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Abstract

The performance evaluation of programming language implementations often involves selecting and
measuring a set of test programs with which to perform the evaluation. The process by which these
test programs are selected is often very ad hoc, and in many cases the set of programs selected may
directly affect the results of the evaluation. In this paper, we investigate intrinsic characteristics of some
widely used program collections, including SPEC92 and SPEC95. We compare these measurements with
measurements of a much larger collection of 117 programs that we have collected. Our results show that’
some important program characteristics, such as median procedure indegree and outdegree, vary widely
with the program collection, and show a tendency to increase as the size of programs increases. We also
study the effect of program collection size on the variability of the metrics, finding that randomly selected
small collections are likely to exhibit characteristics significantly different from the larger collection as a
whole.






1 Introduction

In the field of programming language implementation, many perfdrmance results are verified experimentally.
The process .often involves choosing a set of test programs, implementing a performance optimization, and
measuring the impact of the optimization on the performance of the test programs. Typically, in such
experiments the number aqd size of the programs in the test suite is limited by the computing and personnel
resources available to the researcher. Ever since this method has been employed, researchers (including
ourselves) using it have acknowledged that the small numbers of programs used in such studies (typically
between 4 and 10 programs) does not constitute a statistically significant sample size. Usually, justifications
of the size and content of the test suite rely on suggesting that the programs chosen are interesting in and
of themselves, beyond any statistical implications.

The purpose of this paper is to look more carefully at large collections of programs to better understand
the statistical significance of results generated from much smaller collections. Based on our large sample
of programs, we further seek to understand whether the program characteristics we measure correlate with
other aspects of the program (such as size or application domain). Finally, we compare program metrics
from industry standard program test suites with those of our much larger program collection.

To understand the motivation for this study, one must first understand why the composition of the
test suite is relevant to the results of implementation experiments. To éupport this point, we describe
three current and important areas of programming language implementation research in which the results

of experiments rely heavily on the intrinsic characteristics of the test programs measured.

e Implementations of interprocedural pointer alias analysis can be classified as either context-sensitive
or context-insensitive algorithms (e.g., see [24]). The context insensitive algorithms account for the
fact that procedures can be called from multiple points while the context insensitive algorithms do not.
The effectiveness of context insensitive algorithms relative to context sensitive depends heavily on the
indegree of procedures in the program’s static call-graph. As we show later, the value of this metric
varies widely with the suite of test programs chosen. Recently, Ruf pointed out that context-insensitive
analysis may perform very well, especially given the characteristics of the benchmark programs used
in his analysis [14]. Another optimization significantly affected by the indegree distribution is inlining,
where high indegrees can lead to code explosion if selective inlining is not performed.

e The implementation of such diverse techniques as software fault isolation [20], data breakpointing [21],
incremental garbage collection [4], and software distributed shared memory (15, 16] all require instru-
menting a program’s loads and stores. The measured overhead of all of these techniques depends
heavily on the dynamic percentage of load and store operations executed by the programs in the test
suite.

e Implementation techniques such as instruction scheduling [10] and optimizations to increase instruc-
tion level parallelism rely heavily on the size and content of program basic blocks, which may vary
significantly depending on the test programs used.

Given that differences in test suite can significantly affect the outcome of implementation experiments,

it is still the case that the selection of such suites is largely done on an ad hoc basis and further, to



our knowledge, no studies have been performed to elucidate this process for future experiments. ‘Current

experimental approaches include the following:

e Use industry standard benchmark suites. In the field of programming language implementation re-
search, this translates specifically to using the SPEC benchmark suites [19]. These suites include
integer (i.e., C) programs, as well as Fortran programs. The number of programs of each type varies,
but for the C programs has been 8 in the SPEC92 and SPEC95 suites. These suites have been used
extensively, and measured carefully as well. The relatively small size of the programs in the suites
(especially the 1992 suite) has also raised questions about their appropriateness for cache architecture
studies, for which they are also used. '

o Create your own and/or use someone elses ad hoc suite. This is common practice, especially in the case
where the application domain does not sufficiently intersect that of the SPEC benchmark programs.
Examples of this approach include some of our own previous research, in which we collected a set
of allocation intensive programs [6], the Olden [13] and SPLASH [2] benchmark suites (intended for

_investigating software and hardware to support parallel programming), and the Safe-C suite [3].

