
The Collaborative Learning Framework: Scaffolding for
Untrained Peer-to-Peer Collaboration

Brittany Ann Kos
University of Colorado Boulder

Boulder, CO
brittany.kos@colorado.edu

ABSTRACT
Recently, we’ve seen huge enrollment increases in computing and
technology courses, which make it difficult for instructors to work
personally with students and give them individualized instruction.
Instructors may encourage students to work together, but we can-
not assume that students know how to ask for assistance from
their peers or that students will know how to provide meaningful
educational support. Our motivation for this study was to create
a computer science educational intervention that provided stu-
dents with a scaffolded framework that helps them work through
problems together. Our goal was to create a simple and quickly
understood resource for students to use during collaborative lab
activities. This paper describes the "Collaborative Learning Frame-
work" (CLF), an educational support tool operationalized as a poster.
The CLF poster is intended to be hung in a classroom or lab space
and includes four prompts that ask students to explain and think
critically about their problems with their peers. In Summer 2017,
we conducted an exploratory qualitative study of an introductory,
non-major computing course. Our findings present case studies of
three CLF poster users and two non-CLF poster users. We evaluate
the CLF poster by identifying how the students develop a compu-
tational thinking mindset and use the poster as an instructional
problem-solving tool. We found that the CLF poster was an effective
and useful collaboration tool for the students who were developing
a computational thinking mindset.

KEYWORDS
collaboration, CS0, CS1, non-majors, information science, education

1 INTRODUCTION
Over the last few years, we’ve seen huge enrollment increases in
computer science and computing courses. Large classes make it
difficult for instructors to work one-on-one with students and give
them individualized instruction. There have been trends to add
lab or recitation hours to courses [11, 13], employing undergradu-
ate teaching assistants [4–6], and creating help or tutoring rooms
[8]; however, these measures can be costly and do not scale easily.
Even when students have the opportunity to get individualized
help from an instructor or graduate TA, students may not take
advantage of this opportunity, because they may be intimidated
by asking questions and seeking help from authority figures [5].
Some students may look to their classmates or students who have
taken the class previously when they need help with an assignment.

Working Paper, August 2017, Boulder, CO, USA
©2017. Brittany Ann Kos. University of Colorado Boulder.

Students with similar backgrounds and experience levels often feel
more comfortable seeking help from people they consider their
equals rather than individuals they feel are more experienced and
might judge their lack of skill [5]. Though this peer-peer interac-
tion can benefit students, this method relies on untrained, novice
programmers guiding each other. We cannot assume that students
will know how to seek help from a peer or that they know how to
give support that is educational and avoids telling each other the
answers. Inexperienced students may also face challenges when
differentiating between helping their peers solve problems them-
selves and answering problems for them. In computer science, it
can be difficult to create clear boundaries between cheating and
collaboration [12]. These ideas can be ill-defined in syllabi [1] and it
is unfair to encourage students to work together without providing
them clear boundaries between collaborating and cheating. Our mo-
tivation was to create a computer science educational intervention
that provided students with a scaffolded framework that provided
them with methods for effective collaboration. Our focus was to
create a simple and immediately understood resource for students
to use when they were working together during lab activities. We
see this intervention as a supplement to other, ongoing computing
educational efforts.

2 LITERATURE REVIEW
Our educational intervention builds off of the "Collaborative Dis-
cussion Framework", which encourages collaborative discussion be-
tween students and provides them with language and prompts that
assist them in asking and giving help to their peers [10]. Previously,
this framework has been used in elementary school classrooms to
help students learn computing concepts and program in Scratch [9].
Though this framework was intended for younger audiences, it was
designed for novice programmers to further develop their computa-
tional thinking. To adapt the collaborative discussion framework to
an undergraduate audience, we pulled from the literature about Un-
dergraduate Teaching Assistants (UgTAs). Universities have seen
success training undergraduate students to work as teaching as-
sistants in undergraduate classrooms for a number of years now
[6]. UgTAs often have differing responsibilities depending on the
university or course employing them [4], but they are primarily
hired to offer additional tutoring or instructional help in a course
[3]. UgTAs are often closer in age to students enrolled in a course
or have taken the course more recently and are seen as less of an
authority figure [5]. This makes them ideal candidates to help other
undergraduates in a course because they can be a less intimidat-
ing and more relatable resource. For our study, we’ve specifically
looked at the best practices and tips that instructors have suggested
for training UgTAs and incorporated them into our study [7].

