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Thesis directed by Prof. Francisco Lopez Jimenez

Soft fiber reinforced composites are very suitable materials for space deployable struc-

tures. These materials are characterized by a very compliant matrix that allows the fibers

to highly deform so microbuckling under bending can appear without failure. This mecha-

nism acts as a stress-reliever, so the material can be folded to very high curvatures without

damage. However, the existing models are not able to accurately capture the mechanical

behavior of these materials.

A new micromechanical model is proposed for this materials under bending. The

model considers both the pre and post buckling regimes using a large strain formulation.

The strain energy is calculated as the sum of the energy in the matrix and the fibers. The

energy of the matrix is calculated using homogenization methods and the energy of the fibers

is approximated using classical beam theory. The obtained energy model is a function of

the position of the neutral axis, the buckling wavelength and a function that defines where

buckling appears through the thickness. These parameters are calculated by minimizing the

energy.

The results obtained from the theoretical model are compared with numerical simula-

tions. The comparison shows good agreement for the pre-buckling regime but it does not

predict well the curvature when buckling appears. The influence of some problem parameters

such as the volume fraction and the shear modulus of the materials is also studied.
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Chapter 1

Background

1.1 Introduction

High strain composites have been widely used in the last decades in deployable space

structures. The required characteristics of these type of structures usually involve compact

packaging, mass efficiency and high reliability. High strain composites are very suitable

materials for these purposes because of their capability to fold. The large difference of

several orders of magnitude between the stiffness of the matrix and the fibers allows the

material to achieve very high bending strains without failure. Because of the softer matrix,

fibers are allowed to deform freely which leads to the microbuckling of the fibers that are

highly compressed. Figure 1.1 shows this phenomenon on a specimen under bending.

Figure 1.1: Microbuckling in a soft matrix composite under bending. Taken from [1].
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Such behavior, which does not appear in traditional fiber composites, is characterized

by complex instabilities that are still difficult to model. The objective of the present work

is to formulate a theoretical micromechanical model that will help to better understand the

behavior of the material. This new approach is based on a large deformations formulation

and homogenization methods applied to fiber reinforced materials.

An energy model has been developed based on the kinematics that have been experi-

mentaly observed such as in the model presented by [1]. Following this approach, the strain

energy of the composite is modeled as the sum of the matrix plus the fibers, which are cal-

culated separately. Homogenization is used in order to obtain more accurate results, which

leads to modeling the matrix as a Neo Hookean solid as was proposed in [2]. The resultant

expression for the strain energy density is a function of some unknown kinematic parame-

ters such as the wavelengths of the buckles. The strain energy is then minimized for this

parameters.

A numerical model has also been developed to evaluate the theoretical model. The

finite element method has been used to analyze a representative volume element of the

material.

1.2 Motivation

The motivation of this work lies on the necessity of better understanding the mechanics

of high strain composites for structural design purposes. These materials are commonly

used in deployable space structures which are very diverse and usually have to meet very

demanding requirements. Space structures in general are desired to be lightweight, resist

space environment conditions and be highly reliable. Complex structures that are large in

its operational configuration (antennas, solar panels, etc) need to fit small volumes during

the launching phase. Deployable structures are needed for that purpose and high strain

materials represent and alternative to traditional mechanical systems based on joints and

motors according to [3]. High strain composites can be used in foldable structures that could
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relay on its strain energy for deploying. Thus, the complexity and weight of the mechanisms

that are usually used in this cases could be reduced.

Figure 1.2: Deployment of a truss structure. Taken from [4]

Several deployable systems based on this method are currently being developed and

have already been tested as described in [3]. Examples include deployable booms, panels

and truss structures for antennas, telescopes, solar sails, etc. Figures 1.2 and 1.3 show some

applications. However, the behavior of these materials still needs to be further studied. A

deep knowledge of the mechanics of the material is necessary to develop reliable and accurate

models. In this context, this work aims to provide with a new analytical model that can

help to understand the micromechanical instabilities that are characteristic of this material.

A general parametric model has been developed so that it could be used for predicting the

mechanical response of a high strain composite for some given material properties and for a

certain bending curvature.

The influence of different factors such as the fibers distribution or the material proper-

ties are also studied by using the developed theoretical model. The purpose of this study is
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Figure 1.3: Folding Sequence of a Composite Lamina in a Miura-Origami Pattern. The
folding lines are made with Fiber-Reinforced High-Strain Matrix. Taken from [3].

to try to determine when and why microbuckling occurs and what affects the length of the

buckling waves. The obtained conclusions would help to quantify which factors dominate the

response and what can be neglected. This is necessary in order to decide which assumptions

can be made since a suitable model for design must be accurate and reliable but also as

simple as possible to be functional.

1.3 Literature survey

1.3.1 Micromechanical models

Models based on micromechanics had been previously developed to study the failure of

traditional composites due to microbuckling in compression. The first model that provided

with an analytical solution was derived by [5]. The model extended the solution for buckling

for a beam on an elastic foundation. He assumed two possible buckling modes which are

described in figure 1.4. The difference between them is due to the matrix deformation: the

first consists of a shear mode and the second is an extension mode. The shear mode turns

out to be the less energetic so it is considered to be the preferred one. For both modes,

compression is considered uniform and the amplitude and shape are constant through the

entire thickness of the material.

Based on Rosen’s model, many authors have further investigated the microbuckling
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Figure 1.4: Rosen buckling modes

mechanisms in composites. Some of this work includes the identification of several buckling

failure mechanisms in compression conducted by [6] and the efforts to predict the compressive

strength and the influence of fiber volume fraction, material properties, fiber configuration,

etc. such as the studies presented by [7], [8] and [9].

All the previous models only considered pure compression. For bending cases, those

theories are not applicable anymore because the compression stresses are not constant and

the microbuckling can not be assumed to be constant through the thickness. [10] describes

how soft matrix composites behave when they are subjected to large bending deformations.

