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Abstract. Current turbulence parameterizations in numeri-
cal weather prediction models at the mesoscale assume a lo-
cal equilibrium between production and dissipation of tur-
bulence. As this assumption does not hold at fine horizontal
resolutions, improved ways to represent turbulent kinetic en-
ergy (TKE) dissipation rate (ε) are needed. Here, we use a
6-week data set of turbulence measurements from 184 sonic
anemometers in complex terrain at the Perdigão field cam-
paign to suggest improved representations of dissipation rate.
First, we demonstrate that the widely used Mellor, Yamada,
Nakanishi, and Niino (MYNN) parameterization of TKE dis-
sipation rate leads to a large inaccuracy and bias in the rep-
resentation of ε. Next, we assess the potential of machine-
learning techniques to predict TKE dissipation rate from a
set of atmospheric and terrain-related features. We train and
test several machine-learning algorithms using the data at
Perdigão, and we find that the models eliminate the bias
MYNN currently shows in representing ε, while also reduc-
ing the average error by up to almost 40 %. Of all the vari-
ables included in the algorithms, TKE is the variable respon-
sible for most of the variability of ε, and a strong positive cor-
relation exists between the two. These results suggest further
consideration of machine-learning techniques to enhance pa-
rameterizations of turbulence in numerical weather predic-
tion models.
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1 Introduction

While turbulence is an essential quantity that regulates many
phenomena in the atmospheric boundary layer (Garratt,
1994), numerical weather prediction models are not capable
of fully resolving it. Instead, they rely on parameterizations
to represent some of the turbulent processes. Investigations
into model sensitivity have shown that out of the various pa-
rameterizations currently used in mesoscale models, that of
turbulent kinetic energy (TKE) dissipation rate (ε) has the
greatest impact on the accuracy of model predictions of wind
speed at wind turbine hub height (Yang et al., 2017; Berg
et al., 2018).

Current boundary layer parameterizations of ε in
mesoscale models assume a local equilibrium between pro-
duction and dissipation of TKE. While this assumption is
generally valid for homogeneous and stationary flow (Al-
bertson et al., 1997), as the horizontal grid resolution of
mesoscale models is constantly pushed toward finer scales
thanks to the increase of the computing resource capabilities,
the theoretical bases of this assumption are violated. In fact,
turbulence produced within a model grid cell can be advected
farther downstream in a different grid cell before being dis-
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sipated (Nakanishi and Niino, 2006; Krishnamurthy et al.,
2011; Hong and Dudhia, 2012).

The inaccuracy of the mesoscale model representation of ε
impacts a wide variety of processes that are controlled by the
TKE dissipation rate. In fact, the dissipation of turbulence af-
fects the development and propagation of forest fires (Coen
et al., 2013), it has consequences on aviation meteorology
and potential aviation accidents (Gerz et al., 2005; Thobois
et al., 2015), it regulates the dispersion of pollutants in the
boundary layer (Huang et al., 2013), and it affects wind en-
ergy applications (Kelley et al., 2006): for example, in terms
of the development and erosion of wind turbine wakes (Bod-
ini et al., 2017).

Several studies have documented the variability of ε us-
ing observations from both in situ (Champagne et al., 1977;
Oncley et al., 1996; Frehlich et al., 2006) and remote-
sensing instruments (Frehlich, 1994; Smalikho, 1995; Shaw
and LeMone, 2003). Bodini et al. (2018, 2019b) showed
how ε has strong diurnal and annual cycles onshore, with
topography playing a key role in triggering its variability. On
the other hand, offshore turbulence regimes (Bodini et al.,
2019a) are characterized by smaller values of ε, with cycles
mostly impacted by wind regimes rather than convective ef-
fects. Also, ε greatly increases in the wakes of obstacles,
for example, wind turbines (Lundquist and Bariteau, 2015;
Wildmann et al., 2019) or whole wind farms (Bodini et al.,
2019b).

This knowledge on the variability of TKE dissipation rate
provided by observations lays the foundation to explore in-
novative ways to improve the model representation of ε in
the atmospheric boundary layer. In this study, we leverage
the potential of machine-learning techniques to explore their
potential application to improve the parameterizations of ε.
Machine-learning techniques can successfully capture the
complex and nonlinear relationship between multiple vari-
ables without the need of representing the physical process
that governs this relationship. They have been successfully
used to advance the understanding of several atmospheric
processes, such as convection (Gentine et al., 2018), turbu-
lent fluxes (Leufen and Schädler, 2019), and precipitation
nowcasting (Xingjian et al., 2015). The renewable energy
sector has also experienced various applications of machine-
learning techniques, in both solar (Sharma et al., 2011; Cer-
vone et al., 2017) and wind (Giebel et al., 2011; Optis and
Perr-Sauer, 2019) power forecasting. Applications have also
been explored at the wind turbine level, for turbine power
curve modeling (Clifton et al., 2013), turbine faults and con-
trols (Leahy et al., 2016), and turbine blade management (Ar-
cos Jiménez et al., 2018).

Here, we train and test different machine-learning algo-
rithms to predict ε from a set of atmospheric and topographic
variables. Section 2 describes the Perdigão field campaign
and how we retrieved ε from the sonic anemometers on the
meteorological towers. In Sect. 3, we then evaluate the ac-
curacy of one of the most common planetary boundary layer

parameterization schemes used in numerical weather predic-
tion: the Mellor, Yamada, Nakanishi, and Niino (MYNN) pa-
rameterization scheme (Nakanishi, 2001). Section 4 presents
the machine-learning algorithms that we used in our analysis.
The results of our study are shown in Sect. 5, and discussed
in Sect. 6, where future work is also suggested.

2 Data

2.1 Meteorological towers at the Perdigão field
campaign

The Perdigão field campaign (Fernando et al., 2018), an in-
ternational cooperation between several universities and re-
search institutes, brought an impressive number of instru-
ments to a valley in central Portugal to survey the atmo-
spheric boundary layer in complex terrain. The Perdigão val-
ley is limited by two mountain ridges running from northwest
to southeast (Fig. 1), separated by ∼ 1.5 km. The intensive
operation period (IOP) of the campaign, used for this study,
was from 1 May to 15 June 2017.

