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The ubiquitination pathway is linked to a growing number of diseases including cancer 

and Parkinson’s disease.  Previously, the absence of robust functional assays had posed 

challenges in exploiting E3 ligases as therapeutic targets.  The aim of this study was to use in 

vitro reconstituted ubiquitination systems to explore the therapeutic potential of targeting E3 

ligases, in addition to gaining insight into how E3 ligases are regulated.   

Telomerase activation is a rate-limiting step in carcinogenesis.  However, attempts to 

target telomerase have been mostly unsuccessful.  Thus, we targeted TRF1 - a protein that 

represses telomere elongation by preventing telomerase from accessing the telomeres.  In 

Chapter 2, a reconstituted in vitro ubiquitination assay involving the E3 ligase SCF
Fbx4

 and its 

substrate TRF1 was used to develop highly specific peptide inhibitors.  In particular, a structure-

based computational approach was used to rationally design peptides that can disrupt the E3 

ligase (SCF
Fbx4

) - substrate (TRF1) binding interface and subsequent ubiquitination.  

Characterization of the inhibitors demonstrates that our sequence-optimization protocol results in 

an increase in peptide-TRF1 affinity without compromising peptide-protein specificity.   

Since it was revealed that Parkin exists in an auto-inhibited conformation, the question of 

how Parkin becomes activated has been under investigation.  In Chapter 4, an in vitro 

ubiquitination assay involving the Parkin E3 ligase and the anti-apoptotic protein Bcl2 has been 

developed to gain insight into the activation mechanism of Parkin.  We have demonstrated that 
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phosphorylation of Parkin unlocks the auto-inhibited state of the E3 ubiquitin ligase, allowing 

both self-ubiquitination of Parkin and mono-ubiquitination of its substrate Bcl2.    
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CHAPTER 1 

INTRODUCTION 

 

1.1 Discovery of the ubiquitin system 

It was suggested as early as 1953 that intracellular protein degradation requires 

intracellular energy (Simpson 1953).  In 1971, tyrosine aminotransferase was proposed to be 

degraded in an ATP-dependent manner (Hershko and Tomkins 1971).  In 1975, Goldstein and 

colleagues isolated a 8.5 kilodalton “polypeptide” from bovine thymus that induced T and B 

lymphocyte differentiation in vitro, and generated an antibody against it (Goldstein et al. 1975).  

They noted that the polypeptide was detected in a variety of tissues in various organisms.  The 

following was their conclusion.  “That UBIP should have been so rigorously conserved 

throughout this immense evolutionary timespan suggests a function vital to the living organism” 

(Goldstein et al. 1975).  In 1977, a Y-shaped DNA-associated protein with one C-terminus but 

two N-termini was discovered by Goldknopf and Busch (Goldknopf and Busch 1977).  The short 

arm of the branched structure was soon identified as ubiquitin (Hunt and Dayhoff 1977).  This 

protein was identical to the polypeptide described by Goldstein and colleagues.  A cell-free, 

ATP-dependent protein degradation system using rabbit reticulolysates that functioned optimally 

at pH 7.8 was developed in the same year (Etlinger and Goldberg 1977).  In 1978, Ciechanover, 

Hershko, and colleagues discovered that covalent conjugation of ubiquitin preceded the 

degradation of the protein that they were monitoring (Ciechanover et al. 1978).  A highly 

complex, temporally controlled, and tightly regulated ATP dependent process known as the 

ubiquitination pathway was characterized in the following years (Glickman and Ciechanover 

2002).   
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1.2 The ubiquitination pathway 

The ubiquitination pathway is characterized by the covalent attachment of a small 76 

amino acid protein, ubiquitin, to one or more lysine side chains of a generally larger target 

protein.  Ubiquitin is a highly conserved protein that is only found in eukaryotic organisms.  

However, the protein is ubiquitous in the case of eukaryotes.  It is found in the cytosol and 

nucleus of nearly all eukaryotic cells.  Proteins targeted by the ubiquitin-proteasome system are 

often mis-folded.  However, intact proteins can also be regulated via the ubiquitin-proteasome 

pathway.  For a given protein, proper synthesis and degradation rates must be achieved for the 

cell to carry out its biological functions.   

The ubiquitination pathway signals or regulates various eukaryotic proteins – markedly 

by degradation through the 26S proteasome.  In eukaryotes, the vast majority of intracellular 

proteins are degraded by the ubiquitin proteasome system (Rock et al. 1994).  However, it is 

important to note that post-translational modification of a target protein through attachment of 

ubiquitin does not always lead to the proteasomal degradation of the target protein.  A variety of 

non-proteolytic processes such as the cell cycle, protein trafficking, endocytosis, autophagy, 

transcriptional modulation, and DNA repair can also be regulated through ubiquitination 

(Glickman and Ciechanover 2002; Hershko and Ciechanover 1998; Kirkin et al. 2009; Pickart 

1997). 

The transfer of ubiquitin to its target substrate is carried out by a sequence of three 

classes of enzymes – E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme), and 

E3 (ubiquitin ligase) (Pickart 2001).  The E1 enzyme activates the C-terminus of the ubiquitin 

moiety by covalently attaching ubiquitin to its active site cysteine residue.  This first step is
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Figure 1.1:  The ubiquitination pathway.  The ubiquitination cascade consists of a ubiquitin activating enzyme (E1), a ubiquitin 

conjugating enzyme (E2), and a ubiquitin ligase enzyme (E3). 
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dependent on ATP hydrolysis.  The activated ubiquitin is then transferred to a cysteine residue 

on the E2 ubiquitin-conjugating enzyme.  The third ubiquitination step is carried out by the 

ubiquitin ligase (E3) that binds to both the charged E2 and substrate.  In this final step, ubiquitin 

is transferred to either a lysine side chain -amino group on the substrate, or to the end of a 

growing polyubiquitin chain.  In humans, there are two known E1 enzymes, roughly 60 E2 

enzymes, and 600-1000 E3 enzymes (Rape 2009).  It is the E3 ubiquitin ligase that determines 

the specificity of a given ubiquitination process (Dye and Schulman 2007; Kerscher et al. 2006; 

Pickart and Eddins 2004).   

Protein ubiquitination can be induced by a large variety of upstream signaling events.  

For instance, extracellular ligands can stimulate cell surface receptors to become ubiquitinated 

(Hicke and Dunn 2003).  In the case of many cytosolic and nuclear proteins, although not 

universally required, post-translational modifications such as phosphorylation may precede 

ubiquitination (Di Fiore et al. 2003; Muratani and Tansey 2003).  Such modifications allow 

precise spatial and temporal targeting via ubiquitination.  Like phosphorylation, ubiquitination is 

reversible – ubiquitin can be rapidly removed via deubiquitylating enzymes (DUBs) that serve as 

on/off switches or cause shifting between different modifications on the same lysine residue 

(Hershko and Ciechanover 1998). 

Ubiquitination can occur in three different modes.  Substrates can be mono-ubiquitinated 

by a single ubiquitin molecule.  Target substrates can be sequentially ubiquitinated to form 

polyubiquitin chains – one ubiquitin molecule at a time.  Preformed poly-ubiquitin chains can 

also be transferred to a target substrate.  Ubiquitin has seven lysine residues – Lys
6
, Lys

11
, Lys

27
, 

Lys
29

, Lys
33

, Lys
48

, and Lys
63

.  Poly-ubiquitin chains are formed by creating isopeptide bonds 

between the preceding ubiquitin lysine residue (ε-aminogroup) and the C-terminal glycine on the 
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incoming ubiquitin molecule.  Ubiquitination can function as a signaling module, where the 

signal transmitted depends on the characteristics of the modification (mono or poly-

ubiquitination) (Di Fiore et al. 2003).  To be degraded by the 26S proteasome, a protein must be 

linked to a chain of four or more ubiquitin moieties.  One can argue that the primary difference 

between ubiquitination and phosphorylation is the structural complexity of the ubiquitin 

molecule – ubiquitin has a highly complex surface structure that a phosphate group lacks.  The 

fact that ubiquitin can form structurally diverse chains further increases this complexity.   

 

1.3 Classification of E3 ubiquitin ligases 

The E3 ubiquitin ligases are a large and diverse group of enzymes (Ardley and Robinson 

2005).  There are several distinct families of E3 ligases that are each characterized by a defining 

motif (Deshaies and Joazeiro 2009).  The RING (really interesting new gene), U-box (a variation 

of the RING motif that lacks the zinc-chelating cysteine and histidine residues), HECT 

(homologous to E6-associated protein C-terminus), and RBR (RING-between-RING) families 

are among the most well-known.  The HECT and RBR E3 ligases have a catalytic cysteine 

residue that is responsible for the formation of a covalent thioester intermediate.  The RING and 

U-box proteins are thought to function in a scaffold-like fashion, facilitating the transfer of 

ubiquitin from E2 to target substrate.  The RING E3s are the largest class, comprising 

approximately 90% of known E3 ligases.  This family of ligases can be further divided into 

single subunit E3 ligases and multimeric complexes.   

Although some E3 ligases function alone, the vast majority of them form large multi-

protein complexes.  All in all, it is the E3 ligases that provide the specificity required for  
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Figure 1.2:  Different types of ubiquitination.  Attachment of a single ubiquitin molecule to a 

single lysine residue leads to mono-ubiquitination.  Addition of several single ubiquitin 

molecules to different lysine residues results in multi-mono-ubiquitination.  Poly-ubiquitination 

occurs when a chain of ubiquitin molecules is attached to one or more lysine residues. 
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the selective post-translational modifications that are required for regulating complex signaling 

pathways.  The significance of E3 ligases is highlighted by their variety, and by the number of 

biological processes they regulate.   

 

1.4 E3 ubiquitin ligases from a clinical perspective 

In the last decade, there has been a surge in interest in the ubiquitination pathway.  What 

was formerly regarded as a simple protein degradation signal has emerged as a regulator of 

various complex signaling networks.  Therefore, it is not surprising that deregulation of ubiquitin 

signaling systems can be associated with the initiation and progression of many human diseases.  

In fact, mutations of E1, E2s, E3s, DUBs, ubiquitin, and substrates have all been found in human 

disorders (Jiang and Beaudet 2004).  As mentioned in previous sections, the enzymes of the 

ubiquitination system are tightly controlled by post-translational modifications or processes such 

as compartmentalization and oligomerization (Dikic et al. 2003; Thien and Langdon 2001).  Due 

to such precise regulation, proteins involved in the ubiquitination pathway are expected to be 

among the most promising drug targets.   

So far, there has been some success in targeting E1 enzymes.  Bortezomib is a 

proteasome inhibitor used for treating multiple myeloma and mantle‐cell lymphoma.  Following 

the success of bortezomib, several other proteasome inhibitors including carfilzomib, Ritonavir, 

Salinosporamide A, CEP‐18770, PR‐957 have shown promise (Ruschak et al. 2011).  However, 

the lack of diversity of E1 enzymes may confer a lack of specificity.  While E2 enzymes are 

slightly more diverse than E1 enzymes, they are evolutionarily highly conserved.  The structural 

similarities between the different E2 enzymes would also impose challenges related to selectivity.  
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Since the specificity of the ubiquitination system primarily resides in the E3 ligases, these least 

promiscuous enzymes may prove to be the most ideal targets for therapeutic intervention.   

As a matter of fact, E3 ubiquitin ligases are linked to a growing number of diseases 

including neurodegenerative diseases, cancer, diabetes, chronic inflammation, HIV, and 

muscular diseases.  SCF-I2, thalidomide, and lenalidomide are compounds that are known to 

target this class of enzymes.  SCF-I2 is an allosteric inhibitor of substrate recognition that binds 

to the WD40 domain containing yeast F-box protein Cdc4.  Studies have shown that the 

compound inhibits the ubiquitination of SCF
Cdc4

 substrates.  Thalidomide, a drug initially 

introduced as a sedative, is believed to bind and inactivate the RING finger E3 ligase Cereblon.  

Cereblon forms an E3 ligase complex with damaged DNA binding protein 1 (DDB1), Cullin-4A 

(CUL4A), and regulator of cullins 1 (ROC1) (Angers et al. 2006).  

Therapeutic agents that target the ubiquitination system may show severe side effects in 

some cases.  The side effects may be due to the inherent complexity of the ubiquitination system.  

The components required for ubiquitination are diverse and varied, and oftentimes little is known 

about how the process is regulated.  Only further insights to this complicated system will allow 

us to develop highly specific drugs.   

 

1.5 Research topics 

 

In the past, the lack of robust functional assays had posed challenges in exploiting E3 

ubiquitin ligases as therapeutic targets.  The focus of this thesis is to use in vitro reconstituted 

ubiquitination systems to explore the therapeutic potential of targeting E3 ligases, in addition to 

gaining insight into how ubiquitin E3 ligases are regulated.  To reconstitute E3 ubiquitin ligase 
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pathways, recombinant proteins involved in several biologically significant pathways have been 

expressed and purified.   

In Chapter 2, a reconstituted in vitro ubiquitination assay involving the E3 ligase SCF
Fbx4

 

and the telomere regulating TRF1 protein was used to develop highly specific peptide inhibitors 

that may potentially target cancer cells.  A structure-based computational approach was applied 

to rationally design peptide inhibitors that disrupt the TRF1 (substrate) - SCF
Fbx4

 (E3 ligase) 

interface and subsequent ubiquitination.   

In Chapter 4, a robust in vitro ubiquitination assay involving the Parkin E3 ligase and the 

anti-apoptotic protein Bcl2 has been developed to gain insight into how post-translational 

modifications can affect E3 ligase activity.  Literature in the field indicates that both Parkin and 

Bcl2 may be involved in the development of Parkinson’s disease.   
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CHAPTER 2 

 TRF1 AS A MOLECULAR TARGET FOR CANCER THERAPEUTICS:  

DEVELOPING PEPTIDE INHIBIHTORS OF TRF1 PROTEOLYSIS 

 

2.1 Introduction 

2.1.1 Telomere regulation and TRF1 

Telomerase is a reverse transcriptase that maintains telomere length (Feng et al. 1995).  

However, its activity is suppressed in somatic cells such that telomere attrition triggers 

replicative senescence or apoptosis (Schmitt 2003).  In cancer cells, telomerase is up-regulated or 

reactivated, effectively making the cell immortal (Kim et al. 1994).  Previous studies have shown 

that telomerase activity positively correlates with unfavorable cancer prognosis (Shay 1998). 

Since it was discovered that telomerase activation is a rate-limiting step in carcinogenesis, 

telomerase has gained much interest as a drug target.  Both screening and structure-based 

methods have been extensively employed to identify small-molecule leads that can selectively 

disrupt telomerase activity.  Strategies commonly used to target telomerase activity include 

targeting the reverse transcriptase subunit of telomerase (BIBR1532 and nucleoside analogues) 

(Murakami et al. 1999; Pascolo et al. 2002; Strahl and Blackburn 1994), inhibiting hTERT 

phosphorylation by using inhibitors of protein kinase C (Chang et al. 2006), targeting the RNA 

component of telomerase (peptide nucleic acids, antisense oligonucleotides—GRN163L) 

(Djojosubroto et al. 2005; Shammas et al. 1999), stabilizing G-quadruplex structures (Read et al. 