Figure 1.5 shows how microbuckling appears in this case and how the stresses profile is

shifted. After at a certain curvature the fibers reach their critical buckling load the compres-

sion stiffness is reduced in the post-buckled region. As a result, the neutral surface moves

towards the tensile side of the material. This mechanism reduces the strains of the fibers

and the matrix allowing the laminate to reach higher bending curvatures. While the figure

shows the buckling in the bending plane, out of plane buckling is most commonly observed

in experiments.

[10] derived the kinematics of the described systems and obtained the following expres-

sions for the strains:

εf = π2a0rf
l

(1.1)
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Figure 1.5: Fiber microbuckling in a soft composite under bending. Taken from [10].

ε =

(
lεf

2πrf

)2

(1.2)

Where εf and ε stand for the fiber strain and the composite bulk strain. a0, rf and l are

the amplitude of the buckles, the fiber radius and the buckling wavelength respectively. These

expressions show that the microbuckling allows larger bulk material strains with smaller fiber

deformations. Nevertheless, this expressions fails when trying to predict when microbuckling

appears and the length of the buckles.

A micromechanical energy model that tries to adress this issues was developed by [1].

He proposes a strain energy model based on the kinematics observed in experiments. The

model describes the post buckling behavior of the material under bending assuming that

both the fibers and the matrix are incompressible. The energy is approximated by:

dUt = dUx + dUxy + dUyz + dUf (1.3)

Ux is the strain of the fibers that are under tension, Uxy and Uyz are the shear com-

ponents of the composite that appear due to the microbuckling kinematics and Uf is the

bending energy due to the microbuckling of the compressed fibers.

Strains are approximated based on the kinematics and assuming small displacements.
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The resultant expression for the energy is a function of the bending curvature κ, the compos-

ite mechanical properties Ex,Gxy and Gyz, the fiber modulus Ef (material properties were

experimentally determined), the material geometry (l,w,t,Vf ,h and b) and the buckling wave

length λ and the position of the neutral surface zn:

Ut =
1

48
Exlw(t− 2zns)

3κ2 +
1

2
Gxyhwκ(

t

2
+ zns)

2

+
Gyzwlκλ

2

4π2
ln

(
2(t+ zns)

b

)
+

4πlwVfEfIf
h2λ2

κ(t+ 2zns)
2 (1.4)

It is assumed that after buckling appears, the strain energy of the fibers due to pure

compression is neglected in comparison to the bending energy due to the buckling. Therefore,

fibers are assumed to be inextensible. By applying several geometrical approximations, the

expression for the buckling wave amplitude is found as:

a =
2λ

π

√
κ(z − zns) (1.5)

The unknown terms in the total energy definition are analytically obtained by mini-

mizing the energy and are found to be decoupled. The obtained expression for the neutral

surface position reads:

zns =
t

2
+

1

κ

Gxy

Ex
− 1

κ

√(
Gxy

Ex

)2

+ 2tκ

(
Gxy

Ex

)
(1.6)

And the buckling wave length, which is assumed to be constant through thickness and

also independent of the bending curvature, is approximated as:

λ =
π

2

 9Vf t
2d2Ef

8Gxyln

(
6t
d

√
Vf
π

)


1
4

(1.7)

This expression seems to be agree well with the experimental results that are provided.

However, the moment derived from the strain energy exceeds the experiments by a factor of

1.9.
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The previous model assumed linear elasticity, however it its clear that large deforma-

tions appear due to the microbuckling and high bending curvatures. Therefore, large strains

formulation has been used for the model presented in this thesis in order to obtain more

accurate results. Also, large strain formulations would allow to add material damage effects

such as the Mullins effect ([11] and [12]).

1.3.2 Homogenization methods for fiber reinforced materials

Homogenization techniques are used for simplifying the description of the behavior of

heterogeneous materials. In this case, the process consists on substituting the composite by

a homogeneous solid that would have approximately the same macro mechanical behavior.

The properties of the homogenized material are a function of the composite mechanical

properties and its microstructure.

Since the proposed model is based on large deformations, nonlinear homogenization

theory is necessary to describe the nonlinear regime for hyperelastic solids. Nonlinear ho-

mogenization has been already used in the last decades for modeling fiber composites under

large deformations. Some examples include [13], [14] and [15].

[16] provides a homogenization constitutive theory for fiber-reinforced hyperelastic

solids. By following an iterated homogenization procedure, a general solution that pre-

dicts the exact macroscopic response for a material with a random microstructure. Then,

the closed form solution for a Neo-Hookean solid reinforced by anisotropic fibers is derived:

W̃SCC = µ̃HS(I1 − 3) +
µ̃n − µ̃HS

2

(
√
I4 + 2)(

√
I4 − 1)2√

I4
(1.8)

where:

µ̃n = (1− Vf )µm + Vfµf (1.9)
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and:

µ̃hs =
(1− Vf )µm + (1 + Vf )µf
(1 + Vf )µm + (1− Vf )µf

µm (1.10)

Based on this solution, if the fibers are also modeled as Neo Hookean solids, the stored

energy function becomes:

W̃IH =
µIH

2
(I1 − 3) +

µn − µIH
2

(
2√
I4
− 3

)
+
µnµHS

2
I4 −

µIH − µHS
2

I5
I4

(1.11)

where:

µih = (1− Vf )2
(

1 +
2(2− Vf )Vf

(1− Vf )2
µf
µm

+
µ2
f

µ2
m

)
µm
2
− (1− Vf )2

µf − µm
2

(1.12)

×

√
2

(1− Vf
)2
µf
µm

+

(
1 +

2(2− Vf )Vf
(1− Vf )2

µf
µm

+
µ2
f

µ2
m

)
(1.13)

I1 is the first invariant of the Cauchy Green deformation gradient C = F TF and F is

the deformation gradient whose components are obtained by differentiating the coordinates

in the deformed configuration with respect to the undeformed one: Fij = dxi
dXj

.I4 and I5

are functions of the deformation gradient and N , which is the vector that defines the fibers

orientation.

