HAFNIUM ISOTOPE EVIDENCE ON THE SOURCES OF GRENVILLIAN DETRITAL ZIRCON DEPOSITED AT THE GREAT UNCONFORMITY

by

AARON L. HANTSCHE

B.S., University of Texas at Austin, 2013

A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for a degree of Master of Science Department of Geological Sciences 2015 i

This thesis entitled:

Hafnium Isotope Evidence on the Sources of Grenvillian Detrital Zircon Deposited at the Great Unconformity

written by Aaron L. Hantsche

has been approved for the Department of Geological Sciences

Dr. G. Lang Farmer

Dr. Shemin Ge

Date:

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline

Hantsche, Aaron L., (M.Sc., Geological Sciences)

Hafnium Isotope Evidence on the Sources of Grenvillian Detrital Zircons Deposited at the Great Unconformity

Thesis directed by Dr. G. Lang Farmer

ABSTRACT

Detrital zircon U-Pb ages are commonly used to assess the provenance of siliciclastic sediments. However, in Cambrian siliciclastic units in North America, such determinations are limited by the wide spatial distribution of Proterozoic crystalline basement rocks with similar U-Pb ages. In this study, combined U-Pb and Hf isotopic data were obtained from 1.0 to 1.3 Ga, so called "Grenvillian", detrital zircons in sedimentary rocks from central North America, in order to better define the geographic source locations and sediment transport directions after the breakup of the Mesoproterozoic supercontinent Rodinia. The whole-rock radiogenic isotopic compositions of granitic rocks from a 1.086 ± 0.02 Ga anorthosite-charnockitemangerite-granite (AMCG) suite in Sonora, Mexico were used to identify the petrogenetic nature of these Grenville-age crustal intrusions. Additionally, Hf isotopic compositions were determined for zircon from this suite of samples to help complete the existing Hf isotope database for potential sources of Grenvillian detrital zircon. All samples have low measured ε_{Hf} values ranging from -25.5 to -21.1 and are determined to have crystallized from a melt that incorporated a large component of Paleoproterozoic crust of the Yavapai/Mazatzal Province that underlies portions of northwestern Mexico. These data and existing isotopic data for other 1.0 Ga to 1.3 Ga rocks throughout North America were applied to determine the provenance of Grenvillian detrital zircon found in four Neoproterozoic and Cambrian basal sandstone units from the central U.S. Three of these samples were are from fluvial to shallow marine depositional environments, and are interpreted to be deposited after the breakup of Rodinia during the transgression of the early Paleozoic Sauk Sea; the fourth sample is a Neoproterozoic injectite sandstone that is interpreted as a pre-Sauk Sea sedimentary unit. The easternmost sample, the Cambrian Lamotte Sandstone in southeastern Missouri, is observed to contain a major zircon population of ~1.1 Ga with a narrow range of Hf isotopic compositions that range from ε_{Hf} = -27.4 to -20.0. Samples from basal sandstones from Colorado drill cores have a broad Grenvillian age peak from 1.0 - 1.3 Ga, accompanied by peaks at ~1.4 and ~1.7 Ga. The Grenvillian detrital zircon in these samples exhibit a wide range of $\varepsilon_{\rm Hf}$ that falls in the wide range of values also observe in the nearby Neoproterozoic Tava Sandstone Injectites ($\varepsilon_{Hf} = -42.5$ to -14.4). The Lamotte Sandstone in the east potentially originated from a limited catchment area in the Southern Appalachian Mountains, while western basal sandstones incorporated zircon from multiple sources, such as the Southern Appalachians, the Adirondacks, the Llano Uplift, the Franklin Mountains, and local felsic intrusions. Interestingly, Flathead sandstone from central Wyoming is dominated by ~ 1.7 Ga zircons with a distinct absence of Grenvillian zircon, indicating that the supply of Grenvillian zircon from the south and east had been shut off to this region. Broadly, the observed increase in range of U-Pb and ε_{Hf} values with westward geographic position is interpreted to be the result of the mixing of multiple zircon sources with westward sediment transport. The presence or absence of Grenvillian detrital zircon in basal sandstones provides information of the relative timing and paleogeography of Laurentia during the Cambrian. The absence of Grenvillian zircon is unique in these sandstones, and requires some type of sediment transport barrier, such as a topographic structural high of the proposed Paleozoic Transcontinental Arch, or a potential oceanic barrier, such as the Sauk Sea. These observation will require additional detrital zircon data from other North American basal sandstones to confirm and establish the sedimentation controls of Laurentian cross-continent zircon transport.

ACKNOWLEDGEMENTS

The education and research I have accomplished at the University of Colorado have helped to craft my strengths as a geologist, a research scientist, and a teacher. Despite all the effort that I have put into this, I wouldn't be where I am today without the guidance, assistant, and support of my advisor, my teachers, my colleagues, and my friends.

I would first like to thank my advisor, Lang Farmer. Somehow, Lang managed to repeatedly explain isotope geology, detrital zircon provenance, and the tectonic history of North America, to me without making me feel like an idiot. His patience, instruction, and willingness to share his knowledge with me has taught me invaluable lessons about life as an instructor and researcher. By the end of my stint in Boulder, I have finally been convinced that I possess a grain of knowledge about isotope systematics, analytical techniques, and the tectonic significance of detrital zircon provenance studies.

Additionally, I would like to thank Dr. David Budd and Dr. Chuck Stern for taking the time out of their schedules to review my thesis, and I appreciate their insights toward improving it and their feedback during my defense.

Thanks to Christine Siddoway at Colorado College, who provided samples and feedback for this project. She also brought Lang and I out to see the Tava Sandstone Injectite near Manitou Springs, which was the first time I have ever seen sedimentary intrusions – very cool!

In no particular order, I would like to thank the following people: Craig Jones, for much of my knowledge of tectonic history of the Western U.S., Alan Seeling, for providing samples of previously unstudied basal sandstones from the Denver-Julesburg Basin, Becky Flowers and Jim Metcalf, for the use of their lab for all stages of mineral separation, Dr. Lupe Espinosa Maldonado and Dr. Jose-Luis Rodriguez Castañeda, for guiding Lang and I through the desert of Sonora, Mexico, Mark Winternheimer, for supplying samples of the Lamotte Sandstone in Missouri, Emily Verplanck, for her help training my to use the TIMS facility at CU, Dr. George Gehrels, Mark Pecha, and the lab team at the University of Arizona, for teaching me to use the laser ablation systems and mass spectrometers, Paul Boni, for graciously letting me crush rocks in his workspace, Amanda Howard, for her previous work and help with error ellipses, Mary Krause, Kevin Mahan, Joe Smyth, Peter Molnar, Nathan Niemi, Marin Clark, Chris Fedo, and anyone else who helped with my thesis work.

It is important to consider my background when coming to CU, so I'd like to give some credit to a few people from the University of Texas. Particularly, I would like to thanks Dr. Mark Cloos, for teaching me the basics of how to conduct a research project and how to produce high quality scientific work. Thanks to Dr. Bill Carlson, who gave me a strong background in petrology, which I transferred to teaching both mineralogy and petrology. Lastly, among others, thanks to Marin Trautman, Paul Betka, Nolan Townsend, Randy Marrett, and Whitney Behr.

Thanks to my friends and colleagues who helped create a fun environment both at school and in the mountains: Josh Johnson and Jacky Baughman, my officemates, classmates, and skimates, Derek Weller, who revamped the Mineralogy lab with me, Cailey Condit, who also thinks about Proterozoic Laurentia on a daily basis, Jess Stanley, for teaching me to use heavy liquids, and all my friends I met here in Boulder.

I'd like to thank my mom, dad, sister, and the rest of my family for their support of my slowly advancing education. My sister spent a whole summer in Boulder, and I felt like it went by so fast. My parents each took trips to visit me, and I was glad for the opportunity to show them the beauty of the Northern Front Range. Thanks to my whole family for all that they've given me over the years!

And of course, I would be remiss to not save a big thank you for Sara Burk. We have been through very tough times, but the last two years have seen us get stronger together. This woman supported me in my hours and hours of late night thesis writing, figure making, and reference checking, with hardly a complaint. Coffee, food, rides – anything I needed to get my work done – she was there for me. Thank you so much for the continuous support through my Master's work. I love you, Sara!

TABLE OF CONTENTS

ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
INTRODUCTION	1
Geologic Setting and Background	3
U-Th-Pb Systematics	5
Lu-Hf Systematics	6
CHAPTER TWO: Radiogenic Isotopic characterization of ~1.0 anorthosites and granites from Sonora Mexico)8 Ga 8
Introduction	9
Geologic Background	10
Sample Descriptions	12
13S-QTV (1, 2, 3)	15
13S-SNY-1	15
13S-SP-1	17
13S-CR-2	17
13S-CP (1, 2, 3)	17
Methods	19
Physical Separation	19
Magnetic Separation	19
Heavy Liquid Separation	20
Whole-Rock Dissolution	21
Column Chemistry	21
TIMS	22
LA-ICP-MS	22
Results	

Zircon U-Pb ages and Hf isotopic composition	22
Whole-rock Sm-Nd and Rb-Sr isotopic compositions	25
Discussion	30
Ages	30
Isotopic Data	30
Implications for the Distribution of Mojave Province Crust	31
Characterization for Detrital Zircon Analysis	31
Conclusions	32
CHAPTER THREE: Provenance of Grenvillian detrital zircon fro intracratonal basal sandstones in North America)m 33
Introduction	
Geologic Background	
Samples	
Lamotte Sandstone	
Flathead Sandstone	40
Colorado Basal Sandstones	41
Denver-Julesburg Basin Cores	42
Tava Sandstone Injectite	44
Methods	45
Physical Separation	45
Magnetic Separation	45
Heavy Liquid Separation	46
ICP-MS and HR-MC-ICP-MS	47
Detrital Zircon U-Pb and Hf Results	47
Lamotte Sandstone	47
Flathead Sandstone	47
D-J Basin Cores	51
Tava Sandstone Injectite	51
Discussion	54
Lamotte Sandstone	55
Flathead Sandstone	55
D-J Basin Cores	

Tava Sandstone Injectite	
Regional Implications	
Conclusions	62
REFERENCES	64
APPENDIX A: Data Tables	71
APPENDIX B: Core Logs	

LIST OF TABLES

2.1	Sample Locations of Intrusive Rocks from Sonora, Mexico	13
2.2	Radiogenic Isotope Data for Intrusive Rock Samples	23
A-1	U-Pb Age Data for Zircon from Intrusive Rocks from Sonora, Mexico	71
A-2	U-Pb Age Data for Detrital Zircon from Basal Sandstones	73
A-3	Hf Isotopic Data for Zircon from Intrusive Rocks from Sonora, Mexico	94
A-4	Hf Isotopic Data for Grenvillian Detrital Zircon from Basal Sandstones	96

LIST OF FIGURES

2.1	Proposed Map of Proterozoic Provinces in Northwest Mexico11
2.2	Sample Locations of Igneous Rocks from Sonora, Mexico14
2.3	Photomicrograph of Intrusive Rocks from Quitovac and Sonoyta, Mexico
2.4	Photomicrographs of Anorthosite Samples from South and East of Caborca, Mexico
2.5	Concordia Diagrams of Zircon Ages for Intrusive Rocks from Sonora, Mexico
2.6	Rank Order Diagram of Hf Isotopic Composition of Zircon from Grenville Age Igneous Rocks from Sonora, Mexico
2.7	Sm-Nd Isochron Diagram for Whole-Rock Analyses of Intrusive Rocks from Sonora, Mexico
2.8	Isochron Diagram Showing ϵ_{Nd} (i) vs. ¹⁴⁷ Sm/ ¹⁴⁴ Nd for Whole-Rock Analyses of Intrusive Rocks from Sonora, Mexico
2.9	Rb-Sr Isochron for Whole-Rock Analyses of Granitic Rocks from Sonora, Mexico
3.1	Cartoon Map of Basal Sandstone Distribution in North America36
3.2	Map Indicating Sample Locations and the Age and Extent of North American Crystalline Basement Provinces
3.3	Photomicrographs of Representative Samples from Lincoln County, Colorado
3.4	Rank Order Diagram of Hf Isotopic Composition of Grenvillian Detrital Zircon
3.5	Probability Density Function for Lamotte Sandstone
3.6	Probability Density Function for Flathead Sandstone50
3.7	Probability Density Functions for D-J Core Samples
3.8	Probability Density Functions for Tava Sandstone Injectite Samples
3.9	Probability Density Function of Grenvillian Detrital Zircon for All Samples

3.10	Map of North America Showing Range of ε _{Hf} Values for Basal Sandstones and Potential Zircon Sources	60
B-1	Schematic Core Log for Big Sky Core	102
B-2	Schematic Core Log for Taos Core	103
B-3	Schematic Core Log for Jackson Hole Core	104

Introduction

The formation and subsequent break up of Precambrian supercontinents is a poorly understood aspect of Earth's evolution, principally because of the lack of an extensive geologic record preserving information on how these processes were initiated and how they evolved through time. For example, in the case of the Mesoproterozoic to Neoproterozoic supercontinent Rodinia, few sedimentary rocks are preserved from the time of Rodinia stability (~1.1 to 0.78 Ga) from which the paleogeography of the stable continent can be inferred (Li et al., 2008). Instead extensive sedimentary successions are mainly preserved from the period during, and subsequent to, the breakup of Rodinia in the Neoproterozoic and Cambrian, when sediments were deposited at and above the so-called "Great Unconformity" (Sloss, 1963; Sloss, 1988; Fedo and Cooper, 2001; Spencer et al., 2014). These sedimentary rocks do, however, provide an opportunity to address aspects of the disaggregation of Rodinia, such as whether, and where, topography of Rodinia affected the size and orientation of surface river systems, and the history of marine transgression onto these fragments through time. Information on these issues can be obtained from sedimentary rocks through an assessment of their original depositional settings and, in the case of siliciclastic sedimentary rocks, by understanding the sources (provenance) of the detrital sediments.

Laurentia, which comprises present day North America, is one of the most extensively studied continental fragments produced during the disassembly of Rodinia. Studies of preserved Neoproterozoic and Cambrian sedimentary rocks have concluded that river systems during this period were dominantly oriented from east to west (present coordinates) during this entire time period, suggesting that the paleoslope on the developing continent was from east to west despite the fact that rifting occurred along every margin of the continent and must have resulted in multiple localized areas of higher elevation (Rainbird et al., 1997; 2012; Stewart et al., 2001; Whitmeyer and Karlstrom, 2007). The primary evidence supporting east to west sediment transport comes from detrital zircon U-Pb age determinations from

Neoproterozoic and Cambrian sedimentary rocks, principally from western portions of Laurentia. These siliciclastic units include a significant age population of 1.0 Ga to 1.3 Ga zircon grains ("Grenvillian zircon") which are typically interpreted to be derived from the erosion at eastern margin of the Laurentian continent, which, at the this time, was comprised in part of Mesoproterozoic igneous and metamorphic rocks associated with the so-called Grenville Orogeny (Hynes and Rivers, 2010). If true, this suggests that the highlands associated with the Grenville Orogeny remained a principal site erosion and sediment production during the breakup of Rodinia, despite the likelihood that other margins of Laurentia were also sites of surface elevation increases during this time.

The present study was undertaken to test whether Grenvillian detrital zircon in Cambrian sandstones in western Laurentia were all derived from the same source regions at the eastern margin of the continent. A source region for detrital zircon is defined herein as the original source of igneous and/or metamorphic zircons that were later incorporated into surface sediments. Detrital zircon U-Pb and Hf isotopic data are employed to determine the zircon sources, using the basic concept that if potential sources of Grenvillian zircon can be distinguished on the basis of these combined data sets, then it should be possible to better spatially resolve the provenance of Grenvillian detrital zircon grains. There are two basic requirements for such a study. First, there must be sufficient isotopic data from zircon in potential Grenvillian source rocks and, second, isotopic data from Grenvillian detrital zircon must be obtained. This project incorporates both activities. Igneous zircon Hf isotopic data were lacking for Mesoproterozoic intrusions in Northern Mexico, therefore, in the second chapter of this thesis, petrographic analyses and radiogenic isotopic data are used to assess the genetic source of ~1.1 Ga anorthosites and granitic rocks from Sonora, Mexico which are part of an anorthosite-charnockite-mangerite-granite (AMCG) suite. Igneous zircon U-Pb age and Hf isotopic data were obtained as part of this study for use in detrital zircon provenance analysis.

The third thesis chapter uses U-Pb ages and Hf isotopic data from zircon in Grenvillian igneous and metamorphic rocks in northern Sonora and from other 1.0-1.3 Ga basement rocks in Laurentia culled from the literature to assess the provenance of Grenvillian detrital zircon found in Neoproterozoic to Cambrian basal sandstones. These provenance determinations are used to suggest that Grenvillian detrital zircon in these rocks were obtained from both the southern and eastern portions of the continent, providing new insights on the paleogeography of the Laurentian continent.

To provide the necessary context for the next two chapters, a basic review of pertinent aspects of the geologic evolution of Laurentia is given in the following text, along with a review of both zircon U-Pb and Hf isotopic systematics.

Geologic Setting and Background

The Mesoproterozoic supercontinent Rodinia was assembled from 900 to 1300 Ma, when Paleoproterozoic and Archean continental fragments were sutured together around the central block of Laurentia (Li et al., 2008). One of these sutures is associated with the Grenville Orogeny, which dominated eastern Laurentian geological activity from 1.0-1.3 Ga and is recorded in North America by the Grenville Province, an accretionary terrane that extends from eastern Canada to the southeast United States (van Schmus et al., 1993; Whitmeyer and Karlstrom, 2007; Hynes and Rivers, 2010). A contemporaneous accretionary terrane, exposed in Llano Uplift in central Texas, also exists on the southern margin of Laurentia (Whitmeyer and Karlstrom, 2007). Mesoproterozoic crustal intrusions in southwest Laurentia such as the Franklin Mountains in west Texas, the Little Hatchet Mountains in New Mexico, the Pikes Peak Batholith in Colorado, and an AMCG suite in Sonora, Mexico, were all intruded contemporaneously with the Grenville Orogeny but within existing Laurentian Paleoproterozoic crust (Anderson and Silver, 1981; Smith et al., 1999; Whitmeyer and Karlstrom, 2007; Amato and Mack, 2012; this study).

Rodinia remained a stable supercontinent until ~0.78 Ga when rifting began along the western margin of Laurentia (Li et al., 2008). Rifting along the southern and eastern margins of Laurentia began

later, between 0.62-0.55 Ga (Thomas, 1991; 2011; Whitmeyer and Karlstrom, 2007). Weathering and erosion during the long period of Rodinia stability exposed Proterozoic and Archean basement rocks, removing most siliciclastic sedimentary rocks that might have been present prior to rifting during the late Neoproterozoic (Li et al., 2008).

During and after rifting, sedimentary sequences began to accumulate on the western continental margin, with accommodation space developing as a result of thermal subsidence along the rift flanks (Fedo and Cooper, 2001). The continental transgression of the Sauk Sea during this time influenced the deposition and preservation of marine sediments deposited directly over the exposed cratonal basement rocks in the latest Proterozoic and early Cambrian (Fedo and Cooper, 2001). The contact between shallow marine sandstones and exposed crystalline basement corresponds to the so-called Great Unconformity in a large portion of the western and midcontinent regions (Sloss, 1963). The distribution and thickness of the Sauk Sequence, the basal sedimentary package beginning with the shallow marine sandstones of the Sauk Sea transgression, has been long known (Sloss, 1960, 1963), but the source for the sediments has been speculative until recent advancements in U-Pb detrital zircon geochronology (Rainbird et al., 1997; Stewart et al., 2001; Gehrels et al., 2011; Schoenborn et al., 2012; Gehrels and Pecha, 2014; Howard et al., 2015; this study).

Sedimentologic data and previous detrital zircon provenance analyses are consistent with a general east-to-west paleoflow direction for Laurentian fluvial systems during the early Cambrian, with highlands at the eastern margin of the continent representing the ultimate source of siliciclastic sediments comprising basal sandstones in the central and western continent (Rainbird et al., 1997; Gehrels and Pecha, 2014). The eastern highlands were either a) the result of uplift associated with the development of a rifted margin at or near the time of sediment transport, or b) topography remaining from the Grenville orogeny (Lambiase and Bosworth, 1995). However, while many workers have favored Grenville Province in easternmost Laurentia for Grenvillian detrital zircon (Rainbird et al., 1992; 1997; 2012; Stewart et al., 2001; Gehrels and Pecha,

2014), other potential sources for zircon of this age do exist along the southern and western margins of Laurentia (Anderson and Silver, 1981; Van Schmus et al, 1993; Whitmeyer and Karlstrom, 2007; Howard et al., 2015). One goal of this study is to assess the potential role of these sources in providing detrital zircon found in on-craton basal sandstones of the Great Unconformity through the use of zircon U-Pb and Hf isotope systematics.

U-Th-Pb Systematics

Dating zircons using the U-Th-Pb isotopic system relies on the facts that uranium substitutes readily into the zircon (ZrSiO₄) crystalline structure and subsequently undergoes radioactive decay, with the two isotopes of uranium, ²³⁵U and ²³⁸U, decaying through an extensive decay chain to two different isotopes of lead, ²⁰⁷Pb and ²⁰⁶Pb (Gehrels, 2014). The zircon crystallization age can be determined solely from Pb isotopic measurements, with no need to measure the parent isotopic composition (Hiess et al., 2012). Using laser ablation mass spectrometry and standard-bracketing techniques, isotopes ²⁰⁴Pb (stable), ²⁰⁶Pb (from ²³⁸U with a half-life of 4.47 Ga), ²⁰⁷Pb (from ²³⁵U with a half-life of 0.70 Ga, and ²⁰⁸Pb (from ²³²Th with a half-life of 14.01 Ga) can be measured to produce a U-Pb age (Jaffey et al., 1971; Gehrels 2014)). With one ratio based on the U decay system (²⁰⁶Pb*/²⁰⁷Pb*), the crystallization age from the ratios can be found by comparison to the concordia derived by solving for *t* in the following formula using Wetherill (1956).

$$\frac{\overset{206}{}Pb *}{\overset{207}{}}Pb * = \left(\frac{1}{137.82}\right) * \frac{(e^{\lambda_{235}t} - 1)}{(e^{\lambda_{238}t} - 1)}$$

Zircons are highly resistant to both physical and chemical weathering and can survive multiple sedimentary cycles. The routine preservation of detrital zircon in sandstones, for example, allow the zircon crystallization ages to be used to assess the zircon provenance. Though zircon U-Pb ages have been used in provenance studies for decades, the more recent development of rapid *in situ* analytical techniques, such as laser ablation inductively coupled plasma mass spectrometry (ICPMS), has rendered U-Pb age

determinations in individual zircon grains quick and routine (Fedo et al., 2003; Gehrels, 2014). Using analyses of multiple detrital zircons (>100 grains) in siliciclastic sedimentary sample, it is now possible to fully identify both major and minor zircon age populations such rocks. The U-Pb detrital zircon age spectra generated in such a fashion can be used to define potential crustal source regions for these grains (Fedo et al., 2003).

Lu-Hf Systematics

Hafnium isotopic analyses of zircon have also become more routine over the past decade, again because of the development of in situ analysis techniques such as laser ablation multicollector-ICPMS (Blichert-Toft and Albarede, 1997; Scherer et al., 2007). In general, variations in the isotopic composition of Hf in terrestrial rocks and minerals occur due to the β decay of ¹⁷⁶Lu, a heavy rare earth element (HREE) to ¹⁷⁶Hf, a transition metal with a half-life of ~37.1 Ga (Patchett, 1983). Chemical differences cause differentiation during partial melting from a given source, however isotopic fractionation does not occur due to the high atomic weight of these nuclides (Vervoort and Patchett, 1996). During partial melting of mantle material, Lu preferentially stays in the residual rock, particularly if it is garnet bearing, similar to the Sm-Nd system (Vervoort and Patchett, 1996). The resulting depleted mantle has a higher Lu/Hf ratio than the extracted melt, resulting more rapid growth of the ¹⁷⁶Hf/¹⁷⁷Hf ratio in the mantle than in the crust, generating two distinct isotopic reservoirs (Vervoort and Patchett, 1996 Vervoort and Blichert-Toft, 1999). Derivation of zircon from melt extracted from the mantle will therefore have high ε_{Hf} , while zircon derived from the melting of older crustal material will have lower ε_{Hf} values (Scherer et al., 2007). An ε_{Hf} value corresponds to the ¹⁷⁶Hf/¹⁷⁷Hf ratio of a sample to the ¹⁷⁶Hf/¹⁷⁷Hf of the Chondritic Uniform Reservoir (CHUR) as follows:

$$\varepsilon_{Hf} = \left(\frac{(\frac{176}{177}Hf})_{sample}}{(\frac{176}{177}Hf})_{chur}} - 1\right) * 1000$$

As a silicate melt begins to crystallize, another stage of internal chemical fractionation occurs as zircon preferentially incorporate Hf at weight percent levels, and Lu is excluded (Stevenson and Patchett, 1990; Amelin et al., 1999). The low Lu/Hf ratios, typically ~ 0.002, incorporated by zircon makes Hf isotopic evolution negligible in zircon, as very little radiogenic Hf is produced in situ (Amelin et al., 1999; Kinny and Maas, 2003). Because the ¹⁷⁶Hf/¹⁷⁷Hf does not change significantly over time, detrital zircon will retain the Hf isotopic composition of the reservoir they crystallized from at the time of extraction (Scherer et al., 2007). Patchett (1983) showed that Hf isotopic composition is highly unlikely to be reset after crystallization, even in highly discordant zircon. The use of the Hf isotopic system in zircon is supported by the stability of the mineral and isotopic composition through geologic time and conditions. Importantly, Hf composition of individual crystals from a single melt also appear homogenous, allowing for the isotopic characterization of crystalline rocks as zircon sources for detrital zircon (Blichert-Toft and Albarede, 1997; Morel et al., 2008). With relatively fast and easy analyses, the higher spatial resolution of detrital zircon provenance studies provided by the combination of the Hf isotopic system with U-Pb ages demonstrates that zircon Hf isotopic ratios should be determined whenever possible for detrital studies (Andersen, 2003; Gehrels and Pecha, 2014).

Chapter Two

Radiogenic isotopic characterization of ~1.08 Ga anorthosites and granites from Sonora, Mexico

Introduction

Determining the origin of anorthosites and related igneous rocks (AMCG suite) remains an issue of active research, both in terms of how the magmas leading to the production of these rocks were generated, and why AMCG suite rocks were so were extensively produced worldwide at ~1.0 Ga to 1.3 Ga (Hynes and Rivers, 2010). Regardless of their exact mode of origin, isotopic data from AMCG rocks, including the anorthosites, clearly demonstrate that their parental magmas interacted extensively with older continental crust through which the magmas traversed prior to their final emplacement. As a result, anorthosites can serve as probes of the age and composition of deep continental crust that is not accessible for direct study (Farmer and DePaolo, 1983; 1984).

In North America, AMCG rocks are also critical to studies of the paleogeography of continental regions, as inferred from detrital zircon U-Pb ages and Hf isotopic compositions in siliciclastic sedimentary rocks, because many such rocks contain prominent detrital zircon ~1.1 Ga age populations. The AMCG rocks are a potential source of zircon in this age range, so the distribution and zircon fertility of these rocks is critical to understanding how and where detritus carrying zircon was transported, eroded, and deposited on the North American landscape through time.

In this study, we pursue both of these aspects of AMCG rock through a radiogenic isotopic study of ~1.1 Ga anorthosites and related igneous rocks found in northern Sonora, Mexico. Whole-rock Sm-Nd and Rb-Sr isotopic compositions were obtained in order to identify the source of the parent magma, and potentially identify the composition of any crustal material by the intrusions. Single zircon U-Pb ages and Hf isotopic compositions were obtained to confirm the crystallization age of these intrusions and to provide information on the isotopic compositions expected for Grenvillian detrital zircon derived from AMCG suite rocks in Sonora (Chapter 3).

Geologic Background

The Precambrian geologic history of Laurentia involves the accretion and subsequent disaggregation of multiple crustal blocks through time, with the blocks constituting the North American portions of Laurentia being identifiable through U-Pb zircon age determination and whole rock Nd isotopic data (Bennett and DePaolo, 1987; Whitmeyer and Karlstrom, 2007). In general, Archean crustal provinces are restricted to the northern portions of North America, while various Proterozoic crustal provinces, including the Paleoproterozoic Yavapai, Mazatzal, and Mojave Provinces, are found in the southern and western regions of the continent (Whitmeyer and Karlstrom, 2007). Of the Paleoproterozoic terranes, the Yavapai and Mazatzal Provinces are accretionary terranes that trend northwest-southwest across the entire midcontinent and are mutually distinguishable on the basis of their crystallization ages (1.7-1.8 Ga [Yavapai] versus 1.6-1.7 Ga [Mazatzal] (Van Schmus et al, 1993). The Mojave Province is interpreted as the product of the interaction of juvenile Paleoproterozoic crust with material derived from the Archean Wyoming Craton (Bennett and DePaolo, 1987). This province has distinctly lower measured ε_{Nd} values than the Yavapai and Mazatzal Provinces despite containing Paleoproterozoic igneous rocks with similar U-Pb crystallization ages (Bennett and DePaolo, 1987).

All three Paleoproterozoic provinces are present in Sonora, Mexico (Figure 2.1), although their geographic extent and relative dispositions are disputed (Van Schmus et al., 1993; Iriondo and Premo, 2003; Iriondo et al., 2004; Farmer et al., 2005). For example, some workers suggest that the Mojave Province, which is exposed in the so-called Caborca block in northern Sonora (Figure 2.1), was juxtaposed with Yavapai and Mazatzal terranes along the proposed left-lateral Mojave-Sonora megashear during the Mesozoic (Anderson and Silver, 2005). Others have suggested that the relative dispositions of the Paleoproterozoic terranes in Sonora have not been modified since their original juxtaposition during the construction of the Rodinian supercontinent (Iriondo and Premo, 2003; Iriondo et al. 2004; Farmer et al., 2005; Amato et al., 2009). In addition, although existing geochronologic and isotopic data reveal that the Mojave Province underlies the areas around the towns of Quitovac and Caborca (Figure 2.1), the overall

Figure 2.1. Cartoon of Proterozoic crustal provinces in Sonora, Mexico and outline of proposed Mojave Sonora Megashear. C =Caborca, Q = Quitovac. Modified from Farmer et al., 2005.

extent of the Mojave province in Sonora is not known (Iriondo et al., 2004; Farmer et al., 2005; Amato et al, 2009).

One method of better determining the distribution of Paleoproterozoic basement terranes in Sonora is through a comprehensive study of the isotopic compositions of Mesoproterozoic (~1.1 Ga) AMCG suite, igneous rocks exposed in the region. Elsewhere, AMCG rocks have been shown to contain a large proportion of preexisting crustal material (Bybee and Ashwal, 2015). If this is the case for AMCG rocks in Sonora, then the nature and distribution of unexposed Paleoproterozoic rocks can be inferred from the initial isotopic compositions of these AMCG samples.

To assess the isotopic compositions of Mesoproterozoic AMCG suite rocks in Sonora, Mexico, ten samples of previously unanalyzed Mesoproterozoic anorthosite and granite samples were collected for whole-rock Sm-Nd and Rb-Sr isotopic analyses by isotope dilution - thermal ionization mass spectrometry (ID-TIMS). These data are used to assess the origin of the parental magmas to the AMCG suite rocks and to further map the extent of Paleoproterozoic basement provinces in the subsurface beneath northern Sonora. In addition, individual zircon crystals were collected from four of these samples for U-Pb age determinations and Hf isotopic analysis.

Sample Descriptions

Each sample collected was approximately 2-5 kg in size and was selected from fresh interior rock obtained as far distant from zones of obvious alteration (fractures, faults, etc.) as possible. Nevertheless, most of the samples showed evidence of minor weathering.

The location, field exposure, and petrographic features of each sample is described below. Sample locations are listed in Table 2.1 and located on Figure 2.2. Samples QTV-1, QTV-2, QTV-3, and CP-3 are the only samples that yielded zircon for U-Pb and Hf analysis.

Field Area	Sample Name	Location (m)
Quitovac		
	13S-QTV-1	0325265 E
		3467365 N
	13S-QTV-2	0325432 E
		3467265 N
	13S-QTV-3	0325432 E
		3467265 N
~ /		
Sonoyta	120 CNIX 1	0217564 N
	155-51 1-1	0517504 N 2527612 E
		5527012 E
Sierra Pinta		
	13S-SP-1	0311560 E
		3453864 N
Cerro Rajon	120 CB 1	0.400300 F
	13S-CK-1	0409399 E 2361162 N
		5301102 N
	13S-CR-2	0411790 E
		3333391 N
Cerro Prieto		
	13S-CP-1	0431064 E
		3366024 N
	13S-CP-2	0431917 E
		3362357 N
	13S-CP-3	0431824 E
		3362955 N

 Table 2.1. List of sample locations for granites and anorthosites from Sonora, Mexico.

GPS data from UTM Zone 12N.

Figure 2.2. Map of Sonora, Mexcio, with sample locations indicated. GPS locations in Table 2.1. Aibo Granite location from Farmer et al., 2005. Escuadra Granite location from Amato et al., 2009. Map modified from Farmer et al., 2005.

Three AMCG suite samples were obtained from the Sierritas Blancas located ~20 km southwest of Quitovac, Sonora, Mexico (Fig. 2.2). Sample 13S-QTV-1 is from the Sierritas Blancas anorthosite, for which a ~1.1 Ga zircon U-Pb age is already available (Enriquez-Castillo et al., 2009). QTV-1 is from a ~20 m thick black anorthosite intrusive dike and consists of adcumulate anorthosite with largely unweathered plagioclase grains. A Michael Levy test for plagioclase gave an average extinction angle of ~12°, suggesting a more albitic plagioclase composition. Sparse, secondary sericite is present with interstitial quartz between larger plagioclase crystals. Plagioclase twinning shows minor deformation by the deflection of laminar twins and weak deformation banding (Figure 2.3A). Partially oxidized opaque minerals are common.

Samples QTV-2 and -3 were obtained from locations ~10m apart in the Murietta granite in the Sierritas Blancas. QTV-2 is less weathered and exhibits a bright pink color in outcrop due to large perthitic microcline crystals (Figure 2.3C). Sample QTV-3 displays a reddish brown hue, likely due to weathering as evidence by the widespread growth of sericite on most of the large feldspar crystals. Both samples contain perthitic microcline as the primary potassic feldspar (Figure 2.3D). Potassic feldspar crystals are much larger than either quartz or other mineral phase in the rocks. The primary mafic phase in both samples is biotite, which is commonly associated with opaque minerals. Plagioclase is present as a minor phase in both of these samples. These samples do not contain micrographic quartz exhibited by the nearby Aibo Granite to the southeast (Anderson and Silver, 1981).

13S-SNY-1

Sample SNY-1 was collected from an anorthosite body exposed at Sonoyta, Sonora, near the US international border (Fig 2.2). The anorthosite body is exposed in multiple hills ~ 4 km west of Sonoyta. The sample obtained is strongly weathered. Plagioclase grains have been almost completely altered to sericite (Figure 2.3B) although remnant twinning and crystal boundaries are visible in some grains.

Figure 2.3. Photomicrographs of samples of anorthosite from Quitovac and Sonoyta, Mexico. A) QTV-1 anorthosite with weak deformation seen in albite twins; B) SNY-1 weathered anorthosite with sericitic alteration and oxide overprinting; C) QTV-2 granite with perthitic K-feldspar, quartz, and biotite assemblage; D) QTV-3 granite with microcline and equigranular texture.

13S-SP-1

Sample 13S-SP-1 was obtained from an anorthosite body exposed in Sierra Pinta, located ~50 km southeast of Puerto Peñasco and ~10 km from the eastern shore of the Gulfo de California (Figure 2.2). The anorthosite is exposed along the Sierra Pinta crest and adjacent small drainages. The sample itself is composed of large (up to 3 cm) white plagioclase grains exhibiting an orthocumulate texture filled in with interstitial secondary chlorite. The rock is extensively weathered, and sericite has replaced most of the plagioclase grains and chlorite is found in most of the interstices. Remnant lamellar twinning in the plagioclase is still evident in cross polarized light (Figure 2.4A).

13S-CR-2

Sample 13S-CR-2 was collected near Cerro Rajon, Sonora, Mexico, near the Bamori Complex of Anderson and Silver (1981), on a hill composed primarily of previously unstudied, weathered anorthosite (Fig. 2.2). Petrographically, the sample contains remnant plagioclase creating an adcumulate texture that has been mostly replaced by sericite.

13S-CP (1-3)

The first two of these samples was obtained from a previously unstudied anorthosite intrusion located ~20 km east of Cerro Raton near the town of Magdalena (Fig. 2.2). CP-1 is a pyroxene- and plagioclase-rich rock with a moderate degree of weathering and sericite replacement exposed at Rancho de San Antonio. The plagioclase forms an adcumulate texture. Pyroxene crystals have been mostly replaced by amphibole, though remnant clinopyroxene can be seen in the interior of amphibole grains (Figure 2.4B). Many replacement crystals still exhibit ~90°/90° cleavage, but are length slow, which suggests clinopyroxene replacement by amphibole. CP-2 is from an anorthosite intrusion exposed at Rancho de Santa Niña (Fig. 2.2). In thin section, this rock appears weathered and shows replacement of plagioclase grains by chlorite and sericite.

Figure 2.4. Photomicrographs of samples of anorthosite from south and east of Caborca, Mexico. A) SP-1 anorthosite with plagioclase mostly replaced by sericitization; B) CP-1 anorthosite with pyroxene overprinting; C) CP-3 weathered anorthosite with actinolite and scapolite in plane polarize light. D) CP-3 under cross polarize light for feldspar identification

The third sample, 13S CP-3, is from an anorthosite body exposed ~2 km to the north of Rancho de Santa Margarita (Fig. 2.2). This sample has a similar mineralogy to CP-2, but contains actinolite grains that have not been chloritized. Plagioclase still shows strong sericitization and an adcumulate texture. Biotite crystals can be seen spatially associated with the actinolite, though these were not visible in hand sample. Actinolite may be a replacement of primary clinopyroxene grains but no residual clinopyroxenes are preserved. Euhedral scapolite crystals are present, notably near the actinolite and biotite crystals (Figure 2.4C- PPL and 2.4D - XPL). Small (~150 μ m) cross cutting calcite veins can be seen in thin section.

Methods

Physical Separation

All crushing and mineral separation was performed at the University of Colorado at Boulder. Rocks were broken into small fragments and crushed in a jaw crusher to pebble size. A split of this material was saved for whole-rock dissolution. The rest of the sample was then crushed in a disk mill and sifted through a 600 μ m sieve. Disk mill plates were moved closer together until all grains passed through the sieve. Both jaw crusher and disk mill were cleaned thoroughly with wire brush and air hose between each sample.

Due to small sample size and projected low zircon yield, anorthosite samples were hand washed to remove clay-sized particles. Crushed sample was placed in a bucket and submerged in water with soap to prevent flocculation of clays. Sample was repeatedly agitated and allowed to settle for ten seconds before water and suspended load was decanted. Samples were air dried on drying racks.

For the granite samples (QTV-2, 3), a Wilfley table was tilted at 20° and water flow rates were adjusted so that ~10% of each sample was sorted into the heaviest bin. Care was taken to clean the Wilfley table after each sample using water and air to remove residual grains. Samples were air dried.

Magnetic Separation

Preliminary magnetic separation was done using a hand magnet to remove the bulk of the magnetic minerals from the sample. A Frantz magnetic separator was used in two stages: prior to heavy liquid separation and after heavy liquid separation. Samples were fed into the Frantz separator slowly, with the tilt at 20° and the current set at 0.35 A. The magnetic portion was removed, and the sample was processed again at 20° but with the current at 0.6 A. The nonmagnetic portion from this step was used for heavy liquid separation in lithium metatungstate ($\rho = 2.85$ g/cm³) discussed below. After heavy liquid separation, the remaining sample was fed through the Frantz until the non-magnetic portion was small enough to pick zircons by hand under binocular microscopes. The final separation parameters were 20° at 1.0 A, 20° at 1.4 A, and decreasing slopes down to 1° until sufficiently sorted. All separates were retained in individual containers.

Heavy Liquid Separation

For each sample, 10 ml of crushed sample was put into a 50 ml test tube. Multiple tubes were required for most samples, and the total number varied depending on amount of sample and zircon fertility. These test tubes were then filled to 45 ml with lithium metatungstate (LMT) at a density of 2.85 g/cm³. Test tubes were shaken and centrifuged to accelerate density separation.

After density separation, the heavy minerals in the bottom of the test tube were frozen in place using liquid nitrogen. The floating mineral separate was dumped into filter paper, rinsed in distilled deionized H_2O (DDI H_2O), and dried at room temperature overnight. The heavy separate was thawed and rinsed into a different filter before drying. LMT was recovered by multiple stages of filtering and evaporated until solution was measured at the original density.

Methylene iodide (MEI), at a density of ~ 3.3 g/cm^3 , was used in small volume constriction tubes for low yield or poorly separated samples. MEI was poured in a test tube, with the constriction tube inside of it. Sample was then poured inside the constriction tube and allowed to settle. Light minerals were separated by plugging the small hole in the constriction tube and removing it from the test tube. Both separates were rinsed with acetone.

Whole-Rock Dissolution

Splits of each sample from the initial crushing stage of separation were powdered using a shatterbox. The shatterbox was cleaned by crushing of pure quartz sand for five minutes. While wearing gloves, powdered sand was removed and the alumina-ceramic puck and shatterbox interior were blown with compressed air. A pre-contamination sample was run and cleaned in the same manner. Pea-sized pieces of the sample were then pulverized for five minutes. Sample was dumped on to clean aluminum foil and funneled directly into glass storage container. New gloves were used for each sample to reduce risk of powder contamination.

Samples were then cut down to ~0.5 g for dissolution by pouring the powder between two sheets of weighing paper and dividing the sample repeatedly. Excess sample was returned to the glass container, while the sample for dissolution was stored in a small glass vial and sample weight was recorded. Sample was mixed in a 30 ml beaker with 4N HNO₃ and concentrated HF and allowed to sit for 24 hours. Sample was then dried down using a hot plate and mixed with HClO₄. After 24 hours, sample was again dried down, and remaining solid was dissolved in 1.5 N HCl and stored in 30 ml polyurethane vials.

Column Chemistry

Prior to column chemistry, each sample was split into two aliquots: spiked and unspiked. Unspiked aliquots were poured out into 30 ml beakers and dried on a hot plate. Spike samples were poured into 30 ml beakers and then spiked with internal standards for Rb, Sr, and Nd-Sm before being dried down. All aliquot weights and spike weights were recorded. Column chemistry was carried out following a method modified from Farmer et al. (1991). After column chemistry, samples were added to a rhenium filament in 1 ml aliquots. The concentration of each aliquot added depended on the element being analyzed and the

expected concentration. For example, for Rb, $\sim 1/300$ of each sample was added; for Sm, the entire sample was used.

TIMS

A 6-collector, Thermo-Finnigan thermal ionization mass spectrometer was used to measure all Rb, Sr, Sm, and Nd for whole-rock samples at the University of Colorado at Boulder. Samples were loaded on rhenium filaments using HNO₃ (Sm, Nd) or HCl + H_3PO_4 (Rb, Sr). Direct measurements of unspiked samples were made for the radiogenic isotopic composition of ¹⁴³Nd/¹⁴⁴Nd (Table 2.2).

LA-ICP-MS

Zircon separates were sent to the Arizona LaserChron Center at the University of Arizona in Tucson. Analytical methods for LaserChron analyses can be found in the analytical methods appendix of Gehrels and Pecha (2014). U-Pb measurements were made using a Thermo Element2 single collector ICP-MS (Inductively Coupled Plasma – Mass Spectrometer). U-Pb data can be found in Appendix A, Table A-1. Analyses that are >20% discordant or >5% reverse discordant are not included in the results or interpretation.

For Hf isotopic analyses, zircon were ablated using a Photon Machines Analyte G2 excimer laser coupled to a Nu Instruments HR-MC-ICPMS (High Resolution – Multicollector- Inductively Coupled Plasma – Mass Spectrometer). Hf data can be seen in Appendix A, Table A-3.

Results

Zircon U-Pb ages and Hf isotopic compositions

Sufficient zircon for U-Pb and Hf isotopic analyses were isolated from only four samples including both anorthosite and granites samples from Quitovac (QTV 1-3) and the anorthosite from Rancho de Santa Margarita (CP-3). U-Pb condordia diagrams are shown in Figure 2.5.

lated at 1.1	inital values calcu	s; (i) refers to	to measured value	on. (m) refers t	arts per millio	entrations in I	n this study. Conc	ples presented i	hole-rock san	otopic data for w	Rb-Sr and Sm-Nd is
-3.19 ± 0.09	0.511055 ± 0.000009	0.1436 ± 0.0001	0.512099 ± 0.000009	0.1446 ± 0.0001	14.017 ± 0.004	3.273 ± 0.001	0.713063 ± 0.000008	0.28467 ± 0.00002	23.435 ± 0.001	237.914 ± .015	13S-SP-1
-1.35 ± 1.35	0.511149 ± 0.000135	0.1685 ± 0.0001	0.512374 ± 0.000135	0.1697 ± 0.0001	3.201 ± 0.002	0.876 ± 0.001	0.707735 ± 0.000007	0.05293 ± 0.00038	.6927 ± 0.005	37.824 ± 0.001	13S-SNY-1
-4.26 ± 0.13	0.511000 ± 0.000013	0.1211 ± 0.0006	0.511881 ± 0.000013	0.1220 ± 0.0006	83.778 ± 0.010	16.497 ± 0.008	0.812075 ± 0.000026	6.1120 ± 0.00069	300.514 ± 0.005	142.095 ± 0.016	13S-QTV-3
-3.37 ± 0.17	0.511045 ± 0.000017	0.1179 ± 0.0001	0.511903 ± 0.000017	0.1188 ± 0.0001	62.372 ± 0.032	11.959 ± 0.001	0.801439 ± 0.000011	5.02658 ± 0.00028	194.085 ± 0.06	111.588 ± 0.005	13S-QTV-2
-3.95 ± 0.14	0.511015 ± 0.000014	0.1228 ± 0.0001	0.511909 ± 0.000014	0.1237 ± 0.0001	73.925 ± 0.007	14.765 ± 0.002	ı		•		13S-QTV-1
•	•				•		0.710441 ± 0.000011	0.04024 ± 0.00001	5.143 ± 0.001	369.358 ± 0.085	13S-CR-2
-4.39 ± 0.26	0.510993 ± 0.000026	0.1427 ± 0.0002	0.512031 ± 0.000026	0.1437 ± 0.0002	3.289 ± 0.004	0.763 ± 0.001	0.714409 ± 0.000011	0.11916 ± 0.00002	11.954 ± 0.001	289.950 ± 0.041	13S-CP-3
-4.15 ± 0.14	0.511005 ± 0.000014	0.1541 ± 0.0001	0.512126 ± 0.000014	0.1552 ± 0.0001	6.019 ± 0.002	1.508 ± 0.001	I	ı	•	·	13S-CP-2
e _{Nd} (i)	¹⁴³ Nd / ¹⁴⁴ Nd (i)	¹⁴⁷ Sm / ¹⁴⁴ Nd (i)	¹⁴³ Nd / ¹⁴⁴ Nd (m)	¹⁴⁷ Sm / ¹⁴⁴ Nd	[Nd]	[Sm]	⁸⁷ Sr / ⁸⁶ Sr (m)	⁸⁷ Rb/ ⁸⁶ Sr	[Rb]	[Sr]	Sample
							a, Mexico.	cks from Sonora	or intrusive ro	ic Isotopic data f	Table 2.2. Radiogen

4 J t 2 t Son 6.10 Mexico

Rb-Sr and Sm-Nd isotopic Ga. Errors reported at 2σ. uata **JOI WINDIA** 5 sampres pr 2 E Ē study. (Ē m parts per (III) 2 values, (I) T C L 2 E TUN v a 2

Figure 2.5. Concordia diagrams of zircon ages for intrusive samples from Sonora, Mexico. Error ellipses for each data point at 1-sigma (68.3%) confidence. Ages < 90% concordant were discarded. All analyses performed at Arizona Laserchron Center in Tucson, Arizona.