At Perdigão, 184 sonic anemometers were mounted on
48 meteorological towers, which provided an unprecedented
density of instruments in such a limited domain (Fig. 1). Ob-
servations from the sonic anemometers (a mix of Campbell
Scientific CSAT3, METEK uSonic, Gill WindMaster, and
YOUNG Model 81000 instruments) were recorded at a 20 Hz
frequency.

The height of the towers ranged from 2 to 100 m, with the
sonic anemometers mounted at various levels on each tower,
as detailed in Table 1 and summarized in the histogram in
Fig. 2, allowing for an extensive survey of the variability
of the wind flow in the boundary layer. Data from the sonic
anemometers have been tilt-corrected following the planar fit
method (Wilczak et al., 2001), and rotated into a geographic
coordinate system.

To classify atmospheric stability, we calculate the
Obukhov length L from each sonic anemometer as

L=−
θv · u

3
∗

k · g ·w′θ ′v
. (1)

θv is the virtual potential temperature (K , here approximated
as the sonic temperature); u∗ is the friction velocity (m s−1);
k = 0.4 is the von Kármán constant; g = 9.81 m s−2 is the
gravity acceleration; and w′θ ′v is the kinematic buoyancy
flux (m K s−1). For atmospheric stability, we classify unsta-
ble conditions as ζ = z/L <−0.02; and stable conditions as
ζ > 0.02; nearly neutral conditions as |ζ | ≤ 0.02.

2.2 TKE dissipation rate from sonic anemometers

TKE dissipation rate from the sonic anemometers on the me-
teorological towers is calculated from the second-order struc-
ture function DU (τ ) of the horizontal velocity U (Muñoz-
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Figure 1. Map of the Perdigão valley showing the location and height of the 48 meteorological towers whose data are used in this study.
Digital elevation model data are courtesy of the US Geological Survey.

Table 1. Heights where sonic anemometers were mounted on the meteorological towers at the Perdigão field campaign.

Tower height Sonic anemometer heights (m a.g.l.) Number of towers

2 m 2 1
10 m 10 5

2, 10 5
20 m 10, 20 10

2, 10, 20 6
2, 4, 6, 8, 10, 12, 20 4

30 m 10, 30 3
2, 4, 6, 8, 10, 12, 20, 30 5

60 m 10, 20, 30, 40, 60 5
2, 4, 6, 8, 10, 12, 20, 30, 40, 60 1

100 m 10, 20, 30, 40, 60, 80, 100 3

Total number of towers 48

Total number of sonic anemometers 184

Esparza et al., 2018):

ε =
1
Uτ

[aDU (τ )]3/2, (2)

where τ indicates the time lags over which the structure
function is calculated, and a = 0.52 is the one-dimensional
Kolmogorov constant (Paquin and Pond, 1971; Sreenivasan,
1995). We calculate ε every 30 s, and then average val-
ues at a 30 min resolution. At each calculation of ε, we fit
experimental data to the Kolmogorov model (Kolmogorov,
1941; Frisch, 1995) using time lags between τ1 = 0.1 s and

τ2 = 2 s, which represent a conservative choice to approxi-
mate the inertial subrange (Bodini et al., 2018).

To account for the uncertainty in the calculation of ε, we
apply the law of combination of errors, which tracks how ran-
dom errors propagate through a series of calculations (Bar-
low, 1989). We apply this method to Eq. (2) and quantify the
fractional standard deviation in the ε estimates (Piper, 2001;
Wildmann et al., 2019) as

σε =
3
2
σI

I
ε, (3)
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Figure 2. Histogram of the heights a.g.l. of the 184 sonic anemome-
ters considered in this analysis.

where I is the sample mean of τ−2/3DU (τ ), and σ 2
I is its

sample variance. To perform our analysis only on ε values
with lower uncertainty, we discard dissipation rates charac-
terized by σε > 0.05. About 3 % of the data are discarded
based on this criterion.

As additional quality controls, to exclude tower wake ef-
fects, data have been discarded when the recorded wind di-
rection was within ±30◦ of the direction of the tower boom.
Data during precipitation periods (as recorded by a precipi-
tation sensor on the tower “riSW06” on the southwest ridge)
have also been discarded from further analysis. After all the
quality controls have been applied, a total (from all sonic
anemometers) of over 284 000 30 min average ε data remains
for the analysis.

3 Accuracy of current parameterization of TKE
dissipation rate in mesoscale models

Before testing the performance of machine-learning algo-
rithms in predicting TKE dissipation rates, we first assess
the current accuracy of the parameterization of ε in numeri-
cal models. In the Weather Research and Forecasting model
(WRF; Skamarock et al., 2005), the most widely used numer-
ical weather prediction model, turbulence in the boundary
layer can be represented with several planetary-boundary-
layer (PBL) schemes, most of which implicitly assume a lo-
cal balance between turbulence production and dissipation.
Among the different PBL schemes, the MYNN scheme is
one of the most commonly chosen. Turbulence dissipation
rate in MYNN is given (Nakanishi, 2001) as a function of
TKE as

ε =
(2 TKE)3/2

B1 LM
, (4)

where B1 = 24, and the master length scale, LM, is defined
with a diagnostic equation, based on large-eddy simulations,
as a function of three other length scales:

1
LM
=

1
LS
+

1
LT
+

1
LB
. (5)

LS is the length scale in the surface layer, given by

LS =


κ z/3.7 ζ ≥ 1

κ z (1+ 2.7 ζ )−1 0≤ ζ < 1
κ z (1−α4 ζ )

0.2 ζ < 0,

(6)

where κ = 0.4 is the von Kármán constant, ζ = z/L (with L
the Obukhov length), and α4 = 100.0.
LT is the length scale depending upon the turbulent structure
of the PBL (Mellor and Yamada, 1974), defined as

LT = α1

∫
∞

0 q z dz∫
∞

0 q dz
, (7)

where q =
√

2 TKE, and α1 = 0.23.
LB is a length scale limited by the buoyancy effect, given by

LB =


α2 q/N ∂2/∂z > 0 and ζ ≥ 0
α2 q+α3 q (qc/LT N)

1/2

N
∂2/∂z > 0 and ζ < 0

∞ ∂2/∂z ≤ 0,

(8)

with N the Brunt–Väisälä frequency, 2 the mean
potential temperature, α2 = 1.0, α3 = 5.0, and

qc =
[
(g/20w′θ ′LT)

]1/3
.

