A Formal Specification
and Verified Design for
Kemmerer's Library Problem

Robert B. Terwilliger

CU-CS-562-91 December 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

A Formal Specification
and Verified Design for

Kemmerer’s Library Problem

Robert B. Terwilliger
CU-CS-562-91 December 1991

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

(303) 492-7514
(303) 492-2844 Fax

A Formal Specification
and Verified Design for
Kemmerer’s Library Problem

Robert B. Terwilliger

Department of Computer Science
University of Colorado
Boulder, CO 80309-0430
email: ’terwilli@cs.colorado.edu’

ABSTRACT

In this paper, we present a formal specification and verified
design for a solution to Kemmerer’s Library Problem. The
problem is concemed with a small database that provides a
number of transactions to library users and staff members.
The architectural design for our solution consists of a single
module that encapsulates the database and provides entry rou-
tines for each transaction. The state of the module is modeled
abstractly using high-level data types, and the entry routine
for each transaction is specified using pre- and post-
conditions written in first-order predicate logic. The algo-
rithms that implement each entry routine are described using
a guarded command notion, and we verify these designs rela-
tive to their specifications using standard proof rules.

1. Introduction

Despite years of effort by both researchers and
practitioners the production of software remains both
difficult and expensive [7]; software developments
remain notoriously difficult to manage and are rou-
tinely completed late and/or over budget [10]. There
are many opinions as to the essential (or accidental)
causes of this problem, and many suggestions for its
solution [2]. One proposal that has received consider-
able attention is the use of formal methods [1,9]. In
this paper, we present a formal specification and
verified design for a solution to Kemmerer’s Library
Problem [12,20,21].

The basic idea behind formal methods is the use
of mathematical abstractions to describe software.
Many different languages and systems have been
developed that elaborate on this fundamental theme.
For example, the Vienna Development Method uses
stepwise refinement to transform formal specifications
into verified programs [3,11], Z combines a small
number of high-level constructs with mathematical data
types to provide an implementation independent
specification medium [4,18,19], and ANNA extends
Ada to support formal specification and run-time

This research was supported by a grant from AT&T, as well as
NSF Grant CCR-8809418

assertion checking [14, 15].

There are a few key ideas in formal specification.
Many software components can be specified by com-
bining pre- and post-conditions with invariants. A
pre-condition specifies the conditions that must hold
before a unit begins execution; for example, the
requirements a procedure’s input must satisfy. A post-
condition states the properties that must hold when exe-
cution has completed; for example, the relationship
between a procedure’s input and output. An invariant
states properties that must always be satisfied by some
object, or within some scope; for example, a type
declaration might have an associated invariant that
specifies the allowable values for the type.

The correctness of a program can be rigorously
verified with respect to a formal specification [8, 13].
To accomplish this, the semantics of the data types and
programming constructs used in the program must first
be mathematically defined. The formal verification
process decomposes the overall correctness into a
number of smaller problems that can be solved using
the rules of the definitional system. Programs can be
be shown to be either partally correct (if they ter-
minate they will be in the correct state), or fotally
correct (they will terminate and be in the correct state).

Kemmerer’s Library problem has received con-
siderable attention in the software engineering litera-
ture and has been formally specified a number of times
[12,20,21]. The problem is concerned with a small
library database that provides both query and update
transactions to library staff and users. The problem
also states some properties that must be maintained
during the library’s operation. In this paper, we present
a formal specification for a solution to the Library
Problem, describe a design derived from this
specification, and then discuss verifying the total
correctness of the design with respect to its
specification.

The architectural design for our solution consists
of a single module that encapsulates the database and
provides entry routines for each transaction. The state

of the module is modeled abstractly using high-level
data types, and the entry routine for each transaction is
specified using pre- and post-conditions written in
first-order predicate logic. The algorithms that imple-
ment each entry routine are described using a guarded
command notion [5,6], and we verify that these
designs are totally correct relative to their
specifications using standard proof rules [8, 13].

In the remainder of this paper we present our
treatment of the Library Problem in more detail. In
section two we list the original requirements, and in
section three we present a formal specification of a
solution to the problem. In section four we present a
design derived from the specification given in section
three, and in section five we discuss it’s verification.
Finally, in section six we summarize and draw some
conclusions from our experience.

2. Requirements

Figure 1 shows the statement of the Library
Problem used in [21]. The text is reasonably self
explanatory, so we will not belabor the point; however,
we should note that the requirements are both ambigu-
ous and incomplete. Fortunately, these problems have
been thoroughly analyzed by others. [20] lists the five
major ambiguities as follows.

What is a library?
what is the boundary between the library
database (for which a program is to be
built) and its environment?

What is a user?
are staff members a subset of users? how
is access to transactions restricted?

What is a book?
is it a physical object, or an ISBN? can
there be more than one copy of a book?
What is “‘available’’ ?

can a book be neither checked out or avail-
able? if so, how?