The U-Pb ages for the Quitovac samples QTV1-3 were all identical within error (QTV-1, 1095 \pm 29 Ma, n=5, figure 2.5a; QTV-2, 1086 \pm 8.7 Ma, n = 18; figure 2.5b; QTV-3, 1084.3 \pm 6.9 Ma, n = 20; figure 2.5c). All ages are within error of zircon U-Pb ages for these rocks reported by Enriquez-Castillo et al. (2009). The zircon Hf isotopic compositions of these samples are also identical within error (Figure 2.6). QTV-1, -2, and -3 have median $\varepsilon_{Hf}(0) = -24.7 \pm 1.5$ (n = 5), -23.4 ± 1.8 (n = 15), and -24.3 ± 1.9 (n = 14), respectively.

Sample CP-3 has a U-Pb age of 1089 ± 13 Ma (n = 6; figure 2.5d). The Hf composition ranges from $\varepsilon_{Hf}(0) = -22.4$ to -25.1, with a median of -23.5 and an average 2σ error of ± 1.3 (n = 3). One zircon was measured with a concordant age at 1435.5 ± 25.1 Ma, likely the result of measurement of a xenocrystic zircon core.

Whole Rock Sm-Nd and Rb-Sr Measurements

The Sm-Nd isotopic analyses produce in an isochron corresponding to an age of 1.117 ± 0.17 Ga with an initial ¹⁴³Nd/¹⁴⁴Nd = 0.51100 ± 0.00015 and MSWD = 2.4 (Table 2.2; Figure 2.7). Sample 13S-SNY-1 has been included on the graph, but excluded from the isochron calculation due to the large analytical uncertainty for this measurement. All samples have similar isotopic compositions, regardless of composition, displayed by the ε_{Nd} (T) at a model age of 1.1 Ga, in Figure 2.8. The Quitovac anorthosite and granite samples range from ε_{Nd} = -3.37 to -4.26 and have the low ¹⁴⁷Sm/¹⁴⁴Nd ratios from 0.118 to 0.123. The anorthosite sample (13S-QTV-1) has ε_{Nd} (1100 Ma) in between the values of the two granite samples. The sample from Sonoyta (13S-SNY-1) had the highest ε_{Nd} = -1.35, but also the highest ¹⁴⁷Sm/¹⁴⁴Nd ratio at 0.169. The anorthosites (13S-CP-2, 3) from Cerro Prieto, south of Caborca, have ε_{Nd} (1100 Ma) = -4.15 to -4.39.

These samples also produce a Rb-Sr isochron that gives an age of 1.21 ± 110 Ga, which overlaps the U-Pb zircon age of ~1.1 Ga (Figure 2.9). These data (Table 2.2) plot to form a low accuracy "pseudochron" with MSDW = 695 and an initial Sr isotopic composition of 87 Sr/ 86 Sr = 0.709549 ± 0.0051.

Figure 2.6. Rank order diagram of Hf isotopic composition of zircon from Grenville age igneous rocks from Sonora, Mexico. Sonoran Intrusives include samples from Quitovac, Sonora, Mexico (13S-QTV) and near Caborca (13S-CP-2). Red line denotes "high" and "low" $\varepsilon_{\rm Hf}$ at $\varepsilon_{\rm Hf}$ (i) = -20. Other Grenvillian source rocks: AG = Aibo Granite; PP = Pikes Peak Batholith; EG = Escuadara Granite; LHM = Little Hatchet Mountains; FM = Franklin Mountains; LU = Llano Uplift; SA= Southern Appalachian gneisses; modified from Howard et al (2015). Adk = Adirondacks; from Bickford et al (2010).

Figure 2.7. Sm-Nd isochron diagram for whole-rock analyses of intrusive rocks from Sonora, Mexico. Available data from seven samples listed in Table 2.2. Error bars for 147 Sm/144 Nd smaller than symbols.

1989. Nealy and Unruh, 1991. Mojave Province data from Nelson and DePaolo, 1985; Bennett and DePaolo, 1987; Barovich et al., Basement rock data from previous studies included for comparison. Llano Uplift data from Patchett and Ruiz, 1989. Yavapai/Mazatzal data from DePaolo, 1981; Bennett and DePaolo, 1987; Nelson and DePaolo, 1985; Kempton et al., 1990; Figure 2.8. Isochron diagram showing ε_{Nd} at 1.1 Ga for whole-rock analyses of intrusive rocks from Sonora, Mexico.

Figure 2.9. Rb-Sr isochron plot with available data from six samples listed in Table 2.2. Error bars smaller than symbols.

Discussion

Ages

The new age determinations for the granitic rocks sampled here demonstrate that the Sonoran granites and anorthosites crystallized contemporaneously at ~1.09 Ga. This age is consistent with measured ages for other Mesoproterozoic granitic rocks in the region, including the Aibo Granite, the Escuadra Granite, and other Quitovac-area granitic rocks (Anderson and Silver, 1981; Amato et al., 2009; Iriondo et al., 2009). The coeval emplacement of these regional intrusions indicates that broad areas of northern Sonora were affected by AMCG suite magmatism.

Isotopic Data

The fact that the analyzed granitic rocks and anorthosites plot on the same Nd and Sr isochrons indicate that all of these rocks crystallized from parental magmas with similar, homogenous, Sr and Nd isotopic compositions. This observation supports models for the formation of AMCG suites involving the production of both anorthosites and granitic rocks from the same parental magmas. Unfortunately the limited data set obtained in this study does not allow any further speculation on the exact relationship between the two lithologies. We can use the available isotopic data to assess possible sources of these parental magmas. Most models for the origin of AMCG rocks involve the injection of mafic magmas into the continental crust, followed by extensive crustal interaction (Turner et al., 1992; Emslie et al., 1994; Duchesne et al., 1999; Bybee and Ashwal, 2015). The large degree of crustal interaction, potentially through assimilation-fractional crystallization (AFC) processes, can obscure evidence of an original mafic magma is obscured (Bybee and Ashwal, 2015). If mafic magmas were involved in the production of these rocks, it is not apparent in the isotopic data for the Sonoran AMCG rocks, given that the ε_{Nd} (T) values and the initial ⁸⁷Sr/⁸⁶Sr ratio from the Sonoran AMCG samples overlap the values expected for intermediate composition crust of the Yavapai/Mazatzal Province at ~1.1 Ga (Figure 3.8; Bennett and DePaolo, 1987; Famer, 1992; Farmer et al., 2005b). The ε_{Nd} (T) values are much lower than expected for juvenile mantle

derived igneous rocks at this time, such as the rocks from the Llano Uplift (Figure 3.8; Patchett and Ruiz, 1989). The conclusion is that both the Nd and Sr in the AMCG suite rocks in Sonora were largely inherited from the underlying Precambrian basement.

Implications for the distribution of Mojave Province crust

Existing models of the geographic extent of the Mojave Province in Sonora, Mexico are based largely on the distribution of the Aibo Granite, south of Caborca, Sonora, which has a significantly lower ε_{Nd} (T) value than other AMCG suite rocks in Sonora (Iriondo et al., 2004; Farmer et al., 2005; Molina-Garza and Iriondo, 2007; Amato et al., 2009). The data presented here supports the conclusion that the extent of the Mojave Province is, in fact, restricted to the Caborca area. Anorthosite sample 13S-CP-2, from east of the Aibo Granite sample location, has a Nd isotopic composition similar to that of Yavapai/Mazatzal Province crust (Iriondo et al., 2004; Amato et al., 2009). Isotopic data from samples 13S-QTV-1, 2, and 3, shows that Yavapai/Mazatzal crust likely exists to the southwest of Quitovac as well. Previous analyses of AMCG suite rocks northwest of Quitovac suggest that these rocks were either derived from and/or interacted extensively with Yavapai/Mazatzal crust (Iriondo et al., 2004). All samples overlap within error in ε_{Nd} with Yavapai/Mazatzal Province crust or crustal derivatives, such as the Escuadra Granite to the east of Caborca (Amato et al., 2009).

Characterization for Detrital Zircon Analysis

These intrusions have ε_{Hf} values that are similar to measured values for the Aibo Granite and Escuadra granites in Sonora, Mexico, despite differences in the Nd isotopic characteristics (Figure 2.6; Amato et al., 2009; Howard et al., 2015). All of these plutons exhibit the same U-Pb ages (~1.08 Ga) and have ε_{Hf} values between -20 and -26, suggesting isotopic similarity of these intrusions over a large geographic region, allowing them to be characterized for detrital zircon provenance determinations. While the granitic samples have a high zircon fertility, few zircon were recovered from anorthosites in this study, consistent with anorthosites from Canadian AMCG suites (McLelland et al., 2004). This suggests that the

granitic rocks, but not anorthosites, of the ~1.08 AMCG suite in present day Sonora, Mexico could have contributed to the load of Grenvillian detrital zircon present in Neoproterozoic and Cambrian sandstones in the western United States. Grenville-age granitic rocks are known to have a high zircon fertility compared to other intrusions, so even smaller volume exposures of these granitic plutons may have played a critical role in zircon contribution (Dickinson, 2008).

Conclusions

Isotopic study of several samples from a ~1.08 Ga AMCG suite in northwest Mexico yielded genetic interpretations on the source of the intrusions. The major contributions are:

 Isotopic data demonstrate that northwestern Sonora, Mexico underwent widespread AMCG suite magmatism that resulted in the contemporaneous crystallization of granite and anorthosite intrusions around 1.089 Ga.

2. The ε_{Nd} data suggest that a major crustal component was involved during the generation of the parental magma that produced the AMCG intrusive suite. The observed crustal signature is consistent with derivation from intermediate crust of the Yavapai/Mazatzal Province, both to the north and east of the Mojave-derived Aibo Granite near Caborca.

3. The AMCG suite in northwestern Mexico, as well as other regional 1.08-1.09 Ga granites (Aibo and Escuadra), have similar Hf isotopic composition and U-Pb ages. While low zircon yield from anorthosites suggests little contribution to the sedimentary record, exposed granitic rocks from this suite could have played a large role in zircon supply to siliciclastic units during the Neoproterozoic and Cambrian.

Chapter Three

Provenance of Grenvillian detrital zircon from intracratonal basal sandstones in North America

Introduction

Sediment provenance studies commonly compare U-Pb ages of detrital zircon in siliciclastic sedimentary rocks with igneous zircon in exposed crystalline rocks to determine the sediment source. However, when broad tracts of crust share the same age, it is difficult to resolve the distinct geographic source of the detrital zircon in this fashion. For example, the U.S. and Mexican portions of North America are comprised principally of Paleoproterozoic to Mesoproterozoic basement rocks, making detailed provenance determinations difficult for zircon of these ages despite a nearly ubiquitous occurrence in Phanerozoic siliciclastic sedimentary rocks (Stewart et al., 2001; Thomas, 2001; Fedo et al., 2003). One approach towards better defining the sources of detrital zircons is to combine U-Pb ages with Hf isotopic analyses in cases where the Hf isotopic compositions of zircon from coeval source rocks vary regularly with geographic position. In North America, it has been demonstrated that regular spatial variations exist in the Hf isotopic compositions of 1.0 Ga to 1.3 Ga ("Grenvillian") basement rocks in North America and can be used to refine the provenance of Grenvillian detrital zircon (Howard et al., 2015). This study takes advantage of this observation and uses U-Pb ages and Hf isotopic data to assess the provenance of such Grenvillian detrital zircon from Neoproterozoic to Cambrian sandstones deposited at or near the so-called "Great Unconformity", which is a non-depositional and/or erosional surface exposed around the world that represents a time gap of over one billion years (Sloss, 1963; Peters and Gaines, 2012). The goal of the study is to use the abundances and provenance determinations of Grenvillian zircons to determine 1) if and where rift-generated topographic highlands were located in Laurentia during the deposition of these sediments, 2) the paleogeography and direction(s) of sediment transport, and 3) the orientation and timing of marine transgressions across the Laurentian continent during and just after the breakup of Rodinia.

Geologic Background

The Great Unconformity is a surface of non-deposition and/or erosion separating Precambrian basement rocks from overlying Neoproterozoic to Cambrian sandstones and is exposed in virtually every

continent on Earth. Although the exact circumstances involved in the production of this global unconformity are poorly understood, there is an increasing recognition of its importance in Earth history. Recent studies, for example, suggest that exposure of unweathered crystalline rocks along the unconformity and subsequent flooding of the continents after the breakup of the supercontinent Rodinia may have influenced ocean chemistry and increased the available nutrients for the expansion of biomineralizing marine phyla associated with the "Cambrian Explosion" (Peters and Gaines, 2012).

In North America, basal sandstones deposited along the Great Unconformity are exposed from at western craton margin and across the midcontinent into the central United States (Fig. 3.1). These Neoproterozoic to Cambrian sedimentary rocks include the middle member of the Wood Canyon Formation (California), the Tapeats Sandstone (Arizona), the Sawatch Sandstone (Colorado), the El Arpa Formation (Sonora, Mexico), the Flathead Sandstone (Wyoming), the Lamotte Sandstone (Missouri), the Mt. Simon Sandstone (Ohio, Michigan, Illinois), the Van Horn Formation (Texas), the Riley Formation (TX), and the Reagan Sandstone (Oklahoma and Kansas) (McElroy, 1965; Bell, 1970; Hereford, 1977; Houseknecht and Ethridge, 1978; Fedo and Cooper, 2001,; Stewart et al., 2001; Stewart et al., 2002; Gehrels et al., 2011. Lovell and Bowen, 2013; Cullen, 2014; Gehrels and Pecha, 2014; Siddoway and Gehrels, 2014; Spencer et al., 2014). These sedimentary units are part of so-called "Sauk" sedimentary sequences that were deposited during the mid- to late-Cambrian marine transgression onto the Laurentian continent that resulted in the epicontinental Sauk Seaway (Sloss, 1963; 1988). All of the sandstones listed above are stratigraphically equivalent and represent sediments originally deposited in shallow marine or fluvial depositional environments. The depositional age of the sandstones becoming progressively younger toward the craton interior due to the progressive inundation of the continent by the Sauk Sea from the southwest to northeast during the Cambrian (Sloss, 1963; 1988; Fedo and Cooper, 2001).

Figure 3.1. Cartoon map showing regional extent of basal sandstone deposition. Modified from Stewart et al., 2002 and Peters and Gaines, 2012.

An important aspect of the Great Unconformity for the purpose of detrital zircon provenance determinations is that it represents a surface from which older sedimentary material had been stripped prior to the deposition of overlying sandstones, minimizing the possibility that detrital zircons in these sedimentary units were derived from recycling of previously deposited detritus. In addition, because the U-Pb ages of zircons from the underlying crystalline rocks can be directly measured, detrital zircons in the basal sandstones derived from the local basement sources can be readily identified. As a result, it should be possible to assess which areas of the Laurentia continent were exposed and actively exhuming just after the breakup of Rodinia from detrital zircon studies of the basal sandstones, and what the general sediment transport directions across the continent were during this time interval.

Detrital zircon U-Pb age spectra are available for many of the basal "Sauk Sequence" sandstones in North America, and show dominant age populations at 1.0-1.3 Ga, 1.4 Ga, and 1.7 Ga, all which corresponds to the ages of Paleoproterozoic crust that comprises much of the southern portions of the continent, as well as subordinate zircon populations derived from Archean crust (Thomas, 2001; Stewart et al., 2001; Gehrels et al., 2011; Gehrels and Pecha, 2014; Howard et al., 2015). The zircons with ages between 1.0 to 1.3 Ga are termed "Grenvillian" zircon and are of principal interest in this study. Grenvillian detrital zircons are common in Neoproterozoic and Cambrian sandstones, so common, in fact, that some authors have termed this sedimentation event the "Grenville Flood" and have suggested that sediment shed from the highlands along the eastern continental margin of Laurentia were fluvially transported and deposited across the continent to the west (Rainbird et al., 1992; 1997; 2012; Mueller et al., 2007). One impetus for this study is to use detrital zircon U-Pb and Hf isotopic data from basal Sauk Sequence sandstones to test this hypothesis. An important issue is the fact that Grenvillian crystalline rocks are not restricted geographically to the Grenville Province in easternmost Laurentia where largely juvenile accreted terranes of intrusive and metamorphic rocks span the eastern boundary of North America, from southeastern Canada to the southeastern United States (Figure 3.2; van Schmus et al., 1993; Whitmeyer and Karlstrom, 2007). Basement crystalline rocks of similar age can also be found to the southwest as part of the accretionary terranes currently exposed in the Llano Uplift in Texas. In addition, ~1.1 Ga granitic rocks and anorthosites are found as intrusions within Paleoproterozoic crust throughout southwest North America (Anderson and Silver, 1974; 1981; Karlstrom and Bowring, 1988; Karlstrom and Whitmeyer, 2007; Howard et al., 2015; this study). Previous work has demonstrated that despite similar crystallization ages, zircon from these geographically distinct Grenvillian rocks have different Hf isotopic compositions (Bickford et al., 2010; Howard et al., 2015). As a result, the combined U-Pb and Hf isotopic datasets of Grenvillian detrital zircon can be used to better resolve the geographic location of their sources.

Samples

In order to assess the provenance of detrital zircon found in basal Sauk sandstones across North America, U-Pb ages and Hf isotopic composition were obtained from sandstones at four locations across the midcontinent (Fig. 3.2). General descriptions of each unit sampled are provided below.

Lamotte Sandstone

The mid- to upper- Cambrian Lamotte Sandstone outcrops in the St. Francois Mountains in southeastern Missouri, where it unconformably overlies ~1.48 Ga Proterozoic basement of the Eastern Granite-Rhyolite Terrane (Menuge et al., 2002). The Upper Lamotte Sandstone is a moderately-to-well sorted, quartz-dominated sandstone (Houseknecht and Ethridge, 1978) that ranges in thickness from 7 to 30 m, and is locally more feldspathic and more poorly sorted towards the basal contact (Houseknecht and Ethridge, 1978). Previous workers suggested that the lowermost portions of the Lamotte Sandstone represent detritus derived from local ~1.48 Ga basement via a braided stream system that drained eastward from a highland to the west (present day coordinates), thought to be the ancestral St. Francois Mountains (Houseknecht and Ethridge, 1978). As the continent was inundated by the Sauk Sea there was a gradual shift from a braided-stream depositional setting to a shallow marine environment, as evidenced by a shift

and Karlstrom (2007). Political map from the Cartographic Research Lab at the University of Alabama. Figure 3.2. Cartoon map indicating the extent of North American crystallne basement rock and cratonal boundaries Crystalline basement samples discussed in Ch.2. Basement ages and regional extent from Reed (1993) and Whitemeyer Laurentian rifted margin boundary after the break up of Rodinian supercontinent. Stars indicate samplesv from this study;

to the deposition of well-sorted quartz sands interpreted to have been derived from continental sources in the Canadian Shield to the north (Ojakangas, 1963; Houseknecht and Ethridge, 1978). As the marine transgression proceeded, siliclastic sedimentation transitioned to the deposition marine of carbonates that now comprise the late-Cambrian Bonneterre Formation (Houseknecht and Ethridge, 1978).

To assess the provenance of the Lamotte Sandstone, two samples of the upper Lamotte sandstone were provided by Summit Proppants, L.L.C. from a proppant sand quarry near Farmington, Missouri (Figure 3.2). Both samples consists of uncemented quartz sands, with modal quartz contents of >95%. Quartz grains are well-rounded and define a narrow size range from 0.5 mm to 0.7 mm. The two samples both yielded very small amounts of heavy minerals and as a result zircons from the two samples were combined for subsequent analyses; zircons were well rounded and clear, approximately 100-200 μ m (long-axis), with generally no inclusions or visible radiation damage.

Flathead Sandstone

The upper Cambrian Flathead Sandstone is a regionally extensive, unconformable basal sandstone in Wyoming, North Dakota, and Montana (Bell, 1970). It is commonly divided into an upper and lower unit. The lower unit is a cross-stratified, well-cemented, poorly sorted, medium to coarse grained quartzite (Bell and Middleton, 1978; Beebee and Cox, 1998). This unit gradually transitions into interbedded sandstone-shale-siltstone sedimentary units that comprise its upper portion (Bell and Middleton, 1978). Sedimentary structures indicate both fluvial and shallow marine depositional environments as the shoreline responded to a marine transgression and to gradually increasing water depths (Beebee and Cox, 1998). The Flathead Sandstone is conformably overlain by the late Cambrian Gros Ventre Formation that is composed of shales and limestone (Bell and Middleton, 1978).

Detrital zircon U-Pb age determinations exist for both upper and lower Flathead Sandstone in the Bighorn Basin in northern Wyoming (May et al., 2013). At this locality, sandstone from near the basal contact contains a large ~2891 Ma detrital zircon population at, with a smaller peak at ~1785 Ma (May et

al., 2013). The upper Flathead sandstone sample has identical age peaks, but the peak at ~1785 Ma forms the dominant population (May et al., 2013).

In this study, samples of the Flathead Sandstone were taken from the eastern Owl Creek Mountains in central Wyoming, southeast of the Bighorn Basin. The Archean basement of the eastern Owl Creek Mountains upon with the sandstone was deposited is composed of a ~2.9 Ga bimodal intrusive suite which was metamorphosed at ~2.75 Ga and then intruded by a ~2.6 Ga peraluminous granite (Mueller et al., 1985; Frost et al., 2006). One sample (14WY-FH-1) was obtained from the portions of the unit within 10m of the basal contact with the Archean granite and is a well-cemented quartzite with well-rounded to sub-rounded, poorly sorted quartz grains. The lower Flathead sample yielded insufficient zircon for analysis. A second sandstone sample (14WY-FH-2) was taken near the upper contact of the Flathead Sandstone with the late Cambrian Gros Ventre shale and consists of fine grained, well-sorted, and well-rounded quartz grains. Zircons from this sample are pink, very fine grained (~100 µm), generally euhedral to subhedral, and show little to no visible radiation damage.

Colorado Basal Sauk Sequence Sandstones

Early Paleozoic sedimentary rocks are preserved throughout Colorado, both in outcrop and in the subsurface (Johnson, 1944; MacLachlan, 1961; Myrow et al., 2003). Preserved Cambrian sandstone outcrops are restricted geographically to central Colorado in the form of the Sawatch Formation which is interpreted as a transgressive marine deposit that includes large-scale, glauconite-rich, tidally influenced, subaqueous marine dune deposits (Myrow et al., 2003). U-Pb detrital zircon spectra for this unit are already available and were not analyzed for this study (Siddoway and Gehrels, 2014). While the Sawatch Sandstone represents the basal Sauk Sequence in central Colorado, new cores from the Denver-Julesburg Basin sample a basal sandstone of unknown age which are described and analyzed here. Additionally, samples of a Neoproterozoic sandstone injectite unit representing the sediment composition prior to the breakup of Rodinia, the Tava Sandstone, were provided for this study by Dr. Christine Siddoway.

Material from three cores drilled through the Paleozoic sedimentary sequence into crystalline rocks were provided for this study by Nighthawk Energy, LLC. These cores, named Jackson Hole, Big Sky, and Taos, are located within 6 km of each other in northern Lincoln County and southern Washington County, Colorado (Figure 3.2). The granitic basement of the Big Sky core is $\sim 1458 \pm 14.3$ Ma from zircon U-Pb ages (A. Seeling, personal communication). Detailed descriptions of the cores were generated as part of this study and two different lithofacies were identified in each of the studied cores (Appendix B). The first is characterized by homogenous, cross-bedded quartz-dominated (>95%), medium grain sandstone (Figure 3.3A). Quartz grains are sub-rounded and poorly- to moderately-sorted in these sections. Lag deposits with a high abundance of granule to pebble size clasts occur between cross-bedded sections and at facies transitions. Glauconite is present in these sands and can range in modal abundance from 0% up to 15%, giving some hand samples a pale green hue. Samples with low glauconitic components are generally quartz cemented. Samples with a higher glauconitic component have a carbonate cement that completely supports the quartz grains in some areas. Carbonate replacement yields a patchy distribution of widely spaced quartz grains in a carbonate cement in some areas (Figure 3.3B). The glauconite in these samples forms distinct, irregularly shaped grains which are larger than the majority of the quartz grains. Calcite, shown in Figure 3.3B, may have selectively replaced preexisting feldspar grains.

The second lithofacies found in the D-J core samples is a heterolithic, quartz-rich (>60%), glauconitic, fine-grain sandstone. This facies is characterized by interbedded, dark green, glauconite-rich and white, quartz dominated layers. Individual mineral grains are dominantly cemented by carbonate with a variable hematite component, creating a red appearance (Figure 3.3C). Glauconite in these samples is present both as individual grains and as a very fine-grained interstitial cement. Very fine-grained glauconitic mud drapes occur on irregular boundaries interpreted as paleosurfaces formed during episodes

Figure 3.3. Photomicrographs of samples from basal sandstone cores in Lincoln County, Colorado. A) JH-1 quartzarenite wih little to no cement, uniform gray in hand sample; B) BS-3 in plane polrized light with calcite-cemented quartz-rich sandstone with glauconite graines. C) CP-3 weathered anorthosite with actinolite and scapolite in plane polarized light.

of subaerial exposure. Infrequently, this facies contain rip-up clasts of both quartz-rich and glauconite-rich material, though no storm deposits are evident in the cores. Sections of this facies contain abundant, large (~1-3 cm) hematite nodules. Parallel laminations and wavy laminations are present, but are disturbed by various degrees of bioturbation and downward burrowing. Additionally, the second facies occasionally exhibits pedogenic-like overprinting due to weathering processes that obscure any primary sedimentary structures.

Though no absolute age has been determined for the samples of basal sandstones in this study, the glauconitic sandstone in the D-J cores is overlain by Ordovician carbonates and is certainly lower Paleozoic in age (A. Seeling, personal communication). The sandstones in these cores are lithologically and stratigraphically similar to the Cambrian Sawatch Sandstone (Myrow, 1998; Myrow et al., 2003).

Eight samples were taken for this study, and six of these were from Facies 1. Three samples were taken from the Big Sky Core, at depths of 8204.1 feet (BS-3), 8203.8 feet (BS-2), and 8183.4 feet (BS-1), all from Facies 1. Three samples were taken from the Taos Core, at depths of 8153.1 feet (T-1), 8152.9 feet (T-2), and 8119.4 feet, with the T-1 and T-2 from Facies 1 and T-3 from Facies 2. Two samples were taken from the Jackson Hole Core, at depths of 8396.5 feet (JH-1) and 8372.1 feet (JH-2), both from Facies 1. Of these samples only two (14CO-BS-3 and 14CO-T-3) yielded enough zircon for isotopic analysis, though some zircon were recovered from the remaining six samples from the Taos (14CO-T), Big Sky (14CO-BS), and Jackson Hole (14CO-JH) cores. These zircon were combined for the purposes of isotopic analyses (14CO-Core).

Tava Sandstone Injectite

The Tava Sandstone is a regionally extensive Neoproterozoic sandstone injectite that is found in dikes and sills in the Proterozoic basement rocks along the Ute Pass Fault Zone through central Colorado, USA (Siddoway and Gehrels, 2014). These sandstone dikes were first recognized by Vitanage (1954) and mapped more extensively by Harms (1965). The Tava Sandstone is a fine grained quartz arenite with well-

rounded quartz grains supporting isolated quartz aggregates and pebbles (Siddoway and Gehrels, 2014). Thin-section analysis indicated that elongate grains formed a fabric aligned parallel to dike walls and interpreted to have formed during emplacement (Vitanage, 1954). These sandstone injectites are interpreted to record the composition of the last vestige of Neoproterozoic sedimentation prior to the continental inundation of the Sauk Sea (Siddoway and Gehrels, 2014).

Three grain mounts from samples of separate injectite bodies previously analyzed for U-Pb isotopic ages were used in this study (Host - SH324-HO [n=79], Body - SH324-BD [n=89], Vein - SH324-VE [n=79]; Siddoway, unpublished data). U-Pb ages from zircon from the Tava Sandstone are characterized by three distinct age populations at ~1.7 Ga, ~1.4 Ga, and ~1.1 Ga (Siddoway and Gehrels, 2014). The ~1.1 Ga peak is characterized by a broad age distribution from 0.97 to 1.33 Ga. The Tava Sandstone zircons also include a subordinate population of Archean age grains (Siddoway and Gehrels, 2014).

Methods

Physical separation

All crushing and mineral separation was performed at the University of Colorado at Boulder. Rocks were broken into small fragments and crushed in a jaw crusher to pebble size and a 30 g portion of this material was saved for whole-rock dissolution. The majority of the sample was then crushed in a disk mill and sifted through a 600 μ m sieve. Both jaw crusher and disk mill were cleaned thoroughly with wire brush and air hose between each sample.

Sedimentary samples were processed using a Wilfley table tilted at 20° and adjusted flow rates so that <5% of each sample was sorted into the heaviest bin, and all bins were saved and air dried on drying racks. Care was taken to clean the Wilfley table after each sample using water and air to remove residual grains.

Magnetic Separation

Preliminary magnetic separation was done using a hand magnet to remove the bulk portion of magnetic separates. A Frantz magnetic separator was used in two stages: prior to heavy liquid separation and after heavy liquid separation. Samples were fed into the Frantz separator slowly, with the tilt at 20° and the current set at 0.35 A. The magnetic portion was removed, and the sample was processed again at 20° with the current at 0.6 A. The nonmagnetic portion from this step was used for heavy liquid separation in lithium metatungstate ($\rho = 2.85$ g/cm³) discussed below. After heavy liquid separation, the remaining sample was fed through the Frantz until the non-magnetic portion was small enough to pick zircons under binocular microscopes. The final separation parameters were 20° at 1.0 A, 20° at 1.4 A, and decreasing slopes down to 1° until sufficiently sorted. All separates were retained in individual containers.

Heavy Liquid Separation

For each sample, 10 ml of crushed sample was put into a 50 ml test tube. Multiple tubes were required for most samples, and the total number varied depending on amount of sample and zircon fertility. These test tubes were then filled to 45 ml with lithium metatungstate (LMT) at a density of 2.85 g/cm³. Test tubes were shaken and centrifuged to accelerate density separation.

After density separation, the heavy minerals in the bottom of the test tube were frozen in place using liquid nitrogen. The light, floating mineral separate was dumped into filter paper, rinsed in distilled deionized H_2O (DDI H_2O), and dried at room temperature overnight. The heavy separate was thawed and rinsed into a different filter before drying. LMT was recovered by multiple filtering stages and evaporated until solution was measured at the original density.

Methylene iodide (MEI), at a density of ~ 3.3 g/cm^3 , was used in small volume constriction tubes for low yield or poorly separated samples. MEI was poured in a test tube, with the constriction tube inside of it. Sample was then poured inside the constriction tube and allowed to settle. Light minerals were separated by plugging the small hole in the constriction tube and removing it from the test tube. Both separates were rinsed with acetone. Zircon separates were sent to the Arizona LaserChron Center at the University of Arizona in Tucson. Analytical methods for LaserChron analyses can be found in the Analytical Methods Appendix of Gehrels and Pecha (2014). U-Pb measurements were made using a Thermo Element2 single collector ICP-MS (Inductively Coupled Plasma – Mass Spectrometer). U-Pb data tables can be found in Appendix A, Table A-2. Detrital zircon U-Pb data is presented in the following sections as probability density functions, where the area under each curve equals a probability of 100%. Analyses that are >20% discordant or >5% reverse discordant are not included in the results and interpretation.

For Hf isotopic analyses (Table 3.2), zircon were ablated using a Photon Machines Analyte G2 excimer laser coupled to a Nu Instruments HR-MC-ICPMS (High Resolution – Multicollector- Inductively Coupled Plasma – Mass Spectrometer). Hf data tables can be seen in Appendix A, Table A-4. Hf data for all samples are displayed in a rank order diagram in Figure 3.4.

Detrital Zircon U-Pb and Hf Results

Lamotte Sandstone

Detrital zircon in the Lamotte Sandstone (14MO-LMT) [n= 21, where n are number of grains] show a single age peak at 1096 ± 22 Ma, with one grain yielding an older age of 1691.6 ± 18.8 Ma (Figure 3.5). Hafnium isotopic analyses from the Grenvillian detrital zircon show a limited range of ε_{Hf} (0) values ranging from -20.0 to -27.4 with a typical 2 σ error of ± 2 ε_{Hf} units.

Flathead Sandstone

Three hundred and thirteen zircon from sample 14WY-FH-2 yielded a dominant U-Pb age population at 1779 Ma that tails towards 1800-1900 Ma (Figure 3.5). An Archean zircon population [n = 19] also exists and forms distinct peaks at 2700 Ma (n=13) and at 2500 Ma. There is one younger zircon

Figure 3.4. Rank order diagram of $\epsilon_{\rm Hf}$ values for Grenvillian zircons from basal sandstones. Tava Sandstone (SH324-BD, SH324-VE, SH324-HO), Lamotte Sandstone (14MO-LMT), and Colorado Cores (14CO-BS, 14CO-T, 14CO-JH) data can be found in Appendix A, Table A-4. Red line denotes "high" and "low" $\epsilon_{\rm Hf}$ at $\epsilon_{\rm Hf}$ (i)= -20. Other detrital zircon values: CF = Campito Formation; mWCF = middle member of the Wood Canyon Formation; SQ = Stirling Quartzite; JF = Johnnie Formation; modified from Howard et al (2015).

Figure 3.5. Probability Density Function for the Lamotte Sandstone near Farmington, Missouri. Area under each curve totals to 100%. Crystalline basement ages indicated by colors: Green- Grenville Orogeny, Red- Granite-Rhyolite Province, Blue- Yavapai/Mazatzal Provinces.

Figure 3.6. Probability Density Functions for the Flathead Sandstone in the Owl Creek Mountains. Area under each curve totals to 100%. Crystalline basement ages indicated by colors: Green- Grenville Orogeny, Red- Granite-Rhyolite Province, Blue- Yavapai/Mazatzal Provinces.

 $(2128.7 \pm 15.8 \text{ Ma})$ and one older zircon $(3324.9 \pm 13.1 \text{ Ma})$ that are outside of these age clusters. No Grenvillian detrital zircon were identified, so no zircon Hf isotopic data were obtained for this sample.

D-J Basin Cores

Only two samples (14CO-BS-3 and 14CO-T-3) yielded a sufficient number of zircon grains for the calculation of an age spectra analysis (Figure 3.7a, b, c). Only sample 14CO-BS-3 yielded more than one hundred zircon grains (n = 105), the minimum number most workers suggest is required for the determination of statistically robust age probability function (Vermeesch, 2004). This sample has a dominant age peak at 1378.2 ± 24.1 Ma, and secondary peaks at 1153 ± 28.4 Ma, and 1678.1 ± 19.5 Ma. A few older grains are found in this samples, including an Archean zircon (2068.3 ± 17.8 Ma). Sample 14CO-T-3 (n = 60) has prominent age peaks at 1096.4 ± 30.6 Ma, 1411.6 ± 25.1 Ma, and 1722.7 ± 19.6 Ma. For this sample, the age peaks at 1411 Ma and 1722 Ma are subequal, and dominate the zircon population. Zircon yields from the remaining six core samples were low and these grains were combined for the purposes of the U-Pb analyses (n_{total}=69). Zircons in this aggregate sample (14CO-Core) yield age peaks at 1103.7 ± 25.6 Ma, 1370.6 ± 24.2 Ma, and 1688.9 ± 22.0 Ma, similar to the two individual samples (Figure 3.7c).

Fourteen Grenvillian zircon grains from sample 14CO-BS-3 were selected for Hf isotopic analysis and yielded $\varepsilon_{Hf}(0)$ values from -15.2 to -27.7 with a typical 2σ error of \pm 1.9. Seven Grenvillian zircon grains from Taos core sample (14CO-T-3) have $\varepsilon_{Hf}(0)$ values from -19.4 to -25.5 with a typical 2σ error of \pm 1.9 (Figure 3.4). Six Grenvillian zircon grains from the combined core samples were have $\varepsilon_{Hf}(0)$ values from -19.4 to -25.5 (\pm 2, 2σ).

Tava Sandstone Injectite

The U-Pb ages for the three previously analyzed Tava samples are shown in Figure 3.6 a-c ([SH324-HO] from Siddoway and Gehrels, 2014; and [SH324-BD and SH324-VE] from Siddoway,

Figure 3.7. Probability Density Function for the cores from the Denver Basin basement drilled cores from Lincoln Country, Colorado. Area under each curve totals to 100%. a. 14CO-BS-3 b. 14CO-T-3 c. 14CO-Cores Crystalline basement ages indicated by colors: Green- Grenville Orogeny, Red- Granite-Rhyolite Province, Blue-Yavapai/Mazatzal Provinces.

Figure 3.8. Probability Density Functions for Tava Sandstone samples. Area under each curve totals to 100%. Crystalline basement ages indicated by colors: Green- Grenville Orogeny, Red- Granite-Rhyolite Province, Blue- Yavapai/Mazatzal Provinces. SH324BD from Siddoway and Gehrels, 2014. SH324HO and SH324VE from Siddoway, unpublished data.

unpublished data). Grenvillian zircon [n= 84] between the ages of 962 to 1289 Ma were selected for Hf isotopic analyses. The ranges of ε_{Hf} (0) in the zircon grains from the three samples are very similar. Virtually all Grenvillian zircons (n = 83) span a range of ε_{Hf} (0) = -14.4 to -31.8 (± 2, 2 σ), with one grain at ε_{Hf} = -42.5 (U-Pb age = 1233 Ma).

Discussion

The main concern of this project is to determine the source regions of Grenvillian zircon in the basal sandstones studied, based on both U-Pb and Hf isotopic data, and to assess the significance of changes in the relative abundances of Grenvillian detrital zircon in the sandstones in terms of the Cambrian paleogeography of southern Laurentia. One overall observation is that most of the sampled sandstones have Grenvillian, as well other ~1.4 Ga and ~1.7 Ga, as the prominent detrital zircon populations. Zircon derived from Archean crustal sources are, where present, only minor contributors to the total detrital zircon load of these sediments. These observations suggest that the primary sources of the detrital zircon deposited above the Great Unconformity were from Paleoproterozoic and Mesoproterozoic crustal sources within or at the margins of southern Laurentia. Archean crustal provinces, which constitute much of the northern half of Laurentia, were either not actively eroding during this time or sediments produced from the exhumation of this older crust were not being transported to the southern half of the continent. In contrast, because of the widespread occurrence of Grenvillian detrital zircon in the basal sandstones, it seems likely that crustal provinces of this age were actively exhuming during the Neoproterozoic and Cambrian and sediments were being transport across southern Laurentia. It should be emphasized, however, that the low clay and feldspar content of these basal sandstones, and the presence of well-rounded and sorted sand grains, suggests that these sediments likely underwent considerable weathering and, potentially, multiple cycles of transport and deposition prior to reaching their final depositional site (Schumm, 1968; Rainbird et al., 2012). Therefore, there is clearly a lag between the time of crustal source exhumation and erosion and sediment

deposition, although this time lag does not affect the conclusions reached in the following text regarding the location from which the Grenvillian zircon were ultimately derived.

The second main observation is that although most of the basal sandstones contain Grenvillian zircon, the mode and range of Hf isotopic compositions vary between samples and suggest that multiple sources of Grenvillian zircon exist, as discussed in detail in the following text.

Lamotte Sandstone

The Lamotte sandstone sample is unique among the basal sandstones studied because it contains almost exclusively Grenvillian zircon (1096 \pm 22 Ma) with a relatively narrow range of $\varepsilon_{\rm Hf}$ (0) values (~-25). These low $\varepsilon_{\rm Hf}(0)$ identify these zircon as likely products of erosion of Grenvillian basement rocks in the southern Appalachian Mountains, the latter having low $\varepsilon_{\rm Hf}$ (0) values compared to other rocks within the Grenville Province and to Grenvillian rocks in the Llano Uplift in central Texas (Howard et al., 2015). This result reveals that detrital zircon in the upper portions of the Lamotte Sandstone could not have been dominantly sourced either from the local ~1.4 Ga basement, or from Archean and Proterozoic rocks of the Canadian Shield to the north as previous workers speculated (Houseknecht and Ethridge, 1978). Instead, both the U-Pb and Hf isotopic data provide clear evidence that the upper Lamotte sands were transported almost exclusively from the east before being deposited on the shore face developing in southern Missouri during the transgression of Sauk Sea in the upper Cambrian. The narrow range of $\epsilon_{Hf}(0)$ for the detrital zircons in the upper Lamotte suggests that basement source rocks in the present-day southern Appalachian were the only sources of detrital zircon in the original sands, which suggest that either this was the only region actively undergoing exhumation or erosion along the eastern margin of Laurentia in the upper Cambrian, or more likely, that the fluvial systems providing sediments to the Sauk Sea shoreline in this region tapped a small catchment area that was restricted spatially to the southern Appalachians.

Flathead Sandstone

The Flathead sandstone sample is unique among the basal sandstones because it contains no Grenvillian detrital zircon. The lack of Grenvillian zircon in the Flathead Sandstone suggests that east-west directed continental river systems bearing Grenvillian zircon by-passed this region. The source of the main detrital zircon age population at ~1779 Ma in the Flathead Sandstone is enigmatic because rocks of this age are not found in the Precambrian basement of Wyoming (Frost et al., 2006). Detrital zircon with similar Paleoproterozoic ages were also reported for the Flathead Sandstone by May et al. (2013), who suggest a southeastern source from the Yavapai Province. However, the Yavapai Province is riddled with ~1.4 Ga intrusive units, an age which is not expressed in the detrital zircon record of the Flathead Sandstone. The Great Falls Tectonic Zone to the northwest of the Flathead Sandstone depositional area, however, is dominantly composed of 1.8-1.9 Ga intrusive and metamorphic rocks associated with the Big Sky Orogeny during the Paleoproterozoic (Condit et al., 2015). The lack of ~1.4 Ga detrital zircon in the upper Flathead Sandstone suggests that the Great Falls Tectonic Zone may have been the dominant zircon source.

Denver-Julesburg (D-J) Basin

Grenvillian detrital zircons in the D-J Basin cores vary over a significantly larger range, and trend to higher ε_{Hf} (0) values, than detrital zircon grains in the Lamotte Sandstone. The majority of Grenvillian detrital zircon in the D-J Basin sandstones have ε_{Hf} (0) values between -25 and -21, but show no correlation between U-Pb age and ε_{Hf} (0). The distinction between the Hf isotopic characteristics of Grenvillian detrital zircon in the D-J basin and Lamotte Sandstone samples precludes the possibility that zircon in these rocks could have been derived exclusively from the same source rocks in the southern Appalachians. The low ε_{Hf} (0) Grenvillian zircon in the D-J basin cores could share this same Appalachian source, but the higher (>-25) grains must have sources in higher ε_{Hf} (0) Grenvillian basement rocks. One possibility is the local, Mesoproterozoic Pikes Peak batholith, which does range to higher ε_{Hf} (0) zircons in the D-J Basin are the

Figure 3.9. Age distribution diagram restricted to Grenville-Age detrital zircon. Blue region (PP) represents age of Pike Peak Batholith data from Howard et al., 2015.

Grenvillian rocks of Llano Uplift or Franklin Mountains to the south, as concluded for detrital zircon with similar Hf isotopic composition found in Cambrian sandstones exposed in the Mojave Desert region (Howard et al., 2015).

Another important question is whether or not the D-J Basin sandstones were deposited contemporaneously with the Sawatch Sandstone exposed in central Colorado (Myrow et al., 2003). The two sedimentary rocks do share lithologic similarities, but no absolute age determinations exist for the D-J Basin sandstone to assess their depositional age. The relative ages of the two sedimentary units is of interest however because, unlike the D-J Basin sandstones, the Sawatch Sandstone apparently contains no Grenvillian detrital zircon and is dominated by ~1.7 Ga and ~1.4 Ga detrital zircon (Siddoway and Gehrels, 2014). A possible explanation for this observation is that the D-J Basin sandstone was not deposited contemporaneously with Sawatch Sandstone, despite their lithologic similarities, and that the sources of detrital zircon delivered to present-day Colorado changed through time. An alternative possibility is that the two sandstones share the same depositional age, but a physical barrier prevented Grenvillian zircon from reaching the western depocenters of Sawatch Sandstone, as discussed further in a following section.

Tava Sandstone Injectite

Grenvillian detrital zircon in the Tava Sandstone Injectite display a wide range of U-Pb ages and Hf isotopic compositions (ε_{Hf} (0) = -14.4 to -31.8), similar to that observed for Grenvillian detrital zircon in the D-J Basin core samples (Figure 3.9). Previous interpretations of the detrital zircon U-Pb ages in the injectites suggested that Grenvillian detrital zircon with ages ~1.1 Ga peak were sourced from the local Pikes Peak Batholith, while grains with older ages (up to 1.33 Ga) were more likely derived from the Grenville Province at the eastern margin of Laurentia (Siddoway and Gehrels, 2014). The new Hf isotopic data are compatible, but require that the low ε_{Hf} (0) (< -20) zircon be derived from the local Pikes Peak batholith, not the southern Appalachians as concluded for the Lamotte sandstone, while the higher ε_{Hf} (0) zircon be derived from more distal sources, such as the Llano uplift area (but not the southern Appalachians). Zircon sources in basement rocks in the Llano uplift and vicinity could also account for the older (>1.1 Ga) Grenvillian detrital zircon in the Tava Sandstone, given that rocks in the 1.2 to 1.3 Ga age range are found in central Texas (Barker and Reed, 2010). It is important to note that the Neoproterozoic Tava Sandstone is interpreted to record the sediment composition at the surface during the latest Proterozoic (Siddoway and Gehrels, 2014). The similarity between the detrital zircon age populations and isotopic compositions in the Tava Sandstones and those from the D-J Basin cores suggests that sediment transport paths across the southern margin of Laurentia were similar during and just after the breakup of Rodinia, and at both times siliciclastic sediment deposited in present day Colorado contained far-travelled and multicycle detrital zircons.