I1 = tr(C) (1.14)

I4 = NTCN (1.15)

I5 = NTCCN (1.16)

Both I1 and I4 have a physical interpretation. I1 corresponds to the sum of the principal

stretches and I4 is the stretch in the fibers directions. I5 does not have physical meaning. For
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the case in which fibers are not stretched, I4 = 1 and therefore the strain energy equation

becomes:

WIH(I4 = 1) =
µIH

2
(I1 − 3)− µIH − µHS

2
(I5 − 1) (1.17)

The application of this method was already successfully tested by [2] for composites

with fibers several orders of magnitude stiffer than the matrix. The strain energy was cal-

culated for three dimensional shear loading assuming no stretching in the fibers. Energy

comparisons with numerical simulations of the material agreed very well with the homog-

enization results. In this thesis, the same approach will be used to study the instabilities

that appear in similar composites under bending. Equation 1.17 will be used to model the

matrix and the fibers will be modeled separately in order to be able to distinguish between

tension, compression and microbuckling.



Chapter 2

Numerical Simulation

Numerical simulations of the material have been performed in order to evaluate the

results of the theoretical model. A finite element model has been created in Abaqus software.

The model aims to recreate the micromechanical behavior so it consists of a representative

volume element where the fibers and the matrix are modeled separately.

Numerical models have been extensively used to model micromechanics by numerical

homogenization in the literature such as in [17]. A Representative Volume Element (RVE) is

modeled with periodic boundary conditions and it is assumed that the response is the same

as for an infinite solid. These techniques have been used for fiber composites and also for

materials with particles ([18]), voids ([19]), two phases, etc.

Since the response of the material under bending is assumed to be periodic throughout

the material, only a representative volume element has been simulated. Figure 2.1 shows

how the material section is cut. For the numerical simulation, the coordinate system has

been defined by aligning the x-axis with the fiber direction and the y-axis with the through-

thickness direction. The model is then obtained by cutting the material by two planes

parallel to the x-y plane. The process for generating the geometry and the setup of the finite

element model are explained in the following sections.
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2.1 Model Geometry

A Matlab script has been used for generating the model geometry and the fibers ar-

rangement. The parameters that define the model volume are the thickness t, the width w

and the length l. The thickness t and the fibers volume fraction Vf are imposed since they

are known properties of the material. The width is initially approximated and it is later

readjusted. First, the number of fibers in the cross section that gives the the volume fraction

is calculated for the given w. This value (which in general will not be an integer) is then

rounded up and the width is recalculated to achieve the desired volume fraction.

The length l of the material is also initially predefined. However, this parameter can

affect the results of the numerical simulation. The length of the model will constrain the

length that the buckling waves can have. Buckling waves appear in equal divisions of the

material length so the maximum half wave length that is allowed is the length of the model

itself. Since the strain energy density depends on the buckling wavelength, models with

different lengths might get different wavelengths and thus different strain energy densities.

The correct wavelength would be obtained from the model with the length that minimizes the

strain energy density. In order to compare the results with the theoretical model, the length

of the numerical model will be set accordingly to the wave length used in the theoretical

model.

Once the model volume has been defined, the distribution of the fibers in the cross

section of the material must be determined. The location of the fibers is calculated following

the random sequential adsorption algorithm. A detailed explanation of the algorithm is given

in [20] and [21]. The fiber arrangements are required to meet certain characteristics. The

fibers are randomly placed and if one fiber does not meet the requirements the configuration

is discarded and a new one is generated. This random iterative process continues until all

the fibers have been located. Figure 2.2 shows some of the fibers arrangements that have

been used.
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Figure 2.1: Representative volume element.

Figure 2.2: Different random fiber arrangements.
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The restrictions in the geometry that have been applied are the following (figure 2.3):

• Fibers are enforced to be separated by a minimum of 0.2rf in order to make easier

the meshing of the matrix between the fibers.

• There can not be fiber sections crossing the upper and lower boundaries of the

section since those are the boundaries of the laminate. Furthermore, a distance

of 0.2rf between the fibers and those borders is again imposed to ensure proper

meshing.

• Since the material is assumed to be periodic, if one fiber crosses on boundary of the

section the part of the fiber that remains outside the section has to be located on the

opposite boundary. Both parts of the fiber need to fulfill the rest of the geometry

requirements.

• The centers of the fibers that lay outside the material section have to be within

a distance of 0.2rf to the material boundary. If the center was too far from the

boundary, the resultant fiber area in the section would be very small and that could

cause meshing problems as well.

2.2 Finite element model setup

Once the geometry and the fibers arrangement has been calculated, a parametric model

based on the Matlab output is built in Abaqus. The model and the simulation are set up by a

Python script that easily allows to change the material parameters by changing the Matlab

geometry file. First the model geometry is generated as shown in figure 2.5. Different

partitions are created for the matrix and the fibers.

Next, material properties are assigned and then the model is meshed. Both fibers

and matrix have been modeled as Neo Hookean and incompressible solids. The elements

that have been used for both components are hybrid wedges (Abaqus C3D15H element).
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Figure 2.3: Fiber arrangement restrictions

Figure 2.4: Abaqus model.
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Hybrid elements were needed because of the incompressibility. Other element shapes such as

triangular prism could not be tried because the meshes did not allow to apply the periodic

boundary conditions. The meshed model is shown in figure 2.5.

