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Low mass X-ray binaries (LMXBs) are a subset of compact binary systems in which a

main-sequence or slightly evolved star fills its Roche lobe and donates mass to a neutron star

or a black hole (BH) via an accretion disk. Robust estimates of compact object masses in

these systems are required to enhance our current understanding of the physics of compact

object formation, accretion disks and jets. Compact object masses are typically determined

at near-infrared (NIR) wavelengths when the system is in quiescence and the donor star is

the dominant source of flux. Previous studies have assumed that any non-stellar contribution

at these wavelengths is minimal. However, this assumption is rarely true. By performing

NIR spectroscopy, we determined the fractional donor star contribution to the NIR flux and

the compact object masses in two LMXBs: V404 Cyg and Cen X-4. In our analysis, it

was assumed that the light curve morphology remains consistent throughout quiescence. It

has now been shown in several systems that veiling measurements from non-stellar sources

are meaningful only if acquired contemporaneously with light curve measurements. We

accounted for this in the measurement of the BH mass in the LMXB, XTE J1118+480.

LMXBs are also considered to be the most likely candidates responsible for the formation

of milli-second pulsars (MSP). Here, I present the unique case of PSR J1903+0327 that

challenges this currently accepted theory of MSP formation and is a potential candidate for

testing General Relativity. Observations in the NIR come with their own set of challenges.

NIR detector arrays used in these observations generally have high dark current and readout

noise. In an effort to lower the read noise in NICFPS at APO, we present a study done on

the Hawaii–1RG engineering grade chip that served as a test bed for reducing the read noise

in NICFPS.
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Chapter 1

Introduction

1.1 Compact Binary Systems

Compact binary systems are stellar interacting binaries in which a main-sequence or a

slightly evolved star transfers material to a compact object such as a black hole, neutron star

or white dwarf. X-ray binaries are a subset of compact binaries wherein the primary star (the

accreting object) is either a black hole or a neutron star, whereas cataclysmic variables (CVs)

are binaries where the primary star is a white dwarf. X-ray binaries are further sub-divided

into low mass X-ray binaries (LMXBs) and high mass X-ray binaries (HMXBs) based on

the mass of the companion star and the mode of accretion. Typically, the companions in

LMXBs have masses ≤ 1M⊙ and mass transfer takes place via Roche lobe overflow while

HMXBs have companions with masses ≥ 10.0M⊙ and mass transfer takes place primarily

via capture of stellar winds from the donor star. This thesis is focused on understanding

the physical properties of LMXBs. To understand the structure and behavior of a LMXB,

consider two stars orbiting each other due to their mutual gravitational pull. This system

can be visualized in the co-rotating frame of the binary where the combined effect of the

binary’s rotation and gravity due to the two masses gives rise to the effective potential of

the system (known as Roche potential) (Frank et al. 1992). Figure 1.1 shows cross-sections

of equipotential surfaces for a binary system with mass ratio, q of 0.5 along with a three-

dimensional view1 ; mass–ratio refers to the ratio of the masses of the companion star to

1 en.wikipedia.org/wiki/Roche lobe
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the primary star. The most interesting features in Figure 1.1 are the lobes connected by

the dark solid line via the inner Lagrange point, L1. The L1 point connecting the two

lobes is a point of unstable equilibrium where the combined forces of gravity due to the

two component masses cancel out. The four other Lagrange points (L2, L3, L4 and L5) are

more stable points where the combined forces due to gravity and the centrifugal acceleration

are in balance. At these points, objects can orbit the binary in co-rotation. A star can fill

its Roche lobe either due to expansion in size as it evolves off the main-sequence or due

to shrinkage of the binary separation leading to removal of the outer layers of its envelope

(Roche lobe overflow) by the gravitational pull of the other star through the L1 point. In

three–dimensional space, the L1 point appears as a “pass” or a “saddle point” connecting

the potential wells of the two stars.

Throughout this document, the accreting star will be referred to as the primary star

and the mass-losing star will be referred to as the donor/companion star. Matter from the

companion star forms an accretion disk around the primary star as it falls into the gravi-

tational potential of the latter and slowly loses its initial angular momentum (Frank et al.

1992). The LMXBs studied within this thesis are transient systems that undergo occasional

outbursts followed by long periods of quiescence lasting months to decades. Quiescence of

an X-ray binary is identified by a power law dominated X-ray spectrum and low X-ray lu-

minosity compared to the outburst value; during quiescence the X-ray luminosity is around

∼ 1030.5 – 1033.5 erg s−1 which is about 4–5 orders of magnitude lower than its outburst

luminosity (van Paradijs and McClintock 1995).

1.2 Compact Object Masses in LMXBs : Why Do We Need Them?

The nature of the compact object in an LMXB can be determined from a measurement

of its mass. An upper bound can be placed on the mass of a neutron star of ∼ 3.2M⊙ based on

the following assumptions: (i) the star is not rotating; (ii) the equation of state of a neutron

star is known up to a density of 4.6 × 1014 g cm−3 and (iii) the speed of sound is smaller
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Figure 1.1: Contours of equipotentials in the orbital plane of a binary system calculated
for a mass ratio of 0.5 supplemented with a three-dimensional view. The inner
Lagrange point L1, formed at the intersection of the Roche lobes of both stars,
represents a point of unstable equilibrium and is the gateway for transfer of
material from one star to another. The Lagrangian points L2, L3, L4 and L5 are
stable equilibrium points. (Source : en.wikipedia.org/wiki/Roche lobe)



4

than c (Rhoades and Ruffini 1974). Considering rotation will serve to increase the mass of

the neutron star by < 20% but this effect comes into play only if the neutron star is rotating

close to break-up speeds (Friedman and Ipser 1987). A compact object mass beyond 3.2M⊙

is considered strong evidence for a black hole, whereas a mass below 3.2M⊙ but above 1.44

M⊙ accompanied by Type I X-ray bursts are evidence for neutron stars (Psaltis 2006). Type

I X-ray bursts are initiated by unstable thermonuclear burning of the accreted material on

the neutron star surface and are, therefore, evidence of a solid surface rather than the event

horizon of a black hole. Observationally, a Type I X-ray burst can be detected as a sharp

rise (lasting ∼1–10 seconds) followed by a gradual and slow decline (lasting ∼ 10 s – several

minutes) in the X-ray flux (Lewin et al. 1993). Determination of neutron star masses helps

to constrain equations of state (EOS) of super dense matter. Different equations of state

follow different tracks in the neutron star mass-radius plot. Thus any proposed EOS whose

mass-radius track is unable to intersect the mass line of any neutron star can be ruled out.

Generally, softer EOS are characterized by a flatter/softer profile beyond a certain nuclear

density. For example, radio observations of the binary milli-second pulsar PSR J1614 – 2230

have yielded the most massive neutron star to date (1.97±.04M⊙), thereby ruling out certain

softer EOS that predict “exotic” components such as hyperons, bosons and free quarks at

nuclear saturation densities in their models (Demorest et al. 2010).

Accurate masses are required to test models of the origin of compact objects in close

binaries. While theoretical models of supernova explosions and binary evolution predict a

continuous distribution of compact object masses from neutron star masses up to 10 – 15M⊙,

there appears to be a statistically significant dearth of black holes at the lower end of the

mass spectrum between 2 – 4.5 M⊙ (Farr et al. 2011; Özel et al. 2010). Belczynski et al.

(2011) attempted to explain the physical processes involved in the supernova explosion that

account for the presence of the mass gap in the observed compact object mass distribution.

In their models, they invoke two different kinds of instabilities to trigger the supernova

explosion. These two instabilities are characterized broadly by their growth timescales and
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can generate different mass distributions of the compact remnants. Specifically, they found

that an explosive mechanism driven by Rayleigh-Taylor instabilities within the first ∼100–

200 milliseconds of the initial stellar collapse can produce the observed compact object mass

gap. Black hole evaporation predicted by multi-dimensional gravity models provide another

possible explanation for the absence of lower mass black holes. In these models, the rate of

evaporation is inversely proportional to the mass of the black holes, thereby possibly creating

a dearth of low mass black holes (Postnov and Cherepashchuk 2003).

However, other questions need to be addressed. Does the gap represent an observational

bias that prevents us from detecting the smaller black holes? How accurate are the previously

measured black hole masses? To answer the first question, let’s consider an example of

an observational bias: black hole mass measurements are performed when the system is

in quiescence and the donor star can be observed. However, systems with smaller mass

black holes will have mass ratios closer to unity (companion masses in LMXBs are typically

≤ 1.0M⊙) resulting in steady mass transfer and no quiescent state; this will prevent black

hole mass determination in these systems (Fryer and Kalogera 2001). However, the same

is not true for the wind-fed HMXB systems (companion masses in HMXBs are typically

> 10M⊙) and this bias should not prevent us from measuring masses of the smaller black

holes in these systems (Belczynski et al. 2011). Thus, the existence of this observational bias

is still debatable. The second question – how accurate are the previously measured masses

– leads us to a re-evaluation of previously measured masses and what, if any, corrections

are required for these already estimated masses. This question is explored in more detail in

Section 1.4.

Accurate and unbiased compact object masses are required in other areas as well. Both

supermassive and stellar mass accreting black hole systems have been commonly observed

to power relativistic jets (Mirabel and Rodŕıguez 1999; Zensus 1997). Synchrotron emission

from these jets is typically observed in the radio and infrared wavelength bands. However,

the process by which these jets are launched is not well understood. One of the popular
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theories behind the jet mechanism comes from Blandford and Znajek (1977), who proposed

that an accreting and rotating black hole could twist magnetic fields in its vicinity, resulting

in transfer of energy from the black hole into an electromagnetically-powered jet. Recently,

attempts have been made to measure the spins of black holes in several systems containing

stellar mass black holes (e.g Shafee et al. 2006, Steiner et al. 2009) and to investigate further

the role of spin in powering jets in these systems (Fender et al. 2010; Narayan and McClintock

2012). Black holes can either acquire spin at birth (natal spin) and/or due to mass accretion

from their companion. The two parameters, black hole spin and BH mass, completely

characterize a black hole. However, black hole spin estimates need accurate estimates of

black hole mass which is obtained independently from optical/infrared observations of these

systems in quiescence, thereby requiring us to have reliable black hole mass estimates in

hand.

It has also been suggested that if jets are launched in the innermost parts of the

accretion disk, then the physics of jets could be tied to the accretion flow (Falcke and

Biermann 1995). Radio and X-ray observations probe the jet and innermost regions of

the accretion disk respectively. These observations, coupled with independently determined

central black hole masses, have revealed a “Fundamental Plane” of black hole activity in

which the X-ray luminosity, radio luminosity and black hole masses are correlated both for

Galactic BHs and their supermassive counterparts (Merloni et al. 2003). The Fundamental

Plane of black hole activity allows an understanding of accretion physics across the entire

black hole mass range, spanning over nine orders of magnitude (from X-ray binaries to

AGNs), by a mere scaling of the corresponding black hole mass (e.g. Done and Gierliński

2005). Thus, if we know the black hole mass in X-ray binaries, we can scale the other

properties to study their supermassive analogs, taking advantage of the shorter timescale of

variability in the former systems to probe physical properties. For example, it was shown by

Markoff et al. (2012) that the same physical model with system parameters scaled only by

the corresponding black hole mass can be used to model the SED of the LMXB A0620-00
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as well as the supermassive BH, Sgr A∗.

Additionally, compact remnants in LMXBs have been used to infer the stellar initial

mass function (IMF) in ultra compact dwarf galaxies (UCDs) (Dabringhausen et al. 2012).

As a potential explanation for the high mass-to-light ratios observed in UCDs, these authors

have suggested that the stellar initial mass function in these systems could be skewed towards

the high mass stars; the neutron stars and black holes in LMXBs could be used to account

for the unseen mass in these systems.

In the next sections, I will discuss how masses of compact objects in LMXBs are

currently measured and why previously estimated compact object masses should be re-

examined.

1.3 Technique of Mass Measurement in LMXBs

Observations of LMXBs during quiescence are used to determine masses of the compact

objects in these systems. During this time, the companion star becomes the dominant

source of flux in the optical/NIR and the system can be studied to determine key system

properties like the spectral type of the companion, the binary period, the radial velocity,

and the rotational velocity of the companion. Using Kepler’s laws, the minimum mass of

the compact object, known as the mass function f(M), can be obtained (Frank et al. 1992):

f(M) =
PK3

2πG
=

MX sin3 i

(1 + q)2 (1.1)

P = binary orbital period.

K = radial velocity amplitude of the donor.

MX = mass of the compact object.

i = binary inclination (angle between the plane of the binary and plane of the sky).

q = M2/MX (mass ratio) ; M2 is the mass of the donor star.
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MX =
(1 + q)2

sin3 i
f(M) (1.2)

From Equation (1.1), we find that the mass function can be directly determined from

the binary orbital period and the radial velocity curve. It also represents a strict lower limit

on the mass of the compact object. From Equation (1.2), MX > f(M) follows directly from

the fact that sin3 i ≤ 1 and (1 + q) > 1. Once the value of f(M) is obtained, the actual

mass of the compact object can be determined if we know the mass-ratio, q, and the binary

inclination, i. By assuming that the companion has filled its Roche-lobe and is tidally locked

with the primary, the approximate formula given in the form of Equation (1.3) below can

be used to determine the mass-ratio of the binary (Gies and Bolton 1986; Wade and Horne

1988) via the companion’s projected rotational velocity, vrot sin i. The rotational velocity

information is embedded in the absorption features of the companion star’s atmosphere and

can be calculated by measuring the line broadening in these features.

vrot sin i = K × 0.462 q1/3(1 + q)2/3 (1.3)

The only unknown that remains to be determined towards obtaining the mass of the

compact object is the binary inclination, i (from Equation (1.2)). This is determined by

modeling the ellipsoidal variations of the donor star in quiescence. The emergent flux from

the tidally–distorted Roche lobe-filling donor star depends on the combined effects of its

projected surface area as well as the effects of limb darkening and gravity darkening. This is

illustrated in Figure 1.2. Limb darkening arises naturally due to the non-uniform brightness

of the projected disk of the star as we move from the center to the limb of the disk. The more

subtle effect of gravity darkening arises due to the fact that the flux from a non-spherical

star is proportional to the local surface gravity with lower flux arising from regions of lower

surface gravity (von Zeipel 1924).
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Figure 1.2: Ellipsoidal modulation of the donor star in V404 Cyg. The near-sinusoidal vari-
ation in the light curve is caused by variations in the projected surface area, limb
darkening and gravity darkening of the donor star. The projected surface areas
are the largest at φ=0.25 and 0.75 and smallest at φ=0.0 and 0.5 which explains
the positions of maxima and minima. The unequal minima is due to the effect of
gravity darkening. The system orientation at various phases are plotted for the
parameters corresponding to V404 Cyg using the light curve code “XRbinary”
written by E.L. Robinson. Source: (Khargharia et al. 2010)



10

The donor star light curve will take on a near-sinusoidal shape with maximum flux

occurring at quadrature (at orbital phases, φ = 0.25 and φ = 0.75) and minimum occurring

at conjunction (at orbital phases, φ = 0.0 and φ = 0.5) based dominantly on the projected

surface area. However, the minimum at φ = 0.5 will be deeper than that at φ = 0.0 owing

to lower surface gravity at the tear drop tip of the Roche lobe filling donor star at φ = 0.5.

The amplitude of the ellipsoidal variations is most sensitive to the binary inclination with a

weaker dependence on the mass-ratio. The mass-ratio is typically fixed from observations of

the rotational velocity of the donor star as seen from Equation (1.3). Thus by modeling the

light curves of the donor star, we can determine the binary inclination – the last remaining

unknown towards computation of the compact object mass.

1.4 Precise Mass Estimates of Compact Objects

Modeling the observed light curves in LMXBs based on pure ellipsoidal models is not

always straightforward. For example, the black hole binary A0620-00 has been studied

extensively over the past twenty years and its light curve has been shown to vary from time

to time (McClintock and Remillard 1986; Haswell et al. 1993; Gelino et al. 2001; Froning

and Robinson 2001; Cantrell et al. 2008). Various models have been incorporated to explain

the observed asymmetry in the light curve which include: star spots on the donor star, disk

asymmetries, grazing eclipses, the bright spot on the accretion disk produced by the mass

transfer stream impacting the disk, and state changes during quiescence. In addition, a

light curve may also be affected by other non-variable sources (for example, the accretion

disk) that will contribute a constant flux to the total observed near-infrared flux. Light

curves are often acquired at near-infrared (NIR) wavelengths where the donor star dominates

the total observed flux and other non-stellar sources of flux are assumed to be negligible,

although this assumption is rarely true (Reynolds et al. 2008; Cantrell et al. 2008, 2010).

A consequence of this assumption is that flux sources that have hitherto been ignored will

dilute the observed light curve reducing the amplitude of ellipsoidal modulation, thereby
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underestimating the binary inclination and in turn, overestimating the mass of the compact

object. My collaborators and I have undertaken a study to account for the non-stellar sources

of light at NIR wavelengths and to obtain precise and unbiased masses of the compact

objects in LMXBs. Other sources of light at these wavelengths can be properly accounted

for by measuring the dilution of the absorption features in the donor star spectrum (also

called veiling) by comparing these features to field stars of known spectral types. However,

the donor fraction estimate is sensitive to temperature mismatches between the template

star and the LMXB, and should be correctly determined (Hynes et al. 2005). Once the

spectral type of the donor has been determined, the amount of scaling (f ; where f ≤ 1)

by which we must adjust the the spectrum of the known spectral type to match that of the

LMXB spectrum gives the fractional contribution of the donor star to the total NIR flux.

In Chapters 2 and 3 we have included the contribution from other non-stellar sources from

spectroscopy and correctly modeled previously obtained light curves to determine precise

masses of the compact object in two LMXBs, V404 Cyg and Cen X-4. The content of these

two chapters have been published in the Astrophysical Journal, Volume 716, Issue 2, pp.

1105-1117 (2010) by Khargharia, J., Froning, C.S., & Robinson, E.L. However, the compact

object masses obtained in this manner must still be viewed with some caution. Through a

comprehensive study of the light curves of the quiescent LMXB A0620–00 over a period of

eight years, Cantrell et al. (2008, 2010) have shown that even during quiescence, this black

hole binary system displayed state changes characterized by magnitude, color and aperiodic

variability. These authors have shown that veiling measurements are truly meaningful only

if acquired contemporaneously with light curve measurements. With this motivation, we

studied the quiescent black hole LMXB, XTE J1118+480, by obtaining contemporaneous

light curve and spectral data to determine a robust mass of its black hole, presented in

Chapter 4.
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1.5 Evolution of LMXBs : Formation of Milli-Second Pulsars

In this section, I will present a qualitative picture of the evolution of LMXBs (con-

taining neutron stars as the compact accretors) leading up to the formation of milli-second

pulsars. This section is derived from the work done by Lorimer (2001); Hynes (1999); Bhat-

tacharya (1995); Verbunt and van den Heuvel (1995).

Milli-second pulsars (MSP) are characterized by their low spin periods (1.5 ms <

Pspin < 30 ms) and weak magnetic fields (B ∼ 108G). A large fraction (∼ 80%) of them

are members of binary systems. They are seen to orbit low mass companions ( < 0.7M⊙;

generally white dwarfs) in almost circular orbits (eccentricity, e < .001) and until the dis-

covery of the MSP binary PSR J1903+0327 in 2008, all known Galactic disk MSPs adhered

to this picture. On the other hand, MSPs with high mass companions (> 1M⊙; including

high mass white dwarfs, main-sequence stars or other neutron stars as donors) are seen to

exist in globular clusters in more eccentric orbits (Lorimer 2001). The high eccentricity for

globular cluster MSPs can be explained by considering frequent close encounters of these

systems with other stars, thereby disturbing the original circular orbits. Also, the fraction

of MSP binaries in globular clusters is smaller than that in the Galactic disk by ∼ 50%.

MSPs are believed to have acquired their short spin periods via an extended period of accre-

tion from their companion. The duration of mass transfer in HMXBs is much smaller than

in LMXBs, making it unlikely for the massive companion to spin up the neutron star to

milli-second speeds during that period. The most likely explanation for the origin of MSPs

therefore comes from considering the evolution of LMXBs in which the companion star is

< 1M⊙(Bhattacharya 1995). The presence of almost circular orbits, milli-second spin peri-

ods, and low mass companions in MSP binaries makes LMXBs the most likely candidates

for providing the conditions necessary for their formation. For example, the binary millisec-

ond pulsar PSR J1614–2230 contains a 1.97 M⊙ neutron star around a 0.5 M⊙ white dwarf

companion and is considered to be a more evolved version of the LMXB Cyg X-3 (Lin et al.



13

2011).

An illustration of the various evolutionary paths leading up to the formation of MSPs

can be understood from Figure 1.3 via the example of the MSP, PSR J1855+09 (Tauris

and van den Heuvel 2006). Starting with a binary system with vastly different component

masses, the more massive of the two stars will evolve first and fill its Roche lobe. Soon

after the initiation of mass flow the less massive companion will be engulfed in the giant’s

envelope. At this time, the binary separation will dictate the next set of events to follow.

For the formation of an LMXB, the binary is required to be wide enough that the low mass

companion spirals in to the giant’s core and the more massive companion undergoes a super-

nova explosion before a complete merger occurs. At the same time, the core of the giant will

continue evolving until it explodes in a supernova. The binary will survive the supernova

explosion if the total mass lost in the supernova is less than half of the pre-supernova mass,

assuming an asymmetric explosion. In the case of neutron star binaries, spin down of the

neutron star to a period of ≥ several seconds will occur 107−8 years following the supernova

explosion, and can be observed as a normal radio pulsar.

The low mass companion will then be left orbiting the neutron star in an eccentric

orbit. However, tidal interactions will circularize the orbit and also tidally lock the low mass

companion with the binary. Meanwhile, the evolution of the low mass companion will con-

tinue and as it evolves away from the main-sequence, it will fill its Roche lobe. Mass transfer

will then ensue via an accretion disk onto the neutron star and will result in widening of

the binary orbit. Mass accretion over a prolonged period of time will spin up the pulsar to

milli-second periods (the term “recycled pulsars” are often used to describe MSPs). How-

ever, once the degenerate core is all that is left behind of the initial low mass companion,

the binary will detach and mass transfer will stop. The final result is that of a white dwarf

orbiting around a milli-second pulsar in an almost circular orbit.
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Figure 1.3: Figure showing various evolutionary paths of a binary system leading up to
the formation of MSPs. The masses of the individual components have been
chosen to depict the specific case of formation of the MSP PSR J1859+09 with
individual component masses below each stage of evolution. Binary MSPs have
been theorized to evolve from LMXBs owing to their low spin periods and almost
circular orbits. However, the discovery of the MSP binary PSR J1903+0327 has
led one to revisit the currently accepted theory of MSP formation. Source:
(Tauris and van den Heuvel 2006)
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1.6 Do all Galactic MSPs originate from LMXBs?

Most MSPs found in the disk of our Galaxy are seen to exist around white dwarf

companions with all of them in perfectly circular orbits, thereby confirming the formation

theory of MSPs from LMXBs as discussed in the previous section. However, the discovery

of the MSP binary PSR J1903+0327 forces one to question the currently accepted theory of

MSP formation (Champion et al. 2008). This 2.15 ms pulsar was discovered in the Arecibo

L-band Feed Array (ALFA) Galactic plane pulsar survey. Follow-up timing observations

obtained with the Greenbank Telescope, Arecibo, and the Westerbork Synthesis Radio Tele-

scope showed that the pulsar was in a highly eccentric orbit (e = 0.44) with a 95 day orbital

period. Such high eccentricities are not expected based on the currently observed sample of

Galactic MSPs. Figure 1.4 shows the unique position occupied by PSR J1903+0327 when

compared to the existing sample of MSPs in the Galactic plane. Infrared observations of the

pulsar field further revealed a main-sequence star at the position of the pulsar making it a

likely companion to the MSP and suggesting that the MSP is part of a primordial hierar-

chical triple, where a white dwarf orbits the MSP in a 95-day period and the main-sequence

star is in a much wider orbit around the MSP-WD binary. However, in the discovery paper

by Champion et al. (2008), it was not known with certainty whether the main-sequence star

was the actual companion to the MSP. The focus of Chapter 5 is therefore based on a study

undertaken to determine the nature of the companion to the MSP that will further enhance

our understanding of the theory of MSP formation. The content of this chapter has been

published in the The Astrophysical Journal, Volume 744, Issue 2, article id. 183 (2012) by

Khargharia, J., Stocke, J.S., Froning, C.S., Gopakumar, A., & Joshi, B.C.

Additionally, by constraining the rotational velocity of the companion to the MSP

this system can be potentially be used for testing General Relativity theory. Most binary

pulsar systems can be timed using Kepler’s laws governing the dynamics of binary systems.

