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Abstract

An approach to the analysis of concurrent software is
discussed. The approach, called anomaly detection, involves the

algorithmic derivation of information concerning potential errors
and the subsequent, possibly non-algorithmic determination of
whether or not the reported anomalies are actual errors. We give
overviews of algorithms for detecting data-usage and synchroniza-
tion anomalies and discuss how this technique may be integrated
within a general software development support system.



Introduction

In developing software systems, especially large, complex ones,
practitioners require analytic techniques to help them assess the
validity of the system. In this paper, we explore an approach to
providing these analytic techniques which we call anomaly detection.

In the anomaly detection approach, assessment is a two-step
procedure. First, algorithms are employed to discover potential
errors (anomalies) as evidenced by deviations from the developers'
expectations. Second, non-algorithmic analysis, relying upon the
experience, knowledge, and expertise of the developers themselves,
is employed to determine whether or not a reported anomaly repre-
sents an actual error.

To focus our work, we have established the following criteria.
First, our techniques must be applicable to programming language
representations of the software system. Thus, they will not have to
await the acceptance of some modeling representation by the system
developers. Second, our techniques should be oriented toward expec-
tations that arise from general problem-domain considerations, the
semantics of programming languages, or general rules of good practice.
Thus, we do not have to develop techniques for specifyfng problem-
specific expectations in order to have our techniques be applicable
to a wide range Qf systems. Third, our techniques should not be
restricted to sequéntia] systems, but should apply also to systems
with concurrency. This makes them applicable to those complex
systems which involve either actual or apparent parallelism.
Finally, our techniques should be of “reasonable" quality. We
desire techniques that are considerably more effective than the
trivial one which always, for all programs, announces "There's
possibly an error somewhere in the program"; but we want tech-
niques in which the algorithms have pleasing computational pro-
perties. '

It should be stressed that we view anomaly detection as only
one of the types of analytic techniques which should be made availa-
ble to development practitioners. We feel that by not attempting to do



complete analysis, we can find useful techniques which have reason-
able computational requirements and are generally applicable over a
broad range of software systems. We also feel that our current work
gives rise to immediately usable techniques, but that it is prelim-
inary in nature and many questions remain concerning its effectiveness
and the degree to which anomaly detection techniques may be integrated
into a full set of analytic techniques.

In the next section we give a brief overview of the anomaly
detection system we envision, indicate how it may be incorporated as
part of a more extensive development support system, and present a
small example to convey an intuitive understanding of the purpose and
functioning of the various parts of the anomaly detection system. The
following sections address the various phases of our system in turn,
covering the capabilities of the anomaly detection algorithms we have
developed. In the concluding section, we discuss the implications of
some of the constraints we have imposed in order to focus our work and
indicate future directions we plan to pursue.



II. Anomaly Detection System Overview

We envision that the anomaly detection algorithms will be
provided as tools within a software development support system.
This support system would provide a variety of‘too1s to development
practitioners, supporting management and bookkeeping activities as
well as assessment activities. The support system would be organ-
ized as a set of modules, each of which augments and/or displays
the information concerning the system under development which is
stored in some central information repository. This organization

is depicted in Figure 1.

INFORMATION
REPOSITORY

Figure 1
Organization of Development Support System

Guided by an overall methodology, practitioners would use the
various modules, in sequence and in parallel, to gradually evolve a
detailed description of the system under development. During this
evolution process, progress and validity could be periodically
assessed by employing those modules provided for this purpose.

The anomaly detection modules would be amona this set of assessment
modules.



To represent specific ways in which use of the modules may be
coordinated to achieve some overall information transformation, we
use the graphical notations presented in Figures 2 and 3.

Figure 2
Representation of a Module Producing
Information Used in Another Module's
Processing

Information Information Information
Structure 1 Structure 2 Structure 3

Figure 3

Representation of a Module Producing
Information Used as Input by Another
Module

The notation of Figure 2 is used to indicate that information in the
central repository has been deposited by one module (B) specifically
so that some other module (A) may perform its function. (The usual
implication is that B's processing is done much less frequently than
A's.) The notation of Figure 3 denotes that the information produced
by one module (C) is subsequently transformed by another module (D).

Using these notations, the ideal anomaly detection subsystem
may be depicted as in Figure 4. This system is language independent
but can be particularized by information prepared by a lTanguage
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definition processor. This system would also be able to accept
definitions of the anomalies to be detected.