Regional Implications

The provenance information obtained for Grenvillian detrital zircon from these basal sandstones demonstrate that the range in $\varepsilon_{Hf}(0)$ of the Grenvillian detrital zircon population increases with distance from their presumed source regions in eastern Laurentia (Figure 3.10). This is particularly evident when comparing Grenvillian detrital zircon from the eastern and western basal sandstones. Grenvillian detrital zircon from the Upper Lamotte Sandstone, the easternmost sample in this study, contain a narrow range of low $\varepsilon_{Hf}(0)$ Grenvillian zircon. Another example of a locally derived basal sandstone is the El Arpa Formation deposited directly above the ~1.1 Ga Aibo Granite in Sonora, Mexico (Figure 3.10; Howard et al., 2015). Grenvillian detrital zircon from this unit exhibit a restricted range of Hf isotopic compositions identical to that of the Aibo Granite, suggesting that short transport distances prevented mixing of multiple zircon populations (Howard et al., 2015).

In contrast, the Grenvillian detrital zircon found in the Tava sandstone, and D-J Basin sandstone samples from Colorado, show a wider range of $\varepsilon_{Hf}(0)$ values, as well as a wider range of U-Pb ages than the Lamotte Sandstone. This suggests that sediment transport was not exclusively along east-to-west

Figure 3.10. Map showing general source regions for Grenvilleian zircon and the observed range of their zircon Hf isotopic compositions. ϵ Hf (i) values plotted as probability density plots with 2σ error included. Area under each curve totals to 1. Sample locations are indicated with a number which corresponds to ϵ Hf (i) plots below. Red line denotes "high" and "low" ϵ Hf at ϵ Hf(i)=-20 Samples from this study: Tava Sandstone, BS-3, T-3, Lamotte Sandstone, and Flathead Sandstone. Campito Formation, El Arpa Formation, and Wood Canyon Formation - Nevada (WCF-NV), Franklin Mountains, Llano Uplift, Southern Appalachians (S. Appalachians), Pikes Peak Batholith, and some Sonoran Intrusions data from Howard et al (2015). Adirondack data from Bickford (2010). Sawatch Quartzite data from Siddoway and Gehrels (2014). Tapeats Sandstone data from Stewart et al (2001).

sediment transport vectors, but that south-to-north transport sediment transport was also required to create the observed diversity in detrital zircon $\varepsilon_{Hf}(0)$ values.

The Neoproterozoic-Cambrian Middle Member of the Wood Canyon Formation (MMWCF) in the Mojave Desert region also represents an example of a basal sandstone potentially comprised of distallyderived sediment (Schoenborn et al., 2012; Howard et al., 2015). Grenvillian detrital zircon recovered from the MMWCF exhibit a wide range of ε_{Hf} (0), interpreted to be due to the mixing of distal zircons from accreted Grenville terranes along the eastern and southern margins of Laurentia with local zircons from intrusive rocks embedded in the Paleoproterozoic crust. (Figure 3.10; Howard et al., 2015).

Assuming that the Grenvillian detrital zircon Hf and U-Pb isotopic data requires sediment transport from both the present-day southern and eastern margins of Laurentia implies that areas of active crustal exhumation and erosion may have been limited to these regions during the Neoproterozoic and earlier Cambrian. One possibility is that the breakup of the Rodinian supercontinent produced uplift along the eastern and southern rifted margins of Laurentia at this time (Thomas, 1991; 2011; Li et al., 2008). If so, then sediments from the erosion of these rift flank uplifts were transported through a braided stream system across the plant-free continent, mixing with sediment from other sources prior to deposition.

Finally, despite a nearly ubiquitous presence of Grenvillian detrital zircon in basal sandstones, these zircon were discontinuously delivered to western Laurentia as a function of time and/or geographic position. The lack of Grenvillian detrital zircon in the Flathead sandstone is evidence for this, and it is supported by an absence of zircon of this age in other basal sandstones, namely the Tapeats Sandstone in Arizona and the Sawatch Sandstone in Colorado (Figure 3.10; Amato and Mack, 2012; Siddoway and Gehrels, 2014). One explanation for this observation is that a physical barrier existed between Grenvillian source rocks and the Flathead Sandstone depositional area, preventing influx of Grenvillian sediments. A NE-SW trending Paleozoic structural high, termed the "Transcontinental Arch" has been proposed on the basis of sediment thickness maps and U-Pb detrital zircon provenance studies (Ross and Tweto, 1980; Carlson, 1999; Amato

and Mack, 2012). The transport of Grenvillian sediment would be cut off for sandstones deposited to the west of this proposed topographic high, which could explain the lack of zircons of this age in the Flathead Sandstones. Similarly, the lack of Grenvillian zircon in the Tapeats Sandstone in Arizona has been attributed to the formation of the Transcontinental Arch (Amato and Mack, 2012). This could also explain the lack of Grenvillian zircon found in the Sawatch Sandstone in Colorado, while the Tava Sandstone Injectite and basal sandstones from the D-J Basin must have been deposited to the east of such an arch.

However, the existence of a Transcontinental Arch is not universally accepted. While the Sawatch Sandstone contains no Grenvillian zircons, detailed sedimentologic analysis suggests that such a proposed structural high in Colorado is an artifact of miscorrelation of the Paleozoic section in the region (Myrow et al., 2003; Siddoway and Gehrels, 2014). One alternative to the proposed Transcontinental Arch is the transgression of the Sauk Sea across the continent during the Cambrian, which could have the same effect in the detrital zircon record (Sloss, 1988). Progressive inundation of Laurentia by the Sauk Sea may have "shut off" the transport of Grenvillian detrital zircon to the depocenters of the Tapeats, Sawatch, and Flathead Sandstones. In this case, the presence or absence of Grenvillian detrital zircon in basal Cambrian sandstones could provide information on the paleogeography of the Sauk Sea transgression through time.

Conclusions

Provenance determinations of basal sandstones from the midcontinent and comparisons with preexisting data are interpreted to determine the following conclusions.

- 1. The increase of the observed range of $\varepsilon_{Hf}(0)$ values of Grenvillian detrital zircon records the mixing of multiple zircon sources with westward transport distance from the Grenville Terrane in eastern Laurentia.
- 2. Grenvillian detrital zircon found Neoproterozoic to Cambrian basal sandstones in western Laurentia originated from both the southern and eastern margins of Laurentia. This suggests that

topographic highs were present in these regions during the sedimentation during or just after the breakup of Rodinia, which is consistent with rift-related uplift during the late-Proterozoic.

3. External forcing cut off the supply of Grenville-age zircon to the midcontinent during sandstone deposition during Sauk Sea transgression. Restriction of sediment transport from Grenville-age sources was restricted by a topographic barrier such as the Transcontinental Arch, or by spatial and/or temporal variability in the transgressive episodes of the Sauk Sea that intervened between depocenters in the west and sediment sources in the east or south.

References

- Amato, J.M., Lawton, F.T., Mauel, D.J., Leggett, W.J., Gonzalez-Leon, C.M., Farmer, G.L., Wooden, J.L., 2009, Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico: *Geology*, v. 37, p. 75-78.
- Amato, J.M., Mack, G.H., 2012, Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: Evidence for contrasting Grenville-age Cambrian sources on opposite sides of the Transcontinental Arch: GSA Bulletin, v. 124, p. 1826-1840.
- Amelin, Y., Lee, D-C., Halliday, A.N., Pidgeon, R.T., 1999, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons: *Nature*, v. 399, p. 252-255.
- Andersen, T., 2005, Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation: *Chemical Geology*, v. 216, no. 3-4, p. 249-270.
- Anderson, T.H, Silver, L.T., 1981, An overview of Precambrian rocks in Sonora: *Revistas Mexicanas de ciencias geologicas*, v.5, no. 2, p. 131-139.
- Anderson, T.H., Silver, L.T., 2005, The Mojave-Sonora megashear—Field and analytical studies leading to the conception and evolution of the hypothesis: *Geological Society of America Special Paper*, v. 393, p. 1-50.
- Barker, D.S., Reed, R.M., 2010, Proterozoic granites of the Llano Uplift, Texas: A collision-related suite containing rapakivi and topaz granites: *GSA Bulletin*, v. 122, p. 253-264.
- Barovich, K.M., Patchett, P.J., Peterman, Z.E., Sims, P.K., 1989, Nd isotopes and the origin of 1.9-1.7 Ga Penokean continental crust of the Lake Superior region: *GSA Bulletin*, v. 101, no. 3, p. 333-338.
- Beebee, R.A., Cox, R., 1998, Dynamics of marine transgression onto a non-linear shoreline: the Middle Cambrian Flathead Sandstone, Clarks Fork Valley, Wyoming: *The Mountain Geologist*, v. 35, No. 3, p. 91-101.
- Bell, L.H., 1970, Depositional History of the Flathead Sandstone: *Wyoming Geological Association:* 22nd Annual Field Conference Guidebook, p. 115-131.
- Bell, L.H., Middleton, L.T., 1978, An introduction to the Cambrian Flathead Sandstone, Wind River basin, Wyoming: Wyoming Geological Association: 30th Annual Field Conference Guidebook, p. 79-88.
- Bennett, V.C., DePaolo, D.J., 1987, Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping: *GSA Bulletin*, v. 99, no. 5, p. 674-685.
- Bickford, M.E., Mclelland, J.M., Mueller, P.A., Kamenov, G.D., and Neadle, M., 2010, Hafnium isotopic compositions of zircon from Adirondack AMCG suites: Implications for the petrogenesis of anorthosites, gabbros, and granitic members of the suites: *The Canadian Mineralogist*, v. 48, p. 751-761.
- Blichert-Toft, J., Albarede, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system: *earth and Planetary Science Letters*, v. 148, 243-258.

- Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008, The LU-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: *Earth and Planetary Science Letters*, v. 273, p. 48-57.
- Bowen, B.B., Ochoa, R.I., Wilkens, N.D., Brophy, J., Lovell, T.R., Fishieto, N., Medina, C.R., Rupp, J.A., 2009, Deposition and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration, *Environmental Geosciences*, v. 13, no. 2, p. 69-89.
- Bybee, G.M., Ashwal, L.D., 2015, Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: Insights from Proterozoic anorthosites: *Geochimica et Cosmochimica Acta*, v. 167, p. 286-300.
- Carlson, M.P., 1999, Transcontinental Arch a pattern formed by rejuvenation of local features across central North America: *tectonophysics*, v. 305, p. 225-233.
- Condit, C.B., Mahan, K.H., Ault, A.K., Flowers, R.M., 2015, Foreland-directed propagation of high-grade tectonism in the deep roots of a Paleoproterozoic collisional orogen, SW Montana, USA: *Lithosphere*, v. 7, no. 6, p. 625-645.
- Cullen, J., 2014, Sedimentology and Depositional history of the Riley Formation in the Northwestern Llano Uplift near Pontotoc, San Saba County, Texas (Abstract): *Gulf Coast Association of Geological Societies Transacions*, v. 64, p. 675.
- DePaolo, D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization: *Earth and Planetary Science Letters*, v. 53. p. 189-202.
- Dickinson, W.R., 2008, Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis: *Earth and Planetary Science Letters*, v. 275, p. 80-92.
- Duchesne, J.C., Liegeois, J.P., Vander Auwera, J., Longhi, J., 1999, The crustal tongue melting model and the origin of massive anorthosites: *Terra Nova*, v. 11, no. 2-3, p. 100-105.
- Emslie, R.F., Hamilton, M.A., Theriault, R.J., 1994, Petrogensis of a Mid-Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) Complex: Isotopic and chemical evidence from the Nain Plutonic Suite: *The Journal of Geology*, v. 102, no.5, p. 539-558.
- Enriquez-Castillo, M.A., Iriondo, A., Chavez-Cabello, G., Kunk, M.J., 2009, Interaccion termal entre magmas graníticos laramidicos y rocas encajonantes mesoproterozoicasL historia de enriamento de intrusivo de la Sierrita Blanca, NW Sonora: *Boletin de la Sociedad Geológica Mexicana*, v. 61, no. 3, p451-483.
- Farmer, G.L., DePaolo, D.J., 1983, Origin of Mesoproerozoic and Tertiary Granite in the Western United States, and Implications for Pre-Mesozoic Crustal Structure 1: Nd and Sr Isotopic studies in the Geocline of the Northern Great Basin: *Journal of geophysical Research*, v. 88, no. 84, p. 3379-3401.
- Farmer, G.L., DePaolo, D.J., 1984, Origin of Mesoproerozoic and Tertiary Granite in the Western United States, and Implications for Pre-Mesozoic Crustal Structure 2: Nd and Sr isotopic studies of Unmineralized and Cu- and Mo- Mineralized granite in the Precambrian Craton: *Journal of Geophysical Research*, v. 89, no. B12, p. 10141-10160.

- Farmer, G.L., Broxton, D.E., Warren, R.G., Pickthorn, W., 1991, Nd, Sr, and O isotopic variations in metaluminous ashflow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies: *Contributions to Mineralogy and Petrology*, v. 109, p. 53-68.
- Farmer, G.L., 1992, Magmas as tracers of lower crustal composition: an isotopic approach: *Lower Crustal developments in Geotectonics*, ch. 23, p. 363-390.
- Farmer, G.L., Bowring, S.A., Matzel, J., 2005, Paleoproterozoic Mojave province in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of Precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora: *Geological Society of America Special Papers*, v. 393, p. 183-198.
- Famer, G.L., Bowring, S.A., Williams, M.L., Christensen, N.I., Matzel, J.P., Stevens, L., 2005b, Contrasting lower crustal evolution across an Archean-Proterozoic suture: Physical, Chemical, and Geochronologic studies of lower crustal zenoliths in southern Wyoming and northern Colorado: *The Rocky Mountain Region: An Evolving Lithosphere, Geophysical Monograph 154*, p. 139-162.
- Fedo, C,M., Cooper, J.D., 2001, Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin: *Sedimentary Geology*, v. 141-142, p. 501-522.
- Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003, Detrital zircon analysis of the sedimentary record: *Reviews in Mineralogy and Geochemistry*, v. 53, p. 277-303.
- Frost, C.D., Frost, B.R., Kirkwood, R., Chamberlain, K.R., 2006, The tonalite-trondhjemite-granodiotire (TTG) to ganodiorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province: *Canadian Journal of Earth Sciences*, v. 43, no. 10, p. 1419-1444.
- Gehrels, G.E., Blakey, R., Karlstrom, K.E., Timmons, J.M., Dickinson, B., Pecha, M.E., 2011, Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand canyon, Arizona: *Lithosphere*, v. 2, no.3, p.183-200.
- Gehrels, G.E., Pecha, M,E., 2014, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America: *geosphere*, v. 10, p. 49-65.
- Harms, J.C., 1965, Sandstone dikes in relation to Laramide faults and stress distribution in the Southern Front Range, Colorado: *GSA Bulletin*, v. 76, p. 981-1002.
- Hereford, R., 1977, Deposition of the Tapeats Sandstone (Cambrian) in central Arizona: *GSA Bulletin*, v. 88, p. 199-241.
- Hiess, J., Condon, D.J., McLean, N., Noble, S.R., 2012, ²³⁸U/²³⁵U systematics in terrestrial uranium-bearing minerals: *Science*, v. 235, p. 1610-1614.
- Houseknecht, D.W., Ethridge, F.G., 1978, Depositional history of the Lamotte Sandstone of southeastern Missouri: *Journal of Sedimentary Petrology*, v. 48. No, 2, p 575-586.
- Howard, A.L., 2013, Hafnium Isotope evidence on the provenance of ~1.1 Ga detrital zircons from western North America, *Master's Thesis*, University of Colorado at Boulder,

- Howard, A.L., Farmer, G.L., Amato, J.M., Fedo, C.M., 2015 Zircon U-Pb ages and Hf isotopi composition indicate multiple sources for ~1.1 Ga detrital zircon deposited in western Laurentia: *Earth and Planetary Science Letters*, v. 432, p. 300-310.
- Hynes, A., Rivers, T., 2010, Protracted continental collision evidence from the Grenville Orogen: *Canadian Journal of Earth Science*, v. 47, p. 591-620.
- Iriondo, A, Premo, W.R., 2003, The cabora Block: an inhomogenous pice of Poterozoic crust in Sonora: *Geological Society of America Abstract with Programs*, v. 35, no. 4, p. 67.
- Iriondo, A., Premo, W.R., Martinez-Torres, L.M., Budahn, J.R., Atkinson Jr., W.W., Siems, D.F., Gonzalez-Guarias, B., 2004, Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia: *GSA Bulletin*, v. 115, no. 1-2, p. 154-170.
- Jaffey, A.H., Flynn, K.F., Glendenin, L.F., Bentley, W.C., Essling, A.M., 1971, Precision measurement of half-lives and specific activities of 235Uand 238U: *Physical Review*, v. C4, p. 1889-1906.
- Johnson, J.H., 1944, Paleozoic Sratigraphy o the Sawatch Range, Colorado: *GSA Bulletin*, v. 55, p. 303-378.
- Jones, J.V., Thrane, K., 2012, Correlating Proterozoic synorogenic metasedimentary successions in southwestern Laurentia: New insights from detrital zircon U-Pb geochronology of Paleoproterozoic quartzite and metaconglomerate in central and northern Colorado, USA: *Rocky Mountain Geology*. V. 47, p. 1-35.
- Kempton, P.D., Harmon, R.S., Hawkesworth, C.J., Moorbath, S., 1990, Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona: *Geochimica et Cosmochimica Acta*, v. 54, no. 12, p. 3401-3426.
- Kinny, P.D, Maas, R., 2003, Lu-Hf and Sm-Nd isotopic systems in zircon: *Reviews in Mineralogy and Geochemistry*, v. 53, p. 327-341.
- Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: *Precambrian Research*, v. 160, p. 179-210.
- Lambiase, J.J., Bosworth, W., 1995, Structural controls on sedimentation in continental rifts: *Geological Society of London, Special Publications*, v. 80, p. 117-144.
- Lovell, T.R., Bowen, B.B., 2013, Fluctuations in Sedimentary Provenance of the Upper Cambrian Mount Simon Sandstone, Illinois Basin, United States: *he Journal of Geology*, v. 121, no. 2, p. 129-154.
- MacLachlan, J.C., 1961, Cambrian, Ordovician, and Devonian systems, eastern Colorado subsurface: *The Mountain Geologist*, Rocky Mountain Association of Geologists, p. 41-52
- May, S.R., Graym G.G., Summa, L.L., stewart, N.R., Gehrels, G.E., Pecha, M.E., 2013, Detrital zircon geochronology from the Bighorn Basin, Wyoming, USA: Implications for tectonostratigraphic evolution and paleogeography: GSA Bulletin, v. 125, p. 1403-1422.

- McElroy, M.N., 1965, Lithologic and stratigraphic relationships between the Reagan Sandstone (Upper Cambrian) and sub-Reagan and supra-Reagan rocks in western Kansas. Dissertation Abstracts, vol 26, no. 6, p. 3249.
- McLelland, J.M., Bickford, M.E., Hill, B.M., Clechenko, C.C., Valley, J.W., Hamilton, M.A., 2004, Direct dating of Adirondack massif anorthosite by U-Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexs: *GSA Bulletin*, v. 116, no. 11-12, p. 1299-1317.
- Menuge, J.F., Brewer, T.S., Seeger, C.M., 2002, Petrogenesis of metaluminous A-type rhyolites from the St Francois Mountains, Missouri and the Mesoproterozoic evolution of the southern Laurentian margin: *Precambrian Research*, v. 113, p. 269-291.
- Molina-Garza, R.S., Iriondo, A., 2007, The Mojave-Sonora megashear: The hypothesis, the controversy, and the current state of knowledge: *Geological Society of America Special Papers*, v. 422, p. 233-259.
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008, Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS: *Chemical Geology*, v. 255, p. 231-235.
- Mueller, P.A., Peterman, Z.E., Granath, J.W., 1985, A bimodal Archean volcanic series, Owl Creek Mountains, Wyoming: *Journal of Geology*, v. 93, no. 6, p. 701-712.
- Mueller, P.A., Foster, D.A., Mogk, D.W., Wooden, J.L., Kamenov, G.D., Vogt, J.J., 2007, Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia: *Geology*, v. 35, no. 5, p. 431-434.
- Myrow, P.M., 1998, Transgressive stratigraphy and depositional framework of Cambrian tidal dune deposits, Peerless Formation, central Colorado, USA: *SEPM Special Publication*, no. 62, p. 143-154.
- Myrow, P.M., Taylor, J.F., Miller, J.F., Ethington, R, L., Ripperdan, R.L., Allen, J., 2003, Fallen arches: Dispelling myths concerning Cambrian and Ordovician paleogeography of the Rocky Mountain region: *GSA Bulletin*, v. 115, no. 5, p. 695-713.
- Nealy, L.D., Unruh, D.M., 1991, Geochemistry and isotopic characteristics of deep crustal xenoliths from Tule Tank, San Francisco volcanic field, northern Arizona: *Proterozoic geology and ore deposits* of Arizona: Arizona Geological Society Digest, v. 19, p. 153-163.
- Nelson, B.K., DePaolo, D.J., 1985, Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American mid-continent: *GSA Bulletin*, v. 96, p. 746-754.
- Ojakangas, R.W., 1963, Petrology and sedimentation of the Upper Cambrian Lamotte Sandstone in Missouri: *Journal of Sedimentary Petrology*, v. 33, no. 4, p. 860-873.
- Patchett, P.J., 1983, Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution: *Geochimica et Cosmochimica Acta*: v. 47, p. 81-91.
- Patchett, P.J., Ruiz, J., 1989, Nd Isotopes and the origin of Grenville-Age Rocks in Texas: Implications for Proterozoic evolution of the United States Mid-Continent Region: *Journal of Geology*, v. 97, no. 6, p. 685-695.

- Peters, S.E., Gaines, R.R., 2012, Formation of the 'Great Unconformity' as a trigger for the Cambrian explosion: *Nature*, v. 484, p. 363-366.
- Rainbird, R.H., Heaman, L.M., Young, G., 1992, Sampling Laurentia: Detrial zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen: *Geology*, v. 20, p. 351-354.
- Rainbird, R.H., McNicoll, V.J., Theriault, R.J., Heaman, L.M., Abott, J.G., Long, D.G.F., Thorkelson, D.J., 1997, Pan-continental river system draining Grenville Orogen recorded by U-Pb and Sm-Nd Geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada: *The Journal of Geology*, v. 105, no.1, p. 1-17.
- Rainbird, R.H., Cawood, P., Gehrels, G.E., 2012, The great Grenvillian sedimentation episode: record of supercontinent Rodinia's assembly: *Tectonics of Sedimentary Basins: Recent Advances*, 1st Edition, Edited by Busby and Azor. Blackwell Publishing Ltd, p. 583-601.
- Ross, R.J., Jr., and Tweto, O., 1980, Lower Paleozoic sediments and tectonics in Colorado, in Kent, H.C., and Porter, K.W., *eds.*, Colorado geology: Denver, Colorado, Rocky Mountain Association of Geologists- 1980 Symposium, p. 47-56.
- Scherer, E.E., Whitehouse, M.J., Munker, C., 2007, Zircon as a Monitor of Crustal Growth: *Elements*, v. 3, p. 19-24.
- Schoenborn, W.A., Fedo, C.M., Farmer, G.L., 2012, Provenance of the Neoproterozoic Johnnie formation and Sitrling Quartzite, southeastern California, determined by etrital zircon geochronology and Nd isotope geochemistry: *Precambrian Research*, v. 206-207, p. 182-199.
- Schumm, S.A., 1968, Speculations concerning paleohydrologic controls of terrestrial sedimentation: *GSA Bulletin*, v. 79, p. 1573-1588.
- Siddoway, C.S., Gehrels, G.E., 2014, Basement-hosted sandstone injectites of Colorado: A vestige of the Neoproterozoic revealed through detrital zircon provenance analysis: *Lithosphere*, v. 6, no. 6, p. 403-408.
- Sloss, L.L., 1963, Sequences in the Cratonic Interior of North America: GSA Bulletin, v. 74, p. 93-114.
- Sloss, L.L., 1988, Tectonic evolution of the craton during Phanerozoic time: *The Geology of North America*, vol. D-2: Sedimentary Cover-North American Craton: U.S., The Geological Society of America, p. 25-51.
- Smith, D.R., Noblett, J., Wobus, R.A., Unruh, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoun, B., Stewart, J., 1999, Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (Central Colorado, USA): implications for petrogenetic models: *Precambrian Research*, v. 98, p. 271-305.
- Spencer, C.J., Hoiland, C.W., Harris, R.A., Link, P.K., Balgord, E.A., 2012, Constraining the timing and provenance of the Neoproterozoic Little Willow and Big Cottonwood Formations, Utah: Expanding the sedimentary record for early rifting of Rodinia: *Precambrian Researchm*, v. 204-205, p. 57-65.

- Spencer, C.J., Prave, A.R., Cawood, P.A., Roberts, N.M.W., 2014, Detrital ziron geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA: *GSA Bulletin*, v. 126, p. 1117-1128.
- Stevenson, R.K., Patchett, P.J., 1990, Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons: *Geochimica et Cosmochimca Acta*, v. 54, p. 1683-1697.
- Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie-Blick, N., Wrucke, C.T., 2001, Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western united States and northwestern Mexico: *GSA Bulletin*, v. 113, no. 10, p. 1343-1356.
- Stewart, J.H., Amaya-Martinez, R., Palmer, A.R., 2002, Neoproterozoic and Cambrian strata of Sonora, Mexico: Rodinian supercontinent to Laurentian Cordilleran margin: *Geological Society of America* Special Paper, v. 365, p. 5-48.
- Thomas, W.A., 1991, The Appalachian-Ouachita rifted margin of southeastern North America: GSA Bulletin, v. 103, no. 3, p. 415-431.
- Thomas, W.A., 2001, Detrital-zircon geochronology and sedimentary provenance: *Lithosphere*, v. 3, no. 4, p.304-308.
- Thomas, W.A., 2011, The Iapetan rifted margin of southern Laurentia: Geosphere, v. 7, p. 97-120.
- Turner, S.P., Foden, J.D., Morrison, R.S., 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia: *Lithos*, v. 28, p. 151-179.
- Van Schmus, W.R., et al., 1993, Transcontinental Proerozoic Provinces, *Precambrian: Conterminous* U.S.: Boulder, Colorado, Geological Society of America, Ch. 2, p. 171-334
- Vermeesch, P., 2004, How many grains are needed for a provenance study? *Earth and Planetary Science Letters*, v. 224, p. 441-451.
- Vervoort, J.D., Patchett, P.J., 1996, Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites: *Geochemica et Cosmochimica Acta*, v. 60. No. 19, p. 3717-3733.
- Vervoort, J.D., Patchett, P.J., Gehrels, G.E., Nutman, A.P., 1996, Constraints on early Earth differentiation from hafnium and neodymium isotopes: *Nature*, v. 379, p.624-627.
- Vervoort, J.D., Blichert-Toft, J., 1999, Evolution of the depleted mantle: Hf isotopic evidence from juvenile rocks through time: *Geochimica et Cosmochimica Acta*, v. 63, no. 3-4, p. 533-556.
- Vitanage, P.W., 1954, Sandstone dikes in the South Platte Area, Colorado: *The Journal of Geology*, v. 62, no. 5, p. 493-500.
- Wetherill, G.W., 1956, Discordant uranium-lead ages: *Eos, American Geophysical Union Transactions*, v. 37, no. 3, p. 320-326.
- Whitmeyer, S.J., Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of North America: *Geosphere*, v. 3. No. 4, p. 220-259.

TT	App
	endix
	A: I
	Data
	Table

tematic error. Analysis with >10% mea	Table A-1. LA-ICP-MS U-Pb data for
asurement error, >	igneous samples f
20% discordance, or >:	from Sonora, Mexico. I
5% reverse discordance	Uncertainties include bo
were discarded.	th random and sys-

	,																		
Analysis	C	206Pb	η L/Π	206Pb*	Ŧ	207Pb*	1+	206Pb*	1+	error	206Pb*	I+	207Pb*	1+	206Pb*	1+	Best age	+	Concordance
	(ppm)	204 P b		207 P b*	(%)	235U*	(%)	238U	(%)	COIL.	238U*	(Ma)	235U	(Ma)	207 P b*	(Ma)	(Ma)	(Ma)	(%)
CP-3-Spot 104	448	33118	1.8	13.0109	1.1	1.8803	2.1	0.1774	1.7	0.85	1052.9	16.9	1074.2	13.6	1117.5	21.8	1117.5	21.8	94.2
CP-3-Spot 24	524	72439	0.5	13.3340	0.7	1.7720	1.3	0.1714	1.1	0.85	1019.6	10.7	1035.3	8.6	1068.4	14.0	1068.4	14.0	95.4
CP-3-Spot 36	545	244325	2.7	13.0819	1.2	1.6793	3.0	0.1593	2.7	0.91	953.1	24.2	1000.7	19.0	1106.6	24.1	1106.6	24.1	86.1
CP-3-Spot 46	154	56655	1.4	11.0590	1.3	3.1633	2.1	0.2537	1.6	0.77	1457.6	20.6	1448.2	15.9	1434.5	25.1	1434.5	25.1	101.6
CP-3-Spot 47	595	94390	2.2	13.2023	0.5	2.0067	1.5	0.1921	1.4	0.93	1133.0	14.0	1117.8	9.8	1088.3	10.7	1088.3	10.7	104.1
CP-3-Spot 59	365	83602	1.6	13.1734	8.0	1.8243	2.5	0.1743	2.4	0.95	1035.8	22.8	1054.2	16.4	1092.7	15.2	1092.7	15.2	94.8
CP-3-Spot 76	1255	494613	1.7	13.1562	1.0	1.9586	1.6	0.1869	1.3	0.79	1104.5	12.9	1101.4	10.8	1095.4	19.7	1095.4	19.7	100.8
QTV-1-Spot 17	247	77583	2.1	13.2890	1.3	1.8482	2.3	0.1781	1.9	0.82	1056.7	18.2	1062.8	14.9	1075.2	25.7	1075.2	25.7	98.3
QTV-1-Spot 21	135	57970	2.3	13.3204	1.4	1.8744	2.1	0.1811	1.6	0.76	1072.9	15.7	1072.1	13.9	1070.5	27.5	1070.5	27.5	100.2
QTV-1-Spot 56	1173	343460	2.9	13.1523	0.8	1.6866	3.9	0.1609	3.8	0.98	961.7	33.8	1003.5	24.6	1095.9	15.5	1095.9	15.5	87.8
QTV-1-Spot 65	395	139192	1.9	12.9806	0.9	1.8828	1.8	0.1773	1.6	0.88	1051.9	15 <u>.</u> 6	1075.0	12.1	1122.2	17.4	1122.2	17.4	93.7
QTV-1-Spot 68	149	64024	3.2	13.1788	1.3	1.9300	1.9	0.1845	1.4	0.74	1091.4	14.3	1091.6	12.8	1091.9	25.6	1091.9	25.6	100.0
QTV-2-Spot 13	1353	161760	1.8	13.2349	0.5	1.8870	1.5	0.1811	1.4	0.95	1073.1	13.8	1076.5	9.7	1083.4	9.3	1083.4	9.3	99.1
QTV-2-Spot 18	951	61237	3.6	13.2454	0.7	1.8512	<u>3.</u> 0	0.1778	2.9	0.97	1055.1	28.2	1063.9	19.7	1081.8	14.3	1081.8	14.3	97.5
QTV-2-Spot 2	145	62451	3.0	12.9003	1.6	1.6325	2.0	0.1527	1.2	0.58	916.3	10.0	982.8	12.7	1134.5	32.8	1134.5	32.8	80.8
QTV-2-Spot 26	278	33656	1.7	13.1373	1.0	1.8742	1.9	0.1786	1.6	0.86	1059.2	15.8	1072.0	12.5	1098.2	19.1	1098.2	19.1	96.4
QTV-2-Spot 28	420	62238	5.7	13.1164	0.8	1.7702	1.9	0.1684	1.7	0.90	1003.3	15.9	1034.6	12.4	1101.4	16.9	1101.4	16.9	91.1
QTV-2-Spot 34	1070	152449	1.9	13.2535	0.9	1.8506	1.6	0.1779	1.3	0.83	1055.4	12.9	1063.6	10.6	1080.6	18.1	1080.6	18.1	97.7
QTV-2-Spot 44	444	63517	2.3	13.0220	1.0	1.8714	1.8	0.1767	1.5	0.83	1049.2	14.5	1071.0	11.9	1115.8	20.0	1115.8	20.0	94.0
QTV-2-Spot 55	805	68123	1.8	13.0706	1.0	1.8047	1.5	0.1711	1.1	0.76	1018.1	10.6	1047.2	9.7	1108.4	19.1	1108.4	19.1	91.9
QTV-2-Spot 62	440	134684	1.9	13.1102	1.6	1.9249	<u>3.</u> 6	0.1830	3.3 .3	0.90	1083.5	32.6	1089.8	24.4	1102.4	32.2	1102.4	32.2	98.3
QTV-2-Spot 63	492	236017	2.2	13.0643	1.2	1.7855	<u>.3</u>	0.1692	2.8	0.92	1007.6	26.1	1040.2	19.9	1109.3	24.6	1109.3	24.6	90.8
QTV-2-Spot 67	2347	1274108	1.8	13.1211	0.6	1.9442	1.1	0.1850	0.9	0.83	1094.3	9.5	1096.5	7.7	1100.7	12.8	1100.7	12.8	99.4
QTV-2-Spot 77	134	37825	3.0	13.2069	1.0	1.8930	1.6	0.1813	1.3	0.81	1074.2	13.2	1078.6	10.9	1087.6	19.3	1087.6	19.3	98.8
QTV-2-Spot 78	499	180974	1.8	13.1470	1.3	1.7907	3.5	0.1707	3.3 .3	0.93	1016.2	30.7	1042.1	22.8	1096.7	25.3	1096.7	25.3	92.7
QTV-2-Spot 79	271	46292	1.9	13.2285	1.2	1.8766	2.0	0.1800	1.7	0.82	1067.2	16.4	1072.9	13.5	1084.4	23.4	1084.4	23.4	98.4
QTV-2-Spot 88	750	203898	2.0	13.0779	1.1	1.9142	1.6	0.1816	1	0.73	1075.5	11.3	1086.0	10.5	1107.3	21.7	1107.3	21.7	97.1
QTV-2-Spot 94	570	118790	1.7	13.2168	1.0	1.8409	1.8	0.1765	1.5	0.85	1047.6	14.8	1060.2	11.9	1086.1	19 <u>.</u> 3	1086.1	19.3	96.5
QTV-2-Spot 27	184	133447	0.9	12.9472	1.0	1.8453	3.6	0.1733	3.5	0.96	1030.1	33.0	1061.8	23.8	1127.3	19.7	1127.3	19.7	91.4
QTV-2-Spot 45	1104	196328	1.6	13.3108	0.8	1.9215	1.4	0.1855	1.1	0.80	1097.0	11.2	1088.6	9.3	1071.9	16.8	1071.9	16.8	102.3

Analysis U 206Pb U/Th 206Pb* ± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* (Ma) 208Pb 2 108.0 102.0 108.0 102.0 </th <th></th> <th></th> <th>1</th> <th></th>			1																			
U 206Pb U/Th 206Pb* ± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 207Pb* (Ma) (Ma) 207Pb* 20 0.06 23.8 10.06.1 10.06.2 18.09 10.02.1 10.06.2 18.09 10.02.1 10.06.3 10.06.3 10.		OTV 3 Spot 13	QTV-3-Spot 12	QTV-3-Spot 14	QTV-3-Spot 20	QTV-3-Spot 22	QTV-3-Spot 25	QTV-3-Spot 30	QTV-3-Spot 32	QTV-3-Spot 33	QTV-3-Spot 38	QTV-3-Spot 89	QTV-3-Spot 9	QTV-3-Spot 91	QTV-3-Spot 96	QTV-3-Spot 103	QTV-3-Spot 31	QTV-3-Spot 39	QTV-3-Spot 43	QTV-3-Spot 57	QTV-3-Spot 99	QTV-3-Spot 41
206Pb U/Th 206Pb* ± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 807Pb* ± 206Pb* ± 807Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 807Pb* (Ma) 207Pb* (Ma) 207Pb* (Ma) 207Pb* (Ma) 207Pb* (Ma) (Ma) (Ma) 207Pb* 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <td>(ppm)</td> <td>1115</td> <td>1445</td> <td>216</td> <td>425</td> <td>880</td> <td>1730</td> <td>1260</td> <td>492</td> <td>960</td> <td>202</td> <td>168</td> <td>1704</td> <td>1081</td> <td>643</td> <td>1103</td> <td>360</td> <td>1212</td> <td>1063</td> <td>220</td> <td>849</td> <td>546</td>	(ppm)	1115	1445	216	425	880	1730	1260	492	960	202	168	1704	1081	643	1103	360	1212	1063	220	849	546
U/Th 206Pb* ± 207Pb* ± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* ± 206Pb* ± 207Pb* (Ma) 1.1 1.3.1481 1.2 1.8066 2.3 0.1726 2.0 0.86 1026.2 18.9 1048.9 15.2 1096.6 2.3.8 1096.1 2.3.8 1096.1 2.3.8 1096.1 1.084.1 1.04.1	204Pb	477700	177700	31809	196825	58987	58757	52322	2550289	120829	60669	132543	160202	93304	63264	206527	128315	99910	188093	75402	147640	69650
206Pb* ± 207Pb* ± 206Pb* (Ma) 207Pb* (Ma) 200Fb (Ma) 200Fb (Ma) 200Fb (Ma) 200Fb (Ma) 200Fb (Ma) 200Fb 200Fb 200Fb 2	9	7 7	1.7	2.4	3.3	2.1	1.6	1.9	<u>3</u> .1	5.5	2.5	2.8	2.4	2.4	2.6	3.3	2.1	2.0	1.7	1.7	1.7	3.8
± 207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 806Pb* ± 206Pb* ± 206Pb* ± 206Pb* ± 806Pb* ± 806Pb* ± 206Pb* ± 207Pb* (Ma) 207Pb* (Ma)	207Pb*	12 1/81	13.1481	13.2279	13.2983	13.1645	13.3250	13.3027	13.1258	13.2710	13.1558	13.2366	13.2092	12.9416	12.9419	13.1237	13.2276	13.1255	13.2453	13.1634	12.7352	12.9263
207Pb* ± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 8est age 235U* (%) 238U (%) corr. 238U* (Ma) 235U (Ma) 207Pb* t Best age 18096 2.3 0.1726 2.0 0.86 1026.2 18.9 1048.9 15.2 1096.6 23.8 1096.1 1.9674 1.5 0.1887 1.2 0.84 1114.6 12.6 1104.4 9.9 1084.5 16.2 1084.1 1.9674 1.5 0.1887 1.2 0.84 1114.6 12.6 1104.4 9.9 1084.5 16.2 1084.1 1.9134 1.8 0.1764 1.7 0.80 1047.1 16.4 1062.4 14.0 1094.1 25.4 1094.1 1.8627 1.4 0.1800 1.0167.0 11.2 1067.9 9.4 1069.8 17.1 1069.3 1.8627 1.4	(%)	4 3	1.2	0.8	1.0	1.3	0.9	0.8	1.1	0.5	1.3	1.6	0.6	1.7	1.2	1.0	1.2	0.8	0.9	1.2	1.0	1.5
± 206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 8est age (%) 238U (%) corr. 238U* (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) 23 0.1726 2.0 0.86 1026.2 18.9 1048.9 15.2 1096.6 23.8 1096.1 1.5 0.1887 1.2 0.84 1114.6 12.6 1104.4 9.9 1084.5 16.2 1084.3 1.8 0.1764 1.7 0.80 1047.1 16.4 1067.9 9.4 1094.1 25.4 1094.1 1.4 0.1800 1.1 0.80 1067.0 11.2 1067.9 9.4 1069.8 17.1 1069.3 1.4 0.4000 1.3 0.95 4070.3 47.4 4077.3 0.5 4073.4 45.3 1073.4	235U*	1 2006	1.8096	1.9674	1.9134	1.8472	1.8627	1.8889	1.8366	1.8488	1.9066	1.9046	1.9136	1.9718	1.7519	1.9112	1.8666	1.9691	1.9042	1.9258	1.8221	1.8907
206Pb* ± error 206Pb* ± 207Pb* ± 206Pb* ± 8est ag 238U (%) corr. 238U* (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) (Ma) 0.7Pb* (Ma) <	(%)	2 2	2.3	1.5	1.8	2.1	1.4	1.4	2.4	1.2	2.3	2.0	1.4	2.2	2.6	1.6	1.7	1.6	1.3	1.6	2.8	2.3
± error 206Pb* ± 207Pb* ± 206Pb* ± 8est age (%) corr. 238U* (Ma) 235U (Ma) 207Pb* (Ma)	238U	9021 U	0.1726	0.1887	0.1845	0.1764	0.1800	0.1822	0.1748	0.1779	0.1819	0.1828	0.1833	0.1851	0.1644	0.1819	0.1791	0.1874	0.1829	0.1839	0.1683	0.1772
error 206Pb* ± 207Pb* ± 206Pb* ± Best age corr. 238U* (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) 0.86 1026.2 18.9 1048.9 15.2 1096.6 23.8 1096.1 0.84 1114.6 12.6 1104.4 9.9 1084.5 16.2 1084.3 0.84 1091.8 15.3 1085.8 12.1 1073.8 19.8 1073.3 0.80 1047.1 16.4 1062.4 14.0 1094.1 25.4 1094.3 0.80 1067.0 11.2 1067.9 9.4 1059.8 17.1 1069.3 0.80 1067.0 11.2 1067.9 9.4 1059.8 17.1 1069.3 0.84 1070.2 47.4 4072.4 45.2 1072.4	(%)	<u> </u>	2.0	1.2	1.5	1.7	1.1	1.2	2.1	1.0	1.9	1.2	1.3	1.4	2.4	1.3	1.3	1.4	1.0	1.1	2.7	1.7
206Pb* ± 207Pb* ± 206Pb* ± Best average 238U* (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) 1026.2 18.9 1048.9 15.2 1096.6 23.8 1096.1 1114.6 12.6 1104.4 9.9 1084.5 16.2 1084.1 1091.8 15.3 1085.8 12.1 1073.8 19.8 1073.3 1047.1 16.4 1062.4 14.0 1094.1 25.4 1094.1 1067.0 11.2 1067.9 9.4 1069.8 17.1 1069.3 1070.2 47.4 4077.2 0.5 4072.4 45.2 1072.4	corr.	38.0	0.86	0.84	0.84	0.80	0.80	0.85	0.89	0.89	0.83	0.59	0.89	0.63	0.90	0.81	0.72	0.86	0.74	0.67	0.93	0.75
± 207Pb* ± 206Pb* ± Best ag (Ma) 235U (Ma) 207Pb* (Ma) (Ma) (Ma) 18.9 1048.9 15.2 1096.6 23.8 1096.1 1084.1 12.6 1104.4 9.9 1084.5 16.2 1084.1 1084.1 15.3 1085.8 12.1 1073.8 19.8 1073.3 1094.1 25.4 1094.1 11.2 1067.9 9.4 1099.8 17.1 1069.3 17.1 1069.3 11.2 1067.9 9.4 1072.4 45.2 1073.3 1059.3	238U*	C 3CUF	1026.2	1114.6	1091.8	1047.1	1067.0	1079.2	1038.7	1055.7	1077.4	1082.5	1085.1	1094.7	981.4	1077.4	1061.9	1107.5	1082.9	1088.0	1002.7	1051.9
207Pb* ± 206Pb* ± Best average 235U (Ma) 207Pb* (Ma) (Ma) 1048.9 15.2 1096.6 23.8 1096.1 1104.4 9.9 1084.5 16.2 1084.1 1065.8 12.1 1073.8 19.8 1073.3 1062.4 14.0 1094.1 25.4 1094.3 1067.9 9.4 1069.8 17.1 1069.3 1077.0 0.5 4072.4 45.0 1073.4	(Ma)	0 81	18.9	12.6	15.3	16.4	11.2	12.1	20.3	10.2	19.2	11.7	12.5	13.9	21.6	13.2	12.2	14.1	9.9	10.6	24.6	16.4
± 206Pb* ± Best ag (Ma) 207Pb* (Ma) (Ma) 15.2 1096.6 23.8 1096.1 9.9 1084.5 16.2 1084.1 12.1 1073.8 19.8 1073.3 14.0 1094.1 25.4 1094.3 9.4 1069.8 17.1 1069.3 9.4 1069.4 465.2 1073.4	235U		1048.9	1104.4	1085.8	1062.4	1067.9	1077.2	1058.6	1063.0	1083.4	1082.7	1085.8	1105.9	1027.9	1085.0	1069.3	1105.0	1082.6	1090.1	1053.4	1077.8
206Pb* ± Best ag 207Pb* (Ma) (Ma) 1096.6 23.8 1096.1 1084.5 16.2 1084.1 1096.4 19.8 1073.3 1094.1 25.4 1094.1 1099.8 17.1 1069.3 1072.4 4.5.2 1073.3	(Ma)	15.0	15.2	9.9	12.1	14.0	9.4	9.5	15.6	7.8	15.5	13.2	9.4	14.8	17.1	10.9	11.4	10.8	8.9	10.5	18.7	15.0
± Best ag (Ma) (Ma) 23.8 1096. 16.2 1084. 19.8 1073.3 17.1 1069.1 17.1 1069.1	207Pb*	1006.6	1096.6	1084.5	1073.8	1094.1	1069.8	1073.1	1100.0	1077.9	1095.4	1083.1	1087.3	1128.2	1128.1	1100.3	1084.5	1100.0	1081.8	1094.2	1160.1	1130.5
Best ag (Ma) 1096. 1073.1 1073.1 1073.2	(Ma)	8 SC	23.8	16.2	19.8	25.4	17.1	15.2	21.5	10.6	25.6	32.1	13.0	33.9	23.5	19.0	24.0	16.1	18.0	23.4	20.7	30.0
- - - - - - - - - -	(Ma)	1006 6	1096.6	1084.5	1073.8	1094.1	1069.8	1073.1	1100.0	1077.9	1095.4	1083.1	1087.3	1128.2	1128.1	1100.3	1084.5	1100.0	1081.8	1094.2	1160.1	1130.5
± (Ma) 23.8 16.2 19.8 25.4 17.1	(Ma)	9 2 6	23.8	16.2	19.8	25.4	17.1	15.2	21.5	10.6	25.6	32.1	13.0	33.9	23.5	19.0	24.0	16.1	18.0	23.4	20.7	30.0
Concordance (%) 93.6 102.8 101.7 95.7 99.7	(%)	7 50	93.6	102.8	101.7	95.7	99.7	100.6	94.4	97.9	98.4	99.9	99.8	97.0	87.0	97.9	97.9	100.7	100.1	99.4	86.4	93.0