These observable Keplerian parameters are the projected semi-major axis a, the longitude
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of periastron ω, the time of periastron passage T0, the orbital period Pb, and the orbital ec-

centricity e. However, in relativistic binaries, five more parameters known as Post-Keplerian

(PK) parameters can be measured, which include: the rate of periastron advance ω̇, orbital

period decay Ṗb, time dilation and gravitational redshift parameter γ and the Shapiro delay

parameters r and s (Lorimer 2001). In General Relativity, each of the five PK parameters

are functions of the orbital period, the masses of the components ( i.e the pulsar and the

companion masses), and the five Keplerian parameters (which can be measured). As the

stellar masses are the only unknowns in the equations describing the binary, a measurement

of any two of the five PK parameters will lead to precise measurement of the component

masses. A measurement of more than two PK parameters gives an over-determined system

allowing one to do self-consistency tests of General Relativity. For example, in the double

neutron star system J0737–3039, all five PK parameters have been measured allowing a test

of General Relativity at the 0.05% accuracy level (Kramer et al. 2006). In Chapter 5, we

will discuss whether PSR J1903+0327 can be used as a system for testing General Relativity

theory.

1.7 Near-Infrared Observations in Astronomy: Advantages and Challenges.

Near-infrared observations of compact binary systems in astronomy date back to the

late 1970’s and early 1980’s (Szkody 1977). Since then NIR astronomy has advanced in

detection capabilities by leaps and bounds, leading to tremendous growth of observations in

this wavelength regime. The NIR waveband typically constitutes the wavelength range from

1–5 µm. Observations at NIR wavelengths are ideal for studying the cool (Teff = 4300 –

4700 K) donor star in LMXBs from which accurate spectral types can be established. Most

donor stars in LMXBs are either dwarfs or slightly evolved stars falling in the spectral range

K-M and their NIR spectra are rich in many atomic and molecular transitions. The NIR

light curves of LMXBs can be fitted with models of ellipsoidal modulations of the Roche

lobe filling donor star to get the binary inclination. Thus, NIR spectroscopy along with NIR
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Figure 1.4: The bottom face of the cube shows period vs. period derivative distribution
for the observed sample of normal and milli-second pulsars in the Galactic disk.
Yellow circles represent white dwarfs, blue squares represent neutron stars and
green triangles represent main-sequence stars as companions to the pulsar. Black
dots are isolated neutron stars. Galactic disk MSPs are always found around
white dwarfs in perfectly circular orbits. PSR J1903+0327 (in red) falls within
the description of typical MSPs when looking only at the P − Ṗ distribution.
When eccentricity is also taken into account, PSR J1903+0327 occupies a unique
place in the diagram. Source: (Champion et al. 2008)
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light curves are used to obtain precise mass estimates of the compact objects in LMXBs.

Moreover, many heavily reddened systems that are opaque at optical wavelengths can be

best explored at NIR wavelengths.

NIR observations come with their own set of challenges. Water vapor and carbon

dioxide in the Earth’s atmosphere absorb infrared radiation at certain wavelength intervals,

between which the atmosphere is more transparent. For the majority of the work pro-

duced in this thesis, observations were acquired in the J-, H- and K-passbands, with central

wavelengths of 1.25µm, 1.65µm and 2.2µm respectively. In addition, night sky emission

(“airglow”) makes observing challenging at NIR wavelengths. The most dominant contrib-

utor to “airglow” is from the hydroxyl (OH) molecule which emits strongly in the 1–2.5 µm

wavelength range. At wavelengths > 2.5µm, another source of noise is thermal emission

originating in the warm telescope and optics (McLean 1993).

The advent of IR detector arrays has greatly accelerated the pace of infrared research.

IR array construction is based on a “hybrid” structure where the infrared photosensitive

component is physically distinct from the multiplexer that relays the resultant electric signal

from the pixels to the readout electronics. IR arrays can usually be read out non-destructively

in such a way that the charge in each pixel may be read without removing it. Also, when

a certain pixel is read, the neighboring pixel remains undisturbed, allowing multiple reads

to take place. Due to the high background at NIR wavelengths, the array readout time is

required to be fast in IR arrays to avoid saturation of the wells, and therefore shorter expo-

sures are required. Although IR arrays have made rapid improvements, they generally have

higher dark current and readout noise than CCDs. Dark current refers to the illumination

of the array in the absence of photons caused by thermal generation of electrons in the semi-

conductor material and is sensitive to the time of the exposure. Shorter exposures and a

cryogenically-cooled detector will greatly reduce the dark noise contribution. Readout noise

is produced in IR arrays every time the array is read out and this noise is generated in the

readout electronics. Read noise is a constant and is independent of the exposure time. The
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process of Fowler sampling which incorporates multiple non-destructive reads in IR arrays

is often employed to reduce the read noise (Fowler and Gatley 1990). This is explained in

more detail in Chapter 6.

In Chapter 6, I will describe the work done at the Astrophysics Research Lab in the

University of Colorado under the guidance of Stéphane Béland to characterize a Hawaii–1RG

(HgCdTe Astronomy Wide Area Infrared Imager with 1K × 1K resolution, Reference pix-

els and Guide mode) engineering grade chip. Several tests were performed on this detector

to develop ways to identify the source, and to reduce the contribution of, the read noise

component to NIR observations. The results of these tests were intended to be applied to-

wards reducing the read noise in the Near-Infrared Camera and Fabry-Perot Spectrometer

(NICFPS) at Apache Point Observatory (APO). The focus of Chapter 6 is to present the

various tests that were performed to characterize the H1RG Engineering Grade chip.



Chapter 2

Mass of the Black Hole in V404 Cyg

2.1 Introduction

V404 Cyg went into outburst on May 22, 1989 and was subsequently discovered with

the all-sky monitor aboard the Ginga satellite. A high X-ray luminosity of ≈ 1038 ergs/sec

suggested that the system was a close binary system with a black hole or a neutron star

as the accretor (Wagner et al. 1989). During the outburst, the visual magnitude of V404

Cyg increased from V=18.3 to V=11.6. One year after its discovery, it had fallen back

to V=18.0 (Wagner et al. 1992). Since then, V404 Cyg has been studied in quiescence

at optical and infrared wavelengths, establishing most of the system parameters. Casares

et al. (1992) established the mass function, the minimum mass of the compact object, as

f(M) = 6.26±0.31M⊙ which was later refined by Casares and Charles (1994) to be f(M) =

6.08 ± 0.06M⊙. They determined the donor star to be of spectral type K0IV and obtained

the binary mass ratio from the rotational broadening of the absorption lines in the donor

star spectrum. The ellipsoidal modulation of the donor star has been modeled in the NIR to

determine the binary inclination and the black hole mass: in the K-band by Shahbaz et al.

(1994) and in H by Sanwal et al. (1996). The resulting black hole mass determinations were

12 M⊙ and <12.5 M⊙, respectively, where one of the key differences between their results

was that Shahbaz et al. (1994) assumed that the donor star was the only source of flux in the

NIR, while Sanwal et al. (1996) found evidence for accretion disk contamination. Shahbaz

et al. (1996) tested this assumption by performing NIR spectroscopy of V404 Cyg. By
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comparing the NIR spectrum to scaled template spectra from spectral type standard stars,

they determined that the donor star contributes ∼100 % of the K-band flux. However, for this

analysis they relied on fits to the 12CO bands in K, which in other LMXBs (and cataclysmic

variables) have been found to be affected by metallicity variations in the carbon abundance

(Froning et al. 2007). As a result, a broader spectral analysis that examines multiple atomic

and molecular species is required to firmly tie down the donor star contribution in the NIR.

Here, we present broadband (0.8–2.42 µm) NIR spectroscopy of V404 Cyg obtained

with SpeX on the IRTF. By comparing the spectra to field stars of known spectral type, we

determine the donor star contribution to the infrared flux. We use these results to remodel

previously obtained light curve data to determine the binary inclinations and to derive precise

compact star mass for the black hole.

2.2 Observations

V404 Cyg was observed on June 7–9, 2007 with SpeX at the NASA Infrared Telescope

Facility (Rayner et al. 2003). The weather was clear with good seeing conditions (≤ 0.7′′).

All observations were made using the Short XD (SXD) mode through the 0.5′′ slit (R=1200),

which covers the entire wavelength range, 0.8–2.4µm, simultaneously in 6 orders. Due to

the good seeing conditions and the narrow slit used, the observed spectrum was uncontami-

nated by an accidental companion star at 1.5′′ from V404 Cyg. An A0V star was observed

hourly for the purpose of telluric correction. Observations were taken in ABBA pairs in

two positions along the slit with a 300 sec exposure time at each position. The slit was

oriented along the parallactic angle throughout the observations, limiting the relative flux

calibration uncertainties to < 2% (Vacca et al. 2003). Table 2.1 lists the observations with

the corresponding cumulative exposure times and orbital phases observed.

Data reduction consisted of calibration (sky subtraction, flat-fielding, wavelength cal-

ibration), optimal spectral extraction, and telluric correction, all of which were carried out

using the idl based package Spextool (Cushing et al. 2004). Each exposure was shifted to the
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Table 2.1: Table of Observations

Date Exposure time(min) Orbital Phase

06/07/07 100 0.59-0.61
06/08/07 190 0.74-0.76
06/09/07 150 0.89-0.91

rest frame of the donor star, using the orbital ephemeris from Casares and Charles (1994).

The individual shifted exposures were median-combined and all 6 orders were merged to

obtain the time-averaged spectrum. Using the magnitudes of the A0V star, the telluric

correction tool, xtellcor, also flux calibrates the spectra. Given our excellent observing con-

ditions, the absolute fluxes should be fairly accurate, although no attempt has been made

to quantify the accuracy of those values, as they are not necessary for this analysis.

Figure 2.1 shows the time-averaged spectrum of V404 Cyg. The spectrum has been

boxcar smoothed by 3 pixels, corresponding to one resolution element. Statistical errors

were propagated through all the data reduction and processing steps. The spectrum was

corrected for interstellar reddening using a dereddening value of E(B-V)= 1.303 (Hynes

et al. 2009; Miller-Jones et al. 2009). The spectrum in red in Figure 2.1 is the dereddened

spectrum of V404 Cyg. Shown in Figures 2.2, 2.3 and 2.4 are the J-, H-, and K-band spectra.

The prominent spectral features have been labeled using line identifications from Wallace

and Hinkle (1997), Wallace et al. (2000), Kleinmann and Hall (1986), Meyer et al. (1998),

Kirkpatrick et al. (1993), and the Atomic line list1 . The S/N in the time-averaged spectra

of V404 Cyg was obtained by fitting straight lines through various continuum-dominated

regions and measuring the scatter around these fits. As the donor in V404 Cyg is likely a

giant or sub-giant, there are fewer regions of pure continuum. Therefore, a lower limit to

the S/N of ≈ 100 in H and K, and ≈ 50 in J was obtained.

1 http://www.pa.uky.edu/ peter/atomic
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Figure 2.1: The NIR spectrum of V404 Cyg. The time-averaged spectrum, shown in gray,

was obtained after correcting for atmospheric absorption and shifting the indi-

vidual exposures to the rest frame of the donor star. The dereddened spectrum,

using E(B-V)=1.303 (Hynes et al. 2009), is shown in black.



24

Figure 2.2: The J-band spectrum of V404 Cyg. Prominent spectral features are labeled at

the top of the figure and representative error bars are shown near .81µm and

1.35 µm.

Figure 2.3: The H-band spectrum of V404 Cyg with representative error bars.
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Figure 2.4: The K-band spectrum of V404 Cyg with representative error bars.

2.3 Analysis

The spectrum of V404 Cyg shows prominent narrow absorption lines of neutral metals

including Al I, Na I, K I, Mg I, Fe I, Si I, Mg I, Ti I and Ca I. The H-and K-bands also show

molecular absorption bands of 12CO and 13CO. The absorption lines originate in the donor

star. In contrast to many other X-ray binaries, V404 Cyg does not show any strong emission

lines in its infrared spectrum. Shahbaz et al. (1996) performed K-band spectroscopy of V404

Cyg and found no strong emission features either, implying that the non-stellar contribution

(e.g. accretion disk) in V404 Cyg in quiescence is probably very low at all times. In the

K-band, we see both 12CO and 13CO features which are a strong indication of an evolved

donor star. We make use of the entire broadband infrared spectrum to ascertain the spectral

type of the donor star and then obtain a precise value for the relative contributions of the

donor star and other non-stellar sources (e.g. the accretion disk).

First, the broadband spectrum of V404 Cyg was compared to field stars of different
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spectral types. These spectra were obtained from the IRTF Spectral Library2 which consists

of SpeX SXD spectra of stars of known spectral type (Rayner et al. 2009). The template

stars used in the analysis have roughly solar metallicities and similar S/N to each other.

We only used non-variable stars for our analysis. Earlier work done on the spectral type

of the donor star in V404 Cyg suggested a K0IV spectral type (Casares and Charles 1994).

In the IRTF spectral library, the closest available spectral type to a K0 IV is a K1 IV.

Figure 2.5 compares the spectrum of a K1 IV (HD165438) star to the spectrum of V404

Cyg, normalizing the spectrum to that of V404 Cyg just blueward of 2.29µm. It is evident

that the CO bands in the template spectrum are much weaker compared to those in V404

Cyg. Also, if the template is normalized to V404 Cyg in K, its flux exceeds the J-band flux

in V404 Cyg flux by > 30%, indicating that a K1 IV spectrum is too blue to match the donor

star spectrum in V404 Cyg, unless there is another NIR flux source diluting its contribution.

Hynes et al. (2009) did a multiwavelength study of the spectral energy distribution

(SED) of V404 Cyg in quiescence and found no substantial contribution from the accretion

disk from near-UV to near-IR. They also found that for the donor, the spectrum of a K0

III star was in agreement with the data from UV to near-IR. At the same time, their

multiwavelength SED comparison with a G8 III and a K2 III star could not be distinguished

from a K0 III. A K2 III (HD 132935) spectrum was found to exceed most of the J-band

(0.8 – 1.1µ m) flux by >7% when normalized in the K-band, indicating that a K2 III donor

star spectral type would require a diluting flux source in the NIR. Also, the CO bands in a

K2 III appear too weak to match that of V404 Cyg in the K-band. In Figure 2.6, a K3 III

(HD 221246) spectrum is compared to that of V404 Cyg. In this case, the match is much

closer, both in the broadband shape and spectral fluxes and in the relative depths of the

CO bands. When normalized to a 100% in K, we find that the K3 III template exceeds the

J-band, near the band edge (.8 – .9 µ m) by at most 5%. On the other hand, the K4 III (HD

207991) spectrum falls below the V404 Cyg spectrum in J by 20%, so that if that spectral

2 http://irtfweb.ifa.hawaii.edu/ spex/WebLibrary/index.html
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Figure 2.5: Comparison of V404 Cyg ( shown in black) with a K1 IV field star (shown in
gray). The template has been normalized to the spectrum of V404 Cyg just
blueward of the 2.29µm 12CO absorption bandhead. A zoomed–in version of the
CO bands (2.29 – 2.42 µm) shows that a K1 IV star does not match the relative
depths of the CO bands in V404 Cyg.

Figure 2.6: Comparison of V404 Cyg (shown in black) with a K3 III field star (shown in
gray). The zoomed–in version of the CO bands shows a better match between a
K3 III star and V404 Cyg with respect to the depths of these absorption features.
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type is correct, the donor star may dominate the NIR flux in H and K, with an increasing

non-stellar contribution at bluer wavelengths. In conclusion, both the spectral shape and

the strength of the CO bands in V404 Cyg are inconsistent with a K1 IV spectral type for

the donor star and indicate that a more evolved spectral type is better match to the donor

star. In the next section, we calculate the equivalent widths of various lines of V404 Cyg

and compare that to the same features in field star populations to determine the spectral

type more precisely.

2.3.1 Equivalent width analysis

Förster Schreiber (2000), hereafter FS, used the equivalent width (EW) ratios of various

NIR absorption lines in a population of field giants and supergiants (also a few dwarfs) as

indices to determine stellar effective temperature and gravity as well as evidence of dilution

from non-stellar sources. Table 2.2 lists the equivalent widths for V404 Cyg for the diagnostic

features in FS. The error bars represent uncertainties in continuum placement only. By

comparing our EWs to those in Figure 5 of FS, we obtain a donor effective temperature

range of 4200–4600 K, implying a spectral type between K2 III and K4 III, assuming that

the donor star is the only NIR flux source. FS also demonstrated how the EW ratios of

certain lines would change if there was a source of diluting continuum emission. In their

Figure 8 they plotted dilution-free indices (ratios of atomic/molecular EWs) and directional

indicators to show how the indices would change as the contribution from a diluting source

increases. A comparison of the same EW ratios in V404 Cyg to their indices shows that the

V404 Cyg ratios fall on their plots for the non-diluted sources, suggesting that the amount

of dilution in V404 Cyg in both H and K is negligible.

2.3.2 Field star fits to V404 Cyg

To obtain the fraction of NIR continuum emission originating from the donor star, f ,

the spectrum of V404 Cyg was compared with those of field stars ranging from K2 III to
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Table 2.2: Equivalent widths for V404 Cyg using FS indices

Feature Symbol Integration limits Equivalent width(Å)

SiI 1.5892 W1.59 1.5870-1.5910 3.36 ± 0.07
12CO(6,3) 1.6187 W1.62 1.6175-1.6220 4.10 ± 0.08

NaI 2.2076 WNa 2.2053-2.2101 2.03 ± 0.10
FeI 2.2263 WFe1 2.2248-2.2293 1.22 ± 0.74
FeI 2.2387 WFe2 2.2367-2.2402 0.76 ± 0.12
CaI 2.2636 WCa 2.2611-2.2662 2.06 ± 0.23
MgI 2.2814 WMg 2.2788-2.2840 1.18 ± 0.18

12CO(2,0) 2.2935 W2.29 2.2924-2.2977 9.11 ± 0.76
12CO(3,1) 2.3227 W2.32 2.3218-2.3272 9.15 ± 0.28
13CO(2,0) 2.3448 W2.34 2.3436-2.3491 3.30 ± 0.56

Note: The equivalent widths were calculated using the integration limits from Förster Schreiber (2000).

The error bar on the measurements are based on continuum placement uncertainties.
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K4 III spectral types. The spectrum of the template star was convolved with a Gaussian of

38.8 km s−1 FWHM in order to take into account the rotational velocity of the donor star in

V404 Cyg (noting that this correction was negligible given the 250 km s−1 resolution of our

spectra). Before fitting, the spectra of both V404 Cyg and the template were normalized

by fitting cubic splines along the local continuum surrounding the lines under analysis. The

continuum points were picked by eye. We determined the donor fraction as follows: after

normalizing both the target and the template spectra, we multiplied the latter by a fraction,

f , which was incremented from 0 to 1 in steps of 0.01. The result was subtracted from

the spectrum of V404 Cyg to obtain the residual. We then minimized the chi-square, χ2
ν ,

between the residual and the mean of the residual to obtain the donor fraction that gave us

the best fit. In cases where the template had weaker absorption features compared to V404

Cyg, we let the donor fraction, f , take on values greater than 1. Even though this represents

an unphysical scenario, it is useful as a guide to constrain the correct spectral type of the

donor star by calculating the extent of weakness of the absorption feature in a particular

template. For the fitting procedure, we selected only the strongest absorption features and

fit absorption features for individual species separately. There were cases where absorption

features of two different species occurred very close together in wavelength. If we were not

able to separate them and identify the continuum around those absorption features, we did

not include them in our analysis.

In order to better account for the uncertainty associated with the data, we divided

our individual exposures into two sets. They were then separately combined and the result

of one divided by the other. The deviation from the mean was then determined for each

spectral order separately to assign the errors. Since the J-band comprises of three orders, we

obtained the mean of these to assign the error bars for the J-band. We used these errors for

the χ2 analysis for V404 Cyg as it was clear that the statistical error bars were too small and

did not account for systematic uncertainties in the data reduction process. For the template

stars we used the statistical errors provided with the template spectra, but note that the



31

uncertainties for V404 Cyg dominate over the error in the template stars while fitting various

spectral features. Table 2.3 shows the donor fractions calculated for K2 III, K3 III and K4

III spectral types along with the χ2
ν values. When we compare the χ2

ν values for fits across

the entire K and H-band at once, we obtain K3 III as the best match for the donor in V404

Cyg. However, in order to make a final choice on the donor spectral type, we also looked at

all the individual absorption features selected for analysis.

In the K-band, we fit the CO bands together from 2.29 – 2.42 µm and obtained the

best fit with a K3 III spectral type. There is a Na I feature near 2.34 µm included in the

fit region but the fit is dominated by the prominent CO-features. Generally, the K3 III star

has the lowest χ2
ν for fits to individual absorption features compared to the K2 III or the

K4 III template stars. For the K2 III star all the absorption features are consistently weak

in the template compared to V404 Cyg (resulting in the unphysical fit, f > 1). The K4 III

template has fewer f > 1 deviations than for the K2 III star, but some of the lines cannot

be fit with f < 1 and the χ2
ν values are generally larger than for a K3 III template. Even

for the K3 III template, some lines give f > 1 including the Mg I, Ca I and the Al I feature

near 2.28 µm, 1.98 µm and 2.112 – 2.128µm, respectively. These features deviate less from

f = 1 for a K3 III star than for the other templates but may indicate systematic mismatches

(in temperature, gravity, or metallicity) between V404 Cyg and the field star templates.

Overall, a K3 III star provides the most consistent match to the K-band spectrum of V404

Cyg.

In the H-band, looking at the CO features, f = 1.24 for the K2 III template, implying

very weak 12CO features in the template compared to V404 Cyg, whereas in K3 III and K4

III, the value of f is 0.98 and 0.95, respectively. In case of the K2 III star, the value of donor

fraction is consistently > 1 for all the individual features in the H-band also indicating that

most of its absorption features are weaker than in V404 Cyg. With the K3 III and K4 III

stars, Mg I is always weaker in the template than in V404 Cyg (except for one feature at

1.71µm when compared against a K4 III template). This trend is also observed for the Mg
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Table 2.3: Donor fractions, f ,obtained for V404 Cyg with K2 III - K4 III field stars

Band Wavelength range(µm) Feature f(K2 III) χ2
ν f(K3 III) χ2

ν f(K4 III) χ2
ν

1.97 − 2.42 entire K-band 1.05 8.90 0.95 5.83 0.84 8.79
1.97 − 1.99 Ca I 1.36 2.55 1.07 4.50 1.18 9.53

2.112 − 2.128 Al I 1.50 0.20 1.05 0.52 1.57 0.35
K 2.203 − 2.214 Na I 1.50 0.24 0.94 0.15 1.07 0.23

2.26 − 2.27 Ca I 1.24 0.21 0.85 0.15 0.98 0.26
2.276 − 2.286 Mg I 1.60 0.89 1.25 0.87 1.87 0.73
2.28 − 2.42 CO bands 1.05 13.0 0.95 6.70 0.87 17.80

1.48 − 1.72 entire H-band 1.33 21.2 1.09 13.42 1.05 18.76
1.48 − 1.52 Mg I 1.53 3.57 1.19 4.34 1.40 5.96

1.574 − 1.587 Mg I 1.43 7.00 1.15 4.99 1.19 6.78
H 1.584 − 1.595 Si I 1.07 3.70 0.94 2.44 0.98 2.50

1.615 − 1.650 CO bands 1.24 10.5 0.98 6.33 0.95 9.00
1.670 − 1.678 Al I 1.32 3.77 1.03 2.14 1.17 1.85
1.70 − 1.72 Mg I 1.56 4.00 1.18 5.57 0.98 5.00

0.854 − 0.857 Mg I 1.02 1.27 0.91 0.51 0.95 1.05
0.865 − 0.869 Ca I 1.03 1.71 0.89 1.62 0.93 2.15
1.158 − 1.167 Fe I 1.11 0.08 0.83 0.10 1.09 0.12
1.168 − 1.172 K I 1.23 0.04 0.96 0.07 1.11 0.08
1.182 − 1.186 Mg I 1.33 0.19 1.12 0.09 1.24 0.05
1.187 − 1.192 Fe I 1.08 0.09 0.85 0.02 0.90 0.03

J 1.202 − 1.207 Si I 1.23 0.04 1.05 0.02 1.17 0.03
1.279 − 1.287 Ti I 1.59 0.23 1.38 0.21 1.59 0.40
1.287 − 1.292 Mn I 0.99 0.05 0.88 0.02 0.95 0.03
1.310 − 1.317 Al I 1.23 0.15 1.09 0.10 1.16 0.08
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I line in the K-band. The same is true for the Al I feature in the H-band though it is close

to f = 1 for the K3 III template. In the H-band too, we find that a K3 III star is the

most consistent match to the donor star spectrum in V404 Cyg in terms of χ2
ν as well as the

strength of the lines indicated by the donor fraction.

In the J-band too, when we compare the χ2
ν values and also the strength of the ab-

sorption features of the template with respect to V404 Cyg for the three different spectral

types, a K3 III spectral type best matches the donor type in V404 Cyg. From our analysis

with the spectral energy distribution, equivalent width calculation of various lines and direct

determination of donor fractions, we conclude that the donor star in V404 Cyg has a K3

III spectral type. We see from Table 2.3 that the Mg I features for a K3 III spectral type

have been consistently weaker in the template than in V404 Cyg (except the one feature

near .856µm). This suggests an abundance mismatch between the template and V404 Cyg

for this species. The same is perhaps true for Al I but there are not enough features to

establish a consistent trend. For this reason, we did not include Mg I in our final donor

fraction calculation.

