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Abstract

DiBiase, Julie (Ph.D., Computer Science)

Building Curricula to Shape Cognitive Models: A Case Study of Higher Order
Procedures

Thesis directed by Assistant Professor Michael Eisenberg

In computer science, functional programming is traditionally taught in an axiomatic
style that discourages the use of visual intuition. This paper, in contrast, describes a
formula for designing curricula based on multi-modal imagery building. The work
presents a series of case studies in which imaging theory is applied to the purely

abstract concept of functional data objects.

These investigations have provided insight into the historically troubling pedagogical
puzzles presented by the abstract nature of mathematics and related disciplines. It is
the claim of this work that facilitating the teaching and learning of many "ﬁigher—
order" mathematical concepts lies in demystifying this notion of abstraction. By
using imaging tools to unravel complex concepts, students of the cur‘ffculum are

encouraged to mature into experienced and expert abstracters.
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1 Introduction

1.1 A Puzzle for Computer Science Educators

>>> (define (double x) >>> (define (apply-to-5 f)
(* x 2)) (£ 5))

The above examples present two seemingly parallel segments of Scheme code. First,
the function double is defined to take a single input, x, and return the result of
multiplying that argument by the number 2. In the second example, the function
apply-to-5 is defined to take a single argument, £, and return the result of calling that
argument on the number 5. Despite the symmetry of these two types of functions, a
surprising number of students (over 50% in one study to be reported here) have
difficulty with the apply-to-5 function. While students readily accept the idea that
numbers can be arguments to functions they do not naturally extrapolate to conceive
that functions can likewise behave as data objects. Determining exactly what accounts

for this conceptual resistance was the original problem we sought to solve.

As it turns out, this general concept -- the notion of functional data objggg -- appears
in a number of important ways in other disciplines, including math and physics;
educators in these areas report analogous scenarios. So, what began as a small
educational dilemma in computer science has emerged as a window onto a much
~ broader cognitive puzzle: the notionof abstraction. Solutions to such a problem must

match its iﬁtimidating scope by transcending parochial methodologies.



1.2 Overview: Why an Imaging Curriculum?

"In mathematics... we find two tendencies present. On the one hand, the

tendency toward abstraction seeks to crystallize the logical relations

inherent in the maze of material that is being studied.... On the other hand,

the tendency toward intuitive understanding fosters a more immediate grasp

of the objects one studies, a live rapport with them, so to speak, which

stresses the concrete meaning of their relations...."

[Hilbert and Cohn-Vossen 1932]
Historically, functional programming and higher mathematics have been characterized
by their almost relentlessly textual and axiomatic style of teaching; the educational
tradition for these topics is largely devoid of the rich "manipulatives" and visual
images that characterize much of the most creative work in basic mathematics

education. This work focuses on developing students' intuitions about abstractions

through the use of imaging tools.

Abstraction is difficult: this is hardly a revelation in science education. However, the
idea that manipulative-supported mental and motor imagery can be used as a
"cognitive place holder" to navigate purely abstract ontologies is a non-standard
application of skilledﬂviéualization. This study focuses on one particular concept in.
computer science and higher mathematics, that is, the idea of functional data objects.
It extensively surveys students' misconceptions about this notion, creating an actual
taxonomy of errors along the way. As a result of this analysis, several difficulties with
abstraction emerge as focai problems; imaging techniques are then applied as a
cognitive aid. The work described herein is based on a number of case studies in
which the imaging curriculum Was run with.subjects between the ages of ten and

fourteen.

Research in cognitive science is typically characterized by the melding of disciplines;

the work described here conforms to this philosophy, blending its ideas primarily from



computer science, education and psychology. In an attempt to provide background
and vocabulary in all three areas, we begin with an overview of the separate facets of

the problem as they present themselves within the different disciplines.

1.2.1 Computer Science: Functional Programming

Informally, the main idea examined by this work is that functions! are manipulable as
units of data. This concept, central to the whole paradigm of functional programming,
* can be traced back far into the historical foundations of computer science; for example,
it is at the heart of Turing's universal machine concept [Turing 1950]. As will be
discussed, this research has indicated that students consistently encounter difficulty

with the notion of functions as data objects (FD).

A formal definition of FD can be found in Stoy [Stoy 1977]. FD adheres to the
following four properties, common to any "first-class" data object in a programming
language. Command of these four properties is facilitated by conceptualizing
functions as data. A first-class object is one that:

1. Can be named e

2. Can be passed as argument to a function -~

3. Can be returned as the result of a function call
4. Can form complex data structures

LFor the purposes of this work, functions are defined in a decidedly "procedural” manner. Although
strictly speaking the terms "function” and "procedure" have a subtle semantic distinction, they are
herein used interchangeably and indistinguishably. This representation is most appropriate in the
turtle-graphics setting; other alternative representations of functions (e.g. graphs, sets of pairs) are
less viable in the current context of this work. Open questions remain about whether students who
learn through this curriculum would be more or less challenged by those somewhat "purer”
representations of functions.



The research reported in this thesis has indicated that properties 1-3 prove increasingly
difficult for students to grasp2. Property 1 is generally not difficult for students:
procedures, like any other data object, can have an associated name. In the case of
numbers, this is parallel to the notion that a number can be defined by a variable
name.3

Property 2 represents more of a cognitive leap. Students in traditional computer
science curricula understand and even generate the notion that numbers can be passed
as arguments to functions; the analog -- functional arguments to functions -- is more
elusive, despite the apparent symmetry:

>>> (define (apply-double-to x) (double x))
apply-double-to

>>> (apply-double-to 5)
10

>>> (define (apply-to-5 f) (f 5))
apply-to-5

>>> (apply-to-5 double)
10

Property 3 is the most difficult for students to grasp. As will be discussed later in this
report, there are several causes for this, the most compelling of which is students'

inability to deal with FD andnymity. The following is an example of a function that

.

returns another function as its output. Note that the result object has no associated

name:

>>> (define (create-subtracter n)
(make-procedure-object (x) (- x n)))
create-subtracter

>>> (create-subtracter 3)
#<PROCEDURE>

2Property 4 will not be examined by this work.

3Note however that Scheme semantics are an exception to the rule: in most programming languages,
the name of a function is inseparable from the function itself. For example, in LOGO typing the
name of a function of no arguments returns the result of calling the function and not the object it is
bound to.



Below is a Scheme expression which combines properties 2 and 3. In several separate
studies (to be described later in this work) performed with both graduate and
undergraduate student Scheme programmers, over 50% responded incorrectly as to the

outcome of the expression:

>>> (apply-to-5 create-subtracter)

Chapter 2 will examine in detail the nature of the misconceptions that account for such

high rates of error in regards to this and other FD problems.

1.2.2 Psychology: Mental Imagery

Geir Kaufmann [Kaufmann 1988] identifies the central educational dilemma in
imaging theory:

"Conditions where imagery is most readily available may not be the same: as

the conditions where it is most strongly needed. Imagery may be most

readily available in concrete tasks, but conceivably is most highly needed in
abstract task-environments."

It is precisely the intention of this work to apply imagery techniques to mére abstract
concepts. Since imagery enhances comprehension—and since abstract concepts seem
somewhat less suited to imaging—the curricular theory described in this document is
founded on the belief that if we can enhance the imaging of abstract concepts in
computer science to have the same functional powéf as the imaging of concrete

stimuli, then we can potentially increase comprehension.



The nature and utility of mental imagery in psychology and philosophy has historically
been a matter of great controversy. A good summary is presented in Tye [Tye 1991].
The argument is fueled by indeterminacy: is imagery a purely introspective
phenomenon or can we use objective theories to qualify it? If we accept that imagery
is scientifically verifiable then what exactly is the nature of its representation in the
mind? Are mental images pictorial or linguistic? Such questions only scratch the

surface of this debate (which is described at greater length in Chapter 6).

In this work, imagery is treated as an introspective notion and as a pedagogical tool; its
representation is finessed. In order to be able to apply imagery as a tool and build a
curriculum around it, it is not necessary to make a commitment to one or another
representational theory; we need not agree on the exact status of imagery but merely
on the fact of its introspectively verifiable existence and accepted utility as a cognitive

tool [Hadamard 1944].

1.2.3 Math Education - Concrete Manipulatives

The curricular plan outlined by this work encourages students to remodel'ﬂf@?ir view of
functions as purely active entities through the use of imaging techniques. It further
encourages students to "see" fuﬁctions as units of data, similar in spirit to how most
people come to view numbers as data objects. Not surprisingly, this turns out to be a
non-trivial task for students. Interestingly, there is much to be learned about how to
rectify the dilemma by studying how the object concept of number has historically and
pedagogically developed: it likewise presents itself as a challenging cognitive task in

early stages of development.



This work encourages students to visualize functions as they would any other type of
information unit. To bolster the desired ontology, we require students to handle
manipulatives—physical instantiations of data objects of various types. Hence,
students interactively experience the object nature of functional data. This unique
synthesis of motor and visual imagery theory is supported both by the psychological
imaging theories cited above and further by analogy to mathematics education, where
physical manipulatives have been quite successful in fostering object concepts of

number in basic mathematics [Montessori 1956].

1.3 Organization of this Document

The work described in this document takes on two characters. First and foremost, it
reports on extensive and original empirical studies of students working with FD
problems. However, in order to solidly found this execution stage, the work
necessarily explores and integrates extensive background research. The presentation
of these two veins of research is structured in the following way:

* Chapter 2 focuses on curriculum development. It begins with a skeletal description
of the design process which was developed for building imaging curricula. It then
details each step of the process as it was used to structure the FD imaging curriculum.
 Chapter 3 introduces the subjects who took part in the study, as well as the methods
of data collection employed. It outlines the curriculum plan used for FD.

* Chapter 4 presents two complete case studies of students learning to use FD through
the imaging curriculum. It also points to interesting individual results from other case
studies and summarizes the data from all 18 subjects.

* Chapter 5 analyzes the results of the data presented in Chapter 4.
» Chapter 6 provides extensive background research connects this work to the areas of
mathematical manipulatives, visual and motor imagery, history of mathematical

thought, misconceptions of FD, and traditions of computer science instruction.

» Chapter 7 projects the results of this research onto future endeavors and proposes a
movement towards emphasizing intuitive learning.



2 Designing an Imaging Curriculum

What is the appropriate application for an imaging curriculum? As Kaufmann notes
(Section 1.2.2), situations in which the target concept to be learned is abstract seem
particularly wanting of imagery enhancing tools. How can educators encourage the
use of imagery in students? This chapter outlines the system I developed to create a
"blueprint” that can be used to tailor an imaging curriculum in some given specific
problem area . The chapter begins with a generic template for building curricula to
teach any target concept; this template is then applied to the concept of FD. Table 1

show a basic outline of the building process.

Table 1: Steps to Building an Imaging Curriculum.
This general outline provides an overview of the curriculum building process.

Step 0: Identify a pedagogical problem
Step 1: Research problem conception
Step 2: Classify results of Step 1

Step 3: Build imagery tools

2.1 How to Build a Curriculum to Build a Mental Image

As noted above, the first task in curriculum building is problem identification:
Step 0: Identify a particular problem whose pedagogy is in need of
improvement.

The problem might be notoriously problematic for students or educators; it could be a

“new topic whose comprehensibility is questionable. It should, however, be a problem
whose source is at least intuitively perceived to stem from difficulties with

abstraction. We will refer to this problem as the target concept.



The next steps are designed to help sharpen the researcher's intuitions which led to
selecting the target concept:

Step 1: Research students' problems and educators' concerns surrounding

the target concept.
There are any number of approaches at this level of discovery. Clearly, it is important
to survey and test students who are at the point of having been recently introduced to
the target concept. For example, if we wanted to understand students' misconceptions
about organic chemistry, then we might test college students in their first two years of
school. It is not so obvious, however, that there is much to gain from questioning
students outside of the range of schooling which applies to the target concept. For
example, what are the thoughts of advanced chemistry students: do they remember
struggling with the subject? What do experts have to say about the target concept?
How is it perceived by professors of organic chemistry? On the other end of the
spectrum, we-might try teaching the target concept to younger students with less
background. Here, we can see if behavior of the advanced students is paralleled.
This kind of knowledge will be useful later in answering questions about the source
of the misconceptions: is difficulty with the target concep't intuitive or brought about
by opposition to some other more simple and persistent (yet incorrect) model? What
kind of cognitive interference or cognitive assistance is created by-the body of

knowledge that students have acquired over time (see also [Chi, Slotta et al. 1994])?

This is also an appropriate time to draw upon data from other disciplines: is there an
analog which is equally problematic?‘ For example, imagine we have decided to
study the concept of recursion as it troubles students of computer science. We might
also want to examine how a particular recursive concept in, say, physics is perceived
by students of that discipline. Lastly, it may prove useful to search in both the
"home" discipline and outside disciplines for historical examples of confusion or

interest in the target concept.



Now, presumably, we have solid data to back up the intuitions from Step 0. Before
we can formulate solutions, we need to classify the results of Step 1. This phase is
characterized by two distinct activities:

Step 2a: Create a taxonomy (hierarchy of difficulty) of specific problems
from Step 1.

Step 2b: Represent cognitive ontologies that symbolically reflect the

difference between a mature and naive impression of the target concept.
In Step 2a we want to pinpoint the specifics of the difficulty: the level of detail at
which we examine errors should be fairly fine-grained. For example, if we were
examining students' difficulty with long division, it would be useful to note that
students repeatedly switch dividend and divisor when divisor > dividend. The goal of
Step 2b is to target the essence of the problem. The granularity in this sub-step
should be just finer than "because of abstraction." So in the case of fractal geometry
we might note that the difference between an expert and novice conception hinges on
the ability to visualize what a set of non-integer dimension might look like. In other

words, the ontology should anticipate the final visual curriculum.

The final step is also the most challénging and creative phase of the process:

Step 3. Build tools that suggest visual images aligned with the cognitive
difficulty of the problem area.

e

Step 2a involved identifying specific problems associated with the targewt concept;
Step 2b required the researcher to denote the underlying principles that emerge from
those difficulties. In this last -- and most implementationally challenging step -- we
~ create objects which will be used to persuade students to correctly intuit a concept.
To do this, we take the cognitive models (from Step 2b) and extract properties which
distinguish the complete from incomplete mental models. Then, when creating
objects to enhance visualization, we make sure the objects accent these properties.

For example, suppose that we are trying to image a recursive function. A naive

10



model views recursive functions as syntactically altered iterative functions; to de-.

emphasize this and to encourage a model in which the critical feature of a recursive
function is its ability to "regenerate", we might build an imaging tool which is a
miniature xerox box, churning out copies at the press of a button (recursive call). The
tools one builds may vary in nature according to their overall harmony with the
problem area: they could be computational objects, concrete objects, textual objects,
pictorial objects, or any combination thereof. One property might be best reified with
a computer simulation, another with a two dimensional picture, and so on. The
overall goal, then, of the tool developer is to identify, capture and represent the salient

distinguishable features in the correct ontology.

Immediately the question arises: how does one know if the tools are built
"correctly"? While this matter will be discussed in detail later, it is worth touching
upon a simplified answer. The goal of a real-world constructed object is to encourage
comfort with some mental object which is both abstract and consistent. If the job is
well done, then students' new and valid intuitions about the target concept should
steer them away from the specific mistakes categorized in Step 2a without

encouraging any new misconceptions.

2.2 Building an Imaging Curriculum for FD

* - i

The following sections describe how each phase- of the building prioces‘s was

RO ot

implemented for the target concept of functional data objeets.”

11
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2.2.1 Step 0 : Identify a problem”

P,

I first became intrigued by the notion thét a function could be a piece of data through
the research of Eisenberg, Resnick and T:ugbak [1987]. Their interviews with 16 MIT
undergraduates enrolled in an introductory Scheme programming course confirmed
and explored the different ontologies of FD that students held. In fact, on the sample
question presented in Chapter 1, (apply-to-5 create-subtracter), only six of

the sixteen students surveyed initially responded with a correct answer. What was

- perhaps more intriguing, however, was the consistent nature of the misconception

reported by those students who were in error. Students reported that the above
example would result in an error message due to the fact that it was "missing” some

required execution information.

As my research‘ will reveal, the "missing variable" phenomenon turns out to be the
most frequently recurring problem in FD conception. In the interest of not getting
ahead of the curriculum design process, however, it is sufficient to note that at this
stége we have two intriguing leads: (1) a particularly difficult, fairly abstract concept,

and (2) a strangely consistent set of misconceptions around this concept.

2.2.2 Step 1 : Research Problem Conception

So far, we have a established a lead which points us to the problem of FD as a

candidate for image learning. Before beginning the curriculum building process, it is

4This result is all the more startling, given that the students were using a highly FD centered
curriculum based on the popular text Structure and Interpretation of Computer Programming
[Abelson and Sussman 1985].

12



necessary to further verify our intuitions by more exhaustively examining current and

historical perspectives.> The examination process for FD was four-fold:

* Test undergraduate and graduate students of functional programming
languages for FD concept acquisition;

* Interview instructors of subject areas relevant to FD (such as
programming languages, artificial intelligence, abstract math);

* Observe younger students engaged in learning about FD;

* Research historical perspectives of FD in computer science and
mathematics.

2.2.2.1 Novice Scheme Programmers

I performed two distinct studies of graduate and undergraduate students who had had

some introductory Scheme programming experience.

The first study was performed on a sample of 11 students from three different but
comparable backgrounds. They were students who recently completed a unit on
Scheme in an undergraduate Programming Language course (2), students of a
graduate Artificial Intelligence class that used LISP as a programming language (5),
and students of a graduate course in computer science for cognitive sggntists that
used Scheme as its language (4). A summary of results to selected questions is
presented in Table 2. Each of the three questions summarized is respectively related

to each of the Properties 1-3 of first-class objects (section 1.2.1). Individual

responses are paraphrased where interesting.

SIn fact, some of the research I present in this section took place during or after the design phase.
While this is not inconsistent with the iterative design methodology I will endorse, it should also
be apparent why I recommend that the bulk of this background investigation be done prior to the
design phase.
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Table 2: Novice Scheme Programmers
Summary of results from a survey of novice Scheme programmers' aptitude for properties 1-3.

Sample Composition: exposure to some Scheme instruction and programming
Sample Cardnality: 11
Example :
Given: >>> (define number 5)
>>> (define (subtract-3 n) (- n 3))
Asked: >>> number
Answered: "5" 10

1

"error: need parenthesis'
Total wrong: 9% (1/11)

Asked: >>> subtract-3
Answered: "error: no argument” 5
"definition or
function body or

lambda expression” 4
“error: need parenthesis" 1
"subtract-3 is a function" 1

Total wrong: 55% (6/11)

Example 2:

Total wrong: 0% (0/11)

Example 3:
Given: >>> (define (create-subtracter n) (lambda (x) (- x n)))
Asked: >>> (apply-to-5 create-subtracter) e
Answered: "error: no argument" -

"error: no second function call for lambda (x)"
"(lambda (x) (- x 5))"

"procedure, as in (create-subtracter 5)"
"nameless function"

"error: apply-to-5 not defined"

“returns a function that returns x-5 given x"
"error: need 'x' to complete lambda (x) "

no answer or ??

PO = i i s RO

Total wrong: 64% (7/11)
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Example 1 contrasts students' views of number and function as object. All students
correctly answered that the interpreter, when asked to evaluate the name number,
would respond with the number object 5. On the other hand, three out of seven
students responded that the interpreter would return an error when asked to evaluate
the name subtract-3. In all three cases, the misconception resulted from the
incorrect assumption that we were attempting to call the procedure and hence were
missing the argument (this is not an unlikely misconception: it is in fact what would
happen in some programming languages). What these students were missing was the
notion, parallel to the case of number, that we were simply asking the interpreter to
look up a name and return the associated object. In other words, students lacked an

object concept of function.6

In the second example, corresponding to Stoy's property 2, all students answer
correctly about the use of a functional argument to a function. Granted, this is a fairly
trivial example, the likes of which students have extensively worked with in class. It
is appropriate here to touch upon the difference between identification and generation
of concept. Students were able to identify the use of a function as a data object and as
such present the correct solution. However, I claim that this activity is significantly
less cognitively advanced than either the case where students are able to g;nerate this
use for functions or even elegantly apply that use in novel situations. As this research
will demonstrate, the latter forms of learning take place through the imaging

curriculum.

The final example gives students the definition of a function which returns a function

as its result. They are asked to predict the result of an expression that both takes a

6The "call" protocol common to some other programming languages is inconsistent with an object
model.
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function as an argument returns a function as its result. Half of the students correctly
answered that the output would be a new function. The other half of the students
noted, in one way or another, that the function call would return an error because
something was missing; one student went so far as to note that it "need[s] 'x' to
complete lambda (x)". This example illustrates a common error. Students who get
this class of problems wrong uniformly explain their answers with some notion of
incompletion: some missing piece ofv data prevents the call from completing

execution.

In the second study, 28 undergraduate programming language students were asked to
write a series of short Scheme functions as part of a homework assignment. The
questions were handed out after I presented two 1.25 hour introductory Scheme
lectures. During the lectures, I emphasized the object nature of function and
presented illustrative examples. No imaging tools were used. Tables 3-5 outline

some interesting results.

Example 1 asks the students to redefine the semantically obscure car and car
functions to have the new names first and rest, respectively. The most succinct way
to do this is to merely rename the functions:

>>> (define first car)

The majority of the students solved the problem with the following code segment:

>>> (define (first 1) (car 1))

The first solution implies that students understand the concept that a function is a data
object which can merely be renamed (consider the parallel numerical example: given
a bound to 10, the way to equate a with b would be (define b a)). Instead,

students were unable to separate the function to be defined from its argument. So,
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students defined a new function called first, which takes a single argument and then

returns the result of taking the car of that argument. In this sense, the property that a

function does something (to an argument in this case) takes precedence over the

notion that a function is an object to be manipulated.

Table 3: Programming Languages Undergraduates: Part I. ;
Summary of results for a Scheme homework assignment given to undergraduate students of
programming languages. These two questions test properties 1 and 3.

Sample Cardnality:

Example 1:

Question:
Answers:

Total wrong:

Question:

Answers:

Total wrong:

Sample Composition: Undergraduate Programming Language class: exposure to some

Scheme instruction and programming under my instruction.
28

Redefine car/cdr to first/rest in the most concise way possible.

re-named procedure 10
re-wrote procedure 3
re-defined using args 13
no attempt 2
64% (18/28)

Write make-nth-getter, a procedure which, given a referent, n,
creates a procedure which returns the nth element of a list.

correct 5
no use of lambda

"not different from get-nth-elt"

wrong use of lambda

(define (mng (lambda (n) (gne x n)))

N W —

46% (13/28)

In Example 3 (Table 4), students were given an approximation function for finding

first derivatives; they were asked to write a derivative function in Scheme which,

given some function, returned the approximation function (literally, not symbolically)

for the first derivative. Students were also provided with examples of how the

function they were to write would work. For example:
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Table 4: Programming Languages Undergraduates: Part II.
Summary of results for a Scheme homework assignment given to undergraduate students of
programming languages. These questions test properties 2 and 3.