Recent trends have shown an increase in the number and size of programs measured. Recent architecture
research papers investigating branch prediction implementations provide performance evaluation based on
two different benchmark suites [8, 17]. Experimentalb work by Bart Miller involves testing over 80 Unix
utility programs [11]. Recent experimental work of our own involved measuring performance in 43 programs,
including several benchmark suites [5]. ,

Given that the use of program test suites for performance evaluation is widespread, and the methods of
choosing such suites is ad hoc, our goal is to better understand the characteristics of large program suites.

Some of the questions we are interested in investigating are:

e It is generally believed that “bigger” programs make for better benchmark suites, based on the as-
sumption that most important programs (e.g., database servers, word processors, operating system
kernels) are quite large. One goal of this paper is to investigate whether large programs are intrinsicly
different in structure than small programs.

e How large does a benchmark suite have to be before we have confidence that results based on that
sample are representative of a larger collection of programs as a whole? If we assume that the available
suites of 8 programs are drawn randomly from a much larger sample, how much impact does the size
of the sample have on the variance of program properties we observe?

e How representative of larger collections of programs are the existing industry standard benchmark

suites? ’

We have collected a group of 117 C programs and measured a number of intrinsic static properties of
the programs, including indegree and outdegree of procedures, the number of basic blocks per procedure,
and the number of executable lines per procedure. The programs were collected from a number of diverse
sources, and represent a wide variety of application domains. The programs range from very small to large
(approximately 100,000 executable lines of code). In this study, we determine intrinsic metrics for the group
as a whole and compared these with the metrics for various subgroups including the SPEC92 and SPEC95

integer benchmarks.



Our results show that certain metrics, such as the median procedure indegree vary widely between
programs, and have a tendency to increase as program size increases. On the other hand, the number of
instructions per basic block measured appears to remain relatively constant as a function of program size.
We also investigate the effect of test suite sample size on the variance of the program metrics measured.
We conclude that a sample size of approximately 30 programs is far more likely to result in consistent
experimental results than the 8-10 programs that are now frequently used.

This paper has the following organization. In Section 2 we discuss related work, and the SPEC benchmark
suites in particular. In Section 3 we describe our evaluation methods, including the programs collected and
the metrics measured. Sectibn 4 presents our results and Section 5 concludes and suggests directions for

future work.

2 Background

Much of work related to this research has focused on the appropriateness of the various SPEC benchmark
suites (e.g., see [19] for the latest release). The SPEC benchmark suites have proven very effective in
standardizing the set of measurements used to describe CPU performance for integer and floating point
benchmarks on new systems. They have also been adopted widely by the research community in computer
architecture and programming languages because the benchmark sources are available to universities for a
minimal charge.

One of the main goals of the SPEC effort has been to benchmark the CPU performance of entire systems,
including the hardware and whatever compiler optimizations the vendor compiler provides. As a result, it is
necessary that the benchmark sources be made entirely available, that the benchmarks do not rely heavily
on vendor-specific library code and/or operating system code, and that the programs ’themselves be highly
portable. As a result, the benchmarks are typically versions of publicly-available software that have been
modified to reduce their dependence on system libraries and make them more portable.

Because it is so widely used, the various instantiations of the SPEC benchmark suite have been carefully
scrutinized. Recently, several researchers have specifically questioned the actual value of the benchmarks
themselves [7], as well as the representativeness of SPEC performance results with réspect to standard
compiler optimization settings [12].

The SPEC benchmarks are selected to cover a diverse collection of application areas with the intention of
allowing users of the performance results to look specifically at the result of the program in the application
area in which they are interested. As far as we are aware, the programs chosen in the SPEC suites have never

been intended to serve as a representative sample of a larger collection of programs. The goal of our work is



to attempt to better characterize program structure based on large collections of programs and understand
how current benchmarks relate to the structure we observe.

Other benchmark efforts have attempted to characterize a body of programs with statistical measures, and
to construct a synthetic benchmark based on such characterization. In particular the Dhrystone benchmark
was constructed after the author conducted a survey of the published literature on source language feature
usage in systems programs [23]. While our effort does focus on surveying source-language level features in
a large group vof programs, our intention is not to construct a synthetic benchmark. Furthermore, the size
of the collection we consider is significantly larger, both in terms of numbers of programs and in terms of
program size, than the collections considered in the Dhrystone effort. For a survey of benchmarking efforts
related to the Dhrystone, see [22].

Measures of program source code have been used widely in the field of software engineering for some
time (e.g., see [9]). These measures are used to estimate project costs, evaluate productivity, predict staffing
requirements, and to evaluate software quality. In these cases the metrics are used as tools for prediction or
evaluation to somehow improve the production of software. In our case, while we measure similar charac-
teristics of programs, we are doing so in an effort to understand properties of large groups of programs as a

whole, and to make inferences about the process of performance evaluation based on what we observe.