From the available observations from the meteorological
towers at Perdigão, only LS can be determined, while the
calculation of LT and LB would only be possible with
critical assumptions about the vertical profile of TKE.
Therefore, we decide to approximate LM as

1
LM
≈

1
LS
. (9)

By doing so, LM is overestimated (proof shown in the
Supplement), which in turn implies that ε calculated using
Eq. (4) will be underestimated.

To evaluate the accuracy of the MYNN parameterization
of ε, we calculated, using 30 min average data, the parame-
terized ε using Eq. (4) (with the approximation in Eq. 9) from
all of the 184 sonic anemometers considered in the study and
compared with the observed values of TKE dissipation rate
(Fig. 3) derived from the sonic anemometers with Eq. (2).
Given the extremely large range of variability of ε, we calcu-
late all the error metrics using the logarithm of predicted and
observed ε.

The TKE dissipation rate predicted by the MYNN param-
eterization shows, on average, a large positive bias compared
to the observed values, with a mean bias of +12 % in terms
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Figure 3. Scatter plot showing the comparison between observed
and MYNN-parameterized ε from the 184 sonic anemometers at
Perdigão.

of the logarithm of ε, +47 % in terms of ε. The root mean
square error (RMSE) is 0.61, and the mean absolute error
(MAE) is 0.46. The observed bias would be even larger if
LM was calculated including all the contributions according
to Eq. (5), and not Ls only as in our approximation. There-
fore, while the approximation in Eq. (9) is major and could
be eased by making assumptions on the vertical profile of
TKE at Perdigão, it does not affect the conclusion of a high
inaccuracy in the MYNN parameterization of ε.

Different atmospheric stability conditions give different
biases. Figure 4 compares observed and parameterized ε val-
ues for stable and unstable conditions, classified based on
ζ = z/L, measured at each sonic anemometer, according to
the thresholds described in Sect. 2.1.

Stable cases show the largest bias (mean of +24 % in
terms of the logarithm of ε, +101 % in terms of ε), whereas
for unstable conditions the bias is smaller (mean of +6 %
in terms of the logarithm of ε, +19 % in terms of ε). The
MYNN parameterization of ε is therefore especially inade-
quate to represent small values of ε, which mainly occur in
stable conditions.

Different heights also impact the accuracy of the parame-
terization of ε.

As shown in Fig. 5, the mean bias in parameterized log(ε)
decreases with height, while its spread (quantified in terms
of the standard deviation of the bias at each height) does
not show a large variability at different levels. Close to the
surface (data from the sonic anemometers at 2 m a.g.l.), a
mean bias (in logarithmic space) of about +25 % is found,
whereas for the sonic anemometers at 100 m a.g.l., we find
a mean bias of just ∼+3 %. This difference in bias with
height becomes much larger if the bias is calculated on the
actual ε values (and not on their logarithm). We obtain com-
parable results when computing the bias in the MYNN pa-

rameterization only for the sonic anemometers mounted on
the three 100 m meteorological towers (figure shown in the
Supplement), thus confirming that the observed trend is not
due to the larger variability of the conditions sampled by the
more numerous sonics at lower heights. Therefore, our re-
sults show how the MYNN formulation fails in accurately
representing atmospheric turbulence especially in the lowest
part of the boundary layer.

4 Machine-learning algorithms

To test the power of machine learning to improve the nu-
merical representation of the TKE dissipation rate, we con-
sider three learning algorithms in this study: multivariate lin-
ear regression, multivariate third-order polynomial regres-
sion, and random forest. Given the proof-of-concept nature
of this analysis in proving the capabilities of machine learn-
ing to improve numerical model parameterizations, we de-
fer an exhaustive comparison of different machine-learning
models to a future study and only consider relatively simple
algorithms in the present work. The learning algorithms are
trained and tested to predict the logarithm of ε using 30 min
average data. For all but the random forest algorithm, the data
were scaled and normalized by removing the mean and scal-
ing to unit variance. No data imputation was performed, and
missing data were removed from the analysis.

For the purpose of machine-learning algorithms, the data
set has to be divided into three subsets: training, validation,
and testing sets (Friedman et al., 2001). The algorithms are
first trained multiple times with different hyperparameters
(model parameters whose values are set before the training
phase and that control the learning process) on the training
set, then the validation set is used to choose the best set of
hyperparameters, and finally the predicting performance of
the trained algorithm is assessed on the testing set. Usually,
the data set is split randomly into training, validation, and
testing sets. However, as the data used in this study consist
of observations averaged every 30 min, data in contiguous
time stamps are likely characterized by some autocorrela-
tion. Therefore, the traditional random split between training
and testing data would lead to an artificially enhanced perfor-
mance of the machine-learning algorithms, which would be
tested on data with a large autocorrelation with the ones used
for the training. Therefore, here we use one concurrent week
of the data for testing (∼ 17 % of the data), whereas the other
5 weeks are split between training (4 weeks, 66 % of the data)
and validation (1 week, 17 % of the data). The 1-week test-
ing period is shifted continuously throughout the considered
6 weeks of observations at Perdigão, so that each model is
trained and its prediction performance tested six times. For
each algorithm, we evaluate the overall performance based
on the RMSE between the actual and predicted (logarithm
of) ε, averaged over the different week-long testing periods.

https://doi.org/10.5194/gmd-13-4271-2020 Geosci. Model Dev., 13, 4271–4285, 2020



4276 N. Bodini et al.: Machine learning for model representation of TKE dissipation rate

Figure 4. Scatter plot showing the comparison between observed and MYNN-parameterized ε from the 184 sonic anemometers at Perdigão
for stable conditions (a) and unstable conditions (b), as quantified by ζ = z/L calculated at each sonic anemometer.

