Some Improved Bounds on the Number of 1-Factors of n-Connected Graphs

by

Harold N. Gabow
Department of Computer Science
University of Colorado
Boulder, Colo. 80309

TR #CU-CS-086-76

January 1976

Key Words: graph, 1-factor, matching, connectivity

## 1. Introduction

There is an interesting relation between connectivity and the number of distinct 1-factors in a graph. Beineke and Plummer [1] showed that if a graph has a 1-factor and is n-connected, it has n 1-factors. Zaks [3] sharpened the bound on the number of 1-factors to  $n(n-2)(n-4)\cdots 5\cdot 3$  for noodd and  $n(n-2)(n-4)\cdots 4\cdot 2$  for n even. This bound is exact for the complete graphs  $K_{n+1}$  (n odd) and the party graph  $P_6$  (n=4). We show these are the only graphs that achieve the bound for  $n \ge 3$ , and improve the bound for the remaining cases.

## 2. Preliminaries

This section gives some definitions and previous results. For terms not defined here, see [2].

A graph G that has two or more vertices is <u>connected</u> (<u>1-connected</u>) if there is a path between any two vertices. For a positive integer n, G is <u>n-connected</u> if, when any m vertices  $v_i$ ,  $0 \le m < n$ , are deleted, the resulting graph  $G - \{v_i \mid i=1,\ldots,m\}$  is connected. (Note an n-connected graph has at least n+1 vertices.) G has <u>connectivity n</u> if it is n-connected but not (n+1)-connected. If G is connected but  $G - \{v\}$  is not,  $v_i$  separates  $G_i$ 

A <u>l-factor</u> (<u>perfect matching</u>) of G is a subgraph with exactly one edge incident to every vertex of G. A vertex v is <u>totally covered</u> if every edge vw incident to v is in some l-factor of G. A fundamental result is the following:

<u>Lemma 1</u> [3]: A 2-connected graph that has a 1-factor has at least two totally covered vertices.

Define  $\underline{F(G)}$  as the number of distinct 1-factors of G. For any positive integer n, define  $\underline{f(n)}$  as the largest integer such that if G

is an n-connected graph with a 1-factor, then  $F(G) \ge f(n)$ . Define g(n), a variant of the factorial function, by g(n) = n for n=1,2, and g(n) = ng(n-2) for  $n \ge 3$ . Thus  $g(n) = n(n-2) \cdot \ldots \cdot 5 \cdot 3$  or  $n(n-2) \cdot \ldots \cdot 4 \cdot 2$ , depending on whether n is odd or even. An induction using Lemma 1 shows  $f(n) \ge g(n)$  for  $n \ge 1$ .

Define  $\underline{f^*(n)}$  as the second-lowest possible number of 1-factors for an n-connected graph. That is,  $f^*(n)$  is the largest integer such that if G is an n-connected graph with F(G) > f(n), then  $F(G) \ge f^*(n)$ .

The <u>complete graph</u>  $K_n$  consists of n vertices and all possible edges between them. If n is odd,  $K_{n+1}$  is n-connected and has a l-factor. In fact,  $F(K_{n+1})=g(n)$ ; dso f(n)=g(n) for n odd.

If n is even, the <u>party graph</u>  $P_n$  is  $K_n$  with the edges of a 1-factor deleted.  $P_n$  is (n-2)-connected. It is easy to check  $F(P_4)=2$ ,  $F(P_6)=8$ , and  $F(P_{n+2})=n(F(P_n)+F(P_{n-2}))$  for  $n \ge 6$ .

## 3. The New Bounds

We begin by analyzing 3- and 4- connected graphs, confirming conjectures of Zaks on  $f^*(3)$  and  $f^*(4)$ .

Lemma 2: f(3) = 3;  $K_4$  is the only 3-connected graph G with F(G) = 3;  $f^*(3) = 4$ .

<u>Proof:</u> Since  $F(K_4) = 3$ , we have  $f(3) \le 3$ . Similarly,  $f*(3) \le 4$  is shown by the graph consisting of a cycle on six vertices,  $v_1v_2v_3v_4v_5v_6$ , plus the edges  $v_1v_4$ ,  $v_2v_6$ ,  $v_3v_5$ . Lemma 1 implies  $f(3) \ge 3$ , so f(3) = 3.

It remains only to show that if  $G \neq K_4$  is a 3-connected graph with a 1-factor, then  $F(G) \stackrel{>}{=} 4$ . We assume F(G) = 3 and derive a contradiction.