In parallel, we draw on the idea of computational thinking (CT)
[14] to contextualize the analysis of our study. We use Brennan
and Resnick’s computational thinking framework, which acts as an
operationalized definition of CT that describes what students learn
while programming [2]. The computational thinking framework
involves three dimensions: "computational concepts (the concepts
designers engage with as they program, such as iteration, paral-
lelism, etc.), computational practices (the practices designers de-
velop as they engage with the concepts, such as debugging projects
or remixing others’ work), and computational perspectives (the per-
spectives designers form about the world around them and about
themselves)" [2]. These three elements provide a method define CT
as a student’s actions, computational understanding, and metacog-
nition and it provides a way to assess how students are developing
their computational thinking throughout the course.

3 METHODS AND CONTEXT
We conducted a two-part exploratory study where we introduced
the CLF poster in a non-major introductory programming class in
the summer of 2017. The class was offered through the Information
Science department and was a requirement for all of the students in
the College of Information and Media, where the Information Sci-
ence department is housed. We chose this introductory computing
class because it was intended for inexperienced programmers and
focused heavily on teaching computational thinking concepts while
the students were introduced to Scratch and Python programming.

3.1 Creating the Intervention Tool
We use Park and Lash’s Collaborative Discussion Framework [10]
and draw on their pre-existing poster resources, which encourage
students to collaborate on their programming problems. The CLF
poster has a series of four questions that "provides students with
language to assist them in seeking and giving help" [9]. We modi-
fied the language Park and Lash’s questions, so they were easier
to read in the classroom. These questions read: (1) "What are you
trying to do?"; (2) "What have you tried already?"; (3) "What else
can you try?"; and (4) "What would happen if...?" These are broad
questions that help guide collaborative discussions about program-
ming problems. The questions are designed to get students to assess
their problems and explicitly describe what their goals and thought
process is. We added additional subquestions that were paired with
the four main questions that gave students additional ways they
could discuss their situation. We chose not to number any of the
main questions or subquestions since we did not want to create
an artificial hierarchy or suggest students should work through
the questions linearly. We also added language at the top of the
poster that would quickly contextualize the content of the poster
and tell students how to use it as a resource. We didn’t want to lose
students’ interest by adding tedious text at the beginning of the
poster, but we also needed to introduce the purpose of the poster
and tell how it is intended to be used. Finally, we added some visual
interest to the poster by adding images that were intended to be fun
and relevant to the poster’s content. The final CLF poster design is
shown in Figure 1.

Figure 1: The Collaborative Learning Framework (CLF)
Poster

3.2 Ethnographic Observation
We first introduced our intervention tool at the beginning of the
second week of the five-week summer course. This was when the
class was switching from Scratch to Python programming and
starting to learn more difficult programming concepts. We had
Wanda, the instructor of the course, introduce the poster as a tool
as a regular part of her instruction. We did not want to introduce
the poster ourselves in case we influenced the students. We had
one researcher observe the class’ interactions with the poster for
the next three days. The first day of observation was a lecture day
where Wanda taught booleans and conditionals. The second and
third observation days were free lab days for where the students
worked on their weekly project, a "Choose Your Own Adventure"
game. (This is a narrative text-based game where the player is lead
through the story through by selecting different options.) We chose
to begin our study during this three day period because Wanda was
introducing new material. This offered us the opportunity to gain
insight into how students approach learning and programming new
concepts and we could also assess how the CLF poster aided them
in developing their computational thinking.

2

3.3 Focus Groups
After the three-day ethnographic observation period ended, we
conducted two focus groups of two students each, held one week
after the classroom observations. The focus group participants self-
categorized themselves as CLF poster users and non-CLF poster
users. Each student participant was compensated with a $5 coffee
gift card for their participation. Caitlyn (F) and Sean (M) were non-
CLF poster users, while Carrie (F) and Rebecca (F) were CLF poster
users. All four students were fourth or fifth-year seniors, majoring
in a media or communication field. None of the students were new
to seeing code, Sean and Caitlyn had taken web design (HTML/CSS)
classes and Carrie and Rebecca had taken statistics and economics
courses that used the R programming language. In class and lab time,
Carrie and Rebecca worked together with another female student,
Lucy, while Caitlyn often worked alone. Sean was an undergraduate
assistant in the course, his job was to help students during lab time,
answer questions, and help students with their assignments; he had
taken this course the previous semester. The next section discusses
our findings from the three ethnographic observation days and two
focus groups.