What is “‘last checked out’’ ?
currently checked out?
checked out?

most recently

We resolve these issues in the following ways.

A library is a library
The interface between the library and the
rest of the world is not especially well
specified. Problems include check
out/check in transactions with neither book
or user physically present and assignment
of unique identifiers.

Consider a small library database with the following

{ransacticns:

1 - Check out a copy of a book / Return a copy of a
book;

2 - Add a copy of a book to / Remove a copy of a
book from the library;

3 - Get the list of books by a particular author orin a
particular subject area;

4 - Find out the list of books currently checked out by
a particular borrower;

5 - Find out what borrower last checked out a particu-
lar copy of a book.

There are two types of users; Staff users and ordinary
borrowers. Transactions 1,2,4 and 5 are restricted to
staff users, except that ordinary borrowers can per-
form transaction 4 to find out the list of books current-
ly borrowed by themselves.

The data base must also satisfy the following con-
straints:

1 - All copies in the library must be available for
checkout or be checked out.

2 - No copy of a book may be both available and
checked out at the same time.

3 - A borrower may not have more than a predefined
number of books checked out at one time.

Figure 1. The Library Problem

A staff member is a user
staff members are a subset of users.

A book is a copy of a book

different copies are distinct objects.
“Available’’ is

not checked out.

““‘Last checked out’’ is
currently checked out.

[20] also describes the six major sources of incomplete-
ness.

Initialization
how does the library system get loaded
with data?

Missing Operations
how do we add or remove users?
Error Handling
what errors should be handled and how?
Missing Constraints
can a book be checked out to more than
one person at once?

Change of state
what is and is not changed by each transac-
tion?

Nonfunctional
what does the user interface look like?
how fast does it run?

We handie these these issues as follows.

Initializations
are explicit.
Transactions are added:
add_user and remove_user.
Error handling
is ignored.
Additional constraints
are specified.
State changes
are precisely specified.

Nonfunctional requirements
are ignored.

The Library Problem provides a reasonable start-
ing point for the software development process. With

package library is

[state]
[invariant]
[support functions]
[update transactions]
[query transactions]

end library ;

Figure 2. Library Database Architecture

the ambiguities and incompleteness is the requirements
taken care of, we can move on to the formal
specification.

3. Specification

The architecture of our solution to the Library
Problem is shown in Figure 2. There is a single pack-
age that encapsulates the database and provides an
entry routine for each transaction. The package state is

type bock = record
title string ;
author : string ;
subject: string ;
copy : integer ;
aend book ;

type user = recoxrd
name string
staff : boolean ;

end user ;

var books
var users

set (book) := {} ;
set (user)
:= {("super",T)} ;

type vbook = book

where b:vbook=>b&ébooks;
type vuser = user

where u:vuser=>u€users;
type corec = record

name : vuser ;

item : vbook ;

end corec ;
var checks set (corec) := {} where
cl,c2:corecechecks =>
(cl.book=c2.book
<=> cl=c2) ;

(Vbebooks:
available (b) V
is out(b)) A
— (Jbebooks:
available (b) A
is out(b)) A
(Vueusers:nout (u)<limit) ;

invariant

Figure 3. Library State and Invariant

abstractly modeled using high level data types, and
there is a package invariant stating properties that must
hold both before and after execution of any transaction.
The entry routines are specified in terms of the package

state using pre- and post-conditior

Figure 3 shows the specification the library state;
it consists of three sets: "books", "users"”, and "checks".
"Books" holds a record for every book in the library.
Each "book" record contains the title, author, subject,
and copy number of the physical book it represents.
Similarly, "users" holds a record for every user in the
library system. Each "user" record holds the user’s
name and a boolean variable signifying whether they
are a staff member or regular user. "Books" is initial-
ized to the empty set, while "users" initially contains a
single staff user called "super".

The set "checks" holds a record for each book
currently on loan from the library. A "corec" records
the book checked out as well as the user it is out to.
The invariant on "checks" states that no book may be

constant limit : integer := 8 ;
function nout (u:vuser) : integer ;
pre true ;
post nout = (Ncechecks:c.name=u);
function checked out(u:vuser;
b:vboock
} : boolean ;
pre true ;
post checked out =
(corec(u,b)echecks) ;
function is_out (b:vbook) : boolean ;
pre true ;
post is _out =
(3ueusers:checked out (u,b)));
function available (b:vbook) : boolean;

pre true ;

post available = ﬁis_put(b) ;
function active (u:vuser) : boolean ;

pre true ;

post active =

(Fbebooks:checked out (u,b)));

Figure 4. Library Support Functions

checked out to more than one user at a time. To sim-
plify the rest of the specification, the types "vbook™ and
"vuser" are defined. A "vbook” (valid book) is simply
a book that is currently in the library database (that is

1" " b " UL M
an element of "books™), while a "vuser" is a uger that ic

an element of "users".