Figure 5. Bias in the MYNN-parameterized log(ε) at different
heights, as calculated from the 184 sonic anemometers at Perdigão.

Before testing the models, however, it is important to avoid
overfitting by setting the values of hyperparameters. Each
learning algorithm has specific model-specific hyperparam-
eters that need to be considered, as will be specified in the
description of each algorithm. To test different combinations
of hyperparameters and determine the best set, we use cross
validation with randomized search, with 20 parameter sets
sampled for each learning algorithm. For each set of hyperpa-
rameters, the RMSE between the actual and predicted log(ε)
in the validation test is calculated. For each model, we select
the hyperparameter combination (among the ones surveyed
in the cross validation) that leads to the lowest mean (across
the five validation sets) RMSE. We then use this set as the
final combination for assessing the performance of the mod-
els on the testing set. Overall, the procedure is repeated six
times by shifting the 1-week testing set (Fig. 6).

In the following paragraphs, we describe the main charac-
teristics of the three machine-learning algorithms used in our
study. A more detailed description can be found in machine-
learning textbooks (Hastie et al., 2009; Géron, 2017).

4.1 Multivariate linear regression

To check whether simple learning algorithms can improve
the current numerical parameterization of ε, we test the ac-
curacy of multivariate linear regression:

log(ε̂)= θ0+ θ1 x1+ θ2 x2+ . . .+ θn xn, (10)

where ε̂ is the machine-learning predicted value of ε, n is the
number of features used to predict ε (here, six; see Sect. 4.4),
xi is the ith feature value, and θj is the j th model weight.

To avoid training a model that overfits the data, regulariza-
tion techniques need to be implemented, so that the learning
model is constrained: the fewer degrees of freedom the model
has, the harder it will be for it to overfit the data. We use ridge
regression (Hoerl and Kennard, 1970) (Ridge in Python’s
library Scikit-learn) to constrain the multivariate regression.
Ridge regression constrains the weights of the model θj to
have them stay as small as possible. The ridge regression is
achieved by adding a regularization term to the cost function
(MSE):

J (θ)=MSE(θ)+α
n∑
i=1

θ2
i , (11)

where the hyperparameter α controls how much the model
will be regularized. The optimal value of the hyperparameter
α is determined by cross validation, as described earlier, with
values sampled in the range from 0.1 to 10.

4.2 Multivariate third-order polynomial regression

Multivariate polynomial regression can easily be achieved by
adding powers of each input feature as new features. The re-
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Figure 6. Cross-validation approach used to evaluate the performance of the machine-learning models considered in this study.

gression algorithm is then trained as a linear model on this
extended set of features. For a third-order polynomial regres-
sion, the model becomes

log(ε̂)= θ0+

n∑
i=1

θi xi +

n∑
i=1

θii x
2
i +

n−1∑
i=1

n∑
j=i+1

θij xi xj

+

n∑
i=1

θiii x
3
i +

n∑
i=1

∑
j 6=i

θiij x
2
i xj

+

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

θijk xi xj xk.

(12)

Ridge regression (Ridge in Python’s Scikit-learn library) is
used again to constrain the multivariate polynomial regres-
sion, with the hyperparameter α in Eq. (11) determined via
cross validation, with values sampled in the range from 1 to
2000.

4.3 Random forest

Random forests (RandomForestRegressor in Python’s
Scikit-learn library) combine multiple decision trees to pro-
vide an ensemble prediction. A decision tree can learn pat-
terns and then predict values by recursively splitting the
training data based on thresholds of the different input fea-
tures. As a result, the data are divided into groups, each as-
sociated with a single predicted value of ε, calculated as the
average target value (of the observed ε) of the instances in
that group.

As an ensemble of decision trees, a random forest trains
them on different random subsets of the training set. Once
all the predictors are trained, the ensemble (i.e., the random
forest) can make a prediction for a new instance by taking
the average of all the predictions from the single trees. In
addition, random forests introduce some extra randomness
when growing trees: instead of looking for the feature that,

when split, reduces the overall error the most when splitting
a node, a random forest searches for the best feature among
a random subset of features.

Decision trees make very few assumptions about the train-
ing data. As such, if unconstrained, they will adapt their
structure to the training data, fitting them closely, and most
likely overfitting them, without then being able to provide ac-
curate predictions on new data. To avoid overfitting, regular-
ization can be achieved by setting various hyperparameters
that insert limits to the structure of the trees used to create
the random forests. Table 2 describes which hyperparameters
we considered for the random forest algorithm. For each hy-
perparameters listed, we include the range of values that are
randomly sampled in the cross-validation search to form the
20 sets of hyperparameters considered in the training phase.

4.4 Input features for machine-learning algorithms

Given the large variability of ε, which can span several orders
of magnitude (Bodini et al., 2019b), we apply the machine-
learning algorithms to predict the logarithm of ε. To select
the set of input features used by the learning models, we take
advantage of the main findings of the observational studies
on the variability of ε to select as inputs both atmospheric-
and terrain-related variables to capture the impact of topog-
raphy on atmospheric turbulence. For each variable, we cal-
culate and use in the machine-learning algorithms 30 min av-
erage data, to reduce the high autocorrelation in the data and
limit the impact of the high-frequency large variability of tur-
bulent quantities. We use the following input features (cal-
culated at the same location and height as ε) for the three
learning algorithms considered in our study:

– Wind speed (WS). Bodini et al. (2018) found that WS
has a moderate correlation with ε.

– The logarithm of TKE. This quantity is calculated as

log(TKE)= log
[

1
2

(
σ 2
u + σ

2
v + σ

2
w

)]
, (13)
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Table 2. Hyperparameters considered for the random forest algorithm.