4 FINDINGS
The analysis of the classroomobservations and focus groups brought
out many interesting themes. There are many important similar-
ities and differences in the ways that the students discuss their
classroom experiences learning to code and working through their
problems. This section outlines the three dimensions of Brennan
and Resnick’s computational thinking framework: Computational
Concepts, Computational Perspectives, and Computational Prac-
tices [2]. We use this framework as an analysis tool that provides a
theoretical structure in which to assess the student’s development
of computational thinking. In our analysis, we look for instances
where the CLF poster enriches student experiences, guides them
work through their problems, and helps them develop their compu-
tational thinking.

4.1 Computational Concepts
High-level and broad concepts–such as data storage, booleans, and
conditionals–were easily understood by students on a theoretical
basis. They were able to think about these concepts in their own
terms; however, many students had trouble implementing these
concepts and using them with algorithms. Sean talks about seeing
this cognitive gap when he assisted students:

Sean: I think it’s easier for a lot of people to grip the
computation thinking than it is the syntax.

From our observational data, we saw that nearly half of the
questions we witnessed Sean helping students with stemmed from
syntax errors. He also sees that students understand at a high-level
what they want their program to do, but they have trouble actually
writing the code. Rebecca also discussed this problem explicitly
when she talked about working with dictionaries and arrays in
Python and learning to use the AND operator to combine two
booleans in a conditional statement:

Rebecca: I have a clear idea of what that is in my head
but not in terms of coding.

Rebecca: Initially I was trying to conceptualize it in a
way that was already in my brain . . . this isn’t nec-
essarily going to match what I’ve known or how I’ve
formerly done things.

As Rebecca learns new programming concepts, she also rec-
ognizes that she needs to adapt her thinking to better fit with a
computational perspective. She associates learning new computa-
tional concepts to needing to think in a computational way. This
is an important step in developing her computational thinking. In
their focus group, Caitlyn and Sean also talk about a time when
Sean assisted Caitlyn with her "Choose your Adventure" game:

Caitlyn: I was just–I was stuck and he just kind of–I
don’t know how to describe it . . . I think I was just stuck
in my own head like, "Okay, this code applies for this
but then it’s not the same for this." So I was like, "Shit is
this a completely different format?" So that’s when I’d
call him over and he’d be like, "No, no, no, it’s the same,
you just have to reorganize the numbers and stuff."

Sean: She had everything there, just not formatted cor-
rectly. So I obviously just tried to give hints and essen-
tially help build it up because I would be like, "Oh this
needs to be here because of this" and like "does that
make sense?" Then logically work down.

In the focus group, it was difficult to get both of them to describe
Caitlyn’s error in detail. In class observations, we observed that
Caitlyn had ordered her nested her conditional statements in a
way that caused the game logic to run in unintended ways. Caitlyn
and Sean’s ill-explained answers are signs of novice programmers.
They both explain the problem with vague statements and use
terminology that is familiar to them, not the computing phrases
or terminology that has been taught in the class. If we focus on
Sean’s actions when he helps Caitlyn, he is seen almost explicitly
telling Caitlyn how to debug her program. Though he is explaining
his actions as he goes, he does not let Caitlyn work through her
algorithm herself and he prevents her from being able to work out
the problem herself. In this interaction, Sean is also leading the
discussion and only asks for Caitlyn’s answer to a yes or no question
at the very end of his explanations. We see both students having
trouble with novice level explanations of computing concepts and
Sean dominating the conversation with Caitlyn and telling her and
answers instead of helping her learn on her own.