98.4	18.7	1676.9	18.7	1676.9	17.2	1662.0	26.8	1650.2	0.88	1.8	0.2917	2.1	4.1387	1.0	9.7192	2.1	52146	249	14CO-Core1-Spot 22
100.8	30.0	1329.7	30.0	1329.7	15.4	1336.3	16.8	1340.4	0.67	1.4	0.2311	2.1	2.7285	1.5	11.6790	1.4	45658	57	14CO-Core1-Spot 19
101.7	19.0	1370.6	19.0	1370.6	15.7	1385.1	22.9	1394.5	0.88	1.8	0.2415	2.1	2.9122	1.0	11.4338	1.2	55264	163	14CO-Core1-Spot 18
100.2	23.1	1686.8	23.1	1686.8	21.6	1688.8	34.3	1690.4	0.88	2.3	0.2998	2.6	4.2763	1.2	9.6671	1.4	210613	144	14CO-Core1-Spot 16
100.0	22.3	1354.8	22.3	1354.8	14.6	1355.1	19.2	1355.3	0.80	1.6	0.2340	1.9	2.7984	1.2	11.5279	1.1	59570	165	14CO-Core1-Spot 15
41.6	14.9	442.2	39.9	1063.2	17.2	557.9	14.9	442.2	0.87	3.5	0.0710	4.0	0.7323	2.0	13.3684	1.6	23199	113	14CO-Core1-Spot 14
102.9	15.8	1681.9	15.8	1681.9	12.7	1708.4	19.4	1730.1	0.83	1.3	0.3079	1.5	4.3793	0.9	9.6927	1.7	71854	202	14CO-Core1-Spot 12
103.9	26.2	1316.7	26.2	1316.7	27.0	1348.4	41.4	1368.5	0.93	3.4	0.2365	3.6	2.7734	1.4	11.7574	1.3	40840	76	14CO-Core1-Spot 9
98.8	26.4	1661.2	26.4	1661.2	15.9	1650.3	19.3	1641.7	0.68	1.3	0.2900	2.0	4.0798	1.4	9.8018	1.4	122529	106	14CO-Core1-Spot 8
98.6	13.6	1754.0	13.6	1754.0	14.0	1740.8	22.9	1729.9	0.90	1.5	0.3078	1.7	4.5537	0.7	9.3199	2.0	172788	435	14CO-Core1-Spot 6
100.9	21.7	1667.8	21.7	1667.8	14.2	1676.2	18.8	1683.0	0.73	1.3	0.2983	1.7	4.2113	1.2	9.7671	1.4	73812	184	14CO-Core1-Spot 4
102.7	27.2	1087.9	27.2	1087.9	12.0	1107.5	11.8	1117.6	0.65	1.2	0.1893	1.8	1.9765	1.4	13.2055	4.1	34529	109	14CO-Core1-Spot 3
102.7	18.0	1085.7	18.0	1085.7	11.0	1105.2	14.0	1115.2	0.83	1.4	0.1889	1.6	1.9698	0.9	13.2197	2.0	290882	1492	14MO-LMT-Spot 98
97.7	24.5	1111.2	24.5	1111.2	15.4	1094.0	19.4	1085.4	0.84	1.9	0.1834	2.3	1.9372	1.2	13.0518	2.4	41792	180	14MO-LMT-Spot 92
99.3	29.5	1087.9	29.5	1087.9	13.2	1082.7	13.3	1080.1	0.67	1.3	0.1824	2.0	1.9045	1.5	13.2050	2.2	71169	282	14MO-LMT-Spot 79
98.5	18.7	1095.8	18.7	1095.8	19.6	1085.0	27.7	1079.7	0.95	2.8	0.1823	2.9	1.9113	0.9	13.1528	3.1	197906	285	14MO-LMT-Spot 77
97.6	29.8	1108.6	29.8	1108.6	11.7	1090.8	9.2	1082.0	0.53	0.9	0.1827	1.8	1.9280	1.5	13.0691	2.8	139658	280	14MO-LMT-Spot 75
101.3	14.4	1102.9	14.4	1102.9	11.0	1112.2	15.0	1117.0	0.90	1.5	0.1892	1.6	1.9903	0.7	13.1063	4.8	187411	608	14MO-LMT-Spot 61
99.1	15.2	1086.1	15.2	1086.1	9.7	1079.8	12.4	1076.7	0.85	1.2	0.1818	1.5	1.8964	0.8	13.2169	2.1	419089	1292	14MO-LMT-Spot 57
85.7	34.3	1183.2	34.3	1183.2	15.6	1069.0	14.9	1013.8	0.67	1.6	0.1703	2.4	1.8655	1.7	12.5875	2.9	29790	232	14MO-LMT-Spot 53
98.7	18.7	1074.8	18.7	1074.8	12.2	1065.3	15.6	1060.6	0.86	1.6	0.1788	1.8	1.8552	0.9	13.2915	2.0	159548	819	14MO-LMT-Spot 51
94.1	25.1	1137.1	25.1	1137.1	20.6	1092.6	27.7	1070.4	0.91	2.8	0.1806	3.1	1.9331	1.3	12.8835	2.5	76772	277	14MO-LMT-Spot 49
93.0	23.3	1071.7	23.3	1071.7	11.3	1020.8	12.2	997.2	0.75	1.3	0.1673	1.8	1.7328	1.2	13.3120	2.9	152673	215	14MO-LMT-Spot 47
99.2	16.1	1087.1	16.1	1087.1	22.1	1081.5	32.0	1078.6	0.97	3.2	0.1821	3.3	1.9010	0.8	13.2103	1.8	141877	1253	14MO-LMT-Spot 43
99.8	18.6	1092.6	18.6	1092.6	9.2	1090.9	10.2	1090.0	0.74	1.0	0.1842	1.4	1.9281	0.9	13.1740	1.8	203101	1092	14MO-LMT-Spot 40
99.9	28.0	1097.9	28.0	1097.9	12.9	1097.4	13.3	1097.1	0.69	1.3	0,1855	1.9	1.9469	1.4	13.1394	2.4	115308	434	14MO-LMT-Spot 38
96.0	16.8	1110.9	16.8	1110.9	9.3	1081.5	10.9	1066.9	0.80	1.1	0,1800	1.4	1.9011	0.8	13.0541	2.8	91042	479	14MO-LMT-Spot 20
95.6	24.7	1105.2	24.7	1105.2	12.1	1072.5	13.2	1056.5	0.74	1.4	0.1781	1.8	1.8757	1.2	13.0914	2.0	133374	248	14MO-LMT-Spot 17
96.9	23.6	1079.1	23.6	1079.1	18.7	1056.4	25.1	1045.5	0.91	2.6	0.1761	2.8	1.8305	1.2	13.2635	2.2	66814	600	14MO-LMT-Spot 14
99.8	18.8	1691.6	18.8	1691.6	27.8	1689.5	47.7	1687.8	0.95	3.2	0.2993	3.4	4.2798	1.0	9.6419	2.0	95151	149	14MO-LMT-Spot 11
93.1	18.6	1082.7	18.6	1082.7	10.3	1031.8	12.0	1007.9	0.81	1.3	0.1692	1.6	1.7625	0.9	13.2392	1.3	75989	2117	14MO-LMT-Spot 9
98.4	20.7	1086.0	20.7	1086.0	12.6	1074.6	15.8	1068.9	0.84	1.6	0.1804	1.9	1.8814	1.0	13.2173	3.1	33553	118	14MO-LMT-Spot 4
94.6	25.6	1154.7	25.6	1154.7	12.9	1113.6	14.2	1092.7	0.74	1.4	0.1847	1.9	1.9944	1.3	12.7699	3.4	102286	429	14MO-LMT-Spot 2
(%)	(Ma)	(Ma)	(Ma)	207Pb*	(Ma)	235U	(Ma)	238U*	COIT.	(%)	238U	(%)	235U*	(%)	207Pb*		204Pb	(ppm)	
Conc	+	Best age	+	206Pb*	+	207Pb*	+	206Pb*	error	, +	206Pb	+	207Pb*	+	206Pb	U/Th	206Pb	c	Analysis

reverse discordance were discarded. tainties include both random and systematic error. Analysis with >10% measurement error, >20% discordance, or >5%Table A-2. LA-ICP-MS U-Pb data for detrital zircon recovered from siliciclastic units from the central United States. Uncer-

Analysis	c	206 P b	U/Th	206Pb*	+	207Pb*	+	206 P b*	1+	error	206Pb*	H+	207Pb*	+	206Pb*	+	Best age	+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14CO-Core1-Spot 30	159	52276	1.3	11.4380	0.9	2.8271	1.6	0.2345	1.4	0.84	1358.2	16.8	1362.7	12.2	1369.9	16.8	1369.9	16.8	99 .1
14CO-Core1-Spot 38	230	131870	1.5	11.2263	1.0	2.9629	1.7	0.2412	1.3	0.78	1393.2	16.3	1398.2	12.7	1405.8	19.9	1405.8	19.9	99.1
14CO-Core1-Spot 39	97	31218	1.5	11.3657	1.8	2.8470	3.5	0.2347	3.1	0.87	1359.0	37.6	1368.0	26.6	1382.1	33.8	1382.1	33.8	98.3
14CO-Core1-Spot 40	179	79651	1.8	11.5044	1.3	2.8466	2.4	0.2375	2.0	0.83	1373.8	24.5	1367.9	17.9	1358.8	25.3	1358.8	25.3	101.1
14CO-Core1-Spot 42	162	74179	1.5	11.5126	1.1	2.8690	1.8	0.2396	1.4	0.78	1384.4	17.8	1373.8	13.8	1357.4	22.0	1357.4	22.0	102.0
14CO-Core1-Spot 43	88	21427	0.8	9.7751	0.9	4.2296	1.8	0.2999	1.6	0.86	1690.6	23.4	1679.8	15.0	1666.3	17.0	1666.3	17.0	101.5
14CO-Core1-Spot 45	241	54259	2.0	9.8548	1.0	4.1930	1.9	0.2997	1.5	0.82	1689.8	22.7	1672.7	15.2	1651.2	19.4	1651.2	19.4	102.3
14CO-Core1-Spot 48	172	48063	0.6	11.2995	1.4	2.9794	3.6	0.2442	3.3	0.92	1408.3	41.8	1402.4	27.4	1393.3	27.7	1393.3	27.7	101.1
14CO-Core1-Spot 49	148	41819	1.0	9.9997	1.1	3.9129	3.0	0.2838	2.8	0.92	1610.4	39.2	1616.4	24.1	1624.1	21.4	1624.1	21.4	99.2
14CO-Core1-Spot 50	108	20700	2.0	13.1385	1.7	2.0163	2.5	0.1921	1.9	0.75	1132.9	19.6	1121.0	17.0	1098.0	33.0	1098.0	33.0	103.2
14CO-Core1-Spot 53	137	26945	1.9	11.5524	1.3	2.8430	1.8	0.2382	1.3	0.70	1377.3	15.8	1367.0	13.6	1350.7	24.8	1350.7	24.8	102.0
14CO-Core1-Spot 54	176	49858	1.7	11.4670	1.1	2.8957	1.7	0.2408	1.2	0.74	1391.0	15.2	1380.8	12.5	1365.0	21.5	1365.0	2 1 .5	101.9
14CO-Core1-Spot 60	131	46242	1.4	11.5288	1.6	2.8009	2.1	0.2342	1.5	0.68	1356.4	17.9	1355.8	16.0	1354.7	30.1	1354.7	30.1	100.1
14CO-Core1-Spot 61	226	98833	1.9	13.3397	1.1	1.8582	1.7	0.1798	1.3	0.77	1065.7	12.8	1066.3	11.2	1067.6	21.8	1067.6	2 1 .8	99.8
14CO-Core1-Spot 62	186	33446	2.1	9.7009	1.1	4.1982	1.4	0.2954	1.0	0.68	1668.3	14.4	1673.7	11.8	1680.4	19.4	1680.4	19.4	<u>99</u> .3
14CO-Core1-Spot 63	240	55526	2.3	11.4452	0.9	2.8535	1.9	0.2369	1.7	0.88	1370.4	20.7	1369.7	14.4	1368.7	17.8	1368.7	17.8	100.1
14CO-Core1-Spot 6/	359	248897	1./	11.4411	1.0	2.8192	1./	0.2339	1.4	0.83	1355.1	17.3	1360.7	12.9	1369.4	18.6	1369.4	18.b	99.0
14CO-Core1-Spot 68	270	19063	د م ۵	11.3908	1.2	7 2 8400	ין פור ני	0.2367	1.4	U. / 6	1369./	222 9.71	13/2.9	14.3	1377.9	23.1	1320 E	75.0	102 A
1100 Com 1 Shot 74	100	00011	4	0 6436	4	4 3345	ין נ ס נ	0.2000	4 7	0.00	1667.0	101	1670.2	10 4	1000.0	20.0	1001 0	202	100.1
14CO-Core1-Spot 77	105	47520	1.2	10.8963	1.3	3.0297	2.4	0.2394	2.1	0.85	1383.7	25.7	1415.1	18.6	1462.7	24.3	1462.7	24.3	94.6
14CO-Core1-Spot 78	150	42693	1.6	11.4557	1.3	2.9028	2.4	0.2412	1.9	0.82	1392.8	24.2	1382.7	17.8	1366.9	25.8	1366.9	25.8	101.9
14CO-Core1-Spot 83	194	148562	1.8	11.1560	1.2	3.0900	1.7	0.2500	1.2	0.72	1438.5	15.8	1430.2	13.1	1417.8	22.9	1417.8	22.9	101.5
14CO-Core1-Spot 85	29	121814	1.4	11.6364	1.7	2.7730	3.8	0.2340	3.4	0.89	1355.6	41.3	1348.3	28.3	1336.8	33.4	1336.8	33.4	101.4
14CO-Core1-Spot 88	212	5584946	2.7	9.8136	1.2	4.1696	2.0	0.2968	1.6	0.81	1675.3	24.2	1668.1	16.7	1659.0	22.4	1659.0	22.4	101.0
14CO-Core1-Spot 92	82	30285	1.2	11.5687	1.3	2.6022	2.8	0.2183	2.5	0.89	1273.1	29.1	1301.2	20.6	1348.0	24.3	1348.0	24.3	94.4
14CO-Core1-Spot 96	220	94200	1.2	11.3871	1.3	3.0183	2.7	0.2493	2.4	0.88	1434.7	30.7	1412.3	20.6	1378.5	24.2	1378.5	24.2	104.1
14CO-Core1-Spot 97	299	254530	1.2	11.2745	1.1	2.7584	2.1	0.2256	1.8	0.85	1311.2	20.9	1344.4	15.4	1397.6	20.7	1397.6	20.7	93.8
14CO-Core1-Spot 100	276	33954	1.1	9.2442	3.6	4.3071	3.8	0.2888	1.4	0.37	1635.4	20.7	1694.7	31.6	1768.9	65.1	1768.9	65.1	92.5
14CO-Core1-Spot 101	38	34031	1.2	9.3760	3.1	4.4865	3.5	0.3051	1.6	0.45	1716.5	24.1	1728.5	29.3	1743.0	57.7	1743.0	57.7	98.5
14CO-Core1-Spot 104	73	100428	1.4	11.5494	1.8	2.8088	2.4	0.2353	1.7	0.69	1362.1	20.5	1357.9	18.1	1351.2	33.9	1351.2	33.9	100.8
14CO-Core1-Spot 106	286	126882	2.3	11.3868	0.9	2.8342	2.4	0.2341	2.2	0.92	1355.7	27.0	1364.6	17.9	1378.6	17.5	1378.6	17.5	98.3
14CO-Core1-Spot 108	53	43586	1.4	11.4813	1.8	2.8608	2.4	0.2382	1.6	0.65	1377.4	19.3	1371.6	18.0	1362.6	35.0	1362.6	35.0	101.1
14CO-Core1-Spot 109	266	84505	1.2	11.3680	1.1	2.5613	1.7	0.2112	1.2	0.74	1235.1	14.0	1289.7	12.4	1381.7	21.9	1381.7	21.9	89.4
14CO-Core-2-Spot 2	305	58179	2.2	9.5984	0.8	4.2624	1.2	0.2967	0.9	0.77	1675.1	13.5	1686.1	9.7	1699.9	13.8	1699.9	13.8	98.5
14CO-Core-2-Spot 3	119	32109	1.3	11.3471	1.3	2.8661	1.8	0.2359	1.3	0.70	1365.2	15.4	1373.1	13.6	1385.3	24.8	1385.3	24.8	98.6
14CO-Core-2-Spot 5	174	40244	0.9	9.7292	0.9	4.2229	1.6	0.2980	1.3	0.80	1681.3	18.6	1678.5	12.8	1675.0	17.2	1675.0	17.2	100.4
14CO-Core-2-Spot 10	79	13438	4.0	10.9663	1.0	3.0785	1.6	0.2448	1.3	0.78	1411.9	16.0	1427.4	12.4	1450.5	19.3	1450.5	19.3	97.3
14CO-Core-2-Spot 13	155	44179	2.4	9.6560	1.0	4.3170	1.8	0.3023	1.5	0.84	1702.9	22.7	1696.6	14.8	1688.9	17.8	1688.9	17.8	100.8
14CO-Core-2-Spot 20	216	39791	1.7	11.7208	1.3	2.3762	2.0	0.2020	1.5	0.74	1186.0	15.8	1235.5	14.1	1322.8	25.8	1322.8	25.8	89.7
14CO-Core-2-Spot 25	139	164465	2.1	9.6975	1.0	4.1974	1.5	0.2952	1.1	0.71	1667.6	15.6	1673.5	12.2	1681.0	19.3	1681.0	19.3	<u>99.2</u>

Analysis	c	206Pb	U/Th	206Pb*	+	207Pb*	1+	206Pb*	1+	error	206Pb*	1+	207Pb*	+	206Pb*	1+	Best age	+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14CO-Core-2-Spot 35	56	17199	2.9	11.1296	1.4	3.0509	1.9	0.2463	1.3	0.68	1419.2	16.5	1420.4	14.5	1422.3	26.6	1422.3	26.6	99.8
14CO-Core-2-Spot 39	175	44238	1.7	9.2037	0.8	4.6363	1.6	0.3095	1.3	0.86	1738.2	20.3	1755.8	13.0	1776.9	14.7	1776.9	14.7	97.8
14CO-Core-2-Spot 46	366	65079	1.8	9.2296	0.9	3.6747	1.7	0.2460	1.4	0.83	1417.7	17.4	1565.9	13.2	1771.8	17.0	1771.8	17.0	80.0
14CO-Core-2-Spot 59	262	63544	2.4	9.8853	1.1	4.0206	1.6	0.2883	1.2	0.74	1632.8	16.9	1638.4	12.9	1645.5	20.0	1645.5	20.0	99.2
14CO-Core-2-Spot 70	181	105705	2.0	11.3975	1.0	2.8126	1.5	0.2325	1.2	0.75	1347.6	14.0	1358.9	11.5	1376.7	19.7	1376.7	19.7	97.9
14CO-Core-2-Spot 73	95	39157	2.2	9.5821	1.1	4.2804	1.8	0.2975	1.4	0.79	1678.8	20.7	1689.6	14.7	1703.1	20.3	1703.1	20.3	98.6
14CO-Core-2-Spot 76	290	55196	3.9	9.1667	6.0	4.7160	1.6	0.3135	1.3	0.82	1758.1	20.0	1770.1	13.3	1784.3	16.5	1784.3	16.5	98.5
14CO-Core-2-Spot 83	213	57436	2.5	11.0237	1.4	3.0740	1.9	0.2458	1.4	0.72	1416.6	17.8	1426.2	14.9	1440.6	25.9	1440.6	25.9	98.3
14CO-Core-2-Spot 84	344	100270	2.9	9.3805	6.0	4.5785	1.3	0.3115	0.9	0.69	1748.0	13.8	1745.4	10.9	1742.1	17.2	1742.1	17.2	100.3
14CO-Core-2-Spot 87	213	98944	1.8	11.4161	1.1	2.8068	1.7	0.2324	1.3	0.76	1347.0	15.5	1357.3	12.6	1373.6	21.2	1373.6	21.2	98.1
14CO-Core-2-Spot 95	216	200899	1.7	9.6448	1.2	4.1033	1.8	0.2870	1.4	0.77	1626.7	20.4	1655.0	15.0	1691.1	21.4	1691.1	21.4	96.2
14CO-Core-2-Spot 98	186	46458	2.3	11.4536	1.2	2.8405	1.7	0.2360	1.1	0.67	1365.7	13.7	1366.3	12.5	1367.3	23.7	1367.3	23.7	99.9
14CO-Cor e- 2-Spot 101	400	54801	2.8	9.1557	0.8	4.6501	1.7	0.3088	1.5	0.89	1734.7	22.4	1758.3	13.9	1786.5	14.0	1786.5	14.0	97.1
14CO-Core-2-Spot 104	120	37531	1.8	13.0639	1.5	1.9611	1.8	0.1858	1.1	0.58	1098.6	10.7	1102.3	12.3	1109.4	29.9	1109.4	29.9	99.0
14CO-Core-2-Spot 106	231	84678	1.0	9.6489	1.0	4.2418	1.8	0.2968	1.5	0.85	1675.6	22.8	1682.2	15.0	1690.3	17.9	1690.3	17.9	99.1
14CO-Core-2-Spot 107	317	99130	1.6	11.1512	1.1	3.0176	1.7	0.2441	1.2	0.72	1407.7	15.0	1412.1	12.6	1418.6	22.0	1418.6	22.0	99.2
14CO-BS-3-Spot 1	326	BULZIN	2, I 1, U	11.4236	4 U.8	2.6396	1.6	0.2187	4 1.3	0.85	12/5.0	2. dl	1311.7	11.6	13/2.3	75.7	13/2.3	; ; ;	92.9
1400-BS-3-Spot 2	349	75979	л с я	11 3701	8 U	3 5964	14	0.2020	1,	0.00	1050 7	13 5	1200 6	10 5	1381.4	15.0	1381 4	15.5	00 Z
14CO-BS-3-Spot 4	120	43477	1.9	11.1127	1.4	3.1019	2.3	0.2500	1.9	0.79	1438.5	23.9	1433.2	18.0	1425.2	27.6	1425.2	27.6	100.9
14CO-BS-3-Spot 5	293	31922	3.2	12.6648	0.9	2.1346	1.3	0.1961	0.9	0.70	1154.2	9.6	1160.1	8.9	1171.1	18.1	1171.1	18.1	98.6
14CO-BS-3-Spot 6	101	32025	3.1	11.0628	1.4	3.1435	1.9	0.2522	1.3	0.66	1449.9	16.2	1443.4	14.6	1433.8	27.3	1433.8	27.3	101.1
14CO-BS-3-Spot 7	147	42755	1.9	11.3100	1.1	2.7762	2.5	0.2277	2.3	0.90	1322.6	27.2	1349.2	18.9	1391.6	21.2	1391.6	21.2	95.0
14CO-BS-3-Spot 9	57	20055	1.9	13.0386	3.1	2.0030	3.6	0.1894	1.8	0.52	1118.2	18.9	1116.5	24.2	1113.3	61.2	1113.3	61.2	100.4
14CO-BS-3Spot 10	129	144682	1.3	9.6919	1.1	4.1590	1.3	0.2923	0.7	0.56	1653.2	10.6	1666.0	10.7	1682.1	20.0	1682.1	20.0	<u>98.3</u>
14CO-BS-3Spot 11	508	119636	2.6	11.2640	0.9	3.0402	1.3	0.2484	1.0	0.77	1430.1	13.2	1417.8	10.2	1399.4	16.4	1399.4	16.4	102.2
14CO-BS-3Spot 12	115	95130	1.9	11.4653	1.1	2.8390	1.8	0.2361	1.5	0.81	1366.3	18.4	1365.9	13.9	1365.3	21.1	1365.3	21.1	100.1
14CO-BS-3Spot 13	216	27093	1.0	11.4169	1.3	2.8593	1.8	0.2368	1.3	0.72	1369.8	16.0	1371.3	13.7	1373.5	24.4	1373.5	24.4	99.7
14CO-BS-3Spot 14	207	30539	2.6	11.1116	1.3	3.1097	3.8	0.2506	3.6	0.94	1441.6	46.1	1435.1	29.2	1425.4	24.7	1425.4	24.7	101.1
14CO-BS-3Spot 15	215	42811	1.5	11.5637	1.2	2.8047	1.7	0.2352	1.2	0.72	1361.8	15.2	1356.8	12.9	1348.9	23.1	1348.9	23.1	101.0
14CO-BS-3Spot 16	289	78711	1.2	11.5084	0.8	2.8827	1.2	0.2406	0.9	0.76	1389.9	11.8	1377.4	9.3	1358.1	15.5	1358.1	15.5	102.3
14CO-BS-3Spot 17	105	26114	1.7	11.3797	1.0	2.8164	1.4	0.2324	1.0	0.71	1347.3	12.2	1359.9	10.6	1379.8	19.0	1379.8	19.0	97.6
14CO-BS-3Spot 18	548	231718	3.8	9.2476	0.9	4.7024	1.2	0.3154	0.8	0.68	1767.2	12.6	1767.7	10.0	1768.2	16.0	1768.2	16.0	99.9
14CO-BS-3Spot 19	87	22091	0.6	11.3765	1.2	2.7979	2.0	0.2309	1.6	0.80	1339.0	19.8	1355.0	15.3	1380.3	23.4	1380.3	23.4	97.0
14CO-BS-3Spot 20	137	64398	0.6	11.3197	1.2	2.8065	1.7	0.2304	1.1	0.68	1336.6	13.8	1357.3	12.6	1389.9	23.9	1389.9	23.9	96.2
14CO-BS-3Spot 21	133	109775	3.4	10.9220	1.0	3.0864	1.7	0.2445	1.3	0.79	1410.0	16.6	1429.3	12.8	1458.2	19.4	1458.2	19.4	96.7
14CO-BS-3Spot 22	152	46776	1.6	11.4193	1.1	2.8913	1.7	0.2395	1.3	0.76	1383.9	16.1	1379.6	12.9	1373.1	21.5	1373.1	21.5	100.8
14CO-BS-3Spot 23	190	31959	1.2	12.4508	1.0	2.2416	1.7	0.2024	1.4	0.82	1188.3	15.4	1194.2	12.2	1204.7	19.7	1204.7	19.7	98.6
14CO-BS-3Spot 24	197	63932	1.5	11.3984	0.9	2.9488	2.0	0.2438	1.8	0.89	1406.3	22.5	1394.6	15.1	1376.6	17.3	1376.6	17.3	102.2
14CO-BS-3Spot 25	244	73621	2.5	11.4378	1.2	2.8260	1.7	0.2344	1.2	0.71	1357.7	14.4	1362.4	12.4	1370.0	22.4	1370.0	22.4	99 .1

Intro Number Number </th <th>Analysis</th> <th>c</th> <th>206Pb</th> <th>U/Th</th> <th>206Pb*</th> <th>I+</th> <th>207Pb*</th> <th>1+</th> <th>206Pb*</th> <th>1+</th> <th>error</th> <th>206Pb*</th> <th>1+</th> <th>207Pb*</th> <th>1+</th> <th>206Pb*</th> <th>1+</th> <th>Best age</th> <th>I+</th> <th>Conc</th>	Analysis	c	206Pb	U/Th	206Pb*	I+	207Pb*	1+	206Pb*	1+	error	206Pb*	1+	207Pb*	1+	206Pb*	1+	Best age	I+	Conc
Horobes-begins International Interna		(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
HCOC605-Sept 30 16 1133 1.4 0.004 1.5 0.0036 1.5 0.0036 1.5 0.0036 1.5 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.003																				
HCOBES-SMAP Yie Yie <th< td=""><td>14CO-BS-3Spot 26</td><td>67</td><td>25421</td><td>1.6</td><td>11.3313</td><td>1.4</td><td>2.8424</td><td>1.9</td><td>0.2336</td><td>1.2</td><td>0.65</td><td>1353.3</td><td>15.0</td><td>1366.8</td><td>14.2</td><td>1387.9</td><td>27.7</td><td>1387.9</td><td>27.7</td><td>97.5</td></th<>	14CO-BS-3Spot 26	67	25421	1.6	11.3313	1.4	2.8424	1.9	0.2336	1.2	0.65	1353.3	15.0	1366.8	14.2	1387.9	27.7	1387.9	27.7	97.5
HOCDBE-Server Integr	14CO-BS-3Spot 27	95	24829	1.6	11.5123	1.2	2.8302	2.2	0.2363	1.8	0.83	1367.5	22.3	1363.6	16.5	1357.5	23.9	1357.5	23.9	100.7
GACOBD-Separd Sint	14CO-BS-3Spot 28	216	47039	1.5	11.4273	0.9	2.8457	1.2	0.2359	0.8	0.67	1365.1	9.7	1367.7	8.9	1371.7	16.9	1371.7	16.9	99.5
HCO-DBSSpect Dist	14CO-BS-3Spot 29	166	92479	0.7	11.5039	1.2	2.8432	1.7	0.2372	1.3	0.74	1372.2	16.0	1367.0	13.1	1358.9	22.6	1358.9	22.6	101.0
MACOBS-Separ Singe	14CO-BS-3Spot 30	96	16998	1.3	11.5767	1.5	2.7524	2.0	0.2311	1.3	0.66	1340.3	16.3	1342.7	15.1	1346.7	29.2	1346.7	29.2	99.5
Index-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s	14CO-BS-3Spot 31	106	211973	1.1	11.1349	1.4	2.9192	3.5	0.2358	3.2	0.91	1364.6	39.4	1386.9	26.6	1421.4	27.6	1421.4	27.6	96.0
UncoBs-Spadi 1 Used Bs-Spadi Used	14CO-BS-3Spot 32	422	46259	1.2	13.1927	1.1	2.0255	1.5	0.1938	1.0	0.68	1142.0	10.8	1124.1	10.3	1089.8	22.2	1089.8	22.2	104.8
Macc65-Spield 205 101 206 101 206 101 206 101 206 101 206 101 206 101 100 102 101 100 102 101 100 102 101 100 102 101 <	14CO-BS-3Spot 33	91	49848	1.5	11.3059	1.3	2.7936	2.3	0.2291	1.9	0.81	1329.6	22.4	1353.8	17.1	1392.2	25.5	1392.2	25.5	95.5
UACOBA-Separab Constrain	14CO-BS-3Spot 34	138	39683	4.0	11.1133	0.8	3.0851	1.4	0.2487	1.2	0.83	1431.6	15.1	1429.0	10.8	1425.1	14.9	1425.1	14.9	100.5
Incolas-separt Int	14CO-BS-3Spot 35	295	103723	1.4	11.4800	1.0	2.7621	3.5	0.2300	3.4	0.96	1334.4	40.6	1345.4	26.3	1362.9	19.9	1362.9	19.9	97.9
HACCBBA-Spint Sint	14CO-BS-3Spot 36	600	93785	2.6	11.0313	0.8	3.0849	1.4	0.2468	1.1	0.80	1422.0	13.7	1428.9	10.4	1439.3	15.6	1439.3	15.6	98.8
HCOBBA-Spint 200 6664 1.4 6.864 0.7 4.2093 1.2 0.864 0.74 4.2093 1.2 0.8294 1.3 0.865 1.64 1.54 1.25 1.645 1.25 1.645 1.25 1.645 1.25 1.645 1.25 1.645 1.25 1.645 1.25 1.645 1.25 1.65 1.639 1.55 1.65 1.	14CO-BS-3Spot 37	187	60600	2.0	9.9039	1.1	3.9947	1.5	0.2869	1.0	0.68	1626.2	14.1	1633.1	11.8	1642.0	19.8	1642.0	19.8	99.0
HCOBS-Spind 129 11784 2.2 90.00 1.4 12.01 12.0 12.01 12.0 12.01 1	14CO-BS-3Spot 38	205	58591	1.4	9.6264	0.7	4.2026	1.5	0.2934	1.3	0.88	1658.6	19.4	1674.5	12.5	1694.6	13.5	1694.6	13.5	97.9
IdCOBS-Spield Side	14CO-BS-3Spot 39	129	117874	2.2	9.6038	1.4	4.2389	1.9	0.2953	1.2	0.65	1667.7	18.3	1681.6	15.6	1698.9	26.5	1698.9	26.5	98.2
H4COB3-Spel41 76 3447 14 11211 12 2879 35 0.823 11 0.881 145 13 1302 13 0.821 13 0.881 10.0 1303 1101 333 140.1 333 1121 112 1122 113 112 112 1121 1122 113 112 1122 113 113 112 1122 113 113 1122 113 113 1122 113 113 1122 113 113 114 11444 13 2864 13 0.923 11 0.831 13.0 164.4 137 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 164.5 137.0 136.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	14CO-BS-3Spot 40	364	57843	1.8	12.8367	1.1	2.0183	2.7	0.1879	2.5	0.92	1110.0	25.7	1121.7	18.7	1144.3	21.8	1144.3	21.8	97.0
H4COBC3-Spid 42 13 1952 2.1 1972 1.3 1982 1.7 1.914 1.0 0.09 1.0912 1.0 1.12 1.62.4 2.3 1.92.4 1.3 1.92.4 1.3 1.92.4 1.3 1.92.4 1.3 1.92.4 1.3 1.92.4 1.3 1.92.4 1.3 1.12.4 1.4 1.40.4 1.1 1.32.1 1.4 2.8045 1.7 0.80 1.92.7 1.54 1.97.7 1.54 1.97.6 2.5 3.7 3.0.3 0.22.5 3.7 0.93 1.93.5 1.6 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1.54 1.97.7 1	14CO-BS-3Spot 41	76	34487	1.4	11.2011	1.7	2.8579	3.5	0.2322	3.1	0.88	1345.9	37.8	1370.9	26.6	1410.1	32.3	1410.1	32.3	95.4
14C265-Spid 4. 167 2.4 9.802 0.90 4.004 1.1 0.205 0.217 0.405 0.21 0.205 0.21 0.205 0.21 0.205 0.21 0.205 0.21 0.205 0.21 0.205 0.21 0.205 0.20	14CO-BS-3Spot 42	139	105532	2.1	12.7202	1.3	1.9952	1.7	0.1841	1.0	0.60	1089.2	10.0	1113.9	11.2	1162.4	26.3	1162.4	26.3	93.7
14CCB63Spal4 165 3119 1.0 11.321 1.4 2.985 3.0 0.255 1.5 0.57 1.6.4 1.032 1.4 2.985 3.0 0.235 1.5 0.236 1.6 1.4 1.4 1.4 1.4 0.236 1.6 1.4 0.65 1.6 1.4 0.65 1.6 1.4 0.65 1.6 1.33 0.65 1.6 1.6 0.65 1.6 1.6 0.65 1.6 0.65 1.6 0.65<	14CO-BS-3Spot 43	172	61766	2.4	9.8902	0.9	4.0044	1.6	0.2872	1.3	0.82	1627.7	18.9	1635.1	13.0	1644.6	17.1	1644.6	17.1	<u>99</u> .0
I4CCBS-Spid Sint	14CO-BS-3Spot 44	158	37199	1.0	11.3321	1.4	2.8648	2.1	0.2355	1.5	0.73	1363.0	18.4	1372.7	15.4	1387.8	26.9	1387.8	26.9	98.2
HAC-BS-S-Spid 201 44.91 1.1 14.33 1.0 2 2 30.2 23.01 1.0 2.84 1.9 0.286 1.1 0.89 1.0 0.89 1.0 0.89 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 <th1.1< th=""> 1.1 1.1</th1.1<>	14CO-BS-3Spot 45	100	34946	1.4	11.4078	1.3	2.8425	3.9	0.2352	3.7	0.94	1361.6	45.4	1366.8	29.5	1375.0	25.4	1375.0	25.4	<u>99</u> .0
HACCBRS-Spid Spid 2.7 11.074 1.2 3.066 1.6 0.246 1.1 0.067 14196 1.4 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 143.1 142.1 143.1 14	14CO-BS-3Spot 46	201	44919	1.1	11.4334	0.9	2.8546	1.9	0.2367	1.7	0.89	1369.6	20.8	1370.0	14.2	1370.7	16.5	1370.7	16.5	99.9
HACCBS3-Spid 49 2A3 3.23 3.6 10.966 1.4 3.1047 2.5 0.247 1.4 0.143 0.71 142.01 1.11 0.2001 1.3 0.11 0.11 0.2001 1.3 0.11 0.21 1.45.1 1.35 1.45.1 1.35 1.45.1 1.31 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11 1.45.5 3.11	14CO-BS-3Spot 47	302	29310	2.7	11.0764	1.2	3.0665	1.6	0.2463	1.1	0.67	1419.6	13.6	1424.4	12.2	1431.5	22.6	1431.5	22.6	<u>99.2</u>
H4COBS3-Spol49 192 34133 2.7 11.1552 1.0 3.0746 1.8 0.401 1.4 0.61 42.86 162 142.4 13.5 142.1 13.7 146.3 143 0.61 142.86 162 142.6 162 142.6 15.5 142.1 13.7 146.3 143.5 143.7 138.3 24.5 101.7 14CO-BS3-Spol 52 85 27649 1.9 12.000 1.1 2.0733 1.8 0.1901 1.4 0.78 112.7 14.3 1140.0 1.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 2.2 1175.0 12.2 1175.0 12.2 1175.0 12.2 1175.0 12.0 <td>14CO-BS-3Spot 48</td> <td>243</td> <td>33223</td> <td>3.6</td> <td>10.9686</td> <td>1.4</td> <td>3.1047</td> <td>2.5</td> <td>0.2470</td> <td>2.0</td> <td>0.82</td> <td>1422.9</td> <td>25.7</td> <td>1433.9</td> <td>19.0</td> <td>1450.1</td> <td>27.1</td> <td>1450.1</td> <td>27.1</td> <td>98.1</td>	14CO-BS-3Spot 48	243	33223	3.6	10.9686	1.4	3.1047	2.5	0.2470	2.0	0.82	1422.9	25.7	1433.9	19.0	1450.1	27.1	1450.1	27.1	98.1
I4CO-BS-S-Spat 60 197 30444 1.4 11.463 1.3 2.004 1.5 0.7403 1.3 0.71 138.5 1.62 137.4 1.3 136.5 31.4 136.5	14CO-BS-3Spot 49	182	34133	2.7	11.1252	1.0	3.0746	1.8	0.2481	1.4	0.81	1428.6	18.2	1426.4	13.5	1423.1	19.7	1423.1	19.7	100.4
H2CdB3Spld 51 140 7641 1.6 1.2004 1.6 2.20 1.939 1.5 0.1939 1.55 1.55 1.105 1.2 1.155 3.1 1.155 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 3.1 1.55 1.5 1.55 1.5 1.55 1.5 1.55 1.5 1.55 1.5 1.55 1.5 1.55 1.55 1.55 1.55 1.55 1.55 3.1 1.59 1.55	14CO-BS-3Spot 50	197	30404	1.4	11.4653	1.3	2.8904	1.8	0.2403	1.3	0.71	1388.5	16.2	1379.4	13.7	1365.3	24.5	1365.3	24.5	101.7
14CO-BS-3-Spid 52 66 2764 1.9 1.2,6400 1.1 2.0733 1.8 0.1901 1.4 0.76 112.7 1.4.3 114.00 1.2 115.0 2.22 95.5 14CO-BS-3-Spid 53 1.2 55555 1.6 11.2402 1.1 2.841 1.4 0.78 1.27.1 1.4.3 114.00 1.2.2 1.35.5 2.2.2 95.5 14CO-BS-3-Spid 54 1.2 2.5555 1.6 11.2402 1.1 2.841 3.0 0.237 1.4 0.860 164.5 3.52 13.78 2.45 140.3 3.00 17.7 18.1 3.97 18.1 9.37 14CO-BS-3-Spid 56 2.29 2737 1.7 11.522 0.9 2.9151 1.6 0.2337 1.4 0.84 1.59 1.2.7 1.62.8 1.2.7 1.63.8 1.7.7 1.81. 9.33 14CO-BS-3-Spid 50 1.29 1.371 1.4.1 2.8251 1.7 0.2331 1.5 0.78 <t< td=""><td>14CO-BS-3Spot 51</td><td>140</td><td>76411</td><td>1.6</td><td>12.7004</td><td>1.6</td><td>2.1051</td><td>2.2</td><td>0.1939</td><td>1.5</td><td>0.69</td><td>1142.5</td><td>15.5</td><td>1150.5</td><td>14.8</td><td>1165.5</td><td>31.1</td><td>1165.5</td><td>31.1</td><td>98.0</td></t<>	14CO-BS-3Spot 51	140	76411	1.6	12.7004	1.6	2.1051	2.2	0.1939	1.5	0.69	1142.5	15.5	1150.5	14.8	1165.5	31.1	1165.5	31.1	98.0
14CO-BS-3-Spol 53 106 2.571 1.0 11.405 1.1 2.491 1.4 0.284 0.6 0.60 136.6 10.5 136.5 21.4 139.9 21.4 9.9.9 14CO-BS-3-Spol 54 1.42 2.6555 1.2 11.3919 0.9 2.8290 1.7 0.2337 1.4 0.845 33.2 1.7.6 136.5.7 1.6 136.5 31.4 0.84 135.4.1 1.7.6 136.8.8 12.9 137.7 18.1 30.0 147.3 30.0 147.3 30.0 147.3 10.3 1.2.9 137.7 18.1 136.7 18.1 136.7 18.1 136.7 18.1 137.7 18.1 30.0 147.3 137.7 18.1 136.7 18.1 136.7 18.1 136.7 18.1 136.7 18.1 136.7 18.1 136.7 18.1 137.7 18.1 137.7 10.3 14CO-BS-3-Spol 68 1.29 1.301 1.4 1.473 1.7 1.301	14CO-BS-3Spot 52	8	27649	1.9	12.6400	1.1	2.0733	1.8	0.1901	1.4	0.78	1121.7	14.3	1140.0	12.2	1175.0	22.2	1175.0	22.2	95.5
14CO-BS-3-Spid 54 142 5655 1.6 11.2402 1.6 2.8917 3.3 0.2357 2.9 0.98 1364.5 35.2 137.8 2.46 140.4 3.00 197.7 18.1 393.7 14CO-BS-3-Spid 55 1.2 1.3919 0.9 2.890 1.7 0.2337 1.4 0.94 1364.1 17.6 1363.3 12.9 137.7 18.1 197.7 18.1 393.7 14CO-BS-3-Spid 56 2.99 1.77 1.8.1 0.92 2.9161 1.6 0.2337 1.4 0.94 1364.1 17.6 1363.8 12.2 1365.8 17.7 18.1 393.7 14CO-BS-3-Spid 56 1.29 19314 1.5 1.12 2.8612 1.9 0.2331 1.5 0.76 165.7 18.1 1398.0 2.26 19.5 1.12 1.12 2.8617 1.1 1.037 1.2 1.014 1.037 1.0 1.014 1.037 1.02 1.014 1.014 1.014 </td <td>14CO-BS-3Spot 53</td> <td>106</td> <td>25751</td> <td>1.0</td> <td>11.4405</td> <td>1.1</td> <td>2.8491</td> <td>1.4</td> <td>0.2364</td> <td>0.8</td> <td>0.60</td> <td>1368.0</td> <td>10.4</td> <td>1368.6</td> <td>10.5</td> <td>1369.5</td> <td>21.4</td> <td>1369.5</td> <td>21.4</td> <td>99.9</td>	14CO-BS-3Spot 53	106	25751	1.0	11.4405	1.1	2.8491	1.4	0.2364	0.8	0.60	1368.0	10.4	1368.6	10.5	1369.5	21.4	1369.5	21.4	99.9
14CO-BS-S-pol 5 129 20756 1.2 11.3919 0.9 2.8290 1.7 0.237 1.4 0.84 135.1 117.6 183.3 12.9 137.7 18.1 186.7 136.7 18.7 136.7 18.7 136.7 18.7 136.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	14CO-BS-3Spot 54	142	55555	1.6	11.2402	1.6	2.8917	3.3	0.2357	2.9	0.88	1364.5	35.2	1379.8	24.6	1403.4	30.0	1403.4	30.0	97.2
14COBS-3-Spid 66 259 27327 1.7 115222 0.9 2.9151 1.6 0.2436 1.3 0.82 1405.4 16.9 1385.8 1.2 135.8 1.7 135.8 1.7 103.7 14CO-BS-3-Spid 68 286 94688 1.8 9.7466 1.0 4.2148 1.6 0.2378 1.2 0.77 166.9 1.2.7 167.8 18.2 10.4 14CO-BS-3-Spid 60 134 52058 2.4 9.7406 1.1 4.2473 1.9 0.2331 1.5 0.76 198.0 19.1 1.3 0.360 19.1 1.350.0 19.1 1.33 0.76 199.1 19.3 137.8 2.3.9 137.8 2.3.9 137.8 2.3.9 130.1 14.0 14.3 1380.0 2.2.6 157.2 10.1 14CO-BS-3-Spid 62 166 194.1 1.12 2.8203 2.7 0.239 1.5 0.2.3 1397.5 20.3 1397.5 20.3 1397.5 20.3 <td>14CO-BS-3Spot 55</td> <td>129</td> <td>207596</td> <td>1.2</td> <td>11.3919</td> <td>0.9</td> <td>2.8290</td> <td>1.7</td> <td>0.2337</td> <td>1.4</td> <td>0.84</td> <td>1354.1</td> <td>17.6</td> <td>1363.3</td> <td>12.9</td> <td>1377.7</td> <td>18.1</td> <td>1377.7</td> <td>18.1</td> <td><u>98.3</u></td>	14CO-BS-3Spot 55	129	207596	1.2	11.3919	0.9	2.8290	1.7	0.2337	1.4	0.84	1354.1	17.6	1363.3	12.9	1377.7	18.1	1377.7	18.1	<u>98.3</u>
14COES-3-Spot 68 285 9468 1.8 9.7406 1.0 4.2148 1.6 0.2978 1.2 0.17 1676.9 12.7 1672.8 18.2 10.4 14COES-3-Spot 69 1.29 193154 1.5 11.2722 1.2 2.8612 1.9 0.2331 1.5 0.78 1369.1 14.3 1398.0 22.6 1398.0 22.6 395.6 14COES-3-Spot 60 134 52058 2.4 9.7410 1.1 4.2473 1.7 0.3001 1.3 0.76 1691.6 19.2 163.2 1.3 148 1369.9 1.8 1398.0 22.6 39.6 14COES-3-Spot 62 166 194314 1.4 112752 1.1 2.8235 2.7 0.2309 2.5 0.92 133.2 30.2 1361.8 20.3 1378.2 3.9 98.0 14COES-3-Spot 63 129 92735 1.1 11398.0 1.2 2.8641 1.7 0.2355 1.2 0.70 1363.4	14CO-BS-3Spot 56	259	27327	1.7	11.5222	0.9	2.9151	1.6	0.2436	1.3	0.82	1405.4	16.9	1385.8	12.2	1355.8	17.7	1355.8	17.7	103.7
14COES-3-Spot 69 129 133154 1.5 11272 1.2 2.8612 1.9 0.231 1.5 0.78 1350.7 18.1 1369.1 14.3 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1398.0 22.6 1308.0 22.6 1308.0 22.6 1308.0 22.6 1308.0 22.6 1308.0 22.6 1308.0 14.1 1308.0 14.2 130.0 14.3 1360.0 14.3 1308.0 130.1 14.3 1308.0 14.2 1308.0 14.2 130.0 14.3 1308.0 131.3 1308.0 132.3 130.1 130.0 <	14CO-BS-3Spot 58	285	94688	1.8	9.7406	1.0	4.2148	1.6	0.2978	1.2	0.77	1680.2	17.7	1676.9	12.7	1672.8	18.2	1672.8	18.2	100.4
14COBS-3-Spd 60 134 52058 2.4 9.7410 1.1 4.2473 1.7 0.3001 1.3 0.76 1691.6 19.2 168.2 1.3 167.7 20.2 167.7 20.2 101.1 14COBS-3-Spd 61 98 86193 1.6 11.3889 1.8 2.8203 2.4 0.2330 1.6 0.67 1350.0 19.4 1360.9 17.8 1378.2 33.9 1378.2 33.9 98.0 14COBS-3-Spd 62 166 19314 1.4 112752 1.1 2.8235 2.7 0.2309 2.5 0.92 133.9 130.1 1397.5 20.3 1397.5 20.3 1397.5 20.3 1397.5 20.3 1497.5 21.3 140.2 2.8641 1.7 0.2355 1.2 0.70 1363.4 14.8 1369.9 130.0 138.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 10.0 10.1 10.0 10.0	14CO-BS-3Spot 59	129	193154	1.5	11.2722	1.2	2.8512	1.9	0.2331	1.5	0.78	1350.7	18.1	1369.1	14.3	1398.0	22.6	1398.0	22.6	96.6
14CO-BS-3-Spot 61 98 86193 1.6 113899 1.8 2.8203 2.4 0.2330 1.6 0.67 1350.0 194 1360.9 17.8 1378.2 33.9 1378.2 33.9 98.0 14CO-BS-3-Spot 62 166 194314 1.4 112752 1.1 2.8235 2.7 0.2309 2.5 0.92 133.9.2 30.2 1361.8 20.3 1397.5 20.3 138.0 23.8 <	14CO-BS-3Spot 60	134	52058	2.4	9.7410	1.1	4.2473	1.7	0.3001	1.3	0.76	1691.6	19.2	1683.2	13.9	1672.7	20.2	1672.7	20.2	101.1
14CO-BS-3-Spot 62 166 194314 1.4 11.2752 1.1 2.8235 2.7 0.2309 2.5 0.92 133.9.2 30.2 1361.8 20.3 1397.5	14CO-BS-3Spot 61	98	86193	1.6	11.3889	1.8	2.8203	2.4	0.2330	1.6	0.67	1350.0	19.4	1360.9	17.8	1378.2	33.9	1378.2	33.9	98.0
14CO-BS-3-Spot 63 129 92735 1.1 11.3765 1.2 2.8641 1.7 0.2355 1.2 0.70 1363.4 14.8 1369.9 13.0 1380.0 23.8 1430.2 23.0 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0 23.8 1380.0	14CO-BS-3Spot 62	166	184314	1.4	11.2752	1.1	2.8235	2.7	0.2309	2.5	0.92	1339.2	30.2	1361.8	20.3	1397.5	20.3	1397.5	20.3	95.8
14CO-BS-3-Spot 64 219 64906 1.4 114.393 1.2 2.862 2.5 0.2395 2.2 0.89 138.3 18.9 136.9.7 22.2 1369.7 22.2 1369.7 22.2 1369.7 22.2 1369.7 22.2 101.0 14CO-BS-3-Spot 65 263 120865 2.7 11.0319 1.2 3.0616 1.7 0.2450 1.2 0.72 1412.4 15.7 1423.1 13.2 1439.2 22.9 1439.2 22.9 1439.2 22.9 98.1 14CO-BS-3-Spot 66 192 26051 1.1 11.4316 1.1 2.8462 2.9 0.2360 2.7 0.93 1365.7 33.2 1367.8 21.8 1371.0 20.7 1371.0 20.7 1397.0 29.6 14CO-BS-3-Spot 67 113 91296 2.0 114705 1.8 2.8255 2.1 0.2361 1.1 0.52 1361.0 13.3 1362.3 156. 1364.5 34.0 39.7 </td <td>14CO-BS-3Spot 63</td> <td>129</td> <td>92735</td> <td>1.1</td> <td>11.3785</td> <td>1.2</td> <td>2.8541</td> <td>1.7</td> <td>0.2355</td> <td>1.2</td> <td>0.70</td> <td>1363.4</td> <td>14.8</td> <td>1369.9</td> <td>13.0</td> <td>1380.0</td> <td>23.8</td> <td>1380.0</td> <td>23.8</td> <td>98.8</td>	14CO-BS-3Spot 63	129	92735	1.1	11.3785	1.2	2.8541	1.7	0.2355	1.2	0.70	1363.4	14.8	1369.9	13.0	1380.0	23.8	1380.0	23.8	98.8
14CO-BS-3-Spot 65 263 120885 2.7 11.0319 1.2 3.0616 1.7 0.2450 1.2 0.72 1412.4 15.7 1423.1 13.2 1439.2 22.9 1439.2 22.9 1439.2 22.9 1439.2 22.9 1439.2 22.9 98.1 14CO-BS-3-Spot 66 192 26051 1.1 11.4316 1.1 2.8462 2.9 0.2360 2.7 0.93 1365.7 33.2 1367.8 21.8 1371.0 20.7 1371.0 20.7 99.6 14CO-BS-3-Spot 67 113 91296 2.0 11.4705 1.8 2.8255 2.1 0.2361 1.1 0.52 1361.0 13.3 1362.3 15.6 1364.5 34.0 39.7 14CO-BS-3-Spot 67 113 91296 2.0 11.4705 1.8 2.8255 2.1 0.2351 1.1 0.52 1361.0 13.3 1362.3 15.6 1364.5 34.0 39.7	14CO-BS-3Spot 64	219	64906	1.4	11.4393	1.2	2.8862	2.5	0.2395	2.2	0.89	1383.8	27.7	1378.3	18.9	1369.7	22.2	1369.7	22.2	101.0
14CO-BS-3-Spot 66 192 26051 1.1 114316 1.1 2.8462 2.9 0.2360 2.7 0.93 1365.7 33.2 1367.8 21.8 1371.0 20.7 1371.0 20.7 99.6 14CO-BS-3-Spot 67 113 91296 2.0 114705 1.8 2.8255 2.1 0.2361 1.1 0.52 1361.0 13.3 1362.3 15.6 1364.5 34.0 99.7	14CO-BS-3Spot 65	263	120885	2.7	11.0319	1.2	3.0616	1.7	0.2450	1.2	0.72	1412.4	15.7	1423.1	13.2	1439.2	22.9	1439.2	22.9	98.1
14CO-BS-3-Spot 67 113 91296 2.0 11.4705 1.8 2.0255 2.1 0.2351 1.1 0.52 1361.0 13.3 1362.3 15.6 1364.5 34.0 136	14CO-BS-3Spot 66	192	26051	1.1	11.4316	1.1	2.8462	2.9	0.2360	2.7	0.93	1365.7	33.2	1367.8	21.8	1371.0	20.7	1371.0	20.7	99 .6
	14CO-BS-3Spot 67	113	91296	2.0	11.4705	1.8	2.8255	2.1	0.2351	1.1	0.52	1361.0	13.3	1362.3	15.6	1364.5	34.0	1364.5	34.0	99.7