Hyperparameter Meaning Sampled values

Number of estimators Number of trees in the forest 10–250

Maximum depth Maximum depth of the tree 1–50

Maximum number of leaf nodes Maximum number of leaf nodes
in the decision tree

2000–500 000

Maximum number of features Number of features to consider
when looking for the best split

1–6

Minimum number of samples to split Minimum number of samples
required to split an internal node

1–200

Minimum number of samples for a leaf Minimum number of samples
required to be at a leaf node

1–50

where the variances of the wind components are calcu-
lated over 30 min intervals. The choice of using the log-
arithm of TKE is justified by the fact Eq. (4) suggests
this quantity is linearly related to the logarithm of ε.

– The logarithm of friction velocity of u∗. This quantity
is calculated as

u∗ = (u′w′
2
+ v′w′

2
)1/4. (14)

An averaging period of 30 min (De Franceschi and
Zardi, 2003; Babić et al., 2012) has been used to ap-
ply the Reynolds decomposition and calculate average
quantities and fluctuations.

– The log-modulus transformation (John and Draper,
1980) of the ratio ζ = zson/L, where zson is the height
above the ground of each sonic anemometer, and L is
the 30 min average Obukhov length:

sign(ζ ) log(|ζ | + 1). (15)

The use of ζ is justified within the context of
the Monin–Obukhov similarity theory (Monin and
Obukhov, 1954). The use of the logarithm of ζ is consis-
tent with the use of the logarithm of ε as target variable.
Finally, the log-modulus transformation allows for the
logarithm to be calculated on negative values of ζ and
be continuous in zero.

– The standard deviation SD(zterr) of the terrain eleva-
tion in a 1 km radius sector centered on the measure-
ment point (i.e., the location of the sonic anemome-
ter). The angular extension of the sector is set equal to
±30◦ from the recorded 30 min average wind direction
(an example is shown in Fig. 7). While we acknowl-
edge that some degree of arbitrariness lies in the choice
of this variable to quantify the terrain influence, it rep-
resents a quantity that can easily be derived from nu-
merical models, should our approach be implemented

Figure 7. Example of an upwind terrain elevation sector with a 1 km
radius centered on the location of one of the meteorological towers
at Perdigão.

for practical applications, to capture the influence of
upwind topography to trigger turbulence. To compute
this variable, we use Shuttle Radar Topography Mission
(SRTM) 1 arcsec global data, at 30 m horizontal resolu-
tion.

– The mean vegetation height hveg in the upwind 1 km ra-
dius sector centered on the measurement point. Given
the forested nature of the Perdigão region, we expect
canopy to have an effect in triggering turbulence, espe-
cially at lower heights. To compute this variable, we use
data from a lidar survey during the season of the field
campaign, at a 20 m horizontal resolution.

The distribution of the input features and of log(ε) are
shown in the Supplement.
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Figure 8. Scatter plot showing the comparison, performed on the testing set, between observed and machine-learning-predicted ε from a
multivariate linear regression (a), a multivariate third-order polynomial regression (b), and a random forest (c).

While we acknowledge that the input features are not fully
uncorrelated, we found that including all these features pro-
vides a better predictive power for the learning algorithms,
despite negatively affecting the computational requirements
of the training phase. The application of principal component
analysis can help reduce the number of dimensions in the in-
put features while preserving the predictive power of each,
but it is beyond the scope of the current work.

5 Results

5.1 Performance of machine-learning algorithms

To evaluate the prediction performance of the three machine-
learning algorithms we considered, we use, for each method,
a scatter plot showing the comparison between observed and
machine-learning-predicted ε (Fig. 8).

The predictions from all the considered learning algo-
rithms do not show a significant mean bias, as found in
the MYNN representation of ε. As specific error metrics,
we compare RMSE and MAE of the machine-learning pre-

dictions with what we obtained from the MYNN parame-
terization, with the caveat that while the MYNN scheme
is thought to provide a universal representation of ε, the
machine-learning models have been specifically trained on
data from a single field campaign. Each machine-learning al-
gorithm was tested on six 1-week long testing periods, as
described in Sect. 4. For each method, we present the RMSE
and MAE averaged across the different testing periods. Even
the simple multivariate linear regression (Fig. 8a) improves,
on average, on MYNN. Overall, the average RMSE (0.47)
is 23 % smaller than the MYNN parameterization, and the
average MAE (0.36) is 22 % lower than the MYNN pre-
diction. The multivariate third-order polynomial regression
provides an additional improvement (Fig. 8b) for the rep-
resentation of ε, with the average RMSE (0.44) over 28 %
smaller than the MYNN parameterization, and the average
MAE (0.33) 28 % lower than the MYNN representation. The
additional input features created by the polynomial model al-
low for an accurate prediction of ε even in the low turbulence
regime. Finally, the random forest further reduces the spread
in machine-learning predicted ε, with the RMSE (0.40) re-
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Table 3. Performance of the machine-learning algorithms trained and tested at Perdigão, measured in terms of RMSE and MAE between the
logarithm of observed and MYNN-parameterized ε.

MYNN Linear Third-order Random
parameterization regression polynomial regression forest

RMSE 0.61 0.47 0.44 0.40
% change in RMSE −23 % −28 % −35 %

MAE 0.46 0.36 0.33 0.29
% change in MAE −22 % −28 % −37 %

Figure 9. Scatter plot showing the comparison, performed on the testing set, between observed and machine-learning-predicted ε from a
random forest for stable conditions (a) and unstable conditions (b).

duced by about 35 % from the MYNN case, and the MAE
(0.29) by 37 %, with no average bias between observed and
predicted values of ε.

Table 3 summarizes the performance of all the considered
algorithms. We note that, because the length scale approxi-
mation we made in calculating MYNN-predicted ε led to a
better agreement with the observed values compared to what
would be obtained using the full MYNN parameterization,
the RMSE and MAE for the MYNN case would in reality be
higher than what we report here, and so the error reductions
achieved with the machine-learning algorithms would even
be greater than the numbers shown in the table.

Given the large gap in the performance of the MYNN pa-
rameterization of ε between stable and unstable conditions, it
is worth exploring how the machine-learning algorithms per-
form in different stability conditions. To do so, we train and
test two separate random forests: one using data observed
in stable conditions, the other one for unstable cases. We
find that both algorithms eliminate the bias observed in the
MYNN scheme (Fig. 9).

