symbolic dynamic filtering is a tool used to describe
the behavior of nonlinear dynamical systems. The con-
cept of formal languages is used to describe transitions
from smooth dynamics to a symbolic domain that is dis-
crete (Badii and Politi (1999)). The core idea is to partition
the phase space of the dynamical system so that a coordi-
nate grid for the space is obtained in the form of a finite
number of cells. The cells, arranged in order of occurrence,
form the symbol sequence S, and the unique identifiers
that are used to denote each symbol form the alphabet
set Σ. Appropriately partitioning a time series data can
filter out noise and make the representation more robust
(Gupta and Ray (2007)). An example of partitioning a
continuous time series, X(t), is presented in Fig. 1. We
assume there is a partitioning function X : X(t) → D,
mapping the continuous elements of X(t) to the discrete
elements of D. There are numerous partitioning method
that have been used in the literature, such as uniform
partitioning, maximum entropy partitioning, maximally
bijective discretization, and statistically similar discretiza-
tion (Sarkar and Srivastav (2016)). In our work, we use
maximum entropy partitioning (MEP) to discretize.

2.2 Symbol Sequence to State Sequence

Time embedding is a technique followed in the dynam-
ical systems literature to identify key features in time
series as a collection of states. In our work, a simple
embedding is performed to convert a symbol sequence to
a state sequence. Consider a symbolic sequence denoted as
X = {x1, x2, . . . , xn}, each state can be interpreted as a
collection of symbols preceding a time step t. To quantify
the embedding dimension, we denote k as a parameter to
indicate the length of history embedded in a state (also
known as “depth” of embedding). Using this parameter,



we can denote a state at time t with an embedding dimen-
sion of k as, x̄k

t := {xt−k, . . . , xt−1, xt} (i.e., k historical
observations from X at time t). Hence, a state sequence
can be expressed as X̄k = {x̄k

1 , x̄
k
2 , . . . , x̄

k
n}.

Figure 2 shows an example of state sequence generation
from a symbol sequence. In this example, the embed-
ding dimension is k = 2, thus each state in the state
sequence contains a collection of three symbols, including
one current timestep symbol and two historic symbols from
previous timesteps.

Fig. 2. Demonstrating the process of embedding a symbol
sequence X into a state sequence X̄2, with each state
having an embedding dimension k = 2.

2.3 Formulation of Granger causality

In this section we review the concept of Granger causality.
The idea behind Granger causality is that a time series Y ,
Granger causes another time series X, if the predictive
power of a model for X is increased by including the
histories of both X and Y , over a model that includes
the past history of X alone. After applying SDF on
the time series variables X and Y , we consider them to
be discrete. Let a state x̄k

t−1 = {xt−k−1, ..., xt−2, xt−1},
where t is the discrete time index. Let F (xt|x̄k

t−1, ȳ
k
t−1)

denote the distribution function of the target variable X,
conditioned on the joint (k-lag) history x̄k

t−1, ȳ
k
t−1 of both

itself and a source variable Y . Also, let F (xt|x̄k
t−1) denote

the distribution function of Xt conditioned on just its
own k-history. Then variable Y is said to Granger cause
variable X (with k lags) if and only if:

F (xt|x̄k
t−1, ȳ

k
t−1) 6= F (xt|x̄k

t−1) (1)

Granger’s formulation was based on vector autoregressive
modeling (VAR), which often restricts application to gen-
eral nonlinear processes. Recently, however, a nonlinear
data-driven causality metric, transfer entropy, has been
introduced (Vicente et al. (2011)). To describe transfer
entropy, we begin by stating Shannon entropy for the
variable X, which is given by the following expression:

HX = −
∑
n

p(x) log(p(x)) (2)

where x = 1, 2, . . . , n, for all states (total of n) the variable
X can assume, and p(x) is the associated probability
of the state x occurring. Now, let us assume we have
another variable Y , with associated states obtained after
discretization denoted by y. Conditional entropy is given
by:

HX|Y =
∑
n

p(x, y) log(p(x|y)) = HXY −HY (3)

where HXY is the entropy of the equivalent time series
representing X and Y occurring together

HXY = −
∑
nX

∑
nY

p(x, y) log(p(x, y)). (4)

Consider two such symbolic time series X and Y .
Let the observation at the (t + 1)th instant of se-
quence X be xt+1, which depends on its previous state,
x̄k
t := {xt−k, . . . , xt−1, xt} and the state of Y , ȳkt :=
{yt−k, . . . , yt−1, yt}. With this setup, transfer entropy for
the two systems can be defined as the difference of condi-
tional entropies as follows (Barnett et al. (2009)):

TX→Y = HY |Ȳ k −HY |Ȳ kX̄k (5)

There exist efficient methods in literature to calculate both
the values of conditional entropies as given by the following
equations (using a time lag of 1, symbols at t + 1 rely on
states till t):

HY |X̄k,Ȳ k = −
∑
n

p(yt+1) log(p(yt+1|x̄k
t , x̄

k
t )) (6)

HY |Ȳ k = −
∑
n

p(yt+1) log(p(yt+1|ȳkt )) (7)

Using Equations 3 through 7, and applying Bayes rule to
evaluate conditional probabilities, we obtain (Martini et al.
(2011)):

TX→Y =
∑

p(yt+1, ȳ
k
t , x̄

k
t )

log(p(yt+1|ȳkt , x̄k
t )

log(p(yt+1|ȳkt )
) (8)

We consider this in a symbolic domain, which makes it
similar to symbolic transfer entropy, elaborated in detail
in Staniek and Lehnertz (2008). In Schindlerova (2011) the
authors proved that transfer entropy and Granger causal-
ity are equivalent for Gaussian variables. We use transfer
entropy as the metric for causality. However, justifying
why transfer entropy is an appropriate replacement for
the original formulation of Granger causality is beyond
the scope of the paper and readers are referred to (Saha
et al. (2018)) for further clarification.

3. METHODOLOGY AND FRAMEWORK

3.1 Hierarchical Clustering

Our hierarchical clustering approach is an agglomerative,
or bottom-up, clustering approach, meaning we start with
a collection of distinct variables and gradually reduce the
number of variables by forming joint representations (or
clusters) of variables. Such a joint representation is often
referred to as a “supernode” in CPSs (Alcaraz et al.
(2017)). The key technique that we use for forming efficient
abstractions of continuous time series is through SDF,
discussed in Section 2.1. After converting the multivariate
time series into individual symbol sequences, we initiate
our hierarchical clustering algorithm. During the cluster-
ing process, our algorithm selectively fuses a pair of time



series together at each level of the tree. It does so by com-
paring state estimation capabilities for all pairwise com-
binations of time series using our Granger causality based
similarity metric at the current level in the tree, similar to
Ward’s method in hierarchical clustering by Murtagh and
Legendre (2014). Figure 3 shows an illustration of how the
cluster was developed at different levels as the clustering
algorithm progresses. Starting with n nodes at the root,
the algorithm develops n − 1 levels in the clustering tree,
with each horizontal line representing one layer. At each
level, the input data dimension reduces by one due to the
merging.

Fig. 3. An example of a 3-level hierarchical clustering tree
result from our clustering algorithm.

3.2 Granger causality based clustering similarity metric

In Section 2.3, we denoted two symbol sequences X and
Y , to be the source and target variables respectively, and
Eq. 8 provided the directed flow of information from X to
Y . In our case of having multiple time series, we designate
the variable that we want to estimate the state of as the
target variable and designate all the other time series as
the source variables that are eventually (hierarchically)
clustered. For the following equations in this subsection,
we denote X and Y as individual source variable, XY as
the fused source variables, and Z as the target-variable
that we are predicting.