We have reduced the scope of the problem by assuming that we
are working with a particular language and by focusing specifically
upon data—uSaQev and synchronization anomalies. Therefore, the
system for which we strive is that depicted in Figure 5. (We have
been working with a particular language, HAL/S [Inte 76], but for the
purposes of this paper we will consider a general language, which we
call X, having concurrent programming facilities. As will be indica-
ted later, our techniques do not depend on the exact form of the
language's constructs. Thué we do not give an explicit description of
the X language but rather uncover its capabilities gradually through-
out the exposition.)

The anomaly detection task may be decomposed into two major sub-
tasks. The first is to derive a representation of the program under
analysis which retains the information pertinent to the anomalies
under detection and presents this information in a form which may be




conveniently used by the anomaly detection algorithms. The second
task is the anomaly detection itself. In Figures 6-9, we indicate
the major components which perform these tasks.

So that the anomaly detection subsystem may easily be gener-
alized to other languages, the initial processing module performs
a program-to-parse-tree transformation (Figure 6). Identifying
this as a separate module leads to two subsidiary benefits. First,
it allows the use of existing scanner and parser generation systems
in the preparation of the X Language Processor module. Second, the
overall system may be easily modified to use representations of X
programs other than the program text. In particular, the overall
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system may be changed to use the representation produced by the X
language's compiler.

The next module which we identify has the task of building
a flow graph representation of a program (See Figure 7). In a
flow graph, nodes represent program statements (or perhaps
fragments of statements) and arcs represent the flow of control
within sequentially executed segments of the program (i.e., within
programs and tasks). Identifying this as a separate module again
eases our task sihce it is possible for us to consider using exist-
ing techniques in the design of the Flow Graph Builder module.

We decompose the Flow Graph Analyzer as indicated in Figure 8.
In approaching the processing in this way, we separate out the task
of constructing the Inter-Process Precedence Graph in which atten-
tion is focused upon process synchronization interactions and arcs
are introduced to indicate the precedence of operations '
enforced by these interactions. This Inter-Process Precedence Graph
may be used directly for the detection of synchronization anomalies,
or the information contained in this graph may be 1njected'into the
flow graph to produce a combined Flow And Precedence Graph which may
be used in the detection of data-usage anomalies.

Finally, we identify the modules depicted in Figure 9. These
divide the task of constructing an Inter-Process Precedence Graph
into three steps. First, the F]ow'Graph is processed to eliminate
those nodes and arcs which do not pertain to the use of synchroni-
sation constructs or directly affect the flow of execution of syn-
chronization operations. Then arcs reflecting the order of execu-
tion imposed by the synchronization operations are inserted into
the graph. Finally, most (or ideally all) of the arcs which reflect
impossible execution sequences are removed from the graph. The
identification of these last two modules allows separate focus upon
the simple task of obtaining a representation of the effect of
the synchronization operations and the much more difficult task
of obtaining a representation which reflects the actual run-
time behavior of the program under analysis.
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Before giving the details of the individual components in this
decomposition of the system, we first give a small example and discuss
the relationship of our work to the work of others and to our previous

work.
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ITI. An Example

In Figure 10 we present a hypothetical program in the X Tanguage
and show the various information structures produced during processing.
The program is a meaningless one except for the purpose of indicating
the major types of anomalies which our algorithms will detect.
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IV. Related Work

Close]y'related to our own work is that of Tay1or and Osterweil
[TayR 78]. They share an interest in producing a general software
development support system, and Osterweil has been actively involved
in the DAVE data-usage anomaly detection system [OstL 76]. Although
our paths of deve]opment differ, we have arrived at essentially the
same point, except for relatively minor differences in capabilities
and algorithms.

Reif's recent work [Reid 787 on the analysis of interacting
processes deaTs with formal models of concurrent systems and decida-
bility. It relates most directly to the formal foundational work
which is a basis for the work repbrted here ([Grel 777, [OadW 781,
[Petd 747, [Petd 7671, [Petd 787, [RidW 721, [RidW 731, [RidW 747,
[RidW 78a], [ShaA 78], [WilJ 787).

The Inter—Prbcess Precedence Graph is an intermediate represen-
tation for deschibing the partial ordering of synchronization events
within concurrent systems. Thus, it is closely related to other
techniques that have recently been developed for this purpose ([CamR 747,
[Grel 777, [HabA 757, [RidW 78b], [ShaA 787). Its representational power
is equivalent to that of event expressions, defined in [RidW 78b].