Figure 2.5: Abaqus mesh

The boundary conditions are periodic in the z direction. They are set node by node in

the surfaces that are orthogonal to the z-axis. Each node at the z = 0 surface is related to

its opposite node at the z = w using the Abaqus ’equation’ command. All the displacements

are set to be periodic:

ux(x, y, 0) = ux(x, y, w)

uy(x, y, 0) = uy(x, y, w)

uz(x, y, 0) = uz(x, y, w)

The bending is applied by rotating the faces that are perpendicular to the x-axis. The

faces are imposed to remain flat by a kinematic copuling. Then a rotation of the same

magnitude and opposite sign is applied to each face. The kinematic coupling forces the

nodes in the faces to remain in the same plane but they are free to move inside the plane.

The rotation is applied through a dummy node for each face. The dummy node is then
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connected to the nodes of its corresponding face so that the same rotation is applied to all

the nodes. These kinematic constrains are shown in figure 2.6.

Special care had to be taken for the nodes at the borders of the cross section (highlighted

in figure 2.6) since they were coupled to the coplanar faces and also linked by periodic

boundary conditions to the opposite edge. Every time a constrain is defined in Abaqus a

degree of freedom is removed and it can not be used again in another constrain. For this

reason, periodic boundary conditions and the face coupling could not be applied directly to

the same nodal degree of freedom. A dummy node had to be created for each pair of nodes

at the boundaries of the cross section. The face coupling was applied to the dummy node

and both nodes at the edges were connected to the dummy node. This relationship was

again defined by imposing equal displacements for both nodes with the ’equation’ command.

As a result, both the face coupling and the periodic conditions could be applied with only

one constrain for the nodes at the edges.

Figure 2.6: Boundary conditions: face coupling
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2.3 Analysis results

The obtained deformed configuration is shown in figures 2.7 and 2.8 for a volume frac-

tion of 40%. The results show that the applied bending moment produces constant curvature

along the model. Buckling can be observed in the compression. The amplitude of the buck-

les increases with compression and the wavelength is equal to the model length, which is

constrained by the model as was previously explained. Different models with different fiber

arrangements and volume fractions showed similar behavior.

Figure 2.7: Deformed configuration in the XY plane

Figure 2.9 shows the Von Misses stress in the cross section at the mid length of the

volume. It can be see how the stresses are mostly absorbed by the fibers and how the fibers

on the compression side undergo higher displacements and the buckles are more accentuated.

The effect of the periodic boundary conditions is also clearly visible. The total strain energy

and applied moment are compared with the proposed theoretical model in the following

chapter.
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Figure 2.8: Deformed configuration in the XZ plane for curvature by thickness κ∗ t = 0.0935

Figure 2.9: Cross section displaying Von Misses stress for curvature by thickness κ∗t = 0.0935



Chapter 3

Theoretical model

In this section, an energy based model is developed in order to predict the mechanical

behavior of the composite under bending. The system to be modeled is described in figures

3.1 and 3.2. A micro-mechanical approach is taken, the material is modeled as a hyperelastic

Neo Hookean solid and the fiber contributions are included through homogenization methods.

Large deformations and incompressibility for the materials are assumed.

Figure 3.1: Laminate under bending. Buckling on the compression side is not seen from this
perspective because it is orthogonal to the bending plane.

The result is an energy model that is a function of the material geometry and properties
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and some unknown kinematic parameters such as the buckling wavelength. These param-

eters are calculated by minimizing the strain energy as a function of them. However, the

strain energy does not have a closed form solution and needs to be integrated numerically.

Therefore, a Matlab script has been coded for performing the integration and minimization

of the energy.

Figure 3.2: Fraction of the material to be modeled.

3.1 Kinematics

The kinematic model has been developed based on experimental observations that can

be found on the literature ([22] and [1]). Those experiments show that, when this material

is subjected to a certain bending, some sinusoidal microbuckling appears on the fibers on

the compression side. The buckling seems to be contained in the plane perpendicular to the

bending plane. The buckling wave length is assumed to be constant through the thickness

with respect to the undeformed configuration. The degree of curvature at which buckling

appears and the length of the buckling waves are topics to be addressed in this study.
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3.1.1 Displacement field

For simplicity, it has been assumed that the curvature is constant through the whole

volume. Therefore, it has been decided to use cylindrical coordinates to represent the de-

formed material while a Cartesian coordinate system has been chosen for the undeformed

reference configuration. The same approach that is described in [23] has been followed to

calculate the deformations field. Figure 3.3 shows both coordinate systems in the bending

plane. The z coordinate, where the buckling occurs, is perpendicular to that plane and has

the same direction in both coordinate systems.

Figure 3.3: Coordinate systems

In Figure 3.3, ρ represents the position of the neutral surface, where the stress is zero

and thus the length does not change. This implies that the following relation is always

maintained:

ρ Ω = H0 (3.1)
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And the bending curvature is defined as:

κ =
1

ρ
(3.2)

Notice also that the thickness is free to change. So the difference between r1 and r2

will not coincide with the initial thickness. These values will be determined by assuming

that the material is incompressible. Furthermore, the relative position of r1 and r2 to the

neutral surface is not known either. This will be one of the variables found by minimizing

the total strain energy.

The microbuckling is produced along the axial direction and remains perpendicular to

the bending plane. So displacements take a sinusoidal shape in the z-axis and follow along

the θ direction. This phenomenon does not necessarily appear in all the compressed region.

The most compressed fibers will be the first to buckle but the ones close to the neutral

surface might remain straight. The function that determines when and where buckling is

produced will be also obtained from the energy minimization.

Once all this factors are taken into account, the deformed configuration can be formu-

lated as a function of the original coordinates :

r = f(X) (3.3)

θ =
Y

ρ
(3.4)

z = Z + a sin

(
π

L0

Y

)
for the buckled regions (3.5)

z = Z for the non buckled regions (3.6)

where f(X) is the function that determines the relationship of the radial coordinates

and its position at the undeformed reference system. This function will be defined later.
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According to figure 3.3 r,θ and z will refer to the deformed configuration coordinate system

and X,Y and Z to the undeformed coordinate system. a and L0 stand for the buckling

amplitude and the wavelength with respect to the undeformed configuration. Note that

L0 is the undeformed arclength of the fiber in half period of the buckle and it is constant

through X. However, it is not the real wavelength of the deformed fibers which can be

directly related to the buckling amplitude. The relationships between all these parameters

and the fibers strains will be explained in the following section.

