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Abstract. The important Qinghai–Tibet Engineering Corridor (QTEC) covers the part of the Highway and
Railway underlain by permafrost. The permafrost on the QTEC is sensitive to climate warming and human
disturbance and suffers accelerating degradation. Retrogressive thaw slumps (RTSs) are slope failures due
to the thawing of ice-rich permafrost. They typically retreat and expand at high rates, damaging infrastruc-
ture, and releasing carbon preserved in frozen ground. Along the critical and essential corridor, RTSs are
commonly distributed but remain poorly investigated. To compile the first comprehensive inventory of RTSs,
this study uses an iteratively semi-automatic method built on deep learning to delineate thaw slumps in the
2019 PlanetScope CubeSat images over a ∼ 54 000 km2 corridor area. The method effectively assesses ev-
ery image pixel using DeepLabv3+ with limited training samples and manually inspects the deep-learning-
identified thaw slumps based on their geomorphic features and temporal changes. The inventory includes 875
RTSs, of which 474 are clustered in the Beiluhe region, and 38 are near roads or railway lines. The dataset
is available at https://doi.org/10.5281/zenodo.6397029 (Xia et al., 2021a), with the Chinese version at DOI:
https://doi.org/10.11888/Cryos.tpdc.272672 (Xia et al. 2021b). These RTSs tend to be located on north-facing
slopes with gradients of 1.2–18.1◦ and distributed at medium elevations ranging from 4511 to 5212 m a.s.l. They
prefer to develop on land receiving relatively low annual solar radiation (from 2900 to 3200 kWh m−2), alpine
meadow covered, and loam underlay. Our results provide a significant and fundamental benchmark dataset for
quantifying thaw slump changes in this vulnerable region undergoing strong climatic warming and extensive
human activities.
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1 Introduction

Permafrost is defined as ground that remains at or below
0 ◦C for at least 2 consecutive years (Van Everdingen, 1998;
French, 2017). On the Qinghai–Tibet Plateau, permafrost
covers an area of about 1.06×106 km2 (Zou et al., 2017; Cao
et al., 2019) with an average elevation of more than 4000 m
(Liu and Chen, 2000) and latitudes of 26–38◦ N (Wang and
French, 1994; Zhang et al., 2008). Because the underlying
permafrost on the plateau is characterized by shallow thick-
ness and relatively high temperature (Ran et al., 2022; Wu
and Zhang, 2008; Wu et al., 2010; Zhao et al., 2021; Zhou
et al., 2000), it is vulnerable to degradation under climate
warming and disturbance due to human activities. One criti-
cal zone suffering accelerated permafrost degradation is the
Qinghai–Tibet Engineering Corridor (QTEC), which con-
tains the Qinghai–Tibet railway and Qinghai–Tibet highway.
This corridor is 1120 km long, and almost half its length
(531 km) is underlain by permafrost (Jin et al., 2008; Wu and
Zhang, 2010).

As a typical type of thermokarst landform, retrogressive
thaw slumps (RTSs) are caused by the thawing of ice-rich
permafrost (Jorgenson, 2013) and thus serve as vital and
visual indicators of permafrost degradation. An RTS typi-
cally consists of a sub-vertical ice-rich headwall and a gentle
slump floor occupied by mudflows (Ballantyne, 2018). The
triggering factors and mechanisms include coastal erosion,
high air temperatures, extreme precipitation, and human dis-
turbance (Balser et al., 2014; French, 2017; Niu et al., 2005).
Once initiated, ablation of the exposed ice-rich permafrost
leads to the upslope retreat of the headwall at a rapid rate
and disruption of vegetation cover. RTSs can significantly
disrupt the local environment, for instance, causing damage
to infrastructure (Hjort et al., 2022), changing ecosystems
(Kokelj and Jorgenson, 2013), and triggering the release of
carbon previously stored in the frozen ground (Turetsky et
al., 2020).

