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Abstract

This thesis discusses how to optimize computational physics software for speed through max-

imizing the use of novel architectural features of current CPUs. Specifically, the optimization of

the Particle-In-Cell (PIC) algorithm is considered. The PIC algorithm is widely use in the study of

plasmas, rarified gases, fluid dynamics, and gravitational dynamics. For this algorithm, the main

performance bottleneck is the deposition of charge onto the grid. The goals of the optimizations

described in this paper were to maximize cache reuse to overcome memory bandwidth limitations

and improve data processing speeds by taking advantage of multithreading and vector instructions.

The particular techniques, discussed in detail in the paper, were sorting particles into tiles, operat-

ing on tiles in a manner that prevents race conditions, separating out the vectorizable operations

(also known as strip mining), and sorting particles based on cells. Performance analysis results are

given at each step of the optimization. An overall improvement of a factor of 20 in computational

speed was obtained.
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Chapter 1

Introduction

Central Processing Units (CPUs) utilize novel architectures in order to increase their perfor-

mance. CPU performance gains have been achieved through increasing the floating point operations

per second (FLOPS) of a CPU by introducing multiple levels of parallelism, such as Single Instruc-

tion Multiple Data (SIMD) and multi-core architecture. CPUs are also able to increase FLOPS by

mitigating bandwidth limitations through caching. In order to receive the full performance speed

up offered by current CPU architectures, computational software needs to be modified. The goal

of this paper is to discuss what sorts of modifications allow one to better utilize the performance

possible with current CPUs.

There has already been much work in this area, for many different algorithms, including

Particle-In-Cell (PIC) simulations [4] (the subject of this paper), as well as Monte Carlo simulations

[7] and fluid simulations [4]. Computational software is additionally being ported to completely

new computational devices, such as Graphics Processing Units (GPUs) [2]. However, this paper

will be restricted to modifications needed for current CPU architectures; specifically, GPU coding

will not be discussed.

The Particle-In-Cell algorithm provides a method solving for the motion of particles self-

consistently in the fields that they generate. PIC has be extensively studied due to its ability to

simulate a wide variety of physics, such as gravitational dynamics, fluid dynamics, and plasma

phenomena [5]. There are four steps in PIC: (1) interpolation of the fields to the each particle’s

position (gather), (2) acceleration and move of the particles, (3) the deposition of the particle charge
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and/or current back onto the grid, and (4) the integration of the fields given the just computed

charge and/or current densities [1] [10].

The most important and most difficult of these steps for obtaining good performance is the

deposit step. It is the most important because this is generally where most of the computational

time is spent. This is a result of there typically being many more particle degrees of freedom

than field degrees of freedom, and because this is the most flop intensive part of the algorithm

involving particles. It is the most difficult step to optimize because it naturally involves writing the

data from multiple particles to the same memory locations, and it has the potential for particles

close in memory to write to memory locations that are far apart. Consequently, this paper will

concentrate on the deposit step, in particular the deposition of charge, which is all that is needed

for an electrostatic simulation.

We begin with a straightforward implementation of the deposit step. We analyze this imple-

mentation to determine what is limiting it from using the full capability of the CPU, and then we

modify the algorithm to mitigate the slowdown. Eventually we apply multiple techniques, tiling to

improve cache usage and reduce race conditions, strip mining to separate the vectorizable part of

the algorithm, particle sorting to improve cache usage and to improve usage of vector instructions.

These different CPU performance optimization methods are described and performance gains are

analyzed. A final method is presented that offers significant speed up due to fully utilizing current

CPU architectures.

Chapter 1 introduces the motivation and the topic of this paper, while Chapter 2 introduces

key concepts of PIC and current CPU architectures that are used throughout this paper. Chapter

3 describes different optimization techniques that applied to the deposit, as well as an analysis of

the performance gained using these techniques. a novel method to vectorizing the deposit method

on current CPU architectures, and the speed up gained due to this method is also presented at

the end of Chapter 3. Chapter 4 is the conclusion that summarizes the final results, and discusses

future work.