The function for the radial coordinate f(x), which will determine the limits r1 and r2,

can now be obtained by assuming that the material is incompressible. This implies that the

determinant of the deformation gradient tensor is equal to one.

For the chosen coordinate systems:

FXr =



dr

dX

dr

dY

dr

dZ

r
dθ

dX
r
dθ

dY
r
dθ

dZ

dz

dX

dz

dY

dz

dZ


(3.7)

By introducing the displacement field all the components of the tensor are obtained:

dr

dX
=

df

dX
;

dr

dY
= 0 ;

dr

dZ
= 0 (3.8)

dθ

dX
= 0 ;

dθ

dY
=

1

ρ
;

dθ

dZ
= 0 (3.9)

dz

dX
=

da

dX
sin

(
π

L0

Y

)
(3.10)

dz

dY
= a cos

(
π

L0

Y

)
π

L0

(3.11)
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dz

dZ
= 1 (3.12)

F =



dr

dX
0 0

0 r
dθ

dY
0

dz

dX

dz

dY

dz

dZ


(3.13)

Setting detF = 1 it is obtained that:

(
dr

dX

)(
r

ρ

)
= 1 → r =

√
2ρX + β (3.14)

By substituting X = 0 in the function r(X), we find that β = r21. This term is related

to the change in the thickness of the material and the relative position of the neutral surface.

It can not be determined by the assumptions made for this model so it will be treated as a

variable to minimize the strain energy.

3.1.2 Buckling amplitude and wavelength

In order to establish a relationship between the initial length and the longitudinal

strains it is necessary to introduce to different strain functions. The variation in the length

of the fibers is assumed to be affected by two different mechanisms. The first are the

compression and and tension that appear in a pure bending problem. This will be quantified

with λc.

For the regions where there is no buckling, this parameter is easily defined since it is

just the stretching due to the bending (Figure 3.4):

H0λc = H (3.15)
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Where H0 is the original length of the material and H(X) is a function that represents

the length of the deformed material that varies along the thickness. λc can be obtained

geometrically just by using the fact that the length at the neutral surface remains constant,

so it is equal to H0. Then this relation is used to calculate the new length at the deformed

areas.

H0 = ρ Ω (3.16)

H(X) = r(X) Ω (3.17)

Eliminating Ω:

λc =
H(X)

H0

=
r(X)

ρ
(3.18)

This is enough to describe the strains on the areas where there is no buckling. For the

other regions, the contribution of buckling will be included through the parameter λb. This

will complicate the definition of the strains and add more variables that are not predeter-

mined to our problem. These include the buckling wavelength and the function that defines

the presence of buckling throughout the thickness.

Figure 3.4: Radial and thickness geometric relationships
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In order to simplify the processes and reduce as much as possible the number of vari-

ables to be calculated by numerical optimization, the following constraints are added:

• The fibers can be compressed while they are buckling. A new functionn λcb needs to

be introduced since the compression deformation is no longer λc as was previously

defined. The function λcb is unknown and it will be obtained by relating it to λb,

which is also an unknown.

• The parameter L0 is set to be constant in X. This implies that the wavelength

mapped on the undeformed configuration is constant through the thickness and that

the parameter L, which is the wavelength in the deformed volume, varies linearly

and proportionally to λc as shown in figure 3.5:

L0λc(X) = L(X) (3.19)

This assumption actually agrees with the experimental observations.

• L0 is considered only to be a function of the materials and geometry properties and

it is not influenced by curvature. The value will be obtained as the wavelength that

minimizes the energy density. For a certain degree of curvature, the strain energy

will start to be lower if buckling appears. At that point, L0 will take the value that

minimizes the energy and will remain constant for higher curvatures.

Where microbuckling is present, λb determines the relationship between the buckling

wavelength L(X) and the actual total length of the buckled fibers. At the regions where

there is no buckling, λb is simply equal to one. The relationship is given by:

L0λcb(X)λb(X) = Lf (X)λb(X) = L(X) (3.20)

And λc can now be expressed as:

λc = λcbλb (3.21)
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Figure 3.5: Geometric relationship between L0 and L.

Figure 3.6: Pre and postbuckling fiber deformations.
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Where Lf denotes the total length of the buckled fibers after taking into account the

compression strains (figure 3.6). This value might change as the curvature increases and

will affect the amplitude of the buckling. The higher the compression strains, the lower the

buckling amplitude will be.

Note that λb is a function of X, hence it varies through the thickness. It will take

the value of one in the areas where there is no buckling and will be higher than 1 if there

is buckling. The buckling is expected to be higher where the compression is higher but it

might not appear in the whole compressed side. The buckling function will be obtained by

minimizing the strain energy. The relationship between λcb and λb will be used to reduce

the number of unknowns to be find in the minimization:

λcb =
L(X)

L0λb
=
r(X)

ρλb
(3.22)

Figure 3.7: Buckling amplitude and wavelength relation

Now the only kinematic parameter left to be defined is the buckling amplitude a. This

term is also calculated by assuming that buckled fibers are incompressible. This implies that
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the effect of λb is neglected but this should only produce a very small error and simplifies

significantly the calculation. Following the approach from [1], the total length of the fibers

is integrated as the arclength of a sinusoidal function as figure 3.7 shows.

Lf =

∫ Lf

0

ds =

∫ L(X)

0

√
1 +

[πa
λ

cos
(πy
L

)]
dy (3.23)

This integral is a complete elliptic integral of the second kind. It does not have a closed

form solution but can be expressed in numerical series.