4.2 Computational Perspectives
This section discusses the different metacognitive views of Caitlyn,
Rebecca and Carrie as they develop their computational thinking
skills. We asked Caitlyn to talk about her experiences have been
like learning CT. Her response is unclear ad confuses learning
computational thinkingwith learning other computational concepts
during lecture:

Caitlyn: I don’t know. Sometimes when she’s lecturing I
just–I take a break and then I come back. I don’t know,
the whole computational thinking thing it like helps
because you forces your brain to go there but at the
same time–I don’t know . . . It’s an interesting class.
Thankfully this isn’t a 3-hour class, it’s an hour and

3

a half. So you can walk away and sometimes I just go
take a nap and then I’ll wake up and I’ll try it on my
own, which a lot of times helps. Her classes are good
but I usually just end up looking over the lecture slides
later.

Though she was asked to reflect on her experiences learning
about CT, Caitlyn instead talks about how unpleasant lectures are
for her. It seems like she thinks that listening to lecture and learning
computational thinking are closely related. It is unclear whether
she conceptualizes CT and class lecture as separate and if her dislike
of lecture may be influencing her thoughts about CT. When we
asked her to describe how she thinks about problems, she describes
the process different from a computational thinking process:

"I’m a straightforward thinker . . . I just want the answer
and then I like to go on my own and figure out the why.
I feel like I can figure it out on my own."

Caitlyn seems to have a very clear idea about how she likes
learning. In both of her excerpts in this section, she mentions how
she likes working alone and working through problems on her own
terms. Caitlyn is not developing strong computational thinking
skills, she is holding firm on to her own way of doing things. This
will heavily influence her computational practices and will be a key
factor in explaining her non-CLF poster use.

Now, we’ll contrast Caitlyn’s situation to Carrie and Rebecca’s,
who worked on developing their computational thinking and hold
a clear computational perspective. Both women describe their shift
towards a computational perspective:

Rebecca: I think for me since it’s such a different way
of thinking and conceptualizing different ideas or pro-
cesses I think for me putting myself in a frame of mind
that’s different than what I’m used to, that has been
a challenge for sure . . . I think initially I was trying
to conceptualize it in a way that was already in my
brain. Like, how can I make how I operate, and how
my internal monologue operates, match this? Instead of
really just trying to understand programming for what
it is and how it works. So I think reconciling that rela-
tionship between-this isn’t necessarily going to match
what I’ve known or how I’ve formerly done things and
jumping into something where I’m like, "okay this is
a new way of thinking" and accepting it and kind of
moving on.

Carrie: I think I’d like to add to that. I feel all that too,
and to add to that, it’s been really odd because I didn’t
realize that I wasn’t thinking linearly or computation-
ally before this class, and so for me to now be put in
a position where I can’t just be almost ADD in how I
select information and synthesize it, I have to be very
formulaic. That was the jump for me, was, "Wow" the
precision of language is so important, and it’s not just in
how we speak, it’s how we direct this computer system."
So yeah. That for me was the hardest part was, just
wrangling my brain into thinking that way.

Carrie and Rebecca realize that CT is different from how they
think normally and talk about how they had to shift their thinking

to align with a computational perspective. We also saw a similar
computational thinking shift with Rebecca in the Computational
Concepts section. We asked if they used the CLF poster as a re-
source, and both agreed. Carrie talks about the CLF poster questions
pushing her towards a computational perspective:

Carrie: Having [the poster prompts] asked of me were
excellent at leading me towards the answer . . . they
were good starting points to get to that place, to get my
brain working again.

Here we can see that Carrie tries to work through problems with
a computational perspective and uses the CLF poster as a tool to
focus her thinking and get her working in the right direction. Carrie
is developing her computational thinking and recognizes that the
poster is a resource that can help her when she is stuck and can get
her back in a computational mindset again.

4.3 Computational Practices
This section outlines three themes we saw in our analysis of com-
puting practices: programming with structure, peer-to-peer collab-
oration, and the debugging process.

4.3.1 Programmingwith Structure. Though all of the focus group
participants had taken previous classes, their experiences were with
scripting (R) and markup (HTML) languages. Caitlyn was used to
creating web pages with the very structured and formulaic HTML
and CSS languages. She talks about how she is confused when
switching to Python, which is a very terse language:

Caitlyn: I’m so used to Web where there is a struc-
ture. Wanda’s class almost confuses me because I’m
like, "Where do we start? What do we type into Jupyter
to make it start?" I don’t know, for me it’s confusing
because I don’t have structure. What’s the beginning?
What’s the end? Where do I start from there?

