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1. Introduction

There is an interesting relation between connectivity and the
number of distinct 1-factors in a graph. Beineke and Plummer (1]
showed that if a graph has a 1-factor and is n-connected, it has n
1-factors. Zaks [3] sharpened the bound on the number of 1-factors
to n(n-2)(n-4)-...-5-3 for nodd and n(n-2)(n-4)+...+4-2 for n even.
This bound is exact for the complete graphs Kn+1 (n odd) and the party
graph P6 (n=4). We show these are the only graphs that achieve the

bound for n Z 3, and improve the bound for the remaining cases.

2. Preliminaries

This section gives some definitions and previous results. For

terms not defined here, see [2].

A graph G that has two or more vertices is connected (1-connected)

if there is a path between any two vertices. For a positive integer n,
G is n-connected if, when any m vertices Vis 0<m<n, are deleted, the
resulting graph G —‘{v1[i=1,...,m} is connected. (Note an n-connected

graph has at least n+1 vertices.) G has connectivity n if it is

n-connected but not (n+1)-connected. If G is connected but G - {v} is

not, v separates:G

A 1-factor (perfect matching) of G is a subgraph with exactly one

edge incident to every vertex of G. A vertex v is totally covered if

every edge vw incident to v is in some T1-factor of G. A fundamental

result is the following:

Lemma 1 [3]: A 2-connected graph that has a 1-factor has at least two
totally covered vertices.
Define F(G) as the number of distinct 1-factors of G. For any

positive integer n, define f(n) as the largest integer such that if G
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is an n-connected graph with a 1-factor, then F(G) = f(n). Define

g(n), a variant of the factorial function, by g(n) = n for n=1,2, and

g(n) = ng(n-2) for n 2 3. Thus g(n) = n(n-2)-...-5:3 or n(n-2)-...+4-2,
depending on whether n is odd or even. An induction using Lemma 1 shows
f(n) 2 g(n) for n > 1.

Define f*(n) as the second-lowest possible number of T-factors
for an n-connected graph. That is, f*(n) is the largest integer such
that if G is an n-connected graph with F(G) > f(n), then F(G) 2 f*(n).

The complete graph Kn consists of n vertices and all possible

edges between them. If n is odd, Kn+1 is n-connected and has a 1-factor.
In fact, F(Kh+1);g(n)siso f(n)=g(n) for n odd.

If n is even, the party graph Pn is Kn with the edges of a 1-factor
deleted. P is (n-2)-connected. It is easy to check F(P,)=2, F(P6)=8,
and F(P ,,)=n(F(P,) + F(P _,)) for n = 6.

3. The New Bounds

We begin by analyzing 3- and 4- connected graphs, confirming
conjectures of Zaks on f*(3) and f*(4).
Lemma 2: f(3) = 3; Ky is the only 3-connected graph G with F(G) = 3;
f*(3) = 4.
Proof: Since F(K,) = 3, we have f(3) = 3. Similarly, f%(3) = 4 is
shown by the graph consisting of a cycle on six vertices, VVoVaVyVgVes
plus the edges ViVgs VoVes VaVg. Lemmé 1 implies f(3) = 3, so f(3) = 3.
It remains only to show that if G # K4 is a 3-connected graph with
a 1-factor, then F(G) 2 4. We assume F(G) = 3 and derive a contradiction.
G contains a totally covered vertex t, by Lemma 1. The assumptions
imply t is adjacent to exactly three vertices Vis i=1,2,3. Further,

each graph G -{t,v;} has exactly one 1-factor, i.e., F(G -{tyvid) = 1.



Using Lemma 1, we see G —{t,vi} is not 2-connected; however it is 1-
connected. Thus there is a vertex oF separating G —{t,vi} i.e.,
G -{t,vi,ci} is not connected. Note Cs # vj for any i,j, since
G -{t,vi,vj} is connected. (The assumption G # K4 is used here.)
Let Vi’vj’vk be the vertices adjacent to t, in some order. Graph
G - {Vi’ci} is separated by t. Thus vj and vy are in different components
of G ~{t,v1,ci}.
The proof is completed by contradicting this fact, i.e., we find
a path between vj and Vi in G -{t,vi,ci}. We do this by finding paths
between vj and Crs Vi and cj, and Cj and Cr-
Graph G —{t,ci} is separated by vy So there is a simple path
P between Vj and Vies containing Vi The part of P between Vj and v
is in G —{t,vk}; it contains Cr> since Vj and v, are in different
components of G —{t,vk,ck}. This gives the desired path between vj and
C: Similarly the part of P between Vi and Vs gives the desired path
between Vi and Cj' Note further, vertices CiaC5s and c, are distinct.
Now we find the desired path between c5 and Cpr Since G -{t,vi,vj}
is connected, it contains a path Q between cj and Cr> and also a path between
cj and Ci- Assume without Toss of generality that Q does not contain

Cse (If it does, interchange indices i and j.) So Q is in G -{tovisci),

and is the last desired path. QFD

Lemma 3: f(4) = 8; P 1s the only 4-connected graph G with F(G) = 8;
f*(4) = 10.
Proof: We see f(4) 2 8 and f*(4) = 10 by counting the number of 1-factors
in P6 and P6+e, where the latter graph is P6 plus one extra edge.