Example 3:
Question: Write a function which returns the first derivative of a given function
using the following approximation: ‘
DI1{x) =~ [F(x+h) - F(x)]/h], where h small , e.g. .0001
Answers: correct 12
no use of lambda 9
(define (derivative fun x) ...)
no attempt 7
Total wrong: 64% (16/28)
Example 4:
Question: How could you write a second derivative procedure?
Answers: correct 7
no use of lambda 3
need another formula 1
use nth-derivative function 1
wrapped extra lambda 5
no attempt 11
Total wrong: T1% (20/28)
Example 5:
Question: Write a procedure to create derivative procedures of any order.
Answers: correct 8
no use of lambda 1
wrong body 5 =
use function-applied-n-times 1 -
"can't pass in an equation” 1
- "don't understand the question” 1
no attempt 11
Total wrong: 68% (19/28)

>>> (define (cube x) (* x (* % x)))
cube

>>> (cube 4)
64

>>> ((derivative cube) 4)
48.0012
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The derivative procedure provides an elegant example of functional objects in
Scheme since the process of taking the derivative of a function involves both using
functions as data and returning functions as results. The Scheme code for
programming a derivative function is a direct translation of the approximation given

in Example 3 of Table 2:

>>> (define (derivative f)
(lambda (x) (/ (- (f (+ x 0.0001)) (f x)) 0.0001)))

Despite the sample executions that students were given, nine of twentyaeight students
didn't think they needed to use lambda (i.e. generate a new function); despite the ease
of translation from mathematical notation to Scheme, seven more students didn't even
attempt the problem. In Example 4 where they were required to write a second
derivative function (the solution to which is to doubly apply the first derivative
function) a total of eleven students did not even attempt the problem. Example 5 is an
order of magnitude more difficult than Example 3: it asks the student to write a
procedure which creates derivative procedures of any order. So, (derivative-maker
4) would return a fourth-derivative procedure. Only nine of the twenty eight students
correctly answered the question. One student even noted that the questiornxm could not

be answered since "you can't pass in an equation."

Perhaps the most difficult problem in the set asked students to use function-
applied-n-times (a function which repeatedly applies ahother function to an
argument for a specified number of applications) to redefine the derivative-maker
procedure from question 5. To correctly complete this question, students need to

understand that it is possible to have a function, function-applied-n-times, which
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takes another function (in this case, derivative) and a number, n (in this case, the
order of the derivative), as its arguments and returns a function, derivative-maker,
which takes a number, n, as its argument and returns an unnamed function which
essentially takes the nth-derivative. The six students who attempted this problem
answered it correctly. What about this problem scared 22 students away from even
attempting it? This question begins to bring us around to the notion of abstraction.
There is a sense in which Example 7 is exactly one order of abstraction more difficult
than something like an ordinary derivative function (which is itself an order of
abstraction more difficult than, for example, an ordinary cube function). The idea of

orders of abstraction will be discussed further in section 7.3.

Table 5: Programming Languages Undergraduates: Part I1IL.
Summary of results for a Scheme homework assignment given to undergraduate students of
programming languages. These are the most difficult questions testing property 3.

Example 6:
Question: Write a function which applies another function to its argument n
times (function-applied-n-times).
Answers: correct 4
correct with helper 5
bad body 3
no lambda 3
incorrect function call 3
no attempt 10 -
Total wrong: 68% (19/28) [or 86% (24/28)]
Example 7:
Question: Use function-applied-n-times to redefine derivative-maker.
Answers:  correct 6
no attempt 22
Total wrong: 79% (22/28)
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2.2.2.2 Instructors of FD

Folklore within the functional programming community resoundingly agrees:
students have a hard time with the idea that functions can be manipulated as data
objects. Specifically, students of functional programming have difficulty with
lambda expressions.  One Al instructor, when asked to characterize student

misconceptions, simply had this to say:

"Well... T haven't really ever pushed them to see how much they've learned because I
figured they'd never really get it at a deep level anyway."

The concept of functions as data is also prevalent in much of higher mathematics
from calculus to group theory. I interviewed professors of mathematics to see if I
might be able to gain different insights on the matter through the perspective of the
mathematical community. Interestingly, the rhetoric was almost identical. Like the
functional programming community, mathematicians identified this as a problem both
of particular difficulty and great import. One professor of calculus had the following

to say about his personal and professional experience with functions as data objects:

Interviewer: Did you or do you now have the notion that it's a piece of data?
Mathematicianl: Oh yeah, I mean once you do group theory you get well used to the idea
that you want to think of things abstractly in terms of objects and your objects are functions -
that's dandy. You learn to combine them and multiply them and treat them just like your
elementary objects.

I: You're teaching calculus now - do you feel like your students have a gooed éoncept of this?

e g

M1: No. They don't have a prayer.

It is perhaps interesting to note that even as M1 speaks of his own impressions of
functions he only ascribes to them properties which are "like" those of elementary

objects; he never says that they are elementary objects. In a separate interview with a
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professor of group theory (M2), the same kinds of personal struggles were made even

clearer:

"I can understand why this is hard because sometimes I have a problem with this myself... I
came face-to-face with the problems people have seeing functions as input, or output, in
teaching Fourier analysis where functions are borh. Students uniformly get confused
because you're not processing numbers, but functions."

Even as an instructor of group theory, which hinges on the notion that functions are
data, M2 admits his own confusion with the concept. Further, when the definition of
the create-subtracter procedure’ was presented to M2, his behavior modeled that of

the novice Scheme programmer exactly:

"Well, you couldn't use create-subtracter because you don't know whatx is yet. "

This represents an instantiation of a dilemma that was previously alluded to: the
missing variable problem. In this case, the subject naively notes that a variable has
been used in the body of the procedure which has not been declared as an argument.
In fact, this variable is the argument to the result procedure which is bound at
execution time. Students lack the familiarity with abstraction which is necessary to
treat that variable as merely a symbolic place holder until after execution time: if it is

without concrete value at run time, then the function is not executable.

What did these investigations reveal?

..+ Conjectures that this was an area of great difficulty for students were
confirmed.

* Suspicions that this was an area where pedagogy was not sufficient to match
the difficulty of the task were confirmed.

* Even the behavior of experts sometimes still supports a naive model of
functional objects.

TRecall: (define (create-subtracter n) (lambda (x) (- x n)))
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2.2.2.3 Younger students

Interviews with instructors of functional data indicated that even at their advanced
level of knowledge there was some confusion and misconception about functional
data. One question which immediately arises is: how much of one's ability to
conceptualize functions as data is hindered by other contradictory information which
has "cognitively accumulated" over time? For example, is the average student of
functional programming at a disadvantage for already having, most likely, become
proficient at programming in another paradigm which neglects constructs for

functional data objects?

In order to answer this question, we turn our study to the unfettered experiences of
pre-high school students. The bulk of this work involves repeated execution of the
imaging curriculum with this type of subject. However, a few case studies were
performed prior to introducing the notion of imaging in order to judge younger
students' impressions and abilities. Subjects worked with SchemePaint [Eisenberg

1991], a graphics enhanced version of Scheme.

I first explored this concept with three 7th graders. In the initial run, I worked with
two girls who had no prior programming experience. They had grea{ difficulty
picking up the skill of programming, hence we did not comfortably approach the
subject of higher-order functions. Perhaps the most salient observation that could be
madé &bout-the ffﬁ:xtp'cfi*f‘:‘ncg was this: a major road block in their learning came with
the notion oﬁfi ‘amr‘guments to procedures. They first had difficulty understanding that
the formal name of an argument was merely a place holder until run time when an
actual value could be associated. This misunderstanding is the first in a series of

related misconceptions centered on the notion of abstraction. To understand formal
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parameters, one has to be comfortable with the idea of abstracting a set of potential
actual values into an abstract symbolic value. This is a milder instantiation of

problems seen in students working with lambda expressions.

In the second scenario I worked with one male student, Hector8, who had some
limited experience with the C programming language. He learned basic Scheme in a
more accelerated fashion than the previous two subjects, pérhaps due to his
familiarity with basic programming concepts. Within about two hours of work, I was
able to introduce functions as arguments to other functions. He seemed to understand
my explanation. However, when he was asked to apply the concept, he was initially
unsuccessful, perhaps in part due to his lack of experience manipulating procedures in

this fashion in a programming context.

In one example scenario, he starts by writing the two procedures shown below:

>>> (define (spike length)
(rt 20)
(fd length)
(rt 140)
(fd length)
(rt 20))
>>> (define (hex-w-mover mover length)
(repeat 6
(mover length) -
(rt 60))) ) o

-

Tmmediately after composing these two procedures, he was asked to make a six sided
star. Instead of simply calling hex-w-mover using spike as an argument, i.e.

(hex-w-mover spike), he wrote the following code from scratch:

8 All students' names have been changed to preserve anonymity.
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>>> (define (star length)

(rt 30)

(fd length)

(rt 120)

(fd length)

(rt 150)

(£ (+ 10 length))
(rt 150)

(f£d (+ 10 length))
(rt 150)

(fd (+ 10 length))

Eventually, Hector became very comfortable with functions as arguments. In one

session, he was given a "mystery" procedure, along with several examples of how it

could be used:

>>> (mystery f£d) {move turtle forward 90 units}

90

>>> (mystery rt) {turn turtle 90 degrees}

90

>>> (mystery square) {make a square with sides of size 90}
8100

At this point, he stopped me from demonstrating and began to work himself. The

following represents an actual transcript of his work.

>>> (mystery £d)
90

>>> (mystery rt)
180 +

>>> (define (it mover)
(mover 90))
it

>>> (it fd)
90

>>> (it rt)
270

When asked to describe in words what the it procedure does he replies "It does what
you tell it to to 90." Note that his description is still very much based on the

numerical component, not the procedural one.
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In his next phase of work, Hector learned to use and create a new kind of data object
called a color object. This introduced many interesting phenomena which do not
come up in non-graphics Scheme. Color objects are complex data structures
composed of three integer values, 0-65000, each representing the relative intensity of
red, green and blue in a particular color. Color objects can be created through the
SchemePaint make-color-object procedure. This procedure returns an anonymous
color object, similar in vein to the way that lambda returns an anonymous procedure

object:

>>> (make-color-object 60000 0 60000)
(60000 0 60000)

Students initially believe that the above statement would result in an error message
from the interprétet On the other hand, students are in agreement that the following
code should work:

>>> (define purple (make-color-object 60000 0 60000))
purple

The difference between these two segments of code"is anonymity: in the first
statement, the result object has no name associated with it. Since standard Scheme
really only has one commonly used anonymous object, the procedure Ob;:tt returned
by a lambda expression, it had not previously occurred to me that the difficulty with

procedures as objects might really be related to a more general problem with object

anonymity.

‘Shortly “after the introduction to color objects there was a three month hiatus in my
work with Hector. Prior to this break, Hector took a written test in which he
demonstrated working knowledge of properties 1 and 2, and some insight into

property 3 (at the time of testing, this was brand new material); when we resumed,
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Hector retook the identical test. His knowledge of properties 1 and 2 remained intact

while his insight into property 3 seemed lost.

Hector was informed that his next project was to build a “library” of SchemePaint
functions which performed manipulations on color-objects. He was first asked to
write a series of color transformation procedures which, when given a particular
color-object, make a new color-object with increased or decreased amounts of red,
green, or blue. The following is an example of two of the six procedures that he
wrote:

>>> (define (darken-red color-object)
(make-color-object
(+ (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))

>>> (define (lighten-red color-object)
(make~color-object
(- (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))
Hector wrote four other similar procedures: darken-green, lighten-green,
darken-blue, lighten-blue. He was then asked to note that {darken, lighten)}-
{red, green, blue} were nearly identical; based on this observation he was asked to
change the six procedures into three procedures. This task entails turning the {+, -}
operator into a procedural argument (property 2). He wrote three new”farocedures,
change-{red, green, blue}, without difficulty:
>>> (define (change-red direction color-object)
(make-color-object
(direction (get-red color-object) 1000)
(get-green color-object)
(get-blue color-object)))
Hector was then asked to write a number of other functions which operated in a

similar fashion, that is, given a color-object as input, perform some manipulation on

the color and return a new and different result color object. After completing this
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task, he was asked to write a program which, when given a color-object and any two
of his 15 transforms, sequentially applies the two transforms to the old object and
returns a new color. This task also involves correct understanding of property 2. The
following is his initial attempt:
>>> (define (apply-transforms color-object transforml traﬁsformZ)
(transforml)
(transform2))
This represents an incorrect use of procedural arguments. Although Hector correctly
reasoned that he needed to pass in two transforms and a color-object as arguments,
the body of the code is non-functional: he forgets to indicate that the transforms mu>st
themselves take the color-object as an argument when invoked, i.e (transforml
color-object). This represents an instantiation of a common confusion about the
role played by functional arguments to functions. After running the procedure,
Hector quickly realizes what he did wrong, but it is interesting to note his initial

instincts nevertheless.

His next task required a conception of property 3. Outside of the two exams he has
been given, this is the first time Hector is required to generate such ideas. He is asked
to write a procedure called compose which, given two transforms, creates a new
procedure which, when applied to a color-object, returns the result of apﬁying those

two transforms to the given object. Upon contemplating the task, he incrementally

o i

exhibits three stereotypical misconceptions:

1. “That is the procedure we just wrote.” This statement indicates a
misconception about the object-ness of procedures. Hector does not
conceptualize the procedure’s ability to be returned as an object, hence he

“‘misconstrues this as identical to the previous task (apply-transforms)
which emphasized knowledge of the more common ontology of procedures
as active, applicative entities.

2. “You can’t do it; the [result] function wouldn’t have a name.” This
statement is illustrative of the common difficulty that students have with
anonymous objects. The function Hector was asked to write would return a
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nameless object, unusable without other context. Recall that earlier in the
curriculum he had the same difficulty with anonymous color-objects (the
result of all the transform procedures he wrote). This reaffirms the theory
that the difficulty is not just with anonymous procedure-objects, but
anonymous objects in general. As stated earlier, this distinction was
previously unobserved since most functional languages have only one type
of anonymous object - functional. The use of SchemePaint (and hence
different sorts of anonymous objects) has pointed to a more global
misunderstanding.

3. “You can’t do that, its missing a variable.” This statement is identically
uttered by nearly all students attempting to grasp property 3. He is referring
to the fact that the new procedure will require a color-object as an argument,
and we have not provided this data anywhere when we create the procedure.
This is what we have previously referred to as "the missing variable
phenomenon."

Lastly, a somewhat more general problem was pointed out by Hector. He noted an
inconsistency between the way the Scheme interpreter seems to view color-objects
and procedure objects. When one asks the Scheme interpreter what a particular color-
object is, the contents of the object are returned; when one asks the Scheme
interpreter about a procedure object, the name is simply echoed, indicating that the
procedure exists; no indication of content is given.

>>> purple
(60000 0 60000)

>>> darken-red
#<PROCEDURE darken-red>

We had already noted the potential confusion With lambda expresfsions and
accordingly renamed the lambda special form to the more semantically accurate
make-procedure. However, Hector's observation about the inconsistent display of
procedure and color result objects brings attention to just how sensitive students are to

syntactic and semantic details which cannot be reasoned from past knowledge.

To summarize, several new details about students' misconceptions of functions as

objects have been learned through this case study of a novice programmer;
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additionally, this study has hinted that the behavior of younger students more or less

parallels that of adult students, making them good candidates for future study.

2.2.2 4 Historical Perspectives

By now, there may be an emerging dilemma for the reader: if, as we have shown, this
is such a systematic problem for students in both mathematics and computer science,
then why hasn't it been previously addressed? Is the concept that a function caﬁ be a
data object necessary or important? Is it perhaps so narrow in focus as to constitute
generally useless information? In order to address these concerns and confirm that
this is an important concept of broad utility, we turn to the writings of some of the

major figures in mathematics and computer science history.

As early as 1836, in his notes, Charles Babbage pondered blurring the distinction
between data and operations in this early passage about the possibility of an

Analytical Engine:

"This day I had for the first time a general but very indistinct conception of
the possibility of making an engine work out algebraic developments. 1
mean without any reference to the value of the letters. My notion is that as
the cards (Jacquards) of the Calc. engine direct a series of operations and
then recommence with the first so it might to punch others equivalgnt to any
given number of repetitions. But [their holes] might perhaps be small pieces
of formulae previously made by the first cards." (quoted in [Randell 1973])
In this selection, Babbage seems to be hinting that cards (operations) might in fact

direct (generate) certain other operations.

Several years later, Ada Augusta considers Babbage's theoretical machine. By clearly
demarcating operations and data, she exhibits the same naive understanding about

operations (functions) which we saw in present day students of function:

"In studying the action of the Analytical Engine, we find that the peculiar
and independent nature of the considerations which in all mathematical
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analysis belong to operations, as distinguished from the objects operated
upon and from the results of the operations performed upon those objects, is
very strikingly defined and separated." [Babbage 1842]

Babbage returns to the issue, admitting its importance yet acknowledging that, for
him, it presented an unconquerable challenge:

"I am unwilling to terminate this chapter without reference to another
difficulty now arising.... The extension of analysis is so rapid, its domain so
unlimited, and so many inquirers are entering into its fields, that a variety of
new symbols have been introduced, formed on no common principles....

A few months ago I turned back to a paper in the Philosophical
Transactions, 1844, to examine some analytical investigations of great
interest by an author who has thought deeply on the subject. It related to the
separation of symbols of operation from those of quantity, a question
peculiarly interesting to me, since the Analytical Engine contains the
embodiment of that method. There was no ready, sufficient and simple
mode of distinguishing letters which represented quantity from those which
indicated operation....

Although deeply interested in the subject, I was obliged, with great regret, to

give up the attempt; for it not only occupied much time, but placed too great
a strain on the memory." [Babbage 1842]

A century after Babbage's initial musing about the self-modifying engine, Turing
outlines the specifics for a machine which uses the specification of some other

machine as data:

"Let us first suppose that we have a machine M' which will write down... the
successive complete configurations of M.... It is not difficult to see that if M
can be constructed, then so can M'. The manner of operation of M' could be
made to depend on having the rules of operation (i.e., the standard
description) of M written somewhere within itself (i.e., within M'); each step
could be carried out by referring to these rules." [Turing 1937]

Turing's ideas are in fact an elaboration of the same function-versus-object theme that
is identifiable in the great mathematician Godel's technique of representing proof
sequences as numerals [Godel 1931]. By 1945, Von Neumann constructs the
machine which will use calculation specifications (functions) as input. In Von

Neumann's system, functions take on the same form as any other data object:

31



"Any device which is to carry out long and complicated sequences of
operations (specifically of calculations) must have a considerable memory.
At least the four following phases of its operation require a memory:

(a) Even in the process of carrying out a
multiplication or division, a series of
intermediate (partial) results must be
remembered....

(b) The instructions which govern a

complicated problem may constitute a

considerable material, particularly so,

if the code is circumstantial (which it is

in most arrangements). This material

must be remembered....
To sum up... The device requires a considerable memory. While it appeared,
that various parts of this memory have to perform functions which differ
somewhat in their nature and considerably in their purpose, it is nevertheless

tempting to treat the entire memory as one organ, and to have its parts even
as interchangeable as possible..." [Von-Neumann 1945]

At the very least, these quotations tag functional data as central to the very core of
computer science. Further, we have confirmed that this is a concept which is

stimulating, perplexing and important to great as well as novice thinkers.

2.2.2.5 Summar

The goal of this initial phase of evaluation was to develop a compwrehensive
understanding of the target problem. Our varied investigations have revealed that

throughout history and across the different disciplines which utilize functional data
objects, students and scholars encounter cognitive barriers at exactly the points where

higher-order procedure processing is necessary.
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2.2.3 Step 2: Classify Results
2.2.3.1 Step 2a: Qutline a Taxonomy of Error

So far, then, in the attempt to apply the imaging curriculum to FD, we have

completed two step of the process:

Step 0: Identify a pedagogical problem.
Step 1: Research problem conception.

The goal of Step 2 is to classify the results from Step 1. Historically and currently,
research from students and educators indicates the following principle of general

categorization:

Properties 1-3 [cf. Stoy] of functional data objects represent strictly increasing levels
of difficulty for students. Specifically:

i. Property 1 is not generally problematic.

Students, if anything, have more difficulty assigning names to numerical
data than procedural data. In fact, functional data "feels" like it is required
to have a name in order to have meaning whereas students are comfortable
with the independent (and notably abstract) existence of numbers. Still, -
understanding that the name subtract-3 would represent a function just
like the name number represents a number was not completely transparent
for students (Table 2, pg. 17). —
ii. Property 2 is more difficult.

The concept of arguments of any sort is itself abstract and difficult for
students. Beyond that, without the same practice with operating on
functions that students possess for operating on numbers, the quandary of
functions as arguments reduces to an experiential one. Both linguistically
and mathematically, subjects are more accustomed to treating numbers as
the default computational unit.

iii. Property 3 is most difficult.

Lambda expressions, functions which return other functions as result
objects, are hard because they require an extra level of abstraction beyond
that which is demonstrated by an argument to a procedure. One side effect
of this is that students perceive that these expressions are incompletely
specified (missing variable phenomenon). Lambda expressions are also
hard because (1) they can employ the concept of object anonymity and, (2)
because statement semantics are obscure and suggest few fruitful analogies.
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2.2.3.2 Step 2b: Build Cognitive Ontologies

We would like to suggest that the details of misconception outlined in the previous
section represent pieces of a puzzle. All the pieces of the puzzle can be fit together to
produce various models of conception (similar in vein to [Chi, Slotta et al. 1994]; see
also section 6.3 of this document). Many projects have undertaken the task of
specifying mental models, particularly in relation to concepts in the physical sciences
[Gentner and Stevens 1983].  This work takes a similar approach to "mental

modeling".

Figure 1 exemplifies an ontological picture, borrowed from [Eisenberg, Resnick et al.
1987]. The complete ontology of data stresses the notion that there are two kinds of
things: objects and names for objects. Objects come in different types; those typés
have certain shared and different properties. The naive model paints a different
picture: procedures are their own sort of entity, different and removed from data
objects. They are characterized solely by their property of "activity"; they are not
independent units but rather they are incomplete without numbers to manipulate.
These models are consistent, respectively, with students who answer accurately and

-

inaccurately to applicative questions about functional objects in Scheme. -

It is claimed that while the incomplete dntology prevails, so do naive biases about the |
role that functions can play in a language. Thorough and complete understanding of
the specific errors outlined in the previous section depends upon a incorruptible
_ cognitive ontology. Figure 2 illustrates the difference in status for functions under
both a complete and a naive cognitive model. In Figure 2a, the correct model, the
world is made up of data objects; data objects can be of many different types. In the

naive model (Figure 2b), the world is made up of data and procedures. In the latter
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"correct" ontology:

OBJECTS

Properties:
Can be named as variables.
Can be passed to procedures as arguments.
Can be returned from procedures as results.
Can be stored in compound data structures.

VARIABLE
NAMES

Properties: Used as names

for objects. NUMBERS

Properties: Can be added, multiplied, etc.

PROCEDURES
Properties: Can be applied to objects.

"naive" ontology:

PROCEDURE PROCEDURES

NAMES Properties: Active - eager to run.

Incomplete - needing "parts."

Properties: Used as names
for procedures.

OBJECTS

VARIABLE
NAMES

Properties: Used as names
for objects.

Properties: Can be manipulated by procedures.

i

NUMBERS ._
Properties: Can be added, multiplied, etc.

(

Figure 1: Correct and Naive Ontologies of Functional Data

This diagram, borrowed from [Eisenberg, Resnick et al. 1987}, describes students' naive and
expert concepts of function in Scheme.
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case, procedures are assigned some special status such that they are not candidates to

be data objects.

This naive ontology is preconditioned in a number of ways. For example, most
imperative computer languages -- the paradigm used most often to introduce students
to programming -- lack the constructs to support functions as first-class objects. Even
natural language makes a clear distinction between nouns ("person, place or thing")
and verbs ("action words"). Chi points out that conceptual category change is most
difficult when the naive categorizations are deeply rooted through this type of

persistent, consistent and recapitulated support system [Chi, Slotta et al. 1994].

the worl

data procedures

. procedure
objects

color
. .bbjects
number

objects

procedure number
objects objects

Figure 2: High Level Model of Functional Data
This figure describes the difference in status for functions under a correct (a.), and a naive (b.)
cognitive model.