Chapter 2

Introduction to Key Concepts

The purpose of this chapter is to introduce both the PIC algorithm and current CPU architec-

ture. For current CPU architecture caching, multithreading, and vectorization will be introduced.

A basic overview of the PIC algorithm will be presented as well as the deposition method of the

PIC algorithm. An explanation of what the deposition method is, and how the deposition method

is implemented will also be given.

2.1 Modern CPU Architectures

CPU developers are always trying to increase the computational speed, floating point oper-

ations per second (FLOPS), of CPUs. Developers have introduced new performance features that

take different approaches to increasing the FLOPS of a CPU. One approach is to decrease the of

number times a CPU accesses memory that is external to the it, which requires a large amount

of time. A feature called the memory hierarchy is able to achieve this by having smaller memory

buffers that exist on the CPU. These buffers are called cache and have shorter access times com-

pared to accessing memory external to the CPU. Caching allows a CPU to load memory once onto

cache and only access memory from cache for future operations. Another approach to increasing

the FLOPS of a CPU is to add features that allow a CPU to perform work in parallel. One feature

that allows a CPU to achieve parallelism is called multi-core architecture. A multi-core processor is

a type CPU that consist of smaller processing units called cores. These cores can perform work in-

dependently of each other and in parallel. Another feature that allows a CPU to achieve parallelism
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is called SIMD. SIMD is the existence of specialized instructions on a CPU that allows the CPU to

simultaneously operate on every element of a contiguous chunk of memory in a single instruction

call. The following sections will provide a more detailed explanation on what these features are,

and how these features can increase CPU performance.

2.1.1 Caching

Accessing data from electronic memory (called main memory) that resides outside of the

CPU takes a long time. Caching is a way to limit the number of times the CPU has to access main

memory, by storing data in smaller capacity memory buffers (called cache) that exist on the CPU.

Data that is stored on cache can be quickly accessed by the CPU. Current CPUs have multiple

levels of cache that have increasingly smaller memory capacities and faster access speeds, as seen

below in Figure 2.1. This paper will not be concerned with how data is handled after it is loaded

onto cache.

Figure 2.1: Memory Hierarchy

One way cache limits the number of times the CPU accesses main memory is by reusing data

elements that are already loaded onto cache; this is called cache reuse. If one needs to update a

data element multiple times, then a CPU only has to access main memory once and load that data

element onto cache. Once the data element is loaded onto cache the CPU can update it multiple
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times by quickly accessing cache rather than main memory.

2.1.2 Multithreading

Multi-Core architecture is an important performance feature present in current CPUs. A

CPU is a multi-core processor if it consists of smaller processing units, called cores. Multithreading

is one way to utilize multi-core processors and achieve parallelism by allowing the individual cores

of a CPU to operate on memory that is visible to all the other cores. This type of parallelism is

called shared memory parallelism. The ideal speed up due to multithreading is equal to the number

of cores in the processor, and is achieved if all the computational work can be equally divided

among all the cores of a CPU. A visualization of the architecture is presented in Figure 2.2.

Figure 2.2: Visualization of Multicore Architecture
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Figure 2.3: Race Condition

A problem associated with shared memory parallelism is when multiple cores try to operate

on a common memory location. This is called a race condition. A visualization of a race condition

can be seen in Figure 2.3. One way to avoid race conditions when multithreading is to perform an

atomic operation on the memory location. An atomic operation is an operation where the CPU

enforces synchronization among all the cores trying to operate on a common memory location,

ensuring the correct answer. This can be seen in the table labeled correct in Figure 2.3. Atomic

operations add extra computational time that is associated with checking if multiple cores are

attempting to operate on a common memory location. Throughout this paper OpenMP is used to

enable multithreading and atomic operations [3].

2.1.3 Vectorization

Another type of parallelism that exists in current CPU architecture is vectorization. Vector-

ization is the utilization of SIMD instructions. SIMD instructions allow the CPU to simultaneously

operate on a contiguous chunk of data. An example of a vectorized algorithm can be shown by

trying to multiply a scalar constant a to each element of a one dimensional array. A non-vectorized

algorithm would iterate through each element of an array, calling an instruction to multiply each
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element by the constant a (Figure 2.4). A vectorized algorithm would iterate though contiguous

chunks of the array and for each chunk call a single SIMD instruction that multiplies each element

of a chunk by the constant a simultaneously (Figure 2.5). The number of elements that can be op-

erated on in a single SIMD instruction call depends on the specific CPU (8 floating point numbers

for the CPU used in this paper).