G contains a totally covered vertex t, by Lemma 1. The assumptions imply t is adjacent to exactly three vertices  $v_i$ , i=1,2,3. Further, each graph G -{t, $v_i$ } has exactly one 1-factor, i.e., F(G -{t, $v_i$ }) = 1.

Using Lemma 1, we see G -{t,v<sub>i</sub>} is not 2-connected; however it is 1-connected. Thus there is a vertex  $c_i$  separating G -{t,v<sub>i</sub>} i.e., G -{t,v<sub>i</sub>,c<sub>i</sub>} is not connected. Note  $c_i \neq v_j$  for any i,j, since G -{t,v<sub>i</sub>,v<sub>j</sub>} is connected. (The assumption G  $\neq$  K<sub>4</sub> is used here.) Let  $v_i,v_j,v_k$  be the vertices adjacent to t, in some order. Graph G - {v<sub>i</sub>,c<sub>i</sub>} is separated by t. Thus  $v_j$  and  $v_k$  are in different components of G -{t,v<sub>i</sub>,c<sub>i</sub>}.

The proof is completed by contradicting this fact, i.e., we find a path between  $v_j$  and  $v_k$  in  $G-\{t,v_i,c_i\}$ . We do this by finding paths between  $v_j$  and  $c_k$ ,  $v_k$  and  $c_j$ , and  $c_i$  and  $c_k$ .

Graph G  $-\{t,c_i\}$  is separated by  $v_i$ . So there is a simple path P between  $v_j$  and  $v_k$ , containing  $v_i$ . The part of P between  $v_j$  and  $v_i$  is in G  $-\{t,v_k\}$ ; it contains  $c_k$ , since  $v_j$  and  $v_i$  are in different components of G  $-\{t,v_k,c_k\}$ . This gives the desired path between  $v_j$  and  $c_k$ . Similarly the part of P between  $v_k$  and  $v_j$  gives the desired path between  $v_k$  and  $c_j$ . Note further, vertices  $c_j,c_j$ , and  $c_k$  are distinct.

Now we find the desired path between  $c_j$  and  $c_k$ . Since  $G - \{t, v_i, v_j\}$  is connected, it contains a path Q between  $c_j$  and  $c_k$ , and also a path between  $c_j$  and  $c_i$ . Assume without loss of generality that Q does not contain  $c_i$ . (If it does, interchange indices i and j.) So Q is in  $G - \{t, v_i, c_i\}$ , and is the last desired path. QED

Lemma 3: f(4) = 8;  $P_6$  is the only 4-connected graph G with F(G) = 8; f\*(4) = 10.

<u>Proof:</u> We see  $f(4) \le 8$  and  $f*(4) \le 10$  by counting the number of 1-factors in  $P_6$  and  $P_6$ +e, where the latter graph is  $P_6$  plus one extra edge.

Let G be a 4-connected graph with a 1-factor. Let t be a totally covered vertex and let tv be an edge. Then  $G - \{t,v\}$  is 2-connected, so  $F(G - \{t,v\}) \ge 2$ . Since t has degree at least four, we see  $F(G) \ge 8$ . Thus f(4) = 8.

It remains only to show that  $F(G) \stackrel{>}{=} 10$  if  $G \neq P_6$ . The argument divides into two cases.

<u>Case 1:</u> There is a totally covered vertex t and an edge tv, such that  $G - \{t,v\}$  is 3-connected.

Apply the results of Lemma 2 to G -{t,v}. If G -{t,v}  $\neq$  K<sub>4</sub>, then F(G -{t,v})  $\geq$  4, so F(G)  $\geq$  4+3·2 = 10, as desired. Otherwise if G -{t,v} = K<sub>4</sub>, graph G has six vertices and contains at least the edges of P<sub>6</sub>+e. Thus F(G)  $\geq$  F(P<sub>6</sub>+e) = 10.

<u>Case 2:</u> For every totally covered vertex t and every edge tv,  $G - \{t,v\}$  has connectivity 2.

If a totally covered vertex has degree five or more, then  $F(G) \ge 5 \cdot 2 = 10$ , as desired. Thus assume all totally covered vertices have degree four. Assume further that F(G) < 10. Below we deduce  $G = P_6$ .

Let t be a totally covered vertex, adjacent to vertices  $v_i$ , i=1,2,3,4. We first show vertices  $v_i$  form a cycle on four vertices, with no other edges joining them.