2.2.4 Step 3 : Building Imaging Tools

This last step of the design process is by far the most challenging and creative. It is at

this stage that the researcher must, in fact, abstract certain key principles which are
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mandatory for a non-naive understanding of the target concept. If the tools are
designed correctly, they will encourage a complete and consistent ontology of the
target concept; students can then draw on this ontology to correctly intuit solutions

and simultaneously avoid the standard errors described by the taxonomy (Step 2a).

Based on the models from the previous section, we would like students to develop a
comfortable ontology of data objects which is consistent with Stoy's properties 1-3.
Note that there is no specific mention of functional data objects in this initial goal.
Rather, the idea is for students to develop a rich object concept of all data, procedures
being one t)f several classes of data objects. In order to foster this concept, we will
try to enhance skills of mental imagery and visualization by matching an appropriate
modeling system to the target concept. The tools of the imagery enhancing modeling
system may be multi-modal in nature; that is, we do not limit students to one class of
tools for visualization. Research has shown that some students have a predisposition
towards one or another style of learning [Johassen and Grabowski 1993]. Similarly,
students may favor one class of visualization tool over another. Additionally,
different tools may be more or less pedagogtcally expressive for purveylng different
aspects or qualities of the target concept. For the purposes of this work, we use three

modes of imaging tools: v
* Computational - The standard programming environment. It is often
claimed that computers allow students more tangible access to abstract
: -=concepts [Papert 1980]. However, as the data clearly indicates,
programming languages have proved insufficient in the case of
functional data.

» Textual / Vistfal - A two dimensional pictorial view ‘of ,objects in
Scheme written in large scale on a dry erase board.

» Concrete - Three dimensional tangible objects which students can hold
and manipulate.

We now turn to a more detailed description of how the three properties interact with

the three modes of imaging.
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2.2.4.1 Property 1: Objects Can Be Named

A combination of all the imagery enhancing techniques are used to enforce the fact
that procedures, like all objects, can be named. The curriculum begins with a
discussion and analogy forming session about how this property is applicable to
everyday objects. Students are asked to reason about why the following three

statements may or may not be true:

* Everything is an object.
* Objects can be named.
* Objects have properties: some are shared among objects, some are different.

Students are asked to challenge preconceptions, particularly about what qualifies as
an object. For example one student, when thinking about the first principle, responds

4o n

that everything is an object "except thoughts". In this case, the discussion turns to a
challenge of this bias: thoughts can be remembered, forgotten, verbalized, written,
etc.; thoughts too are things we manipulate. When discussing the naming of objects,
students are asked to think about the names of objects in terms of the roles they play
in situations. For example, students might agree that a paperweight is a name for an
object. They must further reason, however, that many objects can perform the roie of
a paperweight (a book, a rock, a cup). They are encouraged to note that these objects
can have different and shared properties: all of the aforementioned objects can be
paperweights; only a book can be read; only % cup can hold water, etc. Lastly,
students are» asked to think about what it means for objects to be active or passwe and

ovaen

whether the computer or its programs should be classified as one or the other

Immediately following this, the curriculum commences with a discussion of objects
in the computational (Scheme) world. Students are introduced to the 2-D visual

representation of the name-object table (see Figure 3).  This representation
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encourages the idea of "bindings" between names and objects. The drawing reduces
the whole processing system to table additions and inquiries. This helps reinforce the
notion of naming as being an equal status property since there is a uniformity of
structure and processing for all the different types of objects. However, since the 2-D
drawn objects also each contain different sorts of information relative to their type
(e.g. a value for number objects, an input list and body for procedure objects), it

allows the student to likewise comprehend that objects can have unique properties.

I
: number
value:

a ' B 10 3
; object number

20 ! p | value:
l : 20
| object
I
{ procedure

square ' - | input: side
| body:
| (repeat 4 OBJECTS
I (£d side)
I (rt }90))
NAMES : object

I

Figure 3: The Name-Object Table.

Students are first introduced to the behavior of the Scheme interpreter through the Name-
Object table. All transactions in Scheme are said to take place through table "look-ups" or
insertions.

The 3-D manipulatives (pictured in Appendix A) are most effective for reifying
‘principle 1: everything is an object. The manipulatives are objects in the most literal
of senses: small felt pillows each with its own textual information inside (miniature
white boards with a small copy of the 2-D representation), relevant to the type of the

object. The objects all share certain physical properties (they are all felt pillows, for
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example) but they differ in others (color and size). This helps foster principle 3,
again, at a very high but concrete level. The objects are less useful for formulating
the notion that computational objects may have names; rather, due in part to their
"container-like" independence, we will see that they are a good model for object

anonymity.

The name-object binding expressions need to be as consistent as the physical
representations of the objects. Note the syntactic difference between naming number,

color, and procedure objects in standard SchemePaint:

(define x 5)
(define (double x) (* x 2))

(define purple
(make-color-object
(40000
0
40000))

In order to avoid confusion about syntax interacting with confusion about meaning,
we adopt a universal name-object binding form: (define name object-
expression). In order to semantically separate the procedure object name from its

argument (again, to encourage an independent view of the object) we parallel the

make-color-object Syntax:

(define double
(make-procedure
(x)
(* x x)))
Note that replacing the inarguably obscure lambda expression with make-procedure

also averts confusion that commonly arises from the semantically irrelevant

nomenclature.
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2.2.4.2 Property 2: Objects Can Be Arguments to Functions

2-D textual drawings are useful for helping students work through the details of how
arguments to functions, and hence procedural arguments, work. Through the white
board representation, students are able to follow execution rules (Figure 4) and
perform direct name/object substitutions by merely wiping out a name on a white
board and replacing it with the actual value of the argument (Figure 5). Still, this

representation is only mildly imagery-enhancing for procedural arguments.

Scheme Expression Evaluation Rules:

Rule 1: The Number Rule
Numbers evaluate to themselves.

Rule 2: The Procedure Rule

To evaluate a procedure call:

(1) Look up the inputs in the name table.

(2) Look up the procedure object in the name table.
(3a) Associate real objects with input names.

(3b) Execute the body using the new input values.

Figure 4: Scheme Expression Evaluation Rules

Students use physical and visual manipulative representations to work through the evaluation
of expressions according to certain interpreter rules. Two of those rules, applyifig to number
and procedure objects, are listed.

3-D representation is most helpful at this stage when thinking about procedures as
arguments. Physical objects s‘trongly encourage the notion of "passing" inputs to
functions as the maﬁipulatives themselves can be, literally, passed around. One
student notes that when-a procedure executes, we "throw" the interpreter a name and
it "throws" back an object for use. Students come to think of the object itself as being
part of the procedure, without common confusion about actual vs. formal parameter

names. Further, the idea that we can "throw" a procedure object in the same way that
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we can throw a number object further fosters a uniform view of objects in the

language.

Question: How does Scheme interpret
the command: (square 20)7?

Step 1:
number
value:
20 > 20
object
procedure e
square > | input: side-”
body:
(repeat 4':2::
(£4 side)
(xrt 90))
object
Step 2:
procedure
input:
body:
(repeat 4
(£a )
(rt 90)) -
object

Figure 5: Visually Interpreted Command

Students use the visual representation of objects to work through the evaluation of Scheme
expressions. Above, the command (square 20) is evaluated. IrStep 1, the student looks
up the value of the names 20 and square in the name/object table. With both these pieces of
information available, the student can associate the number object 20 with the symbolic name

side. ByStep 2 the procedure body is fully specified and the student can sequentially
.. execute the commands.

2.2.4.3 Property 3: Objects Can Be Returned Values of Functions
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For property 1, the textual representation helped focus attention on the textual nature
or "guts" of the object that we were defining or looking up in the table. For property
2, concentrating on the physical manipulatives helped accentuate the embodiment of
the data: the fact that the data object could be passed around as a unit. In order for

students to thoroughly understand property 3, we need to draw upon both these views.

Recall that one of the major sub-problems with procedure objects was their ability to
exist without names. The 3-D object representation lends plausibility to the idea of
anonymity. Students speak of -- and synonymously gesture with their hands -- the
idea that anonymous "floating" objects can exist in the Scheme environment. The
understanding that a procedure can be the result returned from a function call is
intertwined with the understanding that procedure objects have the property that they
can be "freshly" geﬁerated (through the use of lambda). Procedure objects are.
containers for their own specifications. As we noted earlier, the concrete procedure
objects encourage the idea that procedure objects are capsules of information. The
white board representation also helps students visualize how procedures are "born"
and what inforn{ation they contain (note that the idea of "containing" is consistent
with "objectness") in virtue of the rectangular box structure of the objects. The fact
that objects contain something similar to the pure programmini language
specification (Figure 6) meaningfully links the idea that a procedure is an active
specification (better portrayed by the computational representation) with the idea that
it is a passive object (better represented by the 2-D and 3-D descriptions). A new
procedure is a "blank slate": literally, a blank white board instead of the "pre-
packaged" object one might see for a built-in Scheme program. This allows students
to see how it is possible that the specification for a procedure are not worked out (in

this case, "written-in") until execution time.
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procedure
input: x -g— (lambcila)
\ X
body: (* x %))
(* x %) -
object

Figure 6: Visual Specification of a Scheme Code

The visual representation of a procedure object is a direct translation from the associated
lambda expression. Arguments which are specified within an initial set of parenthesis in a
lambda expression are written into the input section of a procedure object. All other sub
expressions in the lambda expression are translated to thebody of a procedure object.

Misunderstandings about "missing variables" from lambda expressions are hindered
by the process of using object manipulations. Valueless variables in a procedure-
generating procedure are consistent with the real object generation process. The
visual aid of the literal procedure and number objects demonstrates that the

procedure-generating procedure can legally execute without the information filled

into those slots until a later time (Figure 7).
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(define create-subtracter 1
(make-procedure (create-subtracter 5)

(n)
(make-procedure 2 3. 4. 5.
(x) )

(- xmn))))

procedure
input:
body:

create-subtracter —e—

object

procedure

input: n
body:
(make-procedurd

(x)
(- x n)

create-subtracter E—

object

procedure
input:
body: 3.

(make-procedure 4.
(%)

- 3]y | s

object e

create-subtracter —

procedure procedure
input: input: (x)

body: : body:
(- x 5)

object object

Figure 7: Visual Aid for a Procedure-Generating Procedure

In this example, the create-subtracter function and invocation are translated into a visual
object representation. Steps 1-5 correspond to important stages where actions are performed
on the visual representation. Note that the process emphasizes the birth of new objects.
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3 Subjects and Methodology

3.1 Style: Case-Study Based

The research presented in this work was performed in a case-study style. Extensive
time was spent with each student (compared to a standard classroom environment)
permitting the researcher to have a familiar rapport with the student. In general, this
style of data collection is founded on the principle that a student's particular situation
-- their collection of experience over the years -- is relevant to data collection and
analysis. The results of the preliminary study described earlier (with Hector: section
2.2.3) as well as the diverse and consistent array of errors illuminated by the

background research, served as the basis of comparison for the imaging curriculum.

3.2 Setting

The researcher worked on an in-depth level with subjects in a mutual learning
environment: students were advised that they were "teachers of learning," instructing
the researcher as they proceeded as to areas of difficulty, ease, and interest.

Conversely, students were treated as explorers -- they were encouraged to be

inquisitive and develop and pursue their own lines of interest.

The setting for the curriculum was a small research office at the University of

Colorado, Boulder containing:

* 1-3 Macintosh computers running SchemePaint
* 1-2 large dry-erase boards

» Concrete manipulative objects

* Students and researcher
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Students worked one-on-one or two-on-one with the instructor, as it was determined
in the pre-design phase that this student to instructor ratio worked best for

minimilizing student distraction.

3.3 Subjects and Instructor

All sessions of the imaging curriculum were taught exclusively by me. Prior to this
time, my only teaching experience consisted of weekly recitation lectures in an

introductory programming course.

A total of 18 case studies were performed over a two and a half year périod.9
Students were recruited from a number of sources, summarized in Table 6. Recall
that information from the pre-design phasie indicated that the behavior of younger
students more or less paralleled that of older students, making them excellent test

subjects.

Table 6: Summary of Subjects
Students of the imaging curriculum were recruited from three major sources.

Children of fellow graduate students.......... 5 m
High School students working on independent projects.......... 9
Undergraduates.......... 1

~ Middle School students working after school.......... 3

9Three of the case studies, previously mentioned in section 2.2.2.1, took place in the pre-design phase,
without the aid of the imaging curriculum.
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The children of the graduate students were the youngest in the study, ranging in age
from 9-12 years; the middle school students were in 6th and 7th grade (11-12 years of
age). High School students came from an "alternative" public school which required
the students to participate in "workshops" taught by members of the community.
They were in 9th and 10th grade (14-15 years old). One undergraduate participated in

a case study as part of a special project on learning programming languages.

6 of the subjects were female and twelve of the subjects were male. All students
attended the local Boulder public school system; one student was a non-white, non-
native English speaker; 17 were white middle class. Eight of the students had little or
no experience working with computers; six were well versed at using applications,
like games or word processors; four had some prior programming experience in

BASIC, Pascal, or C. None of the students were previously proficient programmers.

All students participated in the project of their own free will. Students were given an
introductory explanation of the program. If interest persisted, they were invited to an
introductory session which demonstrated the SchemePaint application. At this time,
students were also informed what would be expected of them including: (1) smali pen
and paper homework assignmer{ts‘, (2) attentiveness, (3) introspective reports on
curriculum effectiveness and subject matter difficulty, (4) occasieaal written

questionnaires.

In all of the case studies within this document the names of the participants have been

altered. .
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3.4 Curriculum Outline

The curriculum was developed in a series of iterative steps. The method of iterative
design was chosen so that information learned in early runs of the curriculum could
be applied to later instantiations. A format similar to that used in the pre-design case

studies!0 was used as a starting point with the following constraints:

* Properties 1-3 should be addressed in sequential order. This is
consistent with the hierarchy of difficulty presented in section 2.2.3.1.

* A pre-test should be administered to gauge the student's background
and interest. This stage of testing was intended to provide pointers to a
student's interests, abilities and pre-conceptions, since it was
determined in the pre-design phase that resilient misconceptions
accounted for some of students' difficulty.

* Written questionnaires should be administered shortly after the
introduction of properties 2 and 3 in order to monitor concept
acquisition.

* Each property should be introduced in conjunction with all of the
imagery tools. This is consistent with a theory of multi-modal imagery
building. Literature in mental imagery (see also chapter 6) has
supported the idea that exposure to a variety of representations results

in a more complete mental model of a target concept (also [Polya
1945]). :

.

Addressing properties 1-3 in order is roughly consistent with the staﬁdé}d order of
introduction of material in a Scheme or LISP programming language course (see for
example [Eisenberg 1990]; [Touretzky 1990]; [Koschmann 1990]; fWinston, 1989
#1067; [Wilensky 1986]). However, many of the other topics that would normally be
intermittently addressed (control structures, recursion, etc.) were reserved until after a
mastery of functional objects was achieved, or were introduced on demand according

to student's interests.

10The specific course materials for these first few case studies was derived by a trial and error system.
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As mentioned earlier, as far back as the first run of the curriculum the name make-
procedure was used in place of the 1ambda special form (see [Soloway and Ehrlich
1984] for a study of novice programmers and the effects of non-mnemonic
nomenclature). In earlier runs of the curriculum, students mentioned that make-
procedure would have been easier if it was introduced earlier; additionally, there was

some confusion over the difference in syntax for defining objects. Compare:

(define x 11) (define x (define (x vy)
{(make-color-object (* 5 vy))
30000 0 20000))

In the latter example, the name of the object being defined is specified differently,
using surrounding parenthesis. In order to eliminate this inconsistency and hence
foster a uniform object model, the syntax of the procedure definition was changed in

latter instantiations of the curriculum to:

(define x
(make-procedure
(y)
(* 5yl

My initial work with Maureen and Betty alerted me to the fact that some students
might not be completely comfortable using the computer as a tool: intimidation, both
from peers and the computer medium itself, proved a huge stumbling block for the
girls. To counteract this effect, I was careful, on principle, to weave manipulative use

into all stages of the curriculum.’ Manipulatives accompanied every introduction of a
new topic in order to buffer insecurities about computational media and also to "put

. .the student at ease" by providing links to the real world.

T There is in fact another difference which for complete consistency should have been altered. To be
fair, the definition of all objects should have been specified as make-<type>-object. Although
this is more uniform, it is misleading in the case of number objects. Note also that this system is a
move towards introducing typing into the language. This issue will be discussed further in
Chapter 7.
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The curriculum was executed in multiple time intervals, some of which overlapped
due to the time constraints of the students!2. Therefore, at any one time I might have
been working with one or more students at different stages of different iterations of
the curriculum. After completing work with each student, details of the curriculum

were re-evaluated and revised (again, in the spirit of iterative design).

I was able to learn new information about what sorts of things kids enjoyed
programming and creating through the different iterations. Ibegan with a small set of
functions that I wanted students to compose (see the work of Hector from section
2.2.2.3) which I felt were graphically interesting and also represented each of the
three properties of objects. As time went on, the students initiated their own
interesting applications for the principles they were learning. 1 was able to create an
informal library of functions that served the underlying curricular goals and were
simultaneously interesting to students. This introduced some extra degrees of
freedom into the curriculum so that students could choose what they were most

interested in working on.

Each student worked with the curriculum for a total of between 10-20 hours. The
duration of a session varied with the individual -- ;essions ranged from 30-120
minutes. Hence, the number of sessions also varied with the individual%as did the
pace of progression through the material. Students were encouraged to develop their
own ideas resulting in variation of the specific problem set that each student worked
on. The general format of the curriculum remained the same throughout the

iterations. It was divided up into six basic stages:

12wWith the exception of the final iteration, which was run individually but simultaneously on 6
students.
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0. Introduction, discussion & basic Scheme commands

I.  Defining new functions (property 1)

II.  Working with functional arguments (property 2)

III. Working with functional results (property 3)

IV. Interesting applications of property 3 (slope)

V. Recursion and higher order procedures

The stages 0-V are sequentially elaborated upon in Figure 8. The numbers in
parenthesis are page numbers of this document which refer the reader to places in the

case studies where a particular topic is addressed. The preceding letter is the first

initial of the student.

3.5 Data Collection

Data was collected from the students in three ways:

1. Written questionnaires. Students were periodically required to complete

questionnaires that tested their acquisition of certain concepts. Students were tested
at least twice: once after working with properties 1 and 2 and again after working
with property 3. Appendix B shows an actual questionnaire that was completed by a

student.

-

2. Session transcripts. SchemePaint allows one to save a computerized tréﬁscript ofa

user's interaction with the interpreter. During each session, this transcript was saved.
Additionally, written notes were taken on non-computational interactions!3. At the

end of a session, written notes were integrated into session transcripts.

3. Interviews. In audio taped interviews, students were directly asked to reflect on
their impressions of the curriculum, what they had learned, and how useful the

imaging tools were. This took place somewhere in the last third of the curriculum.

13video and audio taping was determined to be too intrusive on a daily basis for this age range of
students.
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V.

Introduction, discussion and basic turtle commands

¢ interested student interview

e written questionnaire

e discussion about the nature of objects (38-40)

* introduction to built-in proceduré and number objects in Scheme
introduction to name/object table

introduction to Scheme interpreter rules (41-42)

introduction to Basic turtle commands

computational work with basic turtle commands (H:25-26)

Defining new procedures (B:60-61)
® animated review of rules using imagery tools
| ¢ computational work with defining new procedures
'  hands-on "quiz" for explaining evaluation using imagery tools
e introduction to arguments
¢ hands-on work with imagery tools and arguments
e computational work with arguments

Functions as arguments (B:61-64)

¢ computational work with functional arguments

e hands-on work with imagery tools and functional arguments

written questionnaire

computational work with functional arguments

introduction to color objects

hands-on work with color objects and manipulatives

computational work with color objects and manipulatives (B:66)

® [optional: introduction to lists, conditionals, and booleans in Scheme]

e © o & o

Functions that return functions (A:74-80)

ll. ¢ hands-on work with manipulatives
e computational work with functions as returned-salues
e written questionnaire (Appendix B) b

Applications
e slope function (A:83-84; Appendix D)

vV Recursion and higher-order procedures
' ¢ nested polygons

Figure 8: The Stages of the Curriculum

Levels I-1ll roughly correspond with Stoy's properties 1-3 of first-class objects. Each of these
levels involves work with all types of representation (computational, visual, and physical).
Levels IV-V are reserved for advanced topics in math and programming, respectively.
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4 Case Studies

The following two sections present detailed case studies of subjects' experience with
the imaging curriculum; the third section of this chapter contains noteworthy excerpts
from the other 15 case studies; the last section summarizes the progress of all 18
participants. In the interest of brevity, and to avoid biased interpretation of "fuzzy"

situations, only selections that overtly relate to issues of interest will be included.

4.1 Brooke

This is a report of work with the first student ever exposed to the imaging curriculum.
During this first iteration, when the tools were fresh to both student and researcher,
they were used sparsely. The subject, Brooke, was a 10 year old female in 5th grade.

She had had no prior programming experience.

Brooke and I began the project with a discussion of computers and active and passive
entities in the non—complﬁational world. Her prior experience with computers was
limited to word processing and games. She viewed the computer as bqu an active
and passive entity. We went on to convince ourselves that everything in the world is
an object, and that objects can be named andhhave different properties of an active
and/or passive nature. I also ¢xpl~af'ned the mathematical concept of a variable, with

which she was previously unfamiliar.

Brooke retained this conception of objects in the world through to the next session,
when we extended the notion to computational objects. I introduced her to number-

objects and procedure-objects in SchemePaint, and explained how the "Scheme-
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engine" (i.e. interpreter) maintained and utilized a huge table full of information about
these objects. In order to explain the implementation details about how information
gets deposited into and retrieved from the table, I used concrete procedure and

number objects.

In the following session, Brooke was asked to explain the invocation of a procedure
call. Although the concrete objects were not present for this latter session, she
motioned throughout her explanation as if she were holding objects in her hands. She

consistently spoke about number-objects and procedure-objects as “floating around”.

In this second session, Brooke wrote her first procedure to draw a square. She
suggested the concept of a parameter without instructor prodding. After an
explanation, she wrote:

(define (square side)
(repeat 4
(fd side)
(rt 90)))

During the third meeting Brooke wrote her second procedure to make a rectangle.
She was able to recognize that it needed an argum‘ehf but several of her attempts
inserted an actual parameter in the procedure definition instead of a syrggolic name.
We went over the execution of such a procedure using the manipulatives. ‘;She noted
and fixed hef error and was able to then write the following procedure on her own:
(define (hexagon side)

(repeat 6

(fd side)
(rt 60)))
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(hexagon 20)
Figure 9: Hexagon
The standard turtle graphics six-sided polygon.

During the fourth session, I proposed to Brooke that we might like to modify the sides
of the hexagon to do things other than just go forward. I drew examples of six- sided

figures that had varying shapes on each side. For example:

(hexagon zig)

Figure 10; Hexa-zig

In this polygon, the standard hexagon from Figure 9 has been permuted through the addition
of a functional argument (in this case, zig) which specifies the movement of the turtle as it
draws the sides of the shape.