Figure 2.4: Non-Vectoized Method

Figure 2.5: Vectorized Method

Compared to the non-vectorized example (Figure 2.4 ) the vectorized example (Figure 2.5)

can yield an ideal speed up that is equal to the number of elements that can be operated on

simultaneously in a single SIMD instruction. This is an ideal speed up because all of the algorithm’s

execution time occurs within the vectorized loop. This is not always true in algorithms, which is

a large disadvantage of vectorization. Some algorithms require overhead complexity to transform
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them into a vectorizable form. When only part of the execution time is able to decrease due to

vectorization Amdahl’s law (Equation 2.1) can be used to calculate the total theoretical speed up,

where P is the percentage of the task that is vectorized, and S is the speed up achieved in the

vectorized region.

TheoreticalSpeedUp =
1

(1− p) + p
s

(2.1)

Modern day compilers are able to recognize vectorizable code and can vectorize loops for

the user. This is known as auto-vectorization. Auto-vectorization is used throughout this paper

to vectorize code. Optimization methods discussed in this paper, that utilize vectorization, will

attempt to transform code into a form that the compiler can vectorize.

2.2 Particle-In-Cell Algorithm

Particle-In-Cell (PIC) is a general simulation technique that is widely used in many different

fields of physics. PIC is able to simulate the motion of particles by solving for their fields using

a grid. PIC can be broken up into four steps: (1) interpolation of the fields to the each particle’s

position (gather), (2) acceleration and move of the particles, (3) the deposition of the particle charge

and/or current back onto the grid, and (4) the integration of the fields given the just computed

charge and/or current densities [1] [10]. These steps can be seen below in Figure 2.6 .

This paper is concerned with the performance optimization of the deposition method, specif-

ically charge deposition in two dimensions for current CPU architectures. Optimization techniques

presented in this paper can be extended to include current deposition and higher dimensions.
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Figure 2.6: Visualization of PIC Algorithm

2.2.1 Particle Deposition

The particle deposition method in the PIC algorithm deposits each particle’s charge to the

nodes of the cell that the particle is contained within. The grid is a spatial charge distribution

where each box in the grid is called a cell, and for each cell there are four nodes that represent the

four corners of the cell. Charge is deposited and stored at the nodes of the grid. The deposition

method iterates through each particle, and calculates the amount of charge to be deposited to the

four nodes of the cell the particle is contained within. The amount of charge deposited to each

node of a cell is based on the weighting scheme seen in Equation 2.2. In the PIC algorithm each

particle is really a collection of particles that are close together in phase space. The distribution

of these particles is defined by a shape function. For the weighting scheme used in this paper, the

shape function is a rectangular step function with the same dimensions of an individual cell as seen

in Figure 2.7 [1].
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Wi,j =
4A

4x4 y
(2.2)

Figure 2.7: Visualization of Zeroth Order Weighting Scheme [6]



Chapter 3

Optimization Methods

The goal of this chapter is to describe different optimization techniques that were applied to

the deposition method. For each optimization technique this chapter will describe what problem

it solves, how it was implemented, and an analysis of the results it gave. The first section of this

chapter will give a more detailed explanation of the implementation of the PIC depositional method

and the hardware specifications that the measurements were taken on.

3.1 Performance measurements

3.1.1 Deposit Method’s Non-Optimized Implementation

There are two fundamental data structures that the deposition method operates on. The first

data structure holds all the particles in the simulation. The particle data structure is a collection of

three one-dimensional arrays that are adjacent to each other in memory. The index i of each array

represents a unique particle, and each array holds either the position or charge of each particle. The

second data structure is a two dimensional grid. The grid is a discretized spatial charge distribution

where charge is stored at the grid’s nodes. Visualizations of the particle and grid data structures

can be seen in Figure 3.1 and Figure 3.2 respectively.
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Figure 3.1: Particle Data Structure

Figure 3.2: Grid Data Structure

The pseudocode for the deposition method can be seen below in Figure 3.6. The overview

of this algorithm is as follows. First, one iterates through the particle array. For each particle, its

four weighted charges are added to the corresponding four nodes of the cell the particle resides in.