3 Evaluation Mefhods

In this section, we discuss the programs we measured, the metrics we measured, and the tools we used to

measure them.

3.1 The Programs

For this study we focused on collecting programs that would be representative of those in common use today.
We collected 117 programs with two goals in mind. We wanted to collect various sized programs and we
wanted to collect programs from varied application domains. Table 1 provides a listing of the programs
grouped by where we the program came from. The programs vary in size from the smallest, “hello world”
(hello) with three lines, to Xdec, the X server, which is 91091 lines of executable code. For a variety
of application domains we chose to look at compilers, interpreters, program develdpment tools, program
language development tools, games, numerical programs, text processing tools, and window system tools.
We feel these choices have provided us with a broad spectrum of programs that is a good reflection of
programs from many application domains that are generally in high use at this time.

We have included the C programs from both the SPEC92 and SPEC95 benchmark sets. Three of the
programs in the SPEC92 set (gcc, li and compress) are included in both SPEC92 and SPEC95. We wanted



| “SOURCE ; . PROGRAMS

SPECINT92 backprop?, compressf, ear, eqntott, espresso, gcc(version 1.35)7, lif, sct
SPECINT95 compress*, gce(version 2.5.3)*, go, ijpeg, li*, m88ksim, perl, vortex
XC(X11R6) appres, atobm, bdftopcf, bitmap, bmtoa, editres, fsinfo, fslsfonts, fstobdf, iceauth, Indir,

mkfontdir, oclock, resize, sessreg, smproxy, twm, xllperf, xauth, xclipboard, xclock,
xcmsdb, xconsole, xcutsel, xdm, xdpyinfo, xfd, xfs, xhost, xieperf, xinit, xkill, xlogo,
xlsatoms, xlsclients, xlsfonts, xmag, xmh, xmodmap, xprop, xrdb, xrefresh, xset, xsetroot,
xsm, xsmclient, xstdcmap, xterm, xwd, xwininfo, xwud, Xdec

Safe C [3] anagram, backprop*, bc*, ft, ks, yacr2
GNU bash, bct, bison, flex, gawk, geef, gnuchess, gnugo, gnuplot, gzip, indent, od, sed, sort,
tesh, wdiff

AF Vers. 3, Release 1 | Aaxp, Aj300, Ajv, Alofi, Amsb, aecho, aevents, ahost, alsatoms, apass, aphone, aplay,
aprop, arecord, aset, awgn

MISC burg, cfrac, chameleon, gzip, hello, iburg, imake, indent, magic, makedepend, mrtest,
: python, scm2, siod, sis, telsh, txl, yacr

Table 1: Programs Used Grouped by Source. Several programs in the collection were obtainable from more than
one of our sources. The instrumented program was taken from the group where the program appears marked with a
*, Those not included are marked with a .

to include measures for both benchmarks sets so have measured both sets of programs and reported the
results in Section 4. For other groupings we did not want to include two versions of the same program so we
chose to use those from the SPEC95 set.

Our study heavily relied on the use of ATOM, a tool that runs only on DEC Alpha machines. For this
reason, we were restricted to finding programs that we could build on the DEC Alphas. The programs were
compiled with the cc compiler, shared libraries and with the -g3 debugging flag set.

We have also classified the programs according to their application domain. These groups are listed in
Table 2. This table includes the application domain, the number of programs in the group, the mean number
of lines of executable code for each grouping and the list of programs. Many programs are used in multiple
groups. For instance, gce(version 2.5.3) appears in No Xclients, SPEC95, Program Development Tools, and
in the Biggest groups. The X clients comprise a large percentage of the collection (44%). These programs
tend to be utility programs that perform simple tasks such as xkill, that kills a window, or xbiff, that checks
for new mail. The X client programs tend to have little interconnection but make heavy use of the X11
libraries. These programs are in heavy use in most Unix environments, therefore they help meet our goal
of building a program set that reflects programs in common use. We have taken the significance of their

proportion of our population into consideration when analyzing our results.
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APPLICATION MEAN PROGRAMS
DOMAIN LINES/PROG