Our synchronization anomaly detection algorithms were developed
after initially attempting to employ the static deadlock detection
algorithms developed by Saxena [SaxA 77]. However, we found the
requirements for use of those algorithms to be too strict for our
purposes.

The data-usage anomaly detection phase of our system is derived from
the DAVE system for analyzing FORTRAN programs [OstL 76]. Faster, more
efficient algorithms [FosL 76] evolved from the original system and the
elements of the analysis performed by them are essentially language
independent. These algorithms have been applied to the HAL/S language
for single-process programs to design a DAVE-HAL/S system [DreC 78].

This work has been extended to include analysis of multi-process HAL/S
programs as well and will be described here in relation to the X
lTanguage.
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V. Graph Building

The first major task of the anomaly detection system is to derive
an abstraction of the program being analyzed. This abstraction must
contain all information which is pertinent to the anomalies under detec-
tion and must be in a form which is conveniently used by the anomaly
detection algorithms.
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V.T Flow Graph

The flow graph is derived from the parse tree and symbol table
for a program specified in the X language. The flow graph is an
abstraction of the control structure of the program and is used to
detect anomalous data flow patterns.

The flow graph is composed of a subgraph for each subprogram
unit in the program under analysis. Each subgraph contains:

1.
2.

3.
4.

30 e nk}

E, a set of ordered pairs of nodes (edges), {(nj1 njz),

N, a set of nodes, {n], n2, n

(nj3, nj4), (an’ nj6), e (njm_1, njm)}, where the
nj;s are not necessarily distinct. ‘
Ngs the unique entry node, Ng € N.

Ny the unique exit node, n, e N.

The nodes in the graph roughly correspond to statements in the

program.

The edges in the graph indicate flow of control from one

- node to the next. Each node, nj e N, has the following information
associated with it:

1.

P, the set of predecessor nodes. n, e P if the edge

(nf’ nj) e E.

S, the set of successor nodes. n; e S if the edge
(njs ni) € F.-

t, the type of the node, indicating the type of statement
in the language X which the node represents.

r, a répresentation of the actual statement or statement
fragment which the node represents.

m, the sequential number of the statement which the node
represents.
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V.2 Inter-Process Precedence Graph

The Inter-Process Precedence Graph, derived from the Flow
Graph, is an abstraction of the synchronization constructs and
the control structures which directly affect the flow of execu-
tion of the synchronization operations. The Inter-Process Prece-
dence Graph is used to detect anomalous patterns of synchroniza-
tion operations.

The graph is composed of subgraphs for each process in the
program. Each subgraph is a flow graph, representing the synchro-
nization operations and the pertinent control structures in the
program.

The synchronization constructs are modeled by combinations
of SET, RESET, and WAIT operations applied to event variables.
Event variables are binary valued variables. They may be set to
true (SET), set to false (RESET), or a process may be suspended
until a logical expression over event variables is true (WAIT).
For the languages we have considered, SET, RESET, and WAIT appear
to be sufficient to model all synchronization constructs.

The subgraphs are linked together by inter-process precedence
edges (IPPEs) as shown in Figure 11.. An IPPE is an edge

(n Ys evns (ni

coun.), (n, .n.
) € {(nq],nJ) ( i .

; ,nj)}

i\ "
such that at least one of the niks must execute before nj can
execute. Thus the IPPEs indicate inter-process time orderings.

PROCESS 1 PROCESS 2 PROCESS 3
\ y
SET EV 9 ) SET EV
&’ WAIT EV
>Ox

Figure 11
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Since a WAIT on an event variable cannot be satisfied until
a SET for that event variable has been executed, the IPPEs may be
viewed as linking all SETs for a particular event variable to all
of the WAITs for that same event variable.

The object of a WAIT can be a logical expression over event varia-
bles, and many SETs can occur for any particular event variable.
This results in multiple IPPEs which lead to the same WAIT node.
These IPPEs are grouped in conjunctive normal form.