In order to maintain the state estimation after fusion, we
seek a similarity metric that determines the fusion pairs
that possess the minimum difference to the estimation
power of individual X and Y source variables from the
fused XY variable. In other words, the chosen fused repre-
sentation XY should retain as much possible information
about predicting Z as individual representations of X and
Y . We capture this notion by using a metric as follows. Let
M be an ordered list of all possible pairwise combinations
of variable indices at a particular level in the hierarchy,
whereM=

(
n
2

)
= {(1, 2), (1, 3), . . . , (n−1, n)}, and n is the

number of source variables at that hierarchy. At each level
of the hierarchy we choose one best fusion combination,
indexed as c from all combinations in M by using the
following rule:

c = arg min
XY ∈M

{(TX→Z −TXY→Z) + (TY→Z −TXY→Z)} (9)

After we obtain index c, the corresponding variable com-
bination associated with that index are merged together
into a “cluster” or fused variable XY . This concept has
been often sought in literature as a generalization of the

concept of transfer entropy, and used in a slightly differ-
ent context to improve the transfer entropy metric, when
information flows from one variable to another though a
third variable in the causal chain. In Sun and Bollt (2014),
the authors define “causation entropy” as follows (aligning
their notation with ours):

CY→Z|(Z,X) = HZ|Z̄kX̄k −HZ|Z̄kX̄kȲ k (10)

CX→Z|(Z,Y ) = HZ|Z̄kȲ k −HZ|Z̄kX̄kȲ k (11)

Equation 10 denotes the extra information provided to
Z by Y in addition to the information already provided
to Z by other sources. Accordingly, Equation 11 denotes
the extra information provided to Z by X in addition to
the information already provided to Z by other sources.
By comparing Equations 3 through 7 with Equations 9
through 11, our similarity metric in Equation 9 can be
reinterpreted as the argmin of the list containing the
negative of the sum of causation entropies of each pair
of source-variables in consideration to the target-variable
as shown in Equation 12.

(TX→Z − TXY→Z) + (TY→Z − TXY→Z)
= (HZ|Z̄k −HZ|Z̄kX̄k)− (HZ|Z̄k −HZ|Z̄kX̄kȲ k)
+(HZ|Z̄k −HZ|Z̄kȲ k)− (HZ|Z̄k −HZ|Z̄kX̄kȲ k)
= −(CY→Z|(Z,X) + CX→Z|(Z,Y ))

(12)

In other words, if X and Y are selected for clustering at
a certain level, it implies that out of all possible pairs
of variable combinations, X and Y together contribute
the highest causation entropy. This also means that X
provides more information to Z when Y is the extra
variable, and Y provides more information to Z when X
is the extra variable. Thus, in this scenario, X and Y are
selected to be clustered together.

3.3 Symbol sequence fusion using repartitioning

After having selected the pair of variables X and Y to be
clustered together, we seek to form a joint representation
of the variables for consideration in clustering at the next
higher level. Let the symbol sequence of X be given by
{x1, x2, . . . , xn} and the symbol sequence of Y be given
by {y1, y2, . . . , yn}, where n is the length of the symbol
sequence, we first form a merged symbol sequence denoted
by {x1y1, x2y2, . . . , xnyn}. Then, we assign values to the
merged symbol sequence by letting xiyi be a number in
the bx× by-ary numbering system, where bx is the number
of unique symbols in X and by the number of unique
symbols in Y . After having assigned values to the merged
symbol sequence, we again repartition the merged symbol
sequence based on the desired number of unique symbols
and obtain a joint representation. A detailed flowchart of
the process is illustrated in Fig. 4.

3.4 Hierarchical time series clustering algorithm

To summarize our hierarchical clustering algorithm, in this
subsection, we formally present our algorithm below. In
the algorithm, we denote the target variable as Z and a
list of source variables as S = {s1, s2, ..., sn} where n is the
total number of source variables. On top of that, we define



Fig. 4. Flowchart showing the fusion and repartitioning process between illuminance and CO2 time series data.

another variable nh as the number of source variables in
every hierarchy/level.