I asked her to write a procedure that could achieve this or any number of other similar
effects, keeping the side length constant. I told her that she could use any tools that
she wanted to help her out. She chose to write it at the board. She worked out the

problem almost entirely on her own. After five minutes of deliberating and
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modifying, she had correctly completed the problem. Below is a transcript of her

modification process, with student-teacher interaction included:

STEP 1:
(defiﬁe (hexagon 20)
(repeat 6
(fd 20)
" {rt 60)))
[B: “This isn’t right. I'm just thinking”]

STEP 2: [working on line 3 above for STEP 2-4]

(? 20)
STEP 3:

(fd pro 20)
STEP 4:

(pro 20)

[At this point I informed her that she was doing well. She seemed stuck for a
few minutes, so I also told her she could ask for a hint. She did so, and I told
her to think about how the computer would know what “pro” was.]

STEP 5: [line 1]
(define (hexagon pro 20)
[I told her she was close, and asked her how she would use the procedure. In
trying to come up with a correct invocation, she realized her mistake and
completed the correct version.]

FINAL.:
(define (hexagon pro)

(repeat 6

(pro 20)
(rt 60)))

She was then able to explain and use the procedure correctly. So, after 3-4 hours of
instruction on SchemePaint, Brooke was able to successfully and independently

make use of a procedure as an argument.

In the following session, Brooke was asked to explain the implementation details of

all the procedures she had written. She was given the option to use the manipulatives
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to explain the invocatiqns. She did not opt to do so, but rather motioned again as if
she were holding objects as she explained the actions of the interpreter. At one point,
she even used a marker pressed up against the white board to denote objects floating
around in 3-space. Brooke’s explanations were correct to a sufficient level of detail.
When asked to repeat the explanation using the concrete object, it was again correct.
Later in the same session, Brooke was asked to write a new procedure. She walked to
the board, drew a large rectangle, labeled it "procedure object" and began filling in

the details.

At this point Brooke’é mental model of procedures seemed to support a high-level
object concept. This became clear through observing her use of the concretizations.
When Brooke was asked to write a new procedure she did not just write the Scheme
code: she began by drawing a box on the board and labeling it a procedure-object,
then inserting the code in the box. Further, she motioned with her hands as if the
concrete objects were present. Brooke chose td reiterate at least two different imaging
modes for explaining the same concept. At no time did she choose to use the

computer to work out a problem.

After only five 1-hour Scheme sessions, Brooke appeared to have developed some
object concept of data. To test her skills at applying this knowledge, Brooke filled
out a written questionnaire. There were several interesting results.

1.) Brooke was still confused aboyut symbolic names for objects. Given the
following expression, (define side 90), she explained to me that this expressidn
redefined the value of side “like in the hexagon procedure”. In the curriculum,
young students are first introduced to the notion of defining a procedure. They are
shown that number objects also can be given names but they do not have cause to

use this principle. Thus, when presented with the above item they exhibit two
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misconceptions. First, students believe that because the variable is called side (this
is the name they have most commonly seen given to an argument) it has something
to do with a procedure. They do not understand the purely symbolic nature of names.
Secondly, students are not able to extend the property of naming from procedure to
number objects, again, indicating that the object types retain unequal status. These
misconceptions were exhibited by the pre-design students as well.

2.) Prior to the test, Brooke had written two hexagon procedures, one with a
numerical argument and one with a procedural argument. When Brooke was asked to
combine these two procedures (the first time she would have ever seen a procedure
with two arguments), she reverted to the same error we saw in her original “struggle”

with a functional argument to a function. Her answer to the test question follows:

(define (hexagon-3 side side-shaper)
(repeat 6
(fd side side-shaper)
(rt 60))) '

When we went over the test together, I suggested she try typing it in to see if it
worked. When it did not, she changed the third line to: (side side-shaper).
Interestingly, this implies exactly the opposité of her original answer. Here, the
strong similarity between objects overrides her knowledge of syntax and leads her to
believe that function and argument order are irrelevant. B

An inconsistency was flushed out by Brooke on her questionnaire. It regards the
disparity in syntax between defining a procedure-object and a number-object. Asked
to define a particular number object, 11, to have the name age Brooke wrote the
_following Scheme code:

(define (age)
(11))
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This is the correct syntax for the definition of a procedure-object. Brooke notes that
the difference in syntax is confusing. I agreed: in a world where objects are supposed
to have equal status, they should be uniformly definable. Again, students seem to be
very sensitive to syntactic inconsistencies, pointing to the utility of an iterative

curriculum design process.

In the second half of the test review session (#6) I showed Brooke the results of a
procedure called mystery-1, in similar vein to the procedure I used with Hector in
the pre-design phase. This mystery-1 took a single number argument and created
triangles of that size. After three examples of use, she was able to write the

following:

(define (triangle side)
(repeat 3
(fd side)
(rt 120)))

I then demonstrated the output of a mystery-2 procedure with three examples:
(mystery-2 f£d), (mystery-2 zig), and (mystery-2 hexagon). Sherequeﬂedzﬂ

this point that I stop so that she could write the following:

(define (triangle side-shaper)
(repeat 3 e
(side-shaper 20)
(rt 120)))

Note that this is somewhat more advanced than the mystery procedure solved by

Hector!4 in the pre-design phase.

During session #7 we began working with color objects. Brooke was very unhappy
with the name of the standard SchemePaint set-default-color procedure. We

renamed it to set-current-color. She accepted without question the notion that we

l4Recall: (define (mystery-1 £) (f 90))
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could merely rename an object: (define set-current-color set-default-

color).

After a brief introduction to the make-color-object and set-current-color
commands, Brooke was required to write a procedure that makes purple circles
(purple was the test color-object that I used to explain make-color-object). After
quickly and successfully completing this task she decided to define her own color

object, aqua. In reply, I asked her to make a procedure which made aqua circles:

(define {(aquacircle size)
(set-default-color aqua)
(repeat 18
(fd size)
(rt 20)))
At this point, after writing two procedures that differed only in one word -- i.e., the
name of the color object -- I asked her to write a procedure that could produce

hexagons of any color. Her first reaction showed some pattern tendencies:

(define (hexagon color side)
(repeat 6
(fd color side)
(rt 60)))

We broke here for the day, but resumed session #8 with a review of color ogjects and
another attempt at this procedure. Thig time, Ikused the manipulatives to explain the
différence between procedures whose result 1s interesting (make-color-obj ecé) and
procedures whose side-effect is intergsting (set-current-color). Ithen asked her
again to write the colored hexagon procedure. She assumed her favorite position of
creative reflection at the white board. She asked if the procedure needed to make
hexagons of any size. I said no. She started writing, commenting that it was easier

this time because “you
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made me make them any size last time.” She was half finished with the procedure
when she paused for a second, said "oh...", and added the size argument anyway. It
was as if she just needed the problem broken down for the slightest time quantum
before she realized the additional size argument was an easy extension. Note that she

did not add a third argument, e.g.'side-shaper, on her own. The first revision

looked like this:

(define (hexagon color side)
(color)
(repeat 6
(fd side)
(rt 60)}))

There is an interesting observation here. It is as if, for her, objects should embody
their executability. Hence, she has taken one of the properties of procedure objects
and extended it to color objects: that is, putting color in parenthesis should affect a
change in the pen color in the Scheme environment. We went through an invocation
of her new procedure using the concrete manipulatives. At this point, she said “Oh, I
need to do something more with the color.” and she added the correct procedure
invocation. During the follov&ing session, she was asked to explain three statements

as areview:

(define (hexagon color-o)
(set-current-color color-o)
(repeat 6

(fd 10)
(rt 6@®))))

(define purple {(make-color-object 60000 0 60000))

(hexagon purple)

First, she drew a 2-D color object for purple and put it in the name-object table. Then

she performed a similar operation for hexagon. To describe the invocation, she first
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got a physical manipulative for a color object and said “Scheme goes out and grabs
the color object for purple.” She waved it around a bit and set it on the dry erase sill
near the 2-D drawing. She did the same for the hexagon procedure object, then said
“Once it has these two things it can do it.” She grabbed both objects and pressed

them together.

During the next three sessions we took a break. We resumed with a task that involved
combining Brooke's knowledge of color objects with some new knowledge about
procedures which generate procedures as their result (property 3). I found teaching
this to be far more difficult than any of the previous tasks. The first observation I
made was that this task required a good deal more "forward reasoning" than the others
we had encountered so far. For example, the following was the first procedure that

Brooke was assigned to write:

(define (color-version-maker col proc)
(make-procedure
(size)
(set-current-color col)
(proc size)))

It is hard for a "novice abstracter" to comprehend this procedure. First, she must look
ahead to the time when the result of running color-version-maker is itself run in order
to "fill-in" a value for size. Understanding that size has a meaning that;;wo levels
of abstraction removed from the procedure in which it first appears requires a certain

"cognitive patience" since the time at which the value of size is determined occurs

after the time at which it first appears as an unknown to the user.

- Brooke and I wrote this procedure together, using the manipulatives as we developed

the code!>. Brooke seemed to understand the procedure as we wrote it, and likewise

I5From a teacher's perspective, I found that the manipulatives facilitated explanation. Whether this
perceived ease of instructing is accompanied by an increased ease in understanding on the part of
the students is an topic which will be returned to later.

63



she did not seem confused that a call to the procedure would return a procedure object
as its result. However, she demonstrated no real ability to generate an example of
use on her own. Even when she finally came up with the following call to the

procedure:

(define cygon (color-version-maker cyan hexagon))

she still tried to use it incorrectly:
(cygon)

I asked her to explain the procedure call just like she had in the past for less
complicated procedure calls, like (hexagon 20). At first, she got it wrong, tending
to want to break down the hexagon procedure right away and begin executing its
commands instead of viewing it as a unit. After coming to an understanding about

treating procedures as units, she generated the following code on her own:
(map cygon ' (10 20 30 40))

(map (color-version-maker blue square) '(10 20 30 40))

Although I was impressed with her initial comprehension in these tasks, Brooke left
feeling uncomfortable and insecure with her performance. Hence, we spent the next
two weeks repeatedly going over this procedure and examples. She was asked to
write the color-version-maker procedure over again at the beginning of each
session without my help. Two interesting observations: (1) whenever she needed to
write a procedure, either color-version-maker or the procedure that results from
executing it, she always started by drawing a large rectangle on the board and labeling
it with the procedure object structure, and (2) when she went to fillin that structﬁrc,
she always started with specific code and then changed it to more general symbolic
code, i.e. (set-current-color cyan) in her working version would change to

(set-current-color color-object) in the final version. She was also asked to
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explain a call to set-current-color using the Scheme evaluation rules. She twice
attempted to first do so without the objects and failed. She followed each of those

failures with successful attempts using the concrete manipulatives.

During the last session Brooke was asked to write a property 3 procedure on her own.
Her only problem was one of syntax -- she still had problems with the make-
procedure syntax in the absence of any visualization tools. With syntactic details

aside, however, she was able to correctly generate the code:

(define (shape-maker sides)
(make-procedure

(size)
(repeat sides
(fd size)

(rt (/ 360 sides))))

I asked her to explain: (define pentagon (shape-maker 5)). She was able to
explain the command correctly but, interestingly, she was bothered by the name
pentagon. She thought that the procedure should somehow reflect that it was born

from shape-maker and therefore she called it pentasm.

4.1.1 Summary -

Brooke was the first student to use a variety of imaging tools in the curriculum. She
made ample use of both visual and physical representations in prdblem solving,
shying away from the comput'er until a time when she was satisfied with the
correctness of her work. She was able to work through problems at level III aided by
lengthy interaction with manipulatives. In a disappointing end to this case study,

Brooke lost her final questionnaire and was reluctant to complete a second copy.
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4.2 Aaron

Aaron, the subject of the second case study to be described here, participated in the
final execution of the curriculum. Aaron was a 10th grade male with some prior
programming experience in BASIC. He did not have a good enough working
knowledge of the BASIC language to program on command. Aaron participated in
the project through an apprenticeship program at his school. Aaron worked with the

imaging curriculum for seven two hour sessions.

During our discussion of objects in the world and active and passive entities, Aaron
made the following observations:

"Everything is an object except thoughts."

"All that thinking about thinking tells me is that I am actively thinking about an active thing."

Aaron's assertions would seem to indicate that he has a fairly strong bias against

stereotypically active things having any sort of object-like nature.

After this discussion Aaron was introduced to the basic turtle commands and given an
explanation of the Scheme rules for evaluation using manipulatives; he was then
given freedom to explore with the computer. Aaron began by first writing the

following code: . NF-

(repeat 360
(fd 1)
(rt 1)

He was continually executing this segment of code and rotating the turtle 180 degrees
~to make two "eye-like" tangent circles. I explained to him how to make this code into
a procedure (note the early introduction of make-procedure in this iteration of the

curriculum):
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(define circle
(make-procedure
()
(repeat 360
(£d4 1)
(rt 1))))

Shortly after this introduction, he asked how to add an argument to change the size of
the circle. Armed only with that information, I left him to work for five minutes.

When I returned, he had written the following code:

(define circle
(make-procedure
(size dir)
(repeat 360
(fd size)
(dir 1))))

He was using this code to generate either side of his "eyes":

SchemePaint

(circle 1 rt)
(circle 1 1t)
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Figure 11: Eye
A favorite introductory exercise had students creating circle procedures. In this case, the
student decides on his own to vary the direction of turn by adding a functional argument.

After this, I asked him to write the most general procedure for making polygons that

he could think of. He wrote:

(define polygon
(make-procedure
(sides direction turn incA incB)
(repeat sides
(direction inca)
(turn incB))))
However, he informed me after writing this that the following version was more
readable:

(define polygon
(make-procedure
(A B CDE)
(repeat A
(B C)
(D E))))

Clearly, Aaron had a very uniform concept of data objects. At this point, Aaron had
only limited exposure to the imaging curriculum. One might suppose that Aaron
already possessed a predisposition to;vafds an object ontology of data; as we shall see
later, Aaron, in an interview, admits to using his own visualization skills to help him
program even prior to this time. Note that Aaron wrote the above code after 1.5 hours
of working with SchemePaint: this fact coupled with his self-admitted tendency

towards visualization supports the assertion that imaging techniques are one method

of successful concept acquisition for functional data.

" During the second session, after a review of command evaluation using visual and
motor imaging manipulatives, I explained to him that we wanted to be able to make

polygons which had polygons as sides. For example, contrast a five-sided polygon
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with straight lines (£d) for sides with a five-sided polygon with ten-sided polygons for

sides:

SchemePaint

Figure 12: 5-Sided Polygons

The top polygon shows a five-sided figure with straight lines for sides. Below that is a five-
sided polygon with ten-sided polygons for sides. These drawings are both accomplished
using the same procedure with varying functional arguments.

As a first attempt at a solution, Aaron wrote the following: -

(polygon 5 polygon 10)

This solution ignores the syntax problem presented by passing the polygon afgumenp
into the éo lygon procedure; ;Sn the other hand, it reflects 'ziri instinctive notion that
procedures are just objects to be manipulated. Innocently, it correctly portrays a
tension that can be seen between the object model and the standard environment
model [Eisenberg 1990]; chapter 7 will further elaborate on this topic. We went

through this expression, using the manipulatives to realize why it would not work
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(most simply, the polygon procedure, which takes four arguments, is substituted into

a slot where the expected procedure takes one argument).

I then explained how it could be useful to write a polygon-maker-procedure
(abbreviated ppm). Itold him that when you typed (ppm 4) then it should give you
back a square procedure. Aaron seemed to have a bit of trouble grasping the fact that
it would not actually make the square. Regardless, he was set to the task of writing
the ppm procedure with just this limited information. The following code is taken
from an actual transcript of Aaron's work on this problem. Instructor interjections are

noted in brackets:

(define polygon-maker
(make-procedure
(sides, size)
(repeat sides
(fd size)
(rt angle)
(angle = / 360 sgides))))

[I explained the concept of nesting procedure calls using mathematical examples]

(define polygon-maker
(make-procedure
(sides size)
(repeat sides
(fd size)
(rt (/ 360 sides)))))

>>> (polygon-maker 4 5)
[T explained the difference between result objects and side-effects]

(define square
(make~-procedure
(size) - S
(repeat 4 ‘ L
(fd size) Coaen
(rt 90)))) -

-, ™

- [Fexplained the difference between (ppm:4) ‘and {-(ppm 4) 10} and (define square (ppm 4)); in
other words, I vaguely treated the subject of anonymous objects through example. This was the final
intervention by the instructor.]

(define PM ' [A]

(make-procedure
(procedure) ) )
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(define PM [A]
(shape)
(shape))

(define PPM [B]
(make-procedure
(side)
(define 4
(make-procedure
()
(£fd 10)
(rt 90)))))

(define PPM [B]
(make-procedure
(side)
(rt side)
(define square
(make-procedure
()
(fd 10)
(rt 90)))))

(make-procedure [A]
(x)
(+ x 1))

(define ppm {B]
(make-procedure
(sides)
(define sides
(make-procedure
(sides)
(rt {(/ 360 sides))))))

(define ppm [B]
(make-procedure
(sides length)
(define sides
(make-procedure
(sides)
(rt (/ 360 sides))))))

(define ppm [C]
(make-procedure
(NumSides SideLen)
(repeat NumSides
(rt (/ 360 NumSides))
(fd SideLen))))

(define polygon [C]
(make-procedure
(sides direction turn incA incB)
(repeat sides
(direction incA)
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In the latter part of the examples above, Aaron seems to remind himself of the use of
make-procedure by practicing with a few trivial and non-related examples [A]. He
appears to conceive that he needs to use a nested make-procedure call, but he still
cannot divorce this idea from the notion that procedures need names [B].

Unsuccessful, he begins to abandon the idea of nesting [C].

At this point, we began to work through the problem together. We drew a step-by-

step diagram on the board (Figure 13).

This translated into an instant solution for Aaron:
(define ppm
(make-procedure
(NumSides)
(make-procedure
(SideLen)
(repeat NumSides)

(rt {(/ 360 NumSides))
(fd SidelLen))))

After writing the correct procedure, I asked him to use it. It took him three
expressions (shown below) to work out the correct syntax for what he wanted to do.
Note that his first instinct was to include an extra numerical argument alongside the

call to ppm (in actuality that numerical argument was a specification for the polygon

procedure). -

>>> (polygon 6 fd ((ppm 4) 10) rt 60)
>>> ((ppm 4) 10)
>>> (polygon 6 (ppm 4) 20 rt)

For homework, Aaron successfully completed an inc-maker function (takes a single
numerical argument, n, and returns a function which increments its numerical

argument, x, by n).

During the third session I asked him to write me a new square procedure that would

work for the following invocation: (square (ppm 6)).
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procedure
input: sides
body:
step 1: (make-procedure
(repeat sides
(£4 side)
(rt (/ 360 sides) )
number object
value:
4
object
procedure procedure
input: sides input:
_ body: = | body:
step 2: (make-procedure (repeat
(repeat sides (£d side)
(fd side) (xrt (/ 3644] ))
(rt (/ 360 sides))
umber object object
value:
4
object procedure
input:
body:

(repeat

step 3: (£4 side)
/' (rt (/ 3644] )

object
number
value:
10
object
procedure
) input:
step 4: ) body:
(repeat
(ga[id
(rt (/ 364%] )
object

Figure 13: Visual of polvgon-procedure-maker
An example of how manipulatives can be used to work out expressions: in this diagram, the
student is able to verify the sanity of anonymous objects and "still missing" variables.
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At first, he wrote a "normal" square procedure using the line (fd size). Then, when
he tried to run the original command I had asked him to mimic how he got an error. I
had him work out the entire invocation of the command using the evaluation rules and
creating new procedure objects with the manipulatives as he proceeded. When he got
to the stage of invoking (ppm 6), he did not think it would work because the

computer would not know what SideLen was (missing variable phenomenon):

(define ppm
(make-procedure
(Numsides)
(make-procedure
(SideLen)
(repeat NumSides
(rt (/ 360 NumSides))
(fd SidelLen)))))

While Aaron realized that the missing variable explanation was not in line with the
original error message that he had gotten, he said that he could come up with no other
explanation. I encouraged him to plod along in the rule execution. He got to the
point where he had to substitute in the anonymous (ppm 6) procedure object that he
had created in place of the variable size in (fd size). He realized his error at that
point and fixed it. We went back over it a second time and I asked Aaron.if he now
understood why we didn't need to know about sideLen; he did. I also directly asked

whether he had a problem with the idea of anonymity for the result of a call like (ppm

6); he claimed that he did not.

While observing the above sequence it became obvious to me how critical the process
of detailed rule evaluation using manipulatives had been to his debugging process. In
this case, the objects served more usefully as "tools of rehearsal" rather than

"instigators of intuition." So far, the manipulatives had most apparently been useful
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at a very cognitively high level -- to foster an overall intuition about the object nature
of function. Now, the concrete tools were being utilized beyond the student's initial
flash of insight -- on a more long term basis as objects to think with. In either
scenario, however, it is noteworthy that the tools played a critical role in ushering the

student into a correct problem solution.

By this time, it was clear that Aaron was capable of and interested in learning more
about the Scheme language than is typically presented in the standard curriculum.
Accordingly, we went O‘VCI' lists and list manipulation procedures, predicates,
conditionals, and Boolean objects. One of the tasks he was initially asked to do was
to redefine car and cdr to first and rest (recall that half of the undergraduates
previously surveyed did not complete this question in the most concise manner).

Aaron redefined car and cdr in the simple object-oriented way:

(define first car)
(define rest cdr)

Here, we also began working with color objects. The anonymous object concept was
completely cléar to Aaron; one could surmise that this was due to his previous
introduction to »anonymous procedure dbjects. Aaron's task, similar to that of Hector
(from the pre-design phase), was to write a series of color transformation*‘ﬁgocedures.

‘He had no difficulty with this; he even, on his own, came up with the idea of

"n . n

redefining the procedure to the name "lighten". For example, Aaron wrote the

following color change function:

(define change-r
(make-procedure
(dir color)
(make~color-object
(dir (get-red color) 5000)
(get-green color)
(get-blue color))))
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Typically, one would call change-red with the - and + signs as arguments:
(change-r - cyan). However, Aaron's change makes the code nicely readable:
(change-r lighten cyan). His next task was to write the compose functionl!®,
again as in the pre-design phase. His first attempt was not too conceptually far off.

Note, however, that it lacks the notion of an argument to operate on:

(define compose
(make-procedure
(functionl)
(make-procedure
(function2)
(functionl (function2)))))

For homework, he revised the function into a technically sound version:

(define compose
(make-procedure
(functionl function?2)
(make-procedure
(color)
(function2
(functionl color)))))

During the following session, Aaron took a written questionnaire. This questionnaire
contained never before seen problems. It was designed to test whether Aaron could
take the concepts that he learned in a graphics context (SchemePaint) and transfer
them over to a more mathematical pure Scheme environment. Aaron's complete test
is shown in Appendix B. To summarize, Aaron retained a good concept:)ic:ft functions
as arguments into the mathematical domain and is able to successfully apply what he -

has learned. Note also that he successfully answered the problematic (apply-to-5

create-subtracter) example.

Immediately after the written questionnaire, Aaron participated in an interview

(Appendix C). In this interview, Aaron was directly asked to self-assess how he

16The idea of composition of functions was completely new to Aaron and required extensive
explanation. While that was not surprising, it was also apparent that he had little or no
mathematical experience with any sort of function manipulation, e.g. graphing or f(x) notation.
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thought the imaging curriculum had affected him. Aaron does not espouse the
usefulness of the physical manipulatives, but rather prefers the visual representation:
"I think having it on the board was the most useful because... I think
putting it inside of the little pouches and stuff its harder for me to see
how it goes together and how it works."
Still, Aaron's work with physical manipulatives has left a mark on him by coloring
both his language and his gestures. He refers to a functional argument to a function
as "a box inside of a box". Throughout the interview -- even as he denies the
usefulness of the objects -- Aaron simultaneously motions with his hands to make a

box shape as he talks about functions.