Even though there is a good qualitative match between the spectrum and the K3 III

template, our χ2 statistics are poor, ranging from χ2
ν << 1 for fits to individual lines in J and

H to >> 1 for fits to individual lines in H and broadband fits in H and K. We attempted to

take into account the systematic uncertainties that dominate in NIR ground-based spectra by

recalculating the error bars as described above, but it is clear that our error bars are still too

large in J and portions of K and too small in H. Due to this, we did not rely on χ2 statistics

to obtain our final donor fraction. Instead, we determined the donor fraction in V404 Cyg

by taking an average of the best fits to multiple absorption features using a K3 III template

and used the standard deviation between these line fits to represent the uncertainty on the

final value of f . We believe this is a better tracer of systematic uncertainties in our fitting

process because it also takes into account the possibility of slight mismatches between the

V404 Cyg and the stellar template. Using this method, we obtained a H-band donor fraction
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of f = 0 .98 ± .05 and a K-band fraction of f = 0 .97 ± .09 . Thus, we find no substantial

NIR contribution from the non-stellar sources in V404 Cyg similar to Hynes et al. (2009)

and Shahbaz et al. (1996).

In Figure 2.7, we show the the K-band spectrum of V404 Cyg overplotted with the

spectrum of a K3 III star scaled by a factor of 0.97. The close qualitative match between

the template and spectrum is evident. The Mg I lines at 2.10 and 2.28 µm are weaker in the

template spectrum than in the V404 Cyg. Shown in Figure 2.8 is the spectrum of V404 Cyg

in the H-band over plotted with a scaled K3 III spectrum using f = 0.98. The Mg I lines

at 1.50µm, 1.58µm and 1.71µm in the template are weaker than in V404 Cyg but the other

absorption features give satisfactory fits.
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Figure 2.7: The normalized Kband spectrum of V404 Cyg (in black) is shown overplotted

with a K3 III field star (red) normalized and scaled to f = .97 of K3 III field

star. Representative error bars are shown in the figure.
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Figure 2.8: The normalized H-band spectrum of V404 Cyg (in black) is shown overplotted

with a K3 III field star (red) normalized and scaled to f = .98. Representative

error bars are shown in the figure.

2.4 Non-stellar contamination and mass of the black hole in V404 Cyg

Previous estimates have given K0 IV as the donor type in V404 Cyg (Casares and

Charles 1994). Our high S/N NIR spectrum shows strong 12CO and 13CO features that

point to a more evolved star. By comparing the spectral energy distribution with various

field stars, EW diagnostics and dilution analysis, we found that a K3 III star is the best match

to the donor star of V404 Cyg with minimal non-stellar contribution. From a comparison of

the spectrum of V404 Cyg with a scaled K3 III star, one can appreciate the close qualitative

match in the two spectra. In the K-band, the CO bands and most metals are consistent

with the K3 III spectral type but Mg I appears supersolar in both the H- and K-bands.

Unlike other compact binaries like A0620-00 (Froning et al. 2007), XTE J1118+480 (Haswell

et al. 2002) and some cataclysmic variables (Harrison et al. 2000, 2004) that show weak CO
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bandheads and depleted carbon abundances, the CO bandheads in V404 Cyg are consistent

with the solar abundance K3III template spectrum.

Sanwal et al. (1996) obtained an H-band light curve of V404 Cyg. We retrieved their

data from their Figure 2 and remodeled the light curve taking into account the (small)

dilution of the donor star flux. The light curve modeling program is the same as used for

A0620-00 (Froning and Robinson 2001). The parameters used for the model are Teff=4300

K, a gravity darkening exponent of 0.08 (Lucy, 1967) and a limb darkening coefficient from

Claret et al. (1995) for a log g value suitable for a K3 III star (Berdyugina and Savanov 1994;

Cayrel de Strobel et al. 1980). For the error bars on the light curve, we used the scatter on

the reference field star observed by Sanwal et al. (1996) (.02 mag) and equally weighted the

points. For a mass ratio of q = 0.060+.004
−.005 and f(M) = 6.08± .06 (Casares and Charles 1994),

the mass of the BH can be written to one unknown as MBH = (6.83 ± .09) sin−3 i, where i

is the inclination of the binary. We varied the donor fraction from .93 – 1.00 and obtained

a best fit (χ2
ν = 3.3) to the H-band light curve data for an inclination of i = (67+3

−1)
◦ where

the uncertainty in the inclination is propagated from the fractional donor star contribution.

Figure 2.9 shows the best fit light curve of V404 Cyg obtained for q = .06 and i = 67◦. The

uncertainty was dominated by the change in the donor fraction. The uncertainty in the mass

reflects the uncertainty from varying the donor fraction. It does not include the uncertainty

in the light curve measurements. Accordingly, we obtained the mass of the black hole in

V404 Cyg as 9.0+.2
−.6M⊙ for q = 0.06.
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Figure 2.9: The best fit H-band light curve of V404 Cyg using the orbital ephemeris of

Casares and Charles (1994). The data points (diamond) and the equally weighted

error bars for each point are obtained from Sanwal et al. (1996). The solid line

shows the best fit to the ellipsoidal modulation including 2% dilution from the

non-stellar sources for an inclination of 67◦ and q = 16.67.

It has been shown in Cantrell et al. (2008, 2010) that fitting ellipsoidal models to the

light curves of A0620-00 in its passive state increases the binary inclination considerably.

The variability in the light curve shape (which can change from night to night) has been

attributed to the disk component. Since V404 Cyg has a high S/N, we tested the stability

of the donor fraction from the spectrum obtained for each individual night and found it to

be fairly constant for each night. V404 Cyg exhibits fast strong variability which is likely

produced by the disk (Sanwal et al. 1996). To test what effect that would have on the

inclination and the black hole mass, we picked points from the lower envelope of their light

curve data in Figure 1 by eye. We found a best fit for an inclination of ≈ 72◦ which translates

to a reduction of black hole mass by about 1M⊙.

Shahbaz et al. (1996) obtained a 100% contribution of the donor star to the infrared
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flux in the K-band which implies a binary inclination of 56◦. Despite our comparable result

for the donor contribution, their inclination does not agree with our value within the error

bars. They used the light curve from Shahbaz et al. (1994) to determine the inclination.

Sanwal et al. (1996) recalculated their K-band model light curve by equally weighing each

night of data and obtained a significant improvement on the variance of the model light

curve. From Figure 2 of Sanwal et al. (1996), for a mass ratio of q=.07, the absolute lower

limit to the inclination corresponds to ≈ 60◦. They established an upper limit of 12.5M⊙ for

the mass of the black hole in V404 Cyg and our result is consistent with their limits with

respect to both the inclination and the BH mass.

In our analysis, there are areas that contribute to systematic uncertainties which may

not be accounted for in our final uncertainties. One of these is using a field star to duplicate

the Roche-lobe filling donor stars. In V404 Cyg, we found that a K3 III field star with

near-solar abundance matched the donor of V404 Cyg quite well except for the Mg I lines.

Previous studies have assumed that the light curve shape is consistent throughout

quiescence. However, it has been shown in several systems that this assumption is not

valid and will lead to systematic errors in the determination of the compact star masses

(Cantrell et al. 2008, 2010). We obtained the spectra of our targets in 2007 whereas the light

curve data for V404 Cyg were obtained in 1993 respectively. This wide time gap between

obtaining the light curve data and the spectra adds to the uncertainty associated with the

mass of the compact objects. In V404 Cyg, the non-stellar contribution is very small and

has remained so over multiple observations (Shahbaz et al. 1996; Hynes et al. 2009). Our

fractional contribution for the donor star agrees with the value obtained by Shahbaz et al.

(1996) within their statistical uncertainties implying that the small non-stellar contamination

in the K-band has changed negligibly in the time gap between the two observations.
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2.5 Conclusion

We have obtained broadband near infrared spectroscopy of V404 Cyg in order to di-

rectly evaluate the relative contributions in the infrared light due to the donor star and

non-stellar sources and determine precise compact star masses. We determined the spectral

type of the donor star in V404 Cyg to be a K3 III. We performed dilution analysis based on

individual prominent metal lines and groups of lines and determined the donor star fraction

to be 0.98 ± .05 in the H-band and 0.97 ± .09 in the K-band. With previous light curve

data in the H-band, we obtained the inclination of the binary as i = (67+3
−1)

◦ and a mass

for the BH of 9.0+.2
−.6 M⊙ . The mass estimated for the black hole should be viewed with

some caution, however, since contemporaneous light curve and spectral data are required to

obtain definitive masses.



Chapter 3

Mass of the Neutron Star in Cen X-4

3.1 Introduction

Cen X-4 was discovered on May 23, 1969 by the Vela 5B satellite (Conner et al. 1969)

when it went into X-ray outburst. During its second outburst in 1979, it increased in visual

magnitude by ∼6 magnitudes from its pre-outburst phase (Canizares et al. 1980). Matsuoka

et al. (1980) identified the mass accreting star as a neutron star due to the fact that it

displayed a Type I burst. Shahbaz et al. (1993) modeled the H-band light curve to obtain

a binary inclination of 31◦–54◦ and the mass of the neutron star as 0.5–2.1M⊙. Torres

et al. (2002) performed high-resolution optical spectroscopy on Cen X-4 in quiescence and

determined the mass of the compact object as 0.49M⊙ < M < 2.49M⊙. They determined

the mass function to be f(M) = 0.220 ± 0.005M⊙, which was later refined by D’Avanzo

et al. (2005) to f(M) = 0.201 ± 0.004M⊙. The system parameters were again refined by

Casares et al. (2007) and much tighter constraints were imposed on the radial velocity semi-

amplitude, K2 = 144.6 ± .3 km s−1, the orbital period, P = .6290522 ± .0000004 d and the

binary mass ratio, q = .20± .03. The mass function adopted for this paper is calculated from

the P and K2 values of Casares et al. (2007), which is f(M) = 0.197 ± 0.001M⊙. However,

as with V404 Cyg, in all the above cases, it was assumed that the donor star was the only

NIR flux source, an assumption that has not been tested in Cen X-4.

In this paper, we present broadband (0.8–2.42 µm) NIR spectroscopy of Cen X-4

obtained with SpeX on the IRTF. By comparing the spectra to field stars of known spectral
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type, we determine the donor star contribution to the infrared flux. We use these results

to remodel previously obtained light curve data to determine the binary inclinations and to

derive precise compact star mass for the black hole.

3.2 Observations

Like V404 Cyg, Cen X-4 was observed on June 7–9, 2007 with SpeX at the NASA

Infrared Telescope Facility (Rayner et al. 2003). All observations were made using the Short

XD (SXD) mode through the 0.5′′ slit (R=1200), which covers the entire wavelength range,

0.8–2.4µm, simultaneously in 6 orders. An A0V star was observed hourly for the purpose of

telluric correction. Observations were taken in ABBA pairs in two positions along the slit

with a 300 sec exposure time at each position. The slit was oriented along the parallactic

angle throughout the observations, limiting the relative flux calibration uncertainties to

< 2% (Vacca et al. 2003). Table 3.1 lists the observations with the corresponding cumulative

exposure times and orbital phases observed.

Table 3.1: Table of Observations for Cen X-4

Date Exposure time(min) Orbital Phase

06/07/07 100 0.80-0.92
06/08/07 30 —–a

06/09/07 110 0.97-0.05

a Data from 06/08 was not used due to poor data quality at high extinction.

Data reduction consisted of calibration (sky subtraction, flat-fielding, wavelength cal-

ibration), optimal spectral extraction, and telluric correction, all of which were carried out

using the idl based package Spextool (Cushing et al. 2004). Each exposure was shifted to

the rest frame of the donor star, using the orbital ephemeris from Casares et al. (2007). The

individual shifted exposures were median-combined and all 6 orders were merged to obtain

the time-averaged spectrum. Using the magnitudes of the A0V star, the telluric correction
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tool, xtellcor, also flux calibrates the spectra. Given our excellent observing conditions,

the absolute fluxes should be fairly accurate, although we have not made any attempt to

quantify the accuracy of those values, as they are not necessary for our analysis. Figure 3.1

shows the time-averaged spectrum of Cen X-4. It has been boxcar smoothed by 3 pixels

and dereddened assuming E(B-V)= 0.1 (Blair et al. 1984). Figures 3.2, 3.3 and 3.4 shows

the J-, H-, and K-band spectra of Cen X-4. We estimated the S/N in the time-averaged

spectra of Cen X-4 by fitting straight lines through various continuum-dominated regions

and measuring the scatter around these fits. For Cen X-4 we obtained a S/N ≈ 15–20 in J

and K, and ≈ 25–30 in H.

Figure 3.1: The NIR spectrum spectrum of Cen X-4. The time–averaged spectrum was ob-

tained by correcting the individual exposures for atmospheric absorption and

shifting them to the rest frame of the donor star. The spectrum has been dered-

dened using E(B-V)=0.1 (Blair et al. 1984).
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Figure 3.2: The J-band spectrum of Cen X-4. Prominent emission and absorption features

are labeled at the top of the figure. Representative error bars are shown near

wavelengths .94 µm and 1.25 µm.

Figure 3.3: The H-band spectrum of Cen X-4 with representative error bars.
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Figure 3.4: The K-band spectrum of Cen X-4 with representative error bars.

3.3 Analysis

The spectrum of Cen X-4 shows broad emission lines of H I and He I and narrow

absorption lines of neutral metals including transitions of Na I, Mg I, Al I, Si I, Ca I,

Fe I and molecules including 12CO. The absorption lines originate in the cool donor star

while the emission lines originate in the accretion disk. Chevalier et al. (1989) observed

Cen X-4 in quiescence and determined the donor star to be of spectral type K5V – K7V.

They also estimated that 25-30% of the total light was contributed by the accretion disk at

visual wavelengths. In the infrared, the contribution from other non-stellar sources (e.g the

accretion disk) to the total flux has traditionally been expected to be even less. Shahbaz

et al. (1993) obtained the H-band light curve of Cen X-4 and predicted the contribution from

the accretion disk to be significantly less than 10%.

Our spectrum of Cen X-4 is noisier compared to that of V404 Cyg which will make

a precise spectral type determination more challenging. We compared the spectrum of Cen
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X-4 with field dwarfs ranging from K5 – M1 V. The normalization was done at a wavelength

just blueward of the 12CO bandhead near 2.29 µm. If the donor star in Cen X-4 is the only

contributor to the infrared flux, we find that the spectral types K5 – K7 V can be excluded.

When the flux of a K5V star is normalized to that of Cen X-4 in the K-band, it exceeds the

flux in the H-band by > 15%. This excess in flux decreases as we move to cooler stars. For

example, in Figure 3.5 we find an excess of ≈ 5% in a K7 V star in the H-band and in the

short J-band when normalized in K. From the comparisons, we conclude that if the donor

star in Cen X-4 is the only NIR flux contributor, then it must be of spectral type later than

K7 V; otherwise, some dilution must be present. For later spectral types, the flux of the

donor star falls below that of Cen X-4 in the J-band and matches the H-band, as seen for

an M0 V star in Figure 3.6. We also find ≈ 1% (less than the error in the K-band) excess in

the shorter K-band in all spectral types including an M0 V, indicating that some dilution,

if quite small, may be needed for later spectral types as well.
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Figure 3.5: Comparison of the NIR spectrum of Cen X-4 (shown in black) with a K7 V field

star (shown in gray). The field star spectrum has been normalized to that of

Cen X-4 just blueward of 12CO bandhead at 2.29 µm.
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Figure 3.6: Comparison of the NIR spectrum of Cen X-4 (shown in black) with a M0V field

star (shown in gray). The field star spectrum has been normalized to that of

Cen X-4 just blueward of the 12CO bandhead at 2.29 µm.

3.3.1 Equivalent width analysis

The analysis in FS focuses more on giants and supergiants than dwarfs, making use of

the temperature and dilution indices ideal for V404 Cyg but less so for Cen X-4. However,

we calculated the equivalent widths of the absorption features used by FS. Table 3.2 lists

the values obtained for the equivalent widths of several absorption lines in Cen X-4. Due to

the lack of data on dwarfs in FS coupled with a low S/N Cen X-4 spectrum, we obtained a

large scatter in the Teff values. We relied on just the prominent lines in Cen X-4 like the

Ca I line at 2.26µm, the 12CO bandhead at 2.29µm, the Na I line at 2.2µm, and the 12CO

bandhead at 1.62µm to constrain the spectral range of the donor. For Ca I at 2.26µm in FS,

there are no data on dwarfs for the EW we obtained. With the remaining lines, we find K7

V – M1 V as the spectral range of the donor star in Cen X-4 in the event of no dilution.
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Table 3.2: Equivalent Width analysis for Cen X-4 using FS indices

Feature Symbol Integration limits Equivalent width(Å)

SiI 1.5892 W1.59 1.5870-1.5910 3.08 ± 0.41
12CO(6,3) 1.6187 W1.62 1.6175-1.6220 1.90 ± 0.13

NaI 2.2076 WNa 2.2053-2.2101 2.56 ± 0.21
FeI 2.2263 WFe1 2.2248-2.2293 2.25 ± 0.36
FeI 2.2387 WFe2 2.2367-2.2402 0.51 ± 0.38
CaI 2.2636 WCa 2.2611-2.2662 3.30 ± 0.55
MgI 2.2814 WMg 2.2788-2.2840 0.89 ± 0.48

12CO(2,0) 2.2935 W2.29 2.2924-2.2977 4.50 ± 0.44
12CO(3,1) 2.3227 W2.32 2.3218-2.3272 3.01 ± 0.43
13CO(2,0) 2.3448 W2.34 2.3436-2.3491 1.0 ± 0.59

The equivalent widths were calculated using the integration limits from Förster Schreiber (2000). The error

bars on the measurements are based on continuum placement uncertainties.



50

Ali et al. (1995) have performed a similar analysis to FS but with emphasis on dwarfs

ranging from F3 – M6 V. We calculated the equivalent widths for Ca I, Mg I, Na I and

the 12CO (2-0) band using the integration limits defined in their paper, which we show in

Table 3.3. (Note that the FS and Ali et al. (1995) EWs are typically different for the same

spectral features because of different choices in the integration limits over which the EWs

were calculated.) We compared the EWs obtained for Cen X-4 with Figures 3 and 4 of Ali

et al. (1995). Again, if we use only the prominent lines we find that the EW from Na I

points to a spectral type K5 – K7 V and that Ca I predicts a spectral type later than K7

V. The EW of the 12CO bandhead at 2.29µm gives inconclusive results as it falls within the

flat portion of their data. The same is true for the Mg I feature. Ali et al. (1995) also noted

that the sensitivity of CO to gravity makes it less useful as a temperature diagnostic. In the

absence of dilution, we estimate the range of the spectral type of the donor in Cen X-4 as

K5 – M1 V.

Table 3.3: Equivalent Width analysis for Cen X-4 using Ali et al. indices.

Feature Symbol Integration limits Equivalent width(Å)

NaI 2.2076 WNa 2.204-2.211 3.33 ± 0.33
CaI 2.2636 WCa 2.258-2.269 5.89 ± 1.23
MgI 2.2814 WMg 2.279-2.285 1.65 ± 0.57

12CO(2,0) 2.2935 W2.29 2.289-2.302 5.27 ± 1.09

The equivalent widths were calculated using the integration limits from Ali et al. (1995). The error bars on

the measurements are based on continuum placement uncertainties.

Our conclusion from the EW calculation using the absorption features of Ali et al.

(1995) is different from the estimate of FS in that we cannot rule out K5 V as a possible

donor type. At the same time, from a spectral energy distribution comparison, if a spectral

type as early as K5 V or K7 V were to be a possible donor in Cen X-4, we should expect

to find some amount of dilution. We will examine the full K5 V – M1 V range to find out



51

the best spectral type for the donor in Cen X-4. In the next section, we present the results

obtained from performing a dilution analysis.

3.3.2 Field star fits to Cen X-4

We compared the spectrum of Cen X-4 with those of field dwarfs: K5 V (HD36003),

K7 V (HD237903) and M1 V (HD19305) spectral types from the IRTF spectral library using

the same procedure used in calculating the donor star fraction in V404 Cyg. The spectrum

of the template star was convolved with a Gaussian of 43 km s−1 FWHM to account for

the rotational velocity of the donor in Cen X-4. The same procedure for determining the

donor fraction in V404 Cyg was used for Cen X-4. For the fitting process, we chose only the

most prominent absorption features in the spectrum of Cen X-4. The absorption features of

individual species were fit separately and when such features occurred too close in wavelength

such that the continuum region around an individual species could not be separated, we did

not include that in our analysis. Due to the lower S/N, we fitted fewer lines than in V404

Cyg.

In order to better account for the systematic uncertainties, we determined the error

bars in Cen X-4 by fitting straight lines through various continuum-dominated regions in

the J-, H- and K-bands. For Cen X-4, we found this a more reliable method for error

determination than the method of dividing the data into half used for V404 Cyg. (Since the

NIR spectra of giants have fewer regions of continuum without strong line absorption, this

method could not be applied in the error determination of V404 Cyg.) We propagated the

error from the template stars as well in our analysis although the χ2
ν values are dominated

by the uncertainty from the Cen X-4 spectrum.

Table 3.4 shows the best fit donor fractions along with the χ2
ν values obtained in Cen

X-4 for various wavelength ranges with K5 V – M0 V template stars. When we compare the

χ2
ν values for fits across the entire K and H-band at once (after masking out the emission

lines), we obtain an M0 V and a K5 V as the best matches, respectively. The entire J-band
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could not be normalized satisfactorily at once and hence is absent in Table 3.4. We also

looked at the χ2
ν values and the donor fractions for individual lines. In the K-band, a K5 V

star has the lowest χ2
ν for most of the features while in the H- and the J-bands, it is an M0

V and a K5 V star, respectively. For all the features, we also examined the donor fractions

for cases where f > 1. From Table 3.4, it is seen that in the K-band, an M0 V satisfies

f ≤ 1 for most cases and a K5 V does not; whereas in the H-band, all three spectral types

are almost equally good, though the Si I feature (1.585 – 1.605 µm) gives f > 1 for all three

templates. The same can be said of the J-band considering that the fractions f = 1.03 and

f = 1.06 obtained for a K7 V and an M0 V in the Mg I feature are close to f = 1 (especially

given the low S/N of Cen X-4). From this examination, it is evident that that data will not

support narrowing the spectral type of the donor star from the K5V – M0V range under

consideration.

Three features (the Na I line in the K-band, the Si I features in the H- and J-band

and the Fe I feature in the J-band) are consistently weaker in all the templates than in

Cen X-4. This might represent abundance mismatch between the donor in Cen X-4 and the

templates akin to the mismatch seen in the Mg I feature in V404 Cyg. FS has noted that

the temperature and luminosity variations of Ca I, Na I and Fe I features in the K-band are

primarily governed by a blend of those species with Sc I, Ti I and V I which could explain why

it is challenging to self-consistently match templates to these features. (A similar problem

was encountered in K-band fits to the spectrum of A0620-00; Froning et al. 2007). These

features cannot be eliminated from the final donor fraction calculation, however. Owing to

the presence of only a couple of these species in the entire spectrum, it is not possible to make

a decisive statement about abundance mismatch for specific elements. Other notable features

are the 12CO features in the K-band and in the H-band, which in other X-ray binaries such

as A0620-00 have been anomalously weak. The CO feature in the K-band is much weaker

in the template for a K5 V and a K7 V compared to Cen X-4, but all of the spectral types

give consistent results of f ∼ 0.93 for the H-band feature. A better S/N spectrum of Cen
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Table 3.4: Donor fractions, f , calculated for Cen X-4 with K5 V - M0 V field stars.

Band Feature Wavelength range(µm) f (K5 V) χ2
ν f (K7 V) χ2

ν f (M0 V) χ2
ν

1.97 − 2.42 K-band 1.00 6.76 0.90 7.40 0.93 6.76
1.97 − 1.99 Ca I 1.20 2.62 0.85 3.72 0.73 3.83

K 2.203 − 2.214 Na I 1.48 1.39 1.25 1.05 1.15 1.15
2.260 − 2.272 Ca I 1.15 0.95 0.98 1.16 0.95 1.17
2.295 − 2.305 12CO 1.20 1.38 1.12 1.60 1.00 1.67

1.48 − 1.72 H-band 0.89 2.56 0.93 2.75 0.92 2.76
1.48 − 1.52 Mg I 0.93 1.24 0.97 1.07 0.98 1.20
1.57 − 1.582 Mg I 0.95 0.90 1.04 1.02 0.98 0.85

H 1.585 − 1.605 Si I 1.10 1.37 1.15 1.60 1.22 1.33
1.615 − 1.65 12CO 0.93 1.02 0.93 0.96 0.92 1.20
1.67 − 1.68 Al I 0.88 2.46 0.93 2.59 0.90 2.54
1.70 − 1.72 Mg I 0.71 2.25 0.71 2.21 0.68 2.12

1.182 − 1.186 Mg I 0.92 0.70 1.03 0.56 1.06 0.72
1.187 − 1.192 Fe I 1.26 1.01 1.15 1.02 1.23 1.06

J 1.202 − 1.207 Si I 1.38 0.88 1.71 1.06 1.82 1.28
1.310 − 1.317 Al I 0.86 1.55 0.86 1.92 0.80 0.93



54

X-4 is required to make a conclusive argument about this discrepancy especially as the S/N

deteriorates sharply in the long K region where the CO bandheads occur.