Algorithm 1 Hierarchical Time Series Clustering

Require: Symbolized source and target variables.
1: Initialize nh = n.
2: while nh > 1 do
3: Compute Ts1→Z , Ts2→Z , . . . , Tsnh

→Z

4: Combinations M =
(
nh

2

)
= {m1,m2, . . . }

5: Compute TM = {Tm1→Z , Tm2→Z , . . . }
6: Determine best fusion pair index c [Eq. 9].
7: Fuse selected pair sX , sY and repartition it to de-

sired number of symbols [Section 3.3]
8: S ← S − {sX , sY }+ {sXY }
9: nh ← nh − 1

10: end while

4. EXPERIMENTS

To demonstrate the performance of our algorithm, two
open source data sets are used and summarized below.

4.1 Occupancy (OCC) Data Set

The first data set used is the University of California,
Irvine’s building occupancy detection data set by Can-
danedo and Feldheim (2016) (OCC data set). This is a
multivariate data set comprises of five time series data that
describes the indoor condition of an office room. This time
series data includes temperature (◦C), relative humidity
(%), illuminance level (lux), CO2 (ppm) and humidity
ratio (kg-water-vapor/kg-air), each sampled at a 1-minute
time interval. The ground truth or the target variable of
this data set is the room occupancy, denoted with nominal
labels of zeros (unoccupied) and ones (occupied).

4.2 Air Handling Units (AHU) Data Set

The second data set that we used is the OpenEI “Long-
term data on 3 office Air Handling Units” (AHU data set).
This data set consist of multiple variables that describes
the state of the air handling units (AHU) in an office
building located in Richland, Washington. For this paper,

we used eight variables, including outside air temperature
(OAT, ◦F ), return air temperature (RAT, ◦F ), outside
air damper command (OA Damper CMD), cooling valve
command (Cool Valve CMD), discharge air temperature
(DAT, ◦F ), supply fan speed command (Su Fan speed
CMD), discharge air static pressure (DA Static P), and
return fan speed command (Re Fan Speed CMD), each
sampled at a 1-minute time interval. The target variable
for this data set is the average zone temperature (◦F ).

Target Variable Discretization. Unlike the OCC data
set that already have discreet (0/1) labels, for this AHU
data set, we discretized the target variable (average zone
temperature) by performing SDF with 10 symbols. Each
of the symbols is a small partition bin that represents a
small range of temperature. The symbolization is required
for transfer entropy computation and symbolic data fusion.

4.3 Classifiers

The classifier that we used for state estimation in the
experiment is the random forest classifier. Random forests
fall under the umbrella of ensemble learning, where clas-
sification or regression is performed by constructing and
collecting state estimates from multiple decision trees. For
our random forest, we used 500 estimators (trees), each
with maximum depth of 100 and using the entropy split
criterion.

5. RESULTS AND DISCUSSION

In this section, we present the performance of our algo-
rithm on the above-mentioned data set. We will show
that by performing the proposed hierarchical clustering,
we effectively reduce the data dimension, while preserving
the information and prediction accuracy.

5.1 Hierarchical Clustering Tree

To visualize the hierarchical clustering results of the two
above mentioned data set, the clustering tree for both
OCC and AHU data set are plotted as shown in Fig. 5.

The root of the clustering trees (Level 0) in Fig. 5 are
annotated with all the source variables and two nodes



Fig. 5. Clustering process of OCC and AHU data set at
different levels from initial n nodes to one supernode.

are merged in each of the levels. Some parameters that
was used in the symbolic dynamic filtering and state
sequence generation is as follows. For OCC data set,
each source variables are partitioned into 5 symbols and
with an embedding dimension (depth) of 3 during state
sequence generation. On the other hand, 10 symbols are
used to partition the variables in the AHU data set, and
5 historical observations (symbols) are embedded in each
state.