AN(117) 4893 See next two groups

Xclients(51) 1469 appres, atobm, bdftopcf, bitmap, bmtoa, editres, fsinfo, fslsfonts, fs-
tobdf, iceauth, Indir, mkfontdir, oclock, resize, sessreg, smproxy, twm,
x11perf, xauth, xclipboard, xclock, xcmsdb, xconsole, xcutsel, xdm, xd-
pyinfo, xfd, xfs, xhost, xieperf, xinit, xkill, xlogo, xlsatoms, xlsclients,
xlsfonts, xmag, xmh, xmodmap, xprop, xrdb, xrefresh, xset, xsetroot,
xsm, xsmclient, xstdemap, xterm, xwd, xwininfo, xwud

No Xclients(66) 7539 aecho, aevents, ahost, alsatoms, anagram, apass, aphone, aplay, aprop,
arecord, aset, awgn, Aaxp, Aj300, Ajv, Alofi, Amsb, backprop, bash, be,
bison, burg, chameleon, cfrac, compress, ear, eqntott, espresso, flex, ft,
gawk, gce, gnuchess, gnugo, gnuplot, go, gzip, hello, iburg, ijpeg, imake,
indent, ks, li, m88ksim, magic, makedepend, mrtest, od, perl, python,
sc¢, scm2, sed, siod, sis, sort, tclsh, tesh, txl, vortex, wdiff, xlogo, Xdec,
yacr, yacr2

SPEC92(8) 5130 backprop, compress, ear, eqntott, espresso, gec, li, sc

SPEC95(8) 14440 compress, gee, go, ijpeg, 1, m88ksim, perl, vortex

Audio(11) 1308 aecho, aevents, ahost, alsatoms, apass, aphone, aplay, aprop, arecord,
aset, awgn

CAD(6) 19906 chameleon, espresso, magic, sis, yacr, yacr2

Numerical(3) 519 backprop, ear, ft

Interpreter(11) 8435 bash, bc, gawk, li, perl, python, scm2, sed, siod, tclsh, tesh

Prog. Lang. Develop- 3037 bison, burg, flex, iburg, txl

ment Tool(5)

Program Development 14423 gee, imake, indent, makedepend

Tool(4)

Games(4) 3732 anagram, gnuchess, gnugo, go

Text Utils(3) 870 od, sort, wdiff

Misc(18) 9941 Aaxp, Aj300, Ajv, Alofi, Amsb, Xdec, cfrac, compress, eqntott, gnuplot,
gzip, hello, ijpeg, ks, m88ksim, mrtest, sc, vortex

Biggest(10) 35333 bash, gce, gnuplot, magic, python, sis, tesh, vortex, xfs, Xdec

Smallest(10) 87 appres, atobm, backprop, bmtoa, hello, Indir, showrgb, xcutsel, xI-

. satoms, xlsclients i
Smallest(No 291 anagram, backprop, compress, ft, hello, iburg, imake, ks, makedepend,
Xelients)(10) wdiff

Table 2: Programs Used Grouped by Application Domain. All data for SPEC92 was collected independent of the
overall collection of 117 programs. The SPEC2 versions of backprop, compress, gcc and li were instrumented and
used to calculate the means for this subgroup but not included in the All group.



3.2 Data Collection

We instrumented the programs usihg ATOM, a tool developed by Digital Equipment Corporation [18].
ATOM proi/ides‘ a flexible means by which to create program analysis tools based on instrumentation of
executable code. ATOM allows a program executable to be analyzed and instrumented by providing an
API that allows procedures, basic blocks, and instructions in the executable to be navigatéd. While ATOM
provides for instrumenting and measuring the dynamic beha{rior, in this study we used it solely to measure
properties of the sta;cic executable. ‘

We did not include system libraries (e.g., libc.a, libm.a, 1ibX11.a, etc) in our statistics as we felt these
measurements would skew the results. We did not want to include library routines that are used by many of
the programs since including them with each program would tend to suppress the individual characteristics
of the programs under study. On the other hand, if the application included a set of routines compiled into
a library (e:g., tclsh uses libtcl.a), then we included these libraries as part of the application program. We
did not optimize the code as our purpose is to collect measurements that more closely reflect characteristics
of the program source.

For the study we have measured the instructions per block, blocks per procedure, indegree per procedure,
outdegree per procedure, lines of executable code per procedure and executable lines of code per program.
We chose the first five metrics as being representative of metrics that are of interest in performance analysis
research. The executable lines of code measure is important to this work as a means of grouping the
programs. The items we measure are mostly compiler and architecture independent since, for the most part,
they reflect the source code structure of the program. Therefore, our results may be considered representative
of programs being compiled on different systems in different ways.