The random forest for unstable conditions provides, on
average, more accurate predictions (RMSE of 0.37, MAE
of 0.28) compared to the algorithm used for stable cases
(RMSE of 0.44, MAE of 0.33), thus confirming the complex-
ity in modeling atmospheric turbulence in quiescent condi-

tions. However, when the error metrics are compared to those
of the MYNN parameterization, the random forest for stable
conditions provides the largest relative improvement, with a
50 % reduction in MAE, while for unstable conditions the
reduction is of 20 %.

5.2 Physical interpretation of machine-learning results

Not only do machine-learning techniques provide accuracy
improvements to represent atmospheric turbulence, but ad-
ditional insights on the physical interpretation of the results
can – and should – be achieved. In particular, random forests
allow for an assessment of the relative importance of the in-
put features used to predict (the logarithm of) ε. The impor-
tance of a feature is calculated by looking at how much the
tree nodes that use that feature reduce the MSE on average
(across all trees in the forest), weighted by the number of
times the feature is selected. Table 4 shows the feature im-
portance for the six input features we used in this study.

The feature importance results are affected by the correla-
tion between some of the input features used in the models.
We find how the logarithm of turbulence kinetic energy is
the preferred feature for tree splitting, with the largest impor-
tance (47 %) in reducing the prediction error for ε in the ran-
dom forest. This result, which can be expected as both TKE
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Figure 10. Partial dependence plots for the input features used in the analysis. Distributions of the considered features are shown in the
background.

and ε are variables connected to turbulence in the boundary
layer, agrees well with the current formulation of the MYNN
parameterization of ε, which includes TKE as main term.
As TKE is correlated to u∗ and z/L, we find that the deci-
sion trees more often split the data based on TKE, so that
the feature importance of its correlated variables is found
to be lower. The limitations of the Monin–Obukhov similar-
ity theory (Monin and Obukhov, 1954) in complex terrain

might also be an additional cause for the relatively low fea-
ture importance of the feature associated with L. The stan-
dard deviation of the upwind elevation and the mean vegeta-
tion height have the lowest importance of, respectively, 3 %
and 2 %. Though not negligible, the importance of topogra-
phy and canopy might increase by considering different pa-
rameters that could better encapsulate their effect. Also, the
impact of topography and canopy might be hidden as it could
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Table 4. Feature importance classification as derived from the ran-
dom forest.

Input feature Feature importance

log(TKE) 47 %
log(u∗) 24 %
sign(ζ ) log(|ζ | + 1) 13 %
WS 11 %
SD(zterr) 3 %
hveg 2 %

be already incorporated in the variability of parameters with
larger relative importance, such as TKE. We have tested how
the feature importance varies when considering several ran-
dom forests, each trained and tested with data from all the
sonic anemometers at a single height only, and did not find
any significant variation of the importance of the considered
variables in predicting ε (plot shown in the Supplement).

Finally, to assess the dependence of TKE dissipation rate
on the individual features considered in this study, Fig. 10
shows partial dependence plots for the input features consid-
ered in the analysis. These are obtained, for each input fea-
ture, by applying the machine-learning algorithm (here, ran-
dom forests) multiple times with the other feature variables
constant (at their means) while varying the target input fea-
ture and measuring the effect on the response variable (here,
log(ε)). In each plot, the values on the y axes have not been
normalized, so that large ranges show a strong dependence of
log(ε) on the feature, whereas small ranges indicate weaker
dependence.

The strong relationship between ε and TKE is confirmed,
as the range shown on its y axis is the largest among all fea-
tures. As TKE increases, so does ε. A similar trend, tough
with a weaker influence, emerges when considering the de-
pendence of ε on friction velocity. The relationship between
ε and wind speed shows a less clear trend, and with a weaker
dependence: ε increases for 30 min average wind speeds up
to ∼ 2 m s−1, and then decreases for stronger wind speed
values. A more distinct trend could emerge when consider-
ing data averaged at shorter time periods. The dependence
between TKE dissipation and atmospheric stability shows a
moderate impact, with stable conditions (positive values of
the considered metric) showing smaller ε values compared
to unstable cases (negative values of the considered metric).
Interestingly, the largest ε values seem to be connected to
neutral cases. Finally, both terrain elevation and vegetation
height show a weak impact on determining the values of ε,
as quantified by the narrow range of values sampled on the
y axis for these two variables.

6 Conclusions

Despite turbulence being a fundamental quantity for the de-
velopment of multiple phenomena in the atmospheric bound-
ary layer, the current representations of TKE dissipation rate
(ε) in numerical weather prediction models suffer from large
inaccuracies. In this study, we quantified the error intro-
duced in the MYNN parameterization of ε by comparing pre-
dicted and observed values of ε from 184 sonic anemometers
from 6 weeks of observations at the Perdigão field campaign.
A large positive bias (average +12 % in logarithmic space,
+47 % in natural space) emerges, with larger errors found in
atmospheric stable conditions. The need for a more accurate
representation of ε is therefore clearly demonstrated.

The results of this study show how machine learning can
provide new ways to successfully represent TKE dissipation
rate from a set of atmospheric and topographic parameters.
Even simple models such as a multivariate linear regression
can provide an improved representation of ε compared to the
current MYNN parameterization. More sophisticated algo-
rithms, such as a random forest approach, lead to the largest
benefits, with over a 35 % reduction in the average error in-
troduced in the parameterization of ε, and eliminate the large
bias found in it, for the Perdigão field campaign. When con-
sidering stable conditions only, the reduction in average er-
ror reaches 50 %. Although the generalization gap between
the universal nature of the MYNN parameterization of ε and
the campaign-specific training and testing of the machine-
learning models needs to be acknowledged, the results of this
study can be considered as a proof of concept of the poten-
tialities of machine-learning-based representations of com-
plex atmospheric processes.