We determined the final donor fraction by averaging over all the individual selected

features from Table 3.4 for all three of the spectral type templates from K5 – M0 V. We

obtain a mean donor fraction of f = 0.94 ± .14 in the H-band and obtain f = 1.09 ± .20 in

K. Thus, the non-stellar sources can contribute up to 10% in the K-band. If a K5 V were

to be excluded from the donor spectral type (based on its weak K-band features), we find

a non-stellar contribution of up to 17% in K. This is consistent with the H -band fraction

of 0.94, which would imply a ∼6 – 10% dilution in K (depending on the template spectral

type). The H-band donor fraction contribution of f = 0.94 ± .14 remains the same whether

the K5 V star is included or not. Since the mass of the NS in Cen X-4 will be obtained from

the H-band light curve data of Shahbaz et al. (1993), the inclusion or exclusion of a K5 V

star will not affect the final mass. Figure 3.7 and 3.8 shows a comparison of the spectrum

of Cen X-4 in the H- and K-band respectively, after scaling a K7 V and an M0 V template

by a donor fraction of .94 and 1.0 respectively.
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Figure 3.7: The normalized H-band spectrum of CenX-4 is shown in black. Overplotted in

red is a K7V field star, normalized and scaled to f = 0.94. Representative error

bars are shown in the figure.
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Figure 3.8: The normalized K-band spectrum of CenX-4 is shown in black. Overplotted in

red is the spectrum of an M0 V field star, normalized and scaled to f = 1.00

with representative error bars.

3.4 Non-stellar contamination and mass of the neutron star in Cen X-4

From a comparison of the spectrum of Cen X-4 to those of various field dwarfs, we

found that the donor star in Cen X-4 is probably not the only source of NIR flux. We found

that in the H-band, a fraction, 0.94 ± 0.14, of the NIR flux comes from the donor star while

in the K-band this fraction is 1.09 ± .20. Earlier estimates for the donor type in Cen X-4

include a K7 V star (Shahbaz et al. 1993) , a K3 V–K5 V star (Torres et al. 2002) and a K3

V–K5 V star (D’Avanzo et al. 2005). We have estimated the donor type in Cen X-4 to lie

between a K5 V and an M1 V. If the donor star is a K5 V or K7 V, there must be at least

5 – 15% K-band dilution to reconcile the NIR spectral energy distribution in Cen X-4 with

the template SED. A later type donor star of M0 V or M1 V requires only a few percent

dilution in the K-band to match the broadband SED. Higher signal to noise data is required
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to constrain the donor spectral type even further.

We use the orbital parameters from Casares et al. (2007) and determine the mass

function is found to be f(M) = .197 ± .001. Using this value of the mass function and the

binary mass ratio, q = .20± .03, the mass of the neutron star in Cen X-4 can be written upto

one uknown as (0.28±.01) sin−3 i M⊙. For modeling purposes, we chose Teff = 4300 K for a

K7 V. We chose a value of log g=4.5 appropriate for a K7 V star to obtain the corresponding

limb darkening coefficients (Claret et al. 1995). We also chose a value of 0.08 for the gravity

darkening coefficient assuming that the donor has a convective envelope (Lucy 1967; Sarna

1989). The flux from non-stellar sources will reduce the apparent amplitude of the ellipsoidal

modulations which in turn will underestimate the binary inclination and overestimate the

mass of the neutron star. We determined that the contamination from the non-stellar could

be up to 20% in H. We can make an initial estimate of the mass of the neutron star in

Cen X-4 by combining our dilution estimate with the H-band light curve observations of

Shahbaz et al. We read in their light curve data from their Figure 1. Their data points

include uncertainties in both magnitude and orbital phases, which was derived from how

they binned their data (rescaling their errors in each phase bin to get χ2
ν = 1 and then

averaging the points). We could not read these values off their graph, so we assumed an

equal weighting on each point using the 0.006 mag error for their reference star measurement.

In order to take into account the uncertainties in the orbital phase by Shahbaz et al.

(1993), we varied the donor fraction in Cen X-4 from 0.80 < f < 1.00 along with a phase-

offset that gave the lowest χ2 for a certain inclination. We obtained an inclination of (35+4
−1)

◦

for the binary from which we obtained the mass of the neutron star as MNS = 1.5+.1
−.4M⊙.

Figure 3.9 shows the best fit (χ2
ν = 9.57) to the H-band light curve (dashed line) of Cen

X-4 for q = 0.20 and i= 36◦ for a phase-offset of .03, after it was modeled with a K7 V

donor plus 6% constant dilution contribution. The solid line represents the best fit for no

phase-offset (χ2
ν = 12.2). Note, however, that the uncertainty on our final result only reflects

the uncertainty in varying the donor star fraction. It does not include the uncertainty in



58

the light curve measurements. As a result, our derived neutron star mass and uncertainty

should be viewed with some caution.

Figure 3.9: The best fit H-band light curve of Cen X-4 with zero phase-offset and an incli-

nation of 35◦ is shown in solid while the dashed line represents the best fit for

an inclination of 36◦ and a phase-offset of .03. The data points (diamond) and

the equally weighted error bars for each point are obtained from Shahbaz et al.

(1993). Both include 6% dilution from non-stellar sources and are plotted for q

= 0.20.

With that caveat, the value 1.1M⊙ < MNS < 1.6M⊙ we find is consistent with past

estimates found by Casares et al. (2007), Torres et al. (2002), D’Avanzo et al. (2005) and

Shahbaz et al. (1993). To include the spectral types between M0 V – K5 V we varied the

temperature, Teff from 3700 K to 4500 K, and found that the inclination changes by ≈ 1◦.

We obtain the same variation in the inclination if we use log g=4.0 if the donor in Cen X-4

were to be a sub-giant. The mass ratio value also has a negligible effect on the inclination.
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Upon varying the mass ratio within its uncertainties (0.20±0.03), we found the inclination

to change by less than a degree. The biggest uncertainty comes from varying the donor

fraction than from varying any other parameters.

Both Chevalier et al. (1989) and Shahbaz et al. (1993) have argued that the donor in

Cen X-4 is more likely a subgiant than a dwarf. They pointed out that based on the orbital

period alone, if the donor were to be a main sequence star, it would underfill the Roche-lobe

by a factor of ≈ 2. The CO bands would provide the best tracer of whether the donor

star is evolved. We could not test this hypothesis here, both because of the relatively poor

data quality in the long wavelength end of the K-band where the strongest CO bandheads

occur, and because of the dearth of subgiant stars in the IRTF spectral library. Hence, the

possibility that the donor in Cen X-4 could be a subgiant (later than K1 IV) remains open

at this point .

It has been seen that pulsar masses are typically higher (≈ 1.50 M⊙) in neutron star–

white dwarf systems than in neutron star–neutron star systems and this is attributed to

higher accretion in these systems (Nice et al. 2008). It has been pointed out by Shahbaz

et al. (1993) that either the neutron star (NS) in Cen X-4 was formed as it reached the end

of nuclear evolution in the progenitor’s core or it could have collapsed to form a neutron star

by gradual accretion onto a dwarf with electron degenerate core. In the latter case, the mass

of the neutron star could be higher than typical neutron star masses as they can accrete up

to several tenths of solar mass during their lifetimes (Casares 2006; Bhattacharya and van

den Heuvel 1991). Our value of the mass of the neutron star in Cen X-4 exhibits a range

of 1.1M⊙ < MNS < 1.6M⊙ with the most probable value of 1.5M⊙. The error on the mass

needs to be constrained further in order to realize whether Cen X-4 could be a potential

system for understanding nuclear matter, and to rule out different equations of state similar

to the neutron star LMXB candidate, Cyg X-2 (Casares et al. 1998). Both for the analysis

done on V404 Cyg and Cen X-4, there exists systematic uncertainties which may not be

accounted for in our final uncertainties. One of these is using a field star to duplicate the
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Roche-lobe filling donor stars. For Cen X-4, we find that after applying the final donor

fraction, some of the lines in the template were still weaker than Cen X-4. Using a field

dwarf with solar abundances to represent a Roche-lobe filled star in Cen X-4 could be a

plausible explanation for this discrepancy, as could minor mismatches between template and

donor star in temperature, gravity, or metallicity. We attempted to mitigate this potential

error source in Cen X-4 by averaging over fits to multiple lines and multiple spectral types

to obtain the fraction and its uncertainty. Fortunately, our results are dominated by the

H-band donor fraction where we obtained consistent results for all three template stars. It

has been shown that the light curve will vary in morphology even in quiescence which will

lead to systematic uncertainties in the compact object mass estimates (Cantrell et al. 2008,

2010). We obtained the spectra of our targets in 2007 whereas the light curve data for

Cen X-4 were obtained in 1990-91 respectively. This wide time gap between obtaining the

light curve data and the spectra adds to the uncertainty associated with the mass of the

compact objects. For Cen X-4, we do not have as much information about the long-term

variability of the system. However, the uncertainty on our donor star fraction (±14% in H)

and resulting uncertainty on the neutron star mass is broad enough to span the observed

range of variability in the system. We also note that the 1.5M⊙ result is consistent with the

masses measured in other NS LMXBs. Contemporaneous light curve and spectral data are

recommended to obtain a definitive NS mass in Cen X-4.

3.5 Conclusion

We have obtained broadband near infrared spectroscopy of Cen X-4 in order to directly

evaluate the relative contributions in the infrared light due to the donor star and the non-

stellar sources and to determine the mass of its neutron star. We performed a similar analysis

as in V404 Cyg but restricted our fits to the strongest absorption lines due to the lower S/N

of the spectrum. We determined the spectral type of the donor star to lie within the range

K5 V – M1 V but could not constrain it further. The dilution fraction was determined
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to be 0.94 ± .14 in the H-band and 1.09 ± .20 in the K-band. From past H-band data we

modeled the light curve with a donor star plus a constant flux from other non-stellar sources

and determined the mass of the neutron star in Cen X-4 as 1.5+.1
−.4M⊙ which agrees well

with past estimates. However, contemporaneous light curve and spectral data are required

to obtain definitive masses, and the mass obtained by us should be viewed with some caution.



Chapter 4

Mass of the Black Hole in XTE J1118+480

4.1 Introduction

XTE J1118+480 belongs to the class of transient low mass X-ray binaries (LMXBs) in

which a late type donor star transfers mass to its compact companion (either a black hole

or a neutron star) via an accretion disk. Accurate compact object masses are required to

test models of formation and evolution of black holes (BHs) and neutron stars (NSs) (Brown

et al. 1998; Fryer and Kalogera 2001; Nelemans and van den Heuvel 2001; Belczynski et al.

2011). XTE J1118+480 was discovered with the All-Sky Monitor (ASM) aboard the Rossi

X-ray Timing Explorer (RXTE) satellite on March 29, 2000. Several independent observa-

tions obtained in quiescence have established various key properties of the binary, including

its relatively short orbital period (Porb = 0.16 days), a secondary star radial velocity semi-

amplitude of ∼709 km s−1, and a mass function (or minimum mass) of the compact object

of f(M) = 6.27 ± .04M⊙ (González Hernández et al. 2008). The minimum mass of the

compact object has established beyond doubt that XTE J1118+480 contains a BH. Because

of its location along a sightline of low interstellar absortion (AV =0.06), this system has been

extensively studied both in outburst and in quiescence at multiple wavelengths. These data

have been used to test accretion disk and jet models (Yuan et al. 2005; Maitra et al. 2009),

to test models of natal kicks and spin-orbit misalignments between the black hole and the

accretion disk (Fragos et al. 2009), and to predict observational tests of braneworld gravity

models (Johannsen 2009).
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A BH is completely characterized by its mass and spin, and a reliable estimate of the

latter is intricately dependent on the former (e.g. Steiner et al. (2009)). These two parame-

ters are critical in understanding space-time behavior near the vicinity of a BH (McClintock

et al. 2011). Observations of BHs in X-ray binaries are also key for understanding super-

massive BHs in AGNs. Studies have revealed a “Fundamental Plane” of BH accretion in

which X-ray luminosity, radio luminosity, and BH mass are related, both for Galactic BHs

and their supermassive counterparts, implying that physical processes in AGNs can be de-

termined from observations of similar processes in X-ray binaries by an appropriate scaling

of the BH mass thereby allowing us to take advantage of the faster timescales of variability

in X-ray binaries (Merloni et al. 2003; Falcke et al. 2004; Markoff et al. 2008). Compact

object masses in LMXBs are commonly measured in the near-infrared (NIR), where the

late-type donor star dominates. Often, investigators assume a negligible contribution from

non-stellar sources (e.g. the accretion disk) at NIR wavelengths. However this assumption

has often been questioned based on the work done by Cantrell et al. (2008, 2010); Reynolds

et al. (2008). Unaccounted-for extra flux will lower the measured binary inclination from its

true value and consequently overestimate the BH mass. This could potentially provide an

explanation for the lack of observed low mass BHs seen in the 2 – 5M⊙ range in the observed

NS-BH mass distribution (see, Bailyn et al. (1998); Farr et al. (2011); Özel et al. (2010)),

for systems for which the minimum mass function falls within (or below) this range. BH

masses are calculated by a combination of spectroscopy (to determine the non-stellar NIR

light fraction) and light curve modeling (to determine the binary inclination after account-

ing for the non-stellar flux). However, Cantrell et al. (2008, 2010) have shown that XRB

light curve morphologies can vary throughout quiescence. As a result, robust masses can be

obtained only when light curve data is supplemented with contemporaneous spectral data.

Gelino et al. (2006) obtained the most comprehensive light curve data set of XTE

J1118+480, covering the B, V, R, J, H and K wavebands and simultaneously modeling all

the light curves to derive an inclination of 68+2.8
−2.0 degrees, allowing an accretion disk con-
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tamination of at most 8% in the NIR. Their optical data were partly obtained in 2003 and

partly in 2004 while their NIR data were obtained in 2003, five months prior to the 2003

optical data. Based on the work by Cantrell et al. (2008, 2010) on A0620-00, it is possible

that XTE J1118+480 may have also change in morphology while it is in quiescence. This

is suggested in the variation of the J-band light curve taken by Miko lajewska et al. (2005)

five months after Gelino et al. (2006). Another complication in the analysis of Gelino et al.

(2006) arises from the fact that the binary inclination and the disk light (in B and V) were

derived by simultaneously fitting all the B-, V-, R-, J-, H- and K- band light curve data and

by assuming negligible disk contribution in the J-, H- and K-band light curves. However,

acquisition of their data was spread over various times; it is possible that both the non-stellar

component of optical/NIR flux as well as the light curve shape may have varied during that

time even when the system was in quiescence.

Motivated by the desire to measure an accurate BH mass in XTE J1118+480, we ob-

tain contemporaneous light curve and spectral data of this system at NIR wavelengths to

establish the non-stellar light from spectroscopy at the time of acquisition of light curve so

that true binary inclination of this system can be obtained. In the following sections, we

estimate the veiling caused by the non-stellar components at NIR wavelengths by measuring

the EWs of absorption lines in the photosphere of the donor star. We accounted for this

extra NIR light when fitting ellipsoidal models to the observed light curve data in order to

obtain a true and robust value of binary inclination and consequently the BH mass.

4.2 Observations

XTE J1118+480 was observed with the Near-Infrared Camera & Fabry-Perot Spec-

trometer (NICFPS) on the 3.5-m telescope at Apache Point Observatory (APO) and with

the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini-North. All photometry and

spectroscopy data were initially scheduled to be acquired on April 2 and April 3, 2011 at

both locations. We achieved this goal for the night of April 2, 2011. Additional light curve
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data were obtained on April 3, 2011 but due to continual bad weather at Mauna Kea, we

finished the remainder of our spectral observations on April 12, 2011, giving us contempo-

raneous light curve and spectral data. Table 4.1 lists our observations, the exposure times

used and the orbital phase coverage.

4.2.1 Spectroscopy

We observed XTE J1118+480 using GNIRS at Gemini-North. Spectroscopy of XTE

J1118+480 was obtained in the cross-dispersed mode with the 31.7 line mm−1 grating and

the 0.30′′ wide slit, yielding R ∼1700 while effectively covering the entire near-infrared range

from 0.9 – 2.5 µm. We achieved a total on-source observing time of 4.1 hrs. Data were

taken in ABBA pairs at two positions along the 7.0′′ long slit with a 310 sec exposure time

at each position. The slit was oriented along the mean parallactic angle throughout the

observations. An A0 V type telluric star was observed hourly with the same configuration

with 5 sec exposure times. From two nights of data we were able to cover all binary phases

at least once, except phases φ = 0.10 – 0.35 and φ = 0.72 – 0.76 which were covered twice.

The raw data were reduced using the GNIRS tools within the Gemini-IRAF package, version

v1.11. The raw images were first treated for fixed pattern noise using the cleanir 1 tool.

The other data reduction steps consisted of flat-fielding, sky subtraction and wavelength

calibration. Owing to the faintness of the target, we could not confidently extract the

spectra from the individual sky-subtracted exposures. Instead, to improve the signal-to-noise

in the exposures to be extracted, we combined every three exposures (adjacent in phase and

equivalent to 5% of one full orbit) to perform reliable spectral extraction. The spectrum

extracted in this manner were minimally affected by orbital smearing effects when compared

with the instrumental resolution of 177 km s−1 when averaged. Flux calibration and telluric

correction were performed with the xtellcor package within Spextool (version 3.4) (Cushing

et al. 2004; Vacca et al. 2003). We shifted each of the extracted spectra to the rest frame

1 http://staff.gemini.edu/ astephens/niri/cleanir/
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of the donor star using the orbital ephemeris of Calvelo et al. (2009), median-combined

each order separately, and merged all the orders to generate the time-averaged spectrum of

XTE J1118+480 shown in Figure 4.1. The spectrum has been boxcar-smoothed by 2 pixels,

corresponding to one resolution element. The spectrum in Figure 4.1 was corrected for

interstellar absorption using AV =0.066 (Gelino et al. 2006). We did not attempt to quantify

the flux calibration accuracy since the spectral analysis of XTE J1118+480 does not require

absolute flux values. However, we find that the mean H-band flux of the spectrum agrees

with the photometry within ∼ 4%.

4.2.2 Photometry

Light curve data were obtained with NICFPS at APO in the H-filter. We used indi-

vidual exposure times of 20 seconds for the target. A standard star for flux calibration was

observed every 1.5 hrs along with the target observations. We had excellent seeing condi-

tions (∼ 0.6′′) on the night of April 2, 2011 but on April 3 the seeing conditions went from

moderate (∼ .8′′) to poor (> 1.0′′) after the first two hours of observing and the data were

discarded. The binary orbital phases between φ = 0.1 − 0.2 and φ = 0.33 − 0.5 were not

covered at all, but all other phases were covered more than once. To account for the dark

current in the NICFPS exposures, dark frames matching the exposure times of the target

and standard star were obtained at the beginning of each observing run and subtracted from

the target /standard star exposures. Finally, the images were flat-fielded with sky-flats. We

obtained five point dither images of the field, each offset by 20′′, and constructed a sky-flat

by median-combining these exposures. To obtain sufficient signal to noise in our reduced

data images, we median combined every three exposures (equivalent to ∼ 60 seconds) to

construct final reduced images. Aperture photometry was performed on the combined im-

ages using the IRAF phot package. For flux calibration, we used the stars in the field of

XTE J1118+480 selected from the Two Micron Sky Survey (2MASS) catalogue as well as

the ARNICA (Arcetri NICMOS3 camera) near-infrared standard star AS-11 (Hunt et al.
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1998).

Table 4.1: Table of observations

Observations Date Individual Exposure time(seconds)∗ Binary Orbital Phases Covered

Spectroscopy 04/02/11 310 0.13 – 0.39, 0.72 – 0.98
04/12/11 310 0.06 – 0.32, 0.49 – 0.76

Photometry 04/02/11 20 0.00 – 0.35, 0.40 – 0.99
04/03/11 20† 0.18 – 0.99, 0.01 – 0.04

∗ A total on source integration time of ∼ 2.7 hours was obtained each night for spectroscopy and ∼4.5

hours for photometry.
† Data after the first 2 hours of observation were discarded owing to bad weather.

4.3 Analysis

4.3.1 Spectroscopy

The spectrum of XTE J1118+480 displays narrow absorption lines of neutral metals

including transitions of Al I, Na I, Mg I, Fe I and Si I which are believed to originate in

the photosphere of the donor star. We also detect broad emission lines of H I and He I

from the accretion disk. These J-, H- and K-band spectra are shown in Figures 4.2, 4.3

and 4.4. We identified spectral features using line identifications from Wallace and Hinkle

(1997), Wallace et al. (2000), Kleinmann and Hall (1986), Meyer et al. (1998), Kirkpatrick

et al. (1993), Rayner et al. (2009) and the Atomic line list2 . In Figures 4.2, 4.3 and 4.4, the

error bars were calculated for each resolution element (=2 pixels) by fitting straight lines

through several continuum-dominated regions and obtaining the scatter about that line.

The continuum-dominated regions were selected in XTE J1118+480 after an inspection of

2 http://www.pa.uky.edu/ peter/atomic
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similar featureless regions in K5 V – M1 V template stars. We obtained signal-to-noise (S/N)

estimates of ∼ 18 in the H-band and ∼ 15 in the J- and K-bands respectively.

Figure 4.1: The time-averaged spectrum of XTE J1118+480 obtained after correcting for

atmospheric absorption and shifting the individual exposures to the rest frame

of the donor star. The dereddened spectrum, using E(B-V)=0.06 (Gelino et al.

2006), is shown in black.
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Figure 4.2: The J-band spectrum of XTE J1118+480 showing emission features from the

accretion disk and absorption features from the donor star in XTE J1118+480.

All line identifications do not imply an actual detection due to the low S/N of

the spectrum. The typical error bar is shown in red.



70

Figure 4.3: The H-band spectrum of XTE J1118+480. The typical error bar is shown in red.
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Figure 4.4: The K-band spectrum of XTE J1118+480. All line identifications may not imply

an actual detection due to the low S/N of the spectrum. The typical error bar

is shown in red.

In the J-band we detect a few absorption features in the 1.175 – 1.320 µm range, mainly

blends of Mg I, Si I, Fe I and Al I, and broad emission features of H I and He I. In the H-band,

we observe narrow atomic features of Mg I, Al I and Si I which are marked in Figure 4.3.

The Al I doublet at ∼1.167 µm. When compared to field stars of spectral type K5 V – M1

V, the bluer component of the Al I doublet in XTE J1118+480 appears much weaker than

its red counterpart. This behavior is contrary to the observation that the strength of both

these features attain a comparable maximum depth in K–early M type dwarfs (Meyer et al.

1998; Rayner et al. 2009). In the K-band, the most prominent features used for spectral

classification are the 12CO bands, Na I and Ca I, with Na I being more temperature sensitive
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than Ca I (Kleinmann and Hall 1986). The position of these lines are marked in Figure 4.4.

The centroids of the Na I line at 2.20 µm and the Ca I lines between 1.94–1.99 µm are

consistent within the wavelength calibration accuracy of ∼ ±0.002 µm but Ca I at 2.264 µm

is not (centroid of this feature ¿ ±0.002µm of the true wavelength). Also, the strength of

the Na I feature is at the same level as the average noise in the K-band and is therefore not

a very reliable detection. There is also a weak emission feature of H I at 2.16µm. We do not

detect any CO features in the K-band. Enhanced N V and depleted C IV and O V emission

lines have been seen in the UV spectrum of XTE J1118+480 suggesting that the accreting

material has been CNO processed (Haswell et al. 2002). Therefore, our non-detection of the

CO-bands in the K-band is expected. However, in the H-band, we apparently detect the

12CO (6,3) feature at 1.619 µm. This contradicts our non-detection of CO in the K-band but

this apparent contradiction is also noticed in the spectrum of A0620-00 (compare Figures 6

and 7 in Froning et al. (2007)). The 12CO (6,3) band contains a blend of several other species

such as Ca, Fe, Ni, Si and OH whose contributions might mislead one into believing that

a possible CO feature exists at 1.619 µm. This detection is further made questionable by

the fact that the second overtone (∆ν = 3) bands of CO near the 1.1619 µm have oscillator

strengths that are approximately 100 times smaller than the first overtone bands near 2.29

µm (Gautier et al. 1976) and therefore very unlikely that we should detect the former and

not the latter. Therefore, we do not include the CO-features in the H-band in our analysis.