For the following two weeks we worked on integrating the concepts of recursion,
graphics, and higher-order procedures. Aaron's success with these ideas was

uninterestingly precise.

During the last session Aaron wrote a function to find the slope of mathematical
functions. He used a worksheet to guide him through the process (Appendix D).
Unfortunately, the worksheet turned out to be insufficient because he did not have
proper background in mathematics (for example, he did not even know how to graph
the function y=2x). He was unfamiliar with f(x) notation. We took a 20 minute break

from the worksheet so that I might present a brief explanation of slopes and functions

in mathematics.

While he seemed to understand how to calculate a slope, he was still too
uncomfortable to tackle question 4 of the worksheet which asks that he write the
slope function in Scheme. As a sub-problem, I asked that he write a slope function
for only the double procedure (as opposed to one which calculated slopes for any

function). He wrote:
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(define slope
(make-procedure
(function)
(- (function 2) (function 1))))

I clarified that T wanted it to work for any interval, but only the double function. He

wrote:

(define double-slope
(make~-procedure
(x)
(- (double (+ x 1)) (double x))))

Then I asked that he abstract it to work for any function. He did so, with just a minor
glitch:

(define slope
(make-procedure
(function)
(define
[A five second pause: "Hmpf..." and then he changes define line:}
(make-procedure

(x)
(- (function (+ 1 x)) (function x)))))

At first, he incorrectly used the function:

(slope (double 3))

but quickly fixed his mistake:

((slope double) 3)

He was then able to complete the worksheet and make observations about the

behavior of functions. We concluded with a discussion of how slopes (i;elate velocity :

" and acéceleration. Aaron was thoroughly proud of himself when he realized what he

had just accomplished.
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4.2.1 Summary

Aaron was able to rapidly progress through the curriculum, mastering properties 1-3
and some advanced topics in Scheme programming. His use of the physical
manipulatives was sparse since he preferred the visual representation; he claimed to
have an object concept of function prior to beginning the curriculum. Aaron was able
to apply his knowledge of functions within the domain of graphics to a purely

mathematical problem involving slope functions (property 3).

4.3 Other Interesting Case Pieces

4.3.1 Gretta

Gretta was a 14 year old high school student with little interest or background in
mathematics. She chose to do the SchemePaint project to fulfill a workshop
requirement at school and because her father wanted her to learn more about
computers. She was quiet and introverted. We met for eight weeks in two half hour

sessions per week. Gretta participated in the final iteration of the curriculum.

During the fourth session with Gretta we Went over adding arguments to procedures.
She had been working on generating circles since the beginning of our work together.
Gretta quickly grasped the idea of an argument, and added one to change the size of
her circle. Then, she summoned me and asked if it was "ok" to replace the right
procedure With an input so that she could make the circle turn right or left as it was

drawing.

Later in the curriculum when we discussed property 3, Gretta exhibited the same
instincts about property 3 as Aaron did. She was asked to write a procedure called

make-colored-hexagon-procedure (mchp) which took a color object as input and
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generated a "hexagon making procedure” which could then be used to generate

hexagons of that color of any size. Her first attempt was just shy of correct:

(define mchp
(make-procedure
(col)

(define col-hex
(make-procedure
(size)

(repeat 6
(fd size)
(rt 60))))

She made her first mistake in forgetting to actually call the set-default-color
procedure. More interestingly, however, she tried to define and assign a name to the
generated procedure, indicating that she had a problem with its anonymity (recall that

Aaron exhibited the same tendency). After we fixed both problems, a run through

with the manipulatives allowed her to reconcile the validity of an anonymous object.

At the end of nine weeks Gretta was interviewed about her opinions regarding the
work we had done. Some interesting excerpts follow:

I: Does it seem any different to use procedure objects as inputs than
it does to use number objects as inputs?
G: Kind of the same but there is a bit of a difference. Both can be variable.

I: How vivid is the image of a procedure? Do you have an image?
G: Kind of since I have been shown a table or a square object. It makes it easter to
think about it. -

I: Do you see procedures as single units? Do they have any parts?
G: Single units unless they've got input. Then there is another part you need to stick
in to make it work.

I: Sometimes we represent objects as pictures on the board in the

framework of the name/object table. Sometimes we represent them with the puffy
objects: Do you think either of these representations has helped you to learn about
-objects-in SchemePaint?

G: Yeah. It helps to show what's going on so that we don't always think of it as a big
mass of numbers. It helps you understand what's going on so that you don't just think
of the computer as this big massive thing that shoots something out at you.
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I: So, I'll make a statement based on what you just said and you tell me if you think
['ve gotten the idea that you were talking about: "Objects help build bridges between
thinking in the everyday world and thinking in the computer world." Is that right?
G: Yeah.

I: Is the computer world real?

G: Yeah. Its different from ours but its real because its still happening... still going
on.

I: Its real, so, is it more of an abstract thing or a physical thing?
G: Its more like abstract things than physical things.

I: So, do the objects help make the abstract more understandable?

G: Yah. Humans make minds think they should see everything concretely so it helps
when you can see it concretely.

I: Is one representation better than the other? Are there times when you mentally
refer to one representation or the other, depending on the circumstance?

G: [Writing on the board] shows the table better. Both show what's happening, just in
a different way.

I: What do you think the objects are good at showing?

G: How it goes and gets them, has to look them up and put them together. It shows it
in a more solid way.

4.3.1.1 Summary

Gretta had no prior programming experience but was able to produce the idea of
property 2 all on her own. Although she progressed to property 3, she was able to

perform such calculations only with the aid of the physical manipulatives. In an

concrete thinking.

4.3.2 Nate

‘Nate was a 13-year old high school student.. He had programmed extensively before
in BASIC and was currently learning C. He was a difficult student with a short

attention span. His programming was careless and not well thought out.
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About half way through the curriculum (after functional arguments had been
introduced and mastered) I began to introduce color object with the physical
manipulatives. Nate's response was, "Oh, not the puffy objects. I hate the puffy
objects. Put them away and I will image that they are there." The first time he went

to the computer to explore some programming with color objects, he typed in:
(make-color-object 50000 20000 30000)

He immediately paused and said "Oh, but that just makes a lost object that we can't
access. We have to use define to name it." Later on, when he learned about list
objects he thought that there should be such a thing as a list generating procedure.
This procedure, he thought should take as input some kind of specification for the list
you would want to generate and then create it. You could then use a call to this
procedure as test input to other list manipulating procedures. This idea shows a solid
object concept of data. He later demonstrated this further by writing a procedure to
generéte procedures that returned the nth element in a list. With only that

introduction, he was able to write the following on his own!”:

(define make-nth-elt-getter
(make-procedure
(input)
(make-procedure ’ -
(input2)
(list-ref input2 (- input 1)))))

In the following passage, Nate comments about his concept of data and the utility of

- the curriculum for developing those intuitions:

I: Are there any kind of pictures in your head around that thing, any kind of visual
image of the idea of passing a procedure -

I7There was one glitch; he too initially added adefine line in the second call to make-
procedure. However, he realized and repaired his error before he was even done with the
procedure.
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N: I'mean I guess there's the idea of the little thingy and you take the head off and
you take another little thingy out and you take the head off and you take another little
thingy out...

I: Wait, what's a little thingy?
N: You know like those little clay people inside the people and the last one is like a
little wad of clay?

I: Now, in this particular procedure does it seem any different to you, the idea that
we would pass in a number as a piece of data to this procedure or that we would pass
in a procedure? Or do they seem pretty parallel? ,

N: No, it seems slightly different cause when you've got a procedure you've got
something that still is doing something whereas if you have a number you're having
something tell something to do something. Its not really doing something on its own.

I: The number is not doing anything on its own?
N: Right. Its just telling things what to do.

I: Ok, so the number is telling things what to do?
N: Yah. The number is telling the procedures what to do.

I: We've done a lot of stuff talking about passing procedures as arguments and
returning procedures as results of other functions. I want you to describe sort of
generally any imagery that you have around procedures. So when you think "I have
to write a procedure” or "I have to pass this procedure as an argument" what image do
you have in your head of a procedure? Are procedures units? Do they have parts?
What do they look like?

N: Yah, I mean to me it seems like a procedure is a sort of a unit and a block of data.

I: Along the course of our 10 weeks of work, I've presented two different pictures of
things. My question for you is opinion based: do you think that either of these
representations has helped you to learn in any way? And if the two different
representations have helped in different ways, how?
N: I'm not sure that either has helped a lot but I think that having a little object
definitely helps you think of something as an object.

I Are there times when you're sitting down to write a program whensyou would
conjure up either of these representations like you would see the table in your head or

N: - No, I never lean back and close my eyes and see little pink things floating in my
head.

I: Does returning procedures as results of other procedures seem different or weird to
you or does it seem pretty natural?
N: It seems pretty natural.

I: So here, the fact that I have a call to increment-maker with an argument of 10, and
what do I get back when I just do that?
N: Junk.

I: Junk?
N: Basically, a procedure that's nameless and so its junk 'cause you can't access it.

I: Does that seem like a weird thing?
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N: Seems weird that you can't go and fry your nameless procedures. Like, get rid of
them.

I: So it doesn't seem weird to you that procedures can be returned as results of other

procedures?
N: It's different, but it makes sense.

4.3.2.1 Summary

Nate, who had some programming experience prior to exposure to the imaging
curriculum, expressed a particularly strong dislike for the physical manipulatives.
Despite this, his discourse about and around functions advances a very strong object
concept of function. Nate had the best working knowledge of anonymous objects of
any of the students of the curriculum. Like Aaron, he was able to apply his

knowledge across domains to purely mathematical problems.

4.4 Summary of Results

A total of 18 students began the imaging curriculum. Each student attained a
different level of achievement within the program. Table 7 summarizes the progress
of each student: AGE in years; TIME in the curriculum in hours, number of
COMPANIONS with whom the student was simultaneously tutored; overall
ATTITUDE towards the experience; and the LEVEL of achievement completed,
based on the following division:
0 Basic scheme commands
I Defining new functions (property 1)
I Working with functional arguments (property 2)
III Working with functional results (property 3)

IV Interesting applications of property 3 (slope)
V Recursion and higher order procedures
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Table 7: Student Achievement Summary
Student's performance in the imaging curriculum is recapped. The level that each student reached is
considered alongside of information about age, duration, working partners, and overall attitude.

ALIAS . AGE LEVEL TIME COMPANIONS ATTITUDE
maureen 12 [ 7 1 insecure
betty 12 I 7 1 insecure
hector 11 1f 12 0 enthusiastic
brooke 10 il 14 0 enthusiastic
lydia 21 1l 9 0 enthusiastic
sonny 18 0 3 0 neglectful
laurence 9 l 10 1 energetic
jonathan 11 I 10 1 energetic
patty 13 l 5 2 hostile
david 13 0 5 2 hostile
joseph 13 | 5 2 hostile

nate 15 v 21 1(->0) arrogant

. donald 14 I 3 1 enthusiastic

“aaron 15 v 14 0 enthusiastic
samuel 14 I 8 1 insecure
gretta 14 1l 8 1 enthusiastic
duncan 10 I 5 0 enthusiastic
slone 12 I 8 0 enthusiastic

The next chapter will further analyze the particulars of each student's experience with

the curriculum and discuss the implication of the various successes and failures.
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5 Analysis and Discussion

This chapter addresses several pertinent issues regarding the imaging curriculum.
First, it presents a brief description and discussion of each individual student's
experience with the imaging curriculum and also highlights consistent observations.
Next, the chapter reflects on what kinds of learning might take place for students of
the imaging curriculum. This is followed by the linking of salient observations
together in order to pinpoint the specific ways in which the imaging tools catalyzed
the learning effort. The last section attempts, in a theoretical sense, to critique the

consistency of the object design.

5.1 Individual Experiences

The following descriptions of students' experiences are grouped as the students were
themselves grouped when they worked with the curriculum. The students are
presented in an order relative to when each of them began the curriculum. Each

description includes notes on:

* grade & gender; source: how did each student come to be involved? =~ -

e interests: e.g. mathematics, art, etc.

e iteration: approximately how many times had this material already been taught to
someone else before the case study in question?

* setting: what was the working environment?

* time (spent on the material)

« attitude: what was the student's attitude towards this learning experience?;

* level (of accomplishment)

* notes

« selected interpretations derived from the current description
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5.1.1 Maureen and Betty
Grade & Gender: Maureen and Betty were two 7th grade females.

Source: Both girls were recommended to me by their Middle School computer
instructor.

Interests: Both had a general interest in art (this was considered important, given the
graphical nature of the SchemePaint application).

Iteration: O (pre-design phase).

Setting: We worked after school in their Middle School computer lab; each girl had
her own computer. The screens were small and the computer memory was -
inadequate, resulting in frequent and frustrating crashes of the application.

Time: Seven weekly one hour sessions; no homework.

Attitude: Both girls were insecure about their ability to learn the material. They
often approached tasks murmuring about their inability to complete them. They were
very concerned about the possibility of other students from the school (passers-by)
observing their work.

Level: Neither student became fluent with the idea of parameter passing. They often
made the mistake of using the actual value of an argument in the procedure definition
instead of a formal symbolic representation.

Notes: Maureen and Betty were very worried about the social ramifications of
working after school, which severely curtailed their attention span. They came into
the program leery of computers and were never able to move beyond this fear.
Insufficient computing resources exacerbated an already frustrating experience.

Selected Interpretations: a) Setting and resources are critical to student
performance; b) The computer was a difficult artifact for these girls to relate to.

5.1.2 Hector
Grade & Gender: Hector was a 6th grade male.

Source: Hector frequented the Middle School computer lab. He saw Maureen and
Betty working with the curriculum and asked to join.

Interests: Hector was interested in computers. He had some programming
- experience and was a member of the computer club.

Iteration: 1. Although this was the pre-design phase, there was enough of a time
lapse between his sessions and those of the previous two girls such that the
curriculum was modified.

Setting: We worked after school in a small faculty office with adequate computing
resources.
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Time: 12 weekly one hour sessions broken approximately in half by a summertime
recess; some homework.

Attitude: Hector was enthusiastic and bright. He worked on novel tasks with
pleasure. Towards the end of the curriculum, his interest waned. He explained that
he was more interested in working on C programming with his friends.

Level: Hector became very comfortable with procedural arguments (property 2) and
marginally comfortable with property 3.

Notes: Hector was a self-motivated computer programmer. Upon entering the
program, he had many standard programming concepts mastered. Property 3 was the
most troubling concept for Hector. He also showed some confusion with color
objects.

Selected Interpretations: a) Property 3 is the most difficult for students to master;
- b) Experience with imperative programming may have accounted for some of the

difficulty with functional programming concepts; ¢c) Anonymous objects of any sort
present difficulty.

5.1.3 Brooke
Grade & Gender: Brooke was a 5th grade female.

Source: Brooke was the daughter of a local high school teacher (a classmate of
mine).

Interests: Brooke was interested in the performing arts. She expressed an explicit
distaste for mathematics. She had no programming experience.

Iteration: 2. This was the first study which used physical manipulatives.

Setting: We worked after school in a spacious room with a large computer and dry-
erase board. =

Time: 14 weekly one hour sessions; no homework.

Attitude: Brooke was enthusiastic and meticulous; she was a self-proclaimed
perfectionist.

Level: Brooke became comfortable with procedural arguments (property 2) and
marginally comfortable with property 3. By the end, she was able to describe the
~execution of a property 3 function only with the assistance of the manipulatives.

Notes: Brooke was not an experienced programmer or natural mathematician.
Perhaps because of her interest in performance, she hooked onto the manipulatives as
a form of representation and always used them to work out problems.

Selected Interpretations: a) Manipulatives helped Brooke solve problems using a
tangible method that the computer did not provide; b) Manipulatives helped Brooke
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work with functions that returned other functions (property 3) by making all of the
pieces of the process accessible and sensible.

5.1.4 Lydia

Grade & Gender: Lydia was a 22 year old female undergraduate.

Source: Lydia was working with SchemePaint as part of a class project about how
people learn programming.

Interests: Lydia was interested in computer tutoring and graphic arts.
Iteration: 2. This occurred essentially simultaneously with Brooke.
Setting: We worked in a spacious room with a large computer and dry-erase board.

Time: Nine weekly one hour sessions; homework involved reflecting on her
experience with the curriculum and keeping a journal.

Attitude: Lydia was interested and enthusiastic. She described this as the best
educational experience she had ever had.

Level: Lydia was able to use property 3.

Notes: Lydia was in favor of the use of manipulatives as well as one-on-one
educational experiences. She expressed a level of discomfort with instantiations of
property 3 because "you don't define everything that you use in the input." While she
was able to use property 3, she never described herself as comfortable with it.
Selected Interpretations: a) One-on-one experiences are unrealistically favorable;
b) Comfort (which was very important to the student) is a less common feeling with

higher-order procedure processing because of a lack of analogous experience with it
in other domains.

i

5.1.5 Sonny

Grade & Gender: Sonny was an 18 year old 10th grade male from Nepal.

Source: Sonny was the friend of a fellow graduate student. |

Interests: Sonny was interested in running.

Iteration: 2. This occurred essentially simultaneously with the last two case studies.

Setting: We worked after school in a spacious room with a large computer and dry-
erase board.

Time: Three weekly one hour sessions; no homework.
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Attitude: Sonny was always enthusiastic when present; however, he rarely attended
scheduled meetings. He began to forfeit sessions of the curriculum in favor of track
practice and eventually formally dropped out. His English skills were poor.

Level: Sonny mastered the use of basic turtle commands.

5.1.6 Laurence and Jonathan

Grade & Gender: Laurence was a 4th grade male. Jonathan was a 6th grade male.

Source: Laurence and Jonathan were the sons of a computer science graduate
student. :

Interests: Unknown.
Iteration: 3.

Setting: We worked in a small room with two large computers and dry-erase board
after school.

Time: 10 weekly one hour sessions after school; no homework.

Attitude: Both brothers were energetic. Laurence was more outgoing and hasty;
Jonathan was quieter and tentative.

Level: Neither boy progressed beyond property I (although we did touch upon
functional arguments in the final session).

Notes: Having both boys in a small room created a behavior problem. They would
frequently bang on the keyboard until it beeped. Neither boy was prone to reflection
about the problems that they worked on, resulting in a trial and error style of learning.
Both boys had trouble with parameterizing functions.

Selected Interpretations: a) Two students in a small room is inefficient for social
interaction reasons; b) The curriculum is not good at motivating or drawing the non-

self-directed student; ¢) Trial-and-error does little in this case to foster overall concept
acquisition; d) Trouble with parameters to functions could be age related.

5.1.7 Patty, David, and Joseph

Grade & Gender: Patty was a 9th grade female; David and Joseph were 9th grade
males.

Source: All three students signed up to do the project as part of a workshop
requirement for their high school.

Interests: No academic interests were expressed by the students.
Iteration: 3.
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Setting: We worked during the middle of the school day in a small room with three
large computers and dry-erase board.

Time: 10 semi-weekly half-hour sessions; no homework.

Attitude: All three students were hostile to the project and thought it was a waste of
their time.

Level: None of the students progressed beyond property 1. One student never
mastered property 1.

Notes: The student's were unwilling to work with the manipulatives. Students were
much more interested in the direct manipulation aspect of SchemePaint (and other
applications on the computer) than in programming. The graphics in SchemePaint
were not perceived to be dynamic enough.

Selected Interpretations: a) Interesting applications of SchemePaint and higher-
order procedures should be introduced early in the curriculum to pique the interest of
non-intrinsically motivated students; b) Physical manipulatives are perceived as dumb
by students of this age range and motivation level.

5.1.8 Nate and Donald
Grade & Gender: Nate was a 10th grade male; Donald was a 9th grade male.

Source: Both students signed up to do the project as part of a workshop requirement
for their high school.

Interests: Nate is an interested and experienced computer programmer (of the
"hacker" variety). Donald is computer illiterate.

Iteration: 4 (final).

Setting: We worked during the middle of the school day in two small.zooms each
with a large computer and dry-erase board; the instructor moved from roont to room.

Time: Donald stayed in the program for six semi-weekly half hour sessions before
dropping out in order to run for student government; Nate stayed with the program
through the duration of his workshop session (12 semi-weekly half hour sessions) and
then re-joined for an independent study (nine additional hours in six one and a half
hour blocks); some homework.

~ Attitude: Nate is arrogant and confident. Donald is quiet and has a learning
disability. Both are enthusiastic.

Level: Donald dropped after an introduction to procedural arguments, never
completing a homework assignment on the subject. Nate became proficient at
properties 1-3.

Notes: Nate thought that, by comparison to BASIC, functional programming was
dumb.  He had some initial problems with moving beyond assertive-style
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programming semantics. Overall, Nate had very few serious problems in the
curriculum. Nate was able to trivially write the slope function. He had problems
with the introduction of recursion and dropped the curriculum there.

Selected Interpretations: a) Imperative programming ideals provided an irritation if
not a serious obstacle to higher-order programming concept acquisition; b) Imperative
programming did seem to create problems once recursion was introduced; c)

Recursion is perhaps another abstract concept whose pedagogy is a needy candidate
for imagery based instruction.

5.1.9 Aaron
Grade & Gender: Aaron was a 10th grade male.

Source: Aaron signed up to do the project as part of community apprenticeship
requirement for his high school.

Interests: Aaron has done some programming and is generally interested in
academics.

Iteration: 4 (final).

Setting: We worked during the middle of the school day in a large room with a large
computer and dry-erase board.

Time: Seven two hour weekly sessions; weekly homework.
Attitude: Aaron was calm, persistent, and goal-oriented.

Level: Aaron mastered properties 1-3 as well as recursion and recursive functions
using property 2.

Notes: Aaron was a generally fast and insightful learner. He seemed motivated by a
desire for knowledge. He claimed in an interview that he found physical
manipulatives unhelpful. He always completed his (always challengingy*homework
correctly. -

Selected Interpretations: a) This case study raises issues about the utility of the
manipulatives for different sorts of learners.

5.1.10 Samuel and Gretta
Grade & Gender: Samuel (male) and Gretta (female) were in 9th grade.

Source: Both students signed up to do the project as part of a workshop requirement
for their high school.
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Interests: Gretta hates math but her father makes her do it; Samuel thinks computer
graphics are neat and he wants to author a computer game eventually.

Iteration: 4 (final).

Setting: We worked during the middle of the school day in two small rooms each
with a large computer and dry-erase board; the instructor moved from room to room.

Time: Eight semi-weekly half hour sessions; no homework.

Attitude: Gretta is quiet and amenable. Samuel is quiet and interested in flashy
graphics. He is interested not in thoughtfully doing the work but merely in the final
product.

Level: Samuel only reached level I and his comfort with parameters was never high;
Gretta used the manipulatives to do level III problems.

Notes: Samuel was slow with the curriculum because of a general lack of interest in
thinking about or solving problems himself; he was perfectly content to let me work
through a problem for him. He never tried solutions on his own, rather, he always
gave up with little or no attempt and asked for my assistance. He was not enthused
about using the manipulatives. On the other hand, Gretta was comfortable with the
manipulatives and seemed quite motivated by the pride of finishing a task on her own.
Even on tasks that were well beyond her expected ability, she was able to make very
educated guesses. She is one of the students who generated property 2 on her own.
Gretta never "graduated" from manipulative use to a point where she could generate
property 3 functions only with the computer and without the use of the manipulatives.
Selected Interpretations: a) The curriculum does little to improve the motivation of

students; b) A direct correlation between students' motivation, success with functions
as objects, and willingness to use the manipulatives seems to be emerging.