1+co-ba-a-apot 110	1400 DC 3 Cost 140	1400-BS-3-Spot 100	14CO-BS-3Smt 108	14CO-BS-3Spot 107	14CO-BS-3Spot 106	14CO-BS-3Spot 105	14CO-BS-3Spot 103	14CO-BS-3Spot 102	14CO-BS-3Spot 101	14CO-BS-3Spot 100	14CO-BS-3Spot 99	14CO-BS-3Spot 98	14CO-BS-3Spot 97	14CO-BS-3Spot 96	14CO-BS-3Spot 95	14CO-BS-3Spot 94	14CO-BS-3Spot 93	14CO-BS-3Spot 92	14CO-BS-3Spot 91	14CO-BS-3Spot 90	14CO-BS-3Spot 89	14CO-BS-3Spot 88	14CO-BS-3Spot 87	14CO-BS-3Spot 86	14CO-BS-3Spot 85	14CO-BS-3Spot 83	14CO-BS-3Spot 82	14CO-BS-3Spot 81	14CO-BS-3Spot 80	14CO-BS-3Spot 78	14CO-BS-3Spot 77	14CO-BS-3Spot 76	14CO-BS-3Spot 75	14CO-BS-3Spot 74	14CO-BS-3Spot 73	14CO-BS-3Spot 72	14CO-BS-3Spot 71	14CO-BS-3Spot 70	14CO-BS-3Spot 69	14CO-BS-3Spot 68		Analysis
907	200	308	306	187	91	112	180	209	299	208	207	181	42	121	120	245	187	159	177	108	166	27	366	154	71	427	126	380	149	190	67	177	326	241	81	195	297	39	207	164	(ppm)	c
4224	10000	95905	30717	45463	32205	201635	231196	34485	50014	60288	112567	31861	11650	98264	29708	49531	62010	28244	33363	25298	19075	12798	243563	59466	14339	65346	49687	50564	25487	26379	30065	163799	99037	68986	22149	49577	109192	13482	81653	39544	204Pb	206Pb
- i		ן ה ס	1 8	2.1	0.8	1.2	2.1	2.0	3.0	2.0	2.2	2.4	1.6	1.7	1.1	2.1	1.6	1.9	1.6	1.7	2.6	2.6	1.4	1.4	1.5	2.6	2.1	2.9	3.0	1.0	1.0	2.6	3.9	2.9	1.0	1.6	4.4	1.2	2.2	3.6		U/Th
11.4774	11.0004	13 0384	11 5001	11.1665	11.5717	11.4292	11.5846	11.6142	11.1008	11.3785	11.4368	11.1187	13.1568	11.4560	11.4940	11.1475	11.5581	11.2413	11.6344	9.6215	13.2540	10.8951	11.5467	11.4791	11.7092	11.0661	9.6736	9.7128	11.0497	11.5376	11.2129	12.7759	10.9790	11.0276	11.3326	11.5313	12.7147	11.6105	8.8610	13.0423	207Pb*	206Pb*
-	<u>،</u> -	<u>-</u> היי	4	0.8	1.7	1.6	1.1	1.0	1.1	1.3	1.2	1.1	1.8	1.3	1.5	1.0	0.8	1.2	1.3	0.9	1.1	2.7	3.3	1.1	1.6	0.9	1.1	1.0	1.0	1.1	2.9	1.7	0.8	1.1	1.7	0.9	1.3	2.5	0.7	1.5	(%)	1+
2.0132	2.0070	2.0020	3 8838 80	3.0805	2.7284	2.8231	2.8167	2.7645	3.0972	2.8757	2.8579	3.0568	1.9769	2.8564	2.8174	3.0568	2.8181	2.8934	2.8164	4.2656	1.9382	3.0842	2.6249	2.8350	2.8213	3.1079	4.1669	4.3437	3.1492	2.8268	2.8897	2.0913	3.0770	3.0663	2.8787	2.8321	2.0792	2.7814	5.1750	2.0671	235U*	207Pb*
	4 6		<u>л</u>	1.5	2.2	2.2	1.8	1.5	2.9	1.9	1.8	1.9	2.2	1.8	2.2	1.7	1.2	3.4	3.0	1.4	2.6	3.8	3.4	1.5	2.1	2.7	2.7	4.1	1.7	1.9	3.3	5.0	1.6	1.8	3.0	1.7	2.4	2.8	1.4	2.1	(%)	1+
0.2347	0.1327	0.2700	0 2405	0.2495	0.2290	0.2340	0.2367	0.2329	0.2494	0.2373	0.2371	0.2465	0.1886	0.2373	0.2349	0.2471	0.2362	0.2359	0.2377	0.2977	0.1863	0.2437	0.2198	0.2360	0.2396	0.2494	0.2923	0.3060	0.2524	0.2365	0.2350	0.1938	0.2450	0.2452	0.2366	0.2369	0.1917	0.2342	0.3326	0.1955	238U	206Pb*
	h -	<u>л</u> і	3	-1 :3	1.4	1.6	1.4	1.1	2.7	1.4	1.4	1.6	1.3	1.3	1.6	1.4	0.9	3.1	2.7	1.1	2.4	2.7	1.0	1.1	1.3	2.5	2.5	3.9	1.4	1.5	1.7	4.7	1.4	1.5	2.5	1.4	2.0	1.4	1.2	1.5	(%)	1+
		0.00	0 85	0.85	0.62	0.70	0.77	0.74	0.93	0.74	0.78	0.81	0.58	0.70	0.73	0.80	0.76	0.93	0.91	0.77	0.91	0.71	0.30	0.72	0.63	0.94	0.91	0.97	0.80	0.82	0.51	0.94	0.86	0.79	0.83	0.84	0.84	0.50	0.88	0.71	corr.	error
1003.0	4320.0	1135.8	1389 3	1435.8	1329.2	1355.5	1369.3	1349.5	1435.2	1372.7	1371.4	1420.4	1114.0	1372.8	1360.0	1423.7	1367.1	1365.3	1374.5	1679.7	1101.4	1406.0	1280.9	1366.0	1384.6	1435.6	1653.2	1720.9	1450.7	1368.7	1360.6	1141.8	1412.7	1413.9	1369.0	1370.3	1130.8	1356.5	1850.9	1151.2	238U*	206Pb*
0.0	à -	18 1	15 1	16.4	16.4	19.1	16.7	13.3	34.7	17.8	17.6	19.8	13.0	15.6	19.4	17.3	11.7	38.5	33.3	15.9	24.3	34.2	12.2	13.4	16.7	32.6	36.4	59.6	17.6	18.9	20.8	48.7	17.8	18.5	30.8	17.6	21.1	17.3	19.5	15.6	(Ma)	1+
1000.7	4300.1	1108 1	1377 4	1427.8	1336.2	1361.7	1360.0	1346.0	1432.0	1375.6	1370.9	1421.9	1107.7	1370.5	1360.2	1421.9	1360.4	1380.2	1359.9	1686.8	1094.4	1428.8	1307.6	1364.8	1361.2	1434.7	1667.5	1701.7	1444.8	1362.7	1379.2	1145.9	1427.0	1424.3	1376.4	1364.1	1142.0	1350.6	1848.5	1138.0	235U	207Pb*
14	10.0	13 0	11.3	11.5	16.2	16.7	13.2	11.1	22.2	14.6	13.8	14.6	14.8	13.6	16.3	12.9	9.3	25.4	22.2	11.4	17.7	29.2	25.3	11.4	15.9	20.6	22.5	33.6	13.0	14.0	25.2	34.2	12.6	14.0	22.7	12.8	16.5	21.3	11.8	14.3	(Ma)	1+
1000.0	110.0	1113 3	1359 2	1416.0	1347.5	1371.4	1345.4	1340.4	1427.3	1380.0	1370.1	1424.2	1095.3	1366.9	1360.5	1419.3	1349.8	1403.2	1337.1	1695.5	1080.5	1462.9	1351.7	1363.0	1324.7	1433.3	1685.6	1678.1	1436.1	1353.2	1408.1	1153.8	1448.3	1439.9	1387.7	1354.3	1163.3	1341.1	1845.9	1112.7	207Pb*	206Pb*
	20.0	8 30	30	14.9	33.0	30.6	21.7	19.3	20.1	24.8	22.3	21.2	36.0	25.0	28.6	19.4	15.6	23.7	24.2	16.3	22.1	51.1	63.3	20.4	31.7	16.8	21.2	18.8	19.1	20.5	55.2	34.5	16.2	21.2	32.4	18.0	25.6	47.8	12.1	29.7	(Ma)	I+
C.CDCT	1 1 2 1 2	1113.3	1359 2	1416.0	1347.5	1371.4	1345.4	1340.4	1427.3	1380.0	1370.1	1424.2	1095.3	1366.9	1360.5	1419.3	1349.8	1403.2	1337.1	1695.5	1080.5	1462.9	1351.7	1363.0	1324.7	1433.3	1685.6	1678.1	1436.1	1353.2	1408.1	1153.8	1448.3	1439.9	1387.7	1354.3	1163.3	1341.1	1845.9	1112.7	(Ma)	Best age
177	0.02	35.8	100	14.9	33.0	30.6	21.7	19.3	20.1	24.8	22.3	21.2	36.0	25.0	28.6	19.4	15.6	23.7	24.2	16.3	22.1	51.1	63.3	20.4	3L.7	16.8	21.2	18.8	19.1	20.5	55.2	34.5	16.2	21.2	32.4	18.0	25.6	47.8	12.1	29.7	(Ma)	I I
33.1	- 102.0	102.2	102.2	101.4	9 8.6	98.8	101.8	100.7	100.6	99 .5	100.1	99.7	101.7	100.4	100.0	100.3	101.3	97.3	102.8	99.1	101.9	96.1	94.8	100.2	104.5	100.2	98.1	102.6	101.0	101.1	96.6	99.0	97.5	98.2	98.7	101.2	97.2	101.2	100.3	103.5	(%)	Conc

	14CO-T-3-Spot 73	14CO-T-3-Spot 71	14CO-T-3-Spot 70	14CO-T-3-Spot 68	14CO-T-3-Spot 67	14CO-T-3-Spot 66	14CO-T-3-Spot 65	14CO-T-3-Spot 63	14CO-T-3-Spot 62	14CO-T-3-Spot 60	14CO-T-3-Spot 58	14CO-T-3-Spot 56	14CO-T-3-Spot 55	14CO-T-3-Spot 54	14CO-T-3-Spot 53	14CO-T-3-Spot 52	14CO-T-3-Spot 51	14CO-T-3-Spot 50	14CO-T-3-Spot 44	14CO-T-3-Spot 34	14CO-T-3-Spot 32	14CO-T-3-Spot 31	14CO-T-3-Spot 30	14CO-T-3-Spot 29	14CO-T-3-Spot 28	14CO-T-3-Spot 26	14CO-T-3-Spot 25	14CO-T-3-Spot 24	14CO-T-3-Spot 23	14CO-T-3-Spot 22	14CO-T-3-Spot 21	14CO-T-3-Spot 20	14CO-T-3-Spot 19	14CO-T-3-Spot 18	14CO-T-3-Spot 17	14CO-T-3-Spot 16	14CO-T-3-Spot 15	14CO-T-3-Spot 14	14CO-T-3-Spot 8	14CO-T-3-Spot 7		Analysis
D.C.	142	111	149	56	121	54	106	145	180	179	86	387	139	168	115	176	114	136	93	79	236	43	56	107	270	63	101	30	103	201	114	80	151	37	285	51	207	68	291	189	(ppm)	c
27553	27329	119155	57807	31154	711556	36015	55967	84730	166206	78858	34083	71376	32257	236021	38073	54725	210084	29845	26219	32347	113674	13508	28597	58276	102977	91907	26678	30769	34069	37425	45615	33709	36599	9563	216362	23763	79883	24003	55113	78213	204Pb	206Pb
1.7	1.4	1.2	1.9	3.8	1.7	2.0	1.4	3.1	3.0	1.8	0.9	3.5	2.6	2.1	2.5	2.2	1.8	0.9	1.8	1.4	1.8	1.4	2.7	2.0	1.7	4.1	1.2	3.4	1.3	1.4	3.2	3.3	0.9	1.3	3.2	2.8	7.1	3.3	1.6	1.2		U/Th
11.0768	11.5699	11.0294	11.3215	9.4615	9.7301	12.5402	11.0153	10.9813	9.6688	10.9217	13.3172	9.0887	9.4973	9.2626	8.8192	8.3589	11.6481	11.6018	13.1488	11.0736	9.2696	11.8488	10.5687	11.0908	8.9536	12.9487	11.1735	9.7797	13.2182	11.0956	9.5387	9.7745	11.2114	13.3465	9.4804	9.0981	9.0749	9.4770	9.4386	9.6273	207Pb*	206Pb*
1.1	0.9	1.0	0.6	1.5	1.0	1.4	1.4	1.2	1.0	1.1	1.2	0.9	0.7	0.6	1.1	1.6	1.1	1.5	1.3	1.4	0.9	1.3	3.4	1.4	0.8	1.8	1.5	1.5	1.3	1.3	1.4	1.2	1.2	2.5	0.8	1.4	1.1	0.9	1.0	1.1	(%)	+
3.1356	2.8041	3.1637	2.8610	4.4056	4.1651	2.2977	3.1492	3.1322	4.2368	3.1511	1.8858	4.8397	4.3295	4.6874	5.0889	4.8272	2.8422	2.7883	1.9304	3.0629	4.1982	2.6744	3.0857	3.0649	5.0437	2.0368	3.0858	4.0619	1.9046	3.1209	4.3576	4.1871	3.1260	1.9048	4.5709	4.8176	4.8775	4.4372	4.2530	4.4143	235U*	207Pb*
1.7	1.5	4.1	1.1	2.0	2.9	2.0	3.6	2.2	1.6	2.5	1.8	2.2	1.9	1.5	2.0	2.2	1.6	2.0	1.7	2.1	3.0	1.9	4.5	2.0	1.3	2.4	2.3	2.0	4.1	1.9	2.3	4.2	1.8	2.9	1.2	1.8	1.9	1.4	2.5	1.8	(%)	1+
0.2519	0.2353	0.2531	0.2349	0.3023	0.2939	0.2090	0.2516	0.2495	0.2971	0.2496	0.1821	0.3190	0.2982	0.3149	0.3255	0.2926	0.2401	0.2346	0.1841	0.2460	0.2822	0.2298	0.2365	0.2465	0.3275	0.1913	0.2501	0.2881	0.1826	0.2511	0.3015	0.2968	0.2542	0.1844	0.3143	0.3179	0.3210	0.3050	0.2911	0.3082	238U	206Pb*
1.2	1.2	3.9	0.9	1.3	2.7	1.4	3.3	1.8	1.2	2.2	1.4	2.0	1.8	1.4	1.6	1.5	1.1	1.4	1.0	1.6	2.9	1.4	2.9	1.4	1.1	1.6	1.8	1.3	3.9	1.4	1.9	4.0	1.4	1.5	0.8	1.3	1.5	1.1	2.3	1.4	(%)	1+
0.74	0.81	0.97	0.83	0.65	0.94	0.71	0.92	0.83	0.75	0.89	0.76	0.92	0.93	0.91	0.83	0.69	0.71	0.69	0.60	0.74	0.95	0.74	0.65	0.72	0.81	0.66	0.77	0.63	0.95	0.74	0.81	0.96	0.75	0.51	0.70	0.68	0.81	0.79	0.92	0.80	corr.	error
1448.3	1362.2	1454.3	1360.2	1702.8	1661.1	1223.4	1446.7	1435.7	1676.9	1436.4	1078.6	1785.0	1682.5	1764.7	1816.5	1654.8	1387.3	1358.7	1089.3	1417.8	1602.6	1333.6	1368.6	1420.6	1826.4	1128.3	1438.8	1632.1	1081.1	1444.4	1698.6	1675.6	1460.0	1090.9	1761.8	1779.4	1794.7	1716.0	1647.2	1731.9	238U*	206Pb*
16.1	14.8	51.2	11.1	19.5	39.4	15.5	43.3	23.7	17.1	28.9	13.6	31.9	26.3	21.1	25.9	22.4	14.4	17.0	10.2	20.1	41.1	17.2	36.3	18.4	16.8	16.2	23.0	18.1	38.4	17.9	27.7	59.1	17.7	15.0	12.5	19.5	23.7	17.3	33.5	21.5	(Ma)	H+
1441.5	1356.6	1448.4	1371.7	1713.4	1667.2	1211.6	1444.8	1440.6	1681.2	1445.3	1076.1	1791.8	1699.0	1765.0	1834.3	1789.7	1366.7	1352.4	1091.7	1423.5	1673.7	1321.4	1429.1	1424.0	1826.7	1127.9	1429.2	1646.7	1082.7	1437.8	1704.3	1671.5	1439.1	1082.8	1744.0	1788.0	1798.4	1719.3	1684.3	1715.0	235U	207Pb*
12.9	11.1	31.3	8.2	16.6	23.5	13.9	27.9	17.1	12.8	19.3	12.0	18.7	15.8	12.6	16.8	18.8	12.2	15.1	11.3	16.3	24.9	14.2	34.7	15.3	11.1	16.2	17.8	16.2	27.1	14.4	19.0	34.4	13.9	19.3	9.6	15.6	15.7	12.0	20.7	14.7	(Ma)	I I
1431.4	1347.8	1439.6	1389.6	1726.4	1674.8	1190.7	1442.0	1447.9	1686.5	1458.3	1071.0	1799.8	1719.4	1765.3	1854.4	1950.7	1334.8	1342.5	1096.4	1432.0	1763.9	1301.7	1520.5	1429.0	1827.0	1127.1	1414.8	1665.4	1085.9	1428.2	1711.4	1666.4	1408.3	1066.5	1722.7	1797.9	1802.6	1723.4	1730.8	1694.4	207Pb*	206Pb*
21.5	16.7	19.4	11.6	27.9	18.6	27.5	26.7	23.4	19.1	21.5	23.8	15.6	13.1	11.7	20.2	29.1	22.1	28.3	26.9	27.2	16.7	25.1	64.7	26.5	13.9	35.7	28.3	28.4	25.4	24.1	25.1	22.7	22.8	50.1	15.1	24.7	19.7	16.2	18.5	19.8	(Ma)	I+
1431.4	1347.8	1439.6	1389.6	1726.4	1674.8	1190.7	1442.0	1447.9	1686.5	1458.3	1071.0	1799.8	1719.4	1765.3	1854.4	1950.7	1334.8	1342.5	1096.4	1432.0	1763.9	1301.7	1520.5	1429.0	1827.0	1127.1	1414.8	1665.4	1085.9	1428.2	1711.4	1666.4	1408.3	1066.5	1722.7	1797.9	1802.6	1723.4	1730.8	1694.4	(Ma)	Best age
21.5	16.7	19.4	11.6	27.9	18.6	27.5	26.7	23.4	19.1	21L5	23.8	15.6	13.1	1L7	20.2	29.1	22.1	28.3	26.9	27.2	16.7	25.1	64.7	26.5	13.9	35.7	28.3	28.4	25.4	24.1	25.1	22.7	22.8	50.1	15.1	24.7	19.7	16.2	18.5	19.8	(Ma)	+
101.2	101.1	101.0	97.9	98.6	99.2	102.7	100.3	99.2	99.4	98.5	100.7	99.2	97.9	100.0	98.0	84.8	103.9	101.2	99.3	99.0	6.06	102.5	90.0	99.4	100.0	100.1	101.7	98.0	99.6	101.1	99.2	100.6	103.7	102.3	102.3	99.0	99.6	<u>99</u> .6	95.2	102.2	(%)	Conc

Analysis	c	206Pb	U/Th	206Pb*	1+	207Pb*	+	206Pb*	+	error	206Pb*	1+	207Pb*	+	206Pb*	+	Best age	+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14CO-T-3-Spot 77	120	29485	3.9	9.4256	0.8	4.4042	2.9	0.3011	2.7	0.96	1696.6	40.8	1713.1	23.7	1733.3	15.5	1733.3	15.5	97.9
14CO-T-3-Spot 78	57	31638	2.1	11.6191	1.5	2.7135	2.1	0.2287	1.5	0.71	1327.5	18.2	1332.1	15.9	1339.6	29.2	1339.6	29.2	99.1
14CO-T-3-Spot 80	67	42242	1.2	11.2638	1.4	3.0071	1.8	0.2457	1.2	0.65	1416.1	14.9	1409.4	13.7	1399.4	26.3	1399.4	26.3	101.2
14CO-T-3-Spot 81	256	113847	1.1	11.0713	0.8	3.0610	2.5	0.2458	2.3	0.95	1416.7	29.8	1423.0	19.0	1432.4	15.3	1432.4	15.3	98.9
14CO-T-3-Spot 83	84	27439	1.7	11.4687	1.4	2.8385	1.9	0.2361	1.3	0.68	1366.4	16.0	1365.8	14.4	1364.8	27.1	1364.8	27.1	100.1
14CO-T-3-Spot 84	170	54942	3.3	9.6597	1.0	4.1686	1.6	0.2920	1.2	0.77	1651.8	17.8	1667.9	12.9	1688.2	18.4	1688.2	18.4	97.8
14CO-T-3-Spot 85	198	59404	1.1	9.0772	1.2	4.7157	1.7	0.3105	1.2	0.70	1743.0	18.5	1770.0	14.4	1802.1	22.3	1802.1	22.3	96.7
14CO-T-3-Spot 88	218	65138	2.1	9.3959	1.2	4.4092	2.4	0.3005	2.1	0.86	1693.6	30.6	1714.1	19.8	1739.1	22.4	1739.1	22.4	97.4
14CO-T-3-Spot 89	162	108069	2.8	8.8730	0.8	5.1242	2.4	0.3298	2.2	0.94	1837.2	35.5	1840.1	20.0	1843.4	14.1	1843.4	14.1	99.7
14CO-T-3-Spot 91	75	30641	1.1	11.4476	1.3	2.7369	4.2	0.2272	4.0	0.95	1320.0	47.9	1338.5	31.3	1368.3	24.5	1368.3	24.5	96.5
14CO-T-3-Spot 95	139	152552	3.0	11.0797	1.2	3.0859	1.8	0.2480	1.3	0.71	1428.0	16.1	1429.2	13.6	1430.9	23.8	1430.9	23.8	99.8
14CO-T-3-Spot 96	139	63400	4.0	9.6763	0.9	4.2009	1.6	0.2948	1.3	0.81	1665.5	19.3	1674.2	13.2	1685.0	17.3	1685.0	17.3	98.8
14CO-T-3-Spot 97	100	37239	3.0	9.6744	1.1	4.1584	1.5	0.2918	1.0	0.65	1650.4	14.3	1665.9	12.3	1685.4	21.0	1685.4	21L0	97.9
14CO-T-3-Spot 99	35	45501	1.0	7.8229	1.0	6.5160	1.8	0.3697	1.5	0.84	2028.0	26.7	2048.1	16.2	2068.3	17.8	2068.3	17.8	98.0
14CO-T-3-Spot 100	102	50796	3.9	9.2126	1.3	4.6142	1.6	0.3083	0.9	0.60	1732.4	14.3	1751.8	13.2	1775.2	23.1	1775.2	23.1	97.6
14CO-T-3-Spot 104	106	66278	2.0	11.3652	1.4	2.8059	2.0	0.2313	1.5	0.72	1341.2	17.6	1357.1	15.2	1382.2	27.1	1382.2	27.1	97.0
14CO-T-3-Spot 107	167	162589	2.2	9.6246	1.0	4.1948	1.6	0.2928	1.2	0.78	1655.6	18.0	1673.0	12.9	1694.9	18.2	1694.9	18.2	97.7
14CO-T-3-Spot 108	26	87673	3.6	9.7547	1.1	4.1571	2.2	0.2941	1.9	0.87	1662.0	28.1	1665.6	18.0	1670.1	20.0	1670.1	20.0	99.5
14CO-T-3-Spot 110	68	59752	2.2	11.6745	1.0	2.5594	2.5	0.2167	2.2	0.91	1264.5	25.6	1289.1	18.0	1330.4	20.0	1330.4	20.0	95.0
14WY-FH-2-Spot 1	275	109903	1.4	9.3974	1.7	4.6982	2.9	0.3202	2.3	0.79	1790.8	35.6	1766.9	24.0	1738.8	31.8	1738.8	31.8	103.0
14WY-FH-2-Spot 2	79	65419	2.1	9.1992	0.9	4.8923	1.3	0.3264	0.8	0.66	1821.0	13.3	1800.9	10.7	1777.8	17.3	1777.8	17.3	102.4
14WY-FH-2-Spot 3	226	174322	1.8	9.2793	0.8	4.6913	1.5	0.3157	1.2	0.84	1768.8	19.2	1765.7	12.4	1762.0	14.6	1762.0	14.6	100.4
14WY-FH-2-Spot 4	444	91406	4.4	9.0529	2.1	4.4005	2.3	0.2889	0.9	0.37	1636.2	12.5	1712.4	19.2	1807.0	39.1	1807.0	39.1	90.5
14WY-FH-2-Spot 5	301	56753	3.2	9.3591	0.6	4.6344	1.2	0.3146	1.0	0.85	1763.2	15.6	1755.5	10.0	1746.3	11.6	1746.3	11.6	101.0
14WY-FH-2-Spot 6	131	197104	1.4	9.2442	1.0	4.9685	1.6	0.3331	1.2	0.75	1853.5	18.8	1814.0	13.1	1768.9	18.7	1768.9	18.7	104.8
14WY-FH-2-Spot 7	56	50387	8.3	8.9546	1.2	5.0222	2.3	0.3262	2.0	0.86	1819.8	31.5	1823.1	19.6	1826.8	21.6	1826.8	21.6	99.6
14WY-FH-2-Spot 8	258	51327	2.7	9.2638	0.9	4.5152	1.5	0.3034	1.2	0.77	1708.0	17.3	1733.8	12.4	1765.0	17.2	1765.0	17.2	96.8
14WY-FH-2-Spot 9	312	171818	3.2	9.1642	0.8	4.6708	1.2	0.3104	1.0	0.77	1742.9	14.6	1762.0	10.4	1784.8	14.4	1784.8	14.4	97.7
14WY-FH-2-Spot 10	233	155006	2.3	8.8935	0.6	5.0394	1.3	0.3251	1.2	0.91	1814.3	19.3	1826.0	11.4	1839.2	10.2	1839.2	10.2	98.6
14WY-FH-2-Spot 11	164	65855	2.6	9.3268	0.7	4.6639	1.3	0.3155	1.1	0.85	1767.6	17.0	1760.8	10.9	1752.6	12.6	1752.6	12.6	100.9
14WY-FH-2-Spot 12	472	54966	5.2	9.2582	0.9	4.7598	1.5	0.3196	1.2	0.82	1787.8	19.2	1777.8	12.6	1766.1	15.9	1766.1	15.9	101.2
14WY-FH-2-Spot 13	253	172963	3.2	9.2495	0.7	4.6310	2.0	0.3107	1.9	0.93	1744.0	28.5	1754.9	16.7	1767.9	12.9	1767.9	12.9	98.6
14WY-FH-2-Spot 14	248	97544	1.7	9.2136	0.8	4.3352	1.7	0.2897	1.5	0.88	1640.0	21.6	1700.1	14.0	1775.0	14.9	1775.0	14.9	92.4
14WY-FH-2-Spot 16	141	93212	1.1	9.1210	0.9	4.8910	1.3	0.3235	0.9	0.71	1807.0	14.7	1800.7	11.1	1793.4	17.0	1793.4	17.0	100.8
14WY-FH-2-Spot 17	193	205192	3.1	9.1305	1.0	4.7649	1.6	0.3155	1.2	0.77	1767.9	18.6	1778.7	13.1	1791.5	18.2	1791.5	18.2	98.7
14WY-FH-2-Spot 19	176	71701	3.4	9.2212	1.2	4.7586	1.5	0.3182	0.9	0.59	1781.2	13.9	1777.6	12.8	1773.5	22.6	1773.5	22.6	100.4
14WY-FH-2-Spot 20	136	232488	2.1	9.0720	1.1	4.7551	1.6	0.3129	1.2	0.73	1754.8	17.9	1777.0	13.3	1803.2	19.6	1803.2	19.6	97.3
14WY-FH-2-Spot 21	517	1400914	3.7	9.2737	0.8	4.8142	1.4	0.3238	1.1	0.82	1808.2	17.7	1787.4	11.6	1763.1	14.5	1763.1	14.5	102.6
14WY-FH-2-Spot 22	83	94012	1.2	9.3685	1.1	4.5744	1.5	0.3108	1.0	0.69	1744.7	15.9	1744.6	12.6	1744.5	20.1	1744.5	20.1	100.0
14WY-FH-2-Spot 26	94	42929	3.0	8.8458	1.2	5.0751	1.5	0.3256	0.9	0.60	1817.0	14.2	1832.0	12.8	1849.0	21.8	1849.0	21.8	98.3

Analysis	c	206 P b	U/Th	206Pb*	1+	207Pb*	+	206Pb*	1+	error	206Pb*	+	207Pb*	+	206Pb*	+	Best age	+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14WY-FH-2-Spot 27	100	55787	3.1	8.6255	1.0	5.43/4	4.4	0.3402	4.3	0.9/	1887.4	10.1	1890.8	3/./	1722 4	11.6	1732 4	17.6	100 c
14WY-FH-2-Spot 29	313	884844	3.9	9.2236	0.8	4.7358	1.7	0.3168	1.5	0.89	1774.1	23.6	1773.6	14.3	1773.0	14.1	1773.0	14.1	100.1
14WY-FH-2-Spot 30	229	79923	3.5	9.1949	0.8	4.6966	1.6	0.3132	1.4	0.85	1756.4	20.8	1766.6	13.2	1778.7	15.0	1778.7	15.0	98.8
14WY-FH-2-Spot 31	373	134911	2.7	9.1624	0.6	4.7243	1.9	0.3139	1.8	0.94	1760.0	28.3	1771.6	16.3	1785.1	11.6	1785.1	11.6	98.6
14WY-FH-2-Spot 32	61	73015	2.5	9.1588	1.0	4.8445	1.7	0.3218	1.4	0.83	1798.5	22.5	1792.7	14.6	1785.8	17.7	1785.8	17.7	100.7
14WY-FH-2-Spot 33	113	65926	3.0	8.1724	3.2	5.5575	3.3	0.3294	1.0	0.29	1835.5	15.4	1909.5	28.6	1990.9	56.5	1990.9	56.5	92.2
14WY-FH-2-Spot 34	75	93868	4.2	8.8933	1.0	5.0504	1.8	0.3258	1.4	0.81	1817.8	22.9	1827.8	15.0	1839.3	18.6	1839.3	18.6	98.8
14WY-FH-2-Spot 35	317	171508	3.0	9.1986	0.9	4.6912	1.2	0.3130	0.8	0.62	1755.3	11.6	1765.7	10.1	1777.9	17.3	1777.9	17.3	98.7
14WY-FH-2-Spot 36	281	150390	7.3	8.9756	0.6	5.0402	0.8	0.3281	0.6	0.74	1829.2	9.8	1826.1	7.0	1822.6	10.1	1822.6	10.1	100.4
14WY-FH-2-Spot 37	155	140238	3.4	9.1426	0.9	4.7473	1.2	0.3148	0.8	0.68	1764.2	13.1	1775.6	10.4	1789.1	16.6	1789.1	16.6	98.6
14WY-FH-2-Spot 38	165	61293	2.4	9.2627	0.9	4.5751	2.8	0.3074	2.6	0.95	1727.7	40.0	1744.7	23.1	1765.3	15.6	1765.3	15.6	97.9
14WY-FH-2-Spot 39	199	165534	2.4	9.2621	0.6	4.6898	1.6	0.3150	1.4	0.91	1765.5	22.0	1765.4	13.0	1765.4	11.5	1765.4	11.5	100.0
14WY-FH-2-Spot 40	270	137045	2.1	9.2783	0.8	4.8369	1.2	0.3255	0.9	0.75	1816.5	14.2	1791.3	10.1	1762.2	14.7	1762.2	14.7	103.1
14WY-FH-2-Spot 41	132	85548	0.8	9.2054	0.9	4.6223	1.3	0.3086	0.9	0.69	1733.8	13.5	1753.3	10.6	1776.6	16.7	1776.6	16.7	97.6
14WY-FH-2-Spot 42	75	136658	1.3	9.1771	0.8	4.8198	1.3	0.3208	1.0	0.80	1793.6	16.3	1788.4	10.9	1782.2	14.0	1782.2	14.0	100.6
14WY-FH-2-Spot 43	445	59087	4.0	9.2782	0.7	4.7251	1.3	0.3180	1.1	0.84	1779.7	17.1	1771.7	10.9	1762.2	12.9	1762.2	12.9	101.0
14WY-FH-2-Spot 44	102	171521	2.4	8.8004	1.0	5.2355	2.8	0.3342	2.6	0.93	1858.5	41.4	1858.4	23.6	1858.3	18.7	1858.3	18.7	100.0
14WY-FH-2-Spot 45	152	88319	0.8	9.0529	0.8	4.8337	1.2	0.3174	0.8	0.68	1776.9	12.4	1790.8	9.8	1807.0	15.4	1807.0	15.4	98.3
14WY-FH-2-Spot 46	127	50147	5.3	8.8770	1.0	4.4517	1.7	0.2866	1.4	0.81	1624.6	20.0	1722.0	14.3	1842.6	18.4	1842.6	18.4	88.2
14WY-FH-2-Spot 47	67	102765	2.4	9.1904	0.7	5.0225	1.5	0.3348	1.3	0.87	1861.5	21.1	1823.1	12.8	1779.6	13.6	1779.6	13.6	104.6
14WY-FH-2-Spot 48	547	71496	3.4	9.1915	0.7	4.3010	1.2	0.2867	0.9	0.77	1625.1	12.8	1693.5	9.5	1779.4	13.5	1779.4	13.5	91.3
14WY-FH-2-Spot 49	281	123816	7.3	9.1666	0.7	4.7675	1.4	0.3170	1.2	0.86	1774.8	19.2	1779.2	12.1	1784.3	13.4	1784.3	13.4	99 .5
14WY-FH-2-Spot 50	382	133016	3.1	9.1760	0.7	4.6433	1.2	0.3090	0.9	0.82	1735.8	14.4	1757.1	9.6	1782.4	12.1	1782.4	12.1	97.4
14WY-FH-2-Spot 51	371	121448	3.8	9.2475	0.7	4.7378	1.1	0.3178	0.9	0.79	1778.8	14.0	1773.9	9.5	1768.2	12.6	1768.2	12.6	100.6
14WY-FH-2-Spot 52	314	143643	1.6	9.1688	0.8	4.6502	1.4	0.3092	1.1	0.82	1736.9	17.3	1758.3	11.6	1783.8	14.6	1783.8	14.6	97.4
14WY-FH-2-Spot 53	221	185457	1.8	9.1837	0.7	4.6941	1.5	0.3127	1.3	0.89	1753.8	20.0	1766.2	12.3	1780.9	12.3	1780.9	12.3	98.5
14WY-FH-2-Spot 54	300	392438	2.4	9.1708	0.7	4.7226	2.1	0.3141	1.9	0.93	1760.9	29.6	1771.2	17.3	1783.5	13.6	1783.5	13.6	98.7
14WY-FH-2-Spot 55	72	49513	2.1	9.1993	1.1	4.8338	3.4	0.3225	3.2	0.95	1802.0	50.3	1790.8	28.4	1777.8	19.5	1777.8	19.5	101.4
14WY-FH-2-Spot 56	76	34269	2.2	9.3216	1.2	4.6430	2.0	0.3139	1.6	0.80	1759.8	25.0	1757.0	17.1	1753.7	22.6	1753.7	22.6	100.4
14WY-FH-2-Spot 57	160	84466	3.8	9.2103	0.8	4.7759	1.7	0.3190	1.5	0.87	1785.0	23.2	1780.7	14.3	1775.6	15.1	1775.6	15.1	100.5
14WY-FH-2-Spot 58	239	53076	2.3	9.1564	0.7	4.6513	1.2	0.3089	1.0	0.83	1735.2	14.7	1758.5	9.8	1786.3	12.0	1786.3	12.0	97.1
14WY-FH-2-Spot 59	183	91337	2.1	9.1996	0.8	4.7492	3.2	0.3169	3.1	0.97	1774.4	48.4	1776.0	27.0	1777.7	14.7	1777.7	14.7	<u>99</u> .8
14WY-FH-2-Spot 60	51	62387	4.9	9.1075	1.4	4.9377	2.1	0.3262	1.6	0.75	1819.7	24.7	1808.7	17.5	1796.1	24.9	1796.1	24.9	101.3
14WY-FH-2-Spot 61	120	84386	1.7	9.1343	0.8	4.6995	3.6	0.3113	3.5	0.97	1747.3	53.2	1767.2	29.9	1790.7	15.1	1790.7	15.1	97.6
14WY-FH-2-Spot 62	321	95288	5.3	9.2231	0.8	4.5341	2.7	0.3033	2.6	0.96	1707.6	38.7	1737.2	22.4	1773.1	14.2	1773.1	14.2	96.3
14WY-FH-2-Spot 63	151	230801	1.5	9.1598	0.8	4.8560	1.5	0.3226	1.3	0.86	1802.4	20.7	1794.7	12.9	1785.6	14.3	1785.6	14.3	100.9
14WY-FH-2-Spot 65	96	133259	3.0	9.0922	1.0	4.9269	1.6	0.3249	1.2	0.76	1813.6	19.1	1806.9	13.4	1799.1	18.8	1799.1	18.8	100.8
14WY-FH-2-Spot 66	243	90553	2.1	9.3851	0.9	4.6511	1.4	0.3166	1.0	0.75	1773.0	15.8	1758.5	11.4	1741.2	16.5	1741.2	16.5	101.8
14WY-FH-2-Spot 67	190	113990	3.4	9.2322	0.6	4.7474	1.2	0.3179	1.0	0.84	1779.4	15.4	1775.6	9.9	1771.3	11.5	1771.3	11.5	100.5
14WY-FH-2-Spot 68	114	138676	4.8	5.4690	0.7	12.9627	1.2	0.5142	1.0	0.83	2674.4	22.0	2676.9	11.4	2678.9	11.2	2678.9	11.2	99.8