2001), and using T-oligos that mimic the end of human telomeres to induce a DNA-damage 

response (Rankin et al. 2008).  Nonetheless, with the exception of GRN163L, which has recently 

entered phase III clinical trials, attempts at clinically targeting telomerase activity by using 

classic small-molecule derivatives have largely been unsuccessful. 
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An alternative strategy is to target the proteins involved in telomere protection and 

maintenance.  Telomeres are coated and maintained by a network of sequence-specific DNA-

binding factors that tightly control telomerase activity, including TRF1, TRF2, tankyrases, and 

TIN2. In particular, TRF1 acts in cis at chromosome ends to repress telomere elongation by 

preventing telomerase from accessing the telomeres (Smogorzewska 2000).  Increasing TRF1 

levels will cause telomere shortening followed by replicative senescence or apoptosis (van 

Steensel and de Lange 2000).  Previous studies have shown that overexpression of TRF1 results 

in gradual telomere shortening (Ancelin et al. 2002; Smogorzewska 2000; van Steensel and de 

Lange 1997), whereas overexpression of dominant-negative mutants leads to telomere elongation 

in cells (Karlseder et al. 1999; Smogorzewska and de Lange 2002; van Steensel and de Lange 

1997).  

A variety of factors contribute to telomere-bound TRF1 levels. Currently, two E3 ligases 

are known to mediate the ubiquitination and degradation of TRF1.  The RING H2 zinc finger 

protein RLIM binds to a site adjacent to the myb domain of TRF1, and localizes to the nucleus 

upon binding with TRF1 (Her and Chung 2009).  Studies have shown that overexpression of 

RLIM decreases the level of TRF1, and that shRNA knockdown of RLIM increases the level of 

TRF1 leading to telomere shortening and impaired cell growth (Her and Chung 2009). SCF
Fbx4

, 

on the other hand, binds to the TRFH domain of TRF1 through an atypical small GTPase domain 

and localizes to the cytoplasm upon binding with its substrate (Zeng et al. 2010).  Zeng et al. 

showed that TRF1 has a higher binding affinity to TIN2 than to Fbx4 (Zeng et al. 2010), and 

crystal structures indicate that the Fbx4–TRF1 binding interface overlaps with the TIN2–TRF1 

interface; this might allow TIN2 to sequester TRF1 from Fbx4 in vivo.  Studies have also shown 

that nucleostemin (NS) and guanine nucleotide binding protein-like 3 (GNL3L), GTP-binding 
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proteins that shuttle between the nucleolar–nuclear compartments, bind to TRF1 (Tsai et al. 

2009).  GNL3L has been shown to stabilize TRF1, whereas NS has been shown to enhance the 

degradation of TRF1 (Zhu et al. 2006; Zhu et al. 2009).  Despite the complexity involved in 

TRF1 regulation, blocking TRF1 ubiquitination should theoretically lead to increased levels of 

TRF1, gradual shortening of telomeres, and replicative senescence or apoptosis. 

 

2.1.2 Regulation of TRF1 degradation by the ubiquitin-proteasome pathway 

Fbx4 functions as the substrate-specific adaptor subunit of SCF
Fbx4

 that recognizes both 

TRF1 and cyclin D1 as substrates (Lee et al. 2006).  The interaction between TRF1 and Fbx4 

was initially discovered from a two-hybrid screen (Zhou and Lu 2001).  It was later found that 

overexpression of Fbx4 reduces endogenous TRF1 levels and causes the telomeres to lengthen 

progressively (Lee et al. 2006).  Inhibition of Fbx4 by RNA interference (RNAi), on the other 

hand, stabilizes TRF1 and promotes telomere shortening, and this ultimately impairs cell growth 

(Lee et al. 2006). RNAi studies demonstrated that knockdown expression of Fbx4 stabilizes 

TRF1 (Zeng et al. 2010; Zhou and Lu 2001).  Furthermore, disabling the binding interaction 

between TRF1 and Fbx4 abrogates TRF1 ubiquitination both in vitro and in vivo (Zeng et al. 

2010).  

In this study, we directly targeted the E3 ligase (SCF
Fbx4

)–substrate (TRF1) interface by 

using computationally enhanced peptide inhibitors derived from the TRF1TRFH–Fbx4G crystal 

structure (PDB ID: 3L82; Figure 2.1) (Zeng et al. 2010).  The approach was based on the 

hypothesis that TRF1 binding peptides optimized in silico will prevent ubiquitination — a 

critical step in regulating TRF1 levels, which are controlled by sequential post-translational 

modifications and subsequent degradation.  ADP-ribosylation of TRF1 by tankyrase 1 releases  

http://onlinelibrary.wiley.com/doi/10.1002/cbic.201200777/full#fig1
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Figure 2.1:  Structure of the TRF1TRFH-Fbx4G complex.  (A) Schematic representation of 

TRF1 and Fbx4 polypeptide chains.  TRF1-Fbx4 interaction is mediated by TRF1TRFH and Fbx4G 

domains.  (B) Ribbon diagram of the dimeric TRF1TRFH-Fbx4G complex adapted from Zeng et al. 

(Zeng et al. 2010). 

 

 

http://www.sciencedirect.com/science/article/pii/S1534580710000110#gr1
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TRF1 from telomeres, and ubiquitination of TRF1 is achieved through an enzymatic cascade 

involving a series of cooperative protein–protein interactions (Chang et al. 2003).  In principle, 

each step is susceptible to specific inhibition.  In particular, the specificity-conferring nature of 

E3 ligase–substrate interactions makes them prime candidates as targets for cancer therapy.  

However, only a few inhibitors that exploit E3 ligase–substrate interfaces are known up to this 

date - the Nutlins being the most thoroughly characterized among them.  In the case of Nutlins, a 

crystal structure determined by Pavletich et al., prior to the small-molecule screen, revealed a 

deep hydrophobic pocket located at the interface of MDM2 and p53 (Kussie et al. 2006; Vassilev 

et al. 2004).  Such well-defined cavities have not been documented for RING domain E3s and 

their substrates, including and Fbx4 and TRF1. In recent years, peptides that disrupt protein–

protein interactions have been emerging as modulators of signaling pathways.  For instance, both 

natural and unnatural peptide inhibitors that disrupt the MDM2–p53 interaction were identified 

(Kritzer et al. 2005; Kritzer et al. 2006; Liu et al. 2010).  However, using rationally designed, 

short peptides that possess a high degree of conformational freedom to target protein–protein 

interfaces remains a challenge.  

 

2.1.3 Disrupting protein-protein interactions using computationally designed peptides 

The 2.4 Å-resolution crystal structure determined by Zeng et al. reveals the molecular 

basis by which Fbx4 recognizes TRF1 (Zeng et al. 2010).  In particular, the αD helix of Fbx4G 

reinforces the formation of the TRF1TRFH–Fbx4G complex through extensive van der Waals 

interactions with TRF1TRFH.  This short helix packs against a slightly indented hydrophobic area 

that spans the surface of both molecules.  Mutations on both sides of the interface are sufficient 

to abolish TRF1TRFH–Fbx4G binding in vitro and in vivo (Zeng et al. 2010), thus suggesting that  



 

17 

 

 

 

 

 

 

 

 

 

Figure 2.2: Peptide inhibitor design. A structure-based computational approach was used to 

rationally design peptide inhibitors that can target an E3 ligase (SCF
Fbx4

)–substrate (TRF1) 

interface and subsequent ubiquitination. Characterization of the inhibitors demonstrates that our 

sequence-optimization protocol results in an increase in peptide–TRF1 affinity without 

compromising peptide–protein specificity. 
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it is possible to target the TRF1TRFH–Fbx4G interface by using peptides.  London et al. examined 

151 protein–protein structures as starting points for the derivation of high-affinity peptide 

segments that could be extracted from one binding partner, and used as inhibitors against the 

wild-type interaction (London et al. 2010).  Their results indicate that short linear segments 

contribute most of the binding energy for more than 50 % of the examined protein–protein 

interactions.  Evaluating the TRF1TRFH–Fbx4G interface shows that the short helical segment of 

Fbx4G comprising residues 339–348 contributes more than half (689 Å
2
) of the total buried 

surface area at the interface (1371 Å
2
), and buries numerous hydrophobic residues.  Hence, we 

believed that this segment was likely to provide a good starting point. 

 

2.2 Materials and Methods 

Inhibitory peptide design:  The backbone coordinates for sequence positions 339 to 347 

(MPCFYLAHE) were isolated from F-box-only protein 4 (Fbx4G) in the TRF1TRFH–Fbx4G 

complex (PDB ID: 3L82) for inhibitor peptide Design 1.  The helical region was extended in the 

C-terminal direction in an effort to stabilize the bound peptide conformation and thus limit the 

configurational entropy loss.  Helix extension was achieved by aligning an α-helix from the 

TRF1TRFH binding partner with the isolated Fbx4G helix.  As a result, four additional positions 

were added to the helix, although the three C-terminal positions do not make contact with the 

target protein, TRF1TRFH, in the model structure.  The first four N H groups and the last four C

O groups of an α-helix lack intrahelical hydrogen bond partners, and this potentially 

destabilizes the helical secondary structure.  N- and C-terminal helix-capping motifs have been 

identified in both proteins and peptides, and are thought to provide a mechanism to stabilize the 

helical secondary structure (Aurora and Rose 1998).  A glycine–threonine–glycine motif was 
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appended to the C-terminus of the inhibitor peptide design to act as a C-terminal helix cap.  

Sequence positions that had been buried in the globular Fbx4 structure became solvent exposed 

in the inhibitor peptide, and thus these positions were redesigned to allow exposure of only polar 

or charged amino acids.  Previous work had shown that increasing the buried hydrophobic 

surface area could be an effective approach in enhancing protein–protein binding affinity 

(Sammond et al. 2007).  Thus, positions that were buried or peripheral to the interface between 

the inhibitor peptide and the target protein were redesigned.  Three positions from the precursor 

Fbx4 sequence were retained.  The N-terminal position, Pro
340

, was not altered so as to conserve 

the ϕ–ψ dihedral angles that might play a role in the interaction between the proline residue and 

the target protein TRF1.  The position Met
339

 was also retained.  His
346

 was retained because it 

forms a hydrogen bond with a target protein tyrosine residue (Tyr
124

).  Sequence design and 

structural optimization were performed with the molecular modeling program Rosetta (Rohl et al. 

2004).  A version of the Rosetta energy function with a dampened Lennard–Jones repulsion 

potential was used (Dantas et al. 2007).  

Peptide synthesis:  Solid-phase synthesis of peptides was carried out using Fmoc protected 

amino acids and Rink amide SS resin (200–400 mesh, Nova Biochem) on a CEM Liberty 

automated microwave peptide synthesizer (CEM Corporation, Matthews, NC).  Dried resin was 

swelled in CH2Cl2 (30 min).  The Fmoc group was removed by using a solution of 20 % 

piperidine in dimethylformamide (DMF).  The deprotected resin was then suspended in a 

solution containing Fmoc-protected amino acid (5 equiv), 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphonate (HATU; 5 equiv), N,N-diisopropylethylamine 

(DIPEA; 10 equiv), and DMF (4 mL).  Couplings were performed in duplicate.  Deprotection 

and coupling were repeated until all residues were incorporated according to the peptide design. 
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The fluorophore-labeled peptides were prepared on solid phase by using 7-hydroxycoumarin-3-

carboxylic acid (AnaSpec, Inc., Fremont, CA) following the coupling conditions described above.  

The resulting peptides, with amidated C-termini and free amino N-termini, were cleaved from 

the resin and side-chain-protecting groups were removed with trifluoroacetic acid/water/ethane-

1,2-dithiol/triisopropylsilane (94:2.5: 2.5:1, v/v/v/v) at room temperature (2 hours).  The crude 

peptides were collected by precipitation with cold diethyl either (Sigma–Aldrich).  The peptides 

were purified by using a 1200 series semipreparative reversed-phase HPLC system (Agilent) 

with an Agilent Zorbax 300 SB-C8 column and a linear gradient of buffer A (water/acetonitrile 

9:1, v/v) and buffer B (acetonitrile), followed by lyophilization to dryness.   The peptides were 

characterized by MALDI-TOF spectrometry on a Voyager DE-STR biospectrometry workstation 

(Applied Biosystems).  

Protein expression and purification:  For the fluorescence polarization assays, TRF1TRFH 

(residues 58–268) fused to a SUMO protein and N-terminal His6 tag was expressed in E. coli. 

After 6 hours of induction with isopropyl-β-D-thiogalactopyranoside (IPTG; 0.1 mM) at 25 °C, 

the cells were harvested by centrifugation (4000 g).  The harvested cell pellets were resuspended 

in lysis buffer (50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 mM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT)) and lysed by sonication.  

The lysates were cleared by ultracentrifugation (200 000 g), and the resulting supernatant was 

incubated with Ni-NTA agarose beads for 1 hour at 4°C.  The beads were then washed with 

imidazole (20 mM) before TRF1TRFH was eluted with imidazole (250 mM). The resulting 

TRF1TRFH was further purified on a HiLoad Superdex 200 column (GE Healthcare) after the 

His6-Sumo tag had been cleaved off by using Ulp1 protease.  For the in vitro ubiquitination 

assays, the TRF1 deletion mutant TRF1ΔMyb was expressed in E. coli and purified according to 
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Wild-Type:  MPCFYLAHEL 
 

 
Mass (m/z) 

 

Design 1:  MPFWKFHRMSKMGTG 
 

 
Mass (m/z) 
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Design 2:  MPAWKFHRMSKMGTG 
 

 
Mass (m/z) 

 
Design 3:  MPFWKAHRMSKMGTG 
 

 
Mass (m/z) 
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Figure 2.3:  Peptide synthesis.  Mass spectra of the peptide inhibitors measured by MALDI-

TOF-MS.  The measured molecular masses corresponding to the m/z signals were 1411.1 Da, 

2139.8 Da, 2064.5 Da, and 2064.5 Da, and the theoretical calculated molecular masses were 

1411.53 Da, 2142.53 Da, 2066.43 Da, and 2066.43 Da. 

 

 

the same procedure as for TRF1TRFH, with the addition of two affinity purification steps on Mono 

Q and Mono S ion exchange columns (GE Healthcare).  GST-tagged Fbx4 with two deletions 

(residues 1–54 and 150–170) was coexpressed with truncated Skp1 (Schulman et al. 2000) in E. 

coli as a dicistronic message for 6 hours at 25°C by using IPTG (0.1 mM).  The harvested cell 

pellets were resuspended in NETN buffer (Tris base, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5 % 

NP40, 1 mM DTT).  After the cells had been lysed by sonication, the cell debris was removed by 

ultracentrifugation (200 000 g), and the supernatant was mixed with glutathione Sepharose beads 

(Qiagen) for 1 hour at 4°C before elution with glutathione (20 mM). The complex was then 

further purified by gel filtration chromatography on the HiLoad Superdex 200 column.  E1, 

UbcH5a (E2), Cul1-Rbx1, and Skp1-Skp2 were expressed and purified as described (Chen et al. 