Figure 3 also shows the invariant specified on the
library state. It states that each book is either available
or checked out, that no book may be simultaneously
available and checked out, and that each user has no
more than his limit of books checked out at any time.
This invariant must be established by package initiali-
zation, and must be maintained by all the entry rou-
tines. It uses a number of support functions.

Figure 4 shows the support functions defined on
the library state (note that functions are not allowed to
modify their arguments). "Limit" is the maximum
number of books a user may have checked out, while
"nout"” is the number he currently has checked out (the
notation (N...) denotes the "number of" quantifier [8]).
"Checked_out(u,b)" is true if book "b" is checked out
to user "u", while "is_out(b)" is true if book "b" is
checked out to any user. "Available(b)" is true if book
"b" is not checked out, and "active(u)" is true if user
"u" has no books currently checked out.

Figure 5 shows the specification of the update
transactions on the database. Note that parameter
modes are specified as either "in", "out", or "inout".
"In" parameters must have a value when the routine is
invoked and cannot be modified during execution.
"Out" parameters are set by the called procedure.
"Inout” parameters must have a value on invocation
and may be modified by the routine (it is assumed that
they are passed using a copy-restore strategy). The
"modify” clause describes the global variables modified
by the routine.

The procedures "add_book" and "remove_book"
add and remove a book from the library respectively,
while "add_user" and "remove_user” perform the same
functions for users. The "check_out" and "check_in"
transactions modify the database to reflect the borrow-
ing and return of of a book respectively. Access to the
update transactions is restricted to library staff
members. The first parameter of each routine is the
user performing the transaction, and the pre-condition
requires that this be a staff member.

For example, the "check_out" routine has three
"in" parameters. The first is the person performing the
transaction, the second is the borrower, and the third is
the book in question. The pre-condition for
"check_out" states that the book must be available, that
the borrower must be under their check out limit, and
that the initial value of "checks" is called "CHECKS".
This allows the post-condition to state that the final
value of "checks" is equal to the initial value with the

pre s.staff A

bébooks A books=BOOKS ;
books=BOOKS+b ;

modify books ;

procedure remove_ book (s:in vuser;
b:in vbook)
pre s.staff A
available (b) A books=BOOKS ;
post books=BOOKS-b ;

modify books ;

procedure add user(s:in vuser;
u:in user) ;
pre s.staff A
ug¢users A users=USERS ;
post users=USERS+u ;

modify users ;

procedure remove user (s:in vuser;
u:in vuser) ;
pre s.staff A
—active (u) A users=USERS ;
post users=USERS-u ;

modify users ;

procedure check out(s,u:in vuser;
b :in vbook) ;
pre s.staff A
available (b) A
nout (u) <limit A
checks=CHECKS ;
post checks=CHECKS+corec (u,b} ;

modify checks ;

procedure check in(s,u:in vuser;
’ b :in vbook) ;
pre s.staff A
checked out (u,b) A
checks=CHECKS ;
post checks=CHECKS~corec (u,b) ;

modify checks ;

Figure 5. Update Transactions

addition of a "corec" with "u" and "b" in the "name"
and "item" fields respectively.

Figure 6 shows the specification of the query
transactions on the database. The "by_author" and
"on_subject” functions may be initiated by any user.

funetion by suthor(a:string
) : set (vbook) ;
pre true ;
post by author =
{b€ebooks:b.author=a} ;

function on_subject(sb:string
) : set(vbook) ;
pre true ;
post on_subject =
{bebooks:b.subject=sb} ;

function what out(s,u:vuser
} : set (vbook) ;
pre s.staff V s=u ;
post what out =
{bebooks:corec(u,b)echecks};

function who_has (s:vuser ; b:vbook
set (vuser) ;
pre s.staff
post who has
{u€users:corec(u,b)echecks};

o~ ~

Figure 6. Query Transactions

They return the set of all books with a specific author
or on a specific subject respectively. The "what_out"
function is limited to staff members, except that ordi-
nary users may invoke it with themselves as the second
argument. It returns the list of books currently checked
out to a particular user. "Who_has" may only be
invoked by staff members and returns the set of all
users who currently have a particular book checked
out.

The specification is now complete. Although it
is simple, it provides a suitable base for development of
a design. In fact, using the the methods described in
[8] the design can be derived from the specifications.