Lf =
2 L(X)

π
EllipticE

[(
aπ

L(X)

)2
]

(3.24)

Since L = Lfλb, the relationship between the amplitude and the wavelength can be

nondimensionalized:

Lf
L

=
1

λb
=

2

π
EllipticE

[(aπ
λ

)2]
(3.25)

This gives another equation that will be used in the minimization process to remove

one more unknown function, the amplitude, which will be set as a function of λb.

3.2 Energy model

Once all the kinematic relations have been established we are ready to formulate the

energy model. The total energy is modeled as the sum of the contributions of the matrix

and the fibers.

W = Wm +Wf (3.26)

The matrix is modeled as an incompressible Neo Hookean solid. From the nonlinear

homogenization theory, we recover the expression for the energy of a fiber-reinforced Neo

Hookean solid. It is assumed that fibers do not stretch to simplify the solution. The stretch-

ing of the fibers due to the bending is actually very small so this assumption should not
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cause a significative error. According to [16], the expression fort this case reads:

Wm = WIH(I4 = 1) =
µIH

2
(I1 − 3)− µIH − µHS

2
(I5 − 1) (3.27)

Where µIH and µHS were derived in Section 1.3.2 using homogenization.

µih = (1− Vf )2
(

1 +
2(2− Vf )Vf

(1− Vf )2
µf
mum

+
µ2
f

µ2
m

)
µm
2
− (1− Vf )2

µf − µm
2

×

√
2

(1− Vf
)2
µf
µm

+

(
1 +

2(2− Vf )Vf
(1− Vf )2

µf
mum

+
µ2
f

µ2
m

)
(3.28)

µhs =
(1− Vf )µm + (1 + Vf )µf
(1 + Vf )µm + (1− Vf )µf

µm (3.29)

The first term of the equation for WIH coincides with the expression of the energy of a

Neo Hookean solid, which in this case will correspond to the matrix energy. The term that

contains I5 adds significant complexity to the problem and adds too many numerical terms

to the equation. Therefore, as a first approach to the problem it will be neglected.

The proposed homogenization method is not capable of representing the microbuckling.

Hence, the fibers will be modeled separately using beam theory. The following sections

describe the derivation of the energy of the fibers and the matrix for both the pre-buckling

and post-buckling regimes.

3.2.1 Strain Energy of the matrix

The matrix is considered as a hyperelastic incompressible material. Ignoring the fibers

for now and considering a homogeneous material, its energy is modeled as:

Wm =
µm
2

(I1 − 3) (3.30)
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Where µm is the matrix shear modulus and I1 is the first invariant of the Cauchy-Green

deformation tensor.

I1 = tr(C) (3.31)

And the Cauchy-Green tensor is calculated with the deformation gradient that was

already obtained in the previous section:

C = F TF (3.32)

C =



(
dr

dX

)2

+

(
dz

dX

)2
dz

dX

dz

dY

dz

dX

dz

dZ

dz

dX

dz

dY
r2
(
dθ

dY

)2

+

(
dz

dY

)2
dz

dY

dz

dZ

dz

dX

dz

dZ

dz

dY

dz

dZ

(
dz

dZ

)2


(3.33)

After eliminating the terms that were zero. The trace reads as:

I1 = tr(C) =

(
dr

dX

)2

+

(
dz

dX

)2

+ r2
(
dθ

dY

)2

+

(
dz

dY

)2

+

(
dz

dZ

)2

(3.34)

Finally, the total strain energy contained in the material is obtained by integrating the

energy density Wm in the total volume.

Wm =

∫
V

µm
2

(I1 − 3)dV (3.35)

Neo Hookean energy model without buckling

First the energy is going to be calculated for the regions that do not buckle. For

this simple case of an homogeneous material without buckling, the deformation gradient

components involved take the following values:

dr

dX
=

ρ2

2ρX + β
;

dθ

dY
=
r

ρ
(3.36)
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dz

dX
= 0

dz

dY
= 0

dz

dZ
= 1 (3.37)

Substituting this values in the energy equation we get an integral that has a closed

form solution.

Wmnb =

∫
V

µ

2

(
ρ2

2ρX + β
+

2ρX + β

ρ2
− 2

)
dV =

µ

2
wl

[
ρ

2
ln(2ρX + β) +

X2

ρ
+

(
β − 2ρ2

ρ2

)
X

]t
0

=

=
µ

2
hl

(
ρ

2
ln(

2ρt+ β

β
) +

t2

ρ
+

(
β − 2ρ2

ρ2

)
t

)
(3.38)

The parameter β is related to the position of the neutral axis as it was already ex-

plained. It is calculated by minimizing the energy. For this case it has the following closed

form solution.

dW

dβ
= 0→ β = ρ(

√
t2 + ρ2 − t) (3.39)

Figure 3.8: Deformed Abaqus model for a homogeneous material.
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In order to validate this solution, it has been compared with the beam theory results

and a numerical simulation. The numerical simulation uses the same Abaqus model that has

been used for the buckling calculations, the only difference is that in this case the material is

homogeneous. The results are shown in figure 3.8. For the beam, it has been assumed that

it is a plain strain case since strain remain on the bending plane. The according expression

for the strain energy is:

W beam =
1

2

EI

1− ν2
κ2l (3.40)

Figure 3.9: Strain Energy for length/thickness=6.

The results show perfect agreement between the three methods for a slender beam

(figure 3.9). Since the beam theory does not work for thick beams, when the length/thickness

ratio is increased it starts to differ from the Neo Hookean and the Abaqus model as shown

in figure 3.10.