2008; Hao et al. 2005).   

Fluorescence polarization assay:  Fluorescence-polarization experiments were conducted on a 

Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon, Inc).  Coumarin-labeled peptides were 

dissolved into buffer (200 mM NaCl, 10 mM DTT, 25 mM Tris, pH 8.0).  TRF1TRFH protein (up 

to 250 μM) was titrated into peptide solutions (100 nM).  An excitation wavelength of 302 nm 

and an emission wavelength of 448 nm were used.  Spectra were measured at 25°C by using 7.0 

nm slit widths.  Curve fitting and regression analysis were performed by using Sigma Plot 10.0 

(SPSS Inc.).  Data were fit to a quadratic single-site-binding equation (Equation 1), which was 

incorporated into Equation 2 to account for the observed polarization: 
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Here, [A:B] is the concentration of coumarin-labeled peptide and the TRF1TRFH protein complex 

formed, [At] is the total concentration of coumarin-labeled peptide, [Bt] is the concentration of 

TRF1TRFH protein, Pmax is the maximum polarization observed when all coumarin-labeled 

peptide is bound to TRF1TRFH protein, and Pobs is the measured polarization at a given 

concentration of TRF1TRFH protein.  The obtained fitted parameters were for KD, Pmax, and Po. 

In vitro TRF1 ubiquitination assay:  [γ-
33

P]-labeled TRF1 proteins (4 mM) were generated by 

incubating TRF1 with GST–cyclin B/Cdk1 (0.1 mM) in a buffer composed of Tris (50 mM, pH 

8.0), MgCl2 (10 mM), ATP (10 mM), and [γ-
33

P]ATP (2 μCi) for 1 hour.  GST-cyclin B/Cdk1 

was removed from the phosphorylated TRF1 by means of glutathione affinity chromatography.  

Ubiquitination assays were performed by incubating the phosphorylated TRF1 with E1 (0.5 mM), 

UbcH5a (E2; 5 mM), SCF
Fbx4

 complex (E3; 1 mM), ubiquitin (5 mM), methylated ubiquitin (100 

mM), and 20X energy regeneration system (1 μL; 10 mM ATP, 20 mM HEPES, pH 7.4, 10 mM 

MgOAc, 300 mM creatine phosphate, and 0.5 mg mL
−1

 creatine phosphokinase) in a final 

volume of 15 μL. The reaction mixtures were incubated at 30°C for 2.5 hours, and the reactions 

were terminated by boiling after addition of Laemmli sample buffer.  The proteins were 

separated by SDS-PAGE, and the resulting gels were dried prior to phosphoimaging analysis.  

CD spectroscopy:  Spectra were recorded on a Chirascan-plus CD Spectrometer (Applied 

Photophysics) by using a protein concentration of 12 μM (0.1 cm path length).  Protein 
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concentrations were determined by UV absorbance at 280 nm.  Sixteen scans from 195 to 260 

nm were averaged.  All spectra were measured at 25.8°C.  Results were recorded in millidegrees.  

Analytical ultracentrifugation:  The hydrodynamic properties of peptide Designs 1–3 were 

analyzed by analytical ultracentrifugation using sedimentation velocity (55 000 g).  The 

experiments were performed in a Beckman XL-I analytical ultracentrifuge (Beckman Coulter, 

CA) at 25°C.  S20,w values and frictional ratios (f/f0) were determined by using Ultrascan III 

software with 2D spectrum analysis and a genetic algorithm (Demeler 2005).   

In vitro p27 ubiquitination assay:  [γ-
33

P]-labeled p27 proteins were generated by incubating 

the p27 with GST-cyclin E/Cdk2 (0.1 mM) in a buffer composed of Tris (50 mM, pH 8.0), 

MgCl2 (10 mM), ATP (10 mM), and [γ-
33

P]ATP (2 μCi) for 1 hour.  The ubiquitination reaction 

was carried out by incubating the phosphorylated [γ-
33

P]-labeled p27 with E1 (0.5 mM), Cdc34 

(E2; 5 mM), SCF
Skp2

 complex (E3; 1 mM), Cks1 (1 mM), ubiquitin (5 mM), methylated 

ubiquitin (100 mM), and 20X energy regeneration system (1 μL) for 2 hours in a reaction volume 

of 15 μL at 30°C.  The proteins were analyzed by SDS-PAGE and phosphorimaging. 

 

2.3 Results 

2.3.1 Peptide design and synthesis 

The short peptide does in fact act as an inhibitor of the wild-type interaction, with a 

moderate IC50 of 205.9 μM (obtained from in vitro ubiquitination assays).  Fluorescence 

polarization experiments show that the selected peptide binds to TRF1TRFH with a KD of 41.8 μM 

(Table 2.2).  Although the initial peptide displays promising results, we sought to enhance its 

inhibition of the TRF1TRFH–Fbx4G interaction through rational peptide design.  
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Figure 2.4:  Optimizing the anti-TRF1 peptide inhibitor.  (A) The peptide segment selected 

from the Fbx4 structure, shown bound to the TRF1 protein target based on the TRF1-Fbx4 

crystal structure (Zeng et al. 2010).  (B) Model of the rationally optimized peptide inhibitor.  

Both the original inhibitor peptide and the rationally optimized inhibitor are shown with the same 

binding mode as the peptide segment (residues 339-348) cut from the Fbx4 protein.  The 

peptides are shown in cartoon representation with side chains located at key positions of the 

interface shown and labeled.  The target protein, TRF1, is shown in surface representation. 

 

 

 

 



 

27 

 

A structure-based design protocol (Fleishman et al 2011; Sammond et al. 2007) using 

Rosetta (Rohl et al. 2004) was employed to enhance the affinity for TRF1 of a nine-residue 

linear segment (
339

MPCFYLAHE
347

) that spans the length of the αD helix of Fbx4G.  Previous 

work found that protein–protein interactions can be reliably enhanced by increasing the buried 

hydrophobic surface area at the interface (Sammond et al. 2007).  Two candidates for the 

introduction of larger hydrophobic residues were identified, C341I and A345F.  Solubility was a 

concern when isolating the segment from a larger globular protein.  In addition, increasing the 

hydrophobicity of the extracted peptide in an effort to enhance binding affinity can lead to a 

further decrease in solubility.  Thus, we replaced a solvent-exposed leucine residue with lysine, 

L344K, and added two hydrophilic residues, Ser
349

 and Lys
350

, to the C-terminus of the peptide 

(Design 1, Table 2.2).  Finally, we sought to stabilize the short helical peptide by adding a C-

terminal capping motif.  We anticipated that these affinity-enhancing measures would provide a 

large contribution to the overall affinity of the peptide–TRF1 complex.  In addition, we 

generated two alanine substitution variants (Designs 2 and 3) to further assess the importance of 

the two key interface residues (Phe
342

 and Phe
345

, underlined).  

To address the issues of peptide solubility, we performed analytical ultracentrifugation 

(AUC). Examination of the AUC data shows that Designs 1–3 do not self-associate and are 

monomers in solution (Table 2.1).  However, the data also suggest that Designs 1 and 2 sample 

multiple conformations (Table 2.1).   
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Table 2.1:  Analytical ultracentrifugation.  Graphical representation of species detected by 

genetic algorithm S20,w and frictional ratios represented in pseudo-3D plots.  The hydrodynamic 

properties of peptides, Design 1, Design 2 and Design 3, were analyzed using analytical 

ultracentrifugation using sedimentation velocity.  S20,w values and frictional ratios (f/f0) were 

determined using Ultrascan III software using 2-D spectrum analysis and a genetic algorithm.  

AUC data suggests that Design 1 samples multiple conformations.  

 

 

 

 

 

 

 

 



 

30 

 

2.3.2 IC50 Determination of peptide inhibitors using in vitro ubiquitination assay 

To examine the biological activity of the peptide designs, we reconstituted Fbx4-

dependent TRF1 ubiquitination in vitro.  Although phosphorylation is not a prerequisite for 

ubiquitination (Zeng et al. 2010), wild-type TRF1 was first phosphorylated by using cyclin B-

Cdk1 in the presence of 
33

P-γ-ATP to allow quantitative detection.  We then incubated TRF1 

with recombinant ubiquitin, E1, E2 (UbcH5a), and the SCF
Fbx4

 complex.  Increasing amounts of 

coumarin-labeled peptide inhibitors were added to the reaction mixture, and the relative 

effectiveness of the peptide inhibitors was determined by measuring the disruption of 

polyubiquitination, from which the IC50 values were generated.  The tested peptides showed a 

range of inhibitory effects from none to more potent.  The rationally optimized peptide inhibitor 

(Design 1) showed enhanced inhibitory activity, with an IC50 that is decreased by more than 

sixfold (31.3 μM), thus showing robust inhibition of polyubiquitination compared to the 

minimally sized wild-type peptide lacking the modifications (IC50=205.9 μM). Both alanine 

substitution variants, Designs 2 and 3, lost inhibitory activity compared to Design 1 (IC50=270.6 

and 95.8 μM, respectively) in the in vitro ubiquitination experiments.  In contrast, control 

peptides 1 and 2 showed little or no inhibitory activity.  However, the variation in Hill 

coefficients suggests that the mechanism of inhibition might be slightly different for each peptide 

design (Figure 2.5).  In summary, although all three peptides derived from the αD helix of Fbx4 

showed inhibition in the micromolar range, the inhibitory potency varied, with IC50 values 

ranging from 31.3 to 270.6 μM. 
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C)             

 

  
 
                             
Figure 2.5: Peptides inhibit poly-ubiquitination in vitro.  (A) Inhibition profiles of 

computationally enhanced peptide inhibitors.  (B) Inhibition profiles of control peptides.  (C) 

Normalized IC50 curves that represent the potency of the peptide designs.  ImageJ was used to 

quantify the disruption of poly-ubiquitination.  Measurements represent the mean ± standard 

deviation from three replicates. 
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2.3.3 KD determination of inhibitors using fluorescence polarization assay 

We then tested our computationally enhanced peptide inhibitor (Design 1) and their 

alanine variants (Designs 2 and 3) in a fluorescence-polarization binding assay to directly 

determine their binding affinities to TRF1TRFH, and further assess the predicted binding mode.  

Peptides were labeled with 7-hydroxycoumarin as the fluorophore.  Holding the peptide 

concentration at 0.1 μM, we added increasing concentrations of TRF1TRFH (up to 80 μM), 

measured the polarization values, and generated equilibrium binding isotherms (Figure 2.6).  The 

dissociation constants (KD) were determined to be 23.3, 47.8, 17.3, and 41.8 μM for Designs 1–3, 

and wild-type, respectively (Table 2.2).  The increase in binding affinity for the computationally 

enhanced peptides with respect to wild-type was thus 1.8 or 2.4-fold - only Design 2 showed a 

slight decrease in affinity.  The affinity enhancement for Design 3 suggests that the first 

phenylalanine residue of Design 1 contributes to binding.  The role of the second phenylalanine 

residue in Design 1 is less clear.  The negative controls, by contrast, could not be saturated 

within the same range of concentrations of TRF1TRFH, or even exhibited nonspecific binding.  

The fluorescence-polarization experiments show that, in general, the designed peptides have 

lower KD values than the control peptides; this is consistent with their potency observed in the in 

vitro ubiquitination assays.  These results suggest that differences in binding affinity between 

peptides and TRF1TRFH largely account for the differences in the biological activities of the 

peptide inhibitors, although there are rare exceptions to this correlation. 

It is important to note that the peptide that exhibited the lowest IC50 value (Design 1) did 

not show the highest affinity for TRF1TRFH.  An increase in binding affinity does not always 

directly translate into more favorable biological activity.  The fact that our binding data do not 

completely correlate with our in vitro ubiquitination results is puzzling at first glance, but if we 
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consider the muti-step and muti-component nature of the ubiquitination process, this discrepancy 

might not be so surprising.  The ubiquitin proteasome system contains a number of synergistic 

proteins that can potentially be influenced by distal binding events.  Therefore, each component 

of the ubiquitination cascade can, in theory, be targeted by the peptide inhibitors:  The inhibitors 

might be involved in nonspecific interactions at high micromolar concentrations, as implied by 

the in vitro ubiquitination control experiments (Figure 2.5).  Explicitly, the discrepancies 
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Figure 2.6:  KD determination of peptide inhibitors.  Fluorescence polarization confirms that 

the wild-type and designed peptides bind to TRF1TRFH.  
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Figure 2.7:  Wild-type and designed peptides do not bind to TRF1TRFH
L115R

 or 

TRF1TRFH
L120R

.  Mutation of Leu
115

 or Leu
120

 to arginine abrogates peptide–protein complex 

formation.  
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between the IC50 values, obtained from in vitro ubiquitination experiments in which multiple 

proteins are present, and the KD values, with only the target protein and inhibitor peptide present, 

suggest that nonspecific and competing interactions are taking place with additional protein 

components.  It is important to note that short peptides can adopt a number of conformations; 

this differs considerably from the behavior of typical globular proteins.  The difficulty in 

predicting and controlling such conformations poses additional challenges in peptide inhibitor 

design. 

To elucidate the mechanism of binding, we examined whether mutating residues located 

at the interface of TRF1TRFH could weaken or disrupt the peptide–TRF1TRFH interactions.  The 

crystal structure determined by Zeng et al. (Zeng et al. 2010) shows that Leu
115

 and Leu
120

 of 

TRF1TRFH, located at the interface, both directly interact with the αD helix of Fbx4.  In fact, these 

point mutations have been shown to disrupt the interaction of TRF1TRFH with Fbx4G in both 

glutathione-S-transferase (GST) pull-down and yeast two-hybrid assays (Zeng et al. 2010).  