Caitlyn was used to the heavy markup of HTML and internal-
ized its unique formatting requirements as a computational practice.
When she had to start programming from a blank file when was
uncertain about how and where to start coding. When she describes
the thought process she goes through when she starts program-
ming, she sounds overwhelmed and keeps asking where to begin.
Caitlyn does not seem to have developed her computational think-
ing enough to be able to clearly and confidently begin program-
ming. Carrie also talks about her experiences with programming
in Python for the first time:

Carrie: My first attempt at coding was so precise. You
realize that not only can you be precise, but you can
be brief in getting your point across to the computer.
It’s really interesting how it’s the synthesis of ideas, but
it’s also the shortening and precision aspect is also so
inherent to it.

Carrie talks about discovering a particular trait of programming:
precision; and describes how she adapts and learns how to work
with precision. In the Computational Perspective section, Carrie
mentions the importance of language precision when she is devel-
oping how to think in a computational way. She discovers language
precision as she’s programming and categorizes it as a computa-
tional practice, something that will need to be thought about every

4

time she writes a program. If we contrast Caitlyn and Carrie’s expe-
riences, we can see that both women face challenges when learning
Python; however, while Carrie internalized this new challenge as
a computing practice and vital to learning programming, Caitlyn
is still trying to use computational practices she learned from her
previous experience programming. This has different outcomes
for both women: Carrie continues to develop her computational
thinking while Caitlyn still has an underdeveloped notion of CT.

4.3.2 Peer-to-Peer Collaboration. Carrie and Rebecca worked
with another student, Lucy, during every day of the class obser-
vations; while Caitlyn always worked alone. We asked Carrie and
Rebecca if they used the CLF poster, they responded that they used
the CLF poster as a resource that helped their team collaboration
and problem solving:

Rebecca: So those questions help solidify information,
which is so important if you want to carry it. If you
want to get your assignment done, or if you want to
carry it through classes into the future. Having someone
ask you or ask a question that forces you to figure it
out too. Not just get an answer. So that’s what I really
appreciate about this kind of thing.

Carrie: But these are really important when you’re first
learning a new skill. To really question yourself. Ques-
tion your peers. Have them be questioning you. To kind
of keep the flow going, so there is not a big lull in the
conversation or in the programming, where you’re just
like, "I don’t know what the hell I’m doing or where I
should start."

Both Carrie and Rebecca view collaboration as a computational
practice that helps them retain and better understand the material.
They have success using the poster as a tool to help guide their
collaborative discussions and provide meaningful support to each
other. Carrie talks about how it can be difficult to start or keep a
conversation flowing when they have an inexperienced group, but
the CLF poster provides a starting place for that conversation to
happen. She also talks about being unsure of how to begin program-
ming, the same problem Caitlyn talks also but says the CLF poster
helped through this process. Rebecca and Carrie see their group
collaboration as an important computational practice and view the
CLF poster to facilitate their group workings. When Caitlyn was
asked about working with her peers, she states that she doesn’t
like working through problems with others:

Caitlyn: I feel like I can figure it out on my own and
when I’m working with someone else I’m like, "Tell me
what you think." Then I go away and I think about it
on my own. I just feel like sometimes people arrive at
answers slower than I do. I want to hear what you have
to say, I just don’t want to work through this process with
you. Just tell me your thoughts and I’ll work backwards
and figure it out.

Caitlyn sees working alone as a computational practice. The
is the second time Caitlyn talks about preferring to work alone
when programming. She does not see the benefit in working with
other people and thinks they will slow her down. Caitlyn’s method
of "working backward" depends on someone always telling her

the answer and her being always being able to figure it out. This
method doesn’t teach her how to analyze her problems or work to
build a solution on her own.

4.3.3 The Debugging Process. Finally, we will contrast scenarios
where the CLF poster users and the non-CLF poster users worked
through problems with differing methods. The first scenarios show
the difference in the type of questions that are asked with and
without the CLF poster. The second set of scenarios compare how
much agency students have when they are being helped.