Let G be a 4-connected graph with a 1-factor. Let t be a totally
covered vertex and let tv be an edge. Then G -{t,v} is 2-connected, so

F(G -{t,v}) Z 2. Since t has degree at least four, we see F(G) 2 8.

Thus f(4) = 8.



It remains only to show that F(G) 2 10 if G # Ps- The argument
divides into two cases.
Case 1: There is a totally covered vertex t and an edge tv, such
that G -{t,v} is 3-connected.

Apply the results of Lemma 2 to G -{t,v}. If G -{t,v} # Ky s
then F(G -{t,v}) 2 4, so F(G) Z 4+3:2 = 10, as desired. Otherwise
if 6 -{t,v} = Ky» graph G has six vertices and contains at least the
edges of Pgte. Thus F(G) 2 F(P6+e) = 10.
Case 2: For every totally covered vertex t and every edge tv,
G -{t,v} has connectivity 2.

If a totally covered vertex has degree five or more, then F(G) 2 52 = 10,
as desired. Thus assume all totally covered vertices have degree four.

Assume further that F(G) < 10. Below we deduce G = P6’

Let t be a totally covered vertex, adjacent to vertices Vi i=1,2,3,4.
We first show vertices v form a cycle on four vertices, with no other
edges joining them.

No three vertices Vs form a'cycle., For suppose*v]VZV3~,
is a cycle. Then since G —{v4} is 3-connected, G ~{t,v,} is 3-connected.
But this violates the assumption of Case 2.

Since F(G) < 10, assume without loss of generality that
F(G —{t,vi}) = 2, for i=1,2,3. Since G - {t,v;} is 2-connected, it has two
totally covered vertices. Both have degree two in G —{t,vi}. Any
vertex has degree at least four in G. So both totally covered vertices
of G -{t,vi} are adjacent to t and Vs In particular, both are among
the vertices vy

Thus each vertex vy, 1=1,2,3, is adjacent to two other vertices
vj. Since no three vertices v. form a cycle, it is easy to see the four

J
vertices vj'form a cycle, with no other edges.



Now we find other totally covered vertices besides t. Without
loss of generality, assume the cycle found above is VqVoVaVy. Vertex Vs
is totally covered in G -{t,vy}, for i=1,3. Thus v, is totally covered
in G. This in_turn implies Yq is totally covered in G.

The above argument shows the totally covered vertex Vo is adjacent
to four vertices joined in a cycle. This cycle is v1tv3s, where s 1is
a vertex in G. Similarly, vy is adjacent to four vertices joined in a
cycle, vztv4s. Thus the six vertices s,t,vi,i=],2,3,4, and their
interconnecting edges, form the party graph P6’

G contains no other vertices, since G -{S,v3,V,} is connected.
Thus G=P..  QED

6
Now we extend these results to higher connected graphs. Zaks

conjectured that K41 (n odd) and P6 (n=4) are the only graphs with

exactly g(n) 1-factors, for n 2 3. Theorems 4 and 5 confirm this.

Theorem 4: Let n = 3 be odd. Then f(n) = g(n Kn+] is the only
>

)s
n-connected graph G with F(G) = g(n); f*(n) %'g(n).

Proof: We show by induction on odd n that if G # Kyt 18 an n-connected
graph with a 1-factor, then F(G) 2 %'g(n). Lemma 2 establishes the

base case, n=3. So assume the assertion holds for some n 2 3. Let

G # Kn+3 be an (n+2)-connected graph with a 1-factor. Let t be a

totally covered vertex, and let tv be an edge.

Graph G -{t,v} is n-connected and has a 1-factor. Further, it
is not Kn+1‘ For otherwise, each vertex w in G -{t,v} is adjacent to
both t and v, since w has degree at least n+2 in G. This implies
G = Kn+3’ contrary to assumption.

The inductive assertion shows F(G -{t,v}) Z %-g(n). Since there

Wi~

are at least n+2 vertices v, F(G) 2 % g(n+2). QED



Theorem 5: Let n 2 6 be even. Then f(n) 2 3 g(n).

o

Proof: We first show for n=6, f(6) 2 g(6) = 60. Let G be a
6-connected graph with a T1-factor. It is easy to see a totally covered
vertex t has at least six edges tv such that G -{t,v} # P6. So Lemma 3
shows F(G) 2 6:10=60; whence f(6) 2 60.
The general case now follows by induction, with n=6 as the base. QED
Theorem 5 gives an exact bound for n=6, as shown by the party

graph Pg. We conjecture that for any even n 2.2; f(n)k=,F(Pn+2).
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