The spectral type of the donor star in XTE J1118+480 has been broadly be classified

as K5 V – M1 V (González Hernández et al. 2008; Gelino et al. 2006; Wagner et al. 2001;

Frontera et al. 2001; McClintock et al. 2001). We seek to constrain the spectral type of the

donor star further and to estimate the relative contribution of near-infrared light from the

donor star and non-stellar sources. Towards that end, we will make use of the broadband

spectral energy distribution (SED) of XTE J1118+480 in conjunction with fitting field star

spectra to donor star absorption features. The use of our spectrum to obtain reliable es-

timates of the donor spectral type of XTE J1118+480 and non-stellar light is challenging



73

because of the low signal-to-noise ratio (S/N ∼15–18) of the spectrum. Figure 4.5 shows

the spectrum of XTE J1118+480 compared to the spectrum of a K5 V star (in red) and

M1 V star (in green). The broad H-band bump (between 1.5–1.7 µm) that is seen in the

spectrum of K-stars increases with decreasing effective temperature and is attributed to the

H− opacity minimum at 1.6µm (Rayner et al. 2009). In XTE J1118+480, this feature is

consistent with spectral types later than K5 V. When the spectrum of a K7 V or earlier

star is scaled to match the flux of XTE J1118+480 in the K-band (around 2.23 µm), the

template star exceeds both the J- and the H-bands by > 7%. This implies that if the donor

star constitutes all the flux in the K-band conforming to previous assumptions of negligible

non-stellar contribution, we would expect the donor spectral type to be later than a K7 V;

otherwise some dilution should be expected. In Figure 4.5 an M1 V star scaled to match

the K-band flux of XTE J1118+480 follows the broadband shape of the latter more closely

if negligible non-stellar dilution is present. Estimates obtained from template star fits to

photospheric absorption features in the donor star spectrum of XTE J1118+480 will be used

in conjunction with the overall shape of the SED to constrain the donor spectral type.
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Figure 4.5: The time-averaged spectrum of XTE J1118+480 compared to the spectrum of

a K5 V (in red) and M1 V (in green). The K5 V and M1 V spectra have been

scaled to match the XTE J1118+480 flux near 2.23 µm. The H-band bump seen

in late-type stars indicates that the donor star in XTE J1118+480 has a spectral

type later than K5 V.

4.3.1.1 Field star fits to XTE J1118+480

To constrain the donor spectral type and estimate the fraction of NIR flux originat-

ing from the donor star (donor fraction, f) in XTE J1118+480, we followed the procedure

outlined in Khargharia et al. (2010) and Froning et al. (2007). The normalized spectrum

of the template star was subtracted from XTE J1118+480 after the former was scaled by a

fraction f that was varied from 0 to 1 in steps of 0.01, and the residual was computed. The

continuum points used for normalization were picked by eye and a cubic spline was fitted
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through these points for normalization. The value of f that minimized the chi-squared value

between the residual and the mean of the residual determined the best fit. Stars of spectral

type K5 V (HD36003), K7 V (HD237903), M0/M0.5 V (HD209290) and M1 V (HD42581)

were compared against the normalized spectrum of XTE J1118+480 to obtain a reliable

estimate of the donor fraction. There is a disagreement in literature about the spectral type

of HD209290 and hence we refer to it as M0/M0.5 V star (Rayner et al. 2009; Koen et al.

2010). The template star spectra have been obtained from the IRTF spectral library 3 .

The fit regions that were investigated in the J-, H- and K-bands for the spectral types

between K5 V – M1V are listed in Table 4.2 along with the best fit donor fractions, f and

χ2
ν values. In the J-band, our fits were restricted to the region between 1.20 – 1.314 µm

within which we detected features containing blends of Mg I, Si I, Fe I and Al I. However,

the absorption features in this band in dwarf stars (earlier than M5 V) are intrinsically weak

making it challenging to estimate the donor fraction (see, for example, spectra in Wallace

et al. 2000). In the K-band, the fits to the Ca I between 1.94 – 2.00 µm are not reliable due

to telluric correction residuals affecting our low S/N spectra and are therefore not taken into

account for spectral type determination of the donor star. In the H-band, we fit features of

Mg I, Al I and Si I over the wavelength range 1.475 – 1.73 µm. From Table 4.2, it is seen that

a non-negligible contribution from non-stellar sources exists in the H-band. To constrain the

spectral type of the donor star in XTE J1118+480, we used three criteria : (a) the lowest

χ2
ν values, (b) the consistency of the donor fraction computed from spectroscopy with the

overall broadband spectral energy distribution in XTE J1118+480, and (c) the consistency

of the H-band bump discussed in Section 4.3.1.

The χ2
ν values are listed in Table 4.2 along with the best fit donor fractions. However,

these values suffer from several systematic uncertainties that are expected in NIR ground-

based spectra of faint sources. For example, uncertainties in the sky background removal;

3 http://irtfweb.ifa.hawaii.edu/∼spex/IRTF Spectral Library
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Table 4.2: Donor fractions, f , with the χ2
ν values calculated for XTE J1118+480 for K5 V - M1 V field stars.

Band Wavelength range(µm) Feature f (K5 V) χ2
ν f (K7 V) χ2

ν f (M0.5 V) χ2
ν f (M1 V) χ2

ν

K 1.94 − 1.99 Ca I ‡ 0.15 1.16 0.18 1.12 0.20 1.10 0.18 1.13
2.203 − 2.214 Na I 0.80 0.50 0.70 0.55 0.65 0.57 0.62 0.49

H 1.48 − 1.51 Mg I 0.35 1.24 0.37 1.75 0.48 1.20 0.56 1.80
1.568 − 1.60 Mg I, Si I 0.40 0.67 0.44 0.62 0.47 0.90 0.63 0.80
1.67 − 1.68 Al I 0.39 0.68 0.39 0.66 0.30 0.62 0.40 0.73
1.70 − 1.72 Mg I 0.55 1.16 0.60 1.08 0.65 1.13 0.70 1.12

J 1.176 − 1.202 Mg I, Fe I, Si I 0.63 0.47 0.65 0.44 0.68 0.55 0.69 0.46
1.310 − 1.317 Al I 0.65 0.53 0.64 0.49 0.66 0.51 0.72 0.50

‡Fits may be affected due to residuals of telluric correction.
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residuals from telluric correction; line blending in the absorption features affecting the donor

fraction, especially for slight abundance and/or temperature mismatches between the donor

and the template star; and uncertainties arising from differences in estimated (by eye) versus

true continuum for spectrum normalization will affect the fit results. However, relative χ2
ν

values among the different spectral types can be used for constraining the donor spectral

type because the same uncertainties are present for all the fits in the fitting procedure. The

template star spectra (S/N ∼ 100) were obtained by the same instrument (not the same

as the science data , but each other) under similar observing conditions and were fitted to

the same spectrum of XTE J1118+480. An examination of the lowest χ2
ν values for all fit

regions in Table 4.2 favors K7 V – M1 V, over K5 V as the likely donor star spectral type in

XTE J1118+480. However, caution should be exercised in drawing a conclusion about the

donor spectral type based on the lowest χ2
ν . These values range from 0.34 – 1.75 and are not

reflective of the true uncertainty in our fits due to unaccounted-for systematic uncertainties.

Since the S/N in our spectrum is low, we have adopted a different technique to properly

evaluate the noise associated with the spectrum of XTE J1118+480 and its contribution

to the donor fractions. The procedure for this involves “scrambling” the XTE J1118+480

spectrum and fitting the template star spectra to many such randomly ‘scrambled’ data in

order to place robust error estimates on the best fit donor fractions. A detailed explanation

can be found in Appendix A. The uncertainties calculated in this manner are shown in

Table 4.3 along with the best fit donor fraction values, f , obtained from Table 4.2.

Next, we asked if the donor fractions calculated in the J-, H- and K-bands obtained

from spectroscopy were consistent with the overall shape of the broadband spectral energy

distribution of XTE J1118+480. To answer that question, we scaled the flux of each field

star by the average donor fraction in the H-band (near 1.6 µm) obtained from Table 4.3

and computed the value by which the average flux of the field star drops below that of XTE

J1118+480 in both the J- and K-bands. Less emphasis was given on obtaining a K-band

match due to the fact that we only had the Na I feature to compare with and this feature is
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Table 4.3: Final Donor fractions, f , with robust error estimates obtained after “scrambling” the XTE J1118+480. The errors
were propagated to the average donor fraction.

Band Wavelength range(µm) Feature f (K5 V) f (K7 V) f (M0.5 V) f (M1 V)

K 1.94 − 1.99 Ca I ⋆ 0.15±.11 0.18±.14 0.20±.12 0.18±.10
2.203 − 2.214 Na I 0.80±.15 0.70±.15 0.65±.18 0.62±.18

H 1.48 − 1.51 Mg I 0.37±.07 0.37±.07 0.48±.08 0.58±.09
1.568 − 1.60 Mg I, Si I 0.40±.11 0.44±.09 0.47±.09 0.63±.10
1.67 − 1.68 Al I 0.39 ±.12 0.39±.11 0.30±.09 0.40±.10
1.70 − 1.72 Mg I 0.55±.09 0.60±.09 0.65±.11 0.70±.09

J 1.176 − 1.202 Mg I, Fe I, Si I 0.63±.10 0.65±.13 0.68±.13 0.69±.15
1.310 − 1.317 Al I 0.65±.15 0.64±.16 0.66±.17 0.72±.18

⋆Donor fraction for this feature was not used in analysis.
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at about the same level as the noise in the K-band. Depending on whether the corresponding

drop in flux in the J-band was consistent with the average J-band donor fraction (within the

bounds allowed by propagating the errors to calculate the average donor fraction) computed

from Table 4.3, we could further constrain the donor spectral type. Figure 4.6 shows that

when a K5 V star was scaled to 43% of the XTE J1118+480 flux at the center of the H-

band, it resulted in an average flux drop of 41% in the J-band (between 1.1 – 1.3 µm) and

38% in the K-band (near 2.20 µm), inconsistent with the average donor fractions (even after

accounting for the error) expected from spectroscopy in both J- and K-bands. A K7 V

matches the drop in J-band flux but not in the K-band, while M0.5 V/M1 V matches both

J and K-bands when their H-band fluxes were scaled to the corresponding average H-band

donor fraction obtained from Table 4.3. Figure 4.7 shows the case for an M1 V star. This

suggests that K7 – M1 V is the most likely range of donor spectral types in XTE J1118+480.
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Figure 4.6: The time-averaged spectrum of XTE J1118+480 compared to the spectrum of a

K5 V (in red) after the latter has been scaled to 43% of the XTE J1118+480’s

H-band flux. The corresponding drop in fluxes in the J- and K-bands in the K5

V star does not agree with the values expected from spectroscopy: 64%±18% in

the J-band and 80%±15% in the K-band.
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Figure 4.7: The time-averaged spectrum of XTE J1118+480 compared to the spectrum of a

M1 V (in red) after the latter has been scaled to 58% of the XTE J1118+480’s

H-band flux. The corresponding drop in fluxes in the J- and K-bands in the

M1 V star agrees with the values expected from spectroscopy: 71%±23% in the

J-band and 62%±18% in the K-band.

Earlier, we found that the broad H-band bump near 1.6 µm in XTE J1118+480 was

consistent with spectral types later than K5 V. By fitting absorption features of the donor star

in XTE J1118+480 to various field stars we concluded that the spectral type best describing

the donor star in XTE J1118+480 lies between K7 V – M1 V. This spectral range is further

supported by comparing the consistency of the donor fraction obtained from spectroscopy

with the shape of the overall broadband spectrum. The donor star spectral type range could

not be constrained any further from our data. We have chosen to estimate the final donor
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fraction by obtaining an average of best fits to multiple lines over the templates K7 – M1

V, and propagating the corresponding uncertainties accordingly from Table 4.3 rather than

through the use of χ2 statistics. This leads to a H-band donor contribution of f = .50 ± .32

in the spectrum of XTE J1118+480. This result is contrary to previous assumptions of

negligible dilution from other sources of flux in the near-infrared (Gelino et al. 2006). The

upper panel of Figure 4.8 shows the normalized spectrum of XTE J1118+480 plotted (in

black) over the normalized spectrum of a K7 V star (in red) while the lower panel shows the

same comparison but with the K7 V star scaled to match the best donor fraction of 50%.

4.3.2 Photometry

Our spectroscopic observations of XTE J1118+480 were supplemented with contempo-

raneous light curve data. The H-band light curve of the donor star in XTE J1118+480 was

obtained using the orbital ephemeris from Calvelo et al. (2009). Figure 4.9 shows the H-band

light curve after the data was combined into phase bins of size ∆φ = 0.03. Each data point

in this figure represents the mean of the points in the specific phase bin and the error bar in

each is represented by the scatter of the points about the mean value. In cases where we did

not have enough data points (< 3 points) to place a reliable error estimate on the magnitude,

the error bar for that data point was changed to the value of the biggest error bar in the

remainder of the phase bins. The orbital phases represent the standard convention where

phase 0.0 stands for the inferior conjunction of the donor star. From the H-band light curve

in Figure 4.9, we see that there is an apparent departure from the conventional ellipsoidal

modulation expected from a Roche-lobe filling donor star: the maximum at phase φ = 0.75

is higher than the maximum at φ = 0.25.
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Figure 4.8: The normalized H-band spectrum of XTE J1118+480 is shown in the upper

panel overplotted on a K7 V star (in red). The lower panel shows the same after

the K7 V star has been normalized to the best fit fractional contribution of 0.50.

Such asymmetric modulations were detected in the quiescent J-band light curve of XTE

J1118+480 obtained by Miko lajewska et al. (2005). However, Gelino et al. (2006) obtained

NIR light curves of XTE J1118+480 four months prior to Miko lajewska et al. (2005) and

found no asymmetries in their J-band light curve data. Typically this observed asymmetry

in the light curve maxima is attributed to the emission from a bright spot in the accretion

disk (Froning and Robinson 2001; Froning et al. 1999) or from a dark spot on the donor

star (Gelino et al. 2001). Doppler and modulation tomography of XTE J1118+480 during
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quiescence taken by Calvelo et al. (2009) revealed a well-defined hotspot but Torres et al.

(2004) found no evidence of a hotspot in their Doppler tomograms. The lack of evidence for

a hotspot was attributed to a significant drop in the mass transfer rate when Torres et al.

(2004) obtained their data versus resumption of mass transfer when Calvelo et al. (2009) ob-

tained their data, producing a hotspot in the Doppler maps; the system was in quiescence at

both times. In the following sections, we present two simple models for fitting the observed

light curve of XTE J1118+480: a) a model incorporating a donor star with constant extra

flux from nonstellar sources (e.g., the accretion disk); we will refer to this component as the

“constant disk flux” or fdisk, and b) a model incorporating a donor star and an accretion

disk with a bright spot.
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Figure 4.9: The light curve of XTE J1118+480 after binning the observed data in phase bins

of 0.03. The error bars are derived from scatter about the mean in each bin. For

phase bins that contained fewer than 3 points, we used the largest error bar in

the rest of the bins as its error.

We modeled the H-band light curve of XTE J1118+480 with an updated version of the

light curve synthesis code presented in Zhang et al. (1986) which has been used to model

the light curves in several other LMXB’s (Froning and Robinson 2001; Khargharia et al.

2010). This code accounts for the geometry of the binary system and then calculates the

light curve by computing the temperature and intensity distribution across the surface of the

Roche-lobe filling donor star and an accretion disk with a bright spot at its top and rim. It

also takes into account gravity and limb darkening for each component of the X-ray binary

system. Limb darkening coefficients were calculated using the square root limb darkening

law applied to stellar atmospheres of late type stars (Claret et al. 1995). The best fit light
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curve is obtained by minimizing the chi-squared value between the synthetic and the ob-

served light curves. Below we discuss each model that was fitted to the observed light curve

of XTE J1118+480.

4.3.2.1 Modeling the H-band light curve with a donor star and constant disk

flux

In the past, NIR light curves have been modeled to determine the binary inclination

contingent on the assumption that the donor star is the sole contributor to the NIR flux.

Gelino et al. (2006) obtained optical and infrared photometry of the donor star in XTE

J1118+480 and simultaneously fit their optical and NIR light curves with previously deter-

mined accretion disk contamination in the optical and assuming up to 8% dilution in the

NIR bands to obtain a binary inclination of 68+2.8
−2 degrees consistent with the inclination

estimate by Fitzgerald and Orosz (2003). On the other hand, the inclination of the binary in

XTE J1118+480 was found by other studies to be very high: 80◦ ± 2◦ (Wagner et al. 2001),

71◦− 82◦ ( Zurita et al. 2002) and ∼ 80◦ (McClintock et al. 2001; Miko lajewska et al. 2005).

At such high inclinations, eclipses are expected, but because of the extreme mass-ratio of

this system, only a grazing eclipse will be seen, if any. In fact, previous observations of XTE

J1118+480 have revealed no eclipse features (Uemura et al. 2000; Wood et al. 2000). We

ran a few models to evaluate the effect of adding constant disk flux on the inclination of the

binary. For modeling purposes, the donor star parameters were set as follows: Teff = 4000

K, to reflect the average temperature from the derived spectral types; gravity darkening

coefficient of 0.08, assuming that the donor has a convective envelope (Lucy 1967; Sarna

1989); limb-darkening coefficients were calculated from Claret et al. (1995). We adopted the

mass ratio value obtained by Calvelo et al. (2009) which agrees with past estimates obtained

by González Hernández et al. (2008), Torres et al. (2004) and Zurita et al. (2002). To avoid

the extra flux from the bright spot at φ = 0.75 as well as to account for the fact that the
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Table 4.4: Effect of adding constant disk flux to the binary inclination in XTE J1118+480.

Disk fraction (fdisk) Inclination(deg)
0.00 56.0
0.05 59.0
0.10 62.0
0.15 65.0
0.20 70.0
0.25 77.0
0.30 89.0
0.35 89.0
0.40 89.0

average donor fraction calculated from spectroscopy is biased towards the phases 0.0 – 0.50

(see Section 4.2.1 for our phase coverage during spectroscopy), we modeled the light curve

between phases φ =0.0 – 0.50 only. By allowing the constant disk fraction (fdisk) to vary

within the limits obtained from spectroscopy, we modeled the light curve data to derive the

corresponding best fit binary inclinations; these are shown in Table 4.4. Therefore, using

fdisk=0.18 – 0.82, we find the binary inclination to lie between 68◦ – 89◦. Figure 4.10 shows

the best fit light curve (i = 68◦) obtained by modeling the observed light curve with a donor

star and for a disk light fraction of fdisk = 0.18 (χ2
ν = 0.51). We varied the mass ratio within

the limits specified in Calvelo et al. (2009) and the results were unchanged. From this, we can

conclude that accounting for the constant disk flux within its uncertainty bounds obtained

from spectroscopy places a lower limit on the binary inclination of i ≥ 68◦.
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Figure 4.10: The best fit light curve obtained by modeling a donor star (fit range: φ= 0.0–

0.5) along with a constant extra flux from the disk obtained for 68◦. We find

that this model cannot account for the extra light at φ=0.75.

4.3.2.2 Modeling the H-band light curve with a donor star and an accretion

disk with a bright spot

The H-band light curve of XTE J1118+480 shows asymmetry in the maxima of the

peaks at phases 0.25 and 0.75, which is often attributed to emission from a bright spot on the

accretion disk. We modeled the light curve with a donor star and a cool opaque accretion disk

with a bright spot on its rim. By this method, we do not attempt to constrain the physical

properties associated with either the disk or the bright spot. However, we will derive a range

of possible inclinations by modeling this system with reasonable estimates for the parameters

associated with the accretion disk and bright spot. The donor star parameters were set at
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Teff = 4000 K, gravity darkening co-efficient of 0.08, limb-darkening coefficients calculated

from Claret et al. (1995) and mass-ratio of q = 0.024 as discussed in the previous section.

We have found that varying these parameters had negligible effect (≤ 1◦ change) on the

derived inclination of the system and therefore, we keep them fixed for these set of models

and only vary the parameters associated with the accretion disk and the bright spot. For the

accretion disk, we adopted an inner radius of 0.001RL1
(where RL1

represents the distance

to the inner Lagrangian point) and an the outer disk radius of 0.75RL1
; these numbers are

taken from the work done by Wren et al. (2001) and Calvelo et al. (2009). We set the flare

half-angle of the disk to a small value of 1◦. The bright spot was added to the rim of the

disk and spans an angle in the azimuthal direction whose position φspot and width ∆φspot

are variable parameters in the light curve fitting model. The other input parameters are the

temperature of the disk (Tdisk) and the bright spot (Tspot). Both the accretion disk and the

bright spot were assumed to emit as black bodies with a single temperature, with the linear-

limb darkening co-efficients. We varied Tdisk between 2500−4500 K, Tspot from 5000−20000

K, φspot from 40 − 120 degrees, and ∆φspot from 5 − 15 degrees. The choice of Tdisk was

motivated by the work done in Reynolds et al. (2008) who found that thermal emission

from a cool outer accretion disk (Tdisk ∼ 2000 − 4000K) could be used to model the excess

NIR emission in the multi-wavelength SED of several XRBs (including XTE J1118+480). In

Figure 4.11, we show the best fit light curve (χ2
ν= 0.57) achieved for an inclination of 78◦ and

for the fit parameters: Tdisk = 3000 K, Tspot = 12000 K, φspot = 85◦ and ∆φspot = 5◦. From

an investigation of our fits over the entire range of input parameters, we find that all fits have

χ2
ν values between 0.60 – 0.80 and produced lower/higher Tdisk values for correspondingly

lower/higher Tspot values. To put this into perspective, a model with Tdisk = 2500 K and

Tspot = 10000 K for an inclination of i = 74◦ gave a comparable fit (χ2
ν =.60) to a model

with Tdisk = 4000 K and Tspot = 13000 K for an inclination for i = 81◦ (χ2
ν =.63). We do

not attempt to set constraints on either the disk or the bright spot parameters based on

the light curve models with the lowest χ2
ν value. However, we find that the range of binary
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inclinations satisfying the entire set of input parameters agrees with i > 74◦. We note from

Figure 4.11 that a simple model incorporating a donor star and an accretion disk with a

bright spot on the rim can account for the extra flux at φ = 0.75. Extensive observations of

XTE J1118+480 in outburst have not found any evidence of eclipses in this system (Uemura

et al. 2000; Wood et al. 2000). From our light curve models, we find that eclipse features

start to emerge at i ≥ 80◦ for an accretion disk of outer radius .75RL. Hence, to maintain

consistency with the non-detection of X-ray eclipses in XTE J1118+480 we set an upper

limit to the binary inclination of < 80◦.

By modeling the observed light curve with a constant disk fraction obtained from

spectroscopy, we can set a lower limit to the binary inclination in XTE J1118+480 as ≥ 68◦.

Additionally, an upper limit on the inclination is dictated by the absence of eclipses, as

< 80◦. Hence, we have constrained the binary inclination to lie between 68◦ ≤ i < 80◦.
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Figure 4.11: Light curve model consisting of a donor star, an accretion disk with a bright

spot fitted for the full range of φ= -0.50 – 0.50 The best fit parameters for this

model were obtained for i = 78◦, Tdisk = 3000K, Tspot = 12000K, φspot = 85◦,

∆φspot = 5◦.

4.4 Discussion

4.4.1 Accretion disk contamination and mass of the black hole in XTE

J1118+480

By performing spectroscopy of XTE J1118+480, we find that the donor star contributes

a fraction f = 0.50 ± .32 of the H-band flux. As we have shown in Section 4.3.2.1, the

H-band light curve model results depends sensitively on the amount of extra constant non-

stellar flux, which will alter the inferred binary inclination and consequently, the determined

mass of the black hole. By varying the constant non-stellar (or “disk”) fraction within



92

the limits obtained from spectroscopy while simultaneously imposing the absence of eclipse

condition, we obtained a binary inclination of 68◦ ≤ i < 80◦. Using the best fit orbital

parameters from Calvelo et al. (2009), we determined the mass of the black hole in this

system to be 6.9 < (MBH/M⊙) ≤ 8.2 for the inclination range of 68◦ ≤ i < 80◦. The

binary inclination obtained by us is in agreement with the values obtained previously by

Frontera et al. 2001, Zurita et al. 2002, Miko lajewska et al. 2005, Khruzina et al. 2005 and

Gelino et al. 2006. Accounting for any non-stellar sources of light at NIR wavelengths will

raise the determined binary inclination and consequently lower the corresponding black hole

mass. However, the disk fraction obtained from spectroscopy could be constrained only very

broadly (f = 0.50 ± .32) due to the low S/N in the spectrum of XTE J1118+480. Despite

that, the binary inclination range was fairly narrow (12◦) due to disk fractions fdisk > 0.26

resulting in i > 80◦ (which is beyond the limit set by the lack of eclipses in this system).

The binary inclination of 68◦ ± 2◦ obtained by Gelino et al. (2006) is within our inclination

range suggesting the possibility that they may have acquired all their light curve data when

the disk contribution was indeed negligible.

4.4.2 On the quiescent light curve changes in XTE J1118+480

In an extensive study of the X-ray binary A0620-00 by Cantrell et al. (2008, 2010),

it was shown that the system existed in three distinct optical states even in quiescence.

The authors found that a correct determination of the inclination relies on identifying the

state of the system. This was found to be more important than the particular waveband

where the measurements are made since non-stellar sources can be present at optical as well

NIR wavelengths. XTE J1118+480 is seen to exhibit changes in the shape of its quiescent

ellipsoidal light curve (compare Gelino et al. 2006 and Miko lajewska et al. 2005) similar to

A0620-00. The asymmetry observed in the H-band light curve of XTE J1118+480 obtained

by us is similar to that seen by Miko lajewska et al. (2005) in their J-band data. Similarly,

significant changes in the quiescent infrared light curves of the black hole X-ray binary GRO
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J0422+32 were also seen in two independent observations by Reynolds et al. (2007) and

Gelino and Harrison (2003) even though the mean K-band magnitudes were similar on both

instances. We observe the same from a comparison between our H-band light curve and that

obtained by Gelino et al. (2006) in XTE J1118+480. Our contemporaneous light curve and

spectral data allowed us to properly account for the disk contamination and consequently

provide accurate values of inclination values and mass of the black hole.