Compared with the counterparts in the circum-Arctic,
there is still a lack of basic knowledge of RTSs locations
on the Qinghai–Tibet Plateau (Mu et al., 2020), with only
limited studies identifying RTSs in subregions of the QTEC.
For instance, Niu et al. (2016) identified 42 slope failures
(some of them are RTSs) by manually interpreting SPOT-5
imagery and field investigations within a 10 km lateral zone
along the Qinghai–Tibet highway from Wudaoliang to the
Fenghuo Mountain pass. Luo et al. (2019) manually inter-
preted 438 RTSs using a series of satellite images from 2008
to 2017 covering the Beiluhe region. None of the previous
works obtained a comprehensive RTS inventory for this vital
area owing to the challenges of visiting RTSs in the remote
and harsh permafrost regions or mapping them from remote
sensing imagery (Huang et al., 2020).

Several methods have been used in mapping RTSs in
a large area, including manual delineation and automatic
recognition. Lewkowicz and Way (2019) used the Google

Earth Engine Time-lapse dataset to visually locate and delin-
eate terrain changes on Banks Island in the Canadian Arctic.
However, manual delineation is time consuming and there
is a chance of possible RTSs being missed. Deep-learning
techniques automate several fields, such as identifying tar-
gets and classifying various land covers in remote sens-
ing images. For permafrost-related landforms identification,
Zhang et al. (2018) used Mask R-CNN to delineate ice-
wedge polygons in high-resolution aerial images covering
northern Alaska. Abolt and Young (2020) used deep learn-
ing and 50 cm-resolution DEMs to identify ice-wedge poly-
gons near Prudhoe Bay, Alaska. Nitze et al. (2021) tested the
regional transferability and potential for the deep-learning
approach in inferring RTSs in the pan-Arctic. These stud-
ies proved the applicability of deep learning in mapping
permafrost-related landforms in remote sensing images and
emphasized the importance of the quality and quantity of
the training dataset. However, many cryospheric studies, this
one included, lacked label data that are readily used in train-
ing. Set against this background, we identified and delineated
RTSs along the whole QTEC by combining the efficiency
of the deep-learning model in mapping with the reliability
of human input based on the deep-learning-based mapping
method proposed by Huang et al. (2020).

This study is aimed at obtaining a comprehensive in-
ventory of RTSs with high accuracy along the QTEC us-
ing a semi-automatic method and plenty of supplementary
datasets. Apart from this, using the topographic, soil prop-
erties, and vegetation data, we reveal the spatial distribution
characteristics of RTSs.

2 Study area

The study area is the permafrost region along the Qinghai–
Tibet Engineering Corridor, defined based on the maps of
Tong et al. (2011) and Zou et al. (2017). The study area
(Fig. 1a) has a length of ∼ 550 km along the Qinghai–Tibet
railway and highway and a total area of ∼ 54 000 km2 (ly-
ing within the coordinates 90.91 to 95.15◦ E and 31.74 to
35.99◦ N, Fig. 1b). The mean annual ground temperature
on the natural ground is −4–0 ◦C (Jin et al., 2008; Wu and
Zhang, 2008; Wu et al., 2012). Around half of the per-
mafrost in the region has relatively high ground ice content
with a thin active layer (Cheng, 2005; Yang et al., 2010). In
many locations, the surface vegetation cover has been de-
stroyed or removed because of anthropogenic and animal
activities, which expose the bare ground to the air and in-
crease the instability of this region (Jin et al., 2008; Wu et
al., 2012). Thermokarst landforms, including retrogressive
thaw slumps, thermo-erosion gullies, and thermokarst lakes,
are widely distributed across the Qinghai–Tibetan Plateau
(Huang et al., 2018; Mu et al., 2020; Niu et al., 2012). Some
RTSs developed in the area are perilously close to the line
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of the Qinghai–Tibet highway (Niu et al., 2005). Figure 1c
shows a typical example.

3 Data sources

We collected PlanetScope scenes (Planet Team, 2017) with
a spatial resolution of 3 m acquired in July and August
during the years 2016 to 2020. In addition to the multi-
year PlanetScope images, the following supplementary data
were used for reference in manual inspection: Landsat-5 and
8, Sentinel-2, unmanned aerial vehicle (UAV) images, the
“World Imagery” provided by Esri, and the digital eleva-
tion model (DEM) from the Shuttle Radar Topography Mis-
sion (SRTM) (Farr et al., 2007). We downloaded Landsat
and Sentinel-2 images taken before 2016 through the Google
Earth Engine (Gorelick et al., 2017). Landsat-5 carried with
sensor Thematic Mapper provides images with 30 m visible
bands. Landsat-8 used the Operational Land Imager sensor
to obtain images with resolutions of 30 m for visible bands
and 15 m for the panchromatic band. Sentinel-2 has achieved
images since 2015 and provides images with a resolution of
10 m for the red, green, and blue bands. We used the fly-
ing platform DJI P4 Multispectral to obtain the UAV images
with around 15 cm resolution in 16 near-roads sites where 23
RTSs candidates are located. We also accessed the high res-
olution (<1 m) satellite imagery via Esri Wayback Imagery
(Esri Inc., 2018), which archived all published versions of
World Imagery. Moreover, we calculated the slopes and as-
pects using the 30 m DEM.