The lines of code (LOC) measurement was achieved by checking the source line number associated with
each instruction. Each line number was recorded exactly once for all instructions associated with that
source line. Our LOC measurements reflect the lines of code that will actually be executed. Also, we do
not include the system library code, as discussed above, nor do we include generated code such as yyparse
that is generated by the parser generator, Yacc. We feel that including the generated code would be useful
for performance analysis but would not reflect the code written by the programmer. Our dependence on
ATOM, which relies on information from the symbol table for line count information, made the inclusion of
line counts from this generated code very difficult. We have chosen to leave these generated lines of code out
of our program size measurements. However, the other five metrics do include instrumentation of this code.

We note that our LOC counts are often significantly lower than those reported in other papers. We feel
that our counts closely represent the actual user written code. LOC is a metric that is widely used in the
research community. The determination of what constitutes a line of code is very difficult. The figures can

vdry greatly, as is shown in Table 3. We feel that-this decision should be made with great care, precision
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PROGRAM LINES OF CODE EXECUTABLE/
EXECUTABLE | GROSS GROSS

bash 17240 37349 .46
burg 2448 5675 .43
cfrac 1090 4213 - .26
compress’ 359 1934 18
ear*® 1084 5239 21
eqntott® 1139 3139 .36
espresso’™ 5936 14838 .40
flex 3045 14516 ' 21
gee 54424 205085 27
go 9680 29246 .33
gzip 2130 8206 .26
iburg 632 799 .79
ijpeg 7861 31211 .25
indent- 2068 6492 .32
li 2765 7597 .36
m88ksim 6053 19915 .30
magic 45798 219770 21
perl 12063 26871 45
python 15870 80657 .20
sc 3168 8515 .37
twm 5994 19096 31
vortex 22315 67202 .33
xclipboard 298 1037 .29
xclock 308 1267 .24
yacr 2961 9367 32

Table 3: Comparison of Program Size Measures. The Gross lines of code was found by using wc on the .c and
.h source files. We compared our gross lines of code counts with those published by SPEC for the three SPEC92
programs which have been included (marked with *). The counts are very comparable.



and with the goals of the project in mind. For this study, we are concerned with relative size of programs
as well as the accurate representation of the executable lines written by the programmer. We feel that
the measurements achieved through the use of ATOM and our algorithm provide an accurate reflection, if
somewhat conservative, of the size of this code. ’

The indegree and outdegree of a procedure are metrics that affect program optimizations (e.g., inlining and
- alias analysis as mentioned). The outdegree of each procedure was measured by recording each subroutine call
instruction. The outdegree does include calls to system library routines. The indegree for each proceduré
was found by looking at the number of times each procedure was a target of a subroutine call. Those
subroutines that were never a target were omitted from the data collection. These procedures can be the
result of including a library that contains unused functions or they may be the target of an indirect function
call. This determination in not possible without performing a dynamic measurement.

We also consider the number of instructions in each basic block and the number of blocks contained in each
procedure to be important particularly to the language implementation community. For each procedure we
recorded the number of blocks in the procedure and the size of each of those blocks in terms of instructions
per block. A basic block of code is considered to be the set of instructions in which, if any one of the
instructions is executed, all others in the set will also be executed. These statistics are directly obtained by

the use of ATOM procedures.

3.3 Discussion

For each program we computed a histogram of the counts for each of the metrics of interest. From these
histograms we were able to find the median number of occurrences of each metric within the program. We
computed the average of the medians for each group identified in Table 2. Due to the large percentage of
programs obtained from the X release, we have split some application domain groups based on inclusion and
exclusion of the X client programs. For example, the Smallest group would be overly represented by the X
clients so we also measured the smallest not including these programs.

There are limitations in any attempt to view the source of a program through ATOM instrumentation.
Since ATOM instruments the executable all changes made to the code during preprocessing are seen as part
of the source. This affects our study in two ways. Preprocessing deletes any lines not applicable to the
variant being compiled. That is, if the programrﬁer wrote the program with a debugging and non-debugging -
variant in mind, and used ifdefs to do this, ATOM would see only the code for the variant that we built.
For our study, this means that we are sometimes missing céde that was written by the programmer, such
as when they have had to provide different code for different compilers or different architectures, which did
not contribute to our particular executable. This is appropriate for our measures since this code is basically

duplicated code by the programmer and is not of concern in the area of performance analysis. Secondly,
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APPLICATION AVERAGE OF MEDIANS
DOMAIN | IN DEGREE | OUT DEGREE [ LINES/PROC
All(117) 1.556 3.060 10.983
Xclients(51) 1.471 3.725 10.255
No Xclients(65) 1.621 2.545 11.546.
Specd2(8) 2.000 2500 11.000
Spec05(8) 2.000 2.750 13.750
Audio(11) 1.273 2.273 10.636
CAD(6) 1.500 3.000 12.833
Numerical(3) 1.000 1.333 8.667
Interpreter(11) 2.273 2.909 10.636
PL Dev Tool(5) 1.600 3.400 11.000
Prog Dev Tool(4) 2.000 3.250 11.750
Games(4) . 1.500 2.250 17.250
Text Util(3) 2.000 2.667 11.667
Misc(18) 1.500 2.222 11.722
Biggest(10) 2.100 3.300 11.900
Smallest(10) 1.300 3.600 9.500
Smallest noxc(10) 1.100 2.100 10.000