Weighted charge is the amount of charge that will get deposited to a specific node based on the
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first order weighing scheme seen in Figure 2.7.

Figure 3.3: Pseudocode of Deposition Method Before Any Optimization Techniques Applied
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3.1.2 Measurement and Hardware Specification

All measurements throughout this paper are performed using a program that runs the de-

position method of the PIC algorithm with an array of particles that are randomly distributed on

the grid. The purpose of this program, seen in Figure 3.4, is to measure the time-per-particle of

the deposition method. The time-per-particle is the average time (including program overhead) to

deposit the charge from one particle to the charge distribution field (called the grid); that is, it

is the total time divided by NT × PPC × NC. NT is the total number of times the deposition

method ran in a measurement. PPC is the average number of particles in a cell, and NC is the

total number of cells on the grid, such that PPC ×NC is the total number of particles in the sim-

ulation. Time-per-particle should tend towards a constant as the total number of particles grow.

By analyzing time-per-particle versus other general simulation parameters one can characterize the

deposition methods performance on a CPU.

Figure 3.4: Pseudocode of the Program Used to Take Measurements

(EndTime− StartT ime)

(NT ∗ PPC ∗NC)
(3.1)
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Figure 3.5: List of General Simulation Variables

Figure 3.6: Table of Hardware Specifications
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3.2 Tiling

The purpose of the memory hierarchy is to limit the number of times the CPU has to access

data from main memory. One way the memory hierarchy achieves this is by loading memory onto

cache. The CPU can then reuse memory that is already loaded onto cache, limiting the number of

times the CPU accesses main memory. This is known as cache reuse and is the central idea behind

the optimization technique of tiling.

The performance of the non-optimized implementation of the deposition method is seen in

Figure 3.7. This implementation experiences a decrease in speed when the size of the grid is

greater than L3 cache (Figure 3.7). When the grid size is greater than L3 cache, grid nodes will be

accessed from main memory multiple times. For example, suppose in the particle array there are

two particles that reside in a common cell, but one particle is at the beginning of the array and

the other particle is at the end. Initially the four nodes that correspond to the cell containing both

particles get loaded onto cache. The first particle adds it weighted charges to these nodes. Because

all the nodes of the grid cannot fit onto L3 cache, by the time the deposition method reaches the

last particle in the array these four nodes have been evicted from cache to make room for nodes

corresponding to other particles in the array. In the worst-case scenario every time nodes are to

be updated they have to be reloaded onto cache, and the deposition method will experience slower

speeds due to the access time associated with main memory (Figure 3.7).
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Figure 3.7: The Initial Performance of Deposit Method
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Figure 3.8: Visualization of Tile Sorting

As seen in Figure 3.7 when the size of the grid is less then L3 cache all of the nodes of the

grid only have to be loaded onto cache once and can stay on cache for the remainder of the particle

deposition, enabling the CPU to reuse cache. The idea behind tiling is to partition the grid into

tiles, such that the number of nodes per tile is less than the number of nodes that can fit onto L3

cache. Then one needs to sort the particles according to the tiles they reside in. This ensures that

when iterating through all the particles in a tile, the nodes associated with these particles only have

to get loaded from main memory onto cache once, allowing the CPU to reuse cache for updating

nodal values. A visualization of this optimization scheme can be seen in Figure 3.8.
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Figure 3.9: Speed Up due to Tiling

Figure 3.10: Tile is an array of Particle structures
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When tiling is implemented in the deposition method the CPU is able reuse cache, avoiding

any performance lose when the grid becomes larger than L3 cache (Figure 3.9). This optimization

scheme also introduces a performance tuning parameter to the deposition method called tile size.