5.1.11 Duncan

Grade & Gender: Duncan was a Sth grade male. -
Source: Duncan was the son of a personal friend.

Interests: Duncan liked art, but not math. He had no experience with computer use.
Iteration: 4 (final).

Setting: We worked after school in a large room with a large computer and dry-erase
board.

Time: Five weekly one hour sessions; no homework.
Attitude: Duncan is excitable but able to concentrate when he tries.

Level: Duncan was able to do some work with property 2.
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Notes: Couched in a decidedly jovial manner, Duncan was successful at using
property 2. He named his functions things such that expressions might look like, for
example, (frig frog). He seemed to be more interested in the work when it was a
game. He was able to use the manipulatives, but was not particularly detailed in his
use of them; he enjoyed picking them up and throwing them around but not
composing them.

Selected Interpretations: a) The game-like element of the manipulatives and
Duncan's naming schema points to a tendency to prefer games which may prevail
among younger students.

5.1.12 Slone

Grade & Gender: Slone was a 7th grade male.

Source: Slone was the son of a computer science graduate student.
Interests: Slone liked computers and was just becoming familiar with them.
Iteration: 4 (final).

Setting: We worked after school in a large room with a large computer and dry-erase
board.

Time: Five bi-weekly one and a half hour sessions; no homework.

Attitude: Slone is a "class-clown" but able to concentrate when he tries. He likes to
talk about things other than SchemePaint, like Star Trek. His work is careless
syntactically: he never gets it right the first time, but is always able to fix things upon
second glance.

Level: Slone was able to do some brief work with property 2 (using hexagon and
zig). He felt very comfortable with the map procedure and created interesting uses
for 1it.

Notes: Slone was a slow learner, if only for his inability to concentrate on one
subject. Had we had more time, I feel that he would have progressed further.

Selected Interpretations: a) Two weeks between sessions is too much time for

students to recall the material. b) One and a half hours seemed to be the ideal session
length for covering material and simultaneously maintaining students' interest.
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5.2 General Discussion

All students who reached level III of the curriculum initially exhibited symptoms of
the missing variable problem. However, 4 out of 5 students!8 surveyed answered
(apply-to-five create-subtracter) correctly on a written test. In all but one of

these cases, this was also the student's first introduction to non-graphics Scheme code.

The two students who spent ample time (Nate: 21 hours, Aaron:16 hours) in an
advanced stage of the curriculum were able to correctly apply their knowledge about
functions as objects from the domain of graphics to the domain of mathematics by

writing a slope function.

In the final iteration (4), 4 of the 5 students reached level 1I within five hours of
instruction. These were both students with prior programming experiences as well as

students with little or no computer experience at all.

It is worth noting that 10 out of 18 students did not progress beyond level I of the
curriculum. This figure is not significantly different than the results obtained by
[Eisenberg, Resnick et al. 1987] in their study of MIT students. Hoﬁi’?@ver, it 1s
important to note the differences in setting between the two situations. The subjects
in the imaging curriculum had no special mathematical training and, in most cases, no
similar academic experiences or background in which to frame their learning. The
"successful" students who reached levels II and III were not MIT students: they were

-as young as 10, 11, and 12 years of age.

18The 6th student who reached level I1I did not test on this problem.
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5.2.1 Age and Gender

There are a number of sociological issues that come into play in an effective
manipulative design. Both gender and age seemed to influence the type of reception

that the concrete tools received.

Its interesting to note that the manipulatives were denounced by most of the male
subjects as being too "girly", leading me to believe that had I decided to represent
functions as dump trucks carrying procedure logs they might have been more
successful at working with the representation. Perhaps their reluctance was due to the
"soft" tactile nature of the objects. All the males that were questioned about the
objects had a negative response to them; conversely, the female responses were all
positive.  Although the boys' introspective feedback regarding the physical
manipulatives was largely negative, there were many ways in which all of the
students' actions and language indicated that manipulative use had left an impression

upon them. This will be discussed further in section 5.4.

Two of the five students!® who got to level IIT were female; these two students were
also novice programmers; they both were able to work at level III only in the presence
of the manipulatives. The three male students who got to level III zili; had prior
programming experience and all preferred to work without the manipulati%s at this
level of the curriculum. This perhaps implies that the manipulatives were better
utilized by the males for general concept formation and better utilized by the females
for careful and thoughtful explanation of and repetitious practice with certain
phenomena?Y, This relates back to Lydia's comment that her main dilemma with

property 3 was over a lack of "comfort” with the concepts. The experience of

19Discounting the undergraduate female who also reached level III.

20 Klawe [Klawe 1995] has demonstrated that different computer interaction protocols result in
statistically significant performance differences for males and females.
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practicing with manipulatives seems to foster a level of familiarity for girls that they
do not otherwise generate on their own. Recall the perceived lack of ability to master
and unwillingness to attempt novel tasks expressed by Maureen and Betty during
their work with SchemePaint in the pre-design phase. Klawe [Klawe 1995] has
similarly reported that when children are presented with familiar and novel
computational tools boys are equally likely to select novel tasks as they are to select
familiar tasks. Girls, on the other hand, showed a marked tendency to choose familiar

tasks.

Boys with no prior programming experience seemed to be the least successful as a
whole (they were also the largest group). Of the ten novice males who began
programming through the imaging curriculum, only two even reached level II. This is
again consistent with the results of [Klawe 1995]: in a two month study of thousands
of children using video and computer games it was observed that boys tended to seek
out fast action and novelty. The tasks presented to them through the imaging
curriculum required a duration of attention which may have been above their

standards (see also section 5.2.2 on motivation).

Age also seemed to affect the students' perception of the tools. ' Younger students took
pleasure in the use of the objects; middle school and high school students- generally
found them "stupid"; older students found them tedious but useful, exactly; as might
have been expeéted. In general, there seemed to be no significant correlation between
age and success. However, it is interesting to note that the younger of the students
were teetering at the age of what Piaget refers to as the Formal Operations Stage
[Piaget 1966]: the point when children generally are able to begin to perform

"operations on operations", or, when they begin meta-cognitive awareness.

That younger students were able to discipline themselves at all to learn the material
may seem surprising. In fact, this result is consistent with the style of Montessori
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education (see also section 6.4) which emphasizes that younger children can focus --

in fact, thrive -- on meticulous controlled tasks for long periods of time.

5.2.2 Interest and Motivation

Many of the students who did not reach level II in the curriculum were reported in
section 5.1 to have some form of diminished interest. Although the imaging
curriculum was a critical learning tool for some students, it did nothing to overcome a
general lack of interest on the part of other students. All students who maintained
interest in the subject matter were able to progress. It must be admitted, nonetheless,
that there is a certain element of circularity in this argument: conceivably, those
students who retained an interest in the subject did so in part because they were

experiencing success with the curriculum.

Many factors seemed to influence students' performance. In the pre-design phase, it
was clear that Betty and Maureen (the only female-female work pair) were too self-
conscious about the opinions of their peers to concentrate particularly hard on their
mwork. They also seemed concerned about failure relative to each other. Initially,
their teacher had recommended them both because they were personal friends with
similar interests. However, this created a dynamic of self—consciousnes; between
them: neither girl wanted to fail in the éyes of her friend nor was she interested in
"competing" to achieve something that her friend was possibly incapable of

completing. While this is only one example of this behavior within the curriculum, it

is also consistent with well known characteristics of learning for girls.

One of the male-male pairings, Laurence and Jonathan, were also unable to progress
very far in the curriculum, but for different reasons. In this case, the boys were easily

distracted by each other over disconnected activities, like changing the volume on the
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computer or repetitiously punching keys on the keyboard to see what would happen.
As mentioned before, the pace of and material in the curriculum did not seem to meet
the boys expectations. They seemed unable to concentrate for long periods of time on
details of the learning process. As mentioned earlier this was a behavior that was
common to all novice males, although it was particularly severe in the male-male
pairing. In general, students exhibiting a cognitive tempo [Johassen and Grabowski
1993] of reflectivity (as opposed to impulsivity) were more successful with the

imaging curriculum.

All the successful students were tutored on a one-to-one basis except for Gretta who
worked in an adjacent room, set off from her fellow male student. Are any of the
successful results from these one-on-one tutoring experiences scalable to a classroom
setting? Although success did not seem to scale to the one-on-"few" learning
situations, a classroom setting may actually prove more optimistic. Students of this
curriculum differed from classroom students in many ways, including a lack of
extrinsic motivation. Students were not motivated by grades (they received none),
prospects of advancement (in their eyes, the curriculum was terminal) or application
(it was hard to see how the work they were doing was useful beyond mathematics

which to most younger students is not useful in and of itself).

-

Based on observations, particularly those of the novice male programmers, the
imaging curriculum did little to draw students who were not independently motivated
or who were lacking concentrz_;ti_on skills. One could imagine scaling the imaging
curriculum to a classroom setting by dividing into groups of students working
independently from the instructor in a collaborative effort. This task is left as an open

research direction.
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5.2.3 Multiple Representations

In this instantiation of the imaging curriculum, three distinct representations were
used: computational (SchemePaint), visual (dry-erase board) and physical (felt
pillows). It is the claim of this work that presenting the student with an array of
views on an object (see also [Polya 1945]) helps to build a more persistent and
complete mental representation. Gardner describes seven "intelligences" that learners
tend to favor in their cognitive abilities. These are: logico-mathematical, linguistic,

musical, spacial, bodily-kinesthetic, interpersonal, and intrapersonal [Gardner 1993].

Any one student of the imaging curriculum seemed to show an affinity for some
subset of the representations: they were usually able to informally "rank" the tools
from best to worst (see the interviews from sections 4.3.1, 4.3.2 and Appendix C) by

stating a preference. Rankings varied from student to student and across gender.

Whether for the purpose of repeatedly encouraging visualization or for the purpose of
catering to individual learning styles, the net result of a multiply represented system
was more a more exhaustive style of concept formation than that of a curriculum
founded on a single or even a dual représentation. The example concept of FD had
three representations: perhaps additional representations, covering a wider range of
the cognitive abilities described by Gardner's seven intelligences, would hz;ffe been all

the more productive.

5.3 Critiquing the Learning

~5.3.1 Quality

Arguably, there is a difference in the quality of the learning that takes place through

the imaging curriculum. Imaging supports a correct high-level understanding which
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is also a deeper understanding. It is a knowledge foundation from which students
may build new and more advanced ideas. This type of learning is different but
potentially complementary to other contemporary styles of learning (e.g.: situated
learning, intentional learning, constructivist learning; see [diSessa 1993] for an
elaborated discussion of issues related to learning style). While other methods may
be useful for linking abstract knowledge with real world experience, they are not
necessarily intended to make students comfortable with the abstraction itself. It is
this latter goal that is the subject of this work: making students comfortable with the

abstract concepts which underlie their experiences.

Comfort with abstracting can be gauged on three different levels, presented in

increasing order of depth:

Recognition: The ability to recognize an example of the underlying target concept.
Application: The ability to apply the target concept to a novel situation.

Generation: The ability to generate the underlying abstract target concept.

Figure 14 compares perceived ease of cognition of the different properties of FD at
the different levels of depth. A darker shading implies stronger support. The number

in the internal white box indicates the percentage of successful students for each

group of students that reached a certain level (I-IIT) of the curriculum. -

By contrast with evidence from Section 2.2 of the background research, we can note

where the imaging curriculum had its most vivid effects:
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property

recognize 100% 100%

Figure 14: Effects of the Imaging Curriculum

For each group of students who reached a particular level I-III (directly corresponding to
Stoy's properties 1-3) of the curriculum, this diagram indicates the percentage who were able
to perform the cognitive tasks of recognition, application and generation.

 1A: Students of the curriculum are able to apply the idea that all objects have names
to successfully and succinctly rename functions, e.g. (define first car).

« 2G: Some students generalize the concept that a function can be an argument to
another function, e.g. (define (circle dir) (repeat 36 (fd 1) (dir 10)).

¢« 3A: Some are able to generalize the concept of functions as returned values from the
domain of graphics to that of mathematics, e.g. (apply-to-5 create-subtracter).

5.3.2 Grain

. « o ean

There are two grains at which leaminé occurs in the imaging curriculum for theﬁ
current target concept. Most ob\}'i()usly, object centered imagery tools foster general
knowledge acquisition (coarse grain) of an object concept of data. The claim here is

that it is with such general but thorough understanding that some students are able to

apply (and even generate) property 2.
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On a more observable level, manipulating 2 and 3-D objects is an effective way to
verify the correctness of computer code. The objects provide a map through the
debugging process (fine grain) that is absent from the debugging of straight text.
Additionally, the act of (quite literally) "performing" the execution of commands puts
the student more personally in touch with the process. By playing the role of the
interpreter, students carefully learn what types of things are valid and conceivable.
The process, though somewhat tedious, reconfirms the rules of evaluation for

students, making them less likely to repeat their mistakes.

5.3.3 Quantity

Situations where the student-to-teacher ratio is low are often considered to be more
pampered learning environments. This situation is no different: students are given an
unrealistic?! amount of instruction and learn a proportionately small amount of
material (albeit, well-learned material). This is questionably practical for a real
classroom setting. As mentioned previously, one could imagine modifying the
curriculum for a classroom through the spirit of computer supported cooperative
work. The question, then, is one of priorities: is time spent on learning general

cognitive and higher mathematical skills worth the time required by the imaging

e

curriculum?

5.4 Imaging "Fingerprints"

Upon completing the curriculum, children aged 10-13 demonstrated expertise in
abstraction and the use of higher-order functions that rivaled that of undergraduate

and graduate students studying the same topics in a classroom setting (from the

21Unrealistic, that is, for a real classroom setting.
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preliminary research phase, Section 2.2). How do we know that the imaging

curriculum has anything to do with this fact?

The answer to this question can be found by examining the actions and the language
of the students who used the curriculum. Some of the cues may be given very
explicitly by the students and others may be colored more by residual reflections of

objects, for example:

« Students introspectively describe their own notions of functions as being
very object-oriented.

 Even in the absence of the objects, students motion with their hands in a
"container" shape as they describe the workings of the Scheme system.

» When students speak of procedure objects they use action-on-object verbs
like throw, get, make-a-new, gives-back, etc.
These collections of identifying impressions which characterize student's behavior in

the absence of the tools themselves will be referred to as imaging fingerprints.

But what of a student like Aaron who seems to have "graduated" from the
manipulatives so shortly after his introduction to the curriculum? Or what about
another student who ciaimed to have an object concept of functions before ever
beginning the curriculum? One answer to the question of how thisCurriculum
benefits someone like Aaron is to simply shrug: it does not matter how the student got
the object concept of data; rather, what is important is the realization that Aaron's
object knowledge of this concept has made him a breative programmer set apart from
other noVices’.n One of the goals of this work is to demonstrate how imaging helps to
- develop the abstract mind. ‘Aaron's claim that he already thought in object images --

coupled with his stellar performance in the curriculum -- only reaffirms this claim.

Still, an answer like the one above dismisses many of the important benefits that a
student -- particularly someone like Aaron -- can reap from learning about functional
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data. To begin with, the imaging curriculum can only help reify existing notions of
function. It provided a formal setting in which someone who was clearly ready to
explore these issues could explore ideas to which he would otherwise not have
explicit exposure for another five years of education, if at all. Early introduction to
the concept of functional data -- a watershed issue in higher mathematics -- can only

be beneficial.

Anomalies like Aaron aside, the curriculum is designed more for that majority of
students who do not have a priori knowledge of abstraction. For many of these
students, the curriculum is a stepping stone that helps the mind to extend beyond its
initial reach. With the assistance of cognitive placeholders, students can practice at a
level of programming for which they are unable to otherwise maintain an attention
span. Statistics from Section 2.2 indicated that university students still have a hard
time maturing to this level of mathematical thought; perhaps such cognitive blocks

can be avoided if students are thoughtfully exposed to this material at an early age.

5.5 Critiquing the Design

For each of the three imaging tools used [Computational, Visual, Motor] there are

.

several questions that need to be addressed by an effective curriculum design:

1. Is the design consistent with correct ontology? [i.e. Does the design embody the
necessary characteristics of FD under the correct world model? The representation
must (a) be object-like in nature; (b) have some embodiment of its ability to execute;
and (c) have similar construction to other objects in the language.]

C: No. (a) Pure programming environments do not support object representation.
This is well supported by previous research [Eisenberg, Resnick et al. 1987] which
confirmed that students favored an active model of functions. (b) Pure programming

environments do, therefore, actually put disproportionate weight on the characteristic
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of executibility. (c) Procedure objects are constructed differently than other objects in
the language and therefore are assumed to have different construction 22. So, for
example, note the fact that in Scheme when one asks the interpreter to return the
associated value of a named list we get back the list itself , a represéntation of the
constructed object. However, when the interpreter returns the associated value of a
named procedure object the result is devoid of any information about the procedure
and 1s, in fact, useless. A seemingly more appropriate result might be the actual
procedure -- the closure -- referred to by a particular procedure name. In fact, when
questioned on a written test as to the result of a name reference to the create-
subtracter procedure, one student incorrectly yet intuitively soundly responds that it

"returns the body of the function create-subtracter."

V: (a) A 2-D drawing of a procedure object has more of an object-like appearance
than its purely computational counterpart; still, it lacks the tangibility of a physical
representation. Nevertheless, students explicitly note that they prefer this form of
representation. Recall also that Brooke always chose to use this representation to
work through her assigned tasks. (b) In the absence of a real interpreter, it becomes
the student's responsibility to act as interpreter when working with any non-
computational representation. Although the "acting out" process supports learning
and memory (recall Aaron's experience debugging his code), it also somewhat de-
emphasizes the execution powers of a function. This has not proved problematic,
however, for the students owing perhaps to the very strong sense in which functions
are active things, and (c) Objects are constructed uniformly, each with a surrounding
box and each with its own content. When Brooke began to work on a section of code,
she always started with a visual representation, drawing boxes for eachr—sﬁgject in an

expression.

M: (a) Concrete representations strongly support an object concept of data in virtue
of being able to be literally handled. Gretta made the association most tangible when
asked if she has an image of a procedure: "Kind of since I have been shown a table or
a square object. It makes it easier to think about it." (b) Again, the objects on their

own are fairly static and de-emphasize their active quality. The object nature of

22The notion of construction in itself is potentially a strange one for functions since, in virtue of being
non-object-like, they lack the concreteness implied by the notion of construction. This is, of course,
exactly the problem at hand.
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function is stressed to the student. On the initial questionnaire, when asked to

complete the sentence "Procedures are ", all students responded "objects." (c)

The constructions of all objects share similar properties (e.g. they are all felt pillows).
Slone expresses the effect well when asked if there is a difference between number
and procedure objects "Well, they're different but its not like one is more important
than the other."

2. Is the design inconsistent with the incorrect ontology?

C: No. As just one example, the standard syntax for naming procedure and number
objects is quite different. Compare:

number: procedure:
(define test 10) (define (test x) (+ x x))

Recall from section 4.1 that Brooke expressed confusion over exactly this problem.
Further, students are shown a description table on their first written test which
contains names and associated objects for a number and a procedure object. They are
then asked to come up with the command that would have resulted in that table
configuration. Overwhelmingly, students are unable to define the number object but
correctly define the procedure object.

V & M: Yes. The design does not support any kind of special status for procedure
objects. After having his first experience parameterizing a function, Samuel 23 was
asked if the use of procedure and number objects as arguments seemed symmetrical:
"It seems like it made sense 'cause that's what I was thinking earlier when Twas trying
to make that zig thing. I was thinking you could do this sort of replacement." Note
that the student's thought refers back to a time prior to the explicit introduction of

functional arguments when he had considered the idea on his own.

3. Does the design support imaging?

C: Weakly. Exercising the powers of imagination, it is conceivable that procedures

could be viewed as units defined by their syntactic delimiters (the outer defining

23 Note that Samuel is not characterized as a graduate of level II because his only experience with the
issue was when it was presented to him in a final interview.
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parentheses in the case of Scheme). Recall that Aaron described having a "block"
notion of function prior to his work with the curriculum. It is questionably

imageable; it is unquestionably weak.

V: Somewhat. Again, objects drawn on a board are still abstractions. On the other
hand, any picture is more imageable than a linguistic description. Students varied in
their personal preference as to the use of visual or physical manipulatives. In general,
males preferred the visual representation. According to Slone: "I like it better when
its drawn [on the board]. These things mess with my mind."

M: Yes. Circular as this may seem, the design supports imagery of objects because
the manipulatives are tangible objects. In general, females preferred the physical
representation. When asked about the utility of the objects, Gretta responds:
"Humans make minds think they should see everything concretely so it helps when
you can see it concretely."

4. Is the design consistent with fine grained models? [e.g. Scheme Environments]

C: Yes. A really fine-grained ontology of how information is managed in Scheme
environments can be found in [Eisenberg 1990]. Computational environments are
consistent with this (although, it might also be argued that they do nothing to

necessarily foster the Scheme environment model).

" V: Potentially. A 2-D representation would seem to encourage the visualization of
environments and data in addition to being consistent. However, due to the fine-
grained nature of this system of representation it was impractical to use this
representation (again, found in [Eisenberg 1990]) with the imaging curriculum.
While the visual representation that was used in this curriculum was not particularly
consistent with the environment model, the representation used by Eisenberg is a
visual representation. Potentially, the current model could evolve into the

environment model [Abelson and Sussman 1985].

M: No. This system is not supported by the imaging curriculum: it supports a much
higher level concept of functions as objects. Although Aaron ascribed properties to
functions which were consistent with the environment model the curriculum itself is

admittedly too coarsely grained to explicitly support this view.
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5. Is the design inconsistent w/ fine grained errors? [e.g. problems of anonymity]

C: Theoretically, yes. This may be a surprising answer. In fact, though, the user
manipulates unnamed objects freely and commonly: number objects are, in a sense,
anonymous. On the other hand, numbers are unique in that, unlike functions, they
embody their own single chunk of information. Despite this inherent symmetry
between unnamed number and procedure objects, the observations of section 2.2
indicate that this is a recurring pfoblem in standard pure programming environment

curricula. So in an empirical sense the answer would seem to be no.

V: Atalow level, yes. The process of working through an example with the visual
representation allows the student to find errors they would otherwise overlook. This
technique was used effectively by every student who made it to level III in the
curriculum. Two of the students, Brooke and Gretta, were not able to write code at
level III without the use of the manipulatives. At a higher level, it is less clear how
useful the objects are in forming a high level concept of anonymity. There were no
instances, for example, where curriculum participants generated property 3 of
functions. For more coarse grained concept acquisition, then, the visualization
method seems less useful.

M: Yes. In addition to the above properties of visual objects which are shared, the
manipulatives uniquely demonstrate how a new procedure object is "born". By
analogy, consider the case of a new born child: although the child may be nameless, it
still has a very tangible existence. Again in the cases of Brooke and Gretta, an
increased understanding seemed to come from the motor process of retrieving a blank
procedure object for a make-procedure call and then actually filling in its body and
arguments. This seemed stronger, in contrast, to the case where they only used the
pure visual representation to draw a new procedure object. In both cases they were
able to write the correct visual representation of a function call but they were not able
to make novel use of that function until after they had worked through the motor

representation.
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6 Related Research

The work presented here is a subset of no single traditional body of research; rather, it
taps previously unrelated research from a variety of disciplines thereby filling an
educational gap. So far, this research has presented several related views: current
pedagogical dilemmas in mathematics and computer science have been linked to its
historical roots; neglected problems in higher order thinking have been specifically
addressed; basic and higher math education have been used as sounding boards for a
unified method of teaching; fheories of mental imagery typically used to fostef

concrete thinking have been used to address the teaching of abstraction.