To further analyse the RTSs distribution patterns and asso-
ciated environmental factors, we used topo-climatic, hydro-
logical, vegetation, and soil datasets, including (1) the annual
potential incoming solar radiation (PISR), calculated using
the method described by Kumar et al. (1997); (2) the stream
networks simulated by SAGA GIS based on the DEM; (3)
vegetation types (data source: Wang et al., 2016); and (4)
soil textures (data source: FAO, 2019). All the data are listed
in Table 1.

4 Methodology

4.1 Pre-processing of PlanetScope images

We built an automated pipeline to download and pre-process
the PlanetScope images (Huang et al., 2018), including ex-
tracting RGB bands to composite natural-colour images,
converting them from 16 to 8 bit using a linear transforma-
tion, tiling and mosaicking them to cover the entire study
region. We used the images processed in 2019 to train the
deep-learning model and infer RTSs and images from the
other years for manual inspection.

4.2 Iterative mapping of RTSs

We applied a deep-learning architecture called DeepLabv3+
(https://github.com/tensorflow/models/tree/master/research/
deeplab, last access: 17 August 2022) to identify possible
RTSs, and determined RTSs from these potential candidates
based on human knowledge and supplementary datasets.
The DeepLabv3+ model (http://download.tensorflow.org/
models/deeplabv3_xception_2018_01_04.tar.gz, last ac-
cess: 17 August 2022) we used was pre-trained using the
ImageNet dataset (Russakovsky et al., 2015), making the
model parameters effective in extracting general image
features. To make the model feasible for identifying RTSs,
we copied the architecture and parameters of the pre-trained
model and fine-tuned all the parameters using corresponding
PlanetScope images and labels as training data. Because the
initial training data were derived from the work of Huang et
al. (2021) and only included 300 RTSs in the Beiluhe region,
they were insufficient for fine-tuning the deep-learning
model and would have led to inferior results containing
multiple misidentifications and missing some RTSs. To
overcome this problem and obtain a complete inventory,
we adapted an iterative mapping strategy using optimized
training data.

The flowchart of the method is illustrated in Fig. 2. The
main steps were (1) collecting training polygons and prepar-
ing training data (Sect. 3); (2) training and fine-tuning the
neural network DeepLabv3+; (3) predicting RTSs in the
whole region using the 2019 PlanetScope images and reserv-
ing newly inferred polygons; (4) manually inspecting 2016–
2020 time-lapse images of each new polygon to determine
RTS boundaries; and (5) adding the newly found RTSs into
the positive training dataset, and optionally adding limited
polygons covering representative misidentified RTSs into the
negative training dataset. Then we repeated steps (2)–(5) un-
til no new RTSs were found. Facing difficulties due to a lack
of training polygons, these iterative experiments succeeded
in obtaining a more comprehensive and representative train-
ing dataset by adding newly identified RTSs and a small
number of non-RTS polygons in the next iteration. Further
details are provided below.

In every iteration, we trained the model using the con-
firmed RTS polygons and negative training data of repre-
sentative non-RTS polygons together with the PlanetScope
images. The details of preparing training images and label
images are given in Huang et al. (2018). After every itera-
tion, we manually inspected the newly inferred polygons us-
ing the 2019 PlanetScope images, time-lapse images, as well
as other supplementary data listed in Sect. 3. To prepare the
time-lapse images, we first extracted sub-images from Plan-
etScope images collected in 2016–2020 based on the bound-
ing boxes of deep-learning-inferred polygons with a buffer
size of 300 m. We then used these chronological sub-images
to make time-lapse images, with which we could visually
inspect the temporal changes of RTSs. The manual inspec-
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Figure 1. (a) Coverage of the study area and the permafrost distribution. The red boundary is the extent of the study area. The yellow line
is the Qinghai–Tibet highway, and the diced line is the Qinghai–Tibet railway, most of which runs close to the highway. Blue lines represent
other national roads. The background is the permafrost distribution map produced by Zou et al. (2017), with white patches representing
lakes or glaciers. The black triangles label the sites where we conducted UAV investigations. (b) The location of the study area on the
Qinghai–Tibet Plateau. (c) A UAV photo of an RTS near the Qinghai–Tibet railway (centre location: 92.883◦ E, 34.709◦ N).

Figure 2. Workflow of the deep-learning-aided semi-automatic
method.

tion was based on the geomorphic features of the RTSs and
their annual changes. We manually identified the headwalls
based on the annual RTS retreating direction and direction
of uphill and set four criteria for improving inspection ac-
curacy: (1) the headwall must be located at the highest el-
evation inside an RTS; (2) RTSs present a yellowish-brown
colour in the images because of vegetation cover degradation
and bare ground emergence; (3) the headwalls must be arcu-
ate and nearly vertical, and thus tend to be partially covered
by narrow bands of shadows; and (4) the active RTSs retreat
in an upslope direction at a rapid rate, and their retreat can
be identified in the time-lapse images. One example of an
RTS is shown in Fig. 3, together with the criteria we iden-
tified in the image. Then, for some inaccurate polygons, we
manually modified the boundaries (e.g., Fig. S1 in the Sup-
plement). Limited by the image resolution of 3 m, we need at
least ∼ 55 pixels to identify the features of thaw slumps, so
the minimum mapping unit (MMU) we set is 0.05 ha. In the
case of several RTSs that were stable in 2016–2020, we used
multi-source images to extend the time span. One example of
RTS shown in Fig. 4 was larger in 2013 than it was in 2010,
but its area remained almost the same in subsequent years.
For those near-roads polygons that were easy to approach,
we went to the field and collected UAV images, allowing us
to further improve the reliability of the mapping results (e.g.,
Fig. 1c). Two experts manually inspected the results indepen-
dently, costing 2 to 6 h per iteration. The numbers of training
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polygons, deep-learning-inferred polygons, and newly iden-
tified RTSs in each iteration are listed in Table 2. To identify
RTSs that are near roads, we measured the distance between
the geometric centre of an RTS and the roads. Considering
the sizes of RTSs and their fast retreat rates, which can some-
times reach 212 m yr−1 (Huang et al., 2021), we set the dis-
tance threshold as 500 m. Using the time-lapse images (data
are available from Xia et al., 2021a), we further subdivided
RTSs into four groups: those initiated before July or August
2016, 2016–2017, 2017–2018, and 2018–2019 (between two
summers).

4.3 Uncertainty assessment for RTS inventory

We manually assigned a probability for each mapped RTS
as an uncertainty indicator based on the availability of multi-
temporal remote sensing imagery and coverage of field vali-
dation. Owing to the lack of ground truth in the entire QTEC,
we cannot quantify the accuracy of the whole inventory. Con-
sidering the lack of field evidence for each RTS, and the
drawbacks of remote sensing imagery, such as indirect ob-
servation and limited spatial resolution, we assigned low or
medium probability for an RTS that does not strictly meet
the four criteria in the manual inspection, for instance, those
that retreated abruptly in one year but were stable in other
years, or their changes were too subtle to identify. The num-
bers of the RTSs with high, medium, or low probability are
810 (92 %), 33 (4 %), and 32 (4 %), respectively.

5 Results

The inventory we compiled includes 875 RTSs along the
Qinghai–Tibet Engineering Corridor (Fig. 5). The largest
RTS has an area of 24.03 ha, and the smallest one is 0.05 ha;
whereas 98.5 % of them are smaller than 10 ha (Fig. 6a). To-
gether they affect 1700 ha of land on a 5 400 000 ha study re-
gion. Altitudes in this whole study area vary from ∼ 3300 m
to ∼ 6200 m. Around 90 % of the RTSs were found at
medium elevations (4582–5010 m), and the highest was at
an elevation of 5394 m (Fig. 6b). The RTSs tend to be lo-
cated on north-facing slopes with gentle gradients ranging
from 1.2 to 18.1◦ (Fig. 6c and d). Most of them (67 %) are
located on slopes with gradients of 4–8◦. They also tend
to occur in areas where the annual PISR ranges from 2900
to 3200 kWh m−2, whereas the entire study region poten-
tially receives solar radiation from 2500 to 3450 kWh m−2

(Fig. 6e). We also found 209 RTSs adjacent to the simulated
stream networks. The main vegetation types in the study
region are swamp meadow, alpine meadow, alpine steppe,
and arid desert meadow. The alpine meadow areas contain
∼ 75 % of the RTSs (Fig. 6f). Soil texture analysis indicates
that a large portion of the surface soil is loam and sandy loam
(∼ 23.3 % and∼ 71.3 % respectively), and only 5.4 % is clay,
sandy clay loam, and sand. Strikingly, ∼ 55 % of the RTSs
are in areas covered by loam (Fig. 6g). These heterogeneities

illustrate that the development of RTSs needs specific en-
vironments, such as regions with massive ground ice and
sloped terrains, thus limiting RTSs to regional clusters. Our
inventory revealed that ∼ 50 % of the RTSs are densely clus-
tered in the west of the Beiluhe region (e.g. Fig. 5b), whereas
the others are sparsely scattered across the other subregions
(Fig. 5a). The lack of uniformity in their distribution is fur-
ther shown by the density maps of the total affected area in
10 km× 10 km grid cells (Fig. 7a).

We further identified 38 RTSs that are close to roads. Fig-
ure 5c presents an example whose centre is∼ 400 m from the
highway. The RTSs near roads are moderate in size, with an
average area of 0.97 ha, and around 86.8 % of the RTSs are
smaller than 2 ha. The largest one has an area of 24.03 ha and
is near the Yaxi Co lake. The smallest one has an area of only
0.128 ha.

Our temporal analysis revealed that there were 306 RTSs
before July or August 2016. From summer 2016 to sum-
mer 2017, a total of 455 new RTSs emerged, constituting
more than half of the overall number of RTSs included in
the inventory. Only 21 and 55 RTSs formed during 2017–
2018 and 2018–2019 respectively. From the distribution
map showing the initiating years of RTSs in grid cells of
25 km× 25 km (Fig. 7b), we observed that many of the newly
initiated RTSs are located in the west of the Beiluhe region.

6 Discussion

6.1 Possible controlling factors of RTS spatial
distributions

Most of the RTSs are in the western part of the Beiluhe re-
gion, and a small portion of them are sparsely distributed
along the roads. The uneven distribution may be controlled
by topographic factors (Wang and French, 1994), hydrologi-
cal factors, soil texture, vegetation, and human activities. (1)
Proven by the statistical analysis of topographic features of
RTSs, as the majority of the RTSs are in the Beiluhe region,
the RTSs in this clustered region dominate the distribution
characteristics along the QTEC. In other words, RTSs pre-
fer to occur on gentle north-facing slopes, at medium eleva-
tions, and in locations receiving relatively low annual PISR.
The main reason is that water tends to accumulate on gentle
slopes, resulting in high soil moisture contents and decreased
internal friction of the soil mass (McRoberts and Morgen-
stern, 1974). Moreover, the north-facing slopes with rela-
tively low PISR have a thinner active layer than their south-
facing counterparts. As a thin active layer is easier to be re-
moved by thermokarst processes, the possibility of exposing
the permafrost underneath will increase. The soil moisture
content is also higher on land receiving low PISR (Lin et
al., 2019). All the topographically controlled moisture avail-
ability is highly related to the formation of excess ground
ice near the top of permafrost (Lin et al., 2020). (2) The
ground near streams tends to contain a higher water content.
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Figure 3. An example of an RTS shown in the PlanetScope image with corresponding criteria illustrated for manual checking. The ID was
assigned by us in the inventory. The white polygons highlight the RTS in the images, and this RTS is initialized after August 2016. Basemap
data © Planet Labs Inc.

Figure 4. Temporal images of an RTS from various remote sensing data sources, including PlanetScope images (© Planet Labs Inc), Landsat
images, and World Imagery (Esri Inc., 2018). The image from World Imagery cannot be downloaded, so it was a screenshot without a scale.
The ID of this RTS is 166. The red polygons represent the boundaries of the RTS, based on the 2019 PlanetScope images.

(3) The vegetation types also impact the distribution of RTSs,
as we have shown that many RTSs are in alpine meadows.
As alpine meadows grow on land with more water content
than alpine steppe (Yin et al., 2017), permafrost underneath
may contain more ice. (4) The results show that the RTSs
tend to develop on the land covered by loam. Silt fraction,
which influences the frost susceptibility of the host sediment,
is higher for loam than for sandy loam, and the ground con-
sequently has a higher ice content (Gilbert et al., 2016). In

sum, all these terrain factors, potentially related to the ice
content, may exert a confounding influence on RTS forma-
tion. (5) We found 38 RTSs that are near roads, with only 7
of them in the Beiluhe region, a vulnerable area where 474
RTSs are located. It proves that engineering can minimize the
impact that infrastructure has on permafrost. Excavation for
soils and gravel during road construction damaged the veg-
etation cover in the 1980s, which led to the thawing of the
exposed ice-rich permafrost and resulted in the initiation of
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Table 2. Summary of iterative mapping. The positive polygons are RTS boundaries. The negative polygons outline some non-RTS land
forms or land cover that appear similar to RTSs in the PlanetScope images. The deep-learning-inferred polygons are the output of the
DeepLabv3+. Newly found RTSs are polygons manually selected from the deep-learning-inferred polygons. We recorded the total number
of RTSs for every iteration in the “number of RTSs”.

Iteration number Training Prediction Manual inspection Number of RTSs

Positive Negative Deep-learning-inferred Newly found
polygons polygons polygons RTSs

1 300 72 2064 149 449
2 449 72 2842 196 645
3 645 78 3153 73 718
4 718 78 10 510 86 804
5 804 90 4609 34 838
6 838 90 3362 4 842
7 842 90 5033 21 863
8 863 90 3622 12 875
9 875 90 4031 0 875

Figure 5. (a) The map of the 875 delineated RTSs. The circle sizes indicate the RTSs’ area. Orange circles are RTSs close to roads, whereas
blue circles show other RTSs. (b) Examples of the delineated RTSs in the Beiluhe region, with the white polygons representing the boundaries
of RTSs. (c) An example of an RTS adjacent to the Qinghai–Tibet highway (yellow line). Basemap images © Planet Labs Inc.

many RTSs (Luo et al., 2019). Engineers began to realize that
human activities accelerated permafrost degradation, and af-
ter 1980 adopted various methods to protect the permafrost
(Luo et al., 2019). Moreover, the limited RTSs near roads
indicate that it is possible, even in a vulnerable region, to se-
lect relatively stable ground for the construction of facilities
and minimize the damage caused by permafrost degradation.
As the distribution of the RTSs helps to pinpoint unstable

ground, it should be possible to plan the alignment of a new
highway along the QTEC to avoid such sensitive areas.

6.2 Comparison with other inventories

Our inventory is the first comprehensive one along the en-
tire corridor region. Compared with the existing RTS datasets
in the subregions (Niu et al., 2016; Luo et al., 2019), our
inventory has advantages in its comprehensiveness, novelty,
and being open source. Based on manual interpretation from
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Figure 6. Statistical summaries of the RTSs’ geometric features and terrain properties. (a) The histogram shows the area of all the RTSs in
the research region. (b) The elevation frequency of the landscape and RTSs. Landscape means the entire study region. (c) The slope aspects
of RTSs, with the radial axis representing the number of RTSs. (d) The slope frequencies of the landscape and RTSs. (e) The annual PISR
frequencies of the landscape and RTSs. (f) The vegetation type distribution of the landscape and RTSs. (g) The soil texture distribution of
the landscape and RTSs.

Figure 7. (a) Areas affected by RTSs in grid cells of 10 km× 10 km. (b) The distribution map of RTSs with different initiating years in grid
cells. For clear visualization, we set the cell size as 25 km× 25 km in (b). The background is a map elevation based on the Shuttle Radar
Topography Mission DEM (Farr et al., 2007).
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SPOT-5 imagery and field investigations, Niu et al.’s results
contain 42 slope failures (some are RTSs) in 2016 in a 10 km
lateral zone of the Qinghai–Tibet highway from Wudaoliang
in the north to the Fenghuo Mountain pass in the south. In
this same subregion, our method detected 47 RTSs in 2019,
with 4 of them having low or medium probability. Luo et al.’s
2017 results contain 438 RTSs but only cover the Beiluhe re-
gion, within which our inventory found 459 RTSs in 2019. In
total, our inventory obtains 875 RTSs in the entire study area,
including the part where the critical transportation infrastruc-
ture is underlain by permafrost. We also labelled RTSs near
roads and provided the initiation periods, areas, probabilities,
and locations of RTSs. The deep-learning model and multi-
source and multi-temporal images were performed in tandem
to provide a more accurate inventory than the results obtained
from manual inspection alone.

6.3 Necessity and limitations of iterative mapping

Our method combines the efficiency of the deep-learning
neural network with the invaluable interpretative experience
of experts. Manual delineation is labour-intensive and not
feasible for a large area. Deep-learning-based mapping out-
performs many other automated mapping methods by a large
margin, although it still produced lots of false positives and
missed a few RTSs, as shown in the first few iterations in Ta-
ble 2. The newly found RTSs in every iteration indicate that
one-time training and predicting has a high chance of missing
some RTSs owing to the bias between training data and the
images covering the rest of the study area. As proved by our
iterative mapping (Table 2), by adding more training data,
each new iteration successfully inferred some RTSs missed
in the previous mapping iterations.

The main disadvantage is that this method is still time con-
suming compared with a fully automated process. In each it-
eration, the deep-learning model inferred 2000 to 5000 poly-
gons that need to be manually inspected. Another problem is
that we may still miss some small RTSs and misidentify other
landforms, for instance, drained ponds and artificial pits. Al-
though we have already used multi-source images to guaran-
tee the accuracy of the RTS polygons, the imagery resolution
limitation still exists, which restricts the MMU to 0.05 ha.
Moreover, some RTSs that have re-vegetated on the surface
cannot be identified using remote sensing images alone.

7 Data availability

The PlanetScope CubeSat images are copyrighted by Planet
Labs Inc., restricted by commercial policies and are not open
to the public. The Landsat 5/8 and Sentinel 2 images are
publicly available through the U.S. Geological Survey and
the European Space Agency, respectively, and can be down-
loaded via the Google Earth Engine. The Esri World Im-
agery can be accessed via the Esri Wayback Imagery: https:
//livingatlas.arcgis.com/wayback/ (Esri Inc., 2018). The thaw

slump inventory is accessible through Xia et al. (2021a), Zen-
odo, https://doi.org/10.5281/zenodo.6397029. The Chinese
version is in the National Tibetan Plateau/Third Pole Envi-
ronment Data Center (Pan et al., 2021; Li et al., 2020), with
link DOI: https://doi.org/10.11888/Cryos.tpdc.272672 (Xia
et al. 2021b).

8 Conclusions

This study successfully used deep learning to infer possible
retrogressive thaw slumps and temporal multi-source images
to visually inspect retrogressive thaw slumps over a large
area. This inventory of 875 thaw slumps fills the gaps in the
RTS data along the corridor and provides a diverse and repre-
sentative training dataset for automatically delineating thaw
slumps in even larger areas. Through statistical analysis of
the terrain properties, we found that (1) the RTSs along the
QTEC tend to develop on north-facing slopes with gentle de-
grees and tend to appear at medium elevations or areas re-
ceiving less solar radiation; (2) 209 RTSs are near stream
networks; (3) a large portion of the RTSs are located on
the ground covered with alpine meadows; (4) RTSs develop
more frequently in areas covered by loam soil. The inventory
of 38 RTSs that are near roads indicates the human impact
on permafrost and provides us with data to assess the ground
stability while planning a new highway. The abnormal in-
crease between 2016 and 2017 is worth further investigation.
For instance, we can lengthen the time span and explore the
relationship between the number of newly initiated RTSs and
meteorological variables such as temperature and precipita-
tion. As the first attempt at mapping RTSs in the Qinghai–
Tibet Engineering Corridor from high-resolution images, the
results we obtained can potentially serve the policymakers
and stakeholders with the information necessary to pursue
sustainable socio-economic development on the Qinghai–
Tibet Plateau.
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