During the class observationswe saw thatmany students ran into
problemswhen they tried to use strings in their boolean expressions,
often they would forget to use quotation marks when using their
strings. Sean gives an example of a process he might go through
when he helps students with this type of error:

Sean: First off I would be like, "Do you want that to be
a string?" . . . I don’t know, some students didn’t quite
catch on what is string was. So I’d be like, "Do you want
that to be defining text?" They guessed, "That’s what
I want." Okay, "What makes it different from the rest
of the code that you have right now?" Hopefully push
them in that direction. Then at the end, if they don’t get
it, tell them and explain why it needs to be formatted
that way.

When Sean describes his process, it is clear that he is trying to
lead the students through their problem and not just give them
correct answer; however, two of his example questions are yes or
no questions, which do not push students to analyze their problem
deeper. His third example question is a leading question that does
push students to think about their code and make inferences about
what needs to be changed. Sean’s methods do not help students
develop their computational thinking. Comparatively, Rebecca talks
about how her group member Lucy helped her with a similar prob-
lem:

Rebecca: Lucy asks us, "Hey, what’s in that cell that
shouldn’t be?" Or, "Hey, what’s in that string is miss-
ing?" Asking those questions, when I find it, I commit
that to memory, and it works better.

Lucy, a CLF-poster user, helps Rebecca by asking her leading
questions immediately. Like Sean, Lucy asks Rebecca to compare
what she already has in her code to help her find a solution. Lucy
lets Rebecca work through the entire problem herself until she finds
the correct solution, unlike Sean who tells his students the answer
when they are struggling to find a solution.

These next two examples compare how much agency the stu-
dents needing help has in the debugging process. In the Compu-
tational Concepts section, there is an excerpt where Sean helps
Caitlyn with her "Choose Your Own Adventure" game. If we focus
on Sean’s actions during this encounter when he helps Caitlyn, he
is seen nearly explicitly telling Caitlyn how to debug her program.
Though he is explaining his actions as he goes, he does not let Cait-
lyn work through her algorithm herself and he prevents her from
being able to work out the problem herself. In this interaction, Sean
is also leading the discussion and only asks for Caitlyn’s answer
to a yes or no question at the very end of his explanations. We
see both students having trouble with novice level explanations of

5

computing concepts and Sean dominating the conversation with
Caitlyn and telling her and answers instead of helping her learn on
her own.

Carrie and Rebecca also brought up experiencing difficulties with
their "Choose Your Own Adventure" game, specifically formatting
their nested conditional statements. They discuss how Lucy worked
with them and went through the CLF poster prompts to help solve
their problems:

Carrie: I was having a problem with a certain part of
the code and we’d gone through it several times and it
was still bringing up error messages. [Lucy] was, "I’m
not going to tell you. We’re just going to go through
these [CLF poster] questions until you find it."

Rebecca: It’s nice to have questions that not only put
that person on the spot to tell you, "How did you get
that answer, tell me." Creative ways to come up with
questions that are like, "How can I also have this best
ingrained in my mind too, for how I work and not just
copy someone."

Though Lucy is leading their interactions, in both of the women’s
examples they control the pacing of the conversation by explaining
their problem and how they got to that point. Carrie and Rebecca
are prompted to think out loud and reach the solution on their own.

5 DISCUSSION
Though our case studies of Carrie and Rebecca, we can see that the
CLF poster helped them develop their computational thinking skills
and gave them a format that enabled them to work through their
programming problems and created a deeper understanding of the
computational concepts. The motivation for this project was to
create an intervention tool that provided scaffolding for untrained
students to engage in meaningful collaboration. The team of Carrie,
Rebecca, and Lucy were novice programmers who did not have
experience tutoring their peers. Carrie and Rebecca ran into some
initial cognitive dissonance when they tried to think about their
programming problems using their normal thinking perspective,
however, once they worked on adopting a computational perspec-
tive, they were able to see more success when conceptualizing their
ideas. All three women worked in a group and saw the benefits
of being able to work through the CLF poster prompts with their
group members. They talk about how the poster prompts provided
them with a way to start collaborative discussions. Finally, we can
see how Lucy was able to utilize the CLF poster to help Carrie and
Rebecca work through their problems and find solutions on their
own.

Caitlyn, a non-CLF poster user showed trouble in describing
her programming problems, getting confused between different
languageâĂŹs computational practices, conflated learning compu-
tational thinking and learning computational concepts. She held on
to her non-computational way of thinking and preferred to work
alone. She did not develop strong computational thinking skills and
did not benefit from the CLF poster.