~ To recap, the argument presented at the beginning of this work for validating its
importance went something like this:

* The concept of function -- particularly higher-order function -- is of
paramount importance in mathematics and computer science;

» Students learning about functions -- particularly higher-order functions --
chronically exhibit error-ridden learning behavior;

* The core difficulty with functions as data objects is a specific instantiation
of a more general problem with abstraction;

* Imagery tools can be usefully employed to help students reify abstzaction.

The following sections of this chapter will summarize the empirical foundations for

these claims.

6.1 The Importance of Function

Both historically and currently, the notion of function pervades mathematics and the

sciences (recall the ruminations of the founders of computer science related to the
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notion of higher-order function [Babbage 1842]; [Lovelace 1842];[Turing
1937];[Von-Neumann 1945] as described in Chapter 2), In present day computer
science, functions and procedures provide the underlying organizational structure for
all programming languages [Sethi 1989]. On top of the already critical notion of
function is the powerful notion of functional data. Sethi further describes this
phenomenon:

"The pure lambda calculus has just three constructs: variables, function
application, and function creation. Nevertheless, it has had a profound
influence on the design and analysis of programming languages. Its
surprising richness comes from the freedom to create and apply
functions, especially higher-order functions of functions." [Sethi
1989]

We find functions to be of equal import in mathematics as the foundation of calculus:

"Roughly speaking, calculus is the mathematics of change. Particularly,
calculus is a powerful tool for understanding change in physical quantities
and phenomena that depend on or relate to each other. The dependence of a
given quantity on another is often described mathematically by a function;
thus, the heart of calculus is the study of functions and how they change.
The differential calculus studies instantaneous change of a function as
quantities vary and the integral calculus measures the cumulative effect of
the change of a function." [Thomas and Finney 1993]

And in physics:
"Similarly, the union of the concept of a variable function with the ideas of
contemporary algebra and geometry produced the new functional analysis.
Just as analysis was necessary for the development of the mechanics of time,
so functional analysis provided new methods for the solution of present-day
problems of mathematical physics and produced the mathematical apparatus
for the new quantum mechanics of the atom. History repeats itself as usual,
but in a new way, on a higher plane." [Aleksandrov 1963]
The power of higher-order function is further noted by Cajori: "Without a well-
developed notation, the differential and integral calculus could not perform its great

- function in modern mathematics [Cajori 1928]."

To summarize, functions and higher order functions, both historically and currently,

allow for the robust and elegant expression of ideas across many scientific disciplines.
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6.2 The Difficulty with Function

Although clearly an important concept, the earlier quotes from the icons in computer
science history tell us that functions were likewise perceived as notably difficult.
This instinctual problem is perpetuated by current day programming paradigms which
neglect constructs for supporting functional objects. Even some functional languages
support a naive concept of function. For example, in Common LISP, the same
symbol can be attached both to a function and a value, necessitating the use of the
LISP funcall primitive. As aresult, procedures can not be directly abstracted in the
same way that numbers can indicating, in some sense, a different status [Winston and

Horn 1989].

A recent anthology published by the Mathematical Association of America dedicated
itself entirely to examining problems with the concept of function [Harel and
Dubinsky 1992]. One selection from that volume [Sierpinska 1992] cites the "widely
reported and well known" student difficulty with the concept. Sierpinska specifically
notes how detrimental preconceptions of function can be for conceptual developﬁent.

In fact, this problem is most exaggerated in the case where functions are operating as

data objects.

It is prudent, before examining the genesis of the object concept of function, to probe
the historical development of an even more common data object: the number.

"We shall see... that the "abstraction" of the number sequence from the
things counted created great difficulties for the human mind. We need only
ask ourselves: how would we count if we did not possess this sequence of
remarkable words, 'one,' 'two,' three,' and so on? ... [O]ne achievement of
our number sequence is its independence of the things themselves. It can be
used to count anything." [Menninger 1969]
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As the above quote indicates, the challenges identified relative to the genesis of the
number system are parallel to the problems we currently see from students of
function; this may seem an unlikely assertion given that most adults take for granted
the idea that a number can be a piece of data. Nonetheless, there is evidence that in
early civilizations people indeed had difficulty with the transition from an "attribute"
to an "object" concept of number—for instance, the separation of the concept of
"fiveness" from its object of cardinality (5 oxen, 5 fingers, etc.) [Menninger 1969].
Moreover, early civilization's concept of number reappears developmentally in
present-day children's initial concept of number [Hughes 1986]. The central challenge
then, both for modern children and ancient adults, lies in separating the objective and
abstract nature of number from the ”tﬁing to be counted" [Menninger 1969].
Aleksandrov points out that this difficulty with abstraction extended beyond the
number system: "In a completely analogous way, certain peoples had no concept of
'black’, 'hard', or 'circular’. In order to say that an object is black, they compared it
with a crow for example, and to say that there were five objects, they directly

compared these objects with a hand." [Aleksandrov 1963]

Unfortunately, while early civilizations outgrew (and children likewise outgrow) their
misconceptions of number objects, the same is not true for the "objectification” or
abstraction of processes. Menninger reports a similar historical difficulty in
developing the notion of arithmetic function. He reports that there is a noticeable
absence of symbolic representations for arithmetic operations despite the
development of symbolic representations for quantities. The concepts were
functionally utilized but not formally represented: "The idea that a purely abstract
mark on paper can represent a change or alternation of some kind does not, it seems,
come at all easily". In present day education this reluctance towards the symbolic

recognition of "active entities" is reinforced in many basic ways, including language:
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"...you might posit the class noun as those words that can be used to identify the basic
type of object." [Allen 1987] One pertinent study of interviews with Argentinean
children aged 4-6 who had not previously experienced written language revealed that
the subjects intuitively believed that nouns could be described in written words (e.g..
the word "Daddy" in "Daddy kicks the ball."), but the same was not true for verbs

(e.g. the word "kicks" in the same sentence) ([Ferreiro 1978], sited in [Hughes 1986]).

Recently, many math educators have begun focusing their research on the concept of
function. Dubinsky and colleagues have postulated an epistemology of functions
[Breidenbach, Dubinsky et al. 1992]. According to the theory, development of the

concept of function occurs in three phases:

1. Action: the ability to plug numbers into an algebraic expression and
calculate.

2. Process: dynamic transformation of quantities according to some
repeatable means.

3. Object: the ability to perform actions on and transform the function itself.

[Harel 1992]
Several studies have targeted computer programming models as aids in the
development from action to process concept of function [Breidenbach, Dubinsky et
al. 1992; Ayer, Davis et al. 1993; Cuoco 1993a; Cuoco 1993b]. Little wg_g( has been
done, however, to trace the development from process to object concept of function.
In one of the only such scenarios, a 14 year old child participated in a 12 week study
~ where researchers attempted to use a computer environment (with which the child
was already proficient) to examine the student's development from process to object
concept of function [Kieran, Garaicon et al. 1993]. The study reports that the child

did not acquire an object concept of function.

Based on Chi's theories of conceptual change [Chi, Slotta et al. 1994], students'

misunderstandings. about the object nature of function are not surprising. Chi
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proposes that all entities in the world can be classified in one of three categories:
Matter, Processes, and Mental States. She notes that "misconceptions that cross
- ontological boundaries can occur in various scientific disciplines at various levels of
analysis" which is consistent with the uniform errors that were observed from
students of both mathematics and computer science. Chi proposes an
"incompatibility theory" to account for why students have trouble with certain science
concepts: it lies in the difference between the categorical representation that students
bring to an instructional context and the ontological category to which the science
concept truly belongs. The more difficult entities to learn about are those that
simultaneously embodies more than one category and hence require conceptual

alternation , e.g. matter and process (or, if you will, object and function).

To summarize, the development of children's concept of number seems to parallel the
evolution of the concept of number within the human species. The impetus behind
both the understanding of the concept of number and function lies in the ability to

mentally manipulate abstract data types as objects.

6.3 Abstraction and Mental Imagery

The key to unlocking problems with higher-order function lies in mastery of
abstraction. Anna Sfard puts it too well to rephrase in her paper "Operational Origins
of Mathematical Objects and the Quandary of Reification -- The Case of

Function"[Sfard 1992]:

The Ideal mathematician, according to Davis and Hersh (1983, p. 35),
studies objects whose existence is unsuspected by all except a handful of his
fellows. Even the strangest abstract entities, while scrutinized and
manipulated, seem to the mathematician as unquestionably real as the pen
with which he or she writes papers...
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. s u 11ilatively positive [Engelkamp and Zi a

...Shortly after being introduced to [the notion of function, the student] is
expected-to-analyze-and manipulate the new entity with a confidence which
ucan Hniytbanaghig vadihyuthpsovwshiy odnxfreateit as ifi it were a real thing.

L Mawy of buisstidenss). however, seem to be lacking this ability. Recent
studies on learning mathematics abound in findings which can serve as
evidence. 117
Awareness of the long and painful process preceding the birth of a
mathematical object may be the key to understanding some of the
difficulties experienced by so many learners.

The difference, as noted by Sfard above, between an expert and a novice
mathematician lies in the level of comfort with abstract objects. Indeed, the key to
expertise rests in the ability to mentally manipulate abstract objects as if they were
real objects. Quite simply put, the task of the imaging curriculum is to build concrete

manipulatives which act as stepping stones, carrying the student from novice to expert

abstracter.

The math education research of Dubinsky et al. cite Piaget's theory of reflective
abstraction [Piaget 1966] which connects concrete activity with the development of
abstract concepts as the roots of the present day epistemological analysis. The idea of
this work is that the ability to mentally manipulate abstract data objects is directly
related to one's expertise in mental imagery. The notion of using mental imagery in
this fashion can be traced back far before Piaget to Plato: the Socratic method and the
theory of forms are both philosophical examples stressing imagery of Ethematical
(and other) concepts [Plato 1974]. In his 1944 work The Psychology of Invention in
the Mathematical Field, Jacques Hadamard [Hadamard 1944] wrote about
introspective evaluation methods for invention in the mathematical field. He
encouraged the use of concrete representations - images, drawings or linguistic

artifacts - to catalyze the generation of logical and intuitive imagery.
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It has been the task of this work to enhance that imagery ability and to justify the
feasibility of this approach; thus we turn towards a more contemporary summary of

some of the important empirical results in the study of mental imagery.

Imagery researcher David Marks claims that while the ability to generate and employ
mental imagery varies across people, the potential to do so is universal. Results of a
study on picture-memory task retrieval indicated that "poor" visualizers produced
36% more errors than good visualizers. Ability to visualize, Marks asserts, depends
on situational variables which can be manipulated to enhance imagery ability [Marks
1972].  This is supported by [Marschark 1988] who claim that mediation
(metacognitive instruction) is useful in fostering children's imaging ability.
According to Marks, imagery is useful as an associative retrieval aid between

different but related stimuli {[Marks 1990].

In studies linking imagery and problem solving, Kaufmann found that imagery is
most important in the initial phases of the task; with increasing familiarity, a purely
linguistic representation was favorable. Novelty, complexity, and ambiguity alvl seem
to place adrditional cognitive demands on a task [Kaufmann 1988]. In a second study,
Kaufmann linked imagery specifically to the discovery stage of probiem solving:
utility of imagery increased systematically as the level of programming (familiarity)
in the task to be solved decreased [Kaufmann 1990] [Kaufmann 1988]. Engelkamp
found that the effect of added exposure to the recall stimulus (planning, executing,
visualizing, and verbalizing as opposed to planning, executing, visualizing or

-verbalizing) is cumulatively positive [Engelkamp and Zimmer 1990]. 24

24 This supports the imaging curriculum philosophy of exposure to multiple imaging representations
(computational, visual, motor).
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In a study of imagery and unexpected learning, subjects instructed to image and not
to learn were unable to prevent learning [Sheehan 1972]. Research has conclusively
correlated imaging ability to high performance on memory tasks involving concrete
stimuli [Paivio 1971]. Paivio also discovered that "high" imagers reacted
significantly more quickly than low imagers when the stimulus words were abstract.
He concludes that abstract language does not evoke imagery as readily as concrete.
In another study, results indicate that differences in recall between concrete and
abstract stimuli are reduced or even eliminated when rich contextual factors operate

[Paivio 1988].

More recently, additional research on representation and action words has positively
linked performance and motor imagery (imaging performance) to efficient verb
encoding and comprehension [Engelkamp 1988]. This study found that verbs were
learned much less easily than nouns under standard instruction (63 vs. 72 percent) but
that this difference was eliminated when the learning included motor encoding
(acting) (77 vs. 79 percent). They further discovered that elaboration (acting more,
longer, or differently) had no effect on the initial success, indicating that motor
encoding had-a particularly strong initial effect which would not be easily improved

with further processing.

To summarize, the above research concludes that imaging is positively linked to
learning. Although less inherently developed for abstract tasks, this is nevertheless
the domain in which imagery is most strongly needed. Imagery is particularly useful
in the initial (novel) stages of problem solving. Motor imagery has also been shown

““to be a particularly strong method of encoding.

It would be negligent to leave this topic without acknowledging that the debate over

mental imagery is far from resolved. The raging debate, tightly summarized in
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Michael Tye's The Imagery Debate, is focused mainly on the exact nature of mental
imagery. The issue, according to Tye, is representational: what is the composition of
an image? He outlines a set of competing theories on the nature of imagery,
including: ‘

sthe picture theory--mental images are pictures, similar to projections on a
computer screen [Kosslyn 1980]

estructural descriptionalism--mental images are complex linguistic
representations [Pylyshyn 1981]

earray theory--mental images are interpreted, symbol filled arrays [Tye 1991]

While the debate about representation rages on, the single denominator among
theories seems to be the notion that, whatever its nature, imagery does exist as an
introspective phenomenon. Work on imaging curricula does not rely on the
resolution of the imagery debate: the empirical results summarized above are

sufficiently promising indicators of the utility of imagery as a tool for learning.

6.4 Manipulatives and Education
Recall the words of Hilbert as introduced in the first pages of this text:

"In mathematics... we find two tendencies present. On the one hand, the
tendency toward abstraction seeks to crystallize the logical relations
inherent in the maze of material that is being studied.... On the other hand,
the tendency toward intuitive understanding fosters a more immediate grasp
of the objects one studies, a live rapport with them, so to speak, which
stresses the concrefe meaning of their relations...." [Hilbert and Cohn-
Vossen 1932]

This quote draws together the all facets of the problem to be solved. In the imaging
curriculum, the embodiment of all the research, both historical and present, is the not

the idea, but rather the fact, of the physical manipulative.
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In this century, the idea of using concrete manipulatives was popularized through the
Montessori school of learning [Montessori 1956]. Montessori's theories of "direct
adaptation to the adult world" were born out of her observations of children's
fascination with task repetition: "Thereafter, I set out to find experimental objects that
would make this concentration possible, and carefully worked out an environment

that would present the most favorable external conditions for this concentration."

The Montessori tradition has been carried on through the use of Cuisienaire rods
[March 1977] for basic math education. Children use colored wooden rods, each of
which uniquely represented a number 1-9, to learn simple algebraic calculations. The
rods perform the same task for number that we hope the felt pillows achieve for
functions: they allow the learner to make a smooth transition from expert manipulator

of concrete objects to expert manipulator of abstract data objects.

This work uses not just physical manipulatives but a combination of multi-modal
tools to evoke imagery. In another multi-modal study involving basic math skills,
130 different experiments were performed on young children using a combination of
abacus, Cuisienaire rods, graphs, and Dienes logical blocks [Frederique 1971]. This

study concludes in a section on reasoning and concrete imagery that:

i

"The child's spontaneous tendency to live side by side with imaginary beings
quite naturally leads to his ability to reason with the help of concrete
imagery, a fundamental process in every science. In our teaching we show
when seeing reveals or raises a point; we use manipulation when touch
suggests, teaches or consolidates an idea. " [Frederique 1971]
Thyer and Maggs further reflect on the state of basic math education by pointing out
that "it is now generally accepted that for mathematics teaching, surer foundations are

laid when a child's thinking is closely linked with perceptual experiences acquired by

doing things." [Thyer and Maggs 1971]
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To summarize, recent history in the theory of education has placed some emphasis on
developing links between physical learning tools and abstract concepts. In this
educational paradigm, tangible objects help children to develop mental familiarity
with a concept by bridging the gap between real and abstract artifacts. Manipulation
of concrete objects attempts to address the issue pointed to by Locke in his An Essay
Concerning Human Understanding: "Abstract ideas are not so obvious or easy to
children or the yet unexercised mind as particular ones. If they seem so to grown men
it is only because by constant and familiar use they are made so [Locke 1894]."
Exercising the mind by linking ideas and objects hints at a suitable training program

for the novice abstracter.
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7 Research Projections

7.1 Methodological Analysis

Chapter 5 presented various perspectives for analyzing the learning which took place
for students of the imaging curriculum. It is equally prudent to note what has been
learned from the researcher's perspective. In particular, we would like to reflect on
the overall utility of the various methods which were used for purposes of data.

collection.

Admittedly, the statistical data based on students' absolute success and failure in the
curriculum is a useful set of results. However, it provides only one of many
perspectives for analysis. This work is better interpreted not on the basis of any
statistical argument but rather as a framework for a set of pedagogical issues. It
enlightens the community of educators by illuminating a set of potentially superfluous
(in view of their demonstrated resolvability) pedagogical problems. In its most
humble interpretation, this work is useful as an existence proof: that one can design a

curriculum with which to present especially important and difficult material to

-

younger children.

7.2 The Power of Function

_ The idea of functions as data objects is a powerful and robust one which deserves
more attention as a generally necessary and useful concept. As the history of
mathematics points out, FD is a concept whose time has come: the current status of

function can be compared to the early transition to an abstract number system.
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Functions represent the next generation of higher order thinking. According to
Aleksandrov:
"Summing it up, it is possible to say that while elementary mathematics
deals with constant magnitudes, and the next period with variable
magnitudes, contemporary mathematics is the mathematics of all possible
(in general, variable) quantitative relations and interdependencies among
magnitudes." [Aleksandrov 1963]
Aleksandrov's quote illuminates the importance of functions as data objects to the
field of mathematics as a whole; this work raises the issue of precisely when such
topics can and should be introduced into mathematics curricula. Potentially, having a
cohesive ontology of the FD concept at an early age could translate to less confusion

over concepts of higher math and science as they were introduced further on in a

student’s educational career.

The issue, then, boils down to a question of exactly what makes higher mathematics
"higher". This work demonstrates that children as young as 10 years old are capable
of comprehending higher order functions. If, as Aleksandrov alludes to, this is a
cornerstone issue in the future of mathematics, shouldn't students begin practice with
this topic as early as possible? Consider the analogy with the concept of number (cf.
Menninger): 5,000 yearsA ;;1go, the concept of abstract numbers could hardly have
been considered an appropriate topic for anyone but the intellectual elite. <Today, the
concept of number is the domain of a five year old. Extrapolating, based on analogy
with the number system, the concept of function is perhaps destined to become

equally as commonplace in the future of mathematics education.

7.3 Extending the Imaging Curriculum

This work has endeavored to provide a convincing argument for the utility of imaging

as a pedagogical aid; it developed a curriculum template for doing so, founded on a
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rich pool of research from different disciplines; it executed the curriculum,

successfully, on the particular target concept of FD.

One future direction for this Work‘might be to fit the curriculum to another abstract
problem area and confirm its extendibility. Within mathematics alone, there are a
multitude of candidates for study including complex numbers and n-dimensional
spaces. Within the domain of physics, there is already much research indicating that
the key to maturation from novice to expert lies in one's powers of abstraction.
Larkin [Larkin 1983], for example, describes the problem representation of novice
physicists as a naive composition of objects that exist in the real world (blocks,
pulleys, springs) and characterizes experts by their ability to manipulate purely
imagined (abstract) entities such as force and momentum. Here again is a situation in
need of an explicit link between the concrete and abstract problem solution: the idea
that not only can we manipulate blocks, pulleys and strings, but also we can
manipulate as mental objects the abstract concepts, such as force and momentum, that

apply to them.

Ultimately, this work should lead to a theoretically founded craft of manipulative

design. To begin this process, there are many general questions which can be asked

.

of the current work, for example: (1) does the 50% failure rate of tﬂe imaging
curriculum reflect the efficacy of imaging as a whole or of this particular design; (2)
are there universal design principles that can be extracted from this experience; (3)

can any conclusions be drawn about the trainability of imagery?

In terms of the application described in this work -- that of imaging applied to

functional data -- there are several specific questions to be asked, for example:
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(1) How do motivational issues affect the results? Recall that all the
unsuccessful students of the curriculum demonstrated a marked lack of
interest. Should it be the task of such a curriculum to motivate the student?
(2) How important are a variety of tools in influencing imaging? Since the
curriculum always used three types of imaging tools (computational, visual,
motor) it could not support or refute the power of any one tool to enhance
imagery. Sorting out the dynamics of this interaction seems like logical next
step.
(3) How do issues of age and gender (section 5.4) influence the
effectiveness of a tool? Results indicate that these two factors played a role,
yet it would seem extremely inefficient to have to design a unique set of
manipulatives for each age and gender group.
Further, any intelligent design should be capable of elegant extension. In other
words, as theories and audiences change and grow, so should their pedagogical tools.
This introduces the notion of progressively scaffolded images:  developing a
hierarchical set of tools. Collins, Brown and Holum have noted that apprenticeship of
a novice learner often involves the expert performing portions of the task that the
student is as yet unprepared to independently complete. This is referred to as
scaffolding. Fading, then is the act of slowly removing the expert's support and
gradually giving the apprentice more and more responsibility [Collins, Brown et al.
1991].  One could imagine analogously applying these concepts to the imaging
curriculum: once a certain level of cognitive expertise is attained the user could
abandon a primitive set of imaging tools in favor of a more advanced, yet consistent,
set of tools. For example, in the imaging curriculum for functional datas=one might
want to develop another set of tools which were consistent with Ableson's and

Sussman's environment model and which were ready for use after "graduation" from

the basic object images that were already provided.

7.4 Codifying Orders of Abstraction

In the course of this research the notion of abstraction has blossomed into the critical

issue. This work occasionally mentioned the idea of "orders of abstraction”: that is,
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some facets of an abstraction problem may be quantitatively more difficult than
others. Classifying these differences could be the key to a new level of understanding
about many of the problems that students encounter in any number of complicated
higher learning tasks. To begin this process,.we can examine the problems within the

domain of functional programming which have been pinpointed by this study.