4. Design

For the purpose of this paper, the design of our
solution will consist of algorithms that implement each
routine specified in section three. These algorithms are
written using guarded commands [3, 6, 8], use the same
data types as their specifications, and are correct with
respect to them. All of these algorithms are fairly sim-
ple and fall into two categories. The simple routines
can be implemented using a single assignment state-
ment, while the complex routines require a loop.

funotion checked out/(urvuger:
- b:vbook
} : boolean is
{Q:true}
checked out := (corec(u,b)€checks);

{R:checked out=(corec (u,b)echecks)}

function available(b:vbook): boolean is
{Q:true}
available := —is out(b);
{R:available = —is_out(b)}

s:in vuser;

b:in book) is
{Q:s.staff A b¢books A books=BOOKS}
books := books+b;

{R:books=BOOKS+b}

procedure add book(

s:in vuser;
b:in vbook) is

procedure remove book (
{Q:s.staff A
available (b) A books=BOOKS}
books := books-b;
{R:bookg=BOOKS~b}

s:in vuser;

: u:in user) is .
{Q:s.staff A ugusers A users=USERS} .
users := users+u;

{R:users=USERS+u}

procedure add user(

procedure s:in vuser; .
u:in vuser) is
{Q:s.staff A —active(u) A users=USERS}
users := users-u;

{R:users=USERS-u}

remove user (

procedure check_put(g,u:in vuser;
b :in vbook) is
{Q:s.staff A available(b) A
nout (u)<limit A checks=CHECKS}
checks := checks+corec(u,b):;
{R:checks=CHECKS+corec(u,b)}
procedure s,u:in vuser;
b :in vbook) is

check_in(

{Q:s.staff A

checked out(u,b) A checks=CHECKS}
checks := checks-corec(u,b):;
{R:checks=CHECKS—-corec(u,b)}

Figure 7. Simple Routine Designs

4.1. Simple Routines

Figure 7 shows the design of the simple routines;
each consists of a single assignment statement. For
example, "checked_out" should return true if and only
if a record showing that “a” has “b" checked out is an
element of "checks". The function’s body consists of a
single assignment that sets the return value of the func-
tion (which has the same name as the function itself) to
the result of the appropriate membership test on
"checks". The design of "available" is even simpler, as
the return value is just the negation of the value
returned by a call to "is_out".

The body of "add_book" simply sets "books" to
its initial value plus "b", while "remove_book" sets
"books" to the initial value with "b" removed. The
design of "add_user" simply states that "users” is set to
its value upon entry to the routine plus the user to be
added, while the body of "remove_user" assigns to
"users" its original value with "u" removed. The design
of "check_out" states that a new "corec" with "u" and
"b" in the "name" and "item" fields respectively is
added to the set "checks". The body of "check_in" will
set "checks" to its value on entry to the routine, minus
any records stating that "b" is checked out to "u".

4.2, Complex Routines

Not all the routines can be implemented so sim-
ply. The designs of "nout", "is_out”, "active",
"by_author", "on_subject”, "what_out", and "who_has"
require the use of a loop with an embedded conditional.
All of the complex routines are functions. In each case,
computation of the desired result involves processing
each element of a set in turn. A local set variable holds
all the items still to be processed, while a local scalar
holds the item currently under examination. The result
variable is initialized to the identity element before the
loop begins, and each iteration modifies the result
depending on whether the item under examination
satisfies a certain property.

For example, Figure 8 shows the design of three
complex routines. The function "nout” computes the
number of books currently checked out to the user "u”.
The body of "nout” consists of a single loop with an
embedded conditional. Two local variables are
declared. "Chks" is a set containing all the records still
to be considered, while "chk" is the record currently
being processed; therefore, "chks" is initialized to
"checks" and the result to zero. The loop interates over
all the records in "checks". If the record under ques-
tion has "u" in the "name" field then the count is incre-
mented, otherwise nothing is done. When all records
have been considered, the correct count has been calcu-
lated.

The functions "is_out" and "active" are similar,
but differ in that an existential quantifier defines the

var chk:corec; chks:set (corec);
chks, nout :=checks, 0 ;
{inv P:chkscchecks A
nout= (Nc€ checks~chks:c.name=u) }
{bnd t: |chks]|}
do chks#{} —
choose (chks, chk); chks:=chks-chk;
if chk.name=u — nout:=nout+l
[chk.name#u — skip ;
£fi
od
{R:nout=(Nc€checks:c.name=u) }

function is out (b:vbook) : boolean is
{Q:true}
Vvar usr:user; usrs:set (user);
is_out,usrs:=false,users ;
{inv P:usrscusers A is out =
(Hueusers—usrs:checked_put(u,b))}
{bnd t: |usrs]|}
do usrs#{} —
choose (usrs,usr); usrs:=usrs-usr;
if checked out (usr,b) —
is_out:=true ;
I —checked out(usr,b) — skip;
£i
od
{R:is_out=(Ju€users:checked out(u,b))}
function active (u:vuser) : boolean is
{Q:true}
var bk:book; bks:set (book);
active,bks:=false,books ;
{inv P:bkscbooks A active =
(dbe books-bks:checked out (u,b))}
{bnd t:|bks|}
do bks#{} —
choose (bks,bk); bks:=bks-bk;
if checked out (u,bk) —
active:=true ;
I —checked out(u,bk) — skip;
£i
od
{R:active= (dbe€books:checked out(u,b))}