Therefore, we speculated that substituting these residues with positively charged bulkier arginine 

residues through site-directed mutagenesis would abrogate binding activity between the peptide 

inhibitor and TRF1TRFH.  The TRF1TRFH mutants L115R and L120R were expressed and purified, 

and similar fluorescence-polarization assays were carried out.  As speculated, the fluorescence-

polarization studies revealed that the mutations impair the interaction between TRF1TRFH and the 

peptides (Figure 2.7).  The combined site-directed mutagenesis and peptide binding experiments 

suggest that certain hydrophobic interactions between the peptides and TRF1 are necessary for 

binding.  The results of our assays also suggest that peptide–TRF1TRFH binding occurs in a non-

promiscuous manner, and that the inhibitors act through a specific mechanism, in good 

agreement with the computational model.  
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Figure 2.8: CD Spectroscopy of wild-type and mutant TRF1TRFH proteins. Circular 

dichroism spectra demonstrate the helicity of each protein.  
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2.3.4 Inhibitors do not disrupt p27 ubiquitination  

The specificity of the designed peptides was further evaluated by assessing their effects 

on p27 ubiquitination.  A recombinant assay system containing ubiquitin, E1, E2 (hCdc34), Cks1, 

p27 phosphorylated by cyclin E-Cdk2, and the SCF
Skp2

 complex was used.  The SCF complex of 

this system is equivalent to SCF
Fbx4

 except for the fact that Fbx4 is switched out for Skp2, which 

plays the critical role of specifically recognizing its substrate p27.  Skp2 and Fbx4, which both 

belong to the F-box family, share very limited homology (Cenciarelli et al. 1999).  Our in vitro 

ubiquitination assays revealed that the computationally enhanced peptide inhibitor has no effect 

on the ubiquitination of p27 (Figure 2.9).  

 

Figure 2.9:  A recombinant assay system was employed to evaluate the specificity of the 

rationally optimized peptide inhibitors. Input p27 was phosphorylated by cyclin E-Cdk2 and 

was either left untreated or treated with a ubiquitination cocktail containing ubiquitin, E1, E2 

(hCdc34), Cks1, and the SCF
Skp2

 complex.  The proteins were resolved via SDS-PAGE and p27 

was detected by phosphorimaging analysis.  
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2.4 Discussion 

Taken together, the biochemical and biophysical data demonstrate that the 

computationally designed peptide inhibitors specifically disrupt the TRF1TRFH–Fbx4G interaction. 

The fact that Fbx4 recognizes both TRF1 and cyclin D1 makes TRF1 a slightly less than ideal 

target from a clinical standpoint.  Both substrates are involved in the regulation of cell growth 

and proliferation.  However, ubiquitination of cyclin D1 requires the presence of the adaptor αB-

crystallin and phosphorylation at Thr
286

 (Lin et al. 2006).  Ubiquitination of TRF1, on the other 

hand, does not require an adaptor protein.  Neither is phosphorylation of TRF1 necessary for its 

association with Fbx4.  This implies that there could be some structural differences between the 

TRF–Fbx4 interaction and the Fbx4–αB-crystallin–cyclin D1 interaction.  In addition, studies 

have shown that TIN2 and Fbx4 have overlapping TRF1-binding interfaces (Zeng et al. 2010).  

This suggests that TIN2 might block TRF1 recognition by Fbx4, thereby preventing SCF
Fbx4

-

mediated ubiquitination and degradation.  Recently, it has been shown that telomerase-negative 

cancer cells are capable of maintaining their telomeres by a mechanism known as alternative 

lengthening of telomeres (ALT).  Evidence also suggests that TRF1 might have a role outside of 

telomere maintenance (Tsai 2009), and this could lead to further complications.  These factors 

are likely to influence the practicality of targeting TRF1 degradation from a clinical standpoint, 

but the efficacy of the approach remains to be determined, as it was for the case of the FDA-

approved proteasome inhibitor bortezomib (Richardson et al. 2003).  It is also important to note 

that F142, located in the TRFH domain of TRF1, serves as a docking site for the FxLxP-motif-

containing proteins TIN2, PINX1, ATM, BLM, and DNA-PKcs, but does not play a significant 

role in the binding interaction between TRF1TRFH and Fbx4, which lacks the FxLxP motif.  This 
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mechanistic difference in binding could potentially be exploited in enhancing inhibitor 

specificity. 

In summary, our studies have validated the feasibility of designing peptides that 

selectively disrupt E3 ligase–substrate interactions, in the absence of large binding pockets, by 

rationally targeting specific regions of the interface.  We have also demonstrated the applicability 

of our in silico Rosetta protocol in increasing peptide–protein affinities.  Such inhibitors have the 

potential to be used as drug precursors that can aid the mechanistic studies of disease-related 

protein–protein interactions.  

 

 

 

 

Peptide Sequence    IC50 [M](a) Kd [M](b) 

Wild-Type MPCFYLAHEL      205.9 ± 47.7           41.8 ± 2.2 

Design 1 MPIFWKFHRMSKMGTG        31.3 ± 10.9           23.3 ± 12.8 

Design 2 MPIAWKFHRMSKMGTG      270.6 ± 28.7           47.8 ± 1.8 

Design 3 MPIFWKAHRMSKMGTG        95.8 ± 6.6           17.3 ± 4.9 

Control 1 SMTWRGKPAHMIFGKM   > 550      > 250 

Control 2 KKMDVCGGLSD > 4000 > 10 000 

 

 

 

Table 2.2:  Experimental characterization of peptides.  (A) IC50 values were determined from 

the in vitro ubiquitination assays.  (B) Peptide–TRF1TRFH complex KD values were determined 

using fluorescence polarization.  Data are expressed as mean + standard deviation.  Experiments 

were performed in triplicates.   
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CHAPTER 3 

KINETIC ANALYSIS OF PARKIN PHOSPHORYLATION BY PINK1 

 

3.1 Introduction 

3.1.1 Mitochondrial quality control and Parkinson’s disease 

Parkinsonism is a common degenerative disorder of the central nervous system that is 

characterized by progressive motor dysfunction.  The disease can either be sporadic or familial.  

Symptoms of Parkinson’s disease include muscle stiffness, tremor at rest, slowness of movement, 

postural instability, poor balance, and eventual muscle immobility (Jankovic 2008; Fox et al. 

2011).  Parkinson’s disease can also give rise to non-motor symptoms such as cognitive 

impairments, sensory deficits, and difficulty sleeping (Fox et al. 2011; Jankovic 2008).   

A growing body of evidence indicates that mitochondrial dysfunction and oxidative stress 

are involved in the development of Parkinson’s disease.  Research using animal models suggests 

that the physical symptoms of Parkinson’s disease may result from a decline in dopamine levels 

in the brain (Greenamyre and Hastings 2004).  Damaged mitochondria can negatively influence 

dopamine producing neurons, causing a decline in dopamine levels (Schapira et al. 1990; Keeney 

et al. 2006).  In fact, several mitochondrial mutations have been linked to Parkinson’s disease 

(Bonifati et al. 2003; Kitada et al. 1998; Valente et al. 2004).   

Mitochondrial dysfunction can be either acquired or hereditary.  For instance, 

mitochondrial mutations can result from exposure to environmental toxins, infectious agents, or 

drugs.  Mitochondrial mutations can also be inherited maternally.  To add complexity, genetic 

components upstream of the mitochondria can also interfere with the molecular mechanisms that 

regulate its function. 
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Although there is no cure for Parkinson’s disease, clinical treatments focused on 

improving mitochondrial function are showing signs of promise.  For instance, compounds that 

mimic dopamine have been used to treat Parkinson’s disease patients (Rilstone et al. 2013).  

Levodopa (L-3,4-dihydroxyphenylalanine), also known as L-DOPA, is a compound that naturally 

occurs in the human body.  L-DOPA crosses the blood–brain barrier to function as a precursor to 

dopamine, noradrenaline, and epinephrine, and is the most commonly prescribed drug for 

treating Parkinson's disease.  This treatment is usually combined with inhibitors of aromatic-L-

amino-acid decarboxylase (DCC), monoamine oxidase B (MAO-B), or catechol-o-methyl 

transferase (COMT) – drugs that inhibit the breakdown of L-DOPA.  In the case of patients that 

do not respond to L-DOPA, dopamine agonists such as pramipexole, ropinirole, bromocriptine, 

and rotigotine are routinely prescribed.  Coenzyme Q10, known to boost mitochondrial function, 

has also shown promise (Shults et al. 2002).  However, such treatments do not target the root 

cause of the disease, but only alleviate symptoms to increase patient life quality.  Therefore, it is 

worthwhile to explore signaling pathways involved in mitochondrial regulation.   

 

3.1.2 Clinical importance of PINK1 and Parkin 

 Over the last several decades, approximately 20 genes associated with Parkinson’s 

disease have been discovered (Puschmann 2013).  Among them is the PTEN (phosphatase and 

tensin homologue) induced kinase 1 (PINK1) gene, where mutations in the loci are known 

causes of early-onset Parkinson’s disease that is characterized by its recessive hereditary nature 

(Valente et al. 2004).  PINK1 is a 581 amino acid protein that contains an atypical N-terminal 

mitochondrial localization signal.  PINK1 is homologous to serine/threonine kinases.   

http://en.wikipedia.org/wiki/Blood%E2%80%93brain_barrier
http://en.wikipedia.org/wiki/Epinephrine
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Overexpression and loss of function studies implicate the PINK1 protein in apoptosis, 

aberrant mitochondrial fission/fusion dynamics, dopamine release problems, and motor defects 

(Morais et al. 2009).  The protein has also been implied in mitochondrial quality control and 

electron transport chain function (Dodson and Guo 2007; Schapira, 2008).  These findings 

implicate that mitochondrial integrity may be a factor in PINK1 induced Parkinson’s disease.   

Mutations in the gene PARK2, which encodes the ubiquitin E3 ligase Parkin, are also 

linked to early-onset autosomal recessive Parkinson’s disease (Kitada et al. 1998).  Disease-

relevant mutation sites span the entire length of the protein, which indicates the physiological 

importance of all Parkin domains.  In humans, PINK1 and Parkin mutations both give rise to 

symptoms such as early development of L-DOPA induced dyskinesia and dystonia (Khan et al. 

2003; Lucking et al. 2000).  In Drosophila melanogaster, PINK1 knockout flies and Parkin 

knockout flies both exhibit mitochondrial and neuronal defects - ultimately resulting in motor 

degeneration (Clark et al. 2006; Park et al. 2006; Yang et al 2006).  These findings agree with 

previous studies that have implicated both PINK1 and Parkin in a common signaling pathway.   

Moreover, studies indicate that Parkin is regulated by PINK1 from upstream.  

Overexpression of Parkin can rescue PINK1 knockout flies.  Overexpression of PINK1, on the 

other hand, cannot rescue Parkin knockout flies.  These studies suggest that Parkin functions 

downstream of PINK1 (Clark et al. 2006; Park et al. 2006; Yang et al 2006).  Cellular studies 

show that PINK1 is required for recruiting Parkin to the mitochondria upon depolarization of the 

mitochondrial membrane potential (Geisler et al. 2010; Matsuda et al. 2010; Narendra et al. 2010; 

Vives-Bauza et al. 2010).  Recently, it has been shown that PINK1 can phosphorylate Parkin at 

Ser
65

 (Kazlauskaite et al 2014; Kazlauskaite 2014).   

 



 

 

 

4
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Figure 3.1:  Parkin is phosphorylated by PINK1 at Ser
65

.  Pink1 activates Parkin E3 ligase activity by phosphorylating Ser
65

.  Ser
65

 

(green) is located in the UBL domain (red) of Parkin.   
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3.1.3 PINK1-Parkin pathway promotes mitophagy 

 Mitophagy involves the engulfment of mitochondria by autophagosomes followed by 

degradation via lysosomes.  In 1998, Lemasters et al. found that mitophagy occurs upon loss of 

mitochondrial membrane potential (Lemasters et al. 1998), suggesting mitophagy as a means of 

selective removal of defective mitochondria.   

Studies indicate that PINK1 and Parkin play a pivotal role in selective autophagy 

(Geisler et al. 2010; Matsuda et al. 2010; Narendra et al. 2010; Vives-Bauzaet et al. 2010).  

Under steady-state conditions, PINK1 undergoes rapid constitutive degradation (Matsuda et al. 

2010).  When mitochondrial depolarization occurs, PINK1 stabilizes and accumulates on the 

outer membrane of the mitochondria (Matsuda et al. 2010).  The accumulated PINK1 then 

recruits Parkin from the cytoplasm to the mitochondria, which allows Parkin to ubiquitinate 

proteins located in the outer mitochondrial membrane (Chan et al. 2011; Geisler et al. 2010; 

Matsuda et al. 2010; Poole et al. 2010; Wang et al. 2011; Ziviani et al. 2010).  These series of 

events may ultimately lead to autophagic degradation of the mitochondria (Matsuda et al. 2010).   

In fact, Parkin has been observed to selectively accumulate on damaged mitochondria 

(Narendra et al. 2008).  It has been shown that overexpression of Parkin results in complete 

removal of mitochondria in cells, by mitophagy, upon mitochondrial depolarization (Narendra et 

al. 2008).  Furthermore, Parkin mutant flies were shown to have a decreased rate of 

mitochondrial protein turnover, as is seen with drug-induced autophagy (Vincow et al. 2013).   

In the case of PINK1, the protein is required for Parkin-mediated mitophagy in cells 

treated with mitochondrial depolarizing agents (Narendra et al. 2011; Vives-Bauza et al. 2010).  

These findings further corroborate the relationship between mitophagy, PINK1, and Parkin.  

Despite confirming that PINK1 phosphorylates Parkin at Ser
65

 (Kondapalli et al 2012; 
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Kazlauskaite et al. 2014), the catalytic efficiency of this process in vitro is not known.  In this 

section, the in vitro phosphorylation of Parkin by PINK1 is investigated.   

 

3.2 Materials and Methods 

Protein expression and purification:  Tc-PINK1 fused to an N-terminal maltoase-binding 

protein (MBP) was expressed in E. coli.  For protein expression, E. coli cells were grown to an 

OD600 of 0.8 in Luria Broth at 37°C.  After reducing the temperature to 16°C, protein expression 

was induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG; 0.1 mM).  Cells were 

harvested by centrifugation (4000 g) after 16 hours of induction.   

For purification of Tc-PINK1, the harvested cells were re-suspended in lysis buffer 

containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM DTT, 5% (v/v) glycerol, 1% (v/v) 

Triton X-100, and 0.1 mM PMSF.  Cells were then lysed via sonication.  The lysate was then 

clarified by centrifugation at 12 000 g for 30 min.  The resulting supernatant was incubated with 

amylose resin (NEB) for 30 min.  Afterwards, the resin was washed 3 times with a wash buffer 

containing 50 mM Tris-HCl (pH 7.5), 1 M NaCl, 1 mM DTT, 5% (v/v) glycerol, and 1% (v/v) 

Triton X-100.  MBP-TcPINK1 was eluted using an elution buffer containing 40 mM maltose, 50 

mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM DTT. 