No three vertices  $v_1$  form a cycle. For suppose  $v_1v_2v_3$  is a cycle. Then since G  $-\{v_4\}$  is 3-connected, G  $-\{t,v_4\}$  is 3-connected. But this violates the assumption of Case 2.

Since F(G) < 10, assume without loss of generality that  $F(G - \{t, v_i\}) = 2$ , for i=1,2,3. Since  $G - \{t, v_i\}$  is 2-connected, it has two totally covered vertices. Both have degree two in  $G - \{t, v_i\}$ . Any vertex has degree at least four in G. So both totally covered vertices of  $G - \{t, v_i\}$  are adjacent to t and  $v_i$ . In particular, both are among the vertices  $v_i$ .

Thus each vertex  $v_i$ , i=1,2,3, is adjacent to two other vertices  $v_j$ . Since no three vertices  $v_j$  form a cycle, it is easy to see the four vertices  $v_j$  form a cycle, with no other edges.

Now we find other totally covered vertices besides t. Without loss of generality, assume the cycle found above is  $v_1v_2v_3v_4$ . Vertex  $v_2$  is totally covered in G -{t, $v_i$ }, for i=1,3. Thus  $v_2$  is totally covered in G. This in turn implies  $v_1$  is totally covered in G.

The above argument shows the totally covered vertex  $v_2$  is adjacent to four vertices joined in a cycle. This cycle is  $v_1 t v_3 s$ , where s is a vertex in G. Similarly,  $v_1$  is adjacent to four vertices joined in a cycle,  $v_2 t v_4 s$ . Thus the six vertices  $s,t,v_i,i=1,2,3,4$ , and their interconnecting edges, form the party graph  $P_6$ .

G contains no other vertices, since G  $-\{s,v_3,v_4\}$  is connected. Thus  $G=P_6$ . QED

Now we extend these results to higher connected graphs. Zaks conjectured that  $K_{n+1}$  (n odd) and  $P_6$  (n=4) are the only graphs with exactly g(n) 1-factors, for an  $\geq 3$ . Theorems 4 and 5 confirm this.

Theorem 4: Let  $n \ge 3$  be odd. Then f(n) = g(n);  $K_{n+1}$  is the only n-connected graph G with F(G) = g(n);  $f^*(n) \ge \frac{4}{3}g(n)$ .

<u>Proof:</u> We show by induction on odd n that if  $G \neq K_{n+1}$  is an n-connected graph with a 1-factor, then  $F(G) \geq \frac{4}{3} g(n)$ . Lemma 2 establishes the base case, n=3. So assume the assertion holds for some  $n \geq 3$ . Let  $G \neq K_{n+3}$  be an (n+2)-connected graph with a 1-factor. Let t be a totally covered vertex, and let tv be an edge.

Graph G -{t,v} is n-connected and has a 1-factor. Further, it is not  $K_{n+1}$ . For otherwise, each vertex w in G -{t,v} is adjacent to both t and v, since w has degree at least n+2 in G. This implies  $G = K_{n+3}$ , contrary to assumption.

The inductive assertion shows  $F(G - \{t,v\}) \ge \frac{4}{3} g(n)$ . Since there are at least n+2 vertices v,  $F(G) \ge \frac{4}{3} g(n+2)$ . QED

Theorem 5: Let  $n \ge 6$  be even. Then  $f(n) \ge \frac{5}{4} g(n)$ .

Proof: We first show for n=6,  $f(6) \ge \frac{5}{4} g(6) = 60$ . Let G be a

6-connected graph with a 1-factor. It is easy to see a totally covered vertex t has at least six edges tv such that  $G - \{t,v\} \neq P_6$ . So Lemma 3 shows  $F(G) \stackrel{>}{=} 6 \cdot 10 = 60$ , whence  $f(G) \stackrel{>}{=} 60$ .

The general case now follows by induction, with n=6 as the base. QED Theorem 5 gives an exact bound for n=6, as shown by the party graph  $P_8$ . We conjecture that for any even n  $\geq 2$ ,  $f(n) = F(P_{n+2})$ .

## References

- [1] Beineke, L.W. and M.D. Plummer, "On the 1-factors of a non-separable graph", <u>J. Comb. Theory 2</u> (1967), 285-289.
- [2] Harary, F. <u>Graph Theory</u>, Addison-Wesley, Reading, Mass., 1969.
- [3] Zaks, J., "On the 1-factors of n-connected graphs", <u>J. Comb.</u>
  <u>Theory 11</u> (1971), 169-180.