Analysis	c	206Pb	U/Th	206Pb*	+	207Pb*	H+	206Pb*	+	error	206Pb*	H+	207 P b*	+	206 P b*	+	Best age	+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14WY-FH-2-Spot 69	126	136649	3.9	8.9417	0.7	5.1089	1.4	0.3313	1.2	0.86	1844.8	19.0	1837.6	11.7	1829.4	12.6	1829.4	12.6	100.8
14WY-FH-2-Spot 70	226	193210	1.9	9.1791	0.8	4.6735	1.5	0.3111	1.3	0.84	1746.2	19.2	1762.5	12.5	1781.8	14.7	1781.8	14.7	98.0
14WY-FH-2-Spot 73	147	224004	1.7	9.2458	1.0	4.6208	1.5	0.3099	1.1	0.74	1740.0	16.6	1753.0	12.3	1768.6	18.0	1768.6	18.0	98.4
14WY-FH-2-Spot 74	124	106327	2.9	8.9334	1.1	5.0584	2.0	0.3277	1.6	0.82	1827.4	25.9	1829.2	16.9	1831.1	20.8	1831.1	20.8	99.8
14WY-FH-2-Spot 75	248	57292	2.7	6.2040	0.7	10.3658	1.3	0.4664	1.1	0.85	2467.8	23.0	2468.0	12.2	2468.1	11.5	2468.1	11.5	100.0
14WY-FH-2-Spot 76	75	46681	5.5	8.7233	1.0	5.3062	4.6	0.3357	4.5	0.98	1866.0	73.2	1869.9	39.6	1874.1	18.4	1874.1	18,4	99.6
14WY-FH-2-Spot 77	244	169818	2.1	9.2299	1.0	4.6666	2.7	0.3124	2.6	0.94	1752.5	39.4	1761.3	23.0	1771.7	17.7	1771.7	17.7	98.9
14WY-FH-2-Spot 78	295	50215	3.4	9.3118	6.0	4.6478	1.3	0.3139	1.0	0.75	1759.8	14.7	1757.9	10.7	1755.6	15.6	1755.6	15.6	100.2
14WY-FH-2-Spot 79	93	73297	3.2	8.8879	6.0	5.1429	2.3	0.3315	2.1	0.91	1845.7	34.2	1843.2	19.8	1840.4	17.1	1840.4	17.1	100.3
14WY-FH-2-Spot 80	147	128217	3.1	9.0927	6.0	4.8335	1.2	0.3187	0.8	0.65	1783.6	11.9	1790.7	9.8	1799.0	16.2	1799.0	16.2	99.1
14WY-FH-2-Spot 81	238	143212	1.3	9.1242	0.7	4.7202	1.2	0.3124	0.9	0.78	1752.3	14.1	1770.8	9.8	1792.7	13.2	1792.7	13.2	97.7
14WY-FH-2-Spot 82	103	58746	1.1	9.2600	6.0	4.7390	1.3	0.3183	0.9	0.71	1781.3	14.7	1774.2	11.2	1765.8	17.3	1765.8	17.3	100.9
14WY-FH-2-Spot 83	364	86672	2.1	9.1895	0.9	4.1792	2.0	0.2785	1.8	0.90	1584.0	24.7	1670.0	16.1	1779.7	15.7	1779.7	15.7	89.0
14WY-FH-2-Spot 84	174	234793	3.9	9.1539	0.8	4.7456	1.3	0.3151	1.0	0.77	1765.6	15.5	1775.3	10.9	1786.8	15.0	1786.8	15,0	98.8
14WY-FH-2-Spot 85	296	541473	4.0	9.3318	0.8	4.7045	1.1	0.3184	0.8	0.69	1781.9	12.1	1768.0	9.5	1751.7	15.1	1751.7	15.1	101.7
14WY-FH-2-Spot 86	187	65142	4.5	8.9766	0.8	5.0460	1.2	0.3285	0.9	0.77	1831.2	15.1	1827.1	10.4	1822.4	14.3	1822.4	14.3	100.5
14WY-FH-2-Spot 87	375	78658	4.6	9.3026	1.1	4.5640	1.6	0.3079	1.2	0.74	1730.5	17.8	1742.7	13.2	1757.4	19.6	1757.4	19.6	98.5
14WY-FH-2-Spot 88	93	40137	1.0	9.3620	0.8	4.5357	1.3	0.3080	1.1	0.80	1730.7	16.2	1737.5	11.1	1745.7	14.5	1745.7	14.5	99 .1
14WY-FH-2-Spot 89	214	102381	1.9	9.2223	0.9	4.6226	1.7	0.3092	1.4	0.84	1736.7	21.6	1753.4	14.1	1773.2	16.7	1773.2	16,7	97.9
14WY-FH-2-Spot 90	189	70264	1.5	9.1972	0.8	4.6117	1.5	0.3076	1.3	0.85	1729.0	19.3	1751.4	12.6	1778.2	14.6	1778.2	14.6	97.2
14WY-FH-2-Spot 91	263	815928	3.4	9.2093	0.7	4.7332	1.5	0.3161	1.3	0.87	1770.8	19.9	1773.1	12.4	1775.8	13.5	1775.8	13.5	99.7
14WY-FH-2-Spot 92	172	519214	1.9	8.7674	0.7	5.3470	4.0	0.3400	3.9	0.98	1886.7	63.6	1876.4	33.8	1865.0	13.0	1865.0	13.0	101.2
14WY-FH-2-Spot 93	422	198081	3.9	9.0931	0.6	4.6244	2.4	0.3050	2.3	0.97	1715.9	35.2	1753.7	20.1	1799.0	10.4	1799.0	10.4	95.4
14WY-FH-2-Spot 94	152	51725	2.7	8.9281	0.8	4.9047	2.5	0.3176	2.3	0.95	1778.0	36.3	1803.1	20.8	1832.2	14.6	1832.2	14.6	97.0
14WY-FH-2-Spot 95	177	141856	4.3	8.8259	0.9	5.1995	2.6	0.3328	2.4	0.94	1852.1	38.9	1852.5	21.9	1853.0	15.7	1853.0	15.7	99.9
14WY-FH-2-Spot 96	217	170118	1.8	9.1692	0.7	4.6572	2.5	0.3097	2.4	0.96	1739.3	36.0	1759.6	20.7	1783.8	13.4	1783.8	13,4	97.5
14WY-FH-2-Spot 97	218	122520	1.5	9.1696	0.7	4.6554	1.5	0.3096	1.3	0.87	1738.7	19.7	1759.3	12.5	1783.7	13.5	1783.7	13,5	97.5
14WY-FH-2-Spot 98	310	229341	3.1	8.9067	0.7	4.1395	1.5	0.2674	1.3	0.89	1527.6	18.2	1662.1	12.3	1836.5	12.2	1836.5	12.2	83.2
14WY-FH-2-Spot 99	194	87733	3.2	9.1980	0.7	4.8726	1.2	0.3251	1.0	0.84	1814.4	16.5	1797.5	10.5	1778.0	12.3	1778.0	12.3	102.0
14WY-FH-2-Spot 100	387	239431	3.5	9.1833	1.0	4.6199	1.5	0.3077	1.0	0.72	1729.4	15.9	1752.9	12.1	1781.0	18.3	1781.0	18.3	97.1
14WY-FH-2-Spot 101	129	90036	1.8	9.1872	0.9	4.6845	1.5	0.3121	1.2	0.79	1751.2	18.0	1764.5	12.5	1780.2	16.8	1780.2	16,8	98.4
14WY-FH-2-Spot 102	62	51991	2.5	5.3378	0.9	14.0115	2.7	0.5424	2.5	0.94	2793.6	57.3	2750.5	25.5	2719.0	15.1	2719.0	15.1	102.7
14WY-FH-2-Spot 103	241	168760	2.8	9.2859	0.6	4.5467	1.4	0.3062	1.2	0.89	1722.0	18.2	1739.6	11.3	1760.7	11.6	1760.7	11.6	97.8
14WY-FH-2-Spot 104	225	79109	3.4	9.2087	0.6	4.6866	1.5	0.3130	1.4	0.91	1755.5	20.9	1764.9	12.5	1775.9	11.5	1775.9	11.5	98.9
14WY-FH-2-Spot 105	107	124833	2.7	5.3691	1.1	13.3689	2.2	0.5206	1.9	0.87	2701.7	41.6	2706.1	20.5	2709.3	17.6	2709.3	17.6	99.7
14WY-FH-2-Spot 106	459	15755616	4.4	9.1249	0.7	4.0981	1.1	0.2712	0.9	0.79	1547.0	12.2	1653.9	9.1	1792.6	12.4	1792.6	12.4	86.3
14WY-FH-2-Spot 107	305	729171	7.1	8.8170	0.8	4.8320	1.9	0.3090	1.7	0.91	1735.7	26.4	1790.5	16.0	1854.9	13.8	1854.9	13,8	93.6
14WY-FH-2-Spot 108	263	112749	4.0	9.1278	0.7	4.9226	1.5	0.3259	1.4	0.89	1818.4	21.7	1806.1	13.0	1792.0	13.1	1792.0	13,1	101.5
14WY-FH-2-Spot 109	231	55152	3.0	9.2721	0.6	4.6359	1.0	0.3118	0.8	0.77	1749.3	11.9	1755.8	8.4	1763.4	11.8	1763.4	11.8	<u>99.2</u>
14WY-FH-2-Spot 110	263	896582	5.1	9.1529	0.7	4.7154	1.3	0.3130	1.0	0.80	1755.6	15.4	1770.0	10.5	1787.0	13.6	1787.0	13.6	98.2
14WY-FH-2-Spot 111	76	33086	17.7	8.8189	1.4	5.2049	4.0	0.3329	3.7	0.94	1852.5	60.2	1853.4	33.9	1854.5	24.7	1854.5	24.7	99.9

14WY-FH-2-Spot 154	14WY-FH-2-Spot 153	14WY-FH-2-Spot 152	14WY-FH-2-Spot 151	14WY-FH-2-Spot 150	14WY-FH-2-Spot 149	14WY-FH-2-Spot 148	14WY-FH-2-Spot 147	14WY-FH-2-Spot 146	14WY-FH-2-Spot 145	14WY-FH-2-Spot 144	14WY-FH-2-Spot 143	14WY-FH-2-Spot 142	14WY-FH-2-Spot 141	14WY-FH-2-Spot 140	14WY-FH-2-Spot 138	14WY-FH-2-Spot 137	14WY-FH-2-Spot 136	14WY-FH-2-Spot 135	14WY-FH-2-Spot 134	14WY-FH-2-Spot 133	14WY-FH-2-Spot 132	14WY-FH-2-Spot 131	14WY-FH-2-Spot 130	14WY-FH-2-Spot 129	14WY-FH-2-Spot 128	14WY-FH-2-Spot 127	14WY-FH-2-Spot 126	14WY-FH-2-Spot 125	14WY-FH-2-Spot 124	14WY-FH-2-Spot 123	14WY-FH-2-Spot 122	14WY-FH-2-Spot 120	14WY-FH-2-Spot 119	14WY-FH-2-Spot 118	14WY-FH-2-Spot 117	14WY-FH-2-Spot 116	14WY-FH-2-Spot 115	14WY-FH-2-Spot 114	14WY-FH-2-Spot 113	14WY-FH-2-Spot 112		Analysis
312	281	143	310	308	200	163	190	146	624	926	309	250	217	198	78	466	439	530	324	79	176	339	112	207	282	259	150	165	113	430	362	276	265	377	185	256	723	252	189	280	(ppm)	c
113298	313745	72370	59605	111541	11860672	54941	152816	212159	51520	111074	108563	43385	125693	94497	77084	305623	466737	50425	428404	78255	86663	63970	37734	38879	96283	63852	405632	48673	28241	896176	158059	179161	121928	235216	65960	80001	58893	49409	118961	78331	204Pb	206Pb
2.8	2.6	2.6	2.5	0.7	1.9	2.2	0.9	1.2	3.5	6.6	2.7	0.7	2.3	1.7	1.3	2.9	3.7	2.4	0.7	2.0	3.5	1.9	2.7	3.2	2.1	3.9	2.3	4.9	2.3	8.8	0.9	3.0	1.7	1.8	2.7	2.6	2.2	1.9	2.7	2.3		HL/D
9.2725	9.2418	9.1412	9.2560	9.2989	9.2012	9.3634	9.2795	9.2804	8.7767	9.2392	9.2736	9.2069	8.9358	9.2232	5.2633	8.8347	9.0268	9.2357	9.3250	9.1350	9.1340	8.9463	8.8246	9.1496	9.3526	8.8455	8.9023	8.8249	9.1995	9.0419	9.2628	9.2628	9.4512	9.3054	9.0104	9.2236	9.3935	9.1224	9.0992	8.9364	207Pb*	206Pb*
0.8	0.9	0.9	1.1	0.8	0.9	0.7	1.0	1.1	0.9	0.6	0.7	1.2	0.7	1.0	0.8	0.8	0.7	0.6	1.0	1.5	1.0	0.7	0.9	0.8	0.8	0.8	1.0	1.1	1.1	0.8	0.8	7.0	8.0	0.8	0.9	0.7	0.5	0.8	1.0	0.9	(%)	1+
4.8769	4.7540	4.6978	4.5692	4.7537	4.8062	4.6024	4.7058	4.6726	4.1754	4.1944	4.7412	4.6827	5.1747	4.7372	13.3657	4.6184	4.9634	4.5905	4.6842	4.6076	4.9262	5.1658	5.1314	4.7704	4.6059	5.2150	5.0561	5.1156	4.6718	5.0541	4.6675	4.7302	4.6495	4.7408	5.0143	4.8529	4.6042	4.3749	4.8438	4.9916	235U*	207Pb*
1.5	1.5	1.7	1.5	1.5	2.0	1.7	1.4	1.5	1.3	1.3	1.3	1.8	1.5	1.3	1.4	2.6	1.2	2.8	1.6	2.8	1.5	1.3	1.5	1.8	1.5	2.4	3.5	1.8	2.4	1.4	1.3	2.6	1.8	1.3	1.4	1.1	1.3	1.3	1.5	1.3	(%)	+
0.3280	0.3186	0.3115	0.3067	0.3206	0.3207	0.3125	0.3167	0.3145	0.2658	0.2811	0.3189	0.3127	0.3354	0.3169	0.5102	0.2959	0.3249	0.3075	0.3168	0.3053	0.3263	0.3352	0.3284	0.3166	0.3124	0.3346	0.3264	0.3274	0.3117	0.3314	0.3136	0.3178	0.3187	0.3200	0.3277	0.3246	0.3137	0.2895	0.3197	0.3235	238U	206Pb*
1.3	1.3	1.4	1.1	1.2	1.7	1.5	0.9	1.1	0.9	1.2	1.2	1.4	1.3	0.7	1.1	2.5	1.0	2.8	1.3	2.4	1.1	1.1	1.2	1.6	1.3	2.3	3.4	1.4	2.1	1.1	1.0	2.5	1.6	1.1	1.1	0.9	1.2	1.1	1.2	0.9	(%)	1+
0.84	0.83	0.82	0.72	0.83	0.88	0.90	0.68	0.69	0.72	0.88	0.86	0.76	0.88	0.57	0.80	0.95	0.79	0.98	0.78	0.84	0.74	0.86	0.78	0.89	0.85	0.95	0.95	0.80	0.89	0.80	0.78	0.96	0.89	0.81	0.76	0.76	0.92	0.82	0.76	0.72	corr.	error
1828.5	1783.1	1747.9	1724.6	1792.7	1793.3	1753.2	1773.6	1762.8	1519.4	1596.7	1784.3	1753.9	1864.3	1774.5	2657.5	1671.1	1813.8	1728.3	1774.1	1717.4	1820.6	1863.5	1830.7	1772.9	1752.6	1860.5	1821.1	1825.9	1749.1	1845.4	1758.2	1778.9	1783.4	1789.5	1827.1	1812.3	1758.8	1638.8	1788.1	1806.9	238U*	206Pb*
20.1	19.6	21.0	16.6	19.0	27.1	23.0	14.3	16.4	12.4	16.6	18.0	21.3	21.6	11.2	24.8	36.2	15.1	41.9	19.5	36.2	17.5	17.8	18.4	25.2	19.6	36.7	53.3	23.0	32.2	17.5	15.2	38.9	25.4	16.5	17.1	13.5	19.0	15.8	18.2	14.4	(Ma)	1+
1798.3	1776.8	1766.8	1743.7	1776.8	1786.0	1749.7	1768.3	1762.3	1669.2	1672.9	1774.5	1764.2	1848.5	1773.8	2705.8	1752.6	1813.1	1747.5	1764.4	1750.7	1806.8	1847.0	1841.3	1779.7	1750.3	1855.1	1828.8	1838.7	1762.2	1828.4	1761.4	1772.6	1758.2	1774.5	1821.7	1794.1	1750.0	1707.6	1792.5	1817.9	235U	207Pb*
12.7	12.8	14.0	12.7	12.2	16.6	13.8	11.4	12.8	10.5	10.9	11.3	15.3	12.9	10.6	13.4	21.7	10.2	23.5	13.4	23.8	12.6	10.9	12.6	15.2	12.6	20.4	29.8	15.3	19.8	11.6	10.6	21.8	15.3	10.9	11.9	9.5	11.2	11.0	12.9	10.8	(Ma)	1+
1763.3	1769.4	1789.4	1766.6	1758.1	1777.4	1745.5	1761.9	1761.8	1863.1	1769.9	1763.1	1776.3	1830.6	1773.1	2742.1	1851.2	1812.3	1770.6	1753.0	1790.6	1790.8	1828.5	1853.3	1787.7	1747.6	1849.0	1837.4	1853.2	1777.7	1809.2	1765.2	1765.2	1728.4	1756.8	1815.6	1773.0	1739.6	1793.1	1797.7	1830.5	207Pb*	206Pb*
15.2	15.6	17.2	19.2	14.7	17.2	12.9	18.3	20.1	16.0	11.5	12.4	21.7	13.1	18.9	13.9	15.3	13.4	10.4	18.2	27.8	18.4	11.9	16.6	14.8	14.7	13.9	19.0	19.4	20.0	15.1	14.6	12.9	15.2	13.8	16.5	13.5	9.8	13.8	18.1	16.0	(Ma)	1+
1763.3	1769.4	1789.4	1766.6	1758.1	1777.4	1745.5	1761.9	1761.8	1863.1	1769.9	1763.1	1776.3	1830.6	1773.1	2742.1	1851.2	1812.3	1770.6	1753.0	1790.6	1790.8	1828.5	1853.3	1787.7	1747.6	1849.0	1837.4	1853.2	1777.7	1809.2	1765.2	1765.2	1728.4	1756.8	1815.6	1773.0	1739.6	1793.1	1797.7	1830.5	(Ma)	Best age
15.2	15.6	17.2	19.2	14.7	17.2	12.9	18.3	20.1	16.0	11L5	12.4	21.7	13.1	18.9	13.9	15.3	13.4	10.4	18.2	27.8	18.4	11.9	16.6	14.8	14.7	13.9	19.0	19.4	20.0	15.1	14.6	12.9	15.2	13.8	16.5	13.5	9.8	13.8	18.1	16.0	(Ma)	I I
103.7	100.8	97.7	97.6	102.0	100.9	100.4	100.7	100.1	81.5	90.2	101.2	98.7	101.8	100.1	96.9	90.3	100.1	97.6	101.2	95.9	101.7	101.9	98.8	<u>99.2</u>	100.3	100.6	99.1	98.5	98.4	102.0	99.6	100.8	103.2	101.9	100.6	102.2	101.1	91.4	99 .5	98.7	(%)	Conc

Analysis	c	206Pb	U/Th	206Pb*	H+	207Pb*	+	206Pb*	+	error	206Pb*	1+	207Pb*	+	206Pb*	I I	Bestage	H+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14WY-FH-2-Spot 155	92	26781	1.5	8.8468	1.5	4.2407	2.3	0.2721	1.8	0.77	1551.4	24.5	1681.9	19.1	1848.8	27.0	1848.8	27.0	83.9
14WY-FH-2-Spot 156	246	75826	2.0	9.3086	1.0	4.6671	3.9	0.3151	3.8	0.97	1765.7	58.5	1761.4	32.8	1756.2	18.5	1756.2	18.5	100.5
14WY-FH-2-Spot 157	386	176551	5.1	9.3103	0.6	4.8728	1.5	0.3290	1.4	0.93	1833.7	22.7	1797.6	12.9	1755.9	10.4	1755.9	10,4	104.4
14WY-FH-2-Spot 158	428	188148	3.6	9.3640	0.9	4.8210	1.5	0.3274	1.2	0.78	1825.8	18.4	1788.6	12.5	1745.3	17.1	1745.3	17.1	104.6
14WY-FH-2-Spot 159	184	102886	3.6	9.0125	1.0	5.0336	1.9	0.3290	1.6	0.84	1833.6	25.4	1825.0	16.1	1815.1	18.7	1815.1	18.7	101.0
14WY-FH-2-Spot 160	493	142879	3.3	9.3888	0.8	4.6781	1.5	0.3186	1.3	0.84	1782.7	19.7	1763.3	12.6	1740.5	14.9	1740.5	14.9	102.4
14WY-FH-2-Spot 161	97	311604	2.3	9.2987	1.1	4.6448	2.0	0.3132	1.6	0.83	1756.7	25.0	1757.4	16.4	1758.2	20.0	1758.2	20.0	99.9
14WY-FH-2-Spot 162	321	114887	1.4	9.2056	1.0	4.8050	2.8	0.3208	2.6	0.94	1793.7	41.1	1785.8	23.6	1776.5	18.0	1776.5	18.0	101.0
14WY-FH-2-Spot 163	257	49096	3.3	9.2898	0.8	4.6630	1.8	0.3142	1.6	0.89	1761.2	24.6	1760.6	15.0	1759.9	14.9	1759.9	14.9	100.1
14WY-FH-2-Spot 164	57	36814	1.9	9.2386	1.7	3.8452	2.2	0.2576	1.4	0.64	1477.8	18.4	1602.3	17.4	1770.0	30.2	1770.0	30.2	83.5
14WY-FH-2-Spot 165	177	182571	2.7	9.2834	1.0	4.8985	1.5	0.3298	1.1	0.77	1837.5	18.2	1802.0	12.6	1761.2	17.5	1761.2	17.5	104.3
14WY-FH-2-Spot 166	302	207152	2.7	9.3044	0.9	4.4022	1.3	0.2971	1.0	0.75	1676.7	14.9	1712.7	11.2	1757.0	16.4	1757.0	16.4	95.4
14WY-FH-2-Spot 167	218	72045	1.6	9.3776	0.9	4.6502	1.4	0.3163	1.1	0.77	1771.5	17.1	1758.3	12.0	1742.7	16.8	1742.7	16.8	101.7
14WY-FH-2-Spot 168	257	100849	1.7	9.2704	1.0	4.6983	1.4	0.3159	0.9	0.67	1769.6	14.5	1766.9	11.7	1763.7	19.0	1763.7	19.0	100.3
14WY-FH-2-Spot 169	283	122501	0.7	9.3876	1.0	4.7078	1.7	0.3205	1.4	0.81	1792.3	21.2	1768.6	14.0	1740.8	17.9	1740.8	17.9	103.0
14WY-FH-2-Spot 170	604	74628	1.5	9.5548	0.8	4.4941	1.2	0.3114	0.9	0.75	1747.7	13.4	1729.9	9.7	1708.3	14.3	1708.3	14.3	102.3
14WY-FH-2-Spot 171	381	71114	1.2	9.2793	1.1	4.2008	1.8	0.2827	1.4	0.80	1605.0	19.9	1674.2	14.4	1762.0	19.2	1762.0	19.2	91.1
14WY-FH-2-Spot 172	339	100007	3.2	9.3589	0.7	4.6864	1.1	0.3181	0.9	0.81	1780.4	14.1	1764.8	9.4	1746.4	12.1	1746.4	12.1	102.0
14WY-FH-2-Spot 173	194	36846	2.3	9.2240	1.0	4.6070	1.6	0.3082	1.3	0.78	1731.9	19.2	1750.5	13.5	1772.9	18.6	1772.9	18,6	97.7
14WY-FH-2-Spot 174	117	69355	1.4	9.1377	0.8	4.6974	2.7	0.3113	2.5	0.95	1747.2	38.8	1766.8	22.3	1790.0	15.0	1790.0	15.0	97.6
14WY-FH-2-Spot 175	759	87354	7.3	9.0047	0.8	4.7345	1.6	0.3092	1.4	0.87	1736.8	21.8	1773.4	13.8	1816.7	14.8	1816.7	14.8	95.6
14WY-FH-2-Spot 176	185	94601	1.7	5.9290	0.7	10.4099	1.3	0.4476	1.1	0.84	2384.7	22.2	2471.9	12.3	2544.4	12.0	2544.4	12.0	93./
14WY-FH-2-Spot 177	124	81718	3.3	9.2343	1.0	4.7922	1.3	0.3210	0.9	0.67	1794.4	13.6	1783.5	10.9	1770.9	17.5	1770.9	17.5	101.3
14WY-HH-2-Spot 1/8	214	3/325	4 U.4	9.1817	1.1	4./593	1.8	0.3169	1.5	0.82	1//4./	23.3	1///.8	10.0	1/81.3	19.4	1/81.3	19,4	99.b
14WY-FH-2-Spot 179	215	137453	1.7	9.2054	0.9	4.8078	2.3	0.3210	2.1	0.92	1794.5	32.8	1786.3	19.2	1776.6	16.3	1776.6	16,3	101.0
14WY-FH-2-Spot 181	567	147942	5.9	9.1717	0.8	4.9297	3.1	0.3279	3.0	0.97	1828.3	48.0	1807.4	26.3	1783.3	14.5	1783.3	14.5	102.5
14WY-FH-2-Spot 182	257	41090	4.0	8.9325	0.7	5.2049	1.3	0.3372	1.1	0.86	1873.2	18.3	1853.4	11.2	1831.3	12.1	1831.3	12.1	102.3
14WY-FH-2-Spot 183	248	75940	2.8	9.1957	1.0	4.7656	2.5	0.3178	2.3	0.91	1779.2	35.2	1778.9	20.9	1778.5	18.9	1778.5	18.9	100.0
14WY-FH-2-Spot 184	540	217204	1.7	9.3853	0.7	4.7066	1.9	0.3204	1.8	0.93	1791.6	27.8	1768.4	16.0	1741.2	12.8	1741.2	12.8	102.9
14WY-FH-2-Spot 186	104	66186	1.0	9.0979	1.2	4.8232	3.1	0.3183	2.9	0.92	1781.2	44.4	1788.9	26.1	1798.0	22.0	1798.0	22.0	99.1
14WY-FH-2-Spot 187	344	172029	3.0	9.2329	0.9	4.7764	1.9	0.3198	1.7	0.90	1789.0	27.1	1780.8	16.2	1771.1	15.7	1771.1	15.7	101.0
14WY-FH-2-Spot 188	405	65397	4.6	9.3131	0.9	4.7627	2.3	0.3217	2.1	0.92	1798.0	32.8	1778.4	19.1	1755.3	16.7	1755.3	16.7	102.4
14WY-FH-2-Spot 189	478	273739	2.5	9.2852	0.8	4.7308	1.4	0.3186	1.2	0.82	1782.8	18.4	1772.7	12.1	1760.8	15.3	1760.8	15.3	101.2
14WY-FH-2-Spot 190	333	58499	1.9	8.9402	1.1	5.2238	1.8	0.3387	1.4	0.78	1880.5	22.3	1856.5	15.0	1829.7	20.1	1829.7	20.1	102.8
14WY-FH-2-Spot 192	231	247102	1.1	9.1741	0.8	4.8651	2.7	0.3237	2.6	0.96	1807.8	41.5	1796.2	23.1	1782.8	13.8	1782.8	13,8	101.4
14WY-FH-2-Spot 193	404	69640	4.8	9.2716	0.9	4.6350	2.2	0.3117	2.1	0.92	1749.0	31.9	1755.6	18.8	1763.5	15.7	1763.5	15.7	99.2
14WY-FH-2-Spot 194	201	47037	2.0	9.2132	0.9	4.7134	2.0	0.3150	1.7	0.89	1765.0	27.0	1769.6	16.6	1775.0	16.8	1775.0	16,8	99.4
14WY-FH-2-Spot 195	495	236261	1.0	9.3361	0.9	4.7457	1.7	0.3213	1.4	0.86	1796.3	22.5	1775.4	14.0	1750.8	15.8	1750.8	15.8	102.6
14WY-FH-2-Spot 196	106	33865	1.3	9.2981	1.1	4.5537	1.8	0.3071	1.5	0.80	1726.4	22.3	1740.8	15.3	1758.3	20.1	1758.3	20.1	98.2
14WY-FH-2-Spot 197	364	84895	2.0	7.5586	0.9	5.8591	3.2	0.3212	3.0	0.96	1795.6	47.6	1955.2	27.5	2128.7	15.8	2128.7	15.8	84.4
14WY-FH-2-Spot 198	586	158653	2.9	9.2928	1.2	4.7066	1.7	0.3172	1.3	0.74	1776.1	20.2	1768.4	14.6	1759.3	21.4	1759.3	2 1 .4	101.0

Analysis	L	206 P b	U/Th	206Pb*	1+	207Pb*	1+	206Pb*	I I	error	206Pb*	1+	207Pb*	1+	206Pb*	I I	Best age	1+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14WY-FH-2-Spot 199	129	26545	1.2	9.2393	0.8	4.6962	1.4	0.3147	1.1	0.81	1763.7	17.1	1766.6	11.5	1769.9	14.6	1769.9	14.6	99.7
14WY-FH-2-Spot 200	186	54108	3.9	8.9492	1.0	5.1551	1.5	0.3346	1.2	0.76	1860.6	18.6	1845.2	12.9	1827.9	17.8	1827.9	17.8	101.8
14WY-FH-2-Spot 201	264	103430	2.8	9.2419	0.9	4.8237	1.7	0.3233	1.4	0.85	1806.0	22.3	1789.0	14.0	1769.4	16.0	1769.4	16.0	102.1
14WY-FH-2-Spot 202	607	195105	7.3	9.3264	0.7	4.5055	1.6	0.3048	1.4	0.90	1714.8	21.7	1732.0	13.3	1752.7	13.0	1752.7	13.0	97.8
14WY-FH-2-Spot 203	72	32602	1.8	8.9140	1.1	5.0232	1.3	0.3248	0.8	0.57	1812.9	12.2	1823.2	11.4	1835.1	19.9	1835.1	19.9	98.8
14WY-FH-2-Spot 204	154	43240	1.0	9.2090	0.7	4.7641	1.3	0.3182	1.1	0.82	1780.9	16.8	1778.6	11.0	1775.9	13.5	1775.9	13.5	100.3
14WY-FH-2-Spot 205	274	209948	1.3	9.2500	1.0	4.9216	1.7	0.3302	1.4	0.82	1839.2	22.5	1806.0	14.4	1767.8	17.8	1767.8	17.8	104.0
14WY-FH-2-Spot 206	295	57076	1.0	9.1950	0.9	4.8100	3.5	0.3208	3.3	0.96	1793.5	52.2	1786.6	29.1	1778.7	17.0	1778.7	17.0	100.8
14WY-FH-2-Spot 207	129	111749	1.4	9.1901	0.7	4.6800	1.5	0.3119	1.3	0.88	1750.2	20.4	1763.7	12.7	1779.6	13.1	1779.6	13.1	98.3
14WY-FH-2-Spot 208	118	38735	7.6	8.7164	1.4	5.2660	2.0	0.3329	1.5	0.73	1852.4	23.7	1863.4	17.1	1875.6	24.6	1875.6	24.6	98.8
14WY-FH-2-Spot 209	96	134582	2.3	8.9939	1.4	4.8237	2.8	0.3147	2.5	0.87	1763.6	37.8	1789.0	23.8	1818.9	25.6	1818.9	25.6	97.0
14WY-FH-2-Spot 210	119	30692	4.9	8.9460	1.3	5.0702	1.7	0.3290	1.1	0.66	1833.4	18.3	1831.1	14.7	1828.6	23.7	1828.6	23.7	100.3
14WY-FH-2-Spot 212	266	50464	1.2	9.2144	0.9	4.8143	1.7	0.3217	1.4	0.86	1798.2	22.3	1787.4	13.9	1774.8	15.5	1774.8	15.5	101.3
14WY-FH-2-Spot 213	264	78076	3.2	9.2013	0.9	4.8828	3.4	0.3259	3.2	0.96	1818.2	51.4	1799.3	28.4	1777.4	16.7	1777.4	16.7	102.3
14WY-FH-2-Spot 214	275	171193	2.0	9.3072	0.9	4.6575	1.7	0.3144	1.4	0.85	1762.3	21.9	1759.6	14.0	1756.5	16.1	1756.5	16.1	100.3
14WY-FH-2-Spot 215	352	59096	2.6	9.2673	0.8	4.7557	1.5	0.3196	1.2	0.83	1788.0	19.5	1777.1	12.7	1764.3	15.5	1764.3	15.5	101.3
14WY-FH-2-Spot 216	342	144417	3.9	9.3058	1.0	4.8284	1.3	0.3259	0.9	0.70	1818.4	14.8	1789.9	11.2	1756.8	17.5	1756.8	17.5	103.5
14WY-FH-2-Spot 217	420	74645	3.2	8.9918	1.1	4.9835	1.5	0.3250	1.0	0.67	1814.1	16.3	1816.5	13.0	1819.3	20.5	1819.3	20.5	99.7
14WY-FH-2-Spot 218	577	61687	2.8	9.2497	0.7	4.8140	2.9	0.3229	2.8	0.97	1804.1	43.9	1787.3	24.2	1767.8	13.2	1767.8	13.2	102.1
14WY-FH-2-Spot 219	155	74455	5.5	9.0287	0.8	5.1273	1.4	0.3357	1.2	0.83	1866.2	19.0	1840.6	12.1	1811.9	14.5	1811.9	14.5	103.0
14WY-FH-2-Spot 220	288	2166176	2.0	9.2782	1.1	4.7784	3.9	0.3215	3.8	0.96	1797.3	58.9	1781.1	32.9	1762.2	20.2	1762.2	20.2	102.0
14WY-FH-2-Spot 221	148	66521	1.4	9.2855	1.0	4.6057	1.8	0.3102	1.5	0.83	1741.6	22.3	1750.3	14.7	1760.8	18.1	1760.8	18.1	98.9
14WY-FH-2-Spot 222	193	55460	0.5	9.0765	0.7	4.6463	2.3	0.3059	2.2	0.95	1720.3	32.8	1757.6	19.1	1802.3	12.9	1802.3	12.9	95.5
14WY-FH-2-Spot 223	95	74792	2.0	5.2891	0.9	13.6352	1.6	0.5231	1.3	0.83	2712.1	29.9	2724.7	15.5	2734.1	15.2	2734.1	15.2	<u>99.2</u>
14WY-FH-2-Spot 224	304	117886	2.2	9.1866	0.8	4.6763	3.8	0.3116	3.7	0.98	1748.4	57.1	1763.0	32.0	1780.3	15.3	1780.3	15.3	98.2
14WY-FH-2-Spot 225	268	106383	2.5	9.1607	0.6	4.6832	1.5	0.3111	1.4	0.91	1746.4	21.1	1764.2	12.7	1785.5	11.5	1785.5	11.5	97.8
14WY-FH-2-Spot 226	93	896390	1.5	9.1179	0.9	4.6259	2.0	0.3059	1.8	0.89	1720.5	26.7	1753.9	16.5	1794.0	16.3	1794.0	16.3	95.9
14WY-FH-2-Spot 227	149	71604	1.2	9.2304	1.1	4.6955	1.7	0.3143	1.3	0.77	1762.0	20.4	1766.4	14.5	1771.6	20.2	1771.6	20.2	99 .5
14WY-FH-2-Spot 228	196	82641	3.0	9.1142	0.8	4.7306	2.0	0.3127	1.8	0.91	1754.0	27.9	1772.7	16.7	1794.7	15.0	1794.7	15.0	97.7
14WY-FH-2-Spot 229	80	34140	1.0	9.1803	1.1	4.6468	1.6	0.3094	1.1	0.70	1737.7	16.9	1757.7	13.3	1781.6	20.7	1781.6	20.7	97.5
14WY-FH-2-Spot 230	124	30524	1.0	9.2797	1.3	4.6643	1.8	0.3139	1.2	0.67	1760.0	18.2	1760.9	14.8	1761.9	24.2	1761.9	24.2	99.9
14WY-FH-2-Spot 231	462	69326	2.7	9.3272	0.8	4.6202	1.7	0.3125	1.5	0.89	1753.2	23.7	1752.9	14.4	1752.6	14.1	1752.6	14.1	100.0
14WY-FH-2-Spot 232	484	140546	2.8	9.2117	0.7	4.2435	1.9	0.2835	1.8	0.94	1609.0	25.4	1682.5	15.7	1775.3	12.3	1775.3	12.3	90.6
14WY-FH-2-Spot 233	199	85337	1.4	5.4702	0.9	12.7972	1.3	0.5077	0.9	0.69	2646.8	18.8	2664.8	11.8	2678.5	14.9	2678.5	14.9	98.8
14WY-FH-2-Spot 234	77	107040	1.2	5.3294	1.1	13.1836	1.8	0.5096	1.4	0.77	2654.8	29.7	2692.9	16.7	2721.5	18.7	2721.5	18.7	97.5
14WY-FH-2-Spot 235	225	47126	2.3	9.2021	0.7	4.7173	1.6	0.3148	1.5	0.91	1764.4	23.0	1770.3	13.7	1777.2	12.1	1777.2	12.1	<u>99.3</u>
14WY-FH-2-Spot 236	145	70698	2.6	9.1835	1.1	4.6611	2.5	0.3105	2.3	0.89	1742.9	34.4	1760.3	21.1	1780.9	20.9	1780.9	20.9	97.9
14WY-FH-2-Spot 237	196	91227	1.3	9.1931	1.0	4.7916	1.8	0.3195	1.5	0.83	1787.2	23.4	1783.4	15.1	1779.0	18.2	1779.0	18.2	100.5
14WY-FH-2-Spot 238	38	27791	1.1	9.2174	1.6	4.6708	2.9	0.3122	2.5	0.84	1751.8	38.0	1762.0	24.5	1774.2	28.7	1774.2	28.7	98.7
14WY-FH-2-Spot 239	413	115235	3.2	9.2206	0.8	4.7939	2.1	0.3206	2.0	0.93	1792.6	31.2	1783.8	18.0	1773.6	14.2	1773.6	14.2	101.1
14WY-FH-2-Spot 240	80	31546	1.3	5.4976	1.1	12.5520	2.7	0.5005	2.5	0.92	2615.8	53.4	2646.6	25.5	2670.2	18.0	2670.2	18.0	98.0

14WY-FH-2-Spot 282	14WY-FH-2-Spot 281	14WY-FH-2-Spot 276	14WY-FH-2-Spot 280	14WY-FH-2-Spot 279	14WY-FH-2-Spot 278	14WY-FH-2-Spot 277	14WY-FH-2-Spot 275	14WY-FH-2-Spot 274	14WY-FH-2-Spot 273	14WY-FH-2-Spot 272	14WY-FH-2-Spot 271	14WY-FH-2-Spot 270	14WY-FH-2-Spot 269	14WY-FH-2-Spot 268	14WY-FH-2-Spot 267	14WY-FH-2-Spot 266	14WY-FH-2-Spot 265	14WY-FH-2-Spot 264	14WY-FH-2-Spot 263	14WY-FH-2-Spot 262	14WY-FH-2-Spot 261	14WY-FH-2-Spot 260	14WY-FH-2-Spot 259	14WY-FH-2-Spot 258	14WY-FH-2-Spot 257	14WY-FH-2-Spot 256	14WY-FH-2-Spot 255	14WY-FH-2-Spot 254	14WY-FH-2-Spot 253	14WY-FH-2-Spot 252	14WY-FH-2-Spot 251	14WY-FH-2-Spot 250	14WY-FH-2-Spot 249	14WY-FH-2-Spot 248	14WY-FH-2-Spot 247	14WY-FH-2-Spot 246	14WY-FH-2-Spot 245	14WY-FH-2-Spot 244	14WY-FH-2-Spot 242	14WY-FH-2-Spot 241		Analysis
132	236	214	241	158	308	361	451	162	720	8	102	105	353	413	60	320	192	464	101	236	111	332	384	401	130	169	77	48	179	220	74	55	368	84	608	8	264	208	138	406	(ppm)	c
158142	68173	104633	120573	55975	561874	104846	65321	58262	195128	29808	53847	52354	141102	244291	40097	196013	79556	62875	71260	71660	167611	68172	125512	51220	42660	72658	32105	42933	109246	190758	114891	61113	155441	48194	152623	36336	199072	156638	220871	155982	204Pb	206Pb
2.9	3.1	2.3	3.0	1.2	6.2	5.4	2.8	0.7	3.4	2.3	2.1	1.6	1.3	2.4	1.3	2.1	2.8	4.3	0.8	2.8	1.7	2.7	6.3	2.9	1.7	2.4	0.9	1.1	0.7	3.0	3.4	1.5	2.2	1.6	4.3	2.1	2.5	1.9	0.9	2.1		HL/D
5.3933	9.0863	9.1131	9.1820	9.1535	9.1303	9.2804	9.1831	6.1837	9.2500	9.1231	8.9540	5.4448	9.1995	9.2098	9.4243	9.2641	6.2099	9.2379	3.6594	9.1472	6.0845	9.2431	9.1474	9.2554	9.2915	5.3647	9.1396	9.1754	9.2569	8.9323	8.6950	5.3899	9.2339	9.1609	9.2907	9.3059	8.7507	9.1256	9.2080	8.9008	207Pb*	206Pb*
0.9	0.8	1.2	0.9	1.3	0.7	0.7	0.9	0.9	0.8	1.6	1.3	1.0	0.6	0.8	1.4	1.0	0.7	0.8	0.8	1.0	1.0	1.0	0.8	0.9	0.8	0.9	1.3	1.5	0.5	1.1	1.0	1.0	1.1	1.1	0.6	1.3	0.9	0.9	0.6	1.1	(%)	I+
13.4178	4.8425	4.7902	4.8043	4.7642	4.7575	4.6876	4.7067	9.7446	4.7649	4.7839	5.0611	13.0301	4.5928	4.7211	4.5407	4.7554	10.4358	4.6961	25.5718	4.7569	10.4202	4.7799	4.5469	4.7163	4.6634	11.2983	4.7733	4.5488	4.6680	5.0254	5.2293	13.1872	4.6808	4.7528	4.7263	4.5994	5.1215	4.7164	4.7011	4.6931	235U*	207Pb*
2.5	1.3	1.9	1.6	3.8	2.2	1.7	1.7	1.4	1.7	2.2	2.1	2.4	1.5	1.6	2.0	1.5	1.5	1.8	1.3	1.9	1.6	1.4	1.6	1.7	1.4	1.7	1.6	2.9	1.0	2.6	1.6	3.2	2.0	1.5	1.2	1.8	1.4	2.4	2.1	1.6	(%)	+
0.5248	0.3191	0.3166	0.3199	0.3163	0.3150	0.3155	0.3135	0.4370	0.3197	0.3165	0.3287	0.5145	0.3064	0.3154	0.3104	0.3195	0.4700	0.3146	0.6787	0.3156	0.4598	0.3204	0.3017	0.3166	0.3143	0.4396	0.3164	0.3027	0.3134	0.3256	0.3298	0.5155	0.3135	0.3158	0.3185	0.3104	0.3250	0.3122	0.3140	0.3030	238U	206Pb*
2.3	1.0	1.4	1.4	3.6	2.1	1.5	1.5	1.1	1.5	1.5	1.6	2.2	1.4	1.3	1.4	1.1	1.3	1.6	0.9	1.7	1.3	1.0	1.4	1.4	1.2	1.4	1.0	2.4	0.9	2.4	1.2	3.1	1.7	1.1	1.0	1.3	1.1	2.2	2.0	1.2	(%)	+
0.93	0.79	0.77	0.85	0.94	0.94	0.92	0.85	0.79	0.89	0.69	0.78	0.91	0.91	0.84	0.71	0.76	0.87	0.90	0.75	0.87	0.81	0.71	0.86	0.83	0.84	0.83	0.61	0.85	0.90	0.91	0.77	0.95	0.83	0.71	0.85	0.71	0.78	0.93	0.95	0.72	corr.	error
2719.7	1785.4	1773.1	1789.4	1771.6	1765.4	1767.8	1757.8	2337.3	1788.1	1772.8	1831.9	2676.0	1723.1	1767.0	1742.5	1787.4	2483.6	1763.5	3339.3	1768.1	2438.8	1791.8	1699.5	1773.0	1761.6	2348.9	1772.2	1704.7	1757.4	1816.8	1837.3	2680.1	1757.8	1769.1	1782.3	1742.8	1814.3	1751.3	1760.1	1706.0	238U*	206Pb*
51.1	16.0	22.2	22.0	55.1	31.8	23.7	22.3	21.8	23.0	23.3	25.8	47.9	21.1	20.1	21.7	17.7	25.9	25.2	24.5	25.6	26.8	15.9	20.8	21.4	18.6	27.6	14.9	36.3	14.0	37.8	19.3	67.5	25.8	17.1	16.1	20.1	17.5	33.6	30.2	17.6	(Ma)	I+
2709.5	1792.3	1783.2	1785.6	1778.6	1777.4	1765.0	1768.4	2410.9	1778.7	1782.1	1829.6	2681.8	1748.0	1771.0	1738.5	1777.1	2474.2	1766.5	3330.3	1777.3	2472.8	1781.4	1739.6	1770.1	1760.7	2548.1	1780.2	1739.9	1761.5	1823.6	1857.4	2693.1	1763.8	1776.6	1771.9	1749.2	1839.7	1770.2	1767.4	1766.0	235U	207Pb*
23.4	10.9	15.7	13.9	31.7	18.4	14.0	14.2	13.0	13.9	18.2	17.6	22.7	12.8	13.0	16.6	12.6	13.4	15.2	12.3	16.0	15.1	11.9	13.5	14.0	12.0	15.7	13.3	23.7	8.5	22.3	13.3	30.7	17.0	13.0	10.2	15.4	12.1	19.8	17.3	13.6	(Ma)	I+
2701.9	1800.3	1794.9	1781.2	1786.9	1791.5	1761.8	1781.0	2473.7	1767.8	1793.0	1827.0	2686.2	1777.7	1775.7	1733.6	1765.0	2466.5	1770.2	3324.9	1788.1	2500.9	1769.1	1788.1	1766.7	1759.6	2710.7	1789.7	1782.5	1766.4	1831.3	1880.0	2702.9	1770.9	1785.4	1759.7	1756.8	1868.5	1792.5	1776.1	1837.8	207Pb*	206Pb*
15.0	14.4	21.8	15.6	22.9	13.6	12.3	16.1	14.6	13.9	28.3	23.7	16.7	11.7	15.4	25.8	17.9	12.2	14.7	13.1	17.4	16.0	18.2	15.0	17.3	14.4	15.4	22.9	27.5	8.3	19.9	17.8	17.2	20.8	19.8	11.8	23.7	16.2	16.0	11.7	20.3	(Ma)	I+
2701.9	1800.3	1794.9	1781.2	1786.9	1791.5	1761.8	1781.0	2473.7	1767.8	1793.0	1827.0	2686.2	1777.7	1775.7	1733.6	1765.0	2466.5	1770.2	3324.9	1788.1	2500.9	1769.1	1788.1	1766.7	1759.6	2710.7	1789.7	1782.5	1766.4	1831.3	1880.0	2702.9	1770.9	1785.4	1759.7	1756.8	1868.5	1792.5	1776.1	1837.8	(Ma)	Best age
15.0	14.4	21.8	15.6	22.9	13.6	12.3	16.1	14.6	13.9	28.3	23.7	16.7	11.7	15.4	25.8	17.9	12.2	14.7	13.1	17.4	16.0	18.2	15.0	17.3	14.4	15.4	22.9	27.5	8.3	19.9	17.8	17.2	20.8	19.8	11.8	23.7	16.2	16.0	11.7	20.3	(Ma)	1+
100.7	<u>99.2</u>	98.8	100.5	99.1	98.5	100.3	98.7	94.5	101.2	6.86	100.3	99 .6	6:96	99.5	100.5	101.3	100.7	99.6	100.4	98.9	97.5	101.3	95.0	100.4	100.1	86.7	99.0	95.6	99 .5	99.2	97.7	<u>99.2</u>	£.66	99.1	101.3	99.2	97.1	97.7	99.1	92.8	(%)	Conc

