Some Improved Bounds on the Number of 1-Factors of n-Connected Graphs by Harold N. Gabow Department of Computer Science University of Colorado Boulder, Colo. 80309 TR #CU-CS-086-76 January 1976 Key Words: graph, 1-factor, matching, connectivity ## 1. Introduction There is an interesting relation between connectivity and the number of distinct 1-factors in a graph. Beineke and Plummer [1] showed that if a graph has a 1-factor and is n-connected, it has n 1-factors. Zaks [3] sharpened the bound on the number of 1-factors to $n(n-2)(n-4)\cdots 5\cdot 3$ for noodd and $n(n-2)(n-4)\cdots 4\cdot 2$ for n even. This bound is exact for the complete graphs K_{n+1} (n odd) and the party graph P_6 (n=4). We show these are the only graphs that achieve the bound for $n \ge 3$, and improve the bound for the remaining cases. ## 2. Preliminaries This section gives some definitions and previous results. For terms not defined here, see [2]. A graph G that has two or more vertices is <u>connected</u> (<u>1-connected</u>) if there is a path between any two vertices. For a positive integer n, G is <u>n-connected</u> if, when any m vertices v_i , $0 \le m < n$, are deleted, the resulting graph $G - \{v_i \mid i=1,\ldots,m\}$ is connected. (Note an n-connected graph has at least n+1 vertices.) G has <u>connectivity n</u> if it is n-connected but not (n+1)-connected. If G is connected but $G - \{v\}$ is not, v_i separates G_i A <u>l-factor</u> (<u>perfect matching</u>) of G is a subgraph with exactly one edge incident to every vertex of G. A vertex v is <u>totally covered</u> if every edge vw incident to v is in some l-factor of G. A fundamental result is the following: <u>Lemma 1</u> [3]: A 2-connected graph that has a 1-factor has at least two totally covered vertices. Define $\underline{F(G)}$ as the number of distinct 1-factors of G. For any positive integer n, define $\underline{f(n)}$ as the largest integer such that if G is an n-connected graph with a 1-factor, then $F(G) \ge f(n)$. Define g(n), a variant of the factorial function, by g(n) = n for n=1,2, and g(n) = ng(n-2) for $n \ge 3$. Thus $g(n) = n(n-2) \cdot \ldots \cdot 5 \cdot 3$ or $n(n-2) \cdot \ldots \cdot 4 \cdot 2$, depending on whether n is odd or even. An induction using Lemma 1 shows $f(n) \ge g(n)$ for $n \ge 1$. Define $\underline{f^*(n)}$ as the second-lowest possible number of 1-factors for an n-connected graph. That is, $f^*(n)$ is the largest integer such that if G is an n-connected graph with F(G) > f(n), then $F(G) \ge f^*(n)$. The <u>complete graph</u> K_n consists of n vertices and all possible edges between them. If n is odd, K_{n+1} is n-connected and has a l-factor. In fact, $F(K_{n+1})=g(n)$; dso f(n)=g(n) for n odd. If n is even, the <u>party graph</u> P_n is K_n with the edges of a 1-factor deleted. P_n is (n-2)-connected. It is easy to check $F(P_4)=2$, $F(P_6)=8$, and $F(P_{n+2})=n(F(P_n)+F(P_{n-2}))$ for $n \ge 6$. ## 3. The New Bounds We begin by analyzing 3- and 4- connected graphs, confirming conjectures of Zaks on $f^*(3)$ and $f^*(4)$. Lemma 2: f(3) = 3; K_4 is the only 3-connected graph G with F(G) = 3; $f^*(3) = 4$. <u>Proof:</u> Since $F(K_4) = 3$, we have $f(3) \le 3$. Similarly, $f*(3) \le 4$ is shown by the graph consisting of a cycle on six vertices, $v_1v_2v_3v_4v_5v_6$, plus the edges v_1v_4 , v_2v_6 , v_3v_5 . Lemma 