 Wild-type rParkin fused to an N-terminal GST-tag was expressed in BL21 (DE3) E. coli 

cells.  The transformed E. coli cells were grown in Luria Broth supplemented with 200 µM zinc 

chloride at 37°C until reaching an OD600 of 0.6.  Protein expression was induced by addition of a 

final concentration of 50 µM IPTG, and the cells were incubated for an additional 16 hours at 

16°C before harvesting.  The cells were harvested by low-speed centrifugation (4000 g, for 20 

min), re-suspended in NETN buffer (Tris base, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5 % 
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NP40, 1 mM DTT), and lysed through sonication.  The cell debris was removed by 

centrifugation (15,000 g, for 30 min).  The resulting supernatant was incubated with glutathione-

Sepharose beads (Qiagen) for 30 min, before washing 3 times with NETN buffer.  Wild-type 

rParkin was eluted off the beads using a buffer containing 20 mM glutathione, 25 mM Tris-HCl 

(pH 8.0), 100 mM NaCl, 0.5 mM DTT.  Fractions containing pure protein, as determined by 

SDS-PAGE and Coomassie Brilliant Blue staining, were combined, dialyzed into a buffer 

containing 25 mM Tris pH, 8.0 and 100 mM NaCl, and concentrated using Vivaspin 20 

concentrators (Sartorius Stedim Biotech).  Proteins were stored in 20% glycerol at -80°C.   

Kinase assay:  For the in vitro kinase assays, wild-type rParkin was incubated with Tc-PINK1 in 

a buffer composed of Tris (50 mM, pH 8.0), MgCl2 (10 mM), ATP, and [γ-
32

P]-ATP.  Reactions 

were carried out in a volume of 10 µL at 30°C, and stopped by addition of 4× Laemmli sample 

buffer containing 100 mM EDTA, before heating at 95°C for 7 min.  The proteins were separated 

via 12% SDS-PAGE, and the resulting gels were dried prior to phosphorimaging analysis.   

Kinetic studies:  Tc-PINK1 concentration was varied from 0.5 nM to 500 nM to confirm that 

reaction rates scaled linearly.  40 nM PINK1 was used to determine kcat and KM for ATP.  Time 

course experiments were performed to determine the linear range of the reaction.  Time points of 

0 min, 5 min, and 10 min were selected to yield linear initial kinase reaction rates.  The 

concentration of ATP was varied from 12.5 μM to 3.2 mM at a constant, saturating concentration 

of 5 μM wild-type rParkin to determine the steady state rate constants.  The velocity at each 

concentration was determined using (linear) least-squares methods, and the reactions were 

carried out in triplicates.  The velocity data were fit using nonlinear least squares methods to the 

Michaelis-Menten equation (V = Vmax[S]/(KM+[S])), where V is the measured reaction velocity, 

[S] is the ATP concentration, and KM is the Michaelis constant.   
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To determine kcat and KM for rParkin, 40 nM PINK1 was used.  Once again, time course 

experiments were performed to determine the linear range.  Time points of 0 min, 5 min, and 10 

min were selected to yield linear initial rates.  The concentration of wild-type rParkin was varied 

from 12.5 nM to 3.2 μM at a constant, saturating concentration of 3 mM ATP to determine 

steady state rate constants kcat and KM.  Once again, the velocity at each concentration was 

determined using (linear) least-squares methods, and the reactions were performed in triplicates.  

Data were fit to the Michaelis-Menten equation (V = Vmax[S]/(KM+[S])), where V is the measured 

reaction velocity, KM is the Michaelis constant, and [S] is the wild-type rParkin concentration.  

Data sets were fit using Sigma Plot 5.0 software (SPSS Inc.).  The amounts of phosphorylated 

wild-type rParkin were determined by densitometry using ImageJ.  Calibration curves were 

obtained to allow quantification.  Calibration curves were prepared by spotting known amounts 

of ATP to filter paper before subjecting it to phosphorimaging analysis.   

 

3.3 Results 

3.3.1 PINK1 phosphorylates Parkin in vitro 

The phosphorylation reaction of human Parkin by human PINK1 has not been 

reconstituted in vitro up to this date.  We suspect that the challenge is due to a high degree of 

protein mis-folding and/or overall protein instability (Beilina et al. 2005).  However, it has been 

determined that TcPINK1 has robust phosphorylation activity against full length wild-type GST-

rParkin in vitro.  When Ser
65

 of Parkin is mutated into an alanine residue, TcPINK1 can no 

longer phosphorylate Parkin.  The kinase-inactive TcPINK1 exhibits no phosphorylation activity 

(Conggang Zhang; Woodroof et al. 2011; Kondapalli et al. 2014). 
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Figure 3.2:  Time course experiment.  5 M wild-type rParkin was phosphorylated in the 

presence of 25 M ATP, MgCl2, and 40 nM TcPINK1 for the indicated times in a reaction 

volume of 10 L at 30°C.  pmol P-rParkin WT was plotted as a function of time. 
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Figure 3.3:  Michaelis-Menten kinetics experiment to determine kcat and KM for substrate ATP.  ATP concentrations were varied 

between 12.5 and 1600 M.  Wild-type rParkin concentration was kept constant at 5 M.  These reactions were carried out at 30°C. 
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Figure 3.4:  Data analysis.  Data sets were fitted using Sigma Plot 5.0 software.  Plots were generated to determine initial rates.     
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Figure 3.5:  TcPINK1 phosphorylates wild-type rParkin using ATP as a substrate.  The results of experiments (n=3) shown in 

Figure 3.3 were quantified to determine the kinetic parameters of phosphorylation of wild-type rParkin by TcPINK1.  Error bars 

represent the standard deviation of the mean.  Data sets were fit to the Michaelis-Menten equation with Sigma Plot 5.0 software.   
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3.3.2 Kinetic studies of Parkin phosphorylation by PINK1 

Time course experiments were first carried out to establish initial velocity conditions.  

Figure 3.2 shows that TcPINK1 phosphorylates wild-type GST-rParkin in a time dependent 

manner.  In addition, the initial segment (0 to 10 min) demonstrates linearity at saturating 

conditions of wild-type GST-rParkin (5 M).   

Steady state kinetics of TcPINK1 as a function of ATP is shown in Figure 3.5.  

Parameters derived from these experiments are summarized in Table 3.1.  Kinetic analysis was 

conducted by plotting the initial velocities of phosphorylated wild-type GST-rParkin formation 

against ATP concentrations ranging from 12.5 M to 1600 M.  The enzyme exhibited a 

hyperbolic response to ATP.  kcat, or turnover number, is the number of substrate molecules each 

enzyme active site converts to product per time unit (second).  The kcat of TcPINK1 with regard 

to ATP was 0.315 ± 0.006 s
-1

.  KM is defined as the substrate concentration at which the reaction 

reaches half-maximal velocity.  The KM was determined to be 35.0 ± 3.2 M.  kcat/KM, a ratio 

often referred to as the specificity constant, describes how efficiently an enzyme converts its 

substrate to product.  kcat/KM of TcPINK1 with regard to ATP was determined to be 9.00 x 10
3
 

M
-1

s
-1

.   

A time course experiment using saturating concentrations ATP (3000 M) was 

performed as well (Figure 3.6).  This experiment also demonstrates that TcPINK1 

phosphorylates wild-type GST-rParkin in a time dependent manner at the concentration range 

examined.  Under saturating concentrations of ATP, phosphorylated wild-type GST-rParkin 

levels also increases linearly over the time scale of 0 to 10 min.   

Steady state kinetics of TcPINK1 as a function of wild-type GST-rParkin is shown in 

Figure 3.9.  The parameters derived from these experiments are summarized in Table 3.1 as well.   
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Figure 3.6:  Time course experiment.  800 nM wild-type rParkin was phosphorylated in the 

presence of 3000 M ATP, MgCl2, and 40 nM TcPINK1 for the indicated times in a reaction 

volume of 10 L at 30°C.  pmol P-rParkin WT was plotted as a function of time.
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Figure 3.7:  Michaelis-Menten kinetics experiment to determine kcat and KM for substrate wild-type rParkin.  Wild-type rParkin 

concentrations were varied from 50 nM to 3200 nM.  ATP concentration was kept constant at 3000 M.  These reactions were carried 

out at 30°C. 
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Figure 3.8:  Data analysis.  Data sets were fitted using Sigma Plot 5.0 software.  Plots were generated to determine initial rates.     
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Figure 3.9:  TcPINK1 phosphorylates wild-type rParkin.  The results from Figure 3.7 were quantified to determine the kinetic 

parameters of phosphorylation of wild-type rParkin by TcPINK1.  Error bars represent the standard deviation of the mean.  Triplicate 

data sets were averaged and fitted to the Michaelis-Menten equation using Sigma Plot 5.0 software.   
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Kinetic analysis was conducted by plotting initial velocities of phosphorylated wild-type GST-

rParkin formation against wild-type GST-rParkin concentrations ranging from 50 nM to 3200 

nM.  Rates increase hyperbolically with respect to concentration increases of wild-type rParkin.  

The kcat of TcPINK1 determined by varying wild-type GST-rParkin concentrations is 1.02 ± 0.02 

s
-1

.  The KM of TcPINK1 with regard to wild-type GST-rParkin is 0.46 ± 0.03 M.  kcat/KM, or 

the specificity constant, is 2.25 x 10
6
 M

-1
s

-1
. 

 

3.4 Discussion 

  We determined the kinetics parameters of TcPINK1.  The affinity (KM) of TcPINK1 for 

its substrate ATP was measured to be 35.0 ± 3.2 M in vitro.  Hertz et al. has shown that the KM 

value of human PINK1 for ATP is 74.6 ± 13.2 μM (Hertz et al. 2013).  As mentioned previously, 

human PINK1 is highly unstable.  To optimize the expression of human PINK1, Hertz et al. 

purified a truncated C-terminal FLAG3 tagged version from baculovirus infected SF21 insect 

cells.  The protein was co-expressed with TRAP1 to enhance its stability (Hertz et al. 2013).  

TcPINK, on the other hand, was highly stable and did not require expression optimization 

protocols.   

  Only a two-fold difference can be seen between the KM values of the two species specific 

but highly conserved enzymes.  When a substrate is sufficiently abundant, discriminating it 

against promiscuous substrates becomes less of an issue.  In cells, ATP exists at high 

concentrations (> 100 M).  In fact, ATP is one of the most abundant metabolites in the cell.  

The kinase TcPINK1 exhibits a KM value that is in the micromolar range, which indicates that 

ATP is a relatively weak binder to TcPINK.  This finding is consistent with the aforementioned 
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notion that TcPINK1 can afford to have a high KM for its substrate ATP, due to the high cellular 

concentrations of ATP.   

  The KM of TcPINK1 for the substrate wild-type GST-rParkin is 0.46 ± 0.03 M.  The KM 

value of TcPINK1 for wild-type rParkin indicates that TcPINK1 has a higher affinity for wild-

type GST-rParkin over ATP.  PINK1’s affinity for ATP is weaker than its affinity for GST- 

rParkin by over 70-fold, which is not surprising when considering the fact that wild-type rParkin 

exists in cells at a much lower concentration.   

  The kcat value for wild-type rParkin is ~3-fold larger than the kcat value for ATP at 30°C.  

This indicates that in TcPINK1, the active site that interacts with wild-type rParkin is 3 times 

more processive than the active site that interacts with ATP.  The kcat/KM values for ATP (9.00 x 

10
3
 M

-1
s

-1
) and wild-type rParkin (2.25 x 10

6
 M

-1
s

-1
) are both smaller than the diffusion-

controlled limit of 10
8
 to 10

9
.  In summary, the kinetics data supports that TcPINK1 is an 

effective enzyme that selectively phosphorylates wild-type rParkin.  

 A number of diseases result from inactive kinases.  Both the inactivation of death-

associated protein kinase (DAPK) and LKB1 tumor-suppressor kinase cause cancer (Gao et al. 

2011; Kissil et al. 1997).  Diabetes results from desensitization of the insulin receptor kinase 

(Kulkarni et al. 1999).  However, there are no clinically approved drugs that enhance kinase 

activity up to this date.  Recently, therapeutic approaches that increase the activity of the PINK1 

kinase have been considered.  Kinetin, a blood-brain barrier crossing precursor to the ATP 

analog kinetin triphosphate, has been shown to restore the catalytic activity of mutant PINK1 to 

near-wild-type levels in vitro and in vivo (Hertz et al. 2013), in addition to enhancing the activity 

of wild-type PINK1.  This raises the possibility that kinetin may be used to treat Parkinson’s 

patients who harbor PINK1 mutations.  In fact, increasing PINK1 activity above endogenous
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 kcat, s
-1

 KM, M kcat/KM, M
-1

s
-1

 

ATP 0.315 ± 0.006 35.0 ± 3.2 9.00 x 10
3
 

rParkin WT 1.02 ± 0.02 0.46 ± 0.03 2.25 x 10
6
 

 

 

Table 3.1:  Kinetic parameters for TcPINK1.  kcat and KM values were determined from in vitro kinase assays.  All experiments 

were performed in triplicates.    
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levels is known to protect cells against apoptotic stressors (Klinkenberg et al. 2010; Petit et al. 

2005; Pridgeon et al. 2007).  Therefore, there is also the possibility that enhancing PINK1 

activity can benefit sporadic Parkinson’s disease patients.    

  To our knowledge, we have determined the kinetics parameters of full-length wild-type 

PINK1 for the first time.  The significance of this study lies in the fact that such parameters can 

serve as a valuable reference point when developing small molecule or peptide therapeutics 

using either in vivo or in vitro methods.   
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CHAPTER 4 

PHOSPHORYLATION CAUSES ALLOSTERIC ACTIVATION OF PARKIN 

 

4.1 Introduction 

4.1.1 Role of Parkin in Parkinson’s disease 

Parkinson’s disease is the second most common neurodegenerative disorder, behind only 

Alzheimer’s disease.  As mentioned in the previous section, the cause of Parkinson’s disease can 

be either sporadic or genetic.  The term “familial Parkinson’s disease” is used to discern genetic 

Parkinson’s disease from idiopathic Parkinson’s disease.  Autosomal recessive juvenile onset 

Parkinsonism (AR-JP) is one of the most common forms of hereditary Parkinson’s disease that is 

characterized by an early-onset and slow progression.  The clinical features of AR-JP are 

indistinguishable from the late-onset idiopathic form of Parkinson’s disease.  Mutations in 

several genes account for AR-JP.  Among these genes, the E3 ubiquitin ligase Parkin is the most 

commonly mutated (Hardy 2010; Kitada et al. 1998; Lucking et al. 1998; Martin et al. 2011; 

Quadri et al. 2013).  There are currently an excess of 100 reported clinically relevant mutations 

in the PARK2 gene (Bekris et al. 2010).  Deletion mutations, rearrangements, duplications, 

missense and nonsense point mutations are commonly detected in the PARK2 gene of AR-JP 

patients.  These pathogenic mutations span the entire length of the PARK2 gene.  In fact, 

mutations in Parkin account for fifty percent of all AR-JP cases.  In recent years, heterozygous 

Parkin mutations have also been discovered in patients with late-onset Parkinson’s disease, 

indicating that Parkin may also play a role in the pathogenesis of sporadic Parkinsonism 

(Oliveira et al. 2003). 
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4.1.2 Parkin is a RING-between-RING E3 ligase 

Studies of PARK2 gene mutations found in AR-JP patients have revealed that the 

molecular basis of AR-JP is the loss of Parkin E3 ligase activity (Chung et al. 2001; Imai et al. 