In the X ]ahguage, the synchronization constructs can be
modeled as fo]]ows;

1. SCHEDULE - a schedule is treated as a SET on an event
variable representing permission for a process to execute.

2. PROCESS - a process is treated as having a WAIT on the
event variable representing permission to execute.

3. CLOSE - a close is treated as a RESET on the event variable
representing permission for the process to execute.

4. SIGNAL - a signal is treated as a SET, followed immediately
by a RESET.
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V.3 Spurious IPPE Elimination

The last step in the construction of the Inter-Process Prece-
dence Graph is to remove arcs which reflect impossible execution
sequences.

The presence of each IPPE in this graph should indicate that
three conditions have been satisfied.

1. The predecessor node causes a term in the wait expression
of the successor node to become true.

2. The predecessor node will execute before the successor
node in at least one legal execution sequence.

3. 1In at least one of the execution sequences in 2) the term
will not become false again before the wait has completed.

During the building of the graph, however, all IPPEs are inserted
which satisfy only condition 1) above, and it is possible for some of
these to violate conditions 2) or 3) above. Those that do are spuri-
ous, and for more accurate results, should be removed prior to perform-
ing any analysis.

For example, Figure 12 contains a section of an Inter-Process Prece-
dence Graph, as it would appear immediately following IPPE insertion. The
section corresponds to parts of two parallel processes, synchronizing them-
selves using one event variable, ev. Originally, ev has the value false,
and no other processes are using it. The node numbering is chosen arbi-
trarily. The presence of an IPPE from node 3 to node 4 should indicate
that in some sequences it is the execution of node 3 that allows for
the completion of the wait at node 4. However, inspection of the code
reveals that node 5 must execute before the wait at node 2 can complete,
preventing node 3 from being reached until after the wait at node 4 is
completed. The IPPE therefore violates condition 2, and should be removed.
In addition, the IPPE from node 1 to node 6 should indicate that the wait
at node 6 can complete at any time after node 1 has executed. However,
node 1 must always execute before the wait at node 4 can complete, and
hence its effect will be negated by node 5 before node 6 can be reached.
This IPPE should also be removed, as it violates condition 3. Figure 13
contains the section of the Inter-Process Precedence Graph as it should
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appear, and inspection of the code will reveal that the execution
sequencing enforced by the remaining IPPEs is genuine.

L]

WAIT FOR EV

]
®°
@

RESET EV

PR )

SET EV WAIT FOR EV
Figure 12
L T s T S
SE{ EV WAIT FOR EV
WAIT FOR NOT EV RESET EV
SE{ EV WAIT FOR EV

L]
@
@

o e e

Figure 13
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Spurious IPPEs can be removed by using two algorithms, BEFORE
and AFTER. These recursive algorithms determine the sets of nodes
whose execution will occur before or after each node n in the graph.
The BEFORE(n) set is calculated so that it contains all those nodes
which, if they are executed at all, are executed before node n. To
do this, the BEFORE set of the strongly connected component containing
n is first determined and added to BEFORE(n). Then, nodes in the
intersection of thekBEFORE sets of those nodes with edges into n and
1ying on elementary paths from an entry node to n's component are
added. Finally, members of the intersection of the BEFORE sets of
nodes which are tails of IPPEs into n are included also. The AFTER(n)
set likewise contains all nodes which, if executed at all, are
executed after node n; it is computed in a manner similar to BEFORE.

If, for any IPPE, the predecessor node is in the AFTER set of
the successor ndde, or the successor node is in the BEFORE set of the
predecessor node, condition 2) above is violated, and the IPPE is
removed. If, for any IPPE, a node negating the effect of the prede-
cessor node occufs in the AFTER set of the predecessor node and the
BEFORE set of the successor node, the IPPE violates condition 3) above
and can be removed. The removal of an IPPE may alter the generated
BEFORE and AFTER sets, so these must be regenerated after an IPPE is
removed. The process iterates until no more spurious IPPEs can be found.
Note that the presence of spurious IPPEs acts to increase potential con-
currency so that the generated BEFORE and AFTER sets will be subsets of
the actual BEFORE and AFTER sets. This implies that the relative order-
ings we use are genuine, and only spurious IPPEs can be removed.

If, at any time during the IPPE elimination a node is found to be
in its own BEFORE or AFTER set, this indicates the presence of a guar-
anteed deadlock in the code. The effect of the deadlock may permeate
throughout the entire graph in an unpredictable manner, so the analysis
will terminate at this point.
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VI. Data-Usage Anomaly Detection

The data-usage anomaly detection system will first be described
in relation to.the detection of intra-procedural and inter-procedural
anomalies in programs containing no synchronization constructs. This
will be followed by a discussion of the modifications necessary to
incorporate concurrency into the analysis to enable detection of
inter-process data-usage anomalies.