5.2 Performance Evaluation

To evaluate the quality of the merged variables, we per-
form a classification in each stage of the tree to determine
how the merged variables affect the overall prediction
performance. Table 1 tabulates all the prediction results
in each level of the clustering tree for both OCC and AHU
data set.

Table 1. OCC data set and AHU data set
prediction performance at each level of the

clustering tree.

Level OCC Data Set Accuracy AHU Data Set RMSE

0 93.24 % 1.7774

1 93.00 % 1.8228
2 94.37 % 1.7401
3 90.86 % 1.7263
4 97.12 % 1.6914
5 - 1.8245
6 - 1.9947
7 - 2.0129

To clarify, the level zero in Table 1 represents the predic-
tion performance from using the root variables and could
be viewed as the baseline performance for each data set.
Due to the different nature of the target variables on both
data set, two different metrics, accuracy and root-mean-
square error (RMSE) were used to evaluate the prediction
performance for OCC and AHU data set respectively.

Although both data sets are building related, the OCC
data set has binary nominal labels or class labels, which
makes accuracy metric a more suitable choice for perfor-
mance evaluation. On the other hand, the AHU data set
target variable is a regression problem, where RMSE would
be a better choice as a measure of difference between the
prediction and the true target.

Based on the overview offered in Table 1, the predic-
tion performance was well maintained around the baseline
(multivariate classification accuracy without any cluster-
ing) for both the OCC and AHU data sets despite natural
information loss due to dimensionality reduction. In fact,
the OCC data set has a prediction accuracy above 90%
throughout all levels. However, it was observed that there
is a slight increase in RMSE for the AHU data set on level
5 and so on.

Our deduction for this increase in RMSE is, as the al-
gorithm progresses, it will start to merge variables that
are relatively uninformative for the prediction, and in
some cases, could negatively impact the fused pattern and
overall performance. There are several methods that could
be implemented to tackle this issue. One potential solution
to this issue is to set a dynamic threshold that limits the
fusion with only informational source variables, and stops
the algorithm once the remaining potential pairs are below
the threshold. Another solution is, instead of limiting the
similarity metric threshold, the number of clusters or “su-
pernodes” formed by this hierarchical algorithm can also
be a user defined variable, where the algorithm will stops
as the supernodes formed had reached the desired number
similar to k-means (top-down) clustering.

Fig. 6 shows the plot of the prediction for OCC data set at
the level 4 of the clustering tree. The plot shows an almost
perfect prediction, also the transition from occupied to
unoccupied was captured accurately. The small 2.88%
error in the prediction is due to the false positive around
the 200-minute timestamp. On the other hand, Fig. 7
presents the plot of the best prediction for AHU data set
at level 4 of the clustering tree. Although the prediction
has a slight variance, it can capture the transitions in the
average zone temperatures accurately.

Fig. 6. OCC data set prediction at level 4 (full clustering)
of the clustering tree.

In order to verify that the similarity metric can select infor-
mational and relevant time series for fusion, we performed
an experiment where we introduce random noise (standard
normal) along with the original time series as input to
observe the resulting clustering pattern. Interestingly, we
observed that the noise did not merge with the main
cluster early in the early levels, but instead, they formed
a cluster of their own, and it merged only with the first
(main) cluster in the end when there are no other merging
options. This observation is illustrated in Fig. 8, where



Fig. 7. AHU data set best prediction (at level 4).

the noises are represented with red circles, and they are
merged in the second last level to form a “supernode”
as shown in the red box, before merging with the main
cluster on the left of the tree on the last level. Note that
the arrangement or the order of source variables at the root
does not affect the clustering sequence in any way, as the
fusion pair selection is deterministic, with no randomness
involved in the process.

Fig. 8. OCC data set clustering tree with two gaussion
white noises (red circles).