Sean, the course assistant, did not use the CLF poster and the
guidance he offered students did not consistently help them develop
computational thinking skills or better understand the courseâĂŹs

computational concepts. He was seen having trouble describing pro-
gramming concepts with the correct terminology, helping students
in a way that did not foster deeper thinking about the problems and
being overbearing in his interactions with students who needed
help.

6 FUTUREWORK
This study provided us with evidence to the CLF posterâĂŹs use-
fulness for students who adopt a computational perspective and
use this resource as a computational practice; however, we are still
unsure if it can be a useful tool for students who do not develop
computational thinking skills. Future work will involve a poster
redesign and find ways to encourage poster use for additional stu-
dents.

REFERENCES
[1] L. J. Barker and K. Garvin-Doxas. 2004. Making Visible the Behaviors that

Influence Learning Environment: A Qualitative Exploration of Computer Science
Classrooms. Computer Science Education 14, 2 (2004), 119–145.

[2] K. Brennan and M. Resnick. 2012. New frameworks for studying and assessing
the development of computational thinking. In Proceedings of the 2012 annual
meeting of the American Educational Research Association, Vancouver, Canada
(AERA ’12). Vancouver, Canada.

[3] H. Danielsiek, J. Vahrenhold, P. Hubwieser, J. Krugel, J. Magenheim, L. Ohrndorf,
d. Ossenschmidt, and N. Schaper. 2017. Undergraduate teaching assistants in
computer science: Teaching-related beliefs, tasks, and competences. In 2017 IEEE
Global Engineering Education Conference (EDUCON ’17). Athens, Greece.

[4] A. Decker, P. Ventura, and C. Egert. 2006. Through the Looking Glass: Reflections
on Using Undergraduate Teaching Assistants in CS1. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’06). New
York, NY, USA.

[5] L. Fingerson and A. B. Culley. 2001. Collaborators in Teaching and Learning:
Undergraduate Teaching Assistants in the Classroom. Teaching Sociology 29, 3
(2001), 299–315.

[6] J. Forbes, D. J. Malan, H. Pon-Barry, S. Reges, and M. Sahami. 2017. Scaling
Introductory Courses Using Undergraduate Teaching Assistants. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’17). New York, NY, USA.

[7] C. Gregg and C. M. Lewis. 2015. Working with Undergraduate Teaching As-
sistants: Best Practices and Lessons Learned. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE ’15). New York, NY,
USA.

[8] D. G. Kay. 1998. Large Introductory Computer Science Classes: Strategies for Ef-
fective Course Management. In Proceedings of the Twenty-ninth SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’98). New York, NY, USA.

[9] E. Mercier, C. Fong, R. Cober, J. D. Slotta, K. S. Forssell, M. Isreal, A Joyce-
Gibbons, and N. Rummel. 2015. Researching and Designing for the Orchestration
of Learning in the CSCL Classroom. In Exploring the Material Conditions of
Learning: The Computer Supported Collaborative Learning (CSCL) Conference
(CSCL ’15). Gothenburg, Sweden.

[10] M. Park and T. Lash. 2015. Collaborative Discussion Framework.
(2015). Retrieved 2017-06-13 from http://ctrlshift.mste.illinois.edu/2015/04/03/
collaborative-discussion-framework/

[11] J. Parker, R. Cupper, C. Kelemen, D. Molnar, and G. Scragg. 1990. Laboratories
in the Computer Science Curriculum. Computer Science Education 1, 3 (1990),
205–221.

[12] C. Stewart-Gardiner, D. G. Kay, J. C. Little, J. D. Chase, J. Fendrich, L. A. Williams,
and U. Wolz. 2001. Collaboration vs Plagiarism in Computer Science Program-
ming Courses. In Proceedings of the Thirty-second SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’01). New York, NY, USA.

[13] N. Titterton, C. M. Lewis, and M. Clancy. 2010. Experiences with lab-centric
instruction. Computer Science Education 20, 2 (2010), 79–102.

[14] J. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (2006), 33–35.

6

http://ctrlshift.mste.illinois.edu/2015/04/03/collaborative-discussion-framework/
http://ctrlshift.mste.illinois.edu/2015/04/03/collaborative-discussion-framework/