The tile size is defined as the number of cells per tile. When the size of a tile increases, the number

of cells within a tile increases, and the total number of tiles on the grid decreases. The pseudocode

for this algorithm can be seen in Figure 3.10, the deposition method now iterates through tiles and

then iterates through the particles that are contained within a tile. While this optimization method

allows effective use of the memory hierarchy through cache reuse, there is now extra computational

time that is associated with sorting the particles into tiles. This sorting time can incur significant

overhead, but it will not be discussed in this paper.

3.3 multithreading

Multithreading is a technique that allows the multiple cores of a multicore CPU to work in

parallel. Multithreading is known as shared memory parallelism, because each core can operate on

a chunk of memory that is visible to all the other cores of a CPU. A core can update a tile by adding

the charges of all the particles that reside within the tile to the grid. The deposition method can

assign all the cores of a CPU to update all the tiles of the grid in parallel. This method produces race

conditions, because multiple cores can update neighboring tiles, thus updating common memory

locations (Figure 3.11).

One solution to prevent race conditions in multithreading the deposition method is to perform

an atomic add when adding the weighted charge of a particle to the grid. Using atomic operations

avoids race conditions but at the cost of a large overhead in computational time (Figure 3.15).
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Figure 3.11: Race Conditions of Neighboring Tiles

Figure 3.12: Pseudocode for OpenMP Using Atomics
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Another way to avoid race conditions when applying shared memory parallelism to the de-

position method is to ensure that each core only operates on a group of tiles that are not adjacent

to each other on the grid. This method is called tile coloring. Tile coloring is an implementation of

multithreading that allows the cores of a CPU to only update groups of tiles that do not neighbor

each other on the grid. These groups can be imagined as a checkered pattern of four colors as seen

in Figure 3.14. For example, in Figure 3.14 all the tiles belonging to either the red, blue, green, or

orange group do not neighbor each other, and therefore can be updated in parallel without risking

a race condition.

Figure 3.13: Pseudocode for Tile Coloring
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Figure 3.14: Visualization Tile Coloring

Figure 3.15: Speed Up Due to Tile Coloring
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Tile coloring is able to avoid race conditions without the use of atomic operations, which

incur a decrease in performance, as seen in Figure 3.15. Tile coloring is able utilize multi-core

architecture, and achieve a speed up of 4 when four cores are used (Figure 3.15). Figure 3.16 is a

graph of core efficiency, which is the speed up achieved divided by the number of cores used. As

the number of cells grows the core efficiency tends towards 1 which means the tile coloring method

is able to fully utilize every core of the CPU.

Figure 3.16: Core Efficiency
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3.4 Vectorization

Vectorization is the process of transforming a loop into a form that can simultaneously operate

on chunks of data rather than operate on each individual data element. A trivially vectorizable

loop is a loop that consecutively performs an independent and identical operation on an array or

arrays of contiguous data that are aligned. Trivially vectorizable loops can obtain the ideal speed

up of vectorization. The goal of the vectorization methods discussed in this section are to transform

the deposition method (as much as possible) into a trivially vectorizable form. An example of a

trivially vectorizable loop can be seen in Figure 3.17.
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SIMD instructions operate on vector registers. Copying data into these registers is fastest

when the first element of data is located at specific memory locations. Data that begins at these

specific memory locations are called aligned. Data that is misaligned does not begin on these

specific memory locations. Performing vector operations on misaligned data can prevent code from

achieving the ideal speed of vectorization due to the extra computational time required to copy

misaligned data into vector registers.

Figure 3.17: Visualization of Trivially Vectorizable Program
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The deposition method is not trivially vectorizable because the nodes of a cell are not con-

tiguous in memory as seen in Figure 3.2. The deposition method iterates through all of the particles

within a tile and (for each particle) calculates the four weighted charges that will be added to the

four nodes of the cell the particle resides in. The addition of weighted charges to the nodes of a

cell are not trivially vectorizable because the four nodes of a cell are far apart from each other in

memory (not contiguous in memory). A visualization of this problem can be seen in Figure 3.18.