4.4.3 Abundances of the donor star in XTE J1118+480

Enhanced N V emission and depleted C IV and O V emission in the UV spectrum of

XTE J1118+480 has revealed strong evidence of CNO processed material in the accretion

disk (Haswell et al. 2002). The authors suggest that XTE J1118+480 represented a later

evolutionary stage of A0620-00, in which weak CO features were detected in the K-band

spectrum (Froning et al. 2007). We did not detect CO features in either the K- or the H-

band spectrum, supporting the result obtained by these authors. One of the uncertainties in

our analysis is the assumption that the donor star in XTE J1118+480 is of solar abundance

and therefore our analysis carries with it the uncertainty of fitting field stars with solar

metallicity to obtain the final donor fraction. On the contrary, González Hernández et al.

(2008) performed abundance analysis on the donor star spectrum by using a slightly earlier

spectral type (Teff=4800 K) for the donor in XTE J1118+480 and detected supersolar

abundances for Mg I and Al I ([Mg/H]=0.35, [Al/H]=0.60) and other metals not used in our

analysis. If Mg I were indeed to be supersolar based on the work by González Hernández

et al. (2008), then the non-stellar contribution will be lower than that obtained by us. Once

again, this would significantly alter our results only if it exceeds the uncertainty in the donor

fraction. However, this could be further addressed by fitting a synthetic spectrum with

the correct geometry representing a Roche-lobe filling donor star to the spectrum of XTE

J1118+480.
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4.5 Conclusion

We have obtained broadband near-infrared spectroscopy of XTE J1118+480 along with

contemporaneous light curve data to accurately account for the veiling that affects determi-

nations of the binary inclination and compact object mass. By comparing the shape of the

spectral energy distribution of the combined JHK spectrum as well as individual absorption

lines in our spectrum with those of field stars of known spectral type, we were able to broadly

account for the fraction of NIR light contributed by the donor as f = .50± .32. We factored

this into our H-band light curve fits and obtained a binary inclination of 68◦ ≤ i < 80◦.

From these we obtained a robust determination of the black hole mass in XTE J1118+480

of 6.9 < (MBH/M⊙) ≤ 8.2. Our light curves combined with the non-negligible non-stellar

contribution show that if XTE J1118+480 exhibits similar state changes to A0620-00, it was

most probably not in “true quiescence” when our data were acquired.



Chapter 5

PSR J1903+0327: A Unique Binary Milli-Second Pulsar

5.1 Introduction

Binary pulsars are excellent systems for understanding the nature of binary star evo-

lution and they also act as laboratories for tests of extreme physics. The milli-second pulsar

(MSP), J1903+0327, was first discovered in the Arecibo L-band Feed Array pulsar survey

(Cordes et al. 2006). It was soon found by Champion et al. (2008) that the MSP has a

spin period of 2.5 ms and is in a highly eccentric orbit (e = 0.44) around what appears

to be a solar-mass companion. It is atypical of MSPs to exhibit such high eccentricity or

to have a main-sequence (MS) companion. Current models of stellar and binary evolution

do not predict such a scenario either (Stairs 2004). This is the first and only MSP in the

Galactic disk that exhibits such orbital attributes, and therein lies its uniqueness. To search

for the pulsar companion, Champion et al. (2008) obtained near-infrared J-, H- and Ks im-

ages of the pulsar field with Gemini Multi-Object Spectrograph (GMOS) on Gemini-North

and found a single star at the position of the pulsar with J=19.22, H=18.41 and Ks=18.03

magnitudes. They determined, from the density of stars in the field, that the probability of

finding a star at the position of the pulsar was < 3%. However, it was not known whether

this star was a chance encounter or a distant third member in a hierarchical triple system.

To confirm this association or lack thereof, Freire et al. (2011); F2011 hereafter, obtained

optical spectroscopy of the possible pulsar counterpart using the FOcal Reducer and low dis-

persion Spectrograph (FORS2) on the European Southern Observatory’s (ESO) Very Large
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Telescope (VLT). They determined the spectral type of the companion to lie between an

early to mid-G dwarf and from radial velocity changes, they positively confirmed the MS

star’s close-in association with the pulsar. It is typically seen that MSPs with spin-periods

< 10 ms have white dwarfs (WD) as their companions and exhibit very circular orbits with

eccentricities, e < .001 (Phinney 1992). To explain this inconsistency in PSR J1903+0327,

Champion et al. (2008) proposed the possibility of a triple system where the pulsar is orbiting

an unseen massive white dwarf (WD) of 0.9–1.1 M⊙ while the MS star is in a much wider

orbit around the MSP-WD binary and provides the eccentricity to the inner binary via the

Kozai mechanism, which causes periodic exchange between inclination and eccentricity of

the orbit (Kozai 1962). Recently, Portegies Zwart et al. (2011) have questioned the plausi-

bility of the existence of such a MSP–WD–MS triple system and have pointed out several

shortcomings associated with such a proposition. It should be mentioned that triple systems

with eccentric orbits have been observed in the past. For example, the soft X-ray transient,

4U 2129+47 (V1727 Cyg) is a low mass X-ray binary (LMXB) with an orbital period of

5.24 hr and a third companion (F-type MS star) in an eccentric orbit of 175 days (Garcia

1989; Bothwell et al. 2008; Lin et al. 2009); similarly the cataclysmic variable EC 19314-5915

has an orbital period of 4.85 hr with a G8 V star as the outer companion (Buckley et al.

1992). An alternative scenario proposed by Champion et al. (2008) was the possibility of

an exchange interaction in a globular cluster that eventually resulted in the MSP orbiting

the MS star as its present companion, but the new observations of F2011 have shown this

to be highly unlikely. Other formation and evolution mechanisms discussed in F2011 are

summarized in Section 5.4.2. In the same section, we also discuss the results obtained from

the numerical simulations by Portegies Zwart et al. (2011) to test the formation scenario of

PSR J1903+0327 proposed by F2011.

Based on the observations of Champion et al. (2008) and F2011, we appear to have the

unique case of a MSP in orbit around a MS star in a highly eccentric orbit in the Galactic
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disk. This can prove to be of immense importance in the field of general relativity. Pulsar

timing of this unique system can test alternative theories of gravity and probe the equation

of state (EOS) of super-dense matter. Accurate pulsar masses already set interesting limits

for the EOS of neutron star (NS) material (Freire 2009), ruling out a few softer models.

Also, the rate of orbital decay of this system will constrain various scalar-tensor theories

of gravity because the members of this binary system have vastly different self-gravities,

(0.2 for NS and 10−0.6 for MS stars). An accurate measurement of the orbital decay of the

pulsar companion accompanied by the confirmation that it is a slowly rotating solar mass

MS star can constrain a significant portion of parameter space for general relativity versus

scalar tensor theory. So far, the best candidate for constraining these dipole contributions

consists of a 394 milli-second pulsar orbiting a WD with comparable mass in a moderately

eccentric orbit (Bhat et al. 2008). In F2011, the rotational velocity of the pulsar companion

could not be very tightly constrained ( < 140 km s−1, 3-σ). An accurate estimate of the

rotational velocity of the pulsar companion is important in terms of constraining the clas-

sical contributions to the measured periastron advance of the MSP. The dominant classical

contributions arise from the rotationally-induced quadrupole moment of the star and this

classical spin-orbit coupling can account for 10% of the measured periastron advance for a

rotational period of few days (Wex 1998).

In this paper, we present three new epochs of optical spectroscopy of the pulsar com-

panion obtained with GMOS at Gemini-N. In Section 5.2 we describe the observations and

data reduction procedures. In Section 5.3, we present a detailed analysis to confirm the

results of F2011 as to the association of the pulsar companion with the MS star, determine

the spectral type of the pulsar companion as accurately as possible using a combination of

F2011 data along with our new spectra and constrain the rotational velocity of the pulsar

companion more precisely. Section 5.4 discusses the various formation and evolution sce-

narios possible for this system. The result obtained on the rotational speed of the pulsar
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companion has several implications in the field of general relativity which are also presented

in this section. Finally, we summarize the conclusions in Section 5.5.

5.2 Observations and data reduction

Long slit (1.0′′ slit-width), moderate resolution (R=2200) spectroscopy of the pulsar

companion in the 7500–9600 Å range was performed with GMOS on Gemini North in three

different observing epochs separated by 20 – 40 days. The observations took place on Aug

19, Sep 06 and Oct 05, 2010 using the EEV detector with five thirty–minute individual

exposures (total of 2.5 hours on-source integration time). Wavelength calibration exposures

were obtained before and after each target exposure, which were then averaged to determine a

wavelength solution for that particular exposure. Wavelength solution accuracy was further

checked using the sky lines in the spectrum. Additionally, a bright slowly rotating (11

kms−1) F-type star was observed before and after the target observations which served as

our rotational standard star (Wolff and Simon 1997). The detector was read out with no

binning, giving a resolution of 3.4 Å sampled at 0.34 Å pix−1. The Gemini IRAF package

for GMOS data reduction was used to reduce the data which involved the processes of bias

subtraction, flat-fielding, sky-subtraction and finally, spectral extraction. No flux calibration

was performed on the data. F2011 points out that a bright star located 2.3′′ from the pulsar

counterpart contributes partly to the counts from the latter, complicating its extraction in

their spectrum. Hence they used the optimal spectral extraction technique by Hynes (2002)

to obtain the spectrum of the pulsar companion. In Figure 5.1, we show the position of

the target compared to the bright source located 2.3′′ away. Upon fitting Moffat profiles to

both the target and the bright object, we notice that in the better seeing conditions of the

GMOS observations, the contamination caused by the bright object to the target is negligible.

Additionally, we selected a narrow spatial window (0.5′′ – 0.6′′) for spectral extraction of the

target, thus further reducing any contamination from the bright source. Our final extracted

spectra still has residuals from night sky lines. Furthermore, the wavelength range from
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8600 — 8700 Å is affected by the broad feature in the airglow spectrum which is contributed

by a blend of R- and P- branches of O2(0 − 1) (Broadfoot and Kendall 1968). This, along

with residual night sky lines, resulted in our inability to recover the Ca II 8662 Å feature in

the spectrum of the pulsar companion. In the remainder of the paper, we will focus on the

wavelength region 8400 – 8600 Å where most of the prominent features reside and where our

sky subtraction was best. The features in this region were identified using the line list from

Cenarro et al. (2001) and the night sky lines were identified from Osterbrock et al. (1996).

Figure 5.1: The position of the pulsar (line # 2442) and the bright object (line # 2410)

2.3′′ from the pulsar is shown in the above figure for a total of 100 columns.

Moffat fits to their profile indicate negligible contamination to the counts from

the pulsar companion.

5.3 Analysis

In Section 5.3.1, we confirm the results of F2011 as to the association of the MS star

to the pulsar by comparing the radial velocities obtained by us in three different epochs
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against the radial velocity of the pulsar companion obtained by F2011. In Section 5.3.2, we

constrain the spectral type of the pulsar companion by employing equivalent widths of some

of the prominent absorption line features in our spectrum and comparing them against val-

ues from the literature. Finally, in Section 5.3.3, we have constrained the rotational velocity

of the pulsar companion using the rotational standard star that was observed for this purpose.

5.3.1 Radial Velocity of the pulsar companion

To compute the radial velocities at each of the three epochs, we first obtained the wave-

length shift in the strongest Ca II triplet feature at 8542 Å. The accuracy of the wavelength

calibration was established by comparing the position of night sky lines in the spectrum of

the pulsar companion against the values from Osterbrock et al. (1996). From this compari-

son, we found zero point offsets in the wavelength calibration of -0.31 Å, -0.25 Å and +0.15

Å for the three observation epochs respectively, which were then taken in account while

computing the final radial velocities. After shifting the individual spectra by their respec-

tive wavelength offsets, we created an averaged spectrum of the pulsar companion shown in

Figure 5.2. The calcium 8542 Å and the 8498 Å features are seen in the spectrum. The

absorption feature at 8598 Å is at the location of the P14 line in the Paschen series. These

features are present in the spectrum at each epoch. There are also possible detections of Fe

I at 8514.1 Å and 8688 Å. However, considering the modest S/N (∼ 7 – 10) of the spectrum,

we have decided to restrict our analysis to the lines : Ca II (λ8498, λ8542) and P14(λ8598).

The deviation of the data points from a straight-line fit to various regions of continuum was

used to assign the error on the normalized spectrum. In Figure 5.2, the location of sky line

residuals have been replaced with similar continuum regions from the GMOS spectrum of

the rotational standard. These locations are marked with vertical dashed lines in Figure 5.2.
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Figure 5.2: The normalized averaged spectrum of the pulsar companion is shown with rep-

resentative error bars. Ca II (λ8498 and λ8542) lines are visible in the spectrum

as well as the P14 line at 8598Å and Fe I at 8515Å. There are also possible de-

tections of Ti I (8435 Å), P17 (8467 Å) and Fe I (8688.5 Å) lines but we cannot

be certain due to the low S/N of the spectrum. The position of the sky lines are

indicated by the vertical dashed lines. Sky lines that are too close in wavelengths

to be resolved as separate lines appear as thick dark vertical lines.

To refine our estimates for the radial velocities, we cross-correlated the averaged spec-

trum with the individual unshifted ones at each epoch while correcting for the wavelength

calibration accuracy. The cross-correlation function in each case was fitted with a Gaussian

and the error was obtained by the uncertainty in the determination of the line centroid. This

error was then propagated in the estimation of the radial velocities. As a result, we obtained

radial velocities of V1 = 39.1 ± 4.5 km s−1, V2 = 25.2 ± 5.4 km s−1 and V3 = 17.8 ± 6.4 km

s−1 with respect to the solar system barycenter at the three different epochs, respectively.

Figure 5.3 shows the predicted radial velocity curve of the pulsar companion (solid line),

based on the orbital parameters determined from pulsar timing. Our observations confirm

the result of F2011 that the optical counterpart is indeed the close-in companion to the



102

pulsar, orbiting it in a 95-day period. We found that the two data points from F2011 allow

the eccentricity of the orbit to be as low as e = 0.20 while inclusion of all five data points

constrain the eccentricity to e ≥ 0.36 thereby confirming the high eccentricity independently

from the optical observations. For example, Figure 5.3 shows that the radial velocity curve

of the pulsar companion for an eccentricity of e = 0.6, mass-ratio of R = 1.42 and systemic

velocity of γ = 44.3 km s−1 (dotted-dashed line) is aligned with the data points within the

error bars. With five epochs of radial velocities in-hand and in agreement with the predicted

reflex motion of the pulsar companion, the highly elliptical orbit of this system is confirmed

for the first time. An independent estimate of the mass-ratio of 1.59 ± 0.21 is obtained by

taking into consideration all five radial velocity data points. This estimate is in agreement

with the result derived from radio timing. On the other hand, timing measurements cannot

provide an estimate of the systemic radial velocity of the binary. With five epochs of data,

we have refined this number to be γ = 41.7 ± 2.2 km s−1. However, further optical/infrared

observations of the pulsar companion could be useful in placing an even tighter constraint

on the radial velocity curve as predicted by the orbital eccentricity obtained from pulsar

timing.
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Figure 5.3: The barycentric radial velocity curve of the pulsar (dashed line) and the pulsar

companion (solid line), as predicted from pulsar timing ephemeris (e = 0.44) in

F2011. The bottom x-axis and the top x-axis are the Mean Julian Date (MJD) of

observations conducted by Khargharia et al. (2012) and F2011 respectively. The

data points in filled circles are the measured values of radial velocity obtained

from our dataset while the two points in filled squares (near MJD 54640 and

MJD 54700) from F2011 are also shown in the figure. The dotted-dashed line

represents the radial velocity curve obtained for an eccentricity of e = 0.6, mass-

ratio of R = 1.42 and a systemic radial velocity of γ = 44.3 km s−1 which lies

within the error bars of the data points.

5.3.2 Spectral type of the pulsar companion

Significant work has been done in the past to use equivalent widths (EWs) of the

calcium triplet as well as the Paschen lines as indicators of temperature, metallicity, and
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luminosity of a star. This is the method we have employed in determining the spectral type

of the pulsar companion. To this end, we have followed the works of Mallik (1994), Ginestet

et al. (1994), Jones et al. (1984), Idiart et al. (1997) and Diaz et al. (1989). The spectral

features along with the line windows used for calculation of EWs and our results are shown

in Tables 5.1 and 5.2. EWs were calculated from the the averaged, normalized spectrum and

errors on EW values were obtained by choosing different continuum points for normalization

(±1σ). Since the Ca II line at 8662 Å was not recovered in our spectrum, we have used

the EW of this feature from the normalized spectrum of F2011 wherever applicable (see

Table 5.2). Furthermore, we have reanalyzed the data of F2011 using the two well-detected

Ca II features at 8542 Å and 8662 Å shown in Table 5.3. This was done to ascertain if tighter

constraints could be placed on the spectral type of the pulsar companion from their data. It

should be noted that the error in the EWs obtained from their already normalized spectrum

is based on the error in the Gaussian fit to the feature rather than on continuum placement.

Table 5.1: Equivalent Width Analysis; comparison with Mallik (1994)

Feature Integration limits (Å) Equivalent width(Å)

CaT 8498 8495 – 8501 0.61 ± 0.27

CaT 8542 8535 – 8550 1.70 ± 0.74

Note: Table of EWs for comparison with the work by Mallik (1994)

A summary of our conclusions from various references are shown in Table 5.4. The

sum of EWs of the calcium triplet is a robust indication of the luminosity class and following

all the references cited above, the pulsar companion clearly belongs to a luminosity class ’V’.

It is a determination of the temperature that poses a greater challenge. Using the EWs of

the calcium triplet alone does not constrain the spectral type any tighter than between F5 –

G5 (see Table 5.4). On the other hand, from Ginestet et al. (1994), the non–zero EW of the
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Table 5.2: Equivalent Width Analysis; comparison with Ginestet et al. (1994), Jones et al.
(1984), Idiart et al. (1997) and Garcia-Vargas et al. (1998)

Feature Integration limits (Å) Equivalent width(Å)

CaT 8498 8488 – 8510 1.17 ± 0.50

CaT 8542 8530 – 8556 2.32 ± 0.70

CaT 8662 8652 – 8672 1.36 ± 0.15∗

P14 8598 8585 – 8605 .70 ± .50

Note: Table of EWs for comparison with the work by Ginestet et al. (1994), Jones et al. (1984), Idiart

et al. (1997) and Garcia-Vargas et al. (1998)

∗Data for this absorption feature was used from Freire et al. (2011)

Table 5.3: Equivalent Width Analysis; comparison with Diaz et al. (1989)

Feature Integration limits (Å) Equivalent width(Å)

CaT 8542 8527 – 8557 2.40 ± 0.17

CaT 8662 8647 – 8677 1.32 ± 0.15

P14 8598 8585 – 8605 .11 ± .07

Note: Table of EWs for comparison with the work by Diaz et al. (1989). The line window for P14 is used

from Table 5.2. All other line windows are from Diaz et al. (1989). The data for computation of the above

EWs is obtained from Figure 2 of Freire et al. (2011)

†
λ8662 feature was used from F2011

∗both features were used from the data of F2011
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P14 line restricts the spectral type to G0 or earlier. Our confidence in the P14 detection is

supported by the fact that we observe this feature in all three epochs of data with the same

wavelength shift as the calcium lines at 8498 Å and 8542 Å. Taking this into account, we

conclude that the spectral type of the pulsar companion lies between F5 V – G0 V. The last

column in Table 5.4 summarizes the metallicity obtained for the pulsar companion from each

of the references. While it is useful, we do not attempt to draw any significant conclusion

from it since the metallicity results are limited by the uncertainty in the spectral type.

F2011 determined the spectral type of the pulsar companion by comparing their aver-

aged spectrum with synthetic spectra and obtained a temperature of Teff = 5825 ± 200K

and a surface gravity of ≥ 4.0 cm s−1. Their analysis points to a star roughly of spectral

type G0 – G5 V (Ali et al. 1995). However, from an equivalent width analysis of the Ca

II features at 8542 Å and 8662 Å obtained from their data, we can conclude only that the

star has a spectral type between F5 V – G5 V. But we also note that they appeared to have

detected P14 as we do although at the low signal-to-noise based on our own measurement

(see Table 5.4), constraining the spectral type to G0 or earlier. There is a slight mismatch

between our conclusion and F2011 regarding the spectral type of the pulsar companion ( F5

V – G0 V vs G0 V – G5 V) . However, the detection of Paschen P14 line in all three epochs

of our data and that of F2011 requires a spectral type G0 or earlier. Taking both studies

into consideration, G0 V appears to best describe the spectral type of the pulsar companion.

This also matches the prediction of the companion’s mass of 1.667 M⊙ from pulsar timing

(F2011).

5.3.3 Rotational velocity of the companion star

We observed a bright rotational standard star (HD 176095) with GMOS at each epoch

before and after our target observations. The rotational standard star is an isolated, slowly

rotating (11 kms−1) late F type star (Wolff and Simon 1997). Figure 5.4 shows the spectrum

of the pulsar counterpart plotted over the spectrum of the rotational standard (in red).
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Table 5.4: Summary of Results from Equivalent Widths Comparison

Reference Feature used Luminosity Class [Fe/H] Spectral Type

Mallik (1994) CaT(λ8498+λ8542) IV/V -0.3 < [Fe/H] <0.2 F5 – G5

Ginestet et al. (1994) Ca II(λ8542), Ca II(λ8542), P14 (λ8498) —- —- F2 – G0

Ginestet et al. (1994) CaT(λ8498+λ8542+λ8662) V —- —–†

Jones et al. (1984) CaT(λ8498+λ8542+λ8662) V —- F5 – G7†

Idiart et al. (1997) CaT(λ8498+λ8542+λ8662) — -0.6≤ [Fe/H] ≤0.2 —†

Diaz et al. (1989) CaT(λ8542+λ8662) V -0.4 ≤ [Fe/H] <0.2 F5 – G5∗

Note: Summary of results using the CaT features from our data and F2011.

†
λ8662 feature was used from F2011

∗both features were used from the data of F2011
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Figure 5.4: The normalized and averaged spectrum of the pulsar companion is shown in the

figure compared to the normalized rotational velocity standard star spectrum (in

red). The location of the sky lines are marked in vertical dashed lines.

At a spectral resolution of 136 km s−1, the effect of broadening from a star rotating

at 11 km s−1 cannot be detected. The calcium lines in solar-like stars are often broadened

by collisional or pressure effects in the star’s atmosphere (Smith and Drake 1987). From the

spectrum of the pulsar companion, we find that the FWHM of the Fe I feature at 8515 Å,

which is insensitive to pressure broadening, is similar to the FWHM of an arc lamp line,

indicating that the pulsar companion is not rotating at a speed higher than the instrumental

resolution. Therefore, an upper limit on the rotational velocity of the pulsar companion

can be set by finding the minimum broadening that is detectable at the resolution of our

instrument using cross-correlation techniques. From Tonry and Davis (1979) and Bailer-

Jones (2004), the measured width (FWHM) of the cross-correlation function (CCF) can be

expressed as

σ2
meas = σ2

rot + σ2
nat + 2σ2

inst (5.1)
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where σrot is the rotational broadening, σnat is the intrinsic broadening and σinst is the

instrumental broadening. Following the argument made in Bailer-Jones (2004), σrot can

only be detected if it exceeds
√

(2)σinst, assuming that σnat is negligible. Also, the full width

of a rotational profile is contributed equally by both the approaching and the receding limb

of the star and hence corresponds to twice the rotational velocity. Theoretically, we should

be able to detect a minimum rotational velocity of vrot sin i =
√

(2)(σinst/2) (Bailer-Jones

2004).

To test that, we obtained the autocorrelation function (ACF) of the rotational standard

star separately in the wavelength ranges 8000 – 8450 Å and 8670 – 8800 Å . These regions

mostly comprise the Fe I, Mg I and Ti I features while excluding the pressure sensitive

calcium features. The average of the FWHMs of these two wavelength regions on either side

of the calcium triplet was used as a measure of σmeas. We then artificially broadened the

spectrum of the rotational standard in steps of 3 km s−1 and cross-correlated the broadened

spectrum with the original un-broadened one until a measurable difference was noticed in

the CCF. From Equation 5.1, σ2
meas = 2σ2

inst (for the ACF) and σ2
meas = σ2

rot + 2σ2
inst (for

the CCF) and subtraction of one from the other gives σrot. We determined FWHMs of the

ACF and the CCFs by fitting them with Gaussian profiles. A measurable difference in the

CCF was obtained when the rotational standard star spectrum was broadened by σrot =

132 km s−1. Hence, the minimum detectable vrot sin i at our instrumental resolution is 66

km s−1. This value is close to the theoretical minimum detectable rotational speed of 96

km s−1 (=136 ×
√

2 /2), obtained from the argument in Bailer-Jones (2004). Therefore,

these observations constrain the pulsar companion’s rotational speed to ≤ 66 km s−1. Our

constraint on the rotational velocity of the pulsar companion is a factor of ∼ 2 less than the

value quoted in F2011.
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5.4 Discussion

From our analysis, we have confirmed that the the observed star in the vicinity of the

MSP is indeed its companion, orbiting it in a highly elliptical 95-day orbit as predicted from

pulsar timing. From the EWs of the calcium triplet and the P14 feature, we constrain the

spectral type of the star to lie between F5 – G0 V. Our detection of the hydrogen P14 feature

in all three epochs showing the same wavelength shift as the calcium lines places the spectral

type very close to the G0 V predicted by pulsar timing. Additionally, we have proven that

the companion is rotating slowly with an upper limit of ≤66 km s−1. In this section, we

will discuss the implication of our result in two areas: constraining evolution scenarios of

this unique system and using this system as an astrophysical laboratory for tests of general

relativity.