Multiple opportunities exist to extend the work presented
here. In the future, additional learning algorithms, such as
support vector machines and extremely randomized trees,
should be considered. Deep learning methods, such as re-
current neural networks, and specifically long- to short-term
memory, which are well suited for time-series-based prob-
lems, could also be considered to obtain a more complete
overview of the capabilities of machine-learning techniques
for improving numerical representations of ε. Moreover, ad-
ditional input features could be added to the learning algo-
rithms to possibly identify additional variables with a large
impact on atmospheric turbulence. Finally, the learning al-
gorithms developed here would need to be tested using data
from different field experiments to understand whether the
results obtained in this study can be generalized everywhere.
Data collected in flat terrain and offshore would likely need
to be considered to create a more universal model to pre-
dict dissipation in various terrains. Once the performance
of a machine-learning representation of ε has been accu-
rately tested, its implementation in numerical weather pre-
diction models, such as the Weather Research and Forecast-
ing model, should be achieved.

Geosci. Model Dev., 13, 4271–4285, 2020 https://doi.org/10.5194/gmd-13-4271-2020



N. Bodini et al.: Machine learning for model representation of TKE dissipation rate 4283
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(UCAR/NCAR, 2019) are available through the EOL project
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tion model data are taken from the SRTM 1 arcsec global at
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Veen, L., Vasiljević, N., Vassallo, D., Voss, S., Wildmann, N.,
and Wang, Y.: The Perdigão: Peering into Microscale Details
of Mountain Winds, B. Am. Meteorol. Soc., 100, 799–819,
https://doi.org/10.1175/BAMS-D-17-0227.1, 2018.

Frehlich, R.: Coherent Doppler lidar signal covariance including
wind shear and wind turbulence, Appl. Opt., 33, 6472–6481,
1994.

Frehlich, R., Meillier, Y., Jensen, M. L., Balsley, B., and Sharman,
R.: Measurements of boundary layer profiles in an urban envi-
ronment, J. Appl. Meteorol. Climatol., 45, 821–837, 2006.

Friedman, J., Hastie, T., and Tibshirani, R.: The elements of statisti-
cal learning, vol. 1, Springer series in statistics New York, 2001.

Frisch, U.: Turbulence: the legacy of A.N. Kolmogorov, Cambridge
University Press, 1995.

Garratt, J. R.: The atmospheric boundary layer, Earth-Sci. Rev., 37,
89–134, 1994.

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.:
Could machine learning break the convection parameterization
deadlock?, Geophys. Res. Lett., 45, 5742–5751, 2018.

Géron, A.: Hands-on machine learning with Scikit-Learn and Ten-
sorFlow: concepts, tools, and techniques to build intelligent sys-
tems, O’Reilly Media, Inc., 2017.

Gerz, T., Holzäpfel, F., Bryant, W., Köpp, F., Frech, M., Tafferner,
A., and Winckelmans, G.: Research towards a wake-vortex advi-
sory system for optimal aircraft spacing, C. R. Phys., 6, 501–523,
2005.

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., and
Draxl, C.: The state-of-the-art in short-term prediction of wind
power: A literature overview, ANEMOS plus, 2011.

Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statis-
tical learning: data mining, inference, and prediction, Springer
Science & Business Media, 2009.

Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased esti-
mation for nonorthogonal problems, Technometrics, 12, 55–67,
1970.

Hong, S.-Y. and Dudhia, J.: Next-generation numerical weather pre-
diction: Bridging parameterization, explicit clouds, and large ed-
dies, B. Am. Meteorol. Soc., 93, ES6–ES9, 2012.

Huang, K., Fu, J. S., Hsu, N. C., Gao, Y., Dong, X., Tsay, S.-C.,
and Lam, Y. F.: Impact assessment of biomass burning on air
quality in Southeast and East Asia during BASE-ASIA, Atmos.
Environ., 78, 291–302, 2013.

John, J. and Draper, N. R.: An alternative family of transformations,
J. R. Stat. Soc. C-Appl., 29, 190–197, 1980.

Kelley, N. D., Jonkman, B., and Scott, G.: Great Plains Turbulence
Environment: Its Origins, Impact, and Simulation, Tech. rep.,
National Renewable Energy Laboratory (NREL), Golden, CO,
available at: https://www.nrel.gov/docs/fy07osti/40176.pdf (last
access: 3 September 2020), 2006.

Kolmogorov, A. N.: Dissipation of energy in locally isotropic tur-
bulence, Dokl. Akad. Nauk SSSR, 32, 16–18, 1941.

Krishnamurthy, R., Calhoun, R., Billings, B., and Doyle, J.: Wind
turbulence estimates in a valley by coherent Doppler lidar, Mete-
orol. Appl. 18, 361–371, 2011.

Leahy, K., Hu, R. L., Konstantakopoulos, I. C., Spanos, C. J.,
and Agogino, A. M.: Diagnosing wind turbine faults using ma-
chine learning techniques applied to operational data, in: 2016
IEEE International Conference on Prognostics and Health Man-
agement (ICPHM), Ottawa, ON, Canada, 20–22 June 2016,
https://doi.org/10.1109/ICPHM.2016.7542860, 2016.

Leufen, L. H. and Schädler, G.: Calculating the turbulent fluxes
in the atmospheric surface layer with neural networks, Geosci.
Model Dev., 12, 2033-2047, https://doi.org/10.5194/gmd-12-
2033-2019, 2019.

Lundquist, J. K. and Bariteau, L.: Dissipation of Turbulence in the
Wake of a Wind Turbine, Bound.-Lay. Meteorol., 154, 229–241,
https://doi.org/10.1007/s10546-014-9978-3, 2015.

Mellor, G. L. and Yamada, T.: A hierarchy of turbulence closure
models for planetary boundary layers, J. Atmos. Sci., 31, 1791–
1806, 1974.

Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing
in the surface layer of the atmosphere, Contrib. Geophys. Inst.
Acad. Sci. USSR, 151, 1954.

Muñoz-Esparza, D., Sharman, R. D., and Lundquist, J. K.: Turbu-
lence dissipation rate in the atmospheric boundary layer: Ob-
servations and WRF mesoscale modeling during the XPIA field
campaign, Mon. Weather Rev., 146, 351–371, 2018.