The single-process analysis system is designed to detect anoma-
Tous data flow patterns, symptomatic of programming errors, not only
along paths within subprogram units but also along paths which cross
unit boundaries{ The algorithms used to detect these patterns of
variable usage employ two types of graphs to represent execution
sequences of a program. The first, a flow graph, is used to repre-
sent the flow of control from statement to statement within a subpro-
gram unit. Note that while a statement containing a subprogram
invocation is represented as a single node, that node actually repre-
sents all the data actions which occur inside the called unit.
Because of the order in which subprogram units are processed, the
data flow information in the called unit can be passed across the
boundary without placing its control structure at the point of invo-
cation in the calling unit.

The other type of graph used is the call graph, which has the
same form as a flow graph, but its nodes represent subprogram units
and its edges indicate invocation of one unit by another. The call
graph is used to guide the analysis of the units comprising a program
in an order referred to as "leafs-up." The leaf subprograms, which
invoke no others, are processed first; then those units which invoke
only processed units are analyzed in a backward order with the main
program being processed last. In order to use this procedure, the
call graph must be acyclic. If the call graph contains cycles,
indicating recursion, analysis is terminated.

At the core of the data flow analysis is the idea of sets of
variables called ?path sets," which are associated with nodes in the
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flow graph. Membership of a variable in a path set for a node
indicates that a particular sequence of data actions on that variable
occurs at the node. The three possible actions are reference, define,
and undefine. For statements containing no procedure or function
invocations, determination of path set membership is straightforward.
For instance, for the assignment statement, o = o + 8, associated

with a node n, o and g will be placed in those path sets which repre-
sent a reference as the first data action at n. o will also be placed
in those path sets representing an arbitrary sequence of actions
followed by a definition. A variable y appearing in the same sub-
program, would be placed in the path set representing no action upon
the variable at node n.

Let us consider a leaf subprogram. Once the path sets have been
determined for the nodes in its flow graph, the path sets for the unit
as a whole can be constructed using the algorithms described in
[FosL 76]. The same procedures are followed whether analyzing varia-
bles declared in the unit or global to it. For formal parameters and
global variables, the path sets are used for passing variable usage
information across subprogram boundaries and are saved in a master
table as each unit is analyzed. At the same time as these path sets for
the unit as a whole are created, additional path sets are formed for each
node reflecting what sequences of data actions occur entering and
leaving that node. By intersecting path sets representing sequences of
actions entering (or leaving) the node and occurring at the node,
anomalous data flow patterns are detected. The three types of anomalies
found in this manner are:

(1) a reference to an uninitialized variable

(2) two definitions of a variable with no intervening
reference |

(3) failure to subsequently reference a variable after
defining it

When a non-leaf subprogram is analyzed, path set membership is
determined as for a leaf with this exception: when a subprogram
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invocation is encountered at a node, path set information must be
passed from the invoked unit to this node. First the path sets

for the invoked routine as a whole are retrieved from the master
table. Then the actual arguments are placed in the same path sets as
their corresponding formal parameters. This is also done for any
global variables which are members of the path sets for the invoked
unit. Thus, the data actions which occur in the invoked subprogram
are reflected in the path sets for the node containing the invocation.
Other than this, the analysis follows the same steps as outlined for a
Teaf unit.

In addition to the aforementioned anomalous path detection, the
analysis provides information which may be used for program documenta-
tion. This includes the order in which subprograms may be invoked,
which variables must be assigned values before entry to a unit
and which variables are actually assigned values there, as well as the
side effect data flow of global variables as a result of the subprogram's
invocation.

Now let us consider the effect of the inclusion of synchronization
constructs upon the analysis. To analyze the usage of variables global
to more than one process, we must consider the entire Flow And Prece-
dence Graph at once. We cannot use the leafs-up ordering technique as
we did for subprogram units in single-process programs since now the sub-
graphs for the units may contain IPPEs connecting them to other processes'
subgraphs. Although that technique could still be used for those varia-
bles not participating in the concurrency, it would be preferable to be
able to process all variables in parallel. This can be done by perform-
ing the analysis for all variables over the entire Flow And Precedence
Graph, in which case the call graph would not be needed. However, it
appears advantageous to integrate the leafs-up technique where possible
to enable variable usage information gathered about subprograms to be
compressed and inserted at each invocation point.