5.4.1 Implications for General Relativity

The present analysis should allow us to constrain the classical spin-orbit contribution

to the measured rate for the periastron advance: ω̇o = 86.38±0.08 arcsecond century−1. This

is because the above contribution arises from the rotationally induced quadrupolar moment

of the main-sequence companion in our binary pulsar and in what follows we provide few

estimates for ω̇SO. Using equation (79) in Wex (1998), we obtain a maximum value for the

apsidal motion due to classical spin-orbit coupling to be ω̇SO ∼ 7.6 × 104 × J2 arcsecond

century−1, where J2 is the quadrupolar moment of companion star that we observed. If

we let J2 take a value close to that for the Sun ( J2⊙ ∼ 1.7 × 10−7), we get ω̇SO ∼ 0.013

arcsecond century−1 and this is roughly an order of magnitude smaller than the measurement

uncertainty in ω̇o(F2011). However, the fact that J2 is proportional to the square of the

angular velocity of the star’s proper rotation implies that we may use J2 ∼ J2⊙ × v2
rot/v

2
⊙,

where vrot stands for the rotational velocity of the companion and we let v⊙ ∼ 2 km s−1.

Therefore, we can provide few constraints for ω̇SO contributions to ω̇o.
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If we allow the spin axis of the star to be parallel to the orbital angular momentum of

the binary, we have vrot ∼ 66 km s−1 which leads to ω̇SO ∼ 14 arcsecond century−1. This is

even substantially higher than the 2.3 arcsecond century−1 upper bound on the spin-orbit

contributions to the apsidal motion that was obtained by treating general relativity to be

the correct theory and using the minimum total mass compatible with the measurements

of three relativistic observables (F2011). Interestingly, the fact that we have restricted the

spectral type of the companion between an F5V – G0 V implies that vrot may be in the

range 12−25 km s−1 (Tassoul 2007). These rotational velocity bounds lead to two estimates

for ω̇SO: 0.5 and 2 arcsecond century−1 respectively. These are also higher than the present

measurement error in ω̇o indicating that it will be rather difficult to perform a test for general

relativity using the available measurements of the three post-Keplerian parameters (F2011).

Our 8 meter spectra were taken under good to excellent conditions and yet have a

relatively modest signal to noise at a resolution of R=2200 which is still ∼ 7–8 times poorer

than what we need, to achieve a constraint of less than 10 km s−1 on vrot sin i. The lines which

are unaffected by pressure broadening in the star atmosphere are too weak to be detected

clearly at the current resolution and S/N and would require much better signal-to-noise to

be confidently detected. Therefore, employing the agreement of the three different post-

Keplerian parameters to perform a test of general relativity is not plausible at the current

time.

5.4.2 Constraining evolutionary scenarios for the pulsar system

The detection of a MS star as the companion to the pulsar and the confirmation of a

highly elliptical orbit raises various questions on the origin of this system while eliminating

some other hypotheses. For example, Champion et al. (2008) considered the possibility of a

triple system where the pulsar is orbiting an unseen white dwarf (0.9 – 1.1M⊙) in a 95-day

orbital period while the MS star happens to be in a longer period that drives the eccentricity

of the system by the Kozai mechanism (Kozai 1962). Since we have established that the
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MS star orbits the pulsar in a 95-day orbital period, the triple system hypothesis can be

ruled out. Additionally, Portegies Zwart et al. (2011) have pointed out that the hypothesis

of a MSP–WD–MS triple system is precluded by the fact that the observed change in the

eccentricity of this system is three orders of magnitude smaller than that predicted via the

Kozai mechanism (Gopakumar et al. 2009) .

Champion et al. (2008) also discuss the possibility of an exchange interaction in a dense

stellar environment that might have brought the MS star to orbit the pulsar in a 95-day pe-

riod. In F2011, the probability of this was found to be negligible. One of the parameters

used in their simulation is the systemic radial velocity, γ, of the binary. With five epochs of

radial velocity data, we have now refined this number to be γ = 41.7± 2.2 km s−1. Reinves-

tigating the exchange interaction scenario with the new improved systemic velocity estimate

could be helpful in constraining any effects from a supernova kick that may have occurred

in this system. This would be helpful in readdressing the original proposition by Champion

et al. (2008) where the system may have been formed in a dense stellar environment but was

eventually ejected via recoil during the exchange interaction.

F2011 also find that the pulsar has been recycled or spun-up to milli-second speeds

(due to mass-transfer from a past, accreting X-ray binary phase) but show that the current

MS star is unlikely to have played the role of the donor star responsible for its recycling. To

answer the question of how the pulsar was spun-up and what happened to the donor star,

F2011 investigated another triple system scenario. They considered a triple system wherein

the outer companion (the present MS star) started out in a much wider orbit around the

inner binary, which consisted of two more massive MS stars in a shorter orbital period. In

their scenario, the more massive star in the inner binary evolves into a red supergiant phase

and then engulfs the companion into a common envelope phase. As the orbit of the inner

binary decays, it will release orbital energy sufficient enough to leave a much closer binary

consisting of a He-core and an almost unaffected MS star. Meanwhile, if the outer star in

the triple system is close enough, it could be engulfed by the expanding envelope of the inner
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binary as well, which will cause it to spiral in and result in a much closer triple system. Once

the He-core explodes in a supernova, we are left with an inner Low-Mass/Intermediate-Mass

X-ray Binary (LMXB/IMXB) and an outer MS star. The NS is then spun up to milli-second

periods by the donor star, which has filled its Roche-lobe by this time. As mass transfer

continues from the donor to the NS, the orbit of the inner binary in the triple will widen to

some extent and will end in a chaotic three-body interaction. This will result in expulsion of

the less massive star from the system, eventually leaving the MSP in a tighter and eccentric

orbit around the MS star (the initial outer body in the triple system). F2011 have also

discussed in less detail several alternative scenarios for the formation and evolution of the

system. All of these scenarios start out with the system as part of a triple and then invoke

different dynamics that transpires after the common envelope phase, leading to the system

as we see it now. However, thorough numerical simulations are necessary to provide more

insight into the formation and evolution of these systems in a non-deterministic way.

Recently, Portegies Zwart et al. (2011) performed detailed numerical analysis to test

the formation scenario presented in F2011. They start out with a stable LMXB (Porb < 1.0

d) with a MS star in a wide and possibly eccentric outer orbit. They have shown from their

simulations that as mass transfer starts in the inner binary and as the orbit of the inner

binary widens, the system becomes unstable. Depending on the exact configuration of the

system at this point, each one of the three components in this triple system could be ejected.

Specifically, they found that a stable hierarchical triple consisting of an inner binary with

component masses of 9–13 M⊙ and 0.8 – 2.0 M⊙, separated by ≥ 200R⊙ and an outer MS

star with mass < 2M⊙ and having a semi-major axis > 560R⊙, could eventually result in the

formation of a system like PSR J1903+0327. Even though the chances of passing through

the various chain of events were found to be low, the result matches with what we see in PSR

J1903+0327. Portegies Zwart et al. (2011) were also able to describe an evolution scenario

for the soft X-ray transient 4U 2129+47 (V1727 Cyg) and the cataclysmic variable, EC

19314-5915, we noted before in Section 5.1. Additionally, they concluded that systems like
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PSR J1903+0327 have a birthrate of less than 3% compared to the Galactic LMXB’s and

10 times less than all MSPs. Thus the probability for this formation scenario happening, is

not large, but it is also not nil. Their model predicts tens to hundreds of systems similar to

PSR J1903+0327 existing in our Galaxy and raises the question of why no system like this

has been found prior to PSR J1903+0327.

In another independent work, Liu and Li (2009) consider that PSR J1903+0327 started

out as a binary system but during the supernova (SN) explosion that produced the pulsar, a

fall-back disk was formed around the newborn NS. Accretion started from the disk onto the

NS, which spun it up to milli-second speeds. Meanwhile the high eccentricity was considered

to be a consequence of the SN explosion that produced the NS. Liu and Li (2009) mention

that if this system was undisrupted, it could maintain this eccentricity for ≥ 1010 yr. One

of the uncertainties mentioned in their work is whether the fall-back material would have

enough angular momentum to produce the disk. This calls for an unusual SN-fallback history

to explain the very short period (2.5 ms) of PSR J1903+0327. In order for the fallback disk

scenario to work, it requires the companion of the pulsar to be ≤ (1− 2)× 109 yr. From our

work as well as from F2011, we find the MS star to be older than what is required for the

fallback disk scenario to work.

5.5 Conclusion

By obtaining new spectroscopy with GMOS at Gemini-N, we have confirmed the results

of F2011 as to the positive identification of the MS star as the close-in pulsar companion. Ra-

dial velocities are now in-hand for 5 epochs and the predicted radial velocity curve obtained

from pulsar timing is confirmed. The highly eccentric orbit is confirmed as well. Addition-

ally, we obtained estimates for the mass-ratio of R = 1.59 ± 0.21 and the systemic radial

velocity of the binary of γ = 41.7±2.2 km s−1. These refined estimates are important in the

context of explaining the origin of this system. We have determined the spectral type of pul-

sar companion to lie quite close to G0 V, from an analysis with our data and a reanalysis of
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F2011 data. Also, we have constrained the rotational velocity of the pulsar companion as <

66 kms−1. With the present estimate of the vrot sin i, it will be difficult to perform a test for

general relativity. Radio pulsar timing can lead to better constraints on General Relativity

in comparison to scalar tensor theories and should be pursued over the next few years. We

have also noted that the evolutionary scenario possible for the formation and evolution of

this unique pulsar system is best described by the recent numerical simulations of Portegies

Zwart et al. (2011). Starting with a stable hierarchical triple system consisting of an inner

binary with component masses of 9–13 M⊙ and 0.8 – 2.0 M⊙, separated by ≥ 200R⊙ and

an outer main sequence star with mass < 2M⊙ and having a semi-major axis > 560R⊙,

numerical simulations were able to replicate the formation and evolution of a system like

PSR J1903+0327.



Chapter 6

Characterization of the Hawaii-1RG Near-Infrared Array

6.1 Introduction

Infrared arrays (or detectors) were introduced into astronomy in the mid-to-late 1980’s.

A basic summary of the features of these devices is presented in McLean (1993). Infrared de-

tector arrays operating from ∼1µm to 120 µm, are “hybrid” structures containing two slabs

of semi-conductor material that are bonded to each other. The thin upper slab is made of IR

sensitive material (usually HgCdTe or InSb) and is organized into a grid of individual pixels

each of which contains a photodiode. Between the individual diodes are narrow regions of

dead space formed by insulating material acting as barriers between the diodes. The lower

slab (made of silicon) is also divided into the same number of pixels and each one of them

consists of a silicon field-effect transistor (FET) that acts like a “buffer” to the charge that

is collected on each pixel on the detector. In a hybrid array, each pixel unit is a detector in

itself containing its own charge storage site and the read-out circuitry. The entire structure

is referred to as the Focal Plane Array (FPA). Infrared photons landing on the surface of

the detector at a certain pixel will produce an electron-hole pair which is quickly separated

by the electric field produced by the reverse-biased pn junction in the detector material cre-

ating a depletion region that effectively acts like a capacitor. Due to migration of photon

generated electrons to the n-type region, the capacitor voltage will change from its initial

reverse-bias value. This change in voltage is then transmitted to the silicon FET which in

turn communicates this change to one or more of the output lines. IR arrays can be read
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out non-destructively such that while the charge at a certain pixel is being read, the charge

in the neighboring pixels remains undisturbed, allowing the charge in that pixel to be read

again later.

6.2 Noise sources in near-infrared observations

For an infrared observation, the sources that contribute to the overall noise can be

broadly classified into a) external and b) internal noise. The external noise comprises photon

noise from the source as well as from the sky background. The internal noise consists of dark

current due to thermal electrons which increases linearly with exposure time as well as read

noise (McLean 2008). The read noise arises from the readout electronics every time the

array is read out and is independent of time. The read noise can be thought of as random

fluctuations in voltages which are added to the true signal, digitized, and converted to an

equivalent number of electrons. The signal to noise equation for a single infrared exposure

(for a single pixel) takes the following form (McLean 2008):

S/N =
SE ×

√
t

√

SE + BE + DE + σ2
readE

/t
(6.1)

where,

SE = Total source signal in electrons.

σreadE
= Read noise in electrons.

DE = Dark current in electrons.

BE = Sky background in electrons.

t = Exposure time.
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For near-infrared observations, the main challenge is presented by the high sky back-

ground. Since the objects under study are typically fainter than the background, BE dom-

inates all other terms in the denominator in Equation 6.1. The S/N equation then takes

the form S/N = SE×
√

t√
BE

∝
√

t. Therefore, exposure times for near-infrared observations

are calculated bearing in mind the bright and variable sky background. Individual near-

infrared exposure times are of shorter durations and the telescope of is often “nodded” or

“dithered” to obtain frequent samples of the sky on the same pixel locations as the source

to be subtracted from images. Dithering also helps in removal of bad detector pixels when

the individual exposures are median combined.

6.3 System gain

The photo-electrons collected at every pixel on the array are converted to a voltage

value proportional to their number. This voltage value is then converted to a corresponding

digital value which forms the raw data. The raw data are expressed in analog-to-digital

units (ADU) or data numbers (DN). The constant of proportionality linking the DN with

the number of photo-electrons is traditionally called the system gain and is expressed in

units of e−/ADU. To obtain the relation between the system gain and read noise, let us first

define the following quantities:

σtotalE = Total noise in electrons.

σreadE
= Read noise in electrons.

σSE
= Source noise in electrons.

σtotalC = Total noise in counts.

σreadC
= Read noise in counts.

SE = Signal in electrons.
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SC = Signal in counts.

g = gain in e−/ADU

The signal and noise in “electrons” are simply related to their corresponding quantities in

“counts” by the system gain. In particular, we have:

σreadE/sourceE/totalE = g × σreadC/sourceC/totalC

SE = g × SC

Also since the source noise follows Poisson statistics, we have:

σSE
=

√

SE

Since the noise sources are independent, they add in quadrature. Hence, we have:

σ2
totalE

= σ2
readE

+ σ2
SE

(6.2)

g2σ2
totalC

= g2σ2
readC

+ g × SC

σ2
totalC

= σ2
readC

+ (1/g) × SC (6.3)

Equation 6.3 is analogous to a straight line equation where 1/g represents the slope of the

line. The term σ2
readC

is the intercept and is independent of the exposure time. To measure

the gain of the system, we plot the variance of the total counts vs. the observed signal (in

counts) for a series of flat-field illumination images and fit a straight line through these data

points to obtain the slope, which is a measure of the system gain. Generally, an average

value of gain is computed for different regions on the detector to account for the fact that

the gain may not be constant throughout the detector.

6.4 Read noise

The read noise of an infrared array is the noise that originates in the read-out elec-

tronics and is introduced into the system every time the array is read out. Read noise is a
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constant and is independent of the exposure time. The process of Fowler sampling which

incorporates multiple non-destructive reads in IR arrays, is often employed to reduce the

read noise (Fowler and Gatley 1990). The number of Fowler samples (NFS) is the number

of non-destructive reads requested by the user. In the tests that we conducted, the array

was read non-destructively in the correlated double sampling mode (CDS or NFS = 1). The

CDS mode operates in the following way: at the start of request for an exposure, the array

is cleared pixel by pixel until the entire array is reset. This is followed by reading the array

which marks the start of the exposure time (texp) requested by the user; the detector then

integrates until the end of texp, after which the array is read out once again. This process

could be applied to any number of Fowler samples, N (where N >1). For NFS=N , the read

operation at the start and end of the integration ramp is performed N times each. Performing

the read operation with a Fowler sampling of N will reduce the read noise by a factor of
√

N

(Fowler and Gatley 1990). Using the difference of the reads at the beginning and end of the

integration cycle helps get rid of systematic effects inherent in the array which will otherwise

affect our measurements. This includes the “kTC” noise added to the detector right after

the inital reset operation, resulting from a build-up of charge on the integrating capacitor by

thermally generated currents which manifests itself as a jump in the voltage to a variable new

level (Reike 2007; Fowler and Gatley 1991). Subtraction of N (where N ≥ 1) reads (after be-

ing averaged) at the beginning and end of the integration cycle will successfully remove this

noise. Since our measurements were performed in the NFS=1 mode, we obtained two reads

and our signal consisted of the difference frame between the two reads. Figure 6.1 shows the

processes associated with acquisition of an infrared image with and without Fowler sampling.
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6.5 Motivation for this work

The University of Colorado built a near-infrared instrument known as the The Near-

Infrared Camera & Fabry-Perot Spectrometer (NICFPS) for the Astrophysics Research Con-

sortium (ARC) 3.5 meter telescope for use at the Apache Point Observatory (APO), first

made available to the ARC community in 2005. NICFPS uses a Rockwell Hawaii 1-RG

detector, sensitive within the wavelength range ∼0.85–2.5 µm. Initially, the device was de-

signed to be read out in the 2-channel mode which required ∼ 5.4 seconds to read out the

entire array. In 2007, the read out capability was upgraded to the 16-channel mode thereby

cutting down the readout time to ∼1.0 second1 . The number of times the detector is read

out for each exposure is determined by the Fowler Sampling setting. Following the upgrade

to 16-channel, an increase in the read noise in NICFPS was noted; specifically, the read noise

increased by ∼90 e− in the CDS mode. To reduce the read noise in the exposures, the detec-

tor was read out using the NFS=8 setting, but at the cost of increased read out time of the

array. To understand the behavior of read noise in these devices aimed at lowering the read

noise in NICFPS, a study was undertaken by me under the guidance of Stéphane Béland

at the Astrophysical Research Laboratory in the University of Colorado. This study was to

be conducted on the Hawaii– 1RG engineering grade chip that would serve as a test bed for

reducing the read noise in NICFPS. Since no characterization numbers were available for

this device from the manufacturing company (Rockwell Scientific, now known as Teledyne),

we first proceeded to characterize the array.

6.6 Experimental set-up and tests conducted

The first objective of our tests was to characterize gain and read noise of the Hawaii–

1RG engineering grade chip. The Hawaii-1RG (hereafter, H1RG) chip was operated in the

slow read mode (100 kHz) and the 2-channel output. The fast read mode (∼5 MHz) is

1 http://www.apo.nmsu.edu/arc35m/Instruments/NICFPS
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Figure 6.1: Schematic representation of the Fowler sampling process associated with acqui-
sition of an IR image. The top panel represents a simple reset-integrate-read
operation (NFS=0) that does not remove the variable “kTC” noise. The cen-
tral panel shows the CDS (or NFS=1) mode that involves subtraction of two
reads at the beginning and end of an an integration cycle. This remove the
‘’kTC” noise successfully. This Fowler sampling technique can be repeated for
any number of reads at the beginning and end of an integration cycle. The
final image is produced from a subtraction of such “N” average reads. The bot-
tom figure shows the scheme applied to 4 such reads. Source: recreated from
www.caha.es/CAHA/Instruments/IRCAM/MAGIC/ObsGuide
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achieved at the cost of increased read noise of up to five times as well as greater power

consumption. In the slow read mode, the entire array could be read out in 5.3 seconds (see

The Hawaii-1RG Technical Documentation by Rockwell Scientific).

In our experimental set-up, the H1RG engineering grade chip, a fan-out board and an

infrared light emitting diode (LED) were housed in a Dewar that was cooled down by liquid

nitrogen (LN2) to temperatures of ∼ 65 ◦K so that the array could operate below thermal

infrared temperatures. The Dewar was connected to a controller that operated the array

via the fan-out board. One side of the fan-out board connected directly to the H1RG chip

via a 92-pin Hirose connector and the opposite side connected to the controller via three

21-pin Glenair connectors. All our tests were tried out with the fan-out board fabricated

at University of Colorado (hereafter, CU fan-out board) and some tests were conducted

with another fan-out board fabricated at the University of Virginia (hereafter, UVA fan-out

board). The CU fan-out board is populated with 10 KΩ resistors on the VDDA line to the

detector while the UVA fan-out board was designed with the option to add RC filters on the

VDDA line for read noise reduction purposes. The VDDA line supplied the power for the

internal analog electronic components in the H1RG detector. Additionally, the UVA board

was designed to provide better shielding than the CU fan-out board.

The controllers used for our tests were a Leach controller and a Rockwell controller. The

Leach controller houses the video processor board and the timing board. The video processor

board amplifies and digitizes the video signals from the chip. The timing board provides the

clock signals necessary for controlling the array as well as for maintaining communication

with the host computer Peripheral Component Interconnect (PCI) board via a fiber optic

cable (Leach and Low 2000). The Rockwell controller consists of the main electronics box

that connects to the dewar containing the H1RG chip and is responsible for digitizing the

analog output at either 100 KHz or 5 MHz. In addition, it contains the frame buffer box

which converts the data from the main electronics box to a 25 MHz digital output which is

then interfaced with a PC frame grabber (Clarke 2004).
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In our experimental set up, an aluminum box, in contact with the cold base inside the

Dewar, was mounted over the chip and the LED. The brightness of the LED was manually

controlled by passing currents (of the order of µA) through it. This was used to uniformly

illuminate the array for gain measurements. Before conducting any tests, the FPA was cooled

down to temperatures where the thermal noise would not dominate. First, the Dewar had

to be pumped out until the pressure inside dropped to ∼ 10−6 Torr. The cooling process

was started by slowly administering LN2 into the Dewar at a steady rate of ∼ 2 ◦K/min.

Excessive cool down rates could cause delamination of the chip inside the Dewar. Once a

temperature of about ∼ 65 ◦K was reached, the flow rate was increased until the tank was

topped off. The entire process of cooling took up to 2.5 – 3 hours and refilling of the Dewar

was required every 8 – 10 hours to maintain this temperature and to minimize any dark

current affecting our measurements. The initial dark exposures that were taken with the

Rockwell controller showed pick-up noise pattern in the images. We tried to eliminate this

noise by moving the entire set-up (test dewar + controller + computer) to a different work

area but found the noise pattern to persist. Finally, we rebuilt all the cables connecting the

fan-out board in the Dewar to the Rockwell controller and successfully eliminated the this

noise. An example of the dark exposure with the pick up noise and its successful elimination

is shown in Figure 6.2. We rebuilt the cables connecting the fan-out board inside the Dewar

to the video processor board and timing board housed in the Leach controller, as well.

In the initial experimental setup, we operated the H1RG chip with the Leach controller to

mimic the set up currently employed with NICFPS at APO. However, the read noise and

gain measurements with the Leach controller were found to be highly inconsistent in every

measurement. Therefore, we decided to conduct our first tests with the Rockwell controller

then determine the noise contributed by the controller alone, and finally determine the noise

contributed by the chip. We then repeated the same tests with the Leach controller to check

the consistency with the results obtained from using the Rockwell controller.

All tests were performed with the cryogenically cooled H1RG engineering grade chip
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Figure 6.2: A dark image taken with the engineering grade chip and Rockwell controller
showing the pick-up noise. The dark circle at the center of the array is from
manufacturing defect. The zoomed in selected section of the array in the upper
right gives a better view of the noise pattern. The figure on the lower right shows
a dark frame taken after the original cables were replaced with new ones. The
noise pattern is seen to be eliminated in the exposure.
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using the Rockwell and the Leach controllers, aimed at measuring the gain and read noise

of the chip. In the sections below, the tests done with each controller individually will be

described.

6.7 Measurements done with the Rockwell controller and CU fan-out board

To obtain the gain and read noise measurements of the IR array using the CU fan-out

board and the Rockwell controller, it is essential to first determine the linear regime of the

chip. To establish this range, using the Rockwell controller, we passed a current of 6 µA

through the LED and measured the counts obtained at increasing exposure times. As shown

in Figure 6.3, the chip is 3% linear up to 25 K counts (ADU) which occurs at an exposure

time of 30 seconds for this lamp current. Beyond that the chip deviates rapidly from the

linear regime with increasing exposure times. Array saturation is reached near 35 K counts

attained for an exposure time of 60 seconds for 6 µA current through the LED. From the

same figure, we see that at exposure times > 80 seconds, well beyond the point when the

array has reached saturation, the counts drop by ∼1.5%. We operated the chip well within

the linear regime for our tests.