Recall that some younger, more inexperienced programmers hit their first major
impediment when the idea of adding a parameter to a function definition was
introduced (Maureen and Betty: section 2.2.2.3; Laurence and Jonathan: section
5.1.6). Recall also that 1ambda expressions present problems for programmers,
specifically in the form of the missing variable phenomenon (Hector: section 2.2.3;
Aaron: section 4.2; [Eisenberg, Resnick et al. 1987]). Lastly, half of students in an
undergraduate programming language class were unable to answer the derivative-
maker question on a homework assignment (Table 4). Based on these observations,
Figure 15 shows a number of related Scheme problems organized in a rough
hierarchy. Although it seems intuitively obvious that these problems are organized in
an increasing order of complexity, extracting exactly why this is the case seems both

critical and non-trivial.

i

Following up on this specific example from functional programming, censider the
differences in abstraction between slope and slope-maker functions in Figure 15.
We might classify the slope function as abstraction order I because it requires that
we wait for one abstraction unit before it can be fully specified. In other words, when
this procedure is defined, it is missing one piece of information, £, which will be

specified in a later stage of the processing, when we actually call the s1lope function
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(define (derivative-maker n)
(lambda (f)
(cond ((= n 0) f)
(else (derivative ((derivative-maker (- n 1))

(define (derivative f)
(lambda (x)
(/ (- (£ (+ x .001)) (f %)) .001)

(define (slope-maker f)
(lambda (x)
(- (£ (+ 1 %)) (f x

(define (slope f)
(- (£ 1) (£ 0)))

Figure 15: Orders of Abstraction

A rough abstraction hierarchy. In the lower example, the s1lope function is considered less
abstract than the s1lope-maker function. Slopdakes a single argument, £, specified at
runtime. Slope-maker also takes fis its only argument, but its output is also a function of
one argument, x. In that unbound variables remain even after an initial evaluation, slope-
maker is considered more complex than thes1lope function. The derivative-maker
example is even more abstract. In this case, the result of a call to derivative-maker is a
recursive property 2 function. The introduction of recursion seems to increase the complexity
of this problem over its derivative ancestor.

with a specific functional parameter, e.g. double. The slope-maker function, then;
would be classified as abstraction order 2. In this case, after the same.amount of
processing as was performed in the slope function (calling slope ;vith the £
argument specified) the result is a function which is still missing some specification,
the numerical argument x. The process.is not completed and fully specified until
another abstraction unit has expired and the result procedure (e.g. the resulf of
(slope-maker double) ) is executed with a value for x inserted, e.g. 5. An

elaboration of the same argument could be used to explain why the derivative-

maker example might be classified as abstraction order 3.
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Note that we decided that the abstraction process for the slope-maker function had
"bottomed-out" when we specified the numerical argument, x. Drawing again on
what is known about the history of the formation of the abstract number concept, one
might argue that the numerical value (;f x 1s not in fact the ultimate specification of
data; rather, the number 5 is itself a generalization of all the sets of things whose

cardinality is five.

Yet, on a day-to-day basis, we take the number 5 for granted: it has been completely
internalized as a "thing in itself." There is a culture around numbers which trains
their users to consider them as ordinary. By a very young age, for example, children
have already had enough exposure to abstract numbers as to have reified them.
Abstract numbers are an ever present part of our culture. Again, this was not always
the case; for example, the ancient Greeks had no concept of zero. Today, ruminations
about zero are relegated to Sesame Street. The concept of zero is no longer
problematic because it is deeply embedded in our culture. Just as the abstraction of
numbers has been demoted to trivial status over the centuries via cultural immersion,

so might higher orders of abstraction be someday part of our cultural fabric.

It seemed that the level of abstraction presented by a Scheme expressieﬁi related to
when its unbound variables would be specified. However, this relationship may not
be as simple as is suggested by the examples in Figure 16. A number of other factors
may influence the perceived difficulty of the problem -- for example, the overall
number of variables in an expression. Is an "abstraction order 1" function of six
variables more problematic than the same function with only one parameter? How
- might adding multiple unbound variables to the result function in an "abstraction
order 2" function influence its perception (e.g., adding more parameters to the

lambda expression in the derivative function from Figure 16)? Even the
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classification of the examples in Figure 16 is not clear cut. For example, how
important is the inheritance of information from a workable problem at "abstraction
order x" to the conception of a problem at "abstraction order x+1". In other words,
given a student who has a complete understanding of either the slope or the
derivative function, is it equally difficult to progress from this point to a complete

understanding of the derivative-maker function?

This discussion certainly does not capture all that there is to be said about the notion
of abstraction. However, it does indicate that there is more to be explored.
Functional programming -- specifically, the generalization of data -- has provided but
one specific example of how difficulties with abstraction can be stratified. Future

research might probe for similar patterns within other domains.

7.5 Assessment Mechanisms

Mental imagery, however it may be represented, is an introspectively verifiable
phenomenon. Recall that this work used several methods to assess the utility of the

curriculum for enhancing learning: (1) student self-reports, (2) imaging

.

"fingerprinting", and (3) written questionnaires. It verified that students were able to
take their knowledge from one domain and apply it to another; it observed that
students "graduated" from using concrete manipulatives to the independent and

comfortable application of FD.

In this study, success was assessed based on transfer of skill from the domain of
graphics programming to the domain of mathematical programming. Ideally, one
would like to address not just the content of what was learned but also the technigues

that were learned. So instead of studying students' aptitude for functional data across
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two related domains using identical sets of tools, this study might have analyzed
students' ability to draw on imagery skills to understand a completely novel area of

abstraction.

The notion of imaging ability itself was also left as an unnamed variable in the current
study. No significant attempt was made to gauge a student's predisposition for
imaging prior to their beginning the study. For this reason, it is not clear whether this
study targets those students with the most talent for imaging or those with the most
difficulty. A student like Aaron might be tagged as a "good" imager and therefore
without need for such a curriculum. Students like Patty, David, and Joseph may have
been "bad" imagers who were failed by a curriculum which did not sufficiently
inspire them. A more plausible explanation would be to conjecture than the majority
of the students -- the ones who were in fact served by the imaging curriculum --
possessed a "standard" ability to image which was well toned by participation in this

work.

In future studies, it would be possible to more precisely answer these questions by
pre-testing students for imaging aptitude. There have been many different models
proposed for classifying learning styles [Johassen and Grabowski 1993]. As an
example, consider the Gregorc Style Delineator which measures on a bidimensional
scale: concrete-abstract and random-sequential. Gregorc proposes that anyone can
possess skills in any of the four manners defined by the scale. Subjects in an imagihg
curriculum might be tested befére and after participating in the curriculum to

determine if their aptitude in one or the other of Gregorc's manners had been altered.
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7.6 Implications for the Functional Programming Community

Minimally, the results of this study should attract the attention of the functional
programming community. For years, proponents of functional programming have
seemed frustrated and confused about lack of acceptance and acknowledgment (of the
greatness of functional programming) within the larger computer science community.
Backus, an avid fan of functional programming, calls conventional programming
languages "fat and flabby" [Backus 1978]. Yet, functional programming has never
gained the momentum its supporters feel it deserves. This study of functions as

objects can perhaps provide some pointers into the nature of this problem.

The novice programmer's-standard introduction to functional programming is rife
with contradiction and lacking familiarity. While it might not be viable to introduce
something like a manipulative-based curriculum at the university level, other options
for reifying the notion of functional objects include better interface support. A
graphical user interface could succinctly capture the spirit of, at least, the visual
imagery tools used in this curriculum therefore making comprehensive functional
programming more accessible to students. Applications like STk [Gallesio | (an x-
windows interface to Scheme which allows graphical display of built in data
structures) are in fact pioneering this much needed movement. The shortcomings of
such a move are the same as the shortcomings of the imaging curriculum for non-
novice programmers, like Aaron. In general, however, the novice functional

programmer should be well-served by such a trend.

On a similar note, submerging the learning of functional programming within a non-
standard setting may be another useful method of introduction. In the study at hand,

users were able to write independently interesting code in the domain of graphics. If
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a user is immersed in a particular problem area of interest, the difficulties presented
by functional programming languages -- indeed, by any programming language
paradigm -- may be more easily overcome. This was so in the current study:
SchemePaint was used to interest the users in the graphics as well as the pure
programming. Additionally, the combination of programming and direct-
manipulation [Eisenberg 1991] provided another invitation for the novice

programmer.

Issues of interface also call into question how much of an effect léarning one
particular functional programming language might have over another. ML [Milner
1978] is a functional programming language whose power is roughly identical to that
of Scheme. However, Scheme and ML differ in one potentially key area: ML, in
contrast to Scheme, is strongly typed. An example of the standard (apply-to-5

create-subtracter) example is included in Table 8 for comparison:

Table 8: A Comparison of Scheme and ML.

The prototype create-subtracter example from this study of Scheme is presented alongside its
ML counterpart. For some students, the strongly-typed nature of ML may make it
syntactically and semantically richer for supporting the concept of functional objects.

Scheme: ML:
(define (create-sub n) ({lambda (x) (- x n})) fun create_sub(n) = let fun f(x:int) = x-n in f end
-_—— — — —— [— — — —_—— — —
Scheme: ML:
{define (apply-to-5 £) (£ 5)) fun apply_to_S5(£f) = £(5);
Scheme: ML:
(apply-to-5 create-sub) . apply_to_5(create_sub);

Recall that students of Scheme complained about the inconsistency in syntax between
defining different types of objects in Scheme. In addition to correcting the syntactic

difference, the curriculum began to move towards a "pseudo-typing" system by using
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declaration language of the form make-<type>-object. Although one might praise
ML for its use of strong types there are several issues to be resolved still:
1. Merely announcing types still does nothing to encourage an object
concept of function. For example, an imperative programming language
like Pascal is typed but procedures are not first-class objects.
2. There are still syntactic inconsistencies between functions and other
objects in ML. For example, for syntactic reasons, the symbol fun cannot
appear to the right of an = sign. Hence, as in the above example, it is
necessary to use the let/in/end environment to define a function the result
of which is also a function. This is awkward.
3. One could argue that reasoning from types is a good way to solve
problems like the (apply-to-5 create-subtracter) example. In the
original study, [Eisenberg, Resnick et al. 1987], some of the students who |
answered correctly explained in an interview that they had reasoned from
types. Yet, there is a sense in which this type of reasoning averts the
underlying issues touched upon by functional data. It is certainly possible to
correctly reason from types while still holding a naive concept of function.
Another issue worth exploring is the role of arguments in the concept of function.
Recall from this research that young students initially had difficulty with the general
notion of parameterization. Note also that the Eisenberg [Eisenberg, Resnick et al.
1987] study observed that some students who failed on (apply-to-5 create-
subtracter) were in fact able to complete a similar problem of the form: ( (apply-

to-5 create-subtracter) 3). The study. notes that reasoning about the expression

was much easier once all of the "parts" were present. This would seem to refute the

e

utility of pure functional system (e.g. FP, proposed in [Backus 1978]) wheré functions -
are, in a sense, "maximally curried" and non-functional data is transient. A system
like FP creates more issues about the status of objébts has'well. In the imaging
curriculum, we are trying to encourage a uniform concept of data. FP creates
additional unjustified status differences among data objects. For example, FP would
transform an inherently binary function, like addition, into a function applied to a

single argument function. FP would necessarily imply unequal status of the two
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addends based on their order.25 On the other hand, to understand even the simplest of
processes in FP (e.g. adding two numbers) is to understand that functions are objects

(in virtue of the closure that is created by this process).

In summary, it is unclear from the current study how the interaction of factors like
typing and argument structure might affect the learning process. These topics are

certainly worthy of future exploration.

7.7 Towards an Intuitive Learning Movement

Ideally, the student of the imaging curriculum will carry with her the meta-cognitive
skills [Yussen 1985] of visualization and abstraction through a lifetime of learning. It
is the claim of this work that these "higher—order" thinking skills are far more
pedagogically and practically advantageous to the lifetime learner than any
disconnected collection of facts or theories. Ultimately, those skilled in thought have

a larger window on learning than those who are simply skilled.

Unfortunately, the transfer of thinking skills between situations is uncommon.
Research has shown that learning is fairly context dependent [Lave and Wenger 1991]
and immune to meta-cognitive skill transfer. As with the acquisition‘g‘iﬁ; any other
skill, imaging ability cannot be woven into the fiber of cognition without extensive
practice; Benoit Mandelbfot acknowledges the need for cognitive exerchi'sﬁehas it
- .walegards to pictorial images: "Intuition is'-not something that is given. I've trained my
N intuition to accept as obvious shapes which were initially réjéct“éa as abs‘u'r'd," aﬁd I

“find everyone else can do the same." (quoted in [Gleick 1987])

25The Scheme expression (+ 4 5) would be solved in FP by first creating an "add-4" closure and then
applying it to 5.
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If imaging tools are introduced early enough and frequently enough into the standard
pre-college curriculum we can conjecture that learners will get better at knowing how
and when to use their skills. The work that has been described here is a step toward
intertwining a greater volume and variety of imaging tools into K-12 education: with
careful and persistent attention to visualization techniques, students can learn to

bridge the gap between concrete and abstract thinking.
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Appendix A: Manipulatives
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Appendix B: Aaron's First Test

The following pages contain a copy of the actual test completed by Aaron. The test
was administered after Aaron completed four sessions in the curriculum. He had
previously worked with Levels I-III in the domain of graphics only.
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It would be posssible to write a procedure whlch squared
numbers :

) = 6." : B
>>> (define square (r’\a p(O =~ AR
(make-procedure .
(* x x))) (*xx,)
>>> (square 5)
25
And likewise, we could cube numbers:
, 3 4 ¢S 6 7
>>> (define cube Q iG W ét{ 12
(make-procedure , eﬁ—— B ; >
(x) f T X
(* (* x x) } *Y X) X@B% )’

>>> (cube 2)
8

We could go on like this and write a procedure whlch ra1 A
numbers to the 4th power, and another for: the Sth power,"and

so on. Or, we could save some time by writing a procedure
which generated any power procedure that we wanted.. So we
would use it like this: (Y 6WC/C »
. N % ((& & f'\(:/»‘
>>> (define cube (make-power-procedure 3)). L 13_“
. . *;ﬁﬁiﬁﬁﬁif@(,
;>> (cube 2) ‘ . . (:¥ (nﬂa](GqT
Write make-power-procedure. ‘  ,v>v v SR
(’a(’:"rne /\«;.f«'t r,)o..\/ij, ,P ['O(Je(*'c,lo."e oo . AL R
L/V'\vc‘k& RriRLe (4@51};/ CE : .
LV%Qﬁ
‘\ mug\e-pfckgd\,re —
Cx) v B
\exp+ %ykﬁ”>§
Give some examples of ways that you would use it. For
example, how can I take the 10th power of the number 3
without ever defining a 10th power procedure 1nto the table?
7 Rl e preceduie 1003) -
777 (Cmake~ poer —procidore 2y,
% 16 -
; : o~ T e N e, e @ = DU e — j"{'cf(-"-'l(i""y'r(v‘ 3.
7/—/7 ( O}C( SN E ?(‘_/L\.'t’( I](C, C/ 1 e c,‘k < p(/ KA C i ‘ fete . ) A
;

777 (Lponer—prog @G
|5 ‘



>>> (define subtract-from-5
(make-procedure (x) (- 5 x)))

What does this procedure do? .% . -
T+ deccceces the mumber S5 by an inpu _(X),

L ATNSE AN L Asml N Y e e s

Give an example of how you would use it and what the fesult
would be of your example.

>//£,k/ qu<[\ ‘l(’r-’)'é»;/ lo)
-5

>>> (define apply-to-5
(make-procedure
(£)
(f 5)))

What does this procedure do? . o .
T ohekes wopeeedore (F) as e input
Yo dhat proc Fiore S

Give some example uses and results.
SR EomE
>>7(C/"\fy").7 -5 (&b‘!f(4'4rcm~* ))

(\J
Ny AT

==
éfbﬂ(’i‘){z)’")"ﬁ’gi{/}i CIJ",V% l
77 j < 4 m—cﬁ#ﬁ;”»?{)f’ﬁ*’l’v’f*%f&(#' o
x> (de ind make-doubler T
(make-procedure T T R

(make-procedure (x) (* 2 x))))

Then what would happen if we typed in the following
expressions:

>>> ((make-doubler) 5)

10

>>> (make-doubler) ‘ S R

Wt(rﬁ@v&fv

< PRCCERVRE D

>>> make-doubler

>

t
A



sobdeaide
>>> (define create-subtracter ) . L
(make-procedure
(n) o
(make-procedure (x) (- x n))))

What does create subtracter do?"What5dQesﬂit~take§a§®4?gg3 %$§fr¢'«wwww
arguments and what does it return? : :
C(c@*i € Spf/’lfc‘c‘lcf meakes o« p(og,ecfu(«? %Lﬁo-l N CVWLPV%)
) T scbdcact N Hiom et T4 bakes the crgument nL T refiine
[ p(&(&tﬁuxé '
What would be the result of the following expression:

>>> (create-subtracter 3)

CPROCEDVRE D

What do the following expressions do?.. - -

>>> (define subtract-3 (create-subtracter 3y e
> & ! De‘l,r [SY ";\ul‘f;‘(a{ 4 -3 S o P rc‘] e im
b -{(c/y\B{Muh‘)b(’f‘>¢ R

>>> (subtract-3 10) 5 N = )
Sob -J['(c%:;,% *ﬁ! 5 L?:;g F Ce . "0_.‘{- o T

Ot puts

What happens when we call apply-to-5 on. (:‘breate;-bs_l,'lb:t:fac;;tsef?:

>>> (apply-to-5 create—subtréctef), g o .
Creedes o ooy Fha | <solb ‘} renc
muI’V\Bc’-‘S, o ST




Appendix C: Interview with Aaron

(define six-figure
(make-procedure
(shape size)

(repeat 6
(shape size)
(rt 60))))

Interviewer: Ok, so here's a procedure I've defined called six-figure. Can you tell me
what it does?

Respondent A: Looks like it, uh, makes, um, these shapes six time. Sorta like my little
ppm thing.

I: Here in this procedure what are we passing in for arguments?

A: Um, shape I think is gonna be... its gonna define the right turn, what direction to
turn and stuff and size... wait... shape is gonna be the whole shape that you are going to
repeat and size is going to be how much to spread it out.

I: So what kind of an argument is size and what kind of an argument is shape in terms
of type?
A: Shape is going to be a procedure and size is going to be a number.

I: If T am telling you that we are passing in to this procedure, as a piece of data -
we're passing in another procedure. If you can put any sort of words to any sort of
pictures that might get conjured up in your head when you think about the idea of
passing a procedure as an input to another procedure. Do you get any sort of picture
in your head for what it means to do that. You should just talk freely. This is free
association.

A: Uh, um. No really. Just sort of something inside of something.

I: Something inside of something else?

A: Like a box inside of a box. 5=

I: Does it seem like there is a difference between the two arguments in this
procedure? Size and shape - are they different in nature? Are they the same? How are
they different? Does it seem intuitively obvious in both cases that what we are doing
is reasonable and logical? That's a lot of questions. Let's start with: does it seem the
same to pass in a number as an argument to a procedure vs. to pass in a procedure as -
an argument to a procedure?

A: Well just passing in a procedure, well, when you're passing in just like an
argument its straightforward and passing in a procedure it just seems like you have to
look through more stuff. Its like with the box inside of the box analogy the procedure
would be a box that would contain more stuff and a number would just be something
that can't go any smaller, that's already there.

I: So in the case of the procedure its more complicated 'cause there's more stuff to

unpack once you actually get into running the procedure. That seems like a reasonable
analogy.
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Do you have any kind of imagery around the idea of a procedure object? Like when you
think of using or making procedure objects do you visualize anything in your head?

Do you see them in any way? You talked about boxes: do you see them as boxes or are
there other ways that you see them? Do you think you call that image up when you are
programming at all?

A: Well, I think of like what its gonna look like on the screen when its done but I

don't think of analogies when I'm putting together the exact words.

I: Do you see procedure objects as single units or are they things that have parts?
A: Different parts - stuff inside of a container.

I: I've been using two basic modes of description for all different kinds of objects.

One is when I write on the board and we use the name/object association table to
describe number objects and procedure objects and color objects. And the other thing
is sometimes we use these other-objects to talk about generating new procedure objects
or passing things around, setting up a bunch of arguments to get ready to run a
procedure. My question for you is do you think that either of these representations
has been useful in helping you learn this stuff and if so, how?

A: Seeing it up on the board is helpful. I mean, those are helpful its just, seeing it all
out there is the most helpful for me. Its kinda like how I think is I visualize stuff.

I: So, you think that the visualization of the table is a good thing?
A: uh huh.

I: And you think visualization of the physical objects - has that helped in any way?
What different things - at what times might those conjure up a different image that
helps you do something else? Are there different times where different imagery is
useful?

A: I think having it on the board was the most useful because... I think putting it
inside of the little pouches and stuff its harder for me to see how it goes together and
how it works.

I: Sort of like "the big picture"?
A: Yah.

I: Its interesting though because you talked about things being containers and I'm
wondering if that's at all because of the fact that we used these and they are=
inherently sort of containers for information. Do you think maybe this helped you
come up with a more high level sort of image and then maybe when you need to get
down into the nitty gritty of what's going on that [board] is better for conjuring up
lower level programming kind of stuff?

A: Could be. Even in BASIC I always thought of subroutines as blocks.
I: Blocks, like physical blocks or blocks like blocks of code, blocks of text?
A: Well, both -

I. - So, right now, you're motioning with your hands. You're making a motion with
your hands as if it was a physical, cubical box. So that's how you visualize
subroutines in BASIC?

A: Yah, well, I tell, like the big box to go get the little box.

I: And you think you've always visualized that way - before we ever did any stuff
here you always had this idea of BASIC subroutines being boxes? I'm noting again
with the tape that he's motioning with his hands!
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I: OK, when we first went over all of the background stuff about the table and such we
talked about computer "space” - this is what's going on inside of the computer the
computer world. So sort of in a very philosophical sense I want to ask you, do you
think that the world that we talk about when we talk about the computer, is that a real
world? We make some assumption that our world, the world we live in is real; is the
computer world real?

A: Its real its not alive. It doesn't really have space.

I: It doesn't have space, so then its not a physical thing. Would it be more of an
abstract thing?
A: Idon't know... not really.

I: There are things that we encounter in our everyday world that are very concrete
like the tape recorder or the telephone. Then there are abstract things like thoughts
and ideas. So, what I'm trying to get you to do is classify the world of computation as
being more along the concrete side or more along the abstract side.

A: Uh, huh. Idon't know its physically there - the electric stuff, but that's so easily
gotten rid of. I don't know I guess maybe there's more concrete.

(define color-square-maker
(make-procedure
(colox)
(make-procedure
(size)
(setmapc color)
(square size))))

I: OK, I've just written a new procedure on the board. I've defined a new procedure
called color-square-maker. And, the idea of color-square-maker is that you say, well
actually, I won't say any more. Take a second to look over this and tell me what it does
and how you would use it.

A: OK. Hmm. Iwant to look back at like ppm and compose but, OK. I guess you input
color and it makes a square of that color, defined size. You would enter, wait color,

- and then it would make a procedure of the square of that size. So I think you would
enter the command; you'd have to put the color.
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Appendix D : Slope Worksheet

Say we have the following functions which operate on ﬁumbers:
>>> (double 2)
4

>>> (triple 2)
6

1. Write double and triple.

Remember from math that we can represent functions as graphs. So, double could
also be written y=2x or f(x) = 2x. We could graph it as follows:

A

I T T |

Y -

Recall also that the slope of a line refers to how much the function changes value over
a given interval. So, between x=0 and x=1, the function's slope is f(1) - {(0), or 2-0,
or 2. '
2. What is the slope between x=1 and x=2?

between x=2 and x=3?

Different functions may have different slopes.

3. What is the slope of the double function?
of the triple function?
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-We would like to write a procedure which lets us evaluate slope for different
functions. It would work like this:

>>> (define double-slope-function (slope double))
>>> (double-slope-function 0) :

2

>>> (double-slope-function 1)

2

The interval used to calculate the slope is defined by the input and the input+1.
[so, (double-slope-function 2) calculates between 2 and 3]

4. Write slope.

5. Use slope on the double and triple functions. Predict what the result should
be first.

6. Write a quadruple procedure. What should its slope be?

7. Write a square procedure which returns the 2nd power of numbers.
[ (square 3) = 9, for example]

8. Use your slope function to make a chart for square. Do you see any patterns.

x-interval slope

- O

w N N -
¢

Bow
|

9. Write a cube function and make a similar chart. Try to predict the results
beforehand.
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