2001; Shimura et al. 2001).  Parkin is a 52-kDa protein that consists of 465 amino acids and 5 

domains (Trempe et al. 2013).  Parkin is classified as a member of the RING-between-RING 

family (RBR) of E3 ubiquitin ligases, where the transfer of ubiquitin from E2 to substrate 

involves a thioester intermediate at the E3 active-site cysteine (Imai et al., 2000; Shimura et al., 

2000; Zhang et al., 2000).  Parkin is capable of mono-ubiquitination, multiple mono-

ubiquitination, and polyubiquitination (Doss-Pepe et al. 2005; Hample et al. 2006; Lim et al. 

2005; Matsuda et al. 2006; Moore et al. 2008). 

The 2.8 Å low resolution crystal structure of full-length rat Parkin determined by Trempe 

et al. reveals that the E2 binding site is located on the RING1 domain of Parkin (Trempe et al. 

2013).  The N-terminal ubiquitin-like (UBL) domain, which shares 30% sequence identity with 

human ubiquitin, is not directly involved in interacting with E2, but has been shown to be 

necessary for ligase activity in vivo (Henn et al. 2005; Sato et al. 2006; Shimura et al. 2000; 

Shimura et al. 2005).  However, the UBL domain is not necessary for the ligase activity in vitro 

(Matsuda et al. 2006).  The UBL domain also mediates Parkin auto-inhibition (Chaugule et al. 

2011).  Parkin also contains an in between domain that separates the RING1 and RING2 

domains (IBR) and a zinc co-ordinating motif termed RING0 (Kitada et al. 1998).   

As mentioned above, it has been shown that the UBL domain of wild-type Parkin acts as 

an auto-inhibitory domain by binding to C-terminus of the protein (Chaugule et al. 2011).  Due 

to the fact that Ser
65

 is located in the UBL domain of Parkin, our laboratory and other in the 
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Figure 4.1:  Domain organization of Parkin.  The UBL domain interacts with the 26S proteasome.  The RING-box recruits (E2) 

ubiquitin conjugating enzymes (Trempe et al. 2013).   
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field have hypothesized that phosphorylation of Ser
65

 will abolish auto-inhibition, thereby 

activating the E3 ligase (Kazlauskaite et al. 2014).  

Parkin is susceptible to auto-ubiquitination.  There are three classes of Parkin mutations 

(Trempe et al. 2013).  The first class of mutations disrupts protein folding or coordination of zinc.  

The second class causes changes in the catalytic site.  The third class of mutations changes 

protein contacts.  As mentioned previously, wild-type Parkin is auto-inhibited, and therefore, has 

indiscernible auto-ubiquitiation activity.  However, results by Trempe et al. show that 

introducing point mutations such as W403A, C457S, and F463A activate Parkin’s ability to self- 

ubiquitinate.  N-terminal tags also activate Parkin E3 ubiquitin ligase activity by disrupting its 

auto-inhibited conformation (Burchell et al. 2012; Chaugule et al. 2011).  Lastly, our laboratory 

and others in the field have demonstrated that Parkin can trans-ubiquitinate substrates such as 

Bcl2, Mcl1, and Miro1 in vitro (Kazlauskaite et al. 2014).   

 

4.1.3 Interaction partners of Parkin 

Parkin interacts with a wide variety of proteins.  Parkin interacts with the ubiquitin 

conjugating enzymes Ubc4, Ubc7, UbcH7, UbcH8, and the UbcH13/Uev1a (Olzmann et al. 2007; 

Shimura et al. 2000; Zhang et al. 2000).  Parkin interacts with Rpn10 - a subunit of the 26S 

proteosome complex (Sakata et al. 2003).  Parkin has been reported to interact with the 20S 

proteasome (Dachsel et al. 2005).  Parkin also associates with synphilin1 – an -synuclein 

binding protein.  This interaction plays a role in cytosolic inclusion body formation (Chung et al. 

2001; Lim 2005).  CASK/LIN-2 plays a role in localizing Parkin at synapses (Fallon et al. 2002).  

Research by Staropoli et al. suggests that Parkin may function as part of a SCF (Skp1-Cullin-F-

box protein) - like complex involving cullin1 and Fbox/WD (Staropoli et al. 2003).  Parkin 
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association with the mutated DJ-1 protein or BAG5, on the other hand, results in inhibition of 

Parkin ubiquitin E3 ligase activity (Kalia et al. 2004; Moore et al. 2005; Sato et al. 2006). 

 Various target substrates of Parkin have been identified in vivo up to this date.  For 

instance, both the endothelin receptor type B-like G protein coupled receptor (GPR37) and the 

p38 subunit of the aminoacyl-tRNA synthetase complex are substrates of Parkin (Corti et al. 

2003; Imai et al. 2001; Ko et al. 2005).  CDcrel-1, a nucleotide binding protein involved in 

regulating the cytoskeleton, is a substrate of Parkin as well (Zhang et al. 2000).  Cyclin E 

(Staropoli et al., 2003), RanBP2 (Um et al. 2006), Eps15 (Fallon et al. 2006), SEPT5_v2 (Choi et 

al. 2003), Synaptotagmin XI (Huynh et al. 2003),and and tubulin (Ren et al. 2003), and 

far upstream sequence element-binding protein 1 (Ko et al. 2006) are also substrates of Parkin.    

 

4.1.4 Parkin, Bcl2, mitophagy, and cellular autophagy 

Cytosolic cytochrome c is necessary for the initiation of apoptosis.  Bcl2 is known as an 

anti-apoptotic protein, primarily located on the outer mitochondrial membrane, which prevents 

the efflux of cytochrome c from the mitochondrial intermembrane space.  In fact, over 

expression of Bcl2 prevents cells from going into apoptosis (Yang et al. 1997).  The primary 

function of Parkin, on the other hand, is that of an E3 ubiquitin ligase.  Parkin is found in the 

cytosol (Shimura et al. 1999), but also located in the mitochondria (Darios et al. 2003).  Parkin is 

predominantly cytosolic under steady state conditions.  In proliferating cells, Parkin plays a role 

in the biogenesis of the mitochondria (Kuroda et al. 2006).  As described in previous sections, 

Parkin promotes turnover of damaged mitochondria (Geisler et al. 2010; Jin and Youle 2012; 

Narenda et al. 2008; Poole et al. 2008).  It has been shown that treating Parkin over-expressing 

cells with the mitochondrial uncoupler CCCP (carbonyl cyanide m-chlorophenylhydrazone) 
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results in rapid localization of Parkin to the mitochondria, followed by significant mitochondrial 

loss.  Autophagic proteins are necessary in this process.   

Apart from mitochondria specific autophagy (mitophagy), it has been shown that Parkin 

can also inhibit cellular autophagy by mono-ubiquitinating Bcl2 (Chen et al. 2010).  Co-

immunoprecipitation studies show that Parkin directly interacts with the C-terminal end of Bcl2.  

Interestingly, Chen et al. demonstrate that Bcl2 is stabilized upon mono-ubiquitination, which 

leads to an increase in Bcl2 levels.  A subsequent increase in binding between Beclin1 and Bcl2 

is observed when Bcl2 levels increase.  Beclin1 is a known inducer of autophagy (Kang et al. 

2011).  Under normal conditions, Bcl2 inhibits autophagy by binding to Beclin1 (Pattingre et al. 

2005).  Upon cellular stress, Bcl2 dissociates from Beclin1, Vps34 is activated, and autophagy is 

initiated (Pattingre et al. 2005).  The BH3 domain in Beclin1 binds to a hydrophobic groove in 

Bcl2 proteins (Maiuri 2007; Oberstein 2007).   

The Beclin1-Bcl2 interaction has been shown to be Parkin dependent, where 

overexpression of Parkin increases Bcl2 binding to Beclin1 (Chen et al. 2000).  However, when 

E3 ligase activity-defective mutants are overexpressed, increases in Bcl2 binding to Beclin1 are 

not seen.  In addition, several E3 ligase activity-defective disease-linked mutants failed to inhibit 

autophagy (Chen et al. 2010).  To summarize, Parkin induces mitophagy while inhibiting 

autophagy.  The mechanism behind these findings will most likely depend on Parkin localization.  

As mentioned previously, damaged mitochondria will target Parkin to the mitochondria.  Global 

cellular stress, on the other hand, may cause Parkin to remain in the cytosol - preventing 

autophagy (Chen et al. 2010; Decuypere et al. 2012).   

Protein aggregates are cleared via autophagy, and alterations in the lysosomal pathway 

are oftentimes suggested in neuro-degenerating diseases such as Parkinson’s.  It has been shown
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that selective deletion of autophagy genes in the central nervous system leads to neuronal 

damage (Hara et al. 2006; Komatsu et al. 2006).  In fact, autophagosomes are known to 

accumulate in the brain tissues of Parkinson’s disease patients (Williams et al. 2006).  Such 

studies provide a link between autophagy and Parkinson’s disease.  Interestingly, neuronal 

cultures from Parkin-knockout mice showed an increase in autophagy markers (Casarejos et al. 

2009).  Autophagy is induced in Parkin knockout cells, whereas Parkin overexpression represses 

autophagy (Chen et al. 2010).  Collectively, these results confirm that Parkin down-regulation 

induces autophagy.  The fact that Parkin induces mitophagy while inhibiting autophagy is ironic.  

Mitophagy may play a role in preventing the development of Parkinson’s disease by removing 

damaged mitochondria that can negatively affect dopamine neurons.  Autophagy, on the other 

hand, may contribute to pathogenic neuronal death – selective death of dopamine neurons is a 

known cause of Parkinson’s disease.  The full role Parkin plays in Parkinson’s disease remains a 

mystery, but the complete mechanism may very well be a delicate balancing act.  Further 

understanding of the Parkin - Bcl2 - Beclin1 regulation will prove to be crucial.   

 

4.2 Materials and Methods 

Expression and purification of proteins:  Point mutants in the UBL domain (W403A and 

C431S) were generated using Site Directed Mutagenesis (Stratagene).  E. coli strains BL21 (DE3) 

were transformed with plasmids containing genes for GST-E1, wild-type GST-Parkin, GST-

Parkin GST-W403A, and GST-Parkin W403A-C431S.  The cells were grown at 37⁰C in Luria 

Broth supplemented with 200 µM zinc chloride until reaching an OD600 of 0.8.  The cells were 

then induced with 50 μM IPTG at 16 ⁰C for 16 hours, harvested via centrifugation, and lysed by 

sonication.  The soluble fraction was separated from the non-soluble by centrifugation at 15 000
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g for 30 min.  The resulting supernatant was incubated with GST beads for 30 min at 4⁰C.  The 

beads then were washed with NETN buffer 3 times and eluted with 20 mM GSH.  The eluted 

proteins were dialyzed into a buffer containing 25mM Tris pH, 8.0 100mM NaCl, and 0.5 mM 

DTT. 

 All His6-tagged constructs were transformed into either E. coli BL21 (DE3) or E. 

coli BL21 (DE3) pLysS stains (Promega).  His6-ubiquitin, His6-Bcl2, and His6-ppERK2 (pLysS) 

were grown in Luria Broth at 37⁰C, and induced with 100 μM ITPG at OD600 for 16 hours at 

16⁰C.  Cells were then harvested via centrifugation.  Harvested cells were sonicated in a lysis 

buffer containing 50 mM Tris-HCl pH 8.0, 250 mM NaCl, 10 mM imidazole, and 1 mM DTT.  

Following sonication, the supernatant was clarified by centrifugation at 15 000 g.  The resulting 

supernatant was incubated with Ni-NTA beads (Qiagen).  Beads were then washed using a buffer 

containing 50 mM Tris-HCl pH 8.0, 1 M NaCl, 20 mM imidazole, and 1 mM DTT.  The protein 

was eluted using a buffer containing 50 mM Tris-HCl pH 8.0, 250 mM NaCl, 250 mM imidazole, 

and 1 mM DTT.   

For expression of His6-UbcH7, cells were grown in Luria Broth at 37⁰C to an OD600 of 

0.8 and induced with 100 μM ITPG for 16 hours at 16⁰C.  Cells were once again harvested via 

centrifugation (4000 g), and lysed by sonication.  His6-UbcH7 was initially purified using 

Nickel-affinity chromatography methods.  The resulting fractions containing His6-UbcH7 were 

pooled and further purified via ion exchange chromatography (Mono S).  After washing the 

column, the bound protein was eluted using a NaCl gradient from 0 to 1 M in (25 mM Tris-HCl 

pH 6.0, 1 mM DTT).  Once the proteins were purified to apparent homogeneity, they were flash 

frozen at −80°C in a buffer containing, 50 mM Tris pH 8, 200 mM NaCl, 1 mM DTT, and 10%
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glycerol.  To confirm the purity, all proteins were analyzed via SDS-PAGE followed by 

Coomassie blue staining.  

In vitro ubiquitination assays:  Bcl2 was labeled using [γ-
32

P]-ATP and pp-ERK2 as the kinase. 

The kinase reactions were incubated for 1 hour at 30°C.  The trans-ubiquitination reaction 

mixtures typically contained, in a final volume of 15 μL, phosphorylated Bcl2, 5 µM GST-E1 

ubiquitin-activating ligase, 5 µM His6-UbcH7 conjugating E2 ligase, 1 µM Parkin, and 25 µM 

ubiquitin.  The reactions were carried out in buffers containing 4 mM ATP, 10 mM MgCl2, 50 

mM Tris-HCl pH 8.0 at 37°C.  The auto-ubiquitination reaction mixtures typically contained, in 

a final volume of 15 μL, 5 µM GST-E1 ubiquitin-activating ligase, 5 µM His6-UbcH7 

conjugating E2 ligase, 1 µM Parkin, and 25 µM ubiquitin.  The reactions were terminated by 

addition of SDS sample buffer supplemented with 2 mM EDTA followed by boiling at 95°C for 

4 min.  The reaction mixtures were analyzed by separation through 12% SDS-PAGE and 

phosphorimaging.     

Single turnover UbcH7~Ub discharge assays:  The substrate was generated by charging 

UbcH7 with ubiquitin at 37°C for 2 hours in a reaction mixture containing 5 µM E1, 0.5 mM 

ATP, 5 µM ubiquitin, 0.2 mM MgCl2, and 50 mM Tris pH 8.0.  The reaction was stopped by 

adding 2 mM EDTA.  Single turnover discharge assays for Parkin variants were carried out in 

the presence of 50 mM Tris pH 8.0, 50 mM NaCl.  Reactions were stopped using a 6× loading 

buffer, and proteins were separated on 16% SDS-PAGE gels.  Proteins were then 

electrophoretically transferred to a nitrocellulose membrane.  The resulting membrane was 

blocked for 1 hour, followed by incubation with rabbit anti-UbcH7 antibody (1:5000 dilution) in 
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Table 4.1: List of Proteins Used in this Study.  