Figure 8. Complex Routine Designs(1)

function by author(a:string
} : set(vbook) is
{Q:true}
var bk:book; bks:set (book);
by author,bks:={},books ;
{inv P:bkscbooks A by author =
{bebooks~bks:b.author=a}}
{bnd t:|bks|}
do bks#{} —
choose (bks,bk); bks:=bks-bk;
if bk.author=a —
by author:=by author+bk;
[bk.author#a — skip;
£i
od
{R:by_author={bebooks:b.author=a}}

function on_subject (sb:string
) : set (vbook) is
{Q:true}
var bk:book; bks:set (book);
on_subject,bks:={},boocks ;
{inv P:bkscbooks A on_subject =
{b€books-bks:b.subject=sb}}
{bnd t:|bks]|}
do bks#{} —
choose (bks,bk) ; bks:=bks-bk;
if bk.subject=sb —
on_subject:=on_subject+bk;
[bk.subject#sb — skip;
£i
od
{R:on_subject={bebooks:b.subject=sb}}

Figure 9. Complex Routine Designs(2)

correct result. For example, "is_out" returns true if and
only if there is some user who has "b" checked out; in
other words, if for some "u" in "users"
"checked_out(u,b)" is true. The loop iterates over the
set "users”, and the result is initialized to false (the
identity for J). If a user with the correct property is
found, the result is set to true, otherwise no action is
taken. As before, the correct result is calculated.

Figure 9 Shows the design of more complex rou-
tines. "By_author” and "on_subject" are similar to the
routines previously discussed, but differ in that they
compute subsets based on a property. For example,
"by_author" returns the set of all books that were writ-
ten by a particular anthor; in other words, the set of all
"book” records in "books" that have "b.author=a". The
loop iterates over the set "books”, and the result is

initialized to the empty set (the identity for the
"set_of_all" operator). If a book is found with the
desired author, it is added to the result, otherwise noth-
ing is done. As always, the correct result is calculated.
Figure 10 shows the designs for moie comiplex query
routines; They are similar to those in Figure 9, and we
will not discuss them further.

The design of our solution is now complete.
Although it still uses the high-level data types found in
the specification, it represents a considerable shift in
abstraction level. We will now turn to a discussion of

function what_out(s,u:vuser
} : set(vbook) is
{Q: s.staff V s=u}
wvar bk:book; bks:set (book);
what out,bks:={},books ;
{inv P: bkscboocks A what out =
{bebooks~bks:corec(u,b)echecks}}
{bnd t: |bks]}
do bks#{} —
choose (bks,bk) ; bks:=bks-bk;
if corec(u,bk)echecks —»
what out:=what_ out+bk ;
I corec(u,bk)gchecks — skip;
£i
od
{R: what_out =
{b€books:corec(u,b)echecks}}

function who_has(sivuger ; b:vbook
} : set(vuser) is
{Q: s.staff}
var usr:user; usrs:set (user);
who_has,usrs:={},users ;
{inv P:usrscusers A
who_has = {u€users-usrs:
corec(u,b)€echecks}}
{bnd t: |usrs]}
do usrs#{} —
choose (usrs, usr); usrs:=usrs-usr;
if corec(usr,b)echecks —
who_has:=who_has+usr ;
[corec(usr,b)g¢checks — skip;
£i
od
{R: who _has =
{u€users:corec(u,b)€echecks}}

Figure 10. Complex Routine Designs(3)

its correctness.

5. Verification

We contend that the design presented in section
four is totally correct with respect to the specification
presented in section three. The proof consists of three
main parts. First, we show that the truth of the package
invariant is implied by the routine specifications; there-
fore, we can ignore it during the rest of the verification.
Second, we demonstrate that each simple routine
satisfies its specification, and third we prove that each
complex routine does the same. We present the proof
of correctness in detail for one member of each class of
routines and leave it to the reader to modify these
proofs for the other members.

5.1. Package Invariant

The package invariant must hold both before and
after execution of each entry routine for the module. It
is given in Figure 3.

(Vbebooks:available(b) V is_out(b)) A
—(dbeboocks:available (b) A is out (b)) A
(Vueusers :nout (u)<limit)

The invariant states that all books must be either avail-
able or checked out, no book may be both available and
checked out, and that all users must have no more than
limit books checked out at any time.

The first two of these properties follow from the
definitions of available and is_out (available(b) =
—is_out(b)). The third property is initialized correctly
(no one has anything checked out), and can only be
invalidated by check_out (it is the only routine that
adds check out records). Since the pre-condition of
check_out requires that the user have less than limit
books checked out, it guarantees that the invariant is
maintained. Since the truth of the invariant can be
derived from the rest of the specification, we will not
consider it further.