Figure 3.11 shows the coordinates of r1, r2 and ρ. This shows that the obtained value
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of β is in agreement with the geometry of the problem. r1 and r2 are functions of beta and

it can be seen that ρ falls between these two parameters for all the curvatures, otherwise the

value of β would be incorrect. Furthermore, the figure also shows that ρ is approximately

on the middle of the section as expected for the Neo Hookean model for small strains.

Neo Hookean energy model with buckling

This case adds to the previous case two terms in the expression of I1. These can not

be analytically integrated in the volume because of the amplitude a and its derivative do

not have closed form solutions so a numerical approach will be used.

dz

dX
=

da

dX
sin
(π
L
Y
)

(3.41)

dz

dY
= a cos

(π
λ
Y
) π
L

(3.42)

Therefore, the strain energy has been divided into Wa and Wn for convenience. Wa is

the part of the integral that has a closed form solution and is independent of the buckling. It

actually coincides with the solution for the case where buckling is not considered. Wn must be

integrated numerically and includes only the terms that involve buckling so it becomes zero

at the regions without buckling. The total strain energy of the material is then calculated

as:

Wmb = W a +W n (3.43)

W a =

∫
V

µ

2

((
dr

dX

)2

+ r2
(
dθ

dY

)2

+

(
dz

dZ

)2

− 3

)
dV (3.44)

W a = lw
µ

2

(
ρ

2
ln

(
2ρt+ β

β

)
+
t2

ρ
+

(
β − 2ρ2

ρ2

)
t

)
(3.45)

W n =

∫
V

µ

2

((
dz

dX

)2

+

(
dz

dY

)2
)
dV (3.46)
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Figure 3.10: Strain Energy for length/thickness=2.

Figure 3.11: Positions of ρ,r1 and r2 as a function of curvature.
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After integrating on Y and Z, Wn becomes

W n =
µ

2
w

∫ t

0

[(
da

dX

)2
l

2
+

(
aπ

 L(X)

)2
l

2

]
dX (3.47)

which needs to be integrated numerically because a and λ do not have a closed form

solution. The trapezoidal integration rule has been used to compute this integral. The

derivative of the amplitude is numerically approximated as well.

The strain energy is then minimized in order to find the values of β and λb which

are unknown. This is achieved by using the Matlab function fmincon. This solver numeri-

cally minimizes a function for some input variables that have certain constrains. The input

variables are estimated values for β and λb(X), which is introduced as a vector whose com-

ponents are the values of the function discretized through the thickness. For this case, the

constrains are the kinematic relationships:

• The limits of β are given by the constrains on the neutral axis, which has to remain

inside the material volume limits. In the case that ρ coincides with r1, we get that

β < r21 (3.48)

For the upper limit, if ρ is equal to r2

β > r22 − 2ρt (3.49)

• The buckling deformation function λb is just limited by the fact that it always

compresses the material so it has to be equal or less than one:

λb ≤ 1 (3.50)
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3.2.2 Strain Energy of the fibers

The fibers are modeled based on beam theory. The Strain Energy of the fibers is

divided in two terms: the energy due to the compression and the traction of the fibers and

the energy due to the buckling.

Wf = Wfc +Wfb (3.51)

The strain energy due to compression for one fiber is simply defined as the energy of a

beam with axial compression:

Wfc =
1

2
Efε

2Af l =
1

2
Ef (1− λc)2Af l =

1

2
Ef (1− λc)2Af l (3.52)

Where l is the length of the fiber. The other component of the energy is given by the

strains caused by the buckling. This term is defined as the classic strain energy of a beam

under bending:

dWfb =
1

2
EfIf

(
d2Z

dY 2

)2

dY =
1

2
EfIf

(
a

(
π

L0

)2

sin

(
π

L0

Y

))2

dY (3.53)

Integrating for one fiber along its axial direction:

Wfb =

∫ l

0

dWfb =
1

4
EfIf

(
a
π2

L2
0

)2

l (3.54)

In order to compute the energy of the percentage of fibers present in the material

volume, the energy of one fiber is divided by its cross sectional area to get the area energy

density. Then it is integrated in the cross section area of the material and multiplied by the

volume fraction.

W fb = Vf lw

∫ t

0

(
1

2
Ef (1− λbc)2 +

1

4
Ef

If
Af

(
aπ2

L2
0

)2
)
dX (3.55)

This component of the energy also needs to be integrated numerically because of the

numerical functions present in the integral. Note that λc has been substituted by λbc when
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buckling has been added. In the numerical scheme it is calculated as a function of λb, so the

integral becomes:

W fb = Vf lw

∫ t

0

(
1

2
Ef (1−

r(X)

ρλb(X)
)2 +

1

4
Ef

If
Af

(
aπ2

L2
0

)2
)
dX (3.56)

So the unknown variables that need to be found in the minimization are the same that

the ones found in the expression for the matrix energy.

3.2.3 Strain Energy of the composite

Strain energy of the composite without buckling

The energy of the model including the fibers is first calculated without buckling. This

will serve to validate the buckling model at low curvatures before buckling appears. At this

stage, both models should give the exact same result. They will start to differ when buckling

appears so this model will be helpful to determine when that happens.

For this case, the energy of the fibers is only due to the tension and compression strains.

Since the buckling function is also zero, the volume integral of the axial strains has a closed

form solution:

Wf = W c =
1

2
VfwEf l

(
(r2 − r1) +

r32 − r31
3ρ2

− l

ρ
(r22 − r21)

)
(3.57)

Where : r1 =
√
β and r2 =

√
2ρt+ β

The total energy is calculated as the sum of the Neo Hookean model and the fibers

contribution.