Protein Construct Strain Expression Purification 

ppERK2 
pET-His6-ppERK2 

(R4F) 
Homo sapiens E. coli 

Ni-NTA,  

Mono Q 

Bcl2 pET-His6-Bcl2 Mus musculus E. coli Ni-NTA 

E1 BEVS-GST-E1 Homo sapiens sf9 cells 
GST,  

S200 

UbcH7 pET-His6-UbcH7 Homo sapiens E. coli 
Ni-NTA, 

Mono S 

PINK1 
pMAL-MBP-

PINK1 

Tribolium 

Castaneum 
E. coli MBP 

Parkin  

wild-type 
pGEX-Parkin 

Rattus  
Norvegicus 

E. coli GST 

Parkin  

W403A 

pGEX-Parkin-

W403A 

Rattus  
Norvegicus 

E. coli GST 

Parkin  

W403A-C431S 

pGEX-Parkin-

W403A-C431S 

Rattus  
Norvegicus 

E. coli GST 

His-Ubiquitin pET-His6-Ubiquitin Homo sapiens E. coli Ni-NTA 
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blocking buffer (5% BSA in PBS-T).  Following extensive washing using PBS-T, the membrane 

was incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG (1:10 000 dilution in 

blocking buffer; Pierce).  After extensive washing using PBS-T, the membrane was incubated in 

SuperSignal West Femto Maximum Sensitivity Substrate (Pierce).  The secondary antibody was 

detected using chemiluminescence film (Amersham Biosciences, Buckinghamshire, UK).  All 

incubations and washes were performed at room temperature.  ImageJ (National institutes of 

Health) was used to quantify the individual bands via densitometry. 

 

4.3 Results 

4.3.1 Reconstitution of in vitro ubiquitination assays using non-phosphorylated Parkin 

Sufficient quantities of recombinant proteins were purified to homogeneity as shown in 

Figure 4.2, which allowed the reconstitution of Parkin self-ubiquitination in vitro, in addition to 

the development of an in vitro assay where Parkin catalyzes conjugation of ubiquitin to its 

substrate Bcl2.  The development of these assays made it possible to evaluate the catalytic 

mechanism of the E3 ligase Parkin as demonstrated in the following sections.    

Initially, we employed both tagged (His6-SUMO) and untagged human Parkin to test its 

E3 ligase activity.  However, human Parkin had limited self-ubiquitination activity in our hands.  

Recently, Trempe et al. have determined the crystal structure of Rattus norvegicus Parkin 

(Trempe et al. 2013).  This led us to test the activity of wild-type rParkin.  Untagged rParkin 

showed no activity - much like its human counterpart.  GST-tagged wild-type rParkin, on the 

other hand, showed moderate auto-ubiquitination activity in our hands.   

The crystal structure of rParkin suggests that the E2 binding site located on the RING1 

domain is blocked by the repressor element of Parkin (REP).  The REP consists of a two-turn  



 

 81  

 

 

 

 

 

 
 

 

Figure 4.2:  Proteins involved in ubiquitination in vitro.  Proteins were purified to 

homogeneity and analyzed by SDS-PAGE using a 12% gel. The resulting gel was stained with 

Coomassie blue.  Spectra
TM

 multicolor broad range protein ladder (Thermo Scientific) was used 

to determine the molecular weights of proteins. 
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helix that is stabilized by a tryptophan residue (Trp
403

).  The stabilization occurs by inserting the 

Trp
403

 indole group into a pocket located on the RING1 domain (Trempe et al. 2013).  Previous 

studies have shown that mutating the Trp
403

 residue into an alanine disrupts the RING1-REP 

interface, thereby increasing rParkin self-ubiquitination.   

While GST-tagged rParkin W403A showed enhanced auto-ubiquitination activity, 

converting the highly conserved catalytic cysteine residue to a serine (GST-tagged rParkin 

W403A-C431S) abolished Parkin auto-ubiquitination activity.  As mentioned in the previous 

section, Parkin exhibits HECT-like characteristics, where a catalytic cysteine residue located in 

the RING2 domain (Cys
431

) acts as a ubiquitin acceptor that forms a thiosester intermediate 

(Wenzel et al. 2011).   

 The simplest model for Parkin auto-ubiquitination is that ubiquitination results from an 

intramolecular transfer of ubiquitin from Parkin’s active site cysteine to one of the 22 lysine 

residues on the same molecule.  However, it is also conceivable that Parkin auto-ubiquitination is 

not exclusively an intramolecular reaction.  It is quite possible that Parkin auto-ubiquitination 

results from an intermolecular reaction where ubiquitin transfers from one Parkin molecule to 

another. 

After confirming that the W403A mutant rParkin exhibits a rate enhancement in self-

ubiquitination, we investigated if the mutation also induces a catalytic enhancement in trans-

ubiquitination.  As mentioned previously, Bcl2 is an anti-apoptotic, autophagy inhibiting protein 

that directly binds to the C-terminus of Parkin.  Thus, we hypothesized that Bcl2 would act as a 

Parkin substrate in vitro.  We reconstituted rParkin dependent Bcl2 ubiquitination by incubating 

P
32

 labeled Bcl2 with E1, UbcH7, wild-type GST-rParkin, ubiquitin, and ATP.  Analysis of the 

reaction mixture by SDS-PAGE and subsequent phosphorimaging revealed a faint band that  
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Figure 4.3:  In vitro ubiquitination of Bcl2.  Bcl2 was phosphorylated by pp-ERK2 in the 

presence of [
33

P]-ATP.  [
33

P]-Bcl2 ubiquitination reaction mixtures were incubated at 37⁰C for 

3 hours and subsequently quenched with 6× SDS loading buffer.  The resulting samples were 

analyzed by SDS-PAGE and phosphorimaging.  Reactions were performed using 5 M Parkin 

W403A. 
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Parkin W403A-C431S 
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Figure 4.4:  Time dependent ubiquitination of Bcl2.  Times course experiments were 

performed by quenching the reaction mixtures with 6× SDS loading buffer at indicated times. 

Reactions were performed using 2.5 M wild-type Parkin, Parkin W403A, and Parkin W403A-

C431S. 
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represents mono-ubiquitination of Bcl2.  Removing any one of the components necessary for 

ubiquitin transfer abrogated mono-ubiquitination of Bcl2.  This allowed us to conclude that 

mono-ubiquitination of Bcl2 is Parkin dependent.   

To see if the W403A mutation enhances trans-ubiquitination, we substituted wild-type 

GST-rParkin with GST-rParkin W403A in our in vitro ubiqutination assay.  The substitution 

resulted in increased production of mono-ubiquitinated Bcl2.  Omitting any one of the 

components necessary for ubiquitin transfer abrogated mono-ubiquitination of Bcl2 in this case 

as well (Figure 4.3).  This led us to conclude that mutating Trp
403

 into an alanine results in a rate 

enhancement for trans-ubiquitination.   

Parkin auto-ubiquitination activity was abolished upon converting the catalytic cysteine 

residue to a serine.  We speculated that mutating Cys
431

 to serine would have a similar effect in 

the case of trans-ubiquitination.  Time courses were run at intervals between 0 and 3 hours using 

Bcl2 as substrate and wild-type GST-rParkin, GST-rParkin W403A, GST-rParkin W403A-

C431S as E3 ligase (Figure 4.4).  The time course experiments in Figure 4.4 demonstrate that 

while GST-tagged rParkin W403A causes in increase in trans-ubiquitination activity, converting 

the highly conserved catalytic cysteine residue to a serine abrogates Parkin trans-ubiquitination 

activity.   

 

4.3.2 Phosphorylation of Parkin results in its allosteric activation in cis 

  The E3 ligase activity of untagged Parkin is repressed through auto-inhibition (Chaugule 

et al. 2011; Matsuda et al. 2010; Riley et al 2013; Trempe et al 2013; Wauer and 

Komander2013).  Untagged wild-type rParkin showed no apparent activity.  Adding an N-  
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Figure 4.5:  Time course of auto-ubiquitination of Parkin in vitro.  (A) P
32

-labeled 

recombinant wild-type and W403A Parkin were incubated with wild-type ubiquitin.  Reactions 

were separated using SDS-PAGE followed by phosphorimaging analysis.  (B) Individual bands 

were quantified using ImageJ.  
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Figure 4.6:  Time course of auto-ubiquitination of Parkin in vitro.  (A) P
32

-labeled 

recombinant wild-type and W403A Parkin were incubated with lysine-less ubiquitin (K0).  

Reaction mixtures were resolved via SDS-PAGE followed by phosphorimaging analysis.  (B)   

Individual bands were quantified using ImageJ. 
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terminal tag such as GST induces a conformational change in Parkin that also changes its 

stability (Chaugule et al. 2011).  It has been demonstrated that GST-tagged Parkin exhibits low 

but clear basal activity.   

  Previously, we have quantitatively demonstrated that PINK1 phosphorylates Parkin.  It 

has recently been shown that Parkin is activated by PINK1-dependent phosphorylation of 

ubiquitin at Ser
65

 (Kazlauskaite et al. 2014).  In this section, we hypothesize that phosphorylation 

of Parkin will activate the E3 ligase, thereby causing a rate increase in Parkin auto-ubiquitination 

activity.  To test this hypothesis, GST-rParkin auto-ubiquitination time course experiments were 

carried out using phosphorylated GST-rParkin.  Figures 4.5 and 4.6 show auto-ubiquitination 

time course experiments of phosphorylated wild-type and W403A GST-rParkin in the presence 

of wild-type or lysine-less ubiquitin (K0).  In Figure 4.5, distinct high molecular weight poly-

ubiquitination bands can be observed for both wild-type and W403A GST-rParkin when using 

wild-type ubiquitin.  There was a shift in ubiquitination patterns when the reaction was carried 

out in the presence of ubiquitin-K0 for both wild-type GST-rParkin and GST-rParkin W403A.  

As expected, the high molecular weight poly-ubiquitination bands all but disappeared when only 

lysine-less ubiquitin was present in the reaction mixture.  Wild-type Parkin contains 22 lysine 

residues.  Since lysine-less ubiquitin cannot be poly-ubiquitinated, the higher molecular weight 

bands represent mono-ubiquitination at one or more separate lysine sites (Figure 4.6). 

The overall disappearance rate of phosphorylated GST-rParkin was similar for both wild-

type and W403A variants (Figure 4.5).  This is not the case when using non-phosphorylated 

GST-rParkin variants.  As a matter of fact, it has been shown that non-phosphorylated GST-

tagged rParkin W403A self-ubiquitinates at an accelerated rate compared to non-phosphorylated 

GST-tagged wild-type rParkin (Trempe et al. 2013).  The rate of disappearance of  
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Figure 4.7:  UbcH7~Ub thioester discharge assays.  UbcH7 was charged with ubiquitin.  

Reactions were quenched using 10 mM EDTA.  Parkin variants were added to the quenched 

reaction mixtures.  Samples were analyzed using western blot analysis using anti-UbcH7 

antibody.   
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phosphorylated GST-rParkin was similar between wild-type and W403A rParkin when using 

ubiquitin K0 as well.   

  We hypothesized that phosphorylation of wild-type GST-rParkin causes a conformational 

change in wild-type GST-rParkin that exposes the E2 binding site located on the RING1 domain, 

thereby making it more assessable to the E2 enzyme.  To test this hypothesis, UbcH7~Ub 

thioester discharge assays were conducted using phosphorylated and non-phosphorylated 

versions of GST-rParkin wild-type, W403A, and W403A-C431S.  The results in Figure 4.7 

indicate that phosphorylating GST-rParkin accelerates the discharge of the thioester conjugate 

formed between ubiquitin and UbcH7 when using wild-type GST-rParkin or the W403A mutant.  

The levels of UbcH7~Ub remained constant when using GST-rParkin W403A-C431S as the E3 

ligase.  These findings further corroborate the hypothesis that phosphorylation of GST-rParkin 

causes the E2 binding site located on the RING1 domain to be exposed.   

 

4.3.3 Phosphorylation of Parkin results in its allosteric activation in trans 

   To investigate the possibility that phosphorylation of GST-rParkin increases the rate of 

trans-ubiquitination, we ubiquitinated P
32

-labeled Bcl2 using phosphorylated and non-

phosphorylated GST-rParkin variants.  In Figure 4.8, we can see that phosphorylation of wild-

type GST-rParkin increases the levels of mono-ubiquitinated Bcl2 species produced.  

Phosphorylation of GST-rParkin W403A also causes an increase in mono-ubiquitinated Bcl2 

species compared to when non-phosphorylated GST-rParkin W403A is used as the E3 ligase.  

The results allow us to conclude that, in the case of trans-ubiqutination, the effects of mutating 

Trp
403

 into an alanine and phosphorylating GST-rParkin are additive.  The results suggest that in 

addition to making the E2 binding site on GST-rParkin more accessible, phosphorylation of  
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Figure 4.8:  In vitro ubiquitination of Bcl2 using phosphorylated Parkin species.  Bcl2 was 

phosphorylated by pp-ERK2 in the presence of [
33

P]-ATP. [
33

P]-Bcl2 ubiquitination reaction 

mixtures were incubated at 37⁰C for 3 hours and subsequently quenched with 6× SDS loading 

buffer.  The resulting samples were analyzed by SDS-PAGE and phosphorimaging.  Reactions 

were performed using 5 M rParkin variants. 
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GST-rParkin causes an allosteric shift in the ligase that enables it to interact with its substrate 

Bcl2 in a more effective manner. 

 

4.4 Discussion 

 Phosphorylation is one of the most common posttranslational modifications.  In 

both prokaryotic and eukaryotic cells, this modification causes enzymes and cell surface 

receptors to undergo global conformational changes.  Phosphorylation oftentimes serves as a 

regulatory mechanism that causes proteins to become activated or deactivated, thereby altering 

their function and activity (Gallagher et al. 2006; Smith et al. 2009).   

Since the discovery that Parkin exists in an auto-inhibited state, the question of how Parkin is 

activated has been under investigation.  In the present study, we have demonstrated that 

phosphorylation of Parkin unlocks the auto-inhibited state of the E3 ligase, allowing both self-

ubiquitination of Parkin and mono-ubiquitination of its substrate Bcl2.  The crystal structure of 

rParkin determined by Trempe et al. shows that the REP domain blocks the Parkin E2 binding 

site (Trempe et al. 2013).  Similar to the mutations that disrupt the interaction between the 

aforementioned sites, we believe that phosphorylation of the UBL domain increases the rate of 

ubiquitination at least in part by relieving steric hindrance imposed by the non-phosphorylated 

UBL domain and exposing the E2 binding site.  In fact, our UbcH7~Ub thioester discharge assay 

results indeed provide evidence that phosphorylation of Parkin exposes its E2 binding site, which 

makes it more assessable to E2 ubiquitin-conjugating enzymes.  We suspect that the change in 

Parkin activity is due to allosteric changes that occur upon phosphorylation of the protein.  