Nakanishi, M.: Improvement of the Mellor–Yamada turbulence clo-
sure model based on large-eddy simulation data, Bound.-Lay.
Meteorol., 99, 349–378, 2001.

Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3
model: Its numerical stability and application to a regional pre-
diction of advection fog, Bound.-Lay. Meteorol., 119, 397–407,
2006.

Oncley, S. P., Friehe, C. A., Larue, J. C., Businger, J. A., Itsweire,
E. C., and Chang, S. S.: Surface-layer fluxes, profiles, and tur-
bulence measurements over uniform terrain under near-neutral
conditions, J. Atmos. Sci., 53, 1029–1044, 1996.

Optis, M. and Perr-Sauer, J.: The importance of atmospheric tur-
bulence and stability in machine-learning models of wind farm
power production, Renew. Sustain. Energ. Rev., 112, 27–41,
2019.

Paquin, J. E. and Pond, S.: The determination of the Kolmogo-
roff constants for velocity, temperature and humidity fluctuations
from second-and third-order structure functions, J. Fluid Mech.,
50, 257–269, 1971.

Piper, M. D.: The effects of a frontal passage on fine-scale nocturnal
boundary layer turbulence, PhD thesis, University of Boulder,
2001.

Sharma, N., Sharma, P., Irwin, D., and Shenoy, P.: Pre-
dicting solar generation from weather forecasts using
machine learning, in: 2011 IEEE International Con-
ference on Smart Grid Communications (SmartGrid-

Geosci. Model Dev., 13, 4271–4285, 2020 https://doi.org/10.5194/gmd-13-4271-2020

https://doi.org/10.1175/BAMS-D-17-0227.1
https://www.nrel.gov/docs/fy07osti/40176.pdf
https://doi.org/10.1109/ICPHM.2016.7542860
https://doi.org/10.5194/gmd-12-2033-2019
https://doi.org/10.5194/gmd-12-2033-2019
https://doi.org/10.1007/s10546-014-9978-3


N. Bodini et al.: Machine learning for model representation of TKE dissipation rate 4285

Comm), Brussels, Belgium, 17–20 October 2011, 528–533,
https://doi.org/10.1109/SmartGridComm.2011.6102379, 2011.

Shaw, W. J. and LeMone, M. A.: Turbulence dissipation rate mea-
sured by 915 MHz wind profiling radars compared with in-situ
tower and aircraft data, in: 12th Symposium on Meteorologi-
cal Observations and Instrumentation, available at: https://ams.
confex.com/ams/pdfpapers/58647.pdf (last access: 3 Septem-
ber 2020), 2003.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., and Powers, J. G.: A description of the ad-
vanced research WRF version 2, Tech. rep., National Center For
Atmospheric Research, Boulder, CO, Mesoscale and Microscale
Meteorology Div, 2005.

Smalikho, I. N.: On measurement of the dissipation rate of the tur-
bulent energy with a cw Doppler lidar, Atmos. Ocean. Opt., 8,
788–793, 1995.

Sreenivasan, K. R.: On the universality of the Kolmogorov constant,
Phys. Fluids, 7, 2778–2784, 1995.

Thobois, L. P., Krishnamurthy, R., Loaec, S., Cariou, J. P.,
Dolfi-Bouteyre, A., and Valla, M.: Wind and EDR measure-
ments with scanning Doppler LIDARs for preparing future
weather dependent separation concepts, in: 7th AIAA Atmo-
spheric and Space Environments Conference, AIAA 2015-3317,
https://doi.org/10.2514/6.2015-3317, 2015.

UCAR/NCAR: NCAR/EOL Quality Controlled High-rate ISFS
surface flux data, geographic coordinate, tilt corrected, Version
1.1, Dataset, https://doi.org/10.26023/8x1n-tct4-p50x, 2019.

USGS: USGS EROS Archive – Digital Elevation – Shuttle
Radar Topography Mission (SRTM) 1 Arc-Second Global,
https://doi.org/10.5066/F7PR7TFT, 2020.

Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer
tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150,
2001.

Wildmann, N., Bodini, N., Lundquist, J. K., Bariteau, L., and
Wagner, J.: Estimation of turbulence dissipation rate from
Doppler wind lidars and in situ instrumentation for the
Perdigão 2017 campaign, Atmos. Meas. Tech., 12, 6401–6423,
https://doi.org/10.5194/amt-12-6401-2019, 2019.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and
Woo, W.-C.: Convolutional LSTM network: A machine learning
approach for precipitation nowcasting, in: Advances in Neural
Information Processing Systems, 802–810, 2015.

Yang, B., Qian, Y., Berg, L. K., Ma, P.-L., Wharton, S., Bu-
laevskaya, V., Yan, H., Hou, Z., and Shaw, W. J.: Sensitivity of
turbine-height wind speeds to parameters in planetary boundary-
layer and surface-layer schemes in the weather research and fore-
casting model, Bound.-Lay. Meteorol., 162, 117–142, 2017.

https://doi.org/10.5194/gmd-13-4271-2020 Geosci. Model Dev., 13, 4271–4285, 2020

https://doi.org/10.1109/SmartGridComm.2011.6102379
https://ams.confex.com/ams/pdfpapers/58647.pdf
https://ams.confex.com/ams/pdfpapers/58647.pdf
https://doi.org/10.2514/6.2015-3317
https://doi.org/10.26023/8x1n-tct4-p50x
https://doi.org/10.5066/F7PR7TFT
https://doi.org/10.5194/amt-12-6401-2019

	Abstract
	Copyright statement
	Introduction
	Data
	Meteorological towers at the Perdigão field campaign
	TKE dissipation rate from sonic anemometers

	Accuracy of current parameterization of TKE dissipation rate in mesoscale models
	Machine-learning algorithms
	Multivariate linear regression
	Multivariate third-order polynomial regression
	Random forest
	Input features for machine-learning algorithms

	Results
	Performance of machine-learning algorithms
	Physical interpretation of machine-learning results

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