W = W c +Wmnb =

=
1

2
VfwEf l

(
(r2 − r1) +

r32 − r31
3ρ2

− l

ρ
(r22 − r21)

)
+
µ̃

2
hl

(
ρ

2
ln(

2ρt+ β

β
) +

t2

ρ
+

(
β − 2ρ2

ρ2

)
t

)
(3.58)

As on he previous cases, β needs to be obtained by minimization. For this equation

there is no closed form solution so it has been minimized numerically.
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Strain energy of the composite with buckling

The total strain energy when buckling is included is obtained as the sum of the matrix

buckling model and the fibers:

W = Wmb +W fb (3.59)

Substituting the terms, the complete expression becomes:

W = lw
µ

2

(
ρ

2
ln

(
2ρt+ β

β

)
+
t2

ρ
+

(
β − 2ρ2

ρ2

)
t

)
+
µ

4
wl

∫ t

0

[(
da

dX

)2

+

(
aπ

 L0

)2
]
dX+

Vf lw

∫ t

0

(
1

2
Ef

(
1− r(X)

ρλb(X)

)2

+
1

4
Ef

If
Af

(
aπ2

L2
0

)2
)
dX (3.60)

The integrals that contain buckling terms are numerically integrated as explained be-

fore. Then the total strain energy is minimized with the same method that was explained

for the previous buckling cases.

3.3 Results

In this section, the strain energy and the applied moment obtained in the theoretical

model are compared with the results from the numerical simulations described in Section

2. For this comparison, the geometry has been defined relatively to the radius of the fiber:

l = 300rf , t = 18rf and w = 9rf . The shear strain relationship between the fibers and

the matrix has been set to
µf
µm

= 100000. All these ratios are representative for soft matrix

composites.

Figure 3.12 shows the strain energy results. For the pre buckling regime, the results

from the numerical simulations agree quite well with the theoretical model that does not

include microbuckling in the fibers. The curvature at which buckling was first observed in

the numerical simulations coincides with the drop in the energy of models 1 and 2 in the

figure. That behavior is not that clear for model 3, however, in the numerical simulation
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buckling appeared around 0.012κ ∗ t. Therefore, the transition to buckling can be in general

identified by a deviation of the energy with respect to the no-buckling model.

The theoretical model that includes buckling separates from the no-buckling model

at a very low curvature. This result differs significantly from the behavior observed at the

numerical simulations. Hence, the buckling model fails to predict the strain energy in the

microbuckling regime and when microbuckling appears .

The following figures show the results for different volume fractions. The comparison

in figure3.14 shows the same result as on the previous cases: the analytical model predicts

that buckling appears before it does in the numerical simulations and therefore the energy

is significantly lower.

The numerical results for a volume fraction of 20% and 40% show that buckling appears

first for a lower volume fraction. The plots do not show clearly where buckling appeared for

the 30% volume fraction. However, in the graphical results from the numerical simulation

buckling appeared around κ ∗ t = 14, which lays in between the other two cases. Therefore,

it was confirmed that buckling appears before for lower volume fractions.

Figure 3.15 shows the energy and moment per width only in the matrix for the same

cases. This are the results from the numerical simulations. The energy is several orders

lower than in the whole material and it only becomes significant when buckling appears.

This coincides with the sudden increase of the energy on each of the functions.

The influence of the fiber/matrix shear modulus ratio was also studied. It was found

that for ratios lower than approximately µf/µm = 1000 buckling does not appear. Figure

3.16 shows the comparison between different ratios for a Vf = 40%.

Finally, the results where compared with the model proposed in [1]. The comparison

has been made for Vf = 40% and µf/µm = 100000. The main difference between the two

models is that Francis’ model does not include the pre-buckling stage. For the post-buckling

regime, (after κ ∗ t = 0.034), Francis’ model clearly overestimates the energy while the

proposed model is too low compared to the numerical results.
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Figure 3.12: Normalized strain energy from theoretical results and numerical simulations.

Figure 3.13: Moment per width from theoretical results and numerical simulations.

Figure 3.14: Strain energy for different volume fractions.
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Figure 3.15: Strain energy and moment per width of the matrix.

Figure 3.16: Results for different fiber/matrix shear modulus ratios.

Figure 3.17: Comparison with W. Francis model.



Chapter 4

Summary

4.1 Conclusions

A new energy model has been developed for studying micro-buckling in soft fiber

reinforced composites. This new approach includes a large strain formulation and homog-

enization methods. The definition of the kinematics are based on the mechanical behavior

observed in experiments. Some of the kinematic parameters remain as unknowns and they

are found by minimizing the strain energy for a given curvature.

Abaqus has been used to run numerical simulation in order to validate the theoretical

model. The comparison shows good agreement for the pre-buckling regime. However, the

model fails to predict when buckling appears and underestimates significantly the buckling

energy. The cause of this difference is still unclear and should be further investigated.

The buckling wavelength is currently constrained by the length of the model. Since it

an unknown kinematic parameter it should be treated as one of the variables to be optimized.

This might be one source of the error. The optimization process has also been problematic

for some cases. For some configurations, only local minimums of the strain energy are found

instead of the global minimum. Simplifying the model and reducing the number of variables

could help to solve this problem. The function λb is particularly increasing the complexity

of the calculations because it is minimized as a vector of n-variables. This would also help

to reduce the time needed for this calculations which is not practical for the current model.
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4.2 Future Work

• While the pre-buckling stage seems to be well captured by the proposed analyt-

ical model, the post-buckling strain energy differs from the numerical simulations.

Therefore, next steps should include investigating the source of this error. The causes

might be related to mistakes in the formulation or in the optimization process.

• The current model is not very efficient because of the high number of variables that

have to be optimized. It should be studied if more assumptions can be made to

simplify the model and improve the efficiency of the code.

• The microbuckling wave length that minimizes the energy should be included as a

variable to be optimized. In the presented results, this parameter has been imposed

for both the theoretical and the numerical results. This might be related to the

discrepancies observed in the results.

• The numerical model could be also improved by not assuming that the cross sections

at the boundaries do not remain flat. Instead of using a kinematic coupling in these

areas, periodic conditions could be applied in both surfaces.
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