Table 4: Procedure Level Metrics.

generated code, that such as yyparse which is generated by Yacc is included. While this code is of interest for
the purpose of performance analysis, we did not want to include the lines in our program size measurement
so the LOC counts of this code were not included in the program size but we include these measures in all

other metrics.

4 Results

In this section, we present our measurements of the test prografns. In an effort to better understand
the structural characteristics of certain classes of programs, we have grouped the programs by application
domain. Unfortunately, in the sample .of programs we have collected, some of these application domains
are underrepresented (e.g., there are only three numerical programs). As a result any observations we make
based on these small subgroups lack statistical significance. We écknowledge this weakness, but still point
out interesting trends that we observe. If our conclusions are controversial, we invite other rescarchers to

challenge our results with more thorough investigations.

4.1 Procedure Level Metrics

Table 4 summarizes the means of the medians for three procedure-level metrics across the collections of

programs studied. Specifically, we measured the median value for each program in the collection, and

10



present the mean of the medians sampled over all the programs in each collection. The metrics considered
are the median procedure indegree, median oufdegree, and median lines of code (discussed in Section 3)

per procedure. We discuss in turn how the average of these medians differs across the program collections

studied.

4.1.1 Procedure Indegree

As mentioned, the indegree of procedures may significantly influence the effectiveness of optimizations such
as interprocedural ahalysis and procedure 'inlining. The average median indegree ranges from a low of 1.0 to
a high of 2.3 across the collections studied, with the average for the overall collection being 1.56. Note that
because we eliminate all procedures with indegree zero, the lowest average indegree possible is 1.0, which
corresponds to a collection in which every program had greater than 50% of all procedures with only one
caller. ,

The distribution of proceduré indegrees éorresponds directly to the amount of procedure-level reuse
occuring in a program. The table suggests that a trend exists going from the colle‘cAtion of smallest programs
to the collection of largest programs, in which the averagé median indegree (and correspondingly procedure
reuse) increases substantially (from 1.3 to 2.1) as programs get bigger. The value of 2.1 for the 10 largest
programs indicates that, on average, more than half of all the procedures in these programs have more than
one caller. Such a trend suggests that context insensitive interprocedural analysis may become increasingly
less effective as programs become larger. '

Comparing the collection of biggest programs with the overall average suggests that, in general, mahy
classes of programs do not have as much reuse as the largest programs. In particular both the SPEC92 and
SPEC95 collections approximate the structure of the large programs more closely than the overall average
of the entire collection. Another interesting result is that the programs classified as Interpreters, which in
general are substantially smaller that the largest programs, have the largest mean indegree, with value 2.3.
‘Irying to establish if there is a common structure in these programs that accounts for such a high overall

indegree is a subject of future work.

4.1.2 Procedure Outdegree

The procedure outdegree corresponds to how many call sites occur in each procedure. Table 4 indicates that
the average median outdegree of the overall program collection was approximately 3.1, while some classes of
programs deviated from the overall average quite dramatically. First, it is clear that the X client programs,
with mean outdegree of 3.7, deviate substantially from the other programs in the collection. This behavior
can be explained, in part, by the low-level nature of the X library interfaces, and the significant number

of procedure calls necessary to accomplish even very simple tasks. Many of these clients are very simple
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programs that glue together different pieces of code in the X libraries. If the X clients are excluded from the
overall collection, the average drops from 3.1 to 2.5. "

1f the X clients are eliminated from the collection of smallest programs, we see that there is again a trend
from the smallest non-X client programs to the largest programs in §vhich the mean outdegree increases
significantly, from 2.1 to 3.3. This trend suggests an increasing reliance on procedural abstraction in the
larger programs, and with it the increased possibility for code reuse, which we have dlready seen in the
previous section.