5.2. Proof Rules

Figure 11 shows proof rules for the total correct-
ness of the constructs used in our designs [8,13].
Rules one and two are concerned with simple state-
ments. Rule one states that the statement skip ter-
minates in a state where R is true if it was started in a
state where R is already true. Rule two says that an
assignment x:=e is totally correct with respect to pre-
condition Q and post-condition R if Q implies R with e
substituted for x.

Rules three and four are concerned with structur-

ing statements into larger constructs. Rule three states
that the statement sequence Si;S; is totally correct with

1) {R} skip {R}

2) if Q=>RZ
then {Q}x:=e {R}

1) {Q} S: {R’}
2) (R’} 5, {R}
then {Q} Sy;S; {R}

D{Q’}S{R’}
2)Q=>Q
3)R’=>R
then {Q} S {R}

3) if

4) if

5) let IF= ifB;— S
0B2—>S2

@

®

0B,—S,
fi

BB = (Jk:1<k<n:By)

if 1) Q =>BB
2) {QA By} Sk {R},
then {Q} IF {R}

1<k<n

6) let DO = {invariant P}
{bound t}
do B — Sl
IB,— S,
L]
@
0Bn— Sy
od
BB = (Jk:1gk<n:By)

if 1) Q =>P
2) {P A By} S¢ {P},
3) PA-BB =>R
4) P =>(20)
5) {P A B} tl:=t; Sk {t<tl},
then {Q} DO {R}

1<k<n

1<k<n

Figure 11. Proof Rules

respect to pre-condition Q and post-condition R if there
exists a formula R’ such that S; and S, are correct with
respect to Q,R’ and R’,R respectively. Rule four is
sometimes called the consequence rule. It says that if
we know that a program is correct with respect to pre-

and post-conditions Q’ and R’, that Q implies Q’, and
that R’ implies R, then the program is correct with
respect to Q and R.

Rule five lets us demonstrate the correctness of if
statements. IF is used as an abbreviation for the entire
alternative command and BB represents the disjunction
of all the guards. The rule states that if the pre-
condition implies that at least one of the guards is true,
and if each guarded command (Sy) will produce a state
that satisfies the post-condition when started in a state
that satisfies both the pre-condition and the appropriate
guard (Q A By), then then entire statement is correct
with respect to the pre- and post-conditions.

Rule six shows us how to prove the correctness
of a loop. The operation of the loop is specified using
an invariant P and bound function t. The invariant
describes the properties that are true both before and
after each execution of the loop, while the bound func-
tion is an upper limit on the number of iterations
remaining. The rule has five conditions. The first three
are concerned with the invariant, while the last two
address the bound.

The first requirement is that the the pre-condition
implies the invariant; in other words, the invariant is
true before the loop begins execution. The second con-
dition is that the body of the loop maintains the invari-
ant. To be more specific, each guarded command in
the loop must leave a state that satisfies the invariant
when started in a state that satisfies both the invariant
and the corresponding guard. The third requirement is
that if the loop terminates with the invariant true, then
the state produced will satisfy the post-condition.

The fourth condition is that the bound function is
at least zero while the loop is running. This simply
shows that the function has a lower bound and so can-
not decrease forever, The fifth condition is that each
execution of the loop body must decrease the bound
function. For the purpose of the proof, a temporary
variable tl is used to hold the value of the bound when
execution of the body begins. The bound function
must be less than this value when execution is com-
plete.

We can use these rules to verify the designs of
both the simple and complex routines.

5.3. Simple Routines

Bach simple routine is implemented using a sin-
gle assignment. For example, the design of
checked_out is as follows.

function checked out (u:vuser;
b:vbook
} : boolean is

{Q:true}
checked_out {corec(u,b)€echecks);
{R:checked out=(corec(u,b)€&checks)}

=

Rule two in Figure 11 tells us that {Q} x:=e {R} is true
if Q => RZ In the case of checked_out, the design
satisfies its specification if

true => (corec(u,b)e checks)=(corec(u,b)e checks).

This reduces to true, so the design is correct. All the
simple routines have similar, simple proofs.

5.4. Complex Routines

The proofs of the complex routines are consider-
ably larger and more involved. For example, Figure 12
shows a fully annotated version of the design for the
who_has function. The top level structure of the proof
is as follows.

{Q"}T{Q} DO (R} {R’}

To prove the design of the function is correct, we must
prove that the initialization sets up the loop in the
proper manner ({Q’} I {Q}), that the loop is correct
({Q} DO {R}), and that correct termination of the loop
ensures the post-condition for the routine is satisfied (R
=>R").

The proof of the initialization uses the assign-
ment rule in Figure 11 and is similar to the proof of a
simple routine.

Q’ = Q‘v)tnhosé_xbsas,usrs
Q’ => {},users={ },users

‘We can see that R implies R’ by simply expand-
ing their definitions.