When performing data flow analysis on concurrent processes, paths
through the flow graph give information on sequential patterns of refer-
ences and definitions, but it is also necessary to know what other nodes
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in the graph could be executing concurrently with a given node. There-
fore preliminary analysis must be performed upon the graph itself to
find these sets of concurrent nodes. We first determine the sets of
nodes whose execution will occur before or after each node n using

the BEFORE and AFTER algorithms described in section V.3. Then, for
node n in process p, CONCURRENT(n) contains those nodes m, not in p,.
such that m ¢ BEFORE(n) and m ¢ AFTER(n).

By using the knowledge of the dominators of a node, these sets
can be further subdivided into BEFORE, ALWAYS BEFORE, AFTER, ALWAYS_AFTER,
CONCURRENT, and ALWAYS CONCURRENT, heretofore collectively referred to as
the execution sequence sets. ALWAYS BEFORE(n) is the subset of
BEFORE(n) which contains those nodes m' such that all paths from the start
of the process to n include node m'; whereas m e BEFORE(n) indicates that
m lies on at least one path from the start of the process to n. Simi-
larly for AFTER(n) and ALWAYS AFTER(n). The execution of a member of
ALWAYS CONCURRENT(n) may occur either before, after, or in parallel with
n. This possibility exists for all execution sequences which include n.
However; for a member of CONCURRENT(n), the potential for concurrency of
execution exists for at least one sequence which includes n, but not
necessarily for all sequences.

The form of the path sets and the anomaly detection techniques are
basically the same for multi-process as for single-process programs, but
the data flow algorithms must be modified to work on the expanded process
flow graph containing precedence edges. Now, predecessors and successors
of a node may be in different processes.

Consider the graph segment in Figure 14. Assume that no usage of
alpha has appeared’prior to this segment. Node 1 must execute before
node 2 and is the head of an IPPE originating in process gq. Since a
definition of alpha occurs on all paths into node 4, it will occur before
the execution of node 1, and thus node 2. Therefore, the data flow along
the IPPE (4,1) is treated differently from that along ayregu]ar flow
graph edge. Similarly, in Figure 15, although it appears that beta 1is
defined twice within q on the path through nodes 4, 5, 6, 7, 8 with no
intervening reference, because of the IPPEs (5,1) and (3,7) the analy-
sis will indicate that beta will always be referenced between the definitionz.
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The three types of anomalies detected in single-process programs
are also applicable to multi-process programs. In addition, the con-
current node sets enable the detection of the possibility of references
and definitions of variables at these nodes occurring in an unspecified
order. Consider, for example, the situation in Figure 16. Here, alpha
may or may not be defined when node 4 is executed since node 7 ¢
CONCURRENT(4). This is a possible case of anomaly type (1), a reference
to an uninitialized variable. An example of anomaly type (2), two
definitions of a variable with no intervening reference, occurs on the
path 1, 2, 3 involving the variable beta. Another case of double defi-
nition, this time involving concurrency and representing a race condi-
tion, concerns beta at the concurrent nodes 3 and 9: the value of beta
used in the cbmputation at node 4 depends upon the order of execution of
these nodes. Finally, anomaly type (3), the failure to subsequently
reference a variable after defining it, is exemplified in Figure 15 by
beta, last assigned a value at node 8.
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VII. Synchronization Anomaly Detection

In addition to aiding in the search for data-usage anoma-
Jies, the execution sequence sets at each node can be used in the
 detection of potential synchronization anomalies. These are
anomalies arising directly from potential concurrencies in the
programs. It was encouraging to discover that all the synchroni-
zation anoma]ies we originally set out to detect can be found using
these sets.

The first such anomaly is the potential for infinite waits,
which includes deadlock as a subset. A process will wait indefinitely
at a WAIT statement if the wait condition is false when the WAIT is
reached during execution, and either no combination of statements
will be executed in other processes that would set the wait condition
to true, or all such combinations will be prevented from executing
while waiting on this process (a deadlock).

The detection method involves considering each WAIT node in
turn for legal execution sequences resulting in an infinite wait.
Note that in order to produce reasonable time and space bounds for the
algorithm, all possible combinations of loops and branches in a process
are treated as legal execution sequences, even though some of these may
constitute unexecutable paths due to the particular branch and 1odp
conditions. This implies that all potential anomalies of this type will
be discovered; but in addition some potential anomalies may be flagged
where they do not exist.