In both SPEC92 and SPECQE), the collections have means comparable to the overall average excluding
X clients, (2.5 and 2.75 versus 2.5), but their mean is significantly lower than the mean outdegree of the
largest programs. Also, many of the other program collections (e.g., Interpreters, CAD tools, etc) have mean

outdegrees higher than the SPEC95 collection.

4.1.3 Lines per Procedure

The average median number of LOC per procedure is approximately 11, which means that if we suppose
that comments and declarations expand that number by a factor of four, more than 50% of procedbures will
fit on one 60-line page. ‘

The LOC per procedure metric also shows a trend when looking from the collection of the smallest
programs (at 9.5 LOC/proc) to the largest (at 11.9 LOC/proc). While this metric remained relatively steady
across many of the different collections, the SPEC95 collection showed substantially larger procedures than

the other collections.

4.2 Instruction Level- Metrics

Table 5 summarizes the means of the medians of two instruction-level metrics in the program collections
studied. The two metrics measured are median blocks per procedure and median instructions per block. We
discuss the instructions per block first. The table shows that the mean median instructions per block does
not vary dramatically among the different collections measured, with the median value being 4 instructions
in all but 30 of the 117 programs. Also, the value of this metric does not appear to be sensitive to the
size of programs in the program collection, as we have seen in the other metrics investigated. Although
the difference is slight, the X clients appear to contain slightly larger basic blocks than non-X clients (4.3
instructions versus 4.1) and the Interpreters appear to contain slightly smaller basic blocks than the overall
collection (3.8 instructions versus 4.15). These differences are so slight, however, that they can be accounted
for simply by a couple of programs in the collection having a median basic block size of 3 instead of 4.

The median blocks per procedure metric provides another view of the procedure size in the program

collections measured. The results provided using this metric correlated closely with the previous results
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APPLICATION AVERAGE OF MEDIANS

DOMAIN BLKS/PROC JINST/BLOCK
ATI(117) 13.179 1.154
Xclients(51) 12.686 4.274
No Xclients(66) 13.560 4.061
Speco2(8) 12.625 "4.250
Specs(8) 16.000 1125
Audio(11) 11.818 3.636
CAD(6) 16.333 1167
Numerical(3) 8.000 4.667
Interpreter(11) 13.454 3.818
PL Dev Tool(5) 12.400 4.400
Prog Dev Tool(4) 17.000 4.000
Games(4) 19.250 4.500
Text Util(3)- 15.333 4.000
Misc(18) 13.111 4.167
Biggest(10) 14.800 1.100
Smallest(10) 12.300 4.100
Smallest noxc(10) 10.900 4.000

Table 5: Instruction-Level Metrics.

using LOC as a measure of procedure size. As before, we see that the larger programs have more blocks per

procedure than the smaller ones.

4.3 How Program Collection Size Affects Metrics

In order to gain some insight into the number of programs required to achieve a good sample of realistic
program structure, we considered random program collections of different sizes drawn from our 117 program
sample. We considered sample sizes ranging from 6 programs to 110 programs, and we céllected statistics
over 1000 different randomly selected groups from each sample size. From these runs we calculated the mean
and standard deviation of these means for each sample size.

Table 6 shows the means and standard deviations of median indegree, median outdegree, and median
LOC per procedure for raﬁdomly sampled groups of different sizes as described above. The intention of this
table is to illustrate how much variance occurs when a random sample of a particular size is chosen. Likewise,
Table 7 presents similar results for the blocks per procedure and instructions per procedure metrics. As the
central limit theorem predicts, drawing from a larger random sample reduces the variance of the metrics in
all cases. ' ‘

To get a better feel for how the variance changes as the sample size increases, we have plotted the standard
deviation as a percentage of the mean for the different metrics and group sizes in Figure 1. The figure shows

. that while all variances are decreased as the sample size increases, some metrics are more influenced by
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GROUP IN DEGREE OUT DEGREE | LINES/PROC
(PROGS SET SIZE) | MEAN | o MEAN | o MEAN ] o
6 1.558 | 0.244 | 3.050 0.600 | 10.965 | 1.260
8 1.559 | 0.210 | 3.047 0.523 | 10.962 | 1.110
10 1.558 | 0.188 | 3.050 0.466 | 10.971 | 0.951
20 1.563 | 0.125 | 3.066 0.321 | 10.980 | 0.651
30 1.558 | 0.097 | 3.067 0.252 | 10.996 | 0.514
40 1.558 | 0.080 | 3.064 0.205 | 10.989 | 0.427
50 1.556 | 0.066 | 3.058 0.167 | 10.989 | 0.343
60 1.555 | 0.055 | 3.059 0.137 | 10.984 | 0.286
70 1.555 | 0.047 | 3.058 0.116 | 10.984 | 0.242
80 1.555 | 0.038 | 3.058 0.095 | 10.978 | 0.199
90 1.555 | 0.030 | 3.056 0.079 | 10.977 | 0.162
100 1.556 | 0.023 3.057 0.061 | 10.984 | 0.119
110 1.556 | 0.014 3.059 0.037 | 10.984 | 0.071

Table 6: Procedure Level Metrics. The mean values for the programs grouped by numbers of programs reflects
the mean of the means of the medians from 1000 randomly chosen sample sets.