14WY-FH-2-Spot 325	14WY-FH-2-Spot 324	14WY-FH-2-Spot 323	14WY-FH-2-Spot 322	14WY-FH-2-Spot 321	14WY-FH-2-Spot 320	14WY-FH-2-Spot 319	14WY-FH-2-Spot 318	14WY-FH-2-Spot 317	14WY-FH-2-Spot 316	14WY-FH-2-Spot 315	14WY-FH-2-Spot 314	14WY-FH-2-Spot 313	14WY-FH-2-Spot 312	14WY-FH-2-Spot 311	14WY-FH-2-Spot 310	14WY-FH-2-Spot 309	14WY-FH-2-Spot 308	14WY-FH-2-Spot 307	14WY-FH-2-Spot 306	14WY-FH-2-Spot 305	14WY-FH-2-Spot 304	14WY-FH-2-Spot 303	14WY-FH-2-Spot 302	14WY-FH-2-Spot 301	14WY-FH-2-Spot 300	14WY-FH-2-Spot 299	14WY-FH-2-Spot 298	14WY-FH-2-Spot 297	14WY-FH-2-Spot 295	14WY-FH-2-Spot 294	14WY-FH-2-Spot 293	14WY-FH-2-Spot 292	14WY-FH-2-Spot 291	14WY-FH-2-Spot 290	14WY-FH-2-Spot 289	14WY-FH-2-Spot 288	14WY-FH-2-Spot 287	14WY-FH-2-Spot 286	14WY-FH-2-Spot 285	14WY-FH-2-Spot 284		Analysis
139	125	97	211	137	403	231	168	200	256	230	297	333	144	120	244	250	23	330	253	547	431	129	48	386	34	487	309	319	58	229	121	649	161	398	47	315	213	222	92	86	(ppm)	c
38567	50150	130075	62688	47923	219280	77982	155704	245586	71537	70543	247495	66328	39213	46605	91056	988819	16750	32312	232809	121041	140775	31258	57408	59224	75581	218117	205334	87506	34166	90319	51826	213050	70012	222161	42148	59196	84140	72333	37454	65580	204Pb	206Pb
2.6	1.8	1.7	2.8	1.0	3.1	1.1	4.9	3.3	2.9	3.2	2.5	2.2	1.5	1.6	1.3	1.0	1.0	2.6	3.6	1.7	2.2	2.8	2.0	5.1	2.5	2.3	4.1	1.8	2.3	1.6	1.3	8.1	1.5	1.1	2.6	2.3	0.9	2.7	3.0	5.4		U/Th
8.8876	9.1541	9.2404	9.1556	8.7678	9.3048	9.1543	8.8840	9.1780	8.8375	9.1774	9.2165	9.1361	8.6354	9.3178	9.1816	9.1709	8.5331	8.4794	9.2003	9.2389	8.9566	9.0960	8.6475	9.2380	9.2175	8.8106	9.2199	9.1035	9.3233	9.1447	9.1097	9.2803	5.5187	8.7748	8.9527	9.1079	9.0662	9.1624	8.8021	8.8834	207Pb*	206Pb*
0.9	1.0	1.0	1.3	0.9	1.1	1.1	1.0	1.0	0.6	0.9	0.9	0.7	0.9	1.0	0.7	0.7	2.2	3.2	0.9	0.6	1.2	1.1	1.4	0.9	1.7	0.5	1.0	0.9	0.9	0.9	8.0	6.0	1.0	1.0	1.4	0.9	1.0	0.8	1.0	1.1	(%)	I+
5.2370	4.8078	4.7202	4.8410	5.1409	4.4915	4.5766	5.2590	4.7698	5.2671	4.7227	4.7821	4.7642	5.4307	4.8299	4.7764	4.7847	5.2063	4.7127	4.6440	4.7518	4.4212	4.7759	5.2556	4.8023	4.6157	5.0294	4.6065	4.6332	4.6008	4.7885	4.7577	4.6518	12.8861	4.2040	4.9916	4.6403	4.7920	4.7807	5.2134	5.0934	235U*	207 P b*
1.5	1.5	1.5	3.5	1.4	1.6	3.3	1.7	1.6	1.2	1.4	2.6	1.5	3.3	1.6	1.3	1.5	2.6	3.4	2.0	1.3	2.1	1.6	2.3	1.8	3.2	1.6	1.7	2.0	1.7	1.5	3.8	1.7	1.7	1.8	2.0	1.8	1.6	1.6	1.9	2.0	(%)	H
0.3376	0.3192	0.3163	0.3215	0.3269	0.3031	0.3039	0.3389	0.3175	0.3376	0.3143	0.3197	0.3157	0.3401	0.3264	0.3181	0.3182	0.3222	0.2898	0.3099	0.3184	0.2872	0.3151	0.3296	0.3218	0.3086	0.3214	0.3080	0.3059	0.3111	0.3176	0.3143	0.3131	0.5158	0.2675	0.3241	0.3065	0.3151	0.3177	0.3328	0.3282	238U	206Pb*
1.2	1.1	1.1	3.3	1.1	1.2	3.1	1.4	1.3	1.0	1.0	2.4	1.4	3.2	1.2	1.0	1.3	1.4	1.1	1.8	1.1	1.7	1.1	1.9	1.6	2.7	1.5	1.4	1.8	1.5	1.2	3.7	1.4	1.4	1.5	1.4	1.5	1.2	1.4	1.6	1.6	(%)	1+
0.79	0.74	0.76	0.93	0.76	0.76	0.94	0.82	0.80	0.85	0.75	0.93	0.88	0.96	0.76	0.81	0.89	0.52	0.33	0.90	0.89	0.83	0.73	0.81	0.87	0.84	0.95	0.81	0.89	0.85	0.79	0.98	0.82	0.80	0.83	0.71	0.85	0.76	0.85	0.84	0.83	corr.	error
1875.0	1785.8	1771.8	1796.8	1823.4	1706.7	1710.4	1881.2	1777.5	1875.1	1762.1	1788.1	1768.6	1887.3	1820.9	1780.3	1781.2	1800.5	1640.6	1740.1	1781.9	1627.5	1765.6	1836.5	1798.3	1733.7	1796.5	1731.0	1720.5	1746.1	1777.9	1762.0	1755.9	2681.2	1528.3	1809.8	1723.6	1765.7	1778.4	1852.0	1829.5	238U*	206Pb*
19.9	17.6	17.4	51.2	16.7	18.3	46.5	22.8	20.1	16.3	15.7	37.2	21.0	52.1	18.8	15.9	21.0	21.2	16.3	27.7	17.5	24.9	17.7	30.0	24.5	40.4	23.8	20.9	27.2	22.3	18.3	57.3	20.8	29.7	20.6	22.3	23.0	18.8	21.0	25.7	26.0	(Ma)	H+
1858.7	1786.3	1770.8	1792.1	1842.9	1729.4	1745.0	1862.2	1779.6	1863.6	1771.3	1781.8	1778.6	1889.7	1790.1	1780.8	1782.2	1853.6	1769.5	1757.2	1776.4	1716.3	1780.7	1861.7	1785.3	1752.1	1824.3	1750.5	1755.3	1749.4	1782.9	1777.5	1758.6	2671.4	1674.8	1817.9	1756.6	1783.5	1781.5	1854.8	1835.0	235U	207Pb*
13.2	12.8	12.4	29.7	11.8	13.4	27.4	14.5	13.7	10.1	11.4	21.5	13.0	28.4	13.1	10.6	12.8	22.0	28.7	16.9	10.6	17.3	13.3	19.8	15.2	26.4	13.5	14.2	17.0	14.3	12.6	31.9	13.8	15.9	15.0	16.7	14.9	13.4	13.3	16.2	16.6	(Ma)	H
1840.4	1786.8	1769.7	1786.5	1865.0	1757.0	1786.7	1841.2	1782.0	1850.7	1782.1	1774.4	1790.4	1892.4	1754.4	1781.3	1783.4	1913.8	1925.1	1777.6	1770.0	1826.4	1798.4	1889.9	1770.1	1774.2	1856.2	1773.7	1796.9	1753.3	1788.6	1795.6	1761.8	2663.9	1863.5	1827.2	1796.0	1804.3	1785.1	1857.9	1841.3	207Pb*	206Pb*
17.1	18.5	17.4	24.3	16.3	19.2	20.0	17.4	17.9	11.2	16.5	17.0	13.4	16.3	18.3	13.7	12.7	39.6	57.9	16.3	10.4	21.2	19.8	24.4	16.5	31.4	9.0	18.2	17.2	16.5	16.9	14.3	17.3	16.8	18.4	25.1	17.1	18.9	15.0	18.6	19.6	(Ma)	H+
1840.4	1786.8	1769.7	1786.5	1865.0	1757.0	1786.7	1841.2	1782.0	1850.7	1782.1	1774.4	1790.4	1892.4	1754.4	1781.3	1783.4	1913.8	1925.1	1777.6	1770.0	1826.4	1798.4	1889.9	1770.1	1774.2	1856.2	1773.7	1796.9	1753.3	1788.6	1795.6	1761.8	2663.9	1863.5	1827.2	1796.0	1804.3	1785.1	1857.9	1841.3	(Ma)	Best age
17.1	18.5	17.4	24.3	16.3	19.2	20.0	17.4	17.9	11.2	16.5	17.0	13.4	16.3	18.3	13.7	12.7	39.6	57.9	16.3	10.4	21.2	19.8	24.4	16.5	31 4	9.0	18.2	17.2	16.5	16.9	14.3	17.3	16.8	18.4	25.1	17.1	18.9	15.0	18.6	19.6	(Ma)	1+
101.9	99.9	100.1	100.6	97.8	97.1	95.7	102.2	99.7	101.3	98.9	100.8	98.8	99.7	103.8	99.9	99.9	94.1	85.2	97.9	100.7	89.1	98.2	97.2	101.6	97.7	96.8	97.6	95.8	99.6	99.4	98.1	99.7	100.6	82.0	99.0	96.0	97.9	99.6	99.7	99.4	(%)	Conc

Analysis	c	206Pb	U/Th	206Pb*	1+	207Pb*	1+	206Pb*	I+	error	206Pb*	1+	207Pb*	1+	206Pb*	1+	Best age	I+	Conc
	(ppm)	204Pb		207Pb*	(%)	235U*	(%)	238U	(%)	corr.	238U*	(Ma)	235U	(Ma)	207Pb*	(Ma)	(Ma)	(Ma)	(%)
14WY-FH-2-Spot 326	234	117460	2.2	9.1649	0.8	4.7782	1.3	0.3176	0.9	0.74	1778.0	14.4	1781.1	10.5	1784.6	15.5	1784.6	15.5	99 .6
14WY-FH-2-Spot 327	189	124078	2.8	9.2391	1.0	4.7991	4.2	0.3216	4.0	0.97	1797.4	63.4	1784.7	35.0	1769.9	18.5	1769.9	18.5	101.6
14WY-FH-2-Spot 328	220	113082	1.4	9.2241	1.0	4.8371	1.5	0.3236	1.2	0.77	1807.3	18.2	1791.4	12.6	1772.9	17.4	1772.9	17.4	101.9
14WY-FH-2-Spot 329	192	151432	3.5	9.1906	1.1	4.8940	1.6	0.3262	1.3	0.77	1820.0	19.9	1801.2	13.8	1779.5	19.2	1779.5	19.2	102.3
14WY-FH-2-Spot 330	184	217514	2.9	9.1029	0.8	4.9428	1.3	0.3263	1.0	0.75	1820.5	15.2	1809.6	10.8	1797.0	15.3	1797.0	15.3	101.3
SH324BD-Spot 33	73	42660	1.4	13.9240	3.3	1.6153	3.6	0.1631	1.4	0.39	974.1	12.5	976.2	22.5	980.8	67.4	980.8	67.4	99.3
SH324BD-Spot 15	69	45997	1.2	13.9010	2.9	1.6152	3.1	0.1628	1.2	0.39	972.5	11.0	976.1	19.5	984.2	58.3	984.2	58.3	98.8
SH324BD-Spot 76	317	37496	4.1	13.4957	0.5	1.6358	1.1	0.1601	1.0	0.89	957.4	8.9	984.1	7.1	1044.1	10.2	1044.1	10.2	91.7
SH324BD-Spot 79	103	79615	2.7	13.4942	2.0	1.8164	2.6	0.1778	1.7	0.64	1054.8	16.1	1051.4	16.9	1044.3	39.8	1044.3	39.8	101.0
SH324BD-Spot 99	132	63538	1.8	13.4940	1.4	1.8416	1.6	0.1802	0.8	0.49	1068.3	7.6	1060.4	10.4	1044.4	27.8	1044.4	27.8	102.3
SH324BD-Spot 34	104	62321	1.2	13.4606	2.7	1.8722	2.8	0.1828	0.5	0.19	1082.1	5.2	1071.3	18.4	1049.4	55.1	1049.4	55.1	103.1
SH324BD-Spot 84	67	36543	3.5	13.3963	3.0	1.7089	3.2	0.1660	0.9	0.29	990.3	8.6	1011.9	20.4	1059.0	61.4	1059.0	61.4	93.5
SH324BD-Spot 92	126	63395	1.6	13.3770	1.5	1.8951	1.7	0.1839	0.7	0.40	1088.0	6.8	1079.4	11.2	1061.9	31.0	1061.9	31.0	102.5
SH324BD-Spot 101	36	43274	1.7	13.3697	4.8	1.8763	5.2	0.1819	2.1	0.39	1077.6	20.5	1072.8	34.7	1063.0	96.8	1063.0	96.8	101.4
SH324BD-Spot 86	114	43015	2.1	13.3470	1.6	1.7165	2.3	0.1662	1.7	0.73	990.9	15.3	1014.7	14.6	1066.5	31.4	1066.5	31.4	92.9
SH324BD-Spot 59	49	30498	0.5	13.3379	3.6	1.8608	3.7	0.1800	0.9	0.23	1067.0	8.6	1067.3	24.7	1067.8	73.1	1067.8	73.1	99.9
SH324BD-Spot 13	: 22	12164	0.4	13.3349	5.2	1.9249	5.6	0.1862	2.2	0.39	1100.6	22.5	1089.8	37.8	1068.3	104.4	1068.3	104.4	103.0
SH324BU-Spot 102	2 2	25594		13.3104	د د د	1./62/	о 	0.1702	0.1	0.84	1013.0	47.7	1031.8	39.4	10/2.0	66.9	10/2.0	00.9	94.5
SH324BD-Snot 107	72	43028	1.1	13.1581	35	2.0008	3.7	0.1909	-1 io	0.36	1126.4	13.7	1115.8	25.1	1095.1	69 3	1095.1	69.3	102.9
SH324BD-Spot 109	83	83170	2.1	13.1100	2.0	1.9853	2.2	0.1888	0.8	0.38	1114.7	8.4	1110.5	14.7	1102.4	40.3	1102.4	40.3	101.1
SH324BD-Spot 16	30	24399	0.5	13.0634	7.7	2.0005	7.9	0.1895	1.8	0.23	1118.9	18.5	1115.7	53.5	1109.5	153.9	1109.5	153.9	100.8
SH324BD-Spot 41	8	79677	1.2	13.0465	2.2	1.9225	2.3	0.1819	0.7	0.29	1077.4	6.5	1089.0	15.2	1112.0	43.4	1112.0	43.4	96.9
SH324BD-Spot 6	27	17578	0.7	13.0251	5.4	2.0514	5.9	0.1938	2.4	0.40	1141.9	25.0	1132.8	40.4	1115.3	108.2	1115.3	108.2	102.4
SH324BD-Spot 108	69	52050	1.9	13.0167	3.0	1.9421	4.0	0.1833	2.7	0.68	1085.2	27.3	1095.7	27.0	1116.7	59.0	1116.7	59.0	97.2
SH324BD-Spot 90	125	64233	2.2	12.9895	1.6	2.0378	1.9	0.1920	0.9	0.49	1132.1	9.4	1128.2	12.7	1120.8	32.5	1120.8	32.5	101.0
SH324BD-Spot 73	40	38814	0.9	12.9858	6.4	1.9505	6.8	0.1837	2.3	0.35	1087.2	23.5	1098.6	45.5	1121.4	126.8	1121.4	126.8	96.9
SH324BD-Spot 38	73	34743	2.2	12.9425	1.7	1.9569	2.0	0.1837	0.9	0.48	1087.1	9.4	1100.8	13.2	1128.1	34.5	1128.1	34.5	96.4
SH324BD-Spot 74	55	42561	1.4	12.8587	3.6	2.0622	4.2	0.1923	2.0	0.49	1133.9	21.1	1136.3	28.6	1141.0	72.5	1141.0	72.5	99.4
SH324BD-Spot 45	27	24339	0.5	12.8052	6.2	2.0720	6.5	0.1924	2.0	0.31	1134.5	20.7	1139.6	44.6	1149.2	123.3	1149.2	123.3	98.7
SH324BD-Spot 12	60	39248	0.6	12.6733	2.7	2.1681	3.1	0.1993	1.5	0.49	1171.5	16.5	1170.9	21.6	1169.8	53.6	1169.8	53.6	100.1
SH324BD-Spot 60	8	81041	1.2	12.6488	2.6	2.1529	2.8	0.1975	1.0	0.35	1161.9	10.3	1166.0	19.3	1173.6	51.5	1173.6	51.5	99.0
SH324BD-Spot 40	78	121867	0.6	12.5538	2.2	2.2755	2.3	0.2072	0.7	0.29	1213.8	7.3	1204.7	16.2	1188.5	43.4	1188.5	43.4	102.1
SH324BD-Spot 96	8	36051	0.9	12.5191	2.6	2.2122	3.0	0.2009	1.4	0.47	1180.0	15.2	1184.9	20.9	1194.0	51.8	1194.0	51.8	98.8
SH324BD-Spot 100	193	12232	2.2	12.5005	1.1	1.8984	3.5	0.1721	3.4	0.95	1023.7	31.9	1080.5	23.5	1196.9	21.1	1196.9	21.1	85.5
SH324BD-Spot 46	56	29562	1.4	12.4482	1.9	2.3356	2.1	0.2109	0.9	0.41	1233.4	9.7	1223.2	14.8	1205.2	37.4	1205.2	37.4	102.3
SH324BD-Spot 80	53	38965	1.6	12.3624	2.9	2.3473	3.1	0.2105	1.1	0.36	1231.3	12.5	1226.7	22.1	1218.8	57.0	1218.8	57.0	101.0
SH324BD-Spot 95	178	58446	0.9	12.3404	1.5	1.9868	2.0	0.1778	1.3	0.66	1055.1	12.6	1111.0	13.3	1222.3	29.1	1222.3	29.1	86.3
SH324BD-Spot 22	40	25605	1.3	12.2742	3.0	2.2689	6.4	0.2020	5.6	0.88	1186.0	61.2	1202.7	45.0	1232.9	58.3	1232.9	58.3	96.2
SH324BD-Spot 51	56	26204	1.2	12.2493	2.6	2.3923	2.7	0.2125	0.9	0.31	1242.3	9.7	1240.3	19.7	1236.8	51.1	1236.8	51.1	100.4

Analysis	с	206Pb	U/Th	206Pb*	Ŧ	207Pb*	Ŧ	206Pb*	H	error	206Pb*	H	207Pb*	I I	206Pb*	H	Best age	+	ß
	(pprn)	20410		20710	(%)	2300"	(%)	2300	(%)	COIL.	2380	(Ma)	2300	(Ma)	207 רטי	(Ma)	(Ma)	(Ma)	1
SH324BD-Spot 81	8	23723	1.9	12.1953	1.9	2.2651	2.0	0.2003	0.6	0.29	1177.2	6.3	1201.5	14.3	1245.5	38.1	1245.5	38.1	l [
SH324BD-Spot 25	36	28667	0.5	12.1934	2.9	2.3993	3.1	0.2122	1.1	0.36	1240.4	12.4	1242.4	21.9	1245.8	55.9	1245.8	55.9	
SH324BD-Spot 44	43	22473	1.1	12.0389	5.2	2.3041	6.9	0.2012	4.5	0.66	1181.6	48.9	1213.5	48.7	1270.7	100.9	1270.7	100.9	
SH324BD-Spot 85	33	18022	1.1	11.9850	2.0	2.5107	2.2	0.2182	1.1	0.48	1272.6	12.4	1275.1	16.3	1279.5	38.3	1279.5	38.3	1
SH324BD-Spot 19	66	26045	1.5	11.9293	2.8	2.6213	2.9	0.2268	1.0	0.35	1317.7	12.2	1306.6	21.7	1288.5	53.8	1288.5	53.8	ιĪ
SH324BD-Spot 77	149	7354	1.4	11.8276	3.0	1.1130	7.5	0.0955	6.9	0.92	587.8	38.6	759.6	40.1	1305.2	58.2	1305.2	58.2	. 1
SH324BD-Spot 52	108	129911	2.4	11.7750	2.1	2.6868	2.2	0.2295	0.7	0.30	1331.6	7.9	1324.8	16.0	1313.8	39.8	1313.8	39.8	1 1
SH324BD-Spot 67	37	38173	1.0	11.7071	3.5	2.6812	3.7	0.2277	1.3	0.35	1322.2	15.7	1323.3	27.4	1325.0	67.2	1325.0	67.2	. 1
SH324BD-Spot 97	156	72064	2.2	11.6575	1.1	2.7192	3.6	0.2299	3.4	0.96	1334.0	41.2	1333.7	26.6	1333.3	20.4	1333.3	20.4	i I
SH324BD-Spot 62	2	60821	1.6	11.5660	2.2	2.8127	2.4	0.2359	1.0	0.40	1365.6	12.0	1358.9	18.2	1348.5	43.1	1348.5	43.1	. 1
SH324BD-Spot 106	31	20907	2.4	11.4296	3.8	2.8719	4.3	0.2381	1.9	0.44	1376.6	23.4	1374.6	32.1	1371.3	73.4	1371.3	73.4	1
SH324BD-Spot 57	52	28591	1.9	11.3035	1.7	3.0448	2.4	0.2496	1.7	0.70	1436.5	21.6	1418.9	18.3	1392.7	32.7	1392.7	32.7	
SH324BD-Spot 54	127	141401	2.1	11.2851	1.0	2.9167	1.2	0.2387	0.6	0.55	1380.1	8.1	1386.3	8.9	1395.8	19.0	1395.8	19.0	1
SH324BD-Spot 31	29	1140	0.7	11.2451	7.9	2.6471	8.4	0.2159	2.9	0.34	1260.1	33.3	1313.8	62.2	1402.6	151.9	1402.6	151.9	1
SH324BD-Spot 36	62	41997	1.2	11.2051	1.7	3.0922	1.8	0.2513	0.7	0.38	1445.1	8.9	1430.8	13.8	1409.4	31.8	1409.4	31.8	1
SH324BD-Spot 42	60	28581	0.9	11.1753	2.9	2.7197	3.2	0.2204	1.4	0.43	1284.2	16.0	1333.9	23.5	1414.5	54.6	1414.5	54.6	
SH324BD-Spot 35	99	86869	2.9	11.1524	0.7	2.9925	1.3	0.2420	1.1	0.84	1397.3	14.1	1405.7	10.2	1418.4	13.9	1418.4	13.9	
SH324BD-Spot 32	99	73260	1.0	11.1268	1.1	3.0981	1.4	0.2500	0.8	0.59	1438.6	10.4	1432.2	10.4	1422.8	20.9	1422.8	20.9	
SH324BD-Spot 82	165	174335	3.0	11.0710	0.8	3.1405	1.3	0.2522	0.9	0.75	1449.6	12.2	1442.7	9.6	1432.4	15.7	1432.4	15.7	
SH324BD-Spot 50	73	95301	0.6	11.0697	1.2	3.1173	1.9	0.2503	1.5	0.78	1439.9	19.1	1437.0	14.6	1432.6	22.7	1432.6	22.7	
SH324BD-Spot 2	90	64872	1.2	11.0627	1.7	3.0669	2.0	0.2461	1.0	0.53	1418.2	13.3	1424.5	15.0	1433.8	31.7	1433.8	31.7	1 -
SH324BD-Spot 28	138	50541	2.1	11.0601	1.5	2.4424	6.1	0.1959	5.9	0.97	1153.4	62.0	1255.2	43.7	1434.3	29.0	1434.3	29.0	1
SH324BD-Spot 30	57	10204	0.8	11.0120	2.8	3.0565	2.9	0.2441	0.8	0.28	1408.0	10.5	1421.9	22.3	1442.6	53.3	1442.6	53.3	1
SH324BD-Spot 20	106	478581	0.7	11.0084	1.5	3.1458	1.8	0.2512	0.9	0.48	1444.5	11.0	1444.0	13.6	1443.2	29.3	1443.2	29.3	1
SH324BD-Spot 26	101	89037	1.2	10.9630	1.4	3.2942	1.8	0.2619	1.2	0.66	1499.7	16.0	1479.7	14.1	1451.1	25.8	1451.1	25.8	1
SH324BD-Spot 56	199	43114	3.1	10.9482	0.5	2.8359	1.8	0.2252	1.7	0.96	1309.2	20.0	1365.1	13.2	1453.7	9.0	1453.7	9.0	
SH324BD-Spot 17	97	87416	1.3	10.9017	1.4	3.2020	1.6	0.2532	0.8	0.47	1454.8	10.0	1457.7	12.6	1461.8	27.3	1461.8	27.3	1
SH324BD-Spot 58	101	91613	1.2	10.8457	1.2	3.1750	3.0	0.2497	2.7	0.91	1437.2	35.4	1451.1	23.3	1471.5	23.4	1471.5	23.4	
SH324BD-Spot 93	48	48685	0.6	10.7203	2.1	3.3225	2.8	0.2583	1.8	0.65	1481.3	23.7	1486.4	21.6	1493.6	39.8	1493.6	39.8	
SH324BD-Spot 70	42	58076	0.6	10.0964	3.0	3.7524	3.1	0.2748	0.9	0.29	1565.0	12.7	1582.6	25.0	1606.2	55.7	1606.2	55.7	
SH324BD-Spot 66	63	128942	1.1	9.7660	2.3	4.1777	2.4	0.2959	0.7	0.30	1671.0	10.6	1669.7	19.5	1668.0	42.0	1668.0	42.0	
SH324BD-Spot 27	ន	59808	1.2	9.7358	1.4	4.1901	1.7	0.2959	1.0	0.59	1670.8	14.5	1672.1	13.8	1673.7	25.1	1673.7	25.1	1
SH324BD-Spot 11	138	144762	2.7	9.6730	1.3	4.0150	6.3	0.2817	6.1	0.98	1599.8	86.5	1637.2	50.9	1685.7	24.4	1685.7	24.4	1
SH324BD-Spot 24	61	47027	2.0	9.6317	1.4	4.3157	1.7	0.3015	0.9	0.55	1698.6	13.9	1696.4	14.0	1693.6	26.3	1693.6	26.3	
SH324BD-Spot 8	73	135819	2.8	9.6303	0.8	4.2466	1.1	0.2966	0.7	0.68	1674.5	10.6	1683.1	8.7	1693.8	14.4	1693.8	14.4	
SH324BD-Spot 91	104	99972	1.9	9.6107	0.9	4.0594	1.3	0.2830	1.0	0.75	1606.2	13.9	1646.2	10.6	1697.6	15.9	1697.6	15.9	
SH324BD-Spot 98	161	97975	1.5	9.5781	0.6	3.8425	5.5	0.2669	5.5	0.99	1525.2	74.7	1601.7	44.6	1703.8	10.4	1703.8	10.4	
SH324BD-Spot 37	148	147309	1.5	9.5394	0.9	4.4263	1.0	0.3062	0.5	0.45	1722.2	6.9	1717.3	8.5	1711.3	16.8	1711.3	16.8	Ι.
SH324BD-Spot 3	4	23367	1.0	9.5331	1.4	4.3986	2.2	0.3041	1.7	0.78	1711.7	25.8	1712.1	18.3	1712.5	25.6	1712.5	25.6	Ι
SH324BD-Spot 5	23	14906	2.7	9.5168	3.1	4.3258	3.9	0.2986	2.3	0.61	1684.2	34.8	1698.3	31.8	1715.7	56.2	1715.7	56.2	1
SH324BD-Spot 110	107	269154	1.3	9.4891	0.8	4.3759	0.9	0.3012	0.4	0.43	1697.0	5.8	1707.8	7.4	1721.0	14.8	1721.0	14.8	1

	=			2001-4	+		-		+			-	2017-4	-	-	-			1
Analysis		204Pb	0/10	207Pb*	(%) H	2350*	(%) H	2380	(%) H	corr.	238U*	(Ma)	2350	(Ma)	207Pb*	(Ma)	(Ma)	(Ma) ±	_
	-				2							,		ĺ		ļ			_
SH324BD-Spot 75	66	91152	1.9	9.4883	1.2	4.6103	1.6	0.3173	1.0	0.66	1776.4	16.2	1751.1	13.1	1721.2	21.6	1721.2	21.6	
SH324BD-Spot 78	81	100400	1.2	9.4450	2.0	4.1892	3.9	0.2870	3.3	0.85	1626.4	47.0	1671.9	31.6	1729.6	37.3	1729.6	37.3	
SH324BD-Spot 9	112	136418	1.6	9.4312	0.7	4.4795	0.9	0.3064	0.5	0.57	1723.0	7.6	1727.2	7.3	1732.3	13.3	1732.3	13.3	
SH324BD-Spot 69	\$	71378	0.9	9.4147	1.4	4.5332	2.1	0.3095	1.6	0.75	1738.4	24.3	1737.1	17.7	1735.5	25.9	1735.5	25.9	_
SH324BD-Spot 39	41	67645	1.8	9.3782	1.6	4.4757	1.8	0.3044	0.7	0.41	1713.2	11.0	1726.5	14.8	1742.6	29.9	1742.6	29.9	
SH324BD-Spot 55	184	37446	3.2	9.3101	0.5	3.9721	1.9	0.2682	1.8	0.97	1531.7	24.7	1628.5	15.2	1755.9	8.8	1755.9	8.8	
SH324BD-Spot 14	67	97625	0.9	8.9918	1.4	4.9431	1.7	0.3224	1.0	0.57	1801.3	15.0	1809.6	14.1	1819.3	24.8	1819.3	24.8	_
SH324BD-Spot 21	16	16015	0.2	8.9451	7.6	5.0373	7.7	0.3268	1.1	0.15	1822.8	17.8	1825.6	65.2	1828.8	138.1	1828.8	138.1	_
SH324BD-Spot 89	8	66622	2.4	8.7743	1.2	5.2523	1.5	0.3342	0.9	0.63	1858.9	15.2	1861.1	12.8	1863.6	21.0	1863.6	21.0	_
SH324BD-Spot 43	143	276301	2.2	8.7066	0.5	5.3770	0.9	0.3395	0.7	0.80	1884.4	12.0	1881.2	7.8	1877.6	9.9	1877.6	9.9	_
SH324BD-Spot 23	190	490567	4.2	6.1020	0.6	10.4404	1.2	0.4620	1.1	0.87	2448.6	21.9	2474.6	11.5	2496.1	10.4	2496.1	10.4	
SH324BD-Spot 64	86	143935	1.1	5.5569	0.4	12.5356	0.6	0.5052	0.4	0.66	2636.2	8.4	2645.4	5.5	2652.5	7.3	2652.5	7.3	
SH324BD-Spot 87	75	105477	0.6	5.4398	0.7	12.7979	0.9	0.5049	0.6	0.66	2634.9	12.9	2664.9	8.5	2687.7	11.2	2687.7	11.2	
SH324HO-Spot 46	75	95170	1.3	14.0556	2.8	1.5673	2.9	0.1598	0.8	0.26	955.5	6.7	957.4	17.9	961.6	56.8	961.6	56.8	
SH324HO-Spot 17	ន	20535	2.0	14.0502	3.6	1.6185	3.8	0.1649	1.4	0.37	984.1	12.9	977.4	24.1	962.4	73.1	962.4	73.1	
SH324HO-Spot 6	118	80911	2.1	13.9719	2.6	1.6415	2.7	0.1663	0.9	0.35	991.9	8.7	986.3	17.2	973.8	52.2	973.8	52.2	
SH324HO-Spot 82	47	19968	1.6	13.7625	5.8	1.7757	6.1	0.1772	1.8	0.30	1051.9	17.5	1036.6	39.4	1004.5	117.5	1004.5	117.5	
SH324HO-Spot 58	37	14770	1.3	13.6844	6.3	1.7637	6.5	0.1750	1.8	0.27	1039.9	17.1	1032.2	42.2	1016.0	127.0	1016.0	127.0	
SH324HO-Spot 73	57	41456	0.7	13.6144	2.7	1.7319	4.0	0.1710	3.0	0.74	1017.6	27.9	1020.4	25.9	1026.4	55.1	1026.4	55.1	
SH324HO-Spot 24	163	30563	2.3	13.5236	1.7	1.4483	2.2	0.1421	1.4	0.65	856.3	11.3	909.2	13.0	1039.9	33.4	1039.9	33.4	
SH324HO-Spot 36	43	28772	1.6	13.5213	6.9	1.8517	10.2	0.1816	7.6	0.74	1075.6	74.9	1064.0	67.7	1040.3	139.7	1040.3	139.7	<u> </u>
SH324HO-Spot 4	92	56369	1.5	13.5106	2.0	1.8214	2.8	0.1785	2.0	0.71	1058.7	19.9	1053.2	18.7	1041.9	40.3	1041.9	40.3	
SH324HO-Spot 44	50	34460	0.6	13.4866	3.4	1.7538	4.5	0.1715	2.9	0.65	1020.6	27.5	1028.6	29.2	1045.5	69.3	1045.5	69.3	
SH324HO-Spot 95	65	42565	2.4	13.4759	3.7	1.7190	4.0	0.1680	1.6	0.40	1001.2	14.7	1015.7	25.6	1047.1	73.9	1047.1	73.9	
SH324HO-Spot 71	82	26253	1.5	13.4577	2.3	1.7348	6.0	0.1693	5.5	0.92	1008.4	51.3	1021.5	38.4	1049.8	46.4	1049.8	46.4	
SH324HO-Spot 22	197	153010	3.1	13.4481	1.0	1.8757	4.8	0.1829	4.8	0.98	1083.0	47.4	1072.5	32.1	1051.3	19.5	1051.3	19.5	
SH324HO-Spot 18	162	124621	3.4	13.3990	1.1	1.8066	1.2	0.1756	0.6	0.49	1042.7	5.7	1047.9	7.9	1058.6	21.2	1058.6	21.2	
SH324HO-Spot 41	47	26880	0.9	13.3545	5.4	1.8928	6.5	0.1833	3.7	0.57	1085.1	36.9	1078.5	43.3	1065.3	108.1	1065.3	108.1	
SH324HO-Spot 57	283	15477	4.0	13.2880	1.0	1.6988	3.6	0.1637	3.5	0.96	977.4	31.6	1008.1	23.1	1075.4	19.3	1075.4	19.3	
SH324HO-Spot 31	172	75601	2.7	13.2751	1.2	1.8978	2.1	0.1827	1.8	0.83	1081.8	17.6	1080.3	14.2	1077.3	24.1	1077.3	24.1	
SH324HO-Spot 90	89	65295	1.4	13.2732	2.4	1.8913	2.5	0.1821	0.7	0.28	1078.3	7.0	1078.1	16.6	1077.6	48.2	1077.6	48.2	
SH324HO-Spot 35	67	44613	0.8	13.2143	1.9	1.7262	6.3	0.1654	6.0	0.95	986.9	55.0	1018.3	40.6	1086.5	38.8	1086.5	38.8	
SH324HO-Spot 50	91	29290	1.5	13.1844	1.6	1.9085	2.3	0.1825	1.6	0.70	1080.6	16.2	1084.1	15.4	1091.0	32.9	1091.0	32.9	
SH324HO-Spot 56	100	87444	1.4	13.1692	1.3	2.0003	1.8	0.1911	1.3	0.68	1127.1	13.0	1115.6	12.5	1093.3	26.9	1093.3	26.9	
SH324HO-Spot 30	53	47667	1.4	13.1315	5.0	1.9398	5.2	0.1847	1.2	0.23	1092.8	11.7	1094.9	34.6	1099.1	100.6	1099.1	100.6	
SH324HO-Spot 34	89	61387	1.6	13.1052	1.8	1.9842	2.1	0.1886	1.1	0.52	1113.8	11.3	1110.2	14.3	1103.1	36.1	1103.1	36.1	
SH324HO-Spot 39	259	136104	2.4	13.0341	0.8	1.9744	0.9	0.1866	0.5	0.56	1103.2	5.3	1106.8	6.3	1113.9	15.3	1113.9	15.3	
SH324HO-Spot 87	12	31706	2.2	13.0170	4.1	2.0915	4.8	0.1975	2.6	0.53	1161.7	27.1	1146.0	33.1	1116.6	81.7	1116.6	81.7	
SH324HO-Spot 78	59	35842	1.1	13.0076	3.4	1.9252	3.7	0.1816	1.4	0.39	1075.9	14.3	1089.9	24.6	1118.0	67.6	1118.0	67.6	
SH324HO-Spot 43	99	47451	1.1	12.9750	1.5	1.9822	1.8	0.1865	1.0	0.53	1102.6	9.7	1109.5	12.2	1123.0	30.7	1123.0	30.7	

SH324HO-Spot 45	SH324HO-Spot 51	SH324HO-Spot 93	SH324HO-Spot 97	SH324HO-Spot 89	SH324HO-Spot 23	SH324HO-Spot 32	SH324HO-Spot 25	SH324HO-Spot 38	SH324HO-Spot 55	SH324HO-Spot 81	SH324HO-Spot 94	SH324HO-Spot 47	SH324HO-Spot 61	SH324HO-Spot 40	SH324HO-Spot 14	SH324HO-Spot 37	SH324HO-Spot 1	SH324HO-Spot 67	SH324HO-Spot 83	SH324HO-Spot 2	SH324HO-Spot 11	SH324HO-Spot 27	SH324HO-Spot 79	SH324HO-Spot 88	SH324HO-Spot 3	SH324HO-Spot 10	SH324HO-Spot 60	SH324HO-Spot 64	SH324HO-Spot 74	SH324HO-Spot 91	SH324HO-Spot 77	SH324HO-Spot 15	SH324HO-Spot 28	SH324HO-Spot 53	SH324HO-Spot 26	SH324HO-Spot 48	SH324HO-Spot 96	SH324HO-Spot 9	SH324HO-Spot 99	SH324HO-Spot 84		Analysis
97	132	66	65	82	69	81	170	109	8	70	74	59	190	4	108	105	59	33	143	8	103	234	8	96	27	115	62	43	161	73	72	60	80	65	98	163	68	106	32	23	(ppm)	c
300928	29400	101553	35231	84811	43854	95850	236004	120623	54911	77775	49018	32092	31155	20993	87988	85229	50243	21513	209295	97666	75320	80152	63436	54599	18178	46106	34479	34538	94954	63040	30303	46711	76227	39538	41549	66117	50237	368178	15651	20336	204Pb	206Pb
2.6	1.8	3.0	2.6	1.5	1.6	3.8	1.7	2.3	0.6	0.6	1.1	0.8	2.7	1.7	1.5	1.4	1.2	1.6	0.5	1.0	0.6	1.8	1.9	2.9	3.0	0.9	1.8	0.4	3.8	0.4	2.1	1.9	2.0	1.3	2.3	1.6	2.2	2.2	1.3	30.5		U/Th
9.5727	9.6188	9.6239	9.6495	9.9790	10.7810	10.8038	10.8704	10.8941	10.9360	10.9414	10.9440	10.9781	11.0700	11.1562	11.2441	11.3441	11.3710	11.3864	11.5206	11.5555	11.5645	11.6835	11.7380	11.7955	11.9430	12.2284	12.3459	12.5067	12.5319	12.5459	12.5913	12.6141	12.6396	12.6589	12.6880	12.6958	12.7261	12.7460	12.8307	12.8450	207Pb*	206Pb*
0.4	0.8	1.0	1.1	1.3	1.6	1.7	1.2	1.5	1.6	1.9	2.3	2.4	0.4	3.7	1.2	1.2	1.6	3.0	1.1	0.9	1.4	0.9	1.8	1.6	7.5	1.8	1.4	2.8	0.9	1.9	2.8	2.8	2.7	3.4	1.9	0.8	2.4	2.0	5.4	7.3	(%)	1+
4.3385	3.6428	4.4097	3.7256	3.8821	3.2827	3.1768	3.2406	3.2058	3.2550	2.9032	3.1182	3.1550	2.6797	3.0505	3.0649	2.8278	2.9298	2.8824	2.7396	2.8797	2.7440	2.6739	2.5186	2.2760	2.3149	2.3670	2.3591	2.3213	2.2227	2.2735	2.2316	2.0616	2.1508	2.2329	2.1907	2.1542	2.1199	2.1720	2.1283	2.1771	235U*	207Pb*
2.7	2.7	1.7	5.8	2.0	1.9	3.1	2.0	2.2	3.1	3.4	2.8	3.6	2.6	4.4	3.8	1.7	2.4	3.7	2.4	1.2	2.2	1.5	3.0	6.0	8.2	3.4	1.9	3.7	1.9	3.1	3.6	3.9	3.1	5.0	2.1	1.3	2.9	2.4	10.8	8.0	(%)	1+
0.3012	0.2541	0.3078	0.2607	0.2810	0.2567	0.2489	0.2555	0.2533	0.2582	0.2304	0.2475	0.2512	0.2151	0.2468	0.2499	0.2327	0.2416	0.2380	0.2289	0.2413	0.2301	0.2266	0.2144	0.1947	0.2005	0.2099	0.2112	0.2106	0.2020	0.2069	0.2038	0.1886	0.1972	0.2050	0.2016	0.1984	0.1957	0.2008	0.1981	0.2028	238U	206Pb*
2.7	2.6	1.4	5.6	1.5	1.0	2.5	1.6	1.6	2.7	2.8	1.6	2.7	2.6	2.5	3.6	1.3	1.7	2.1	2.1	0.8	1.7	1.2	2.4	5.8	3.3	2.9	1.2	2.4	1.7	2.5	2.3	2.7	1.5	3.6	0.9	1.0	1.7	1.4	9.3	3.2	(%)	1+
0.99	0.95	0.81	0.98	0.77	0.50	0.82	0.81	0.73	0.86	0.82	0.57	0.76	0.99	0.55	0.94	0.73	0.73	0.57	0.90	0.65	0.77	0.81	0.80	0.96	0.41	0.85	0.64	0.64	0.89	0.79	0.63	0.69	0.50	0.73	0.42	0.78	0.57	0.58	0.86	0.40	corr.	error
1697.3	1459.7	1729.8	1493.6	1596.2	1472.8	1432.9	1466.7	1455.4	1480.5	1336.5	1425.6	1444.7	1256.2	1422.1	1438.2	1348.4	1395.1	1376.5	1328.8	1393.7	1335.3	1316.5	1252.3	1146.9	1178.1	1228.4	1235.4	1231.8	1186.2	1212.1	1195.7	1113.8	1160.1	1202.1	1183.9	1166.5	1152.0	1179.5	1164.9	1190.5	238U*	206Pb*
40.5	34.0	21.0	75.2	21.7	12.5	32.4	21.2	20.8	35.6	33.6	20.5	35.4	29.8	31.3	45.9	15.5	21.8	26.2	25.8	9.5	20.2	14.3	27.1	60.8	35.9	32.2	13.6	26.7	18.8	27.2	24.8	27.3	16.2	39.5	9.4	10.8	17.7	15.1	99.1	34.6	(Ma)	1+
1700.7	1558.9	1714.2	1576.9	1610.0	1477.0	1451.5	1466.9	1458.6	1470.4	1382.8	1437.2	1446.2	1322.9	1420.4	1424.0	1362.9	1389.6	1377.3	1339.3	1376.6	1340.5	1321.3	1277.4	1204.9	1216.8	1232.7	1230.3	1218.8	1188.2	1204.1	1191.0	1136.1	1165.3	1191.4	1178.1	1166.4	1155.3	1172.1	1158.0	1173.8	235U	207Pb*
22.7	21.8	14.2	46.1	16.1	14.7	23.7	15.5	16.8	24.2	25.7	21.5	27.9	19.6	33.9	28.9	13.1	18.1	27.8	17.8	8.8	16.2	10.9	21.7	42.4	58.2	24.2	13.4	26.3	13.7	21.9	25.3	26.6	21.2	34.8	14.4	9.1	20.2	16.7	74.4	55.4	(Ma)	1+
1704.9	1696.0	1695.1	1690.1	1628.0	1482.9	1478.9	1467.2	1463.1	1455.8	1454.9	1454.4	1448.5	1432.6	1417.8	1402.8	1385.8	1381.2	1378.6	1356.1	1350.2	1348.7	1328.9	1319.9	1310.4	1286.3	1240.2	1221.4	1195.9	1192.0	1189.8	1182.6	1179.1	1175.1	1172.1	1167.5	1166.2	1161.5	1158.4	1145.3	1143.1	207Pb*	206Pb*
7.8	15.3	18.8	21.0	23.6	30.9	33.1	22.4	28.0	30.0	37.0	43.6	44.9	8.0	70.7	23.9	23.0	31.5	58.2	20.4	17.1	26.9	16.6	34.7	31.1	146.1	34.8	28.5	56.0	17.6	37.3	55.4	55.9	52.6	67.7	37.0	16.4	47.7	38.7	107.5	145.1	(Ma)	1+
1704.9	1696.0	1695.1	1690.1	1628.0	1482.9	1478.9	1467.2	1463.1	1455.8	1454.9	1454.4	1448.5	1432.6	1417.8	1402.8	1385.8	1381.2	1378.6	1356.1	1350.2	1348.7	1328.9	1319.9	1310.4	1286.3	1240.2	1221.4	1195.9	1192.0	1189.8	1182.6	1179.1	1175.1	1172.1	1167.5	1166.2	1161.5	1158.4	1145.3	1143.1	(Ma)	Best age
7.8	15.3	18.8	21.0	23.6	30.9	33.1	22.4	28.0	30.0	37.0	43.6	44.9	8.0	70.7	23.9	23.0	31.5	58.2	20.4	17.1	26.9	16.6	34.7	31.1	146.1	34.8	28.5	56.0	17.6	37.3	55.4	55.9	52.6	67.7	37.0	16.4	47.7	38.7	107.5	145.1	(Ma)	1+
99.6	86.1	102.1	88.4	98.1	99.3	96.9	100.0	99.5	101.7	91.9	98.0	99.7	87.7	100.3	102.5	97.3	101.0	99.8	98.0	103.2	99.0	99.1	94.9	87.5	91.6	99.1	101.1	103.0	99.5	101.9	101.1	94.5	98.7	102.6	101.4	100.0	99.2	101.8	101.7	104.1	(%)	Conc