Figure 3.18: Deposit Method Not Vectorizable Due to Nodes Not Contiguous in Memory
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3.4.1 Strip Mining

Strip mining is a vectorization method that separates the vectorizable operations of an al-

gorithm from the non-vectorizable operations by performing a loop transformation. The loop

transformation splits a single loop into two loops. The goal of this loop transformation is that one

of these loops become trivially vectorizable.

Strip mining can be applied to the deposition method by splitting the loop that iterates

through the particle array into two loops. the first loop, called the accumulation region, iterates

through all the particles within a tile and for each particle calculates its weighted charges and

stores these charges into temporary arrays. This loop is now trivially vectorizable, because the

process of calculating the weighted charges and writing them to temporary arrays can be performed

consecutively and independently on each element of the particle array (Figure 3.19).

Figure 3.19: Visualization of Vectorized Accumulation
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The second loop, called the nodal update region, iterates through each element of the tem-

porary arrays (weighted charges), adding each weighted charge to its respective node on the grid.

This loop is not vectorizable because the weighted charges are being added to nodes that are not

contiguous in memory ( Figure 3.20 ). The pseudocode for the strip mining technique can be seen

in Figure 3.21.

Figure 3.20: Visualization of Nodal Update
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Figure 3.21: Pseudocode of Strip Mining

Figure 3.22: Speed Up Due to Strip Mining
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Figure 3.23: Performance Table of Strip Mining

The ideal speed up of the vectorized region is a factor of 8 per core, because the CPU used can

perform a vector operation on 8 floating point numbers. The speed up received in the vectorized

region is only 4.69 per core, only 58 percent of the ideal speed up (Figure 3.23). With 4 cores the

speed up expected would be a factor of 32 in the vectorizable region, which only a speed up of 14.43

is experienced, 45 percent of the ideal speed up (Figure 3.23). A reason for not achieving the ideal

speed up could be due to the misalignment of data structures in memory, specifically the particle

array or the temporary arrays. The total speed up achieved using strip mining when compared to

the tile coloring method is about 2, and a total speed up of 8 is achieved when compared to the

tiling method (Figure 3.22). The total speed up is limited by Amdahl’s law (Equation 2.1), because

only a portion of the computational time is receiving a speed up due to vectorization.

3.4.2 Cell Sort

Strip mining adds weighted charges to the appropriate nodes of the grid once per particle.

By sorting particles based on the cells they reside in, cell sorting is able to add weighted charges to
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the appropriate nodes of the grid only once per cell. Cell sorting is able to achieve this by iterating

through all the cells of a tile. For each cell, the cell sorting method first iterates through all the

particles of the cell, accumulating the weighted charges due to each particle into four temporary

arrays (one array for each node of the cell). Then, using the temporary arrays, the cell sorting

method calculates and adds the four weighted charges due to all the particles in the cell to the

cell’s four nodes (Figure 3.24).

Figure 3.24: Pseudocode For Cell Sort Scheme
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The trivially vectorizable region of the cell sorting method accumulates the total amount of

charge that is to be added to the nodes of a cell into four temporary arrays called accumulation

arrays. Each accumulation array corresponds to one of the four nodes of a cell, and holds the

same number of elements that a SIMD instruction can simultaneously operate on (8 floating point

numbers for the CPU used). The trivially vectorizable region iterates through all the particles in a

cell by contiguous chunks of 8 particles. For each particle in a contiguous chunk the region performs

a weighted charge calculation and adds these weighted charges to corresponding accumulation arrays

(Figure 3.25).

Figure 3.25: Visualization of Vectorized Accumulation For Cell Sort
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The non-vectorizable region in the cell sorting method adds each element of an accumulation

array together (Figure 3.26), producing four weighted charges due to all the particles in the cell.

These weighted charges are then added to the four nodes of the cell. After the nodal update is

performed the cell sort method then continues to the next cell.