6. CONCLUSION

We developed a Granger causality based hierarchical time
series clustering algorithm that combines dimensionality
reduction with robustification against noise. We also pro-
pose a Granger causality based similarity metric that
incrementally clusters pairs of most relevant time series
that could preserve the predictive power at each clustering
level. We show experimentally on real data sets that by
the injection of noise sensors in the source variables, the
algorithm only merges the noise sensors towards the end
of the algorithm when there are no other fusion choices.
Results on real data sets also suggest that the algorithm
is applicable to both discrete and continuous state estima-
tion. As mentioned in Section 5.2, merging an irrelevant
or uninformative time series might negatively impact the
state estimation power of the merged variables. In order to
tackle this problem, in future work, a dynamic threshold of
similarity metric can be set or a desired number of clusters

/ supernodes formed can be predefined, to ensure that the
algorithm will only merge informative time series, or stops
the algorithm as it reaches the defined number of clusters.
Our algorithm is fairly general to be used in conjunction
with a variety of classification and regression tasks. Given
our novel approach in combining state estimation with
clustering, comparison baselines with other clustering al-
gorithms could not yet be established and this is left for fu-
ture work. For faster run-time performance, parallelization
can be used for the computation of the transfer entropies in
Algorithm 1, which will increase performance significantly.

REFERENCES

Al-Dabooni, S. and Wunsch, D. (2018). Model order
reduction based on agglomerative hierarchical cluster-
ing. IEEE transactions on neural networks and learning
systems, 30(6), 1881–1895.

Alcaraz, C., Lopez, J., and Choo, K.K.R. (2017). Resilient
interconnection in cyber-physical control systems. Com-
puters & Security, 71, 2–14.

Ankerst, M., Breunig, M.M., Kriegel, H.P., and Sander, J.
(1999). Optics: ordering points to identify the clustering
structure. In ACM Sigmod record, volume 28, 49–60.
ACM.

Badii, R. and Politi, A. (1999). Complexity: Hierarchical
structures and scaling in physics, volume 6. Cambridge
University Press.

Bagnall, A. and Janacek, G. (2005). Clustering time series
with clipped data. Machine Learning, 58(2-3), 151–178.

Barnett, L., Barrett, A.B., and Seth, A.K. (2009). Granger
causality and transfer entropy are equivalent for gaus-
sian variables. Physical review letters, 103(23), 238701.

Basalto, N., Bellotti, R., De Carlo, F., Facchi, P., Pantaleo,
E., and Pascazio, S. (2007). Hausdorff clustering of
financial time series. Physica A: Statistical Mechanics
and its Applications, 379(2), 635–644.

Berndt, D.J. and Clifford, J. (1994). Using dynamic
time warping to find patterns in time series. In KDD
workshop, volume 10, 359–370. Seattle, WA.

Candanedo, L.M. and Feldheim, V. (2016). Accurate oc-
cupancy detection of an office room from light, temper-
ature, humidity and co2 measurements using statistical
learning models. Energy and Buildings, 112, 28–39.

Corduas, M. and Piccolo, D. (2008). Time series clustering
and classification by the autoregressive metric. Compu-
tational statistics & data analysis, 52(4), 1860–1872.

Darianian, M. and Michael, M.P. (2008). Smart home
mobile rfid-based internet-of-things systems and ser-
vices. In Advanced Computer Theory and Engineering,
2008. ICACTE’08. International Conference on, 116–
120. IEEE.

Dimpfl, T. and Peter, F.J. (2013). Using transfer entropy
to measure information flows between financial mar-
kets. Studies in Nonlinear Dynamics and Econometrics,
17(1), 85–102.

Duan, G., Suzuki, Y., and Kawagoe, K. (2006). Grid
representation of time series data for similarity search.
The institute of Electronic, Information, and Commu-
nication Engineer.

Dunbabin, M. and Marques, L. (2012). Robots for en-
vironmental monitoring: Significant advancements and
applications. IEEE Robotics & Automation Magazine,
19(1), 24–39.



Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al. (1996). A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd, volume 96, 226–
231.
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