1 implies $f(3) \ge 3$, so f(3) = 3. It remains only to show that if $G \neq K_4$ is a 3-connected graph with a 1-factor, then $F(G) \stackrel{>}{=} 4$. We assume F(G) = 3 and derive a contradiction. G contains a totally covered vertex t, by Lemma 1. The assumptions imply t is adjacent to exactly three vertices v_i , i=1,2,3. Further, each graph G -{t, v_i } has exactly one 1-factor, i.e., F(G -{t, v_i }) = 1. Using Lemma 1, we see G -{t,v_i} is not 2-connected; however it is 1-connected. Thus there is a vertex c_i separating G -{t,v_i} i.e., G -{t,v_i,c_i} is not connected. Note $c_i \neq v_j$ for any i,j, since G -{t,v_i,v_j} is connected. (The assumption G \neq K₄ is used here.) Let v_i,v_j,v_k be the vertices adjacent to t, in some order. Graph G - {v_i,c_i} is separated by t. Thus v_j and v_k are in different components of G -{t,v_i,c_i}. The proof is completed by contradicting this fact, i.e., we find a path between v_j and v_k in $G-\{t,v_i,c_i\}$. We do this by finding paths between v_j and c_k , v_k and c_j , and c_i and c_k . Graph G $-\{t,c_i\}$ is separated by v_i . So there is a simple path P between v_j and v_k , containing v_i . The part of P between v_j and v_i is in G $-\{t,v_k\}$; it contains c_k , since v_j and v_i are in different components of G $-\{t,v_k,c_k\}$. This gives the desired path between v_j and c_k . Similarly the part of P between v_k and v_j gives the desired path between v_k and c_j . Note further, vertices c_j,c_j , and c_k are distinct. Now we find the desired path between c_j and c_k . Since $G - \{t, v_i, v_j\}$ is connected, it contains a path Q between c_j and c_k , and also a path between c_j and c_i . Assume without loss of generality that Q does not contain c_i . (If it does, interchange indices i and j.) So Q is in $G - \{t, v_i, c_i\}$, and is the last desired path. QED Lemma 3: f(4) = 8; P_6 is the only 4-connected graph G with F(G) = 8; f*(4) = 10. <u>Proof:</u> We see $f(4) \le 8$ and $f*(4) \le 10$ by counting the number of 1-factors in P_6 and P_6 +e, where the latter graph is P_6 plus one extra edge. Let G be a 4-connected graph with a 1-factor. Let t be a totally covered vertex and let tv be an edge. Then $G - \{t,v\}$ is 2-connected, so $F(G - \{t,v\}) \ge 2$. Since t has degree at least four, we see $F(G) \ge 8$. Thus f(4) = 8. It remains only to show that $F(G) \stackrel{>}{=} 10$ if $G \neq P_6$. The argument divides into two cases. <u>Case 1:</u> There is a totally covered vertex t and an edge tv, such that $G - \{t,v\}$ is 3-connected. Apply the results of Lemma 2 to G -{t,v}. If G -{t,v} \neq K₄, then F(G -{t,v}) \geq 4, so F(G) \geq 4+3·2 = 10, as desired. Otherwise if G -{t,v} = K₄, graph G has six vertices and contains at least the edges of P₆+e. Thus F(G) \geq F(P₆+e) = 10. <u>Case 2:</u> For every totally covered vertex t and every edge tv, $G - \{t,v\}$ has connectivity 2. If a totally covered vertex has degree five or more, then $F(G) \ge 5 \cdot 2 = 10$, as desired. Thus assume all totally covered vertices have degree four. Assume further that F(G) < 10. Below we deduce $G = P_6$. Let t be a totally covered vertex, adjacent to vertices v_i , i=1,2,3,4. We first show vertices v_i form a cycle on four vertices, with no other edges joining them. No three vertices v_1 form a cycle. For suppose $v_1v_2v_3$ is a cycle. Then since G $-\{v_4\}$ is 3-connected, G $-\{t,v_4\}$ is 3-connected. But this violates the assumption of Case 2. Since F(G) < 10, assume without loss of generality that $F(G - \{t, v_i\}) = 2$, for i=1,2,3. Since $G - \{t, v_i\}$ is 2-connected, it has two totally covered vertices. Both have degree two in $G - \{t, v_i\}$. Any vertex has degree at least four in G. So both totally covered vertices of $G - \{t, v_i\}$ are adjacent to t and v_i . In particular, both are among the vertices v_i . Thus each vertex v_i , i=1,2,3, is adjacent to two other vertices v_j . Since no three vertices v_j form a cycle, it is easy to see the four vertices v_j form a cycle, with no other edges. Now we find other totally covered vertices besides t. Without loss of generality, assume the cycle found above is $v_1v_2v_3v_4$. Vertex v_2 is totally covered in G -{t, v_i }, for i=1,3. Thus v_2 is totally covered in G. This in turn implies v_1 is totally covered in G. The above argument shows the totally covered vertex v_2 is adjacent to four vertices joined in a cycle. This cycle is $v_1 t v_3 s$, where s is a vertex in G. Similarly, v_1 is adjacent to four vertices joined in a cycle, $v_2 t v_4 s$. Thus the six vertices $s,t,v_i,i=1,2,3,4$, and their interconnecting edges, form the party graph P_6 . G contains no other vertices, since G $-\{s,v_3,v_4\}$ is connected. Thus $G=P_6$. QED Now we extend these results to higher connected graphs. Zaks conjectured that K_{n+1} (n odd) and P_6 (n=4) are the only graphs with exactly g(n) 1-factors, for an ≥ 3 . Theorems 4 and 5 confirm this. Theorem 4: Let $n \ge 3$ be odd. Then f(n) = g(n); K_{n+1} is the only n-connected graph G with F(G) = g(n); $f^*(n) \ge \frac{4}{3}g(n)$. <u>Proof:</u> We show by induction on odd n that if $G \neq K_{n+1}$ is an n-connected graph with a 1-factor, then $F(G) \geq \frac{4}{3} g(n)$. Lemma 2 establishes the base case, n=3. So assume the assertion holds for some $n \geq 3$. Let $G \neq K_{n+3}$ be an (n+2)-connected graph with a 1-factor. Let t be a totally covered vertex, and let tv be an edge. Graph G -{t,v} is n-connected and has a 1-factor. Further, it is not K_{n+1} . For otherwise, each vertex w in G -{t,v} is adjacent to both t and v, since w has degree at least n+2 in G. This implies $G = K_{n+3}$, contrary to assumption. The inductive assertion shows $F(G - \{t,v\}) \ge \frac{4}{3} g(n)$. Since there are at least n+2 vertices v, $F(G) \ge \frac{4}{3} g(n+2)$. QED Theorem 5: Let $n \ge 6$ be even. Then $f(n) \ge \frac{5}{4} g(n)$. Proof: We first show for n=6, $f(6) \ge \frac{5}{4} g(6) = 60$. Let G be a 6-connected graph with a 1-factor. It is easy to see a totally covered vertex t has at least six edges tv such that $G - \{t,v\} \neq P_6$. So Lemma 3 shows $F(G) \stackrel{>}{=} 6 \cdot 10 = 60$, whence $f(G) \stackrel{>}{=} 60$. The general case now follows by induction, with n=6 as the base. QED Theorem 5 gives an exact bound for n=6, as shown by the party graph P_8 . We conjecture that for any even n ≥ 2 , $f(n) = F(P_{n+2})$. ## References - [1] Beineke, L.W. and M.D. Plummer, "On the 1-factors of a non-separable graph", <u>J. Comb. Theory 2</u> (1967), 285-289. - [2] Harary, F. <u>Graph Theory</u>, Addison-Wesley, Reading, Mass., 1969. - [3] Zaks, J., "On the 1-factors of n-connected graphs", <u>J. Comb.</u> <u>Theory 11</u> (1971), 169-180.