	SH	HS	ЯH	нs	SH	SH	HS	ې ۲	HS	HS	SH	нs	HS	HS	st	нs	SH	SH	ЯH	HS	SH	st	SH	HS	SH	SH	ЯH	Я	нs	ЯH	ş	ъ	SHS	HS	нs	HS	Я	SH	HS		
	324VE-Spot 89	324VE-Spot 80	324-VE-Spot 86	324VE-Spot 82	324VE-Spot 98	324VE-Spot 32	324VE-Spot 18	324VE-Spot 5	324VE-Spot 64	324VE-Spot 87	324VE-Spot 58	324VE-Spot 49	324VE-Spot 85	324VE-Spot 68	1324VE-Spot 4	324VE-Spot 34	324VE-Spot 81	324VE-Spot 76	324VE-Spot 47	324VE-Spot 44	324VE-Spot 94	324VE-Spot 6	324VE-Spot 92	324VE-Spot 43	324VE-Spot 60	324VE-Spot 90	324VE-Spot 17	324VE-Spot 78	324HO-Spot 33	324HO-Spot 70	324HO-Spot 5	324HO-Spot 52	24HO-Spot 100	324HO-Spot 42	324HO-Spot 16	324HO-Spot 12	324HO-Spot 29	324HO-Spot 72	324HO-Spot 19		Analysis
444	70	65	39	79	50	200	70	92	41	157	107	126	68	35	70	78	39	78	28	186	8	25	107	75	112	157	32	110	20	32	58	65	77	79	76	74	72	99	150	(ppm)	c
108019	60267	31842	41039	55268	60721	60625	91738	66943	30350	96214	74340	101437	35714	44792	59947	68914	36478	38910	20989	118822	44327	10930	77304	28115	94098	64040	26400	20546	29540	32238	77555	163012	85831	82097	78204	74187	139740	55316	23387	204Pb	206 P b
2.0	2.3	1.2	0.8	2.9	2.4	1.6	0.9	1.4	3.2	3.1	2.0	2.1	1.6	1.6	1.5	1.4	0.7	3.2	0.9	3.6	3.2	2.1	1.4	1.4	1.7	3.8	0.9	1.5	1.2	1.5	1.4	1.9	2.3	1.3	0.4	3.8	1.5	2.2	2.2		U/Th
12.7969	12.8355	12.8726	12.8789	12.9042	12.9450	12.9457	13.0288	13.0507	13.0560	13.0742	13.1302	13.1687	13.2134	13.2774	13.3526	13.4372	13.4398	13.4505	13.4670	13.4701	13.4800	13.4811	13.5541	13.5579	13.5789	13.6019	13.9692	13.9736	7.5360	8.0364	8.2434	8.2760	8.6254	8.6837	8.7047	9.1696	9.4614	9.4995	9.5141	207Pb*	206Pb*
1.2	2.4	2.1	3.9	2.8	3.3	0.8	1.8	2.6	2.9	1.0	2.5	1.4	2.1	5.6	2.5	2.3	4.8	1.8	6.7	0.7	1.3	9.9	1.9	2.6	2.0	2.3	5.7	1.9	1.8	2.1	1.0	1.2	1.0	0.8	0.9	1.4	1.3	1.5	0.8	(%)	+
2.1564	2.1520	2.0731	2.0578	2.0803	2.0761	2.1106	1.9980	1.9746	1.9046	2.0238	1.9559	1.9850	1.9790	1.8914	1.8978	1.8325	1.8787	1.8595	1.7778	1.7930	1.7798	1.7806	1.7690	1.7371	1.7492	1.8072	1.6392	1.4942	6.9183	6.4963	5.9551	5.5432	5.5588	5.3797	5.4448	4.8216	4.4404	4.4569	3.6869	235U*	207Pb*
1.3	2.5	2.3	4.6	3.0	3.5	1.1	2.4	3.3	5.9	5.4	2.7	1.6	2.3	5.8	3.8	2.6	4.9	1.9	7.3	1.1	1.4	10.3	2.0	3.3	2.2	2.4	5.9	7.1	3.1	2.9	2.2	4.1	3.4	3.0	1.3	2.4	1.9	1.9	7.3	(%)	H+
0.2001	0.2003	0.1935	0.1922	0.1947	0.1949	0.1982	0.1888	0.1869	0.1803	0.1919	0.1863	0.1896	0.1897	0.1821	0.1838	0.1786	0.1831	0.1814	0.1736	0.1752	0.1740	0.1741	0.1739	0.1708	0.1723	0.1783	0.1661	0.1514	0.3781	0.3786	0.3560	0.3327	0.3477	0.3388	0.3437	0.3207	0.3047	0.3071	0.2544	238U	206Pb*
0.5	0.9	0.9	2.4	1.0	1.0	0.6	1.7	2.0	5.2	5.3	1.0	0.7	0.9	1.4	2.8	1.3	1.1	0.4	2.7	0.8	0.6	2.6	0.8	2.0	1.0	0.9	1.8	6.9	2.6	2.1	2.0	3.9	3.2	2.9	0.9	2.0	1.4	1.2	7.2	(%)	1+
0.40	0.37	0.39	0.52	0.34	0.28	0.60	0.69	0.61	0.87	0.98	0.38	0.46	0.41	0.25	0.74	0.50	0.22	0.22	0.37	0.74	0.44	0.25	0.41	0.60	0.42	0.36	0.30	0.97	0.82	0.71	0.89	0.96	0.96	0.96	0.71	0.82	0.73	0.62	0.99	corr.	error
1176.1	1177.1	1140.5	1133.3	1146.8	1148.0	1165.5	1114.8	1104.6	1068.9	1131.7	1101.1	1119.1	1119.5	1078.7	1087.6	1059.3	1084.0	1074.6	1032.2	1040.5	1034.1	1034.6	1033.6	1016.6	1024.6	1057.6	990.5	909.0	2067.5	2069.9	1963.4	1851.5	1923.8	1881.0	1904.6	1792.9	1714.6	1726.2	1461.2	238U*	206Pb*
5.6	10.1	9.1	24.5	10.6	10.4	6.8	17.3	20.7	50.7	54.8	10.4	7.5	9.8	14.3	27.8	12.9	10.9	3.9	25.9	7.5	6.0	24.6	7.9	18.4	9.0	8.5	16.3	58.2	45.5	36.8	33.0	63.5	53.3	47.4	15.2	31.4	20.6	18.1	94.5	(Ma)	H
1167.1	1165.7	1139.9	1134.9	1142.3	1141.0	1152.3	1114.8	1106.9	1082.7	1123.5	1100.5	1110.4	1108.4	1078.1	1080.3	1057.2	1073.6	1066.8	1037.4	1042.9	1038.1	1038.4	1034.2	1022.4	1026.9	1048.1	985.4	928.0	2101.0	2045.4	1969.3	1907.3	1909.7	1881.6	1891.9	1788.7	1719.9	1723.0	1568.5	235U	207Pb*
8.9	17.6	15.4	31.2	20.3	23.9	7.3	16.6	22.5	39.5	36.6	18.0	10.8	15.7	38.6	25.0	17.2	32.4	12.2	47.3	6.9	9.2	66.8	13.3	21.1	14.5	15.9	37.5	43.3	27.8	25.8	19.1	35.4	28.8	25.8	11.1	20.5	15.6	16.0	58.2	(Ma)	I+
1150.5	1144.5	1138.8	1137.9	1133.9	1127.6	1127.5	1114.8	1111.4	1110.6	1107.8	1099.3	1093.5	1086.7	1077.0	1065.6	1052.9	1052.5	1050.9	1048.4	1048.0	1046.5	1046.3	1035.4	1034.8	1031.7	1028.3	974.2	973.5	2133.9	2020.7	1975.6	1968.5	1894.5	1882.4	1878.0	1783.7	1726.4	1719.0	1716.2	207Pb*	206Pb*
23.4	47.0	41.3	77.9	55.4	66.7	16.9	35.4	52.7	58.8	20.8	49.6	28.4	42.7	113.0	51.0	45.7	96.1	36.5	136.2	14.3	25.7	200.9	37.8	53.1	41.2	45.7	115.8	37.9	31.5	36.6	17.8	20.7	17.7	14.3	16.3	25.2	23.5	27.9	15.3	(Ma)	+
1150.5	1144.5	1138.8	1137.9	1133.9	1127.6	1127.5	1114.8	1111.4	1110.6	1107.8	1099.3	1093.5	1086.7	1077.0	1065.6	1052.9	1052.5	1050.9	1048.4	1048.0	1046.5	1046.3	1035.4	1034.8	1031.7	1028.3	974.2	973.5	2133.9	2020.7	1975.6	1968.5	1894.5	1882.4	1878.0	1783.7	1726.4	1719.0	1716.2	(Ma)	Best age
23.4	47.0	41.3	77.9	55.4	66.7	16.9	35.4	52.7	58.8	20.8	49.6	28.4	42.7	113.0	51.0	45.7	96.1	36.5	136.2	14.3	25.7	200.9	37.8	53.1	41.2	45.7	115.8	37.9	31.5	36.6	17.8	20.7	17.7	14.3	16.3	25.2	23.5	27.9	15.3	(Ma)	+
102.2	102.8	100.2	99.6	101.1	101.8	103.4	100.0	99.4	96.2	102.2	100.2	102.3	103.0	100.2	102.1	100.6	103.0	102.3	98.4	99.3	98.8	98.9	99.8	98.2	99.3	102.9	101.7	93.4	96.9	102.4	99.4	94.1	101.6	99.9	101.4	100.5	99.3	100.4	85.1	(%)	Conc

SH324VE-Spot 23	SH324VE-Spot 46	SH324VE-Spot 88	SH324VE-Spot 66	SH324VE-Spot 95	SH324VE-Spot 45	SH324VE-Spot 96	SH324VE-Spot 50	SH324VE-Spot 84	SH324VE-Spot 10	SH324VE-Spot 21	SH324VE-Spot 67	SH324VE-Spot 19	SH324VE-Spot 51	SH324VE-Spot 15	SH324VE-Spot 12	SH324VE-Spot 69	SH324VE-Spot 74	SH324VE-Spot 99	SH324VE-Spot 75	SH324VE-Spot 57	SH324VE-Spot 83	SH324VE-Spot 77	SH324VE-Spot 33	SH324VE-Spot 3	SH324VE-Spot 29	SH324VE-Spot 100	SH324VE-Spot 14	SH324VE-Spot 97	SH324VE-Spot 22	SH324VE-Spot 63	SH324VE-Spot 59	SH324VE-Spot 24	SH324VE-Spot 72	SH324VE-Spot 91	SH324VE-Spot 65	SH324VE-Spot 42	SH324VE-Spot 1	SH324VE-Spot 2	SH324VE-Spot 40	SH324VE-Spot 41		Analysis
46	44	144	132	124	105	79	8	91	32	33	74	65	137	63	78	147	135	104	26	67	20	98	98	87	161	64	67	23	121	86	70	170	26	114	64	38	67	318	207	51	(ppm)	c
72517	64694	178200	109438	109132	102240	116994	146012	94254	10715	30851	222913	44556	153590	57383	33388	98465	159790	135406	20408	54034	19592	93624	112129	86605	203444	101381	44800	25850	158097	67230	125251	70089	24316	72513	46225	30936	47161	15313	130358	43150	204Pb	206Pb
0.9	0.8	0.7	1.4	1.7	1.6	3.0	1.0	1.3	1.1	4.4	2.9	0.8	3.3	1.6	1.9	1.6	1.4	1.4	1.6	2.1	1.1	1.0	1.8	1.7	2.7	0.9	1.0	2.4	2.1	1.9	1.3	3.0	1.1	1.1	1.0	1.4	1.5	2.5	1.8	1.3		U/Th
9.2793	9.3196	9.4343	9.4674	9.4679	9.5096	9.5506	9.7533	9.8471	9.8754	10.8559	10.8926	10.9213	10.9341	10.9619	10.9907	10.9955	11.0134	11.0483	11.1129	11.1817	11.2430	11.2547	11.3141	11.3440	11.4828	11.5572	11.7147	11.9473	12.1820	12.2028	12.2213	12.2910	12.3630	12.4239	12.5893	12.6068	12.7082	12.7204	12.7616	12.7946	207Pb*	206Pb*
1.4	2.2	0.5	1.1	0.5	0.7	0.8	0.9	0.9	3.1	2.8	1.7	1.7	0.8	2.1	0.9	0.8	1.0	0.9	4.6	2.0	5.4	0.9	1.1	1.4	0.8	2.1	1.6	5.5	1.4	1.3	2.5	0.5	7.7	1.3	2.3	3.0	2.5	1.4	0.7	1.6	(%)	1+
4.5845	4.7518	4.4721	4.5296	4.4859	4.4872	4.3656	4.2212	4.1444	3.7770	3.0911	2.8255	3.2072	3.2169	3.0677	3.3144	2.6343	3.1732	3.1861	2.9946	3.1317	3.0761	3.0052	2.9805	2.8804	2.8761	2.8530	2.7147	2.6409	2.3687	2.4575	2.3394	2.3949	2.2884	2.3547	2.2556	2.1092	2.2118	2.0602	2.1184	2.1670	235U*	207Pb*
1.8	2.5	1.0	1.3	0.7	1.3	1.5	1.1	1.0	3.6	3.0	1.9	2.3	0.9	4.3	5.9	3.0	1.2	1.1	5.1	2.1	5.5	1.4	1.4	1.6	1.1	2.4	1.9	5.6	2.1	1.5	3.7	8.0	6.2	1.5	2.5	3.4	4.4	7.2	0.8	2.4	(%)	+
0.3085	0.3212	0.3060	0.3110	0.3080	0.3095	0.3024	0.2986	0.2960	0.2705	0.2434	0.2232	0.2540	0.2551	0.2439	0.2642	0.2101	0.2535	0.2553	0.2414	0.2540	0.2508	0.2453	0.2446	0.2370	0.2395	0.2391	0.2307	0.2288	0.2093	0.2175	0.2074	0.2135	0.2052	0.2122	0.2059	0.1929	0.2039	0.1901	0.1961	0.2011	238U	206Pb*
1.1	1.2	0.9	0.7	0.5	1.1	1.2	0.7	0.5	1.8	0.9	0.8	1.6	0.5	3.8	5.8	2.8	0.6	0.7	2.2	0.6	1.1	1.0	0.8	0.7	0.8	1.1	1.2	1.1	1.6	0.8	2.8	0.7	1.7	0.9	1.0	1.7	3.6	7.1	0.4	1.7	(%)	+
0.61	0.48	0.88	0.54	0.75	0.83	0.84	0.62	0.52	0.51	0.31	0.44	0.69	0.57	0.87	0.99	0.96	0.50	0.63	0.43	0.30	0.21	0.76	0.58	0.47	0.71	0.48	0.59	0.19	0.74	0.53	0.75	0.83	0.22	0.58	0.38	0.49	0.83	0.98	0.55	0.73	corr.	error
1733.5	1795.5	1721.0	1745.7	1731.0	1738.1	1703.2	1684.3	1671.4	1543.4	1404.2	1298.9	1459.3	1464.8	1406.9	1511.3	1229.2	1456.3	1465.7	1393.8	1458.9	1442.7	1414.2	1410.4	1371.0	1384.2	1382.2	1337.9	1328.4	1225.0	1268.6	1214.7	1247.4	1203.2	1240.4	1207.2	1136.8	1196.0	1121.7	1154.2	1181.2	238U*	206Pb*
16.5	18.6	13.2	10.3	8.3	16.3	18.7	9.9	8.1	25.1	11.8	10.0	21.2	7.1	47.7	77.9	31.8	7.8	9.2	27.3	8.1	14.7	13.3	10.1	9.2	10.1	14.0	13.9	13.0	17.5	9.5	30.9	7.6	19.2	10.0	10.6	17.2	39.3	73.1	4.6	18.6	(Ma)	1+
1746.4	1776.4	1725.8	1736.4	1728.4	1728.6	1705.9	1678.1	1663.1	1587.9	1430.5	1362.3	1458.9	1461.2	1424.7	1484.4	1310.3	1450.7	1453.8	1406.3	1440.5	1426.7	1408.9	1402.7	1376.8	1375.7	1369.6	1332.5	1312.1	1233.2	1259.6	1224.3	1241.1	1208.7	1229.0	1198.5	1151.8	1184.8	1135.7	1154.8	1170.5	235U	207Pb*
14.8	20.7	8.2	10.4	6.1	10.7	12.3	8.9	8.5	28.8	23.0	14.4	18.1	7.3	33.1	45.7	21.9	9.1	8.7	38.7	16.0	42.5	10.5	10.5	12.0	8.6	17.8	14.4	41.1	15.1	11.1	26.6	5.8	56.0	10.9	17.8	23.4	30.5	49.5	5.4	16.4	(Ma)	1+
1762.0	1754.0	1731.6	1725.2	1725.1	1717.1	1709.1	1670.4	1652.7	1647.3	1469.8	1463.3	1458.3	1456.1	1451.3	1446.3	1445.5	1442.4	1436.3	1425.2	1413.4	1402.9	1400.9	1390.9	1385.8	1362.4	1349.9	1323.8	1285.6	1247.6	1244.3	1241.3	1230.2	1218.7	1209.0	1183.0	1180.2	1164.3	1162.4	1156.0	1150.9	207Pb*	206Pb*
25.6	39.7	8.5	19.4	8.9	13.3	14.9	15.8	16.5	57.3	54.0	32.9	32.1	14.7	39.9	17.4	16.1	19.5	16.7	87.8	37.9	104.0	17.3	21.6	27.1	15.6	40.1	30.3	106.6	27.8	25.6	48.6	8.9	152.0	24.6	46.2	58.6	48.7	27.1	12.9	32.1	(Ma)	1+
1762.0	1754.0	1731.6	1725.2	1725.1	1717.1	1709.1	1670.4	1652.7	1647.3	1469.8	1463.3	1458.3	1456.1	1451.3	1446.3	1445.5	1442.4	1436.3	1425.2	1413.4	1402.9	1400.9	1390.9	1385.8	1362.4	1349.9	1323.8	1285.6	1247.6	1244.3	1241.3	1230.2	1218.7	1209.0	1183.0	1180.2	1164.3	1162.4	1156.0	1150.9	(Ma)	Best age
25.6	39.7	8.5	19.4	8.9	13.3	14.9	15.8	16.5	57.3	54.0	32.9	32.1	14.7	39.9	17.4	16.1	19.5	16.7	87.8	37.9	104.0	17.3	21.6	27.1	15.6	40.1	30.3	106.6	27.8	25.6	48.6	8.9	152.0	24.6	46.2	58.6	48.7	27.1	12.9	32.1	(Ma)	1+
98.4	102.4	99.4	101.2	100.3	101.2	99.7	100.8	101.1	93.7	95.5	88.8	100.1	100.6	96.9	104.5	85.0	101.0	102.0	97.8	103.2	102.8	100.9	101.4	98.9	101.6	102.4	101.1	103.3	98.2	102.0	97.9	101.4	98.7	102.6	102.0	96.3	102.7	96.5	99.8	102.6	(%)	Conc

_		_				_			_		
SH324VE-Spot 39	SH324VE-Spot 38	SH324VE-Spot 20	SH324VE-Spot 93	SH324VE-Spot 77	SH324VE-Spot 26	SH324VE-Spot 11	SH324VE-Spot 55	SH324VE-Spot 7			Analysis
59	75	214	56	114	112	59	131	85		(ppm)	c
66954	209239	130626	72058	319995	189934	109283	135489	114523		204Pb	206Pb
1.3	1.2	2.3	1.3	0.8	4.0	1.0	3.5	2.5			U/Th
5.1266	5.1316	8.6218	8.7038	8.8146	8.8726	8.8818	9.0776	9.0881		207Pb*	206Pb*
0.5	0.4	0.4	1.1	0.6	0.7	1.1	0.5	0.8		(%)	H
14.7609	14.7613	5.3971	5.2622	5.0725	5.2389	5.3511	4.7713	4.9539		235U*	207Pb*
1.1	0.6	1.5	1.4	0.8	1.0	2.3	1.0	1.6		(%)	H
0.5488	0.5494	0.3375	0.3322	0.3243	0.3371	0.3447	0.3141	0.3265		238U	206Pb*
1.0	0.5	1.4	0.8	0.5	0.7	2.1	0.9	1.5		(%)	I+
0.90	0.77	0.97	0.57	0.64	0.72	0.89	0.85	0.89		corr.	error
2820.3	2822.6	1874.6	1848.9	1810.6	1872.8	1909.2	1761.0	1821.5		238U*	206Pb*
23.2	10.5	22.8	12.6	7.6	11.6	34.3	13.1	23.1		(Ma)	I+
2800.0	2800.0	1884.4	1862.8	1831.5	1859.0	1877.1	1779.9	1811.5		235U	207Pb*
10.8	5.6	12.4	11.7	6.4	8.5	20.0	8.4	13.9		(Ma)	I+
2785.3	2783.7	1895.2	1878.2	1855.4	1843.5	1841.6	1802.1	1799.9		207Pb*	206Pb*
8.2	6.1	6.5	20.4	10.5	12.5	19.2	9.7	13.8		(M a)	H
2785.3	2783.7	1895.2	1878.2	1855.4	1843.5	1841.6	1802.1	1799.9		(Ma)	Best age
8.2	6.1	6.5	20.4	10.5	12.5	19.2	9.7	13.8		(Ma)	+
101.3	101.4	98.9	98.4	97.6	101.6	103.7	97.7	101.2		(%)	Conc

Uncertaintie	es include both rando	m and sys	stematic er	ror repor	ted at 2 o.	Samples on z	ircon wit	h poor age da	ita omitte	ed.
Sample	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%) Volts Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	± (2σ)	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf ^{/177} Hf (T)	E-Hf (0)	E-Hf (0) ± (2σ)	E-Hf (T)	Age (Ma)
13S-CP-3-24	33.4	5.7	0.282076	0.000030	0.001885	0.282038	-25.1	1.1	-2.5	1068
13S-CP-3-36	9.6	6.6	0.282120	0.000041	0.000596	0.282108	-23.5	1.5	0.9	1110
13S-CP-3-59	15.5	6.4	0.282152	0.000040	0.000958	0.282132	-22.4	1.4	1.4	1093
13S-QTV-1-21	9.1	5.0	0.282078	0.000044	0.000539	0.282067	-25.0	1.6	-1.4	1071
13S-QTV-1-17	14.7	4.4	0.282085	0.000038	0.000790	0.282069	-24.8	1.3	-1.2	1075
13S-QTV-1-68	16.3	4.5	0.282087	0.000044	0.000877	0.282069	-24.7	1.5	-0.9	1092
13S-QTV-1-65	14.8	4.9	0.282094	0.000045	0.000801	0.282077	-24.4	1.6	0.1	1122
13S-QTV-1-36	12.7	4.6	0.282145	0.000038	0.000706	0.282130	-22.6	1.3	1.6	1107
13S-QTV-2-2	38.8	5.4	0.282065	0.000054	0.002044	0.282021	-25.5	1.9	-1.6	1135
13S-QTV-2-18	14.2	5.0	0.282073	0.000044	0.000789	0.282057	-25.2	1.6	-1.5	1082
13S-QTV-2-67	29.9	5.3	0.282078	0.000046	0.001596	0.282044	-25.0	1.6	-1.5	1101
13S-QTV-2-55	21.4	4.7	0.282097	0.000041	0.001209	0.282071	-24.3	1.5	-0.4	1108
13S-QTV-2-25	17.1	4.3	0.282110	0.000062	0.000988	0.282090	-23.9	2.2	-0.6	1070
13S-QTV-2-94	21.7	4.5	0.282111	0.000039	0.001177	0.282087	-23.8	1.4	-0.4	1086
13S-QTV-2-44	20.5	4.4	0.282112	0.000066	0.001109	0.282088	-23.8	2.3	0.4	1116
13S-QTV-2-79	23.1	4.4	0.282122	0.000057	0.001214	0.282097	-23.4	2.0	0.0	1084
13S-QTV-2-62	11.7	4.7	0.282125	0.000042	0.000640	0.282111	-23.4	1.5	0.9	1102
13S-QTV-2-63	14.7	4.9	0.282141	0.000041	0.000866	0.282123	-22.8	1.4	1.4	1109
13S-QTV-2-13	29.0	5.2	0.282142	0.000045	0.001556	0.282110	-22.7	1.6	0.4	1083
13S-QTV-2-77	10.6	4.5	0.282151	0.000067	0.000586	0.282139	-22.4	2.4	<u>1</u> .5	1088

Table A-3. LA-HR-MC-ICP-MS Hf isotopic data for Grenville-age zircon recovered from intrusive units in Sonora, Mexico.

Sample	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%)	Volts Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	± (2σ)	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf ^{/177} Hf (T)	E-Hf (0)	E-Hf (0) ± (2σ)	E-Hf (T)	Age (Ma)
13S-QTV-2-34	19.5	4.9	0.282166	0.000042	0.001069	0.282144	-21.9	1.5	1.5	1081
13S-QTV-2-28	21.6	4.6	0.282169	0.000059	0.001216	0.282144	-21.8	2.1	2.0	1101
13S-QTV-2-78	13.3	4.0	0.282186	0.000041	0.000739	0.282170	-21.2	1.4	2.9	1097
13S-QTV-2-58	13.0	4.4	0.282189	0.000050	0.000751	0.282174	-21.1	1.8	3.0	1100
13S-QTV-3-91	25.7	5.3	0.282075	0.000047	0.001361	0.282046	-25.1	1.6	-0.8	1128
13S-QTV-3-89	19.7	4.6	0.282081	0.000055	0.001064	0.282060	-24.9	1.9	-1.4	1083
13S-QTV-3-25	46.9	4.5	0.282088	0.000060	0.002544	0.282036	-24.7	2.1	-2.5	1070
13S-QTV-3-12	32.7	4.7	0.282088	0.000065	0.001746	0.282052	-24.6	2.3	-1.3	1097
13S-QTV-3-9	27.7	5.4	0.282091	0.000051	0.001444	0.282061	-24.6	1.8	-1.2	1087
13S-QTV-3-96	16.6	4.3	0.282091	0.000059	0.000938	0.282071	-24.5	2.1	0.0	1128
13S-QTV-3-30	30.7	5.0	0.282095	0.000046	0.001607	0.282062	-24.4	1.6	-1.5	1073
13S-QTV-3-43	30.3	4.9	0.282103	0.000059	0.001641	0.282070	-24.1	2.1	-1.1	1082
13S-QTV-3-20	33.3	4.8	0.282109	0.000049	0.001737	0.282072	-23.9	1.7	0.2	1135
13S-QTV-3-32	14.0	4.4	0.282111	0.000053	0.000774	0.282095	-23.8	1.9	0.3	1100
13S-QTV-3-38	11.5	4.5	0.282127	0.000054	0.000647	0.282114	-23.3	1.9	0.8	1095
13S-QTV-3-31	15.9	4.1	0.282128	0.000052	0.000878	0.282110	-23.2	1.8	0.5	1085
13S-QTV-3-33	10.1	5.3	0.282145	0.000048	0.000600	0.282133	-22.6	1.7	1.1	1078
13S-QTV-3-22	26.7	4.7	0.282128	0.000053	0.001492	0.282097	-23.2	1.9	0.2	1094
750 ann 011110	a. Sambres used in		and anary	303 110111		TOTAL MIC T.		50 mm50.		
-----------------	--	----------	--------------------------------------	------------	--------------------------------------	--	----------	-----------------	----------	----------
Sample	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%)	Volts Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	± (2σ)	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf ^{/177} Hf (T)	E-Hf (0)	E-Hf (0) ± (2σ)	E-Hf (T)	Age (Ma)
14CO-CORE-1-3	13.7	4.0	0.282177	0.000062	0.000725	0.282162	-21.5	2.2	2.4	1088
14CO-CORE-1-9	17.1	3.7	0.282151	0.000050	0.001002	0.282126	-22.4	1.8	6.3	1317
14CO-CORE-1-50	21.5	4.6	0.282309	0.000039	0.001374	0.282280	-16.8	1.4	6.8	1098
14CO-CORE-1-61	12.2	5.4	0.282315	0.000047	0.000767	0.282300	-16.6	1.7	6.8	1068
14CO-CORE-2-20	19.5	4.9	0.282088	0.000077	0.001108	0.282060	-24.7	2.7	4.1	1323
14CO-CORE-2-104	24.1	3.9	0.282250	0.000055	0.001287	0.282223	-18.9	1.9	5.0	1109
14CO-T-3-23	11.6	4.7	0.282140	0.000043	0.000661	0.282127	-22.8	1.5	1.1	1086
14CO-T-3-18	9.8	4.2	0.282115	0.000054	0.000561	0.282104	-23.7	1.9	-0.2	1067
14CO-T-3-58	23.3	4.2	0.282075	0.000047	0.001259	0.282049	-25.1	1.7	-2.0	1071
14CO-T-3-44	40.7	3.2	0.282237	0.000060	0.002100	0.282193	-19.4	2.1	3.7	1096
14CO-T-3-26	10.6	3.2	0.282183	0.000049	0.000613	0.282170	-21.3	1.7	3.5	1127
14CO-T-3-31	15.5	4.3	0.282063	0.000057	0.000887	0.282042	-25.5	2.0	3.0	1302
14CO-T-3-66	18.0	3.9	0.282166	0.000062	0.001034	0.282143	-21.9	2.2	4.0	1191
14CO-BS-3-5	30.4	3.9	0.282269	0.000057	0.001627	0.282233	-18.2	2.0	6.8	1171
14CO-BS-3-9	13.2	4.5	0.282084	0.000046	0.000764	0.282068	-24.8	1.6	-0.4	1113
14CO-BS-3-23	10.8	4.6	0.282001	0.000045	0.000599	0.281988	-27.7	1.6	-1.2	1205
14CO-BS-3-32	70.5	3.7	0.282173	0.000063	0.003582	0.282099	-21.7	2.2	0.2	1090
14CO-BS-3-40	17.4	3.3	0.282255	0.000053	0.000998	0.282233	-18.7	1.9	6.2	1144
14CO-BS-3-42	9.4	4.9	0.282263	0.000041	0.000517	0.282251	-18.5	1.5	7.2	1162

etrital zircon recovered i tic error reported at 2σ. s outside the 1.0-1.3 Ga	from siliclastic rocks from t Samples on zircon with poc age range.	data omitted. Samples listed in red are valid analyses from zircons outside the 1.0-1.3 Ga age range.	tral United States. Uncertainties include both random and systematic error reported at 2σ. Samples on zircon with poor	ole A-4. LA-HR-MC-ICP-MS Hf isotopic data for Grenville-age detrital zircon recovered from siliclastic rocks from the
MC-ICP-MS Hf isotopic data for Grenville-age des. Uncertainties include both random and systema mples listed in red are valid analyses from zircon	MC-ICP-MS Hf isotopic data for Grenville-age detrital zircon recovered is. Uncertainties include both random and systematic error reported at 20. mples listed in red are valid analyses from zircons outside the 1.0-1.3 Ga	data omitted. Sa	tral United States	ole A-4. LA-HR-
lata for Grenville-age de th random and systema id analyses from zircon	lata for Grenville-age detrital zircon recovered i th random and systematic error reported at 2σ. id analyses from zircons outside the 1.0-1.3 Ga	mples listed in red are val	s. Uncertainties include bo	MC-ICP-MS Hf isotopic d
$\alpha \leftrightarrow \alpha$	trital zircon recovered i ic error reported at 2o. outside the 1.0-1.3 Ga	lid analyses from zircons	oth random and systemat	data for Grenville-age de

SH324BD-15	SH324BD-16	SH324BD-19	SH324BD-22	14MO-LMT-17	14MO-LMT-57	14MO-LMT-4	14MO-LMT-61	14MO-LMT-92	14MO-LMT-40	14MO-LMT-47	14MO-LMT-38	14MO-LMT-51	14MO-LMT-49	14MO-LMT-20	14MO-LMT-98	14MO-LMT-53	14MO-LMT-9	14MO-LMT-14	14MO-LMT-79	14MO-LMT-77	14MO-LMT-75	14CO-BS-3-109	14CO-BS-3-97	14CO-BS-3-89	14CO-BS-3-76	14CO-BS-3-71	14CO-BS-3-68	14CO-BS-3-52	14CO-BS-3-51	Sample
10.0	15.6	20.7	13.3	12.1	29.5	9.8	18.2	10.9	36.6	18.6	18.5	26.7	21.3	12.9	38.9	17.0	37.7	30.0	16.2	9.5	11.3	11.8	12.5	19.0	19.7	15.2	11.8	12.1	19.3	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%)
4.1	4.7	4.4	4.7	4.8	4.5	3.7	5.1	4.4	4.9	4.8	4.6	4.2	4.5	5.0	5.2	3.9	4.5	4.3	4.5	4.4	4.7	4.6	3.6	4.0	3.2	4.3	4.1	3.8	3.6	Volts Hf
0.282287	0.281886	0.282131	0.281582	0.282100	0.282011	0.282152	0.282118	0.282133	0.282098	0.282107	0.282152	0.282105	0.282219	0.282070	0.282074	0.282160	0.282097	0.282081	0.282031	0.282165	0.282088	0.282055	0.282038	0.282355	0.282150	0.282151	0.282143	0.282136	0.282227	¹⁷⁶ Hf/ ¹⁷⁷ Hf
0.000048	0.000048	0.000062	0.000053	0.000055	0.000054	0.000053	0.000051	0.000058	0.000052	0.000057	0.000044	0.000068	0.000067	0.000054	0.000050	0.000061	0.000062	0.000048	0.000052	0.000064	0.000057	0.000039	0.000054	0.000057	0.000058	0.000057	0.000058	0.000048	0.000060	± (2σ)
0.000551	0.000901	0.001227	0.000752	0.000685	0.001615	0.000566	0.001008	0.000611	0.001997	0.001095	0.001134	0.001462	0.001394	0.000708	0.002119	0.001054	0.002038	0.001663	0.000890	0.000531	0.000637	0.000670	0.000718	0.000943	0.001102	0.000767	0.000659	0.000679	0.001002	¹⁷⁶ Lu/ ¹⁷⁷ Hf
0.282277	0.281868	0.282101	0.281565	0.282085	0.281978	0.282140	0.282097	0.282121	0.282057	0.282085	0.282128	0.282075	0.282189	0.282056	0.282030	0.282136	0.282056	0.282047	0.282013	0.282154	0.282075	0.282041	0.282024	0.282336	0.282126	0.282134	0.282129	0.282121	0.282205	¹⁷⁶ Hf ^{/177} Hf (T)
-17.6	-31.8	-23.1	-42.5	-24.2	-27.4	-22.4	-23.6	-23.0	-24.3	-24.0	-22.4	-24.0	-20.0	-25.3	-25.1	-22.1	-24.3	-24.9	-26.7	-21.9	-24.6	-25.8	-26.4	-15.2	-22.5	-22.4	-22.7	-22.9	-19.7	E-Hf (0)
1.7	1.7	2.2	1.9	2.0	1.9	1.9	1.8	2.1	1.8	2.0	1.6	2.4	2.4	1.9	1.8	2.2	2.2	1.7	1.8	2.3	2.0	1.4	1.9	2.0	2.0	2.0	2.0	1.7	2.1	E-Hf (0) ± (2σ)
4.1	-7.6	4.8	-15.5	0.0	-4.2	1.5	0.4	1.4	-1.3	-0.8	1.4	-1.0	4.4	-0.9	-2.4	3.6	-1.5	-1.9	-2.9	2.2	-0.3	-1.3	-2.4	8.3	2.6	3.1	1.7	2.9	5.6	E-Hf (T)
984	1110	1289	1233	1105	1086	1086	1103	1111	1093	1072	1098	1075	1137	1111	1086	1183	1083	1079	1088	1096	1109	1113	1095	1081	1154	1163	1113	1175	1166	Age (Ma)

SH324HO-53	SH324HO-87	SH324HO-79	SH324HO-9	SH324HO-6	SH324HO-3	SH324HO-4	SH324BD-99	SH324BD-92	SH324BD-101	SH324BD-109	SH324BD-108	SH324BD-74	SH324BD-84	SH324BD-85	SH324BD-81	SH324BD-59	SH324BD-51	SH324BD-46	SH324BD-45	SH324BD-44	SH324BD-41	SH324BD-40	SH324BD-38	SH324BD-25	SH324BD-34	SH324BD-33	SH324BD-06	SH324BD-12	SH324BD-13	Sample
22.1	21.4	19.3	32.0	12.6	23.5	13.7	12.1	22.5	11.2	21.9	9.5	10.4	10.4	9.8	20.2	12.8	14.7	17.2	12.7	8.4	22.4	14.7	8.4	8.5	18.6	19.7	22.7	21.6	17.7	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%)
4.4	2.5	3.9	2.0	3.3	3.2	3.9	4.4	4.3	4.8	2.2	4.4	3.7	4.7	4.7	4.1	4.5	4.1	2.7	4.1	4.5	3.9	4.6	5.0	3.4	4.7	3.9	3.7	3.8	4.1	Volts Hf
0.282199	0.282290	0.282190	0.282179	0.282367	0.282230	0.282284	0.282284	0.282293	0.282210	0.282329	0.282179	0.282260	0.282329	0.282206	0.282143	0.281895	0.282151	0.282277	0.282043	0.282123	0.282226	0.282193	0.282316	0.281911	0.282220	0.282322	0.282016	0.282188	0.282063	¹⁷⁶ Hf/ ¹⁷⁷ Hf
0.000058	0.000076	0.000057	0.000106	0.000072	0.000071	0.000061	0.000059	0.000054	0.000046	0.000081	0.000047	0.000046	0.000045	0.000049	0.000052	0.000051	0.000056	0.000085	0.000058	0.000047	0.000045	0.000042	0.000050	0.000064	0.000059	0.000053	0.000051	0.000064	0.000053	± (2σ)
0.001233	0.001339	0.001295	0.001912	0.000920	0.001284	0.000925	0.000680	0.001195	0.000642	0.001251	0.000523	0.000563	0.000609	0.000596	0.001149	0.000728	0.000877	0.001226	0.000799	0.000509	0.001184	0.000887	0.000480	0.000509	0.001105	0.001061	0.001196	0.001184	0.000991	¹⁷⁶ Lu/ ¹⁷⁷ Hf
0.282172	0.282262	0.282158	0.282137	0.282351	0.282199	0.282266	0.282271	0.282269	0.282197	0.282303	0.282168	0.282248	0.282317	0.282192	0.282116	0.281881	0.282130	0.282249	0.282026	0.282111	0.282201	0.282174	0.282306	0.281899	0.282198	0.282303	0.281991	0.282162	0.282043	¹⁷⁶ Hf ^{/177} Hf (T)
-20.7	-17.5	-21.0	-21.4	-14.8	-19.6	-17.7	-17.7	-17.4	-20.3	-16.1	-21.4	-18.6	-16.1	-20.5	-22.7	-31.5	-22.4	-18.0	-26.2	-23.4	-19.8	-20.9	-16.6	-30.9	-20.0	-16.4	-27.2	-21.1	-25.5	E-Hf (0)
2.1	2.7	2.0	3.8	2.6	2.5	2.2	2.1	1.9	1.6	2.9	1.7	1.6	1.6	1.7	1.9	1.8	2.0	3.0	2.0	1.7	1.6	1.5	1.8	2.2	2.1	1.9	1.8	2.3	1.9	E-Hf (0) ± (2σ)
4.6	6.6	7.5	3.1	6.5	8.2	5.0	5.2	5.6	3.0	7.7	3.2	6.6	7.2	7.8	4.3	-8.1	4.6	8.1	-1.1	4.7	4.3	5.1	8.4	-3.4	2.7	4.9	-3.1	4.2	-2.3	E-Hf (T)
1172	1117	1320	1158	974	1286	1042	1044	1062	1063	1102	1117	1141	1059	1280	1246	1068	1237	1205	1149	1271	1112	1189	1128	1246	1049	981	1115	1170	1068	Age (Ma)

SH324VE-51	SH324VE-34	SH324VE-40	SH324VE-32	SH324VE-18	SH324VE-17	SH324VE-6	SH324VE-4	SH324VE-41	SH324VE-1	SH324HO-60	SH324HO-35	SH324HO-34	SH324HO-30	SH324HO-26	SH324HO-39	SH324HO-41	SH324HO-84	SH324HO-44B	SH324HO-43	SH324HO-74	SH324HO-58	SH324HO-46	SH324HO-50	SH324HO-24	SH324HO-17B	SH324HO-18	SH324HO-90	SH324HO-73	SH324HO-71	Sample
10.7	18.2	20.4	54.2	16.9	14.4	8.9	20.0	11.9	15.6	11.4	21.5	40.8	16.7	5.7	26.9	21.5	5.3	12.5	19.9	8.3	8.3	14.8	21.7	9.4	11.6	16.4	4.9	22.4	25.9	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%
4.2	3.9	4.5	3.5	4.6	4.8	4.7	4.0	3.3 .3	3.6	4.0	4.6	2.8	4.5	5.1	3.8	4.1	5.7	3.8	4.6	4.6	3.5	3.5	3.6	4.2	3.9	4.0	4.7	3.8	3.1) Volts Hf
0.282061	0.282341	0.282215	0.282227	0.282283	0.282399	0.282377	0.282356	0.282162	0.282326	0.282221	0.282256	0.282239	0.282291	0.282219	0.282338	0.282245	0.282159	0.282090	0.282243	0.282130	0.282140	0.282155	0.282293	0.282089	0.282314	0.282154	0.282182	0.282357	0.282266	¹⁷⁶ Hf/ ¹⁷⁷ Hf
0.000059	0.000070	0.000059	0.000061	0.000056	0.000061	0.000069	0.000058	0.000059	0.000086	0.000049	0.000039	0.000066	0.000049	0.000060	0.000048	0.000056	0.000047	0.000042	0.000049	0.000041	0.000050	0.000061	0.000053	0.000046	0.000048	0.000065	0.000042	0.000047	0.000081	± (2ơ)
0.000612	0.001069	0.001042	0.002786	0.000992	0.000785	0.000549	0.001301	0.000701	0.000996	0.000643	0.001247	0.001985	0.000994	0.000347	0.001390	0.001358	0.000357	0.000685	0.001260	0.000472	0.000464	0.000947	0.001199	0.000701	0.000662	0.001155	0.000361	0.001680	0.001619	¹⁷⁶ Lu/ ¹⁷⁷ Hf
0.282044	0.282320	0.282192	0.282168	0.282263	0.282385	0.282366	0.282330	0.282147	0.282304	0.282206	0.282230	0.282198	0.282270	0.282211	0.282309	0.282218	0.282151	0.282077	0.282216	0.282120	0.282131	0.282138	0.282268	0.282075	0.282302	0.282131	0.282175	0.282325	0.282234	¹⁷⁶ Hf ^{/177} Hf (T)
-25.6	-15.7	-20.2	-19.7	-17.7	-13.6	-14.4	-15.2	-22.0	-16.2	-20.0	-18.7	-19.3	-17.5	-20.0	-15.8	-19.1	-22.1	-24.6	-19.2	-23.1	-22.8	-22.3	-17.4	-24.6	-16.7	-22.3	-21.3	-15.1	-18.3	E-Hf (0)
2.1	2.5	2.1	2.2	2.0	2.2	2.4	2.1	2.1	3.0	1.7	1.4	2.3	1.7	2.1	1.7	2.0	1.7	1.5	1.7	1.4	1.8	2.2	1.9	1.6	1.7	2.3	1.5	1.7	2.9	E-Hf (0) ± (2σ)
6.6	7.2	5.0	3.5	6.5	7.7	8.7	7.8	3.2	9.1	7.4	4.7	4.0	6.5	5.9	8.2	3.8	3.2	-1.6	5.1	3.2	-0.4	-1.3	6.2	-1.8	4.5	0.6	2.6	6.7	4.0	E-Hf (T)
1456	1053	1156	1128	1115	974	1046	1066	1151	1164	1240	1087	1103	1099	1168	1114	1065	1143	1046	1123	1192	1016	962	1091	1040	962	1059	1078	1026	1050	Age (Ma)

SH324VE-92	SH324VE-85	SH324VE-94	SH324VE-98	SH324VE-97	SH324VE-90	SH324VE-89	SH324VE-86	SH324VE-83	SH324VE-80	SH324VE-82	SH324VE-81	SH324VE-76	SH324VE-68	SH324VE-65	SH324VE-63	SH324VE-58	SH324VE-24	SH324VE-59	SH324VE-47	SH324VE-44	Sample
18.3	9.8	19.1	9.8	15.5	12.0	9.4	13.1	17.9	14.3	9.3	21.6	10.6	15.4	26.4	12.0	13.7	18.9	28.9	8.9	14.7	(¹⁷⁶ Yb + ¹⁷⁶ Lu) / ¹⁷⁶ Hf (%)
4.7	4.5	4.1	4.0	3.2	4.8	4.5	4.2	2.0	3.8	2.1	2.6	4.4	4.3	2.1	4.0	4.2	4.9	3.2	4.5	4.2	Volts Hf
0.281984	0.282368	0.282349	0.282271	0.282203	0.282306	0.282146	0.282121	0.282372	0.282303	0.282358	0.282299	0.282322	0.282299	0.282185	0.282129	0.282307	0.281990	0.282192	0.282304	0.282293	¹⁷⁶ Hf/ ¹⁷⁷ Hf
0.000048	0.000062	0.000069	0.000067	0.000055	0.000057	0.000068	0.000051	0.000091	0.000076	0.000103	0.000091	0.000073	0.000060	0.000127	0.000062	0.000063	0.000045	0.000088	0.000049	0.000060	± (2σ)
0.001399	0.000559	0.001230	0.000562	0.000869	0.000651	0.000542	0.000820	0.001270	0.000784	0.000678	0.001495	0.000714	0.000886	0.001676	0.000712	0.000864	0.001056	0.001854	0.000544	0.000992	¹⁷⁶ Lu/ ¹⁷⁷ Hf
0.281956	0.282356	0.282324	0.282259	0.282182	0.282293	0.282134	0.282103	0.282338	0.282286	0.282344	0.282269	0.282308	0.282281	0.282148	0.282112	0.282289	0.281965	0.282148	0.282293	0.282273	¹⁷⁶ Hf ^{/177} Hf (T)
-28.3	-14.8	-15.4	-18.2	-20.6	-16.9	-22.6	-23.5	-14.6	-17.0	-15.1	-17.2	-16.4	-17.2	-21.2	-23.2	-16.9	-28.1	-21.0	-17.0	-17.4	E-Hf (0)
1.7	2.2	2.5	2.4	1.9	2.0	2.4	1.8	3.2	2.7	3.6	3.2	2.6	2.1	4.5	2.2	2.2	1.6	3.1	1.7	2.1	E-Hf (0) ± (2σ)
-6.1	9.2	7.2	6.7	7.6	5.7	2.7	1.4	15.8	7.9	9.8	5.3	6.7	6.3	4.0	4.2	7.1	-1.4	5.4	6.1	5.4	E-Hf (T)
1035	1087	1047	1128	1286	1028	1145	1138	1403	1139	1134	1053	1051	1077	1183	1244	1099	1230	1241	1048	1048	Age (Ma)

Appendix B: Core Logs

Here are the detailed core logs of Denver-Julesburg Basin Sandstones provided by Nighthawk Energy, LLC. Core logs have been converted to digital images from hand written assessment of cores. Sample location depths are included. Sedimentary analysis of lithology, grain size, bioturbation, and presence of glauconite was used to make interpretations on the depositional environment. Lithofacies 1 and 2, described in the main text, are marked here (D. Budd, personal communication. Below is the explanation for all core logs. Glc = Glauconite, BT = Bioturbation.

Figure B-1. Schematic core logs for the Big Sky Core from Lincoln County, Colorado. Numbers indicate sample label (14CO-BS-X) and core location.