Figure 3.26: Visualization of Nodal Update in Cell Sort
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Figure 3.27: Total Speed Up Due to Cell Sorting

The total speed up due to cell sorting can be seen in Figure 3.27. Compared to strip mining,

cell sorting produces a speed up of 2. The cell sorting method achieves a total speed up of 20 when

compared to tiling (Figure 3.27).
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Figure 3.28: Speed Up Due to Non-Vectorized Cell Sorting
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Figure 3.29: Speed Up Due to Vectorization of the Cell Sorting method

The speed up due to vectorization (Figure 3.29) is 2, which is equal to the speed up achieved

using strip mining (Figure 3.23). As seen in Figure 3.28, when the compiler does not vectorize the

cell sorting method a speed up of 2 is achieved when compared to tile coloring (a non-vectorized

method). Cell sorting may achieve this speed due to cache reuse of its accumulation arrays or cache

reuse of nodal values, but further investigation is needed to confirm.

As more cores are applied to the cell sorting method, core efficiency decreases due to band-

width limitations of the CPU, that is the algorithm operates on more data elements per unit time

than can be transmitted to the CPU (Figure 3.30). By decreasing the bandwidth of the cell sorting

method, core efficiency is to expected increase due to no longer being limited by the maximum

bandwidth of the CPU. Decreasing bandwidth of the cell sorting method increases core efficiency

(Figure 3.31), which confirms that the cell sorting method is limited by the bandwidth of the CPU.

The cell sorting method incurs a large overhead associated with sorting particles by cells. Although
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the cell sorting method is bandwidth limited by the CPU and would have to incur large overhead

due to sorting the particles, a total speed up of 20 is achieved when compared to tiling (Figure

3.28).

Figure 3.30: Thread Efficiency of Cell Sort Scheme
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Figure 3.31: Thread Efficiency of Cell Sort Scheme with Decreased Bandwidth



Chapter 4

Conclusion

4.1 Future Work

When the compiler does not vectorize the cell sorting method a speed up of 2 is achieved

when compared to tile coloring. One reason for this speed up could be due to cache reuse of the

weighted charge arrays. Sorting the particles based on cells, the cell sorting method can accumulate

all the charge to be deposited to a cell instead of a tile. This requires temporary accumulation

arrays that could be stored in cache, and take advantage of cache reuse. Another reason for this

speed up would be L1 or L2 cache reuse. The cell sorting method iterates through cells and only

adds charge to a cell once per cell. This could allow the nodes of a cell to be reused in L2 or L1

cache. Testing these hypotheses would provide a better understanding of the speed up due to cell

sorting.

A study into different types of sorting algorithms could be of interest to reduce the overhead

of the cell sorting method. An issue with the cell sorting method is the significant overhead

associated with performing a particle sort every time step. A high performance particle sorting

algorithm could reduce this overhead, allowing the PIC algorithm to obtain a larger total speed up

due to cell sorting.

4.2 Summary

The deposition method deposits charge from the particles to the grid and is a major perfor-

mance bottleneck of the PIC algorithm. Throughout this paper there were various optimization
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techniques that increased the performance of the deposition method of the PIC algorithm on cur-

rent CPU architectures. Below one can see a comparison to the various methods applied to the

PIC algorithm (Figure 4.1).

Figure 4.1: Performance Comparison Between All Optimization Techniques Used

Each optimization technique is applied to the deposition method of the PIC algorithm to

better utilize various performance features present in current CPU architectures. Tile sorting allows

the deposition method to utilize the memory hierarchy by encouraging the reuse of cache through

sorting particles into groups called tiles. Another technique that is applied to the deposition method

is called tile coloring, which utilizes shared memory parallelism and avoids race conditions. Tile

coloring ensures that each core of a CPU only operates on a group of tiles that are not adjacent to

each other on the grid. The last two optimization techniques utilize SIMD architecture in current

CPUs by transforming the deposition method, as much as possible, into a trivially vectorizable
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form. The method known as strip mining achieves this by separating the vectorizable region of the

deposition method from the non-vectorizable region. Because only a portion of the computational

time can utilize vectorization, strip mining is limited by Amdahl’s law. Cell sorting is another

technique that attempts to transform the deposition method into a trivially vectorizable form,

by sorting the particles according to the cells they reside in. While cell sorting incurs overhead

associated with sorting the particles, and is limited by the bandwidth of the CPU, it produces a

speed up of 20 when compared to tile sorting.
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