R =>R’
P Austs={} =>R’
who_has={ueusers-usrs:corec(u,b)e checks} A
usrs={} =>
who_has={ueusers:corec(u,b)e checks}

The proof of the loop is reasonably straight for-
ward, but a bit more complicated. It uses three lemmas
that we will prove before proceeding.

10

b:vbook
) : set(vuser) is

{Q’: s.staff}
var usr:user; usrs:set (user);
who_has,usrs:={},users ;
{Q: who_has={} A usrs=users}
{inv P:usrscusers A

who_has = {u€users-usrs:

corec (u,b)echecks}}

funotion who hag(s:vuger :

{bnd t: |usrs]|}
do usrs#{} —
{Ql: P A usrs#{} A
usrs=USRS A who_ has=WHO HAS}
choose (usrs,usr); usrs:=usrs-usr;
{Q2: who has=WHO HAS A
Q2’: USRScusers A
WHO_HAS
{ueusers-USRS:
corec(u,b)echecks} A
usrs=USRS—-usr A
usr€e USRS}
if corec(usr,b)echecks —
who_has:=who_has+usr ;
[corec(usr,b)gchecks —
skip ;

£i
{R2: Q27 A
(corec (usr,b)echecks A
who_has=WHO HAS+usr V
corec (usr,b)échecks A
who_has=WHO_ HAS) }
od
{R:
{R’:

P A usrs={}}
who _has =
{ueusers:corec(u,b)echecks}}

Figure 12. Annotated Design of Who_has

Lemma 1: {Q1} S1 {Q2}
{Q1} choose(usrs,usr) {Q1 Ausreusrs}
{Q1 A usreusrs } usrs:=usrs-usr {Q2}
Q1 A usreusrs
=> Q2% ver
=> who_has=WHO_HAS A
USRScusers A
WHO_HAS =
{ueusers-USRS:
corec(u,b)e checks} A
usrs-usr=USRS-usr A
usre USRS

Lemma 2: {Q2} IF {R2}
1) Q2=>BB
Q2 => corec(usr,b)e checks V
corec(usr,b)¢checks
{Q2 A coreclusr byechecks)
who_has:=who_has+usr ;
{R2}
Q2 A corec(usr,b)e checks
=> R2§‘},‘§_ s+usr
=>Q2'A
(corec(usr,b)e checks A
who_has+usr =
WHO_HAS+usr vV
corec(usr,b)é¢checks A
who_has+usr = WHO_HAS)
{Q2 A corec(usr,b)¢checks} skip {R2}
Q2 A corec(usrt,b)é¢checks => R2
=>Q2’ A
(corec(usr,b)e checks A
who_has =
WHO_HAS+usr V
corec(usr,b)échecks A
who_has=WHO_HAS)

therefore, {Q2} IF {R}

Lemma 3: R2 =>P
R2 => Q2’
=> USRScusers A
T1:(usrs=USRS-usr A usre USRS)
=> P1l.usrscusers
R2 => Q2’
=> T2:WHO_HAS =
{ue users-USRS:corec(u,b)e checks}
R2 => T3:(corec(usr,b)e checks A
who_has=WHOQO_HAS+usr) V
T4:(corec(usr,b)é¢checks A
who_has=WHO_HAS)
TIAT2ZATI =>
P2:who_has = {ueusers-usrs:corec(u,b)e checks}
TIAT2AT4 =>P2
PIAP2=>P
R2 =>P2

therefore, R2 =>P

Using these three lemmas, we can prove the
correctness of the loop, following the rule in Figure 11.

1) Q =>P
who_has={ } A usrs=users => P yhgghasusrs
Q=> userscusers A
{} = {ue users-users:corec(u,b)e checks} }

2) {PAB}S {P}
{PAB} {Q1} 51 {Q2} IF {R2} {P}
P Ausers#{} =>Q1
{Q1} 81 {Q2}
{Q2} IF {R2}
R2=>P

2.1)

2.2)

3) PA-BB =>R
P A —(usrs#{ }) => P A usrs={ }

4) P =>(t0)
P => |usrs|20

5) {PAB}tli=t; S1; IF {t<tl}
{PAB} tl:=t {t1=t} S1 {t<tl} IF {t<tl}
{PAB} tl:=t {tl=t}
{tl=t} choose(usrs,usr) {t1=t A usre usrs}
{tl=t A usreusrs} usrs:=usrs-usr {t<t1}
usreusrs => |usrs-usr | <| usrs |
{t<tl} IF {t<tl}

Therefore {Q} DO {R}

The proof of the loop is now complete, and with
it the proof of the "who_has" function. The elaboration
is reasonably lengthy, but follows from the basic prin-
ciples fairly simply. We leave it to the reader to
modify this proof for the "nout", "is_out", "active",
"by_author", "on_subject”, and "what_out" routines.