Clarifying the molecular mechanisms of Parkin activation will allow us to further understand the 

role Parkin plays in both familial and sporadic Parkinson’s disease progression.    

http://en.wikipedia.org/wiki/Prokaryote
http://en.wikipedia.org/wiki/Eukaryote
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Cases have been reported where Parkin-mediated ubiquitination of substrates results in 

the substrates adapting degradation independent roles (Choi et al. 2003; Lim et al. 2005; Moore 

et al. 2008).  Understanding such degradation independent roles may be crucial for the 

development of therapeutics that target Parkin dependent Parkinson’s disease.  At the present 

moment, the exact function Parkin mediated mono-ubiquitination of Bcl2 plays in Parkinson’s 

disease remains a mystery. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

  Parkinson’s disease occurs from the premature death of dopamine neurons.  Cancer 

results from inappropriate cell survival.  Therefore, one would expect their pathogenic 

mechanisms to differ greatly, but this is not the case.  Despite their striking differences, 

overlapping pathways are involved in cancer and Parkinson’s disease.  In particular, genetic 

studies of familial Parkinson’s disease have shed light to the fact that the involved genes are also 

linked to cancer.  This may be a direct result of cancer cells being prone to accumulating 

mutations.  However, it is difficult to overlook the functional roles of the overlapping genes.  In 

the case of the PARK2 gene, recessive mutations cause autosomal recessive Parkinson’s disease.  

Mutations in the same gene have also been found in glioblastoma, colorectal and lung cancer 

(Veeriah et al. 2010).  Such areas of convergence will provide insights into both diseases.   

  In recent years, a study performed by Martin et al. advocates the development of PINK1 

inhibitors to treat colorectal cancer carrying mutations in the mismatch repair genes MSH2, 

MLH1 and MSH6 (Martin et al. 2011).  The primary issue with such treatment options is the 

likelihood of the inhibitor inducing Parkinson’s disease.  However, literature in the field suggests 

that short periods of exposure to such compounds would carry only a small risk as opposed to 

long term drug administration (Woodroof et al. 2011).   

In this thesis, we reconstituted in vitro ubiquitination assays involving the E3 ligases 

SCF
Fbx4

 and Parkin.  We are the first in the field to generate structure-based computationally 

derived peptide inhibitors that disrupt the binding interface between SCF
Fbx4

 and it substrate 
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TRF1.  Our studies on Parkin, on the other hand, provide insight into how post-translational 

modifications such as phosphorylation can affect E3 ubiquitin ligase activity.   

It has been established that Parkin plays a large and complex role in the physiology of the 

cell.  Up to date, a large number of Parkin substrates have been discovered and the list is 

constantly growing.  We expect that studying such substrates in Parkin or PINK1 knockout cells 

will provide crucial insight into the pathogenesis of Parkinson’s disease.  It may also be 

worthwhile to identify substrates of phosphorylated Parkin in vivo.  Investigating which of these 

substrates are most commonly defective in Parkinson’s patients may help us prioritize pathways 

for therapeutic targeting.   

In Chapter 4, we have demonstrated that phosphorylation at Ser
65 

causes allosteric 

activation of Parkin.  Given the fact that loss-of-function mutations of Parkin cause Parkinson’s 

disease, as a treatment strategy, it may even be possible to screen for small molecules that 

activate Parkin by mimicking phosphorylation-dependent conformational changes upon the 

compound binding to Ser
65

.  In addition, it would also be interesting to investigate whether or not 

Bcl2 can be poly-ubiquitinated in vivo by E3 ubiquitin ligases other than Parkin.  It may very 

well be that mono-ubiquitination of Bcl2 targets the protein for poly-ubiquitination by other E3 

ubiquitin ligases.    

Ubiquitination reactions are largely mediated via protein-protein interactions.  

Traditionally, drug targets have been enzyme-substrate interactions that involve deep binding 

pockets.  In the last decade, protein-protein interactions with large binding interfaces have 

emerged as important targets for drug development and design.  Peptides are promising 

candidates in targeting these large binding interfaces due to their relatively large size compared 
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to traditional small molecule drugs.  In addition, peptides can serve as valuable therapeutic leads 

that can be modified to increase specificity and potency.   

However, peptide drugs have weaknesses such as high cost and short half-life resulting 

from proteolysis in a biological setting.  In the past, peptidomimetics have been used to mimic 

structural elements of proteins (Craik et al. 2013).  Peptidomimetics oftentimes involve changes 

to peptides such as altered backbones and incorporation of non-natural amino acids.  Such 

changes result in potent inhibitors that are stable in vivo.  In several instances, chemical staples 

have been used to stabilize peptides to prevent the proteolytic cleavage of promising leads.  

Furthermore, peptide inhibitors such as those described in Chapter 2 can be used to study 

protein-protein interactions.  For instance, crosslinking peptide inhibitors with their protein 

binding sites will allow us to isolate and characterize peptide-protein complexes.  Such studies 

will provide clues for future small molecule inhibitor design. 

It is important to note that most compounds that block protein-protein interactions do so 

at relatively high concentrations.  Therefore, it may also be worthwhile to simultaneously target 

elements of ubiquitination associated pathways.  For instance, proteins that require ATP, such as 

Nae1 (Nedd8 activating enzyme), may prove to be a good targets - given the success of targeting 

kinases (Garber et al. 2005).  The caveat is that targeting such proteins may turn out to be a less 

specific approach than targeting E3 ligases.     

The ubiquitination pathway plays a regulatory role in virtually all mammalian cells.  

Recent advances in the field have enhanced our understanding of the innate complexity of the 

ubiquitination pathway.  Structural information on ubiquitin ligases and their substrates is 

becoming more abundant than ever before, which makes selective targeting of ubiquitin E3 

ligases and their substrates a promising and potentially abundant avenue for drug development - 
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not to mention that a better understanding of ubiquitin E3 ligases and their substrates will 

provide crucial insight into the natural progression of common and rare diseases alike.  With 

numerous areas of the ubiquitination class of signaling pathways still unexplored, an important 

goal is to discover new correlations between the ubiquitination pathway and human illnesses.    

  The outlook for utilizing the ubiquitination pathway is optimistic.  The most pressing 

issue is to develop highly specific anti-cancer drugs, and the clinical benefits must outweigh the 

side effects.  However, to achieve such goals, we must thoroughly understand how ubiquitination 

controls protein function, activity, and localization - in addition to how the signal is propagated 

to regulate downstream cellular events.  With similarities to phosphorylation, ubiquitination is 

emerging as an underexploited mechanism.  In the age of molecular-targeted therapies for cancer, 

Parkinson’s, and numerous other diseases, designing drugs against components of the ubiquitin 

system seems more feasible than ever.   
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APPENDIX 

CHARACTERIZATION OF SMALL MOLECULE INHIBITORS THAT DISRUPT THE 

SKP2-CKS1 INTERACTION 

 

 

 

A.1 Introduction 

Decreased levels of the cell cycle inhibitor p27
Kip1

 are observed in a variety of human 

tumor cells.  In fact, p27
Kip1

 levels can serve as a therapeutic marker for cancer survival, where 

low levels of p27
Kip1

 indicate poor prognosis in patients (Benmaamar 2003; Chu et al. 2008; 

Pagano and Hiramatsu et al. 2006; Slingerland and Pagano 2000).  Decreased levels of p27
Kip1

 

can be caused by excessive degradation of p27
Kip1

.  Re-expressing p27
Kip1

 in tumor cells has 

been shown to induce their apoptosis (Chen et al. 1996; Craig et al. 1997).  Therefore, increasing 

p27
Kip1

 levels may serve as an effective route of therapeutic intervention to suppress tumor 

growth. 

p27
Kip

 ubiquitination and subsequent degradation is regulated by the E3 ligase SCF
Skp2

.  

SCF
Skp2

 recognizes and targets T187-phosphorylated p27
Kip1

 to the proteasome for degradation 

(Nakayama and Nakayama 2006).  Contact with CDK2/cyclin E or CDK2/cyclin A is also 

required for p27
Kip1

 ubiquitination to occur (Montagnoli et al. 1999; Ungermannova et al. 2005).  

p27
Kip1

 is unique in that it requires the accessory protein Cks1 to be recognized and ubiquitinated 

by its E3 ligase SCF
Skp2

.  As a matter of fact, Cks1 functions as the central adaptor protein that 

binds to the CDK/Cyclin complex, phosphorylated p27
Kip

, and Skp2 (Hao et al. 2005; Sitry et al. 

2002; Wang et al. 2004).  Therefore, perturbation of the Skp1-Cks1 interaction may prove to be 

an effective anti-cancer strategy.  Here we use a high-throughput AlphaScreen (PerkinElmer) 

assay to discover small molecule inhibitors that disrupt the Skp2-Cks1 binding interaction.   
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        A) 

 
 

 

        B) 

 
 

 

 

Figure A.1:  AlphaScreen assay to detect Skp2-Cks1 interactions.  (A) Beads are brought 

together when GST–Skp2/Skp2 binds to His6-Cks1.  Donor beads generate singlet oxygen 

molecules upon excitation at 680 nm.  The singlet oxygen molecules then diffuse to the acceptor 

beads, generating chemiluminescence.  For the counterscreen assay, donor beads conjugated to 

GST-biotin served as the interacting partner for streptavidin-conjugated acceptor beads (B) 

Schematic diagram of the SCF
Skp2

-dependent p27 ubiquitination pathway. 
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A.2 Materials and Methods 

AlphaScreen assays were carried out using OptiPlate-384 (PerkinElmer) plates in a total 

volume of 25 L per well.  All dilutions were made in 1X AlphaScreen assay buffer containing 

50 mM Tris (pH 7.4), 150 mM NaCl, 0.05% bovine serum albumin (BSA), 0.02% Tween, and 1 

mM DTT.  After mixing GST-Skp2/Skp1 with His6-Cks1, the assay plate was incubated at room 

temperature for 1 hour.  Subsequently, glutathione donor beads and nickel chelate acceptor beads 

were added to each well (20 g/mL working concentration for each bead).  Plates were then 

sealed and incubated while shaking in the dark at room temperature.  After a 2.5 hour incubation, 

the beads were excited at a wavelength of 680 nm, with emission detected at 520 to 620 nm 

using a EnVision 2102 Multilabel Reader (PerkinElmer).  IC50 values of the small molecule 

inhibitors were determined by adding final concentrations of 20 nM GST-Skp2/Skp1 and 200 

nM His6-Cks1 to each well.  Curves were fit using SigmaPlot 5.0 software (SPSS Inc.).  Since 

signal suppression can occur from on-target events or false positives, a counterscreening assay 

was performed to validate the hits from the primary screen.  This assay was carried out using 

GST-biotin conjugated to donor beads and streptavidin-conjugated acceptor beads (Figure A.1).  

 

A.3 Results 

Two structurally related compounds (NSC689857 and NSC681152) that disrupt the 

Skp2-Cks1 interaction were identified by Dana Ungermannova.  Several analogues of 

NSC689857 (857) were generated by Dr. Gan Zhang to identify the pharmacophore - quinone 

(Q857), two oxidation-blocking analogues that were generated by nonselective methylation 

(E857, A857), methylhydroquinone (MHQ), and 1,4-benzoquinone (BQ).  I tested the analogues  
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Compound Structure Inhibition of Skp2-Cks1 IC50 (M) 

857 

 

36 ± 6.2 

Q857 

 

71 ± 4.4 

A857 

 

1090 ± 189 

E857 

 

8311 ± 1458 

MHQ 

 

434 ± 39.5 

BQ 

 

626 ± 65.7 

NSC681152 

 

75.6 ± 6.8 

BQ, 1,4-benzoquinone; MHQ, methylhydroquinone. 

 

 

Table A.1:  Structure activity relationship of Skp2-Cks1 inhibitors.  IC50 values were 

determined from AlphaScreen assays.  All experiments were performed in triplicates.    
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using the AlphaScreen assay developed for the Skp1-Cks1 interaction, in addition to the 

counterscreening assay. 

NSC681152, NSC689857, and its quinone derivative (Q857) were found to disrupt the 

Skp2-Cks1 interaction at low μM concentrations (Table A.1).  Modifications of either hydroxyl 

group by methylation abrogated the inhibitory activity.  BQ and MHQ had little if any effect on 

disrupting the Skp2-Cks1 interaction.  These findings suggest that the specific structures of 

NSC681152 and NSC689857, rather than quinone functionality, are necessary for disrupting the 

Skp2-Cks1 interaction.  The dihydrophenol ring configuration and the linker are likely to be 

critical elements. 

Both NSC689857 and NSC681152 are hydroquinones.  Therefore, we tested if 

hydroquinones and quinones had the ability to indiscriminately interfere with the AlphaScreen 

assay.  When the counterscreening assay was performed using the same concentration (10 μM) 

for each compound, we did not observe a dramatic reduction in signal (Figure A.2).   

 

A.4 Discussion 

NSC689857 and NSC681152 are known antitumor agents.  The two compounds were 

originally generated for the structure-activity relationship studies of AG957 - an inhibitor of the 

epidermal growth factor receptor and tyrosine kinases.  The exact mechanism of inhibition by 

this class of molecules is still remains a mystery.  The results in this study suggest that they may 

also play a role in disrupting the interaction between Skp2-Cks1 and subsequent degradation of 

p27.  The dual action nature of these inhibitors may play a synergistic role in their antitumor 

activity.  Future in vivo studies should be performed to further elucidate their mechanism of 

action. 
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In summary, a high-throughput AlphaScreen assay was used to discover inhibitors of p27 

proteolysis.  The strength of the assay lies in its robustness, reproducibility, cost-effectiveness, 

and its high dynamic range.  In the future, more potent inhibitors will be screened for using 

larger libraries.  We are also interested in testing NSC689857 and NSC681152 in animal models.   
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1:  A/D beads 
2:  Biotinylated-GST + A/D beads 
3:  857 + Biotinylated-GST + A/D beads 
4:  Q857 + Biotinylated-GST + A/D beads 
5:  A857 + Biotinylated-GST + A/D beads 
6:  E857 + Biotinylated-GST + A/D beads 
7:  MHQ + Biotinylated-GST + A/D beads 
8:  BQ + Biotinylated-GST + A/D beads 
9:  NSC681152 + Biotinylated-GST + A/D beads 

 
 
 
 

 

 

Figure A.2:  Counterscreen of hits identified by the primary screen.  0.5 nM of biotinlyated 

GST and a mixture of donor/acceptor beads (20 μg/mL final concentration) were added into each 

well in a reaction volume of 25 μL with 10 μM of each compound.  The effect of NSC689857 

and its analogs on a biotinlyated GST control that artificially brings donor and acceptor beads 

together.  Data are presented in mean +/- SD form.  Each experiment was performed in triplicate. 
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