6.7.1 Technique for gain and read noise measurements

For the system gain measurement, we obtained images in the CDS mode by passing a

current of 6.0 µA through the LED at increasing exposure times from 10 – 20 seconds with

a step size of 2 seconds thereby ensuring that the detector operated in the linear range. For

each image, the difference between the two reads at the beginning and end of the integration

time constituted the 2D processed image. We acquired two such processed images at every

exposure time. Next, we obtained an average image and a difference image computed from

these two processed images. Using the difference image to calculate the statistics eliminated

sensitivity variations across the image as well as get rid of dark current. Two different

procedures were employed for the gain calculation: a) the standard variance method, and
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Figure 6.3: Plot showing the dynamic range for which the H1RG array is linear when oper-
ated with the Rockwell controller and the CU fan-out board.
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b) the Gaussian fitting method. In the standard variance method of computing the system

gain, the variance computed on the difference image was plotted against the mean computed

on the average image. A straight line fit through the data points at various exposure times

gave the system gain. In the Gauss fitting method, we fit a Gaussian to a histogram of the

pixel values in the average image as well as in the difference image to obtain the mean signal

and variance of the signal respectively. Once again, a straight line fit through these data

points at various exposure times gave the system gain. To keep track of the variation of the

gain over the entire array, we computed the gain over various sections of the array.

For measuring the read noise, we obtained ten sets of dark frames in the CDS mode

with exposure times of 10 seconds each. Once again, the 2D processed image for each dark

frame was obtained by a subtraction of the first read from the second read. These processed

images served as the input to the read noise calculation. We first computed the variance

of the counts for every pixel in the ten sets of processed images and obtained a variance

image from this. The process of calculating the read noise from the variance image was

initiated by taking a histogram of all pixels within 5σ of their median value. The histogram

was then fitted with a Gaussian curve and the mean was taken from the fit parameters and

reported as the read noise (in ADU). The read noise was then converted into units of e− by

multiplying by the system gain obtained in the manner described above. We also obtained

a sample mean (without fitting the Gaussian) on the distribution of the pixel values from

the variance image that agreed closely with the mean obtained from fitting a Gaussian. For

all our read noise and gain tests, we selected sample regions with size 100 × 100 pixels that

covered the upper, central and lower parts in both halves of the chip. The following regions

([X1:X2, Y1:Y2]) were used throughout the study:

upper left [184:284, 659:759]

upper right [639:739, 641:741]

lower left [184:284, 224:324]
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lower right [641:741, 295:395]

center left [148:248, 382:482]

center right [662:762, 487:587]

6.7.2 Read noise and gain results

The results obtained from gain and read noise measurements using with the Rockwell

controller and the CU fan-out board can be summarized with the plots shown in Figure 6.4

and Figure 6.5. We note that the system gain varies between the Gaussian fitting method

and the standard variance method for the upper third of the chip. Systematic errors intro-

duced by the detector itself could skew the distribution from an expected Gaussian curve

for the mean counts, probably from manufacturing defects in the Engineering grade chip.

The system gain estimated by the standard variance method is more consistent across dif-

ferent sections of the chip and we used this value to compute the read noise. For the rest

of the study the gain value obtained from the standard variance method will be used to

convert the corresponding read noise into units of e−. The read noise values obtained for

the corresponding sections of the chip are shown on the right column of Figure 6.4 and Fig-

ure 6.5. We computed the average gain for all six regions across the chip (using the standard

variance method) and applied this towards obtaining the average read noise. Thus, using

the Rockwell controller, we determined the average gain and readnoise for the

engineering grade chip using the above six regions as 6.43 e−/ADU and 67 e−

respectively.
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Figure 6.4: Gain and read noise measurements with the Rockwell controller and using the
CU fan-out board for different sections on the array.
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Figure 6.5: Gain and read noise measurements with the Rockwell controller and using the
CU fan-out board for different sections on the array.
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6.8 Measurements done with the Rockwell controller and UVA fan-out

board

For a consistency check, we first populated the bare UVA fan-out board in a manner

so as to resemble the CU fan-out board exactly. Then we ran our gain and read noise

tests to detect any difference in the results for the two identical looking fan-out boards with

better shielding for one than the other. To conduct the tests with the UVA board, we first

let the LN2 in the Dewar to evaporate and the temperature inside the Dewar to increase.

Then we replaced the CU board with the UVA board, put the Dewar in the pump overnight

until pressure dropped to ∼ 10−6 Torr, and finally cooled it back down by employing the

method described in Section 6.6. The entire process took up to ∼8 hours for completion.

We expected to find the same results as in Section 6.7.2. The linear range of the array using

the UVA fan-out board was determined by passing a current of 6µA for increasing exposure

times.

Once again we find the array to be linear up to an exposure time of 40 seconds beyond

which it starts deviating from this behavior with saturation occurring near 75 seconds. The

linearity behavior of the array is shown in Figure 6.6. An interesting comparison with

Figure 6.3 shows that while the range of exposure time for which the array shows linearity

is comparable in both cases, there is a sharp difference in the level of counts at which the

array reaches saturation. It is not understood at this time why both tests done under the

exactly similar conditions (the UVA fan-out board was modified to resemble the CU board)

should give this difference in counts.
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Figure 6.6: Plot showing the dynamic range for which the array is linear when operated with

the Rockwell controller and the UVA fan-out board.

6.8.1 Read noise and gain results

Keeping the detector well within the linear regime, we conducted the gain and read

noise tests as described before and obtained the results shown in Figure 6.7 and Figure 6.8.

Once again we noticed some discrepancy in the gain calculated using the Gauss fitting

method. We calculated the average gain using the results obtained from the standard vari-

ance method and used this to convert the read noise into units of e−. The average gain and

readnoise using the six regions on the chip were determined as 7.42 e−/ADU and

81.4 e− respectively, using the Rockwell controller and the UVA-fan-out board.

The better shielded UVA fan-out board was designed to produce a lower overall read noise

than the CU board. However, we obtained a higher read noise using the UVA board popu-

lated in a manner to exactly duplicate the CU board. We do not understand the reason for

this discrepancy at this time.
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Figure 6.7: Gain and read noise measurements for different sections of the array taken with

the Rockwell controller and the UVA fan-out board.
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Figure 6.8: Gain and read noise measurements for different sections of the array taken with

the Rockwell controller and using the UVA fan-out board.
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At this point, we decided to put the CU fan-out board back in the Dewar and run a set

of tests to determine the noise arising out of the different components in the experimental

set-up namely the Rockwell controller, the fan-out board and the cables. Once we correctly

determined these values, we could proceed to conduct the same tests with the Leach con-

troller and observe the difference. Then, we would repeat the same tests by including the

UVA fan-out board in the system. Each time we conducted a new test that required re-

placing any hardware component inside the Dewar, the entire cooling cycle associated with

it was repeated so as to keep the FPA operating below thermal infrared high background

temperatures.

6.8.2 Noise associated with the Rockwell controller

To measure the noise contributed by the Rockwell controller, we used a spare CU fan-

out board to connect to the H1RG array. The output lines from the array on the fan-out

board were then manually cut with an x-acto knife to create a break in the circuit. Then,

one of the incoming reference voltages was rerouted back into the previous array outputs.

In this way we could measure the read noise using a reference voltage instead of the actual

detector output. Since we were operating the array in the 2-channel read out mode, we

sent the reference voltage (VBIASPOWER, in our case) to the output channels 7 and 15

and a different reference voltage (GND) to the complements. (A detailed explanation of the

purposes of the various voltages used in the operation of the H1RG array can be found in

the The Hawaii-1RG Technical Documentation by Rockwell Scientific). In another set up,

we bypassed the fan-out board completely by connecting wires that went to and from the

connector of the fan-out board. This was done to detect any observable difference in the

noise calculation when the fan-out board was left out from the set-up. This was the way to

confirm that connecting the array with/without the fan-out board in the entire setup did

not have any effect on the controller noise. With these tests we found a readnoise of ≈5.5
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DN coming from the Rockwell controller. Noise measurements from four different sections

of the array are shown in Figure 6.9. We also found that the noise contribution from the

Rockwell controller was not affected by including the cables that ran from the Dewar to the

controller. This just implies that the fan-out board or the cables introduced insignificant

noise in the experimental set-up.

If we used an average gain of 6.43 e−/ADU (gain obtained with the CU fan-out

board), the noise contribution from the controller is 55.9 e−. This implies a

readnoise contribution of 36.9 e− from the chip itself.

Figure 6.9: Noise contributed by the Rockwell controller, measured using reference voltages

instead of actual detector output.
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6.9 Measurements done with the Leach controller and CU fan-out board

Since the start of our tests, one persistent issue with the Leach controller has been

inconsistency of results. For example, the gain and read noise numbers varied wildly with

no pattern thereby making it extremely challenging to characterize the array using this con-

troller. We measured the various power supply voltages, bias voltages as well as the output

voltages used by the H1RG array and compared them against the recommended values in

the H1RG manual. These voltages are listed in Table 6.9 along with our measurements and

the recommended values in columns 2 and 4. We found that the values of the voltages B07,

DRAIN, DSUB, COMP7 and COMP15 disagreed with the recommended values; some of

these voltages gave negative values. Another issue with the exposures taken with the Leach

controller consisted of: wildly varying counts for the images taken with the same amount of

current being passed through the LED. At another time, the array would not display any

difference in the number of counts for an image taken by passing a current of 2 mA for an

exposure time of 500 seconds versus a current of 6 µA taken for an exposure time of 20 sec-

onds! We perceived the inconsistent behavior to be an artifact of the voltage issue and sent

the Leach controller to Astronomical Research Cameras Inc. requesting them to look into

this problem. The clock driver and timing boards passed all of their tests. However, they

detected one of the jumpers in the video board to be in the wrong location and rectified it.

They also found that the waveforms that were brought on the timing board were delayed by

a few nanoseconds; they corrected this issue as well. Once again, we measured the voltages

after the Leach controller was shipped back to us and found the values to agree quite closely

with the recommended values in the H1RG users manual. Column 3 in Table 6.9 shows the

voltages measured for the various input/output signal requirements of the H1RG array after

the Leach controller was repaired.

After the voltage issue was resolved, we obtained dark images as well as uniformly

illuminated flat fields and found the images to behave in an explicable manner. As before,
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we determined the linear range of the array using the Leach controller by passing a current

of 6 µA through the LED for increasing exposure times using the CU fan-out board. The

linearity plot is shown in Figure 6.10. We noted that the array was linear up to exposure

times of ∼28 seconds but deviated from the linear behavior by >5% beyond that. We also

found that the counts at which the array reached saturation was around 30 K; this value

was lower by about 5 K counts for the tests conducted with the Rockwell controller and the

CU fan-out board in Section 6.7. For the gain and read noise measurements, we operated

the array within the linear regime. After the array was cooled down to thermally operable

temperatures, we obtained the initial dark and flat frames and obtained surprisingly high

read noise values ( ∼ 200 – 500 e−). After much investigation and voltage tweaking, it was

found that adjusting the voltage level of B07 (bias voltage used for the complement inputs)

to match that of the recommended output voltage (OUT 7, 15) reduced the read noise by

>150 e−.

Voltages Before repair (V) After repair (V) Recommended values (V)
VDD 3.26 3.25 3.30±5%
VDDA 3.26 3.26 3.30 ±5%
CELLDRAIN 0.00 0.00 ≥0.00
DRAIN -0.584 -0.001 ≥0.00
VBIASPOWER 3.21 3.26 ≤3.30
DSUB -0.53 0.35 <1.70
B07 -0.51 0.00 ∼0.00
COMP 15 -0.51 0.00 ∼0.00
OUT 15 3.23 3.24 ≤3.30
COMP 7 -0.51 0.00 ∼0.00
OUT 7 3.23 3.24 ≤3.30

Table 6.1: Table listing the voltages used by the H1RG Engineering Grade chip along with
the measured values before and after the Leach controller was repaired. The last
column shows recommended voltage values.
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Figure 6.10: Plot showing the dynamic range for which the array is linear when operated

with the Leach controller and the CU fan-out board.

6.9.1 Read noise and gain results

For measuring the gain of the H1RG array using the Leach controller, we passed a

current of 6µA through the LED for obtaining uniformly illuminated images. The current

was chosen such that it was consistent with all the previous tests. We also used the same

exposure times as we used for the tests done with the Rockwell controller so as to have a

one-on-one comparison of the results. Our gain and read noise measurements obtained with

the Leach controller and the CU fan-out board are shown in Figure 6.11 and Figure 6.12 .

As mentioned before, the H1RG array is operated in the 2-channel read out mode.

From Figure 6.11 and Figure 6.12, it is apparent that the output channels 7 and 15 have

very different gain values. If we consider the two channels separately, then the average gain

(using the standard variance method) and readnoise in channel 7 are 3.88e−/ADU and 70.9e−

and the corresponding numbers in channel 15 are 1.55e−/ADU and 38.6e− respectively. It
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Figure 6.11: Gain and read noise measurements for the array using the Leach controller and
the CU fan-out board.
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Figure 6.12: Gain and read noise measurements for the array using the Leach controller and
the CU fan-out board.
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is worth noting that the gain values are lower than those obtained for the array with the

Rockwell controller using both CU and UVA fan-out boards for the exact same tests.

The average gain and read noise for the entire array is reported as the average of

the values obtained for channels 7 and 15. Thus, when operated with the Leach

controller and the CU fan-out board, we obtain the average gain of the array as

2.7e−/ADU and the read noise as 54.8e−.

6.9.2 Noise associated with the Leach controller

We next wanted to measure the noise coming from the Leach controller alone by fol-

lowing the same procedure as described in Section 6.8.2 for the Rockwell controller. We fed

VBIASPOWER to the output channels, and B07 to the complements and took another set

of read noise measurements. The results of these measurements are plotted in Figure 6.13.

We obtained a value of 5.4e− for the noise coming from the Leach controller alone (using

the average gain of 2.7e−/ADU). This was the same whether we included the chip, fan-out

board and the cables in the set up or not. This translates to an average read noise of

54.5 e− coming from the chip alone. The results do not agree with read noise obtained

with the tests done with the Rockwell controller (37 e−).

To address the issue with the different gain values in the channels 7 and 15, we per-

formed another test that used the video card in the Leach controller. We changed the value

of VBIASPOWER as our simulated output signal from 2.90 V to 3.20 V in steps of 0.02 V.

We picked reference pixels from both sides of the chip to see whether DNs vs voltage plot

behaved differently for the two channels. We found that the two plots closely followed each

other suggesting that the videocard was not contributing to the difference in the gains in

the two channels. This is depicted in Figure 6.14
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Figure 6.13: Noise contributed by the Leach controller, measured using reference voltages
instead of actual detector output.
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Figure 6.14: Gain measured for increasing simulated output voltage values. The black line

shows gain from channel 7 and the red line shows gain from channel 15.

6.10 Conclusion

We characterized the gain and read noise of the Hawaii-1RG Engineering grade array

using a variety of tests performed with two different controllers and two different fan-out

boards. However, many issues remain unaddressed at this point. Some of the important

issues concerning the behavior of the array are: the high read noise of the array when

operated with the UVA fan-out board as compared to the CU fan-out board; the difference

in the saturation counts for the array when operated with two different controllers and two

different fan-out boards; the difference in gain noticed in the two output channels when

the array is operated with the Leach controller; and, the difference in gain when the array

is operated with the two different controllers.With these constraints, the read noise of the

Hawaii-1RG engineering grade chip can be broadly constrained as 37 – 55 e−.

The primary reason for characterizing the engineering grade chip was to proceed to use

this device as a test bed for lowering the read noise in NICFPS using the UVA fan-out board.
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The intrinsically noisy engineering grade chip will prevent us from observing the effect of

adding filters on the UVA fan-out board. Therefore, it was proposed that we optimize the

added filters on the UVA fan-out board with the science grade chip at APO in the test Dewar

(used for our tests at ARL) by trying out various combinations of filters on the fan-out board.

Each new iteration will involve warming up, removing the fanout board, making the changes,

re-installing, pumping, cooling and measuring the resulting read noise. Conducting one of

these iterations on the test Dewar could be accomplished in one day as opposed to four days

with NICFPS (i.e. if we conducted these tests in NICFPS without removing the science

chip). Then, once we find the optimum (lowest) read noise inside the test dewar, we can

move the modified fanout board back in NICFPS with the science grade chip. We believed

this proposed method to be the fastest and most efficient way to focus on our primary goal,

i.e. reducing the read noise in NICFPS. However, concerns about possible damage done to

the science chip when operating it in the test Dewar as well as conflicts with the NICFPS

observing schedule delayed the tests until the summer of 2011, after my participation in the

project had ended. At that time, the UVA fan-out board with the add-on filters was tested

with the science chip and the science Leach controller at ARL by Stéphane Béland. The

read noise of NICFPS is now at 20.9 e− in the CDS mode and 16-channel readout mode; this

is a significant improvement from ∼100 e− measured after the upgrade to the 16-channel

mode.



Chapter 7

Conclusion and Future Work

Since 2007, my collaborators and I have used NIR spectroscopy and photometry to de-

termine precise masses of compact objects in several X-ray binaries. Even though the donor

star is assumed to dominate the light from these sources in quiescence at NIR wavelengths,

it has been shown in several systems that this assumption is not valid. Not only may other

non-stellar sources contribute significantly at these wavelengths but their contribution also

varies even when the system is still in quiescence (Cantrell et al. 2008, 2010). We corrected

for the previously obtained compact object masses in three LMXBs – V404 Cyg, Cen X-4 and

XTE J1118+480 by properly accounting for the NIR flux contributed by non-stellar sources

of light (e.g. the accretion disk and/or a jet). In V404 Cyg, we found the contribution from

non-stellar sources to be very small (f = 0.97± .09 in the K-band) and determined the mass

of the black hole in this system as 9.0+.2
−.6 M⊙; our black hole mass estimates are consistent

with the previous result of Sanwal et al. (1996). In the case of Cen X-4, we obtained lower

S/N spectral data compared to V404 Cyg ( S/N∼ 25 – 30 in the H-band) which made it

challenging to obtain a precise accretion disk contribution. From our data, we estimated

the accretion disk contribution as 0.94 ± .14 in the H-band which led to the mass of the

neutron star of 1.5+.1
−.4 M⊙. Our result is consistent with, but more precise (by ∼ 25%) than,

recent estimates by D’Avanzo et al. (2005). These mass estimates should however be viewed

with some degree of caution. The time gap between the acquisition of the spectral data and

light curve data for both V404 Cyg and Cen X-4 is ∼ 10 years. Even though both systems
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remained in quiescence during the entire period of ten years, one can argue based on the

work by Cantrell et al. (2008, 2010), that meaningful mass estimates can be obtained only

when non-stellar NIR flux obtained from spectroscopy during quiescence is supplemented

with contemporaneous light curve data. Motivated by this, we obtained contemporaneous

light curve and spectral data for the black hole LMXB XTE J1118+480, to determine an

accurate mass of its compact accretor. XTE J1118+480 is about ∼ 6 times fainter than Cen

X-4 and therefore we used the Gemini 8-m class telescope to obtain moderate S/N spectral

data. With 5.5 hours of on-source time, we obtained a S/N ∼17 in the H-band, allowing us

to broadly constrain the non-stellar contribution to the near-infrared light of f = 0.50±0.32.

We then modeled the light curve data, obtained contemporaneously with the spectral data,

to obtain the mass of the black hole as 6.9 < (MBH/M⊙) ≤ 8.2. By accounting for the non-

stellar light at the time of acquisition of light curve data, we were able to show that the black

hole mass in XTE J1118+480 is ∼10% lower than past estimates by Gelino et al. (2006). We

noted in the case of XTE J1118+480 that the light curve morphology may change also, even

when the system was in quiescence; this agrees with the study done by Cantrell et al. (2010)

on the LMXB, A0620-00. Our H-band light curve displayed asymmetric features that were

adequately fit by a model containing a donor star and an accretion disk with a bright spot;

this asymmetry was not seen in the quiescent light curves obtained by Gelino et al. (2006).

Therefore, one can conclude that accurate mass estimates can only be obtained by model-

ing quiescent light curves of LMXBs while simultaneously accounting for other non-stellar

sources of flux obtained from spectroscopy. Currently 15 low mass X-ray binaries and 5 high

mass X-ray binaries are known with measured compact object masses. A statistical analysis

of the mass distribution of the compact objects in this sample shows strong evidence of a

gap between the maximum neutron star mass and the lower bound on the black hole masses

(between 2 – 4.5 M⊙) (Farr et al. 2011; Özel et al. 2010). However, previously estimated

masses based on the assumptions of negligible non-stellar contribution and consistent light

curve morphology at NIR wavelengths during quiescence could be biased to higher values,
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giving the appearance of a top-heavy distribution for compact object masses. These mass

estimates need to be revisited. In the future, my collaborators and I plan to continue to ob-

tain precise mass estimates of compact accretors in LMXBs, extending my study to include

fainter systems as well as systems that are only accessible from the southern hemisphere.

These investigations will rely on NOAO observations with Gemini-North, Gemini-South,

Keck, and the SOAR 4-m telescope. Additionally, I will continue to use the the 3.5-m tele-

scope at APO along with my collaborators from the University of Colorado. Specifically, I

intend to explore the systems whose minimum mass function f(M), lies close to the observed

mass gap since determining if their masses are lower than than the previous measurements

will have important consequences for the observed mass gap. To that end, we have proposed

to observe the black hole LMXB GRO J0422+32 on Gemini-North. The minimum mass of

the BH in this system has been determined as 1.13 ± 0.09 M⊙ (Harlaftis et al. 1999), placing

it in the crucial mass gap in the black hole mass distribution, but its mass has been under

debate (see Gelino and Harrison 2003 and Reynolds et al. 2007). If rewarded observing time

for this system, we will provide accurate mass for what could possibly be the lowest mass

black hole ever measured.

My work on the binary milli-second pulsar PSR J1903+0327 has provided the unique

information on an astrophysical system that challenges currently favored models of MSP

formation and evolution. PSR J1903+0327 is the only MSP in the Galactic disk found so

far that is in orbit around a main-sequence star in a highly eccentric orbit. The discovery of

this system has led to questions about the accuracy of previously established models of MSP

formation mechanisms. We confirmed the association of the MSP with the main-sequence

star using a spectrum of the Ca- triplet obtained using GMOS on Gemini-North. We have

also broadly constrained the rotational velocity of the main-sequence star (< 66 km s−1).

With the present rotational velocity estimate, it will be challenging to perform a test for

general relativity at the present time, but will be possible in future with large telescopes such

as TMT. Radio pulsar timing can lead to better constraints on General Relativity in com-
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parison to scalar tensor theories and should be pursued over the next few years. Our study

also showed that the evolutionary scenario for the formation and evolution of this unique

pulsar system is best described by the recent numerical simulations of Portegies Zwart et al.

(2011), wherein an initial stable hierarchical triple system consisting of an inner LMXB and

outer main-sequence star leads to the formation of a system like PSR J1903+0327.

Finally, my study on the performance characteristics of the HgCdTe IR detector has

helped to broadly constrain the read noise of this detector. However, several issues associ-

ated with our tests still remain, including varying behavior (regarding read noise and gain)

of the detector when operated with different fan-out boards and with different controllers.

With the current unresolved issues, this detector is not recommended to be used for science

data acquisition. In the future, I would like to integrate my knowledge of IR detectors in

overcoming the challenges of infrared astronomical observations.



Appendix A

Determination of error in the donor fraction calculation

Due to its low SNR, the donor fraction obtained from the spectrum of XTE J1118+480

in Section 3.1.1 is only meaningful, if accompanied by reliable error estimates. In order

to adequately account for the noise in the spectrum, we obtained the Fourier transform of

the normalized spectrum in each of J-, H- and K-bands. The Fourier transformed spectra

gives a complex valued array , X(k) =
N
∑

n=1

x(n)e(−2πi/N)(n−1)k, where N represents the total

data points, k represents the individual Fourier transformed frequency components, and x(n)

represents the normalized flux values. The amplitude of the Fourier transform is given by

A(k) =
√

Re[X(k)]2 + Im[X(k)]2 and the phase is given by φ(k) = tan−1(− Im(X(k))
Re(X(k))

). To

estimate the noise in our spectral data, we ‘scrambled’ the phase of the Fourier transformed

spectrum by adding a different random number between 0 and 2π to the original phase at

each k while retaining the the original power spectrum |Xk|2. We used the rand function in

MATLAB that generates uniformly distributed random numbers between 0 and 1. We then

reconstructed the spectrum by calculating the inverse Fourier transform of the ‘phase scram-

bled’ Fourier transformed spectrum. In Figure A.1, we depict an example of calculating the

donor fraction when an M0.5 V star was compared to the reconstructed ‘phase scrambled’

spectrum of XTE J1118+480 in the H-band. Any fit done to the ‘phase scrambled’ spectrum

will be spurious since we are fitting signal to pure noise which allows us to place uncertainties

on our fits to the original spectrum. We fitted the spectra of field stars with K5 V, K7 V,

M0/M0.5 V and M1 V spectral types to each of the phase scrambled spectra and calculated
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the donor fraction for each wavelength region under investigation listed in Table 4.2. For

each field star and each wavelength region under investigation, we repeated this process for

50 randomly generated phase scrambled spectra and examined the variance of the donor

fractions. The square root of the variance is then a robust indication of the uncertainty in

the donor star fraction. The errors listed with the donor fractions in Table 4.3 was obtained

from this analysis. Finally, these errors were propagated through the remainder of the steps

leading up to the average donor fractions in the J-, H- and K-bands.

Figure A.1: An example of fitting an M0.5 V star to the inverse ’phase scrambled’ Fourier

transformed spectrum of XTE J1118+480. The donor fraction variance obtained

from fitting many such randomly phase-scrambled spectra were used to place a

robust estimate on the donor fraction in XTE J1118+480.
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