GROUP | BLKS/PROC | INST/BLOCK
(PROG SET SIZE) | MEAN ] o MEAN [ o

6 13.147 | 1.551 4.152 | 0.233

8 113158 | 1.315 | 4.149 0.199

10 13.159 | 1.144 4.149 | 0.174

20 13.134 | 0.766 4.153 0.116
30 13.167 | 0.594 4.153, | 0.088
40 13.169 | 0.488 4.154 | 0.071
50 13.170 | 0.409 | 4.154 | 0.061
60 13.176 | 0.350 | 4.154 0.051
70 13.178 | 0.291 4.154 0.043

80 13.174 | 0.237 | 4.153 | 0.035

90 13.171 | 0.193 4.154 | 0.028
100 13.180 | 0.142 4.154 | 0.021
.110 13.181 | 0.086 4.154 | 0.013

Table 7: Instruction-Level Metrics. The mean values for the programs grouped by numbers of programs reflects
the mean of the means of the medians from 1000 randomly chosen sample sets.
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Figure 1: Effect of Group Size on Variance

sample size than others. In particular, for collections with a small number of programs (e.g, 6-10 programs,
as are currently used in practice), the standard deviation of metrics such as indegree and outdegree can
_ represent as much as 12-20% of the mean. Often in current practice, performance improvements of small
percentages are reported based on program collections with fewer than 10 programs in them. Given our
results, if reported performance improvements are related to the indegrees and outdegrees of the programs
in the collection, then statistical variance alone may account for the observed improvements in performance.
Alternatively, program metrics that are consistent across all the programs in the collection, such as basic
bloék size, show a standard deviation less then 5% of the mean even with small collection sizes.

Another way to understand the effect of sample size on the metrics measured is to plot the probability
density of a particular sample average as a function of s;ample size. Figure 2 shows the probability densities
of the mean of the median indegree for a program collection as a function of the collection size. Essentially,
this figure illustrates the central limit theorem graphically, but more specifically, it provides insight into the
range of values one might expect to see from program collections containing only a few programs. As the
figure shows, with a group size of six, the density function is very shallow, and a large fraction of the area
under the curve falls quite far from the overall average. Any particular random collection of 6 programs will
have av.mean of the median indegree that corresponds to the distribution shown, and many such samples
will have a mean that differs significantly from the mean of the group as a whole. On the other hand, with
a group size of 30, far more sample means fall quite close to the overall mean, and beyond 30 programs the

distribution of the means is very consistent.
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Figure 2: Probability Density as a Function of Program Group Size

5 Summary

Many performance evaluation results are based on measurements of small collections of programs. Previous
work has suggested that the program collection chosen can significantly affect the outcome of the evalua-~
tion [14]. We were interested in knowing how intrinsic program characteristics such as median procedure
in and outdegree vary over the programs in a collection. We were further interested in knowing how the
average of these characteristics varies with the size and content of the program collection chosen. ‘

We have shown that the mean over a collection of the median procedure indegree, outdegreé, and pro-
cedure size appear to increase as the size of the programs in the collection increases, in some cases quite
substantially. Among other things, this result suggests that context sensitive pointer alias analysis will be
increasing important when it is applied to larger programs. We have also shown that if collections of six or
eight programs are randomly drawn from a larger collection, the statistical variance of the metrics measured
may be significant enough to affect the result of a performance evalution.

We view this work as the starting point to a more careful evaluation of the methods currently used in
experimental computer science. Our goal is to work toward characterizing the size and contents of program
collections in an effort to make published performance evaluation results more relevant. In the future, we
plan to add more programs to our collection, and correspondingly make the size of the subcollections (e.g.,
the Numerical programs) more substantial. We also pian to perform additional static measurements, and

to include dynamic behavior measurements in our results as well. While in this paper, we only consider the
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effect of collection contents on program metrics, in the future we would like to study the effect of collection

contents on the outcome of performance evaluation experiments.
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