The wait condition will have already been‘converted to conjunc-
tive normal form during the insertion of IPPEs: For a potentially
infinite wait, there must be at Teast one conjunct which can remain
indefinitely false from the time the wait is started. This would require
all the terms in that conjunct to remain indefinitely false. Therefore
each conjunct, and each term in the conjunct, is checked for the poten-
tial to remain indefinitely false. If it cannot be proved that the
wait is always finite, an anomaly is assumed.

The worst possible case is assumed while checking a term. It is
assumed that a legal execution sequence exists in which the only nodes
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that occur setting the term to true must always execute; i.e., those
nodes setting the term to true from the ALNAYSﬂBEFORE, ALWAYS CONCUR-
RENT and ALWAYS AFTER sets for the WAIT node. Further, it is assumed
that all nodes from the concurrent sets will, in fact, execute before
the WAIT is reached. Given these assumptions, and considering only
those nodes which now will execute before the WAIT is reached, the
term will be indefinitely false if each node setting it to true can
be followed by another setting it back to false. Thus the wait at
WAIT node w can be infinite if there exists a cohjunct ¢ in the wait
expression such that:

for each term t in ¢ and
for each note'nT setting t to true,

np e {ALWAYS BEFORE(w) U ALWAYS CONCURRENT (w)}

there exists a node g setting t to false,
Ng € {CONCURRENT(nT) U AFTER(nT)}
N {BEFORE(w) U CONCURRENT(w)}

The algorithm itself is a direct implementation of the above set
expression.

Two other types of anomalies proved readily detectable from
the execution sequence sets. The first of these is the possibility
that a process can be rescheduled while it is still running (this
is a violation of the rules of HAL/S). Checking for this requires
examining the execution sequence sets at each schedule or close node.
If at either of these nodes, a different schedule or close on the
same process appears in the CONCURRENT set, then there is a potential
anomaly. Further, if a different schedule on the same process appears
in the BEFORE set at a schedule node, and the corresponding close is
not also in the BEFORE set, this also sianifies a potential anomaly.

The second type of anomaly is the possibility of the premature
termination of a process. Although this is generally not a language
definition violation, it may be indicative of a programming error. For
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instance, if a process which updates a database is terminated prema-
turely, it may leave the database in an inconsistent state. Checking
for premature termination requires looking at the execution sequence
sets at each terminate node. If the close node of any process that
could be terminated by a particular terminate statement is in either
the CONCURRENT set or the AFTER set of the terminate node, that
process could be terminated prematurely.

We anticipate that anomalies specific to other concurrent
languages will also prove to be readily detectable from the execution
sequence sets, although this work still remains to be done.

An additional area that we are exploring is the checking of
assertions. It is 1ikely that, in certain circumstances, the system
developer will wish to obtain information about‘the system that is
unrelated to any specific énoma]y, e.g., whether a particular execu-
tion ordering is forced, possible, or impossible.

The execution sequence sets may be used to test assertions
about the time orderings of individual nodes. By examining the sets
at the open and close nodes we can readily test assertions about
whole processes. Other time-ordering assertions must be ultimately
reducible to combinations of assertions about individual nodes.

We are currently investigating the needs of system developers
to determine additional assertions that would be useful.



-33-

VIII. Conc]usion

The anomaly detection technique appears to provide an approach
to software system analysis that does not suffer from many of the
traditional problems of decidability and computational complexity.
Its value is highly dependent on the ability to derive high-quality
information concerning anomalies. However, the dual aims of obtain-
ing high-quality information and using algorithms with pleasant compu-
tational complexity characteristics are sometimes in conflict. We have
been successful so far in obtaining algorithms, but more, formal work
is needed to determine the limits of this approach with respect to
specific analysis problems. ‘

We plan to expand the scope of our results by considering other
languages within the class we have roughly delineated here. We expect
this will brihg us to considering the question of how best, with respect
to specific language constructs and specific behavioral properties, to
determine an abstract representation (akin to our present Flow And
Precedence Graphs) which contains the information required for analysis.

We also plan to broaden the scope of the anomalies we can detect
and enhance our system by the addition of anomaly definition capabili-
ties.
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