6. Summary and Conclusions

It has been suggested that the use of formal
methods may help reduce the cost of software develop-
ment and maintenance [1,9]. In this paper, we have
presented a formal specification and verified design for
a solution to Kemmerer’s Library Problem [12,20].
The problem describes a small library database that
provides both query and update transactions. The data-
base has two classes of users: library staff and ordinary
borrowers. Only staff members are allowed access to
some transactions. The problem also states some pro-
perties that must be maintained during the library’s
operation.

The formal specification for our solution
describes a single module that encapsulates the data-
base and provides an entry routine for each transaction.
The state of the module is modeled abstractly using
high-level data types, and the entry routine for each
transaction is specified using pre- and post-conditions.
Our experience in writing the formal specification was
very favorable. It was reasonably easy to construct and
helped resolve the ambiguity and incompleteness in the
problem statement.

Our design consists of an algorithm to implement
each routine in the specification. These algorithms are
written using guarded commands [5,6] and the data
types used in the specification. The design was con-
structed quite easily using a small number of coding
cliches; unfortunately, it is not especially useful. The
high-level data types used are not available in most
implementation languages; therefore, the design may
have little to say about efficient implementation algo-
rithms. It would have been much more effective to
choose implementation data structures before perform-
ing algorithm design.

Our proof that these algorithms are totally
correct with respect to their specifications uses standard
rules [8,13]. Our experience with verifying the design
was primarily negative. Constructing the proofs was
tedicus and time consuming without providing
new insight into the correctness of the algorithms. We
feel that verification was the least time-effective aspect
of the exercise. It would have been much more
efficient to verify the small number of coding cliches

we used and then apply them in a rigorous manner.

At the present time we agree with Hall [9] that
the most effective use of formal methods is for
specification. We feel that the next best use is the gen-
eration of designs. The practicality of this process may
dramatically increase as the current generation of
automatic programming systems [16,17] move from
research into industrial settings. We believe that the
least effective use of formal methods is for detailed
verification; unfortunately, it is likely to remain
extremely expensive for the immediate future.

much
mugn

7. References

1. Bjorner, D.,, ““On The Use of Formal Methods in Software
Development’, Proceedings of the 9th International
Conference on Software Engineering, 1987, 17-29.

2. Brooks, F. P., ““No Silver Bullet’’, IEEE Computer 20, 4 (April
1987), 10-19.

3. Cottam, I. D., “The Rigorous Development of a System
Version Control Program’, IEEE Transactions on Software
Engineering SE-10, 3 (March 1984), 143-154.

4. Delisle, N. and D. Garlan, ‘A Formal Specification of an
Oscilloscope”’, IEEE Software 7, 5 (September 1990}, 29-36.

5. Dijkstra, E. W., “‘Guarded Commands, Nondeterminacy and
Formal Derivation of Programs’’, Communications of the ACM
18, 8 (August 1975), 453-457.

6. Dijkstra, E. W., A Discipline of Programming, Prentice Hall,
Englewood Cliffs, New Jersey, 1976.

7. Fairley, R., Software Engineering Concepts, McGraw-Hill,
New York, 1985.

8. Gries, D., The Science of Programming, Springer-Verlag, New
York, 1981.

9. Hall, A, ““Seven Myths of Formal Methods’’, IEEE Software
7, 5 (September 1990), 11-19.

Humphrey, W. S., Managing the Software Process, Addison-
Wesley, Reading, Massachusetts, 1989.

11. Jonmes, C. B., Systematic Software Development Using VDM,
Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

Kemmerer, R. A., ““Testing Formal Specifications to Detect
Design Errors”’, JEEE Transactions on Software Engineering
SE-11, 1 (January 1985), 32-43.

13. Loeckx, J. and K. Sieber, The Foundations of Program
Verification, John Wiley & Sons, New York, 1984.

14. Luckham, D. C. and F. W. Henke, ‘‘An Overview of Anna, a
Specification Language for Ada’’, IEEE Software 2, 2 (March
1985), 9-22.

15. Luckham, D. C., F. W. Henke and B. Krieg-Bruckner, ANNA -
A Language for Annotating Ada Programs (Reference
Manual), Springer-Verlag Lecture Notes in Computer Science,

10.

12.

12

16.

17.

18.
19.

21,

Vol. 260, New York, 1987.

Rich, C. and R. C. Waters, eds., Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufman
Publishers, Los Altos, CA, 1986.

Rich, C. and R. C. Waters, ‘‘Automatic Programming: Myths
and Prospects’’, IEEE Computer 21, 8 (August 1988), 40-51.

Spivey, J. M., The Z Notation, Prentice Hall, New York, 1989.
Spivey, J. M., ‘‘Specifying a Real-Time Kernel”’, IEEE
Software 7, 5 (September 1990), 21-28.

Wing, J. M., ““A Study of 12 Specifications of the Library
Problem’’, JEEE Software 5, 4 (July 1988), 66-76.

Proceedings of the 4th International Workshop on Software
Specification and Design, April 1987.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION

