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Abstract

We study Weyl-loop semi-metals with short range interactions, focusing on the possible interaction
driven instabilities. We introduce an € expansion regularization scheme by means of which the
possible instabilities may be investigated in an unbiased manner through a controlled weak coupling
renormalization group (RG) calculation. The problem has enough structure that a ‘functional’ RG
calculation (necessary for an extended Fermi surface) can be carried out analytically. The leading
instabilities are identified, and when there are competing degenerate instabilities a Landau—Ginzburg
calculation is performed to determine the most likely phase. In the particle-particle channel, the
leading instability is found to be to a fully gapped chiral superconducting phase which spontaneously
breaks time reversal symmetry, in agreement with general symmetry arguments suggesting that Weyl
loops should provide natural platforms for such exotic forms of superconductivity. In the particle hole
channel, there are two potential instabilities—to a gapless Pomeranchuk phase which spontaneously
breaks rotation symmetry, or to a fully gapped insulating phase which spontaneously breaks mirror
symmetry. The dominant instability in the particle hole channel depends on the specific values of
microscopic interaction parameters.

1. Introduction

The most generic metallic states occur in systems that host Fermi surfaces whose dimension is one less than the
dimension of the system. In the presence of effective short-range interactions among the fermions, these
metallic states are described by the Tomonaga—Luttinger model in one dimension [1-7], and frequently by
Landau’s Fermi liquid theory above one dimension [8]. Comparatively less common metallic states are realized
in systems where a filled valence band touches a conduction band. These semi-metallic states possess gapless
excitations about a zero-energy manifold with dimension two or more below the spatial dimension of the
system. Although semi-metals have been theoretically investigated since atleast 1970s [9], their properties have
garnered considerable interest in the last two decades with the advent of graphene [ 10—12] and other varieties of
Dirac materials [ 13—-28]. Most of the known semi-metals contain a discrete set of gapless points in the bulk.
However, in recent years, three dimensional semi-metals with a ring of gapless points have become a possibility
[29-39]. Theoretical investigation into the effect of the weakly screened long-range Coulomb interaction on
these Weyl-loop semi-metals suggests that single-particle excitations survive at low energy, as quantum
fluctuations render the Coulomb interaction marginally irrelevant [40]. In contrast, strong short-range
interactions can lead to symmetry-breaking instabilities. Indeed, it has been argued that such ‘Weyl loop’
systems may serve as ideal playgrounds for realizing exotic forms of superconductivity [41, 42]. However, a
systematic and unbiased analysis of the potential interaction driven instabilities of Weyl loop systems remains to
be performed.

In this paper we investigate the effect of short-range interactions on a Weyl-loop semi-metal, and identify
the symmetry broken states that are probable at finite interactions.

The paper is organized as follows. In section 2 we introduce the continuum model whose low energy
properties are the subject of this work. A generalization based on tuning the dispersion of the fermions is
developed, which enables access to finite coupling instabilities within the regime of applicability of a controlled
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weak coupling perturbation theory. In sections 3 to 5 the low energy properties of the perturbatively accessible
sector of the generalized model is analyzed within a renormalization group (RG) scheme based on mode
elimination. The RG is shown to have enough structure that a ‘functional’ analysis (necessary for an extended
Fermi surface) can be carried out analytically. The particle-particle and particle-hole channels are found to
decouple. We deduce the fixed points of the running couplings in the particle-particle and particle-hole
channels respectively. In section 4.3 the most likely instability is identified through an analysis of anomalous
dimensions of the susceptibilities of various pairing channels, combined with a Landau—Ginzburg analysis. In
the particle particle channel we find an instability to a novel form of superconductivity, wherein the order
parameter is fully gapped and chiral, and spontaneously breaks time reversal symmetry. In the particle-hole
channel there are two potential instabilities (with the dominant one being determined by microscopic values of
interaction parameters): either a Pomeranchuk instability to a gapless phase that spontaneously breaks rotation
symmetry, or an excitonic instability to a gapped (trivial) insulating state that spontaneously breaks mirror
symmetry. Finally, in section 6 we conclude with a discussion of our results.

2.Model

In this section we derive an effective theory that is appropriate for understanding the universal low energy
properties of the Weyl-loop semi-metal in the presence of short range interactions. Since short range
interactions are expected to be strongly irrelevant in the presence of linear band-touching, we develop a
convenient generalization of the model in terms of the degree of band-curvature, which allows us to access
interaction driven instabilities within the regime of applicability of a weak coupling RG.

2.1.Non-interacting theory
The simplest realistic description of non-interacting fermions whose dispersion admits a nodal line Fermi
surface in three dimensions is given by [40, 42]

So = f dK U (K) [ikoop + E(K)]T(K), %)
where dK = %

opisthe2 x 2identity matrix,and ¥(K) = (¢ (K), & (K)) isaspinor representing fermions (¢ ,(K)) from
1, 2 orbitals.
The dispersion is

, ko is the Euclidean (Matsubara) frequency, K denotes three dimensional momentum,

E(K) = #.(IK]) (K| — k) 01 + v, K, 0%, )

where 7, (II% D= (II% | + k)/(2m). Here we have distinguished between the three dimensional momentum from
its projection, K, on the plane of the Weyl-loop. We have chosen the loop to lie on the x —y plane, and it is
defined by |K| = /K2 + Ky2 = k.Here 0, and 0, are the first two Pauli matrices which encode the orbital
degrees of freedom, and m and v, are bandstructure parameters. We note that at finite doping, i.e. away from
perfect compensation, the non-interacting theory is modified by replacing iky — iky — . Our theory will focus
onpu = 0.

Diagonalizing E (K) yields two bands that disperse as

£.(K) = £ R)(R| — 5)? + v2KZ. 3)

Since the chemical potential ;@ = 0, the ground state is defined by the configuration where IK| = kand K, =0,
which precisely corresponds to the loop. Thus at low energy |K| &~ « and K, & 0, and the dispersion,
equation (2), can be approximated to

E(kr) kz) =v ko + Vzk202> 4)

where v, = 7.(k) = k/m,and k, = |K| — x and k,are deviations of momentum in the radial and z directions,
respectively. The band dispersion simplifies to &, (k,, k,) = &/ k; + v7k7.

Wescale (kg, k,) — v, (ko, k,/v;), and identify the long wavelength fluctuations of the fermions (low energy
modes) through the relation,

U(T, 1) ~ e (1, r) + fast modes, (5)

where K = k(cos 0, sin 6, 0) with 0 specifying the position on the loop. We further sharpen the definition of the
low energy modes by requiring that the momentum carried by these modes to be such that

Jk2+ k2 < A < k,where Aisa UV cutoffon the k, — k, plane, measured from the loop (see figure 1).
Integrating out the modes which modulate over length scales <A ™" we obtain

2
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Figure 1. The (blue) ring on the x —y plane is the nodal loop. The torus enveloping the loop is the UV cutoft.

VK ¥ > dkodk, dk,
S~ L — k. k,
0= j; f ) ————fi( )

x 1 (koy k, O)[ikooo + krar + ko211 (ko, K, 6), (6)

where f, (k;, k) is a cutoff function which suppresses modes with k? 4+ k2 > A*°.We choose frlks, k) tobe
rotationally symmetric in k, — k, plane. The two dimensional vector k is the deviation of momentum from the
loop, and is defined on the k, — k, plane by k= (k;, k,). We emphasize that k is not linearly related to the
deviations from the loop in K space. In particular, under inversion K — —K, but k= (ks k) — (k,, —ky).

2.1.1. Symmetries
The dynamics of the non-interacting fermions described by equation (6) enjoys a set of continuous and discrete
symmetries. In this section we describe these symmetries, and the respective symmetry transformations.

Since the fermion dynamics is independent of the position of the fermionic momentum on the loop, the
loop coordinate # acts as a label for the 1 fields. The cyclic nature of § leads to three continuous symmetries of .
The firstis a SO(2) rotational invariance of the action under Ry : 8 — 6 + 6,.In order to isolate the second
symmetry let us write the spatial part of the propagator in terms of polar coordinates (k, ) as
k(cos ¢ 0y + sin ¢ o), where (k,, k,) = (k cos ¢, k sin ¢). Under the transformation R, : ¢ +— €'%7 ), with
J = 03/2 — i0,, thelagrangian

LO[kOa ky 93 '3 w] = dﬂ-(kﬂr ky 93 ‘P) [ikOUO + k(COSS@ o+ SiIlQD 02)]¢(k0: k) 93 ‘P) (7)

transforms to Lo [ko, k, 0, ¢ + & 2], implying R, is a symmetry of Sy. R, corresponds to a rotation in the
plane perpendicular to the loop at each point §. The third symmetry is the invariance of the action under a 6-
dependent U(1) transformation ¢ — e“*1). Since the latter two symmetry transformations are locally defined
on the loop, theylead to distinct emergent U (1), symmetries which we will distinguish as pseudospin-U (1),
and charge-U (1), respectively. While the former corresponds to the conservation of § component of total
angular momentum, the latter originates from particle number conservation at each 6. We note that the charge-
U (1) symmetry is present in any non-interacting theory where the single particle dispersion is minimized on a
degenerate manifold. Since short-range interactions mix momenta at different parts of the loop, these U (1),
symmetries are broken by generic scatterings among the fermions. Nevertheless, it is possible for subgroups of
the U (1), symmetries to emerge at fixed points of the interacting theory [43].

The action is also invariant under three sets of discrete transformations. The first is a mirror-plane symmetry
which originates from the symmetry between the dynamics above and below the k, = 0 plane. It is effected by
the transformation 73;1 Lolko, k, 0, @5 Y] P, = Lolko, k, 0, —; 1], where the ‘operator’ P, flips the sign of k,
such that P! {ko, k, 0, ¢} P, = {ko, k, 0, —p}and P, " (ko, k, 0, ©)P. = 019 (ko, k, 0, — ). The second
is a pair of ‘anti-unitary’ symmetries, the first of which is defined through the transformation
Px' Lolko, k, 0, 03 9] Pk = Lolko, k, 0 + 7, —p; 1]. Here Pk inverts the three-momentum K, and acts on
the fermion fields as P! {1 (ko, k, 0, ©), ' (ko, k, 0, ©)} Pk = {¢*(ko, k, 0 + 7, — ), —2f'

(ko k, 0 + 7, —p) } with 1v* = (/") The second element of the pair is obtained by combining 7, with Pg. We
note that while these are symmetries of the action, they act on the Hamiltonian in an unusual way. In particular at
the level of a first quantized Hamiltonian they change the sign of the g} term, and hence effectively connect the
Hamiltonian with |[K| — x = k, < 0 to the Hamiltonian with [K| — x > 0. The last of the sets of discrete
symmetries is another pair of antiunitary transformations whose first element is defined by

Py Lolkos ks 0, 3 ] Py = Lo[—ko» k, 0, ©; 1], where P inverts the Euclidean frequency k, and transforms
the fields as Py ' {1 (ko, k, 0, ©), ¥ (ko k, 0, ©)} Py = {020* (—ko, k, 0, @), Y (—ko, k, 0, ©)03}. The

3 Two examples of f, (k,k;)are ©(A — k? 4+ k2) (the Heaviside ©-function), which imposes a hard cutoff, and
exp [—(k? + k2) / A2], which imposes a soft cutoff.
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Table 1. The symmetries of the Gaussian fixed point action
equation (6). 0 is a constant, and wy and &, are functions of §. The
first three are continuous symmetries, while the last five are discrete.
The first three antiunitaries square to —1 while the last squares

to+1.

Symmetry Operation

f-rotation Ry:0+— 0+ 6

Pseudospin-U (1)s Ry: ¥ exp(i&yd) ¥

Charge-U (1) ¥ — exp(iwp) ¢

Mirror plane (7,) k,— —k,and ¢ — oy Y

Antiunitary (Pg) K +— —Kand {¢, ¢t} — (@), ¢}
Antiunitary (P, Px) K— =K, {4, '} — {a @), —¢ a1}
Antiunitary (P,) ko — —ko, {10, ¥} = {2 (W), N0}
Antiunitary (P,P) ko = —ko {t), ¥} = {os (WY, ¢os}

second element of the pair is obtained by combining P, with 7. We summarize all the symmetries of Sy in
table 1.

2.1.2. Generalization
As we will show later in the paper, in order to obtain a controlled truncation of the beta functions of various
operators it is convenient to generalize the linear band-touching model to higher order band-touchings. We use
the polar coordinates introduced in section 2.1.1 to generalize the dispersion of fermions as
&, (k, ¢) = k" (cos ¢ 01 + sin ¢ o) for any real number 7 > 0. The band dispersion is modified accordingly
as &, (k, ¢) = £k". Thus, the dynamics of the non-interacting fermions with 7-th order band-touching is
given by
3 ™ oo o0
Spo= 20 [ 92 [ o [ R f g, K, 0, @)k
v, J-r 2m)*J- 21 Jo 27

+ k7 (cos(p) oy + sin(p) o) 11 (ko, k, 0, ©). ®

Since the value of 1) does not affect the symmetry transformations, S0 and Sy, share the same set of symmetries.
The Gaussian fixed point described by S, is invariant under the following choice of scaling,

(0L, [¢1 =0, [kl1=1, [kl=mn [¥]l=-(+1D, &)

where the quantity X scales as X’ = elX14X with d# beingalogarithmic momentum scale. We note that within
our scheme the radius of the loop (k) is dimensionless, which implies coarse-graining towards the loop in
momentum space [43, 44].

2.2. Interactions
In this section we introduce the vertices describing instantaneous short-range interactions that are consistent
with the discrete symmetries of the non-interacting theory. After scaling ko and K, as was done for Sy, to obtain

. v2 33 4
Sint = (_T) Z f (H dKn)(Zﬂ—)4 5(4)(I<1 -K+K- K4)uu,u({Kn})

Vz 11,0=0 n=1

x [YF (K)o, (K) 1[YF (K3) 0,90 (K], (10

where fA dK = de fA(|I?| — K, K;). Weassume U, ,({K,;}) = U, ,({K,}) to be real valued functions of
momentum. In general, there are 16 vertices corresponding to four choices each for 4 and v. In this paper we
focus on only those vertices that are invariant under the discrete symmetries of Sy, viz. P,, Pk, and Py. The terms
that have odd parity under these symmetries are marked with corresponding labels in table 2. From the table we
see that only those terms for which p = v have the same parity as Sy. Thus, the minimal set of interactions that
respect the discrete symmetries of Sy is given by

6 4
sm=%f( dmyMWWm—m+m—m)
Vz n=1
X 38, (KD W (K) 0, 9 (K) (W (Ks) 0y, 4 (Ky)), 1n
I

where K, = K,/ |K,|, and we have Taylor expanded U, ,(K;, K;, K3, K4) about the loop to obtain the coupling
functions g, (K, K, K5, Ky). Since, K and f are physically equivalent, g, ({I?n} ) are functions of the loop
coordinates only.
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Table 2. The vertices in equation (10) that are disallowed by the
discrete symmetries of Sy (see table 1). The (p1, v)-th cellin the
table represents the corresponding vertex. The cells are labeled by
the symmetry transformations under which the parity of the ver-

texis odd.
AV 0 1 2
3
0 Po P P> Po P Po
1 Po P Px P,
2 P P> Po P, Px Px
3 P Po P Px

We add equations (8) to (11), and scale ¢ — /(1,/v’) 1), to obtain the action for the interacting theory for
any 7. Itis useful to introduce (7, ¥ V5> ¥;) = (03, 02, —01, 0p),and define the conjugate field
P (K) = 4" (K) 7o, (12)
such that the generalized low energy effective theory is

-1

s =i [ KD U ko + (K] = 02 + KD (R = 9+ K [ ()

g (K.
KR

(¥ (K)ot (K2) (¥ (K3) Y01 (Ky))

n=1

4
+ j;\ (H dKn) @m)* WK — K + K5 — K4)[

K} - y
a W{(lﬁ(ﬂ)mdj(lﬁ))(w KN (Ke) + (1 — 72)}

- %}){(z/}(lq)vlw(Kz))(w(Ka)w(Ko) — (n— )

N & UKD
K

(W (KDY (K2)) (¥ (K3) 9 (K4))], 13)

where (g, &,,, 8 > &) = % &y %(gl + ) % & — &), &) Wenote that in contrast to the Gaussian part, the
interaction terms generally do not admit a straightforward decomposition in terms of angular patches because
the short-range scatterings mix angular coordinates. Nevertheless, the diagonal structure of the Gaussian part in
terms of the patch index 6 is useful for the evaluation of quantum corrections.

From equation (13) we deduce the bare propagator

(YK By (K)o = @ 8K — K) Gou(K), (14
where
n :
() = Gtk ) = —i LTI, (13)

By applying the scaling relations in equation (9) to the interaction vertices, we obtain the scaling dimension for
the coupling functions,

[g] =12 (16)

Therefore, for n < 2 (n > 2) the interactions are irrelevant (relevant) at the Gaussian fixed point. In the
presence of irrelevant interactions the Gaussian fixed point is stable and has a finite basin of attraction, whose
volume in coupling space is controlled by the parameter ¢ = 2 — 7). Thus, itis expected that for ¢ > 0 weak
short range interactions cannot lead to new phases, and the nodal loop semi-metal is stable. The Weyl-loop
semi-metal corresponds to € = 1, where the short-range interactions have bare scaling dimension —1, and are
strongly irrelevant. Although irrelevant in RG sense, microscopically strong interactions can still drive the
system towards a non-trivial phase by pushing the couplings out of the basin of attraction of the Gaussian fixed
point. Such finite-coupling instabilities of the = 1 (¢ = 1) system is the focus of this paper. However,at n = 1
the bare scaling dimension of the couplings are O(1), which obstructs a controlled access to the potential finite-
coupling fixed points and instabilities. In order to achieve perturbative control we turn to the limit where

0 < € < 1.Inparticular, ¢ = 0 corresponds to a Weyl-loop semi-metal with quadratic band-touching. Here
the short-range interactions are either marginally relevant or irrelevant, as is the case for Fermi surfaces with unit
codimension. Motivated by the smooth interpolation between the quadratic and linear band-touching models
at tree level, we analyze the finite coupling instabilities close to 77 = 2, using € as the control parameter. In the
spirit of all € expansions, it is hoped that the small e analysis would be able to access qualitative elements of the
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Figure 2. Schematic of the strategy for coarse-graining towards the loop. Here we show a segment of the loop (blue arc). At each point
of the loop we coarse-grain in the k, — k; plane (shaded annular disk).

-~ =<

(b) Hartree diagram
(a) Fock diagram

Figure 3. The Hartree—Fock diagrams that renormalize the self-energy at one-loop. Here they vanish identically.

n = 1theory ‘. We note that our approach is complementary to reference [45], where the codimension of a one-
dimensional Fermi surface was used as a tuning parameter to controllably access a finite coupling pairing
instability. Similar strategies based on tuning the dispersion of the dynamical modes [46, 47], and the
codimension of the Fermi surface [48—51] have been applied to the study of strongly coupled field theories in the
presence of a Fermi surface. Although here we adopt the former strategy, it is possible to utilize the latter
approach with the deviation from spatial dimension d = 2 as the small parameter.

3. Renormalization group

In this section we outline our RG scheme for understanding the low energy properties of the Weyl-loop semi-
metal in the presence of short-range interactions. We will use the Wilsonian RG scheme due to Shankar [43] to
derive the beta functions. In particular, we coarse-grain towards the nodal loop by eliminating modes that lie in
theregion[A, A — §A], where 6A < A, asshown in figure 2. The chemical potential remains unrenormalized,
i.e. at perfect compensation, since the Hartree and Fock diagrams in figure 3 vanish due to fA dK G(K) = 0.In
the rest of this section we focus on the renormalizations to the quartic vertices.

The combination of the UV cutoff imposed by f, (k;, k,) in equation (13), and conservation of momentum
at the quartic vertices on the plane of the loop imposes strong kinematic constrains on most scattering channels
[43]. Thus, instead of studying the complicated RG flow of entire coupling functions, we focus on the dominant
scattering channels, which are identified by applying the kinematic constrains. There are three scattering
channels that dominate the low energy dynamics,

+ Pairing (BCS): g,({Ki}) — & (K, K, =K, —Kp) = N2Vi(K;, K,
+ Small angle forward scattering (FS): gi({I?,-}) — g (K, K, K, K3) = A’"zUi(FS)(I?l, K),

+ Large angle forward scattering (ES): gi({I?,-}) — g K, K, K, K) = A”‘zUi(ES) (K, K5).

4 Tuning naway from integer values introduces non-locality in the fermion dispersion, because dispersions with non-integer 7 cannot be
represented by local operators in coordinate space.Since perturbative RG generates only local terms, notwithstanding logarithms, non-local
vertices remain unrenormalized. Although this artifact affects the estimates for a subset of critical exponents, one-loop vertex corrections are
not expected to be affected.
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Since g; ({K;}) are dimensionful for 71 = 2, we have expressed the scaling dimension of g; ({K;}) in units of A,
such that V;, U, and U are dimensionless. Since there are 4 types of interactions in equation (13), the three
channels generate 12 coupling functions. However, the FS and ES couplings are not truly distinct due to non-
conservation of pseudo-spin, and the interactions in the non-BCS, i.e. forward scattering, channel can be
represented either in terms of ES or FS couplings. Here we adopt the FS representation, such that there are only
eight independent coupling functions — four each for the BCS channel and the FS channel. As we will show
below, the RG flow in the eight dimensional coupling space is further simplified by the fact that, at one-loop
order, the flow of the BCS couplings are decoupled from the flow of the FS couplings to the leading order in

A/k < 1. Additionally, owing to the f-rotation symmetry, the one-loop RG flow remains diagonal in the
angular-momentum basis with identical flow for each harmonic. This eliminates the complications arising from
the functional nature of the couplings, since one may separately analyze the flow of coupling constantsin a
particular angular momentum channel, without worrying about coupling between different channels.

We note that this simplification is a consequence of the f-rotational symmetry. In the absence of f-rotation,
for a model with one coupling function, it is still possible to diagonalize the RG flow by a suitable choice of basis
[52]. However, such a diagonalization is generally not possible for a system with multiple coupling functions that
mix under RG flow.

Because of its generic importance in the presence of extended zero-energy manifold in fermionic systems, we
will first focus on the BCS channel, and then discuss the forward scattering channel in section 5 where exciton
condensates arise. In both sections 4 and 5 we derive the one-loop RG flow for the respective couplings, show
their fixed point structure, and determine the trajectories of the RG flow towards strong-coupling. We also
identify the nature of the states that are realized at strong-coupling by tuning a single parameter. These states
may be considered as finite coupling instabilities of the Weyl-loop semi-metal.

4. RG analysis of BCS couplings

In this section we analyze the RG flow of the BCS couplings which are identified through the following kinematic
constraint on the interaction vertices of the action,

int

4

GBCS) _ Anfzj:\ [H dKn] Qm)* §W(K — K + K3 — Ky) 6(K) + K3) 6(K, + Ky)
n=1

y [ @ (@ (K0t (K2)) (& (K3) 10 (Ky)

- @{@(KI)W(K»)@(Kawaq» L n— )

- @{(& (K119 () (B (K)o (Ke) — (1 — 7))

_|_

@(fp (K () (@ (K3)w<1<4>>]. (17)

Here K, is the unit vector along K. Imposing the rotational invariance under the action of R g, constrains the
functional form of V; (K, K) — V;j (0, — 0,), where ; are the angular positions on the loop and are physically
equivalent to K;. We note that the two dimensional unit vector K; is the projection of the three dimensional unit
vector K; on the plane of the loop; the dependence of V;on the third component of K; is irrelevant. As we will
show, different angular momentum channels further decouple, so that one may work with sets of coupling
constants in a particular angular momentum channel. Additionally, the action S, o + SE with V5, = 0is
invariant under R, for £ () = sgn(#)€ with & € (—, 7). Since the symmetry involves a quasi-global choice
of £ (0), itis a subgroup of the pseudospin-U (1), symmetry, and we refer to it as BCS-U(1) symmetry. The
BCS-U(1) symmetry ensures that V; ;. vertex is not generated by scatterings in the BCS channel, if it is absent at
tree level.

There are four diagrams at one-loop order as shown in figure 4. The contribution from the BCS diagram is
enhanced by a factor of k with respect to the other three diagrams. This underscores the fact that the FS
couplings do not mix with the BCS couplings at leading order in A /. We note further that the BCS diagram has
alogdivergence at ¢ = 0 which makes the problem suitable for a RG analysis. While the analysis here is
developed for the undoped material, this log divergence persists even at non-zero doping (whereupon it
becomes just the familiar Cooper log). The situation in the doped case was discussed in [42] and is not discussed
further here.
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Here, due to the matrix structure of the vertex, a fourth diagram is possible which we label as P for ‘penguin’ diagrams.

Figure 4. The four one-loop diagrams that renormalize the quartic vertex. We use the naming convention in [43] for (a), (b) and (c).

(BCS)
int

The quantum correction due to the BCS diagram, 6S

,is calculated in appendix A. After adding 655

to SB), we rescale the dimensionful quantities to restore the UV cutoffto A. By comparing this renormalized

nt

action with the classical (tree level) action we obtain the RG flow equations for the BCS couplings at the leading

orderin A/k,
1 1
Wy = — 1;1[(2 -+ My 2"2—;1)] - 4—(‘/32;1 + 2V 4 2V5 ) + 2V Vo) (18)
T ™
1
O¢Vassy = —Vz+;1[(2 i/ Z—(Vm - V3;I)]: (19)
™
1
6fVZf;] = _(2 - 7]) VZf;] - 8_ (2VZ*;I + Vl;] + V3;])2) (20)
T
1 1
OrVay = —vs;][(z — )+ —(Viy + VH)] + — (Vi — Vig — VigVay). 1)
2 2T
Here V,,j represents the J-th angular momentum harmonic of V;,(6). Since 9, V5 4,5 o< — V5, if bare
V3 4,7 = 0, then itis not generated during the course of the RG flow.
4.1. Fixed points
The expressions of the beta-functions are simplified by changing coordinates in the coupling space as
1 1
fieg=Vay E(VI;I = Vi) Sy =Ygk E(VI;I + Viy). (22)
Theflowsof f,, ;forn =2 — ¢ < 2 are governed by
1
R @3
27
1
Orfi_y = — _[E—— _], 24
efisy fiy 27rf14 (24)
1
3,;f2+;1 = _f2+;1|:6+ ;-fZJr;]:l’ (25)
affZ—;] = _6f‘2—;]' (26)

The beta-functions imply that f, .., do not mix at one-loop order. We plot the projections of the four

dimensional RG flowonthe (f, .., f;_j)and (f; . P f27;1) planes in figure 5. The fixed points are derived from
the conditions for simultaneous vanishing of the four beta functions, which result in 3 quadratic and 1 linear
equations that have 2° solutions. The Gaussian fixed point is the only stable fixed point of the RG flow. It has a
finite basin of attraction, whose volume is controlled by e. The non-Gaussian fixed points have at least one
relevant direction which take(s) the flow towards the Gaussian fixed point or strong-coupling, depending on
which side of the separatrices the couplings lie. In table 3 we list all non-Gaussian fixed points according to the
number of relevant directions they possess.

In order to interpret the fixed points in terms of the original couplings of the model we invert the relations in
equation (22) to obtain
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Figure 5. RG flowlines on (a) (f; oy fl—;l) and (b) (fz+;1’ f,_.7) planes.
1
Vig = E((f2+;l - fZ—;I) + (ﬁ-&-;l - fl—;I))’
1
Vigy= E(f] + +f1_;]):
1
Voy = E(f2+;l +ho)
1
Vay = E((fZ-&-;I —h) = Uiy = fiy))- 27)

From table 3 we note that at Il cs) V5 1) vanishes, which implies the emergence of the BCS-U(1) symmetry at
the critical fixed point. The BCS-U(1) symmetry is also present at the bi- and tri-critical fixed points IVcs) and
VIIgcs), respectively. For the rest of this section we focus on the subspace where V; ;5 = 0, i.e. the subspace
invariant under BCS-U(1). To motivate this approximation, note that it is natural to take the bare UV scale
interaction to be pure density-density, without any pseudospin structure. An interacting theory with only
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Table 3. Non-Gaussian fixed points in units of me for the BCS cou-
plings, with at least one relevant direction. The number of relevant
couplings required to be tuned to achieve the criticality determines
its order, viz. stable (0), critical (1), bicritical (2), and tricritical (3),
where the numbers within the parentheses are the number of rele-
vant couplings. Thus, fixed points I(gcs) - I (pcs) are critical, IVigcs)
- VI(gcs) are bicritical, and VII(gcs) is tricritical.

# ey iy fsy iy Tune
Lacs) - 0 0 0 fi
cs) 0 2 0 0 fi
Ml gcs) 0 0 -1 0 fo
WVscs) -2 2 0 0 fiu
Viecs) —2 0 -1 0 hohy
Vigcs) 0 2 ~1 0 fioy,
Vilges -2 2 -1 0 ik,

Table 4. The fixed points (in units of 7€) in table 3 thatlie in the
V4,5 = 0 subspace. The first two are critical fixed points, while the

last one is bicritical.

# Vi Vi Vi Tune

I gcs) —1/2 —1/2 —1/2 fzJr

Vigcs) —2 0 2 M= V)
Vllscs) —5/2 —-1/2 3/2 Vi = Vo), fo,

density-density interactions will have this BCS- U(1) symmetry. Interactions with non-trivial pseudospin
structure will then be generated under the RG, but only those interactions that lie within the ‘maximally
symmetric subspace.’ In particular, V; ., which breaks the BCS-U(1) symmetry, will not be generated.
Additionally of course, restricting to the maximally symmetric subspace has the advantage of providing us with a
‘toy model’ that is more amenable to analysis.

We therefore restrict ourselves to the subspace with V; = 0. Since V5 ,j was a relevant perturbation at
IVipcs) and VII(pcs), these fixed points become critical and bicritical, respectively, with respect to BCS-U(1)
invariant perturbations. Thus, we obtain one Gaussian, two critical, and one bi-critical fixed points. The non-
Gaussian fixed points are listed in table 4 in terms of V.

Since both Il (cs) and IVipcs) are critical fixed points, they potentially separate the non-interacting Gaussian
fixed point (Weyl-loop semi-metal phase) from superconducting phases. We first discuss the stability of III pcs),
and then apply the same analysis to IVipcs). Since the RG flow of f, , ., mutually decouple and they are irrelevant
when | f, i;]l < ¢, the critical fixed point I gcs), which is realized at f; L fzf;l = 0, can only be destabilized by
perturbations with non-zero componentalong f, , ;. As depicted in figure 5(b), the sign of the deviation
hoy=hiy— f2>k . determines whether the perturbation takes the flow towards the Gaussian fixed point or
towards strong coupling where f, , . is large and negative.

In contrast to Il (acs), [Vipcs) islocated on the (f, .5, f; ;) planewith f,. ; = 0.Sinceinthe V; ;5 = 0
subspace f, , ;are equivalent, the RG flow in the neighborhood of IVizcs) is governed by

0r8f_y = €Sy Opbfyry = — €Sy, (28)

Therefore, perturbations with ¢f,_,; = 0 arerelevant and, depending on its sign, take the flow either towards the
Gaussian fixed point, or towards strong coupling where f, _; islarge and positive.

4.2. Flow to strong coupling

In this subsection we identify the effective interactions along the stable RG flow trajectory that takes the theory
towards strong coupling, as we tune away from the critical fixed points. As in the preceding subsection, we
discuss the flow away from III gcs) first, followed by IVipcs).

Let us label the flow away from the critical point towards strong coupling on the f, ,.; axisasastrong
coupling trajectory (SCT). Due to the stability of the Gaussian fixed pointin the (f, .}, f,_;> f,_.;) subspace, the
SCT is stable against perturbations perpendicular to it. With the aid of equation (27) we note that on the SCT
Vig=Vy=Vy= %fz by < —%. Thus, the BCS vertices on the SCT are given by

10
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Figure 6. One loop contribution to pairing susceptibility.

LUK} = %Vl(fq, ) @v)? + @) — @n)? + @), (29)

where we have suppressed the momentum dependence of the fields. On the plane of the Weyl-loop the vertices
simplify to

LEOR, &) = ivl(fq, R (0 R) (0 (— R T} (o (—Ra) o (Bo)). (30)

Since V{ < 0 on the SCT, this indicates that a pairing instability is driven by the condensation of (—K)p(K).
The SCT originating at IVipcs) is defined by (Vi;5, Vaxyy, Vi) = (—f_> 0, f,_,)). Therefore, along the SCT
the BCS vertices with momenta on the plane of the Weyl-loop simplifies to
LGP (K, Ky) = Vi(K, )" (K)o (0 (—K)) YT (—Kp) o (Ry)}
+ (U (K) o (W (—K)) MY (—K) 02 Y (Ry)} 1. (31
Since V; < 0 along the SCT, both vertices in equation (31) can drive a pairing instability. In the following

subsection we verify the identity of the superconducting states indicated above through explicit computation of
the anomalous scaling dimension of various pairing susceptibilities along the two SCTs.

4.3. Symmetry broken states
In this subsection we determine the nature of the superconducting states that arise as instabilities of the critical
pointsin the V, 4;; = 0 subspace. In particular, we compute the change of scaling dimension of the pairing
susceptibilities along the SCT as the system flows towards strong-coupling.

We consider insertions of fermion pairs,

$90 = [dK AR W (~K) 5, WK) + e, (32)

where it = 0, 1, 2, 3. The pairingamplitude A, (K ), = — AW (—K) 7;, with A, (K) beinga complex valued

func‘iion. The ‘singlft’ pairing corresponds to ’y; = —y,and A, (K) = A, (—K), wh/il\e for 'yz = 7, and

A, (K) = —A,(—K) the pairing occurs in a ‘triplet’ channel. At one-loop order A, (K) is renormalized by

figure 6. As derived in appendix B the RG flow of each angular momentum harmonic of A, (K)is governed by
6fAu;] = A;L;] [2 + 5;1({‘/;;]})], (33)

where the anomalous dimension of Ay, 0, ({ Vi;j} ), is defined in equation (B6).
Along the SCT originating from III cs) the susceptibility for 73 is most strongly enhanced, and the RG flow

of As(K)is governed by
2
OpNsy = A3;][2 — i] (34)

T
where we have used the fact that alongthe SCT Vi;; = V35 = V,_;; = %fz - Since Vi;; < 0, Ag (K) obtains a

positive anomalous dimension. The scaling dimensions of A, (K) for 1 = 3 do not change because Oy=3 = 0.

From the symmetry properties of the gap function, we obtain A;(—K) = — A (K), which is equivalent to
A;(0 + m) = —A3(0) in terms of the loop coordinate 6. Decomposing A3 () in terms of angular momentum
harmonics,

A3(0) = Z eiiw AS;]) (35)
J=—

11
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we note that only the odd J harmonics are non-zero. While the flow equations in different odd angular
momentum channels are identical, the degeneracy between different angular momentum channels will be
broken by the initial conditions. The largest ‘bare interaction’ is likely to arise in the lowest allowed angular
momentum channel (i.e. ] = £1) which will then be the leading instability. Therefore, the leading instability is
expected to be ‘p-wave’ consistent with general arguments [42]. Retaining only the ] = 41 harmonic we express

As(0) = A, cosb + iA_sin¥, (36)

where the constants Ay = 2(As,_; + As,;). Allowing for weak radial momentum dependence on the plane of
the loop we generalize A;() to

S ~ - K
ARy = A, & +iA_ (37)
K K
In terms of the generalized expression for a superconducting order parameter
— . — —
A(K) = i(do(K) + d(K) - a)0, (38)

the current state corresponds to d (K), d(K), d;(K) = 0,and d,(K) = —iA;(K).

Note that we have two degenerate channels | = +1which are related by time reversal symmetry. We now
discuss the competition of these two channels below T.. For the superconducting state where ] = +1
components are ‘in-phase’ (As;; = As,_;) and ‘out-of-phase’ (As;; = —As,_1), (A+, A)= (4As,_y, 0)and
(A+, A = (o, 4/;. 1), respectively. Therefore, in this state the gap function vanishes at two points on the
Fermi surface — this is nodal superconductivity which spontaneously breaks rotation symmetry. In contrast if
only one out of the /. channels develops a non-zero order parameter this corresponds to

2851 (K, +iK,) forJ = —1
ARy =4 T (39)
— 2L (K, — iK,) for] = +1.

This type of ordering spontaneously breaks time reversal symmetry and corresponds to chiral superconductivity.
Note that these gap functions do not vanish on the Fermi surface, and thus are expected to have a larger
condensation energy. We show this explicitly by minimizing the Ginzburg-Landau free energy, similar to
[53-57].

Since V] < 0 alongthe SCT, we introduce an auxiliary field, ¢ (k), to decompose the first term in
equation (30). Integrating out the fermions generates an effective Ginzburg—Landau action for ¢ (k). In the
symmetry broken state below the critical temperature we ignore spatiotemporal fluctuations of ¢ (k), and focus
on the ‘potential’ part of the effective action. We ignore contributions from scattering between Cooper pairs at
different parts of the loop, and express the total free energy as a sum over free energy per unit length of the loop,

T do T do

F= — F ) = — N? + blopO)|Y, 40
[ SFro=[ Z@s®F + @ (40)

where a and b are effective parameters. Substituting ¢ () = A;(0) (defined in equation (36)) leads to

ok 2

a s < 3b < b x oo 1 ATA

F==(A+1A )+ =(A P+ 1A H + =APA P - | ——— —cc ]| | 41
2(I A 8(I +H* + 1A 4| +F1A] 2[|A+||A| ] (41)

We note that the third term represents a repulsion between the two components of A3 (). For a condensate to
form the condensation energy needs to overcome the energy barrier due to the repulsion. Since in the
superconducting phase a < 0and b > 0, the configuration that minimizes JF is determined by the relative
magnitude of |a| and b. By expressing (A, A_) = A, (1, Vxe"),in units of | A |* (or equivalently b|A_|*)
we obtain

2F |al

~ = ———(1+x)+ i(1 —x)? + Zx(l + lsinzA). (42)
DAL bALP 4 2

Minimization of the scaled free energy with respect to the relative magnitude x and the relative phase A leads to
three possible states correspondingtox = 0, (x > 0, A = w/2 or 37/2),and (x > 0, A = 0 or 7) aslongas

lal
b|ALP
minima correspond to nodal states, while the last one is a pair of nodeless states which are equivalent to those in

equation (39) for x = 1. Thelower bound on the dimensionless ratio llz l 5 originates from the competition

+
between the repulsion and condensation energy. By comparing the free energy at these minima we conclude that
the nodeless state is realized at the global minimum of the free energy. Thus the leading instability associated

with the flow to strong coupling emerging from the Il zcs) vertex is to a fully gapped chiral state with odd

> 1/2. The conditional inequality is selfconsistently satisfied by | A, | at each minimum. The first two
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angular momentum and with A (E ) proportional to the unit matrix in pseudospin space (i.e. d; = d5 = 0).
Further, we note that this is the only state that involves solely intra-band pairing, and is smoothly connected to
paired states in both the conduction and valence band. Thus this state is expected to be most robust to chemical
potential disorder [42]. Indeed, it may even be enhanced by disorder through the mechanism discussed in
[58-60].

Applying the above analysis to the SCT originating from IV;zcs), we find that pairing susceptibilities for v,
and 7, vertices are enhanced identically, while o and 73 are unaffected. From the symmetry of A5, we identify
the v, (7,) pairing vertex as a singlet (triplet). The triplet pairing is distinguished from the one associated with
I (gcs) with the aid of equation (38), and it corresponds to d,,...3 (K) = 0and d;(K) = A;(K). The singlet
corresponds to d(K) = 0and dy(K) = —iA;(K). While the quantum scaling dimensions of the singlet and
triplet pairings are identical due to the BCS-U(1) symmetry, the pairings occur in distinct angular momentum
channels: the singlet (triplet) pairing occurs in even (odd) angular momentum channel. Since there is no reason
why the bare couplings (which set the initial conditions for the RG flow) should be equal in distinct angular
momentum channels, the apparent degeneracy will thus be broken by the initial conditions, and the leading
instability will occur in the channel d,,...3 (K) = 0and d; (K) = As(K) if the most attractive bare couplingisan
odd angular momentum channel, and in the channel d(K) = 0and dy(K) = —iA;(K) if the most attractive
bare coupling is in an even angular momentum channel. In the case where the leading instability is in a channel
with non-zero J, the £] channels will again be degenerate, and one may have either fully gapped chiral
superconductors or gapless non-chiral superconductors. An analysis of the most likely symmetry broken state
resulting from the instability driven by the ~, pairing vertex indicates a fully gapped p-wave state as obtained
above. However, it is distinguished from the same through the nontrivial matrix structure of the order
parameter in the pseudospin space since ds = 0. The most likely candidate for the symmetry broken state for the
singlet pairing is a uniform s-wave superconductor. We note that these states involve interband pairing [42] and
thus will likely be rapidly disrupted by chemical potential disorder, unlike the state arising from the flow out
of Mgcs).

5. RG analysis of forward scattering channel

In this section we discuss the RG flow of the forward scattering channel. In the absence of nesting, condensation
of intra-orbital particle-hole pairs carrying a finite momentum is suppressed by a lack of density of states.
Consequently, additional fine tuning is necessary to drive such a phase transition. Thus in a single-orbital system
the forward scattering channel does not lead to a weak coupling instability of the metallic state [43]. However, in
multi-orbital systems additional forward scatterings between different orbitals are present, which can lead to the
condensation of inter-orbital particle-hole pairs which carry zero net momentum. In the presence of a Fermi
surface or nodal lines, the zero-momentum pairing of electrons and holes can utilize the extended manifold of
degenerate states available at the Fermi level to enhance their condensation energy. Another way to say this is to
note that there is a log divergence in the forward scattering channel for the undoped Weyl loop system (at = 2)
which can lead to an excitonic instability. Since the exciton condensation crucially depends on the degeneracy of
the two bands, this log divergence is cut off by doping and there is no weak coupling instability for the torus
Fermi surface. However our focus here is on the possible symmetry broken phases resulting from instabilities
driven by forward scatterings in the undoped system.

Asnoted earlier, there are two equivalent ways of representing the interaction vertices for the forward
scattering channel. Here we have adopted the FS representation, and express the vertices as

int

4
S’ = Anizf (H dKn] QM 8WEK — K + K3 — Ky) §(K) — Ky) §(Ks — Ky)
A

n=1

« [@ (1 (K) Y01 (K2)) (¥ (K3) 01 (K)),

- @{(fp(Kl)w/}(K»)(fp(Ka)W(Ko) b on— )

- @{(z‘b(l@w/}(Kz))({b(Ksmw(Km =)

_|_

@(& (KD (K) (@ (K3)¢(K4)):|) (43)

where U K, K3) = Uj (0, — 03), and we have dropped explicit reference to the representation for the coupling
functions. Due to the kinematic restriction, the charge-U (1), symmetry is present in the forward scattering
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Table 5. The non-Gaussian fixed points for the couplings in the forward scattering
channel, in units of 7¢. In the four dimensional coupling space Igs) - 11l (s, are
critical, IVigs) - VI(gs) are bicritical, and VII(gs) is tricritical.

# Ul Ui Uity Uy Tune

Les) 0 0 0 —1/4 Usy

s, 0 —1/4 —1/4 0 (Ussi + Upyp)

M sy 0 —1/4 1/4 0 Va5 — Uyp)
Vs, 0 ~1/2 0 0 Usiip Upyg

Virs) 0 —1/4 —-1/4 —-1/4 Usps (Ur 57 + Unyy)
Vis) 0 —1/4 1/4 —1/4 Usyps (Uz 455 — Upyp)
Vs 0 -1/2 0 —1/4 Usyp Urspy Unyg

(FS) for

nt

any non-trivial choice of £ (), itbecomes a symmetry when U, = 0 with £ (§) = £.Inorder to contrasta
similar symmetry present in the BCS sector, we refer to the current one as the FS-U(1) symmetry. The RG flow in

the U,_ = 0 subspace is protected by the FS-U(1) symmetry, which implies that 0, U, — o< U, _.

sector. Indeed Sy, + S{&*) resembles the Fermi liquid fixed point. Although R » isnotasymmetry of S

nt

5.1. Fixed points

In the forward scattering channel, even at zero energy, the net incoming momentum is generically non-zero as
the momenta of typical incoming states are not anti-parallel in K-space. In order to transfer the finite
momentum of the incoming states to the outgoing states, the virtual excitations must carry a net momentum.
Therefore, scattering processes that favor virtual excitations with zero net momentum are suppressed for
forward scattering channels at low energy, as is the case for the BCS diagram. The internal loop in the other three
diagrams in figure 4 carry a net momentum, and renormalizes U; at leading order in A /. The FS couplings flow

according to
O Uy = — €Uy, (44)
2 2,
0rUs 3= —Uryyyl e+ —Uayyy | — =Upys (45)
T T
4
OrUpyy = _sz;llif + ;U2+;I:|’ (46)
4
an3;] = *U3;]|:6 + —U3;]:|. (47)
T

Itis interesting to note that when all four couplings are repulsive, they are irrelevant. Moreover, the U, vertex
which mediates scatterings between total densities in momentum space, >-;_ , cf (K)¢; (K), remains
unrenormalized.

There are 2° solutions to 9, U;; = 0, which correspond to distinct combinations of the fixed points of U;.
The non-Gaussian fixed points are listed in table 5. There are 3 critical, 3 bicritical, and 1 tricritical fixed points in
the four dimensional coupling space. Among the critical fixed points, the FS-U(1) symmetry emerges at I (), due
to the vanishing of U, _;. Since it is protected by an emergent symmetry, in the rest of the section we focus on the
U,—,; = 0subspace. Two more interacting fixed points are present in the subspace, both of which lose a relevant
direction due to the projection to the subspace. Thus, in the U,_,; = 0 subspace there are 2 critical (I(gs), [Vigs))
and 1 bicritical (VIIgs,) fixed points.

The critical points are expected to separate the Weyl-loop semi-metal phase from symmetry broken phases,
which are realized by tuning a single parameter. In the U,_;; = 0 subspace the two critical points I(gs) and IV, are
achieved by tuning Us;; and U, 4 j, respectively. On tuning these coupling beyond their critical values the system is
set to flow towards two distinct strong coupling fixed points. In this section we determine the stable RG flow
trajectories thatlead to those fixed points, which will help us identify the possible symmetry broken states that can
be realized at finite (or strong) coupling. We first discuss the SCT originating from I(zs), followed by IVgs).

Since all couplings but Us;j vanish at I(ps), it is easy to see that the SCT must lie along Us,; < —me /4. This
trajectory is stable against small perturbations since the Gaussian fixed points of U.. 55 are stable. The effective
interaction along the SCT,

L = @ (W (K)o () (4 (Kp) 73 (Ky), (48)

indicates that particle-hole pairs ¢ (K) 031 (K) are progressively favored as |Us (K, K) | increases. Condensation
of ¥ (K) 031 (K) produces a mass term for the fermions, which gaps out the fermionic excitations. An identical
analysis for the SCT originating at IVgs) reveals a stable SCT along U, 1,; < —me /2, and effective interaction
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@ ®)

Figure 7. One loop contributions to susceptibilities in the particle-hole channel.

on the SCT,

LS = w [ (KD v (K) (W (Kn) oy () + (0 (KD oy (K)) (W (K oo ()], (49)

5.2. Symmetry broken states
In this subsection we compute the anomalous scaling dimension of susceptibility along the two SCT's identified
above. We also identify the symmetry broken strong coupling fixed points to which the SCT's flow.

Let us consider an insertion of particle-hole pairs carrying a net momentum P onthe plane of theloop,

SEW(B) = fA dK®, (B; B)D (P + K)yu1)p (K) + hec. (50)

Here the four-dimensional vector P = (0, P, 0). In contrast to the pairing susceptibility, the density wave
susceptibility obtains quantum correction from the two diagrams in figure 7. At low energy quantum corrections
to the susceptibility at any finite P are suppressed, compared to P = 0. This is because of a lack of phase space
for both the virtual particle and hole to be near the loop when P == 0. Thus we consider the susceptibility for
density wave states with P = 0.

The source &, (0; K) scales as

afq)o;] = n(b,u;]a (51)
1
0r®yyy = @1;1[77 - ;(U2+;I + U27;I)]’ (52)
1
Or Py = @2;1[77 - ;(Uer;I - UZ—;I)]’ (53)
2
0Py = ‘1’3;1[77 - ;U3;I]) (54)

where ) = 2 — ¢ isthe bare scaling dimension of ®,,;. Thus at the critical point I(gs) and the ensuing SCT, only
@,y is enhanced, while the scaling dimension of ®,...5;; remain unchanged. For IVizs) and the associated SCT @y,
and ®,,j are equally enhanced. This degeneracy is protected by the FS-U(1) symmetry. Again the flow equations
do not distinguish between angular momentum channel, and the leading instability will be determined by which
angular momentum channel has the largest bare couplings (and ] = 0 is allowed). There is however a constraint,
namely that the overall Hamiltonian must be Hermitian. This then enforces that the order parameter must be
reali.e. either the instability will be in the ] = 0 channel, or if the instability is in a channel with non-zero angular
momentum then a real superposition of 4] states must arise (i.e. o< sin J6 or cos J).

The flow out of s, is associated with the condensation of 1)’a31). If this occurs in a channel with non-zero J
then itleads to alow energy Hamiltonian H ~ (K| = K)oy + K,05 + Assin(JO — 63) 03, where A and 65 are
real parameters. Such an instability opens a gap almost everywhere on the Weyl loop, with nodes surviving at
0 = 65 + nn/]J (integer n) i.e. this is a gap opening instability that simultaneously breaks the #-rotational
symmetry. It also breaks several discrete symmetries, in particular the antiunitary symmetries 7, Pk (Px) for
even (odd) J, P, Py, and the mirror symmetry P,. However the symmetries Px (P, Px) for even (odd) ], and P
are preserved. Meanwhile, if this occurs in a channel with ] = 0 then the gap function is independent of §, and
the f-rotation symmetry is preserved, while the discrete symmetries identified above are still broken.
Condensation in the ] = 0 channel uniformly gaps out the Weyl loop, with an effective Hamiltonian of the form
H ~ (K| — K)a1 + K,05 + Asos (real As)anda dispersion E ~ i\/(ll_('l — k)? + K2 + A3 Since thisisa
gap opening instability that preserves an antiunitary symmetry Pg, which squares to —1, one can ask whether
the resulting insulating state is topological or trivial. To address this issue, note that the Weyl loop can be
obtained by starting with (spinless) graphene in the y — z plane with it’s two (opposite sense) Dirac points located
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at +ky and rotating it through 180 degrees about the Z axis. Gapping out the two Dirac points of (spinless)
graphene with a mass term of the same sign on each Dirac point yields a trivial insulator, and rotating a trivial
two dimensional insulator through 180 degrees should yield a trivial three dimensional insulator. Nonetheless,
we note that on the plane of the Weyl-loop Py has the interesting property of mapping the region outside the
loop to its interior, which is an unusual implementation of an anti-unitary symmetry that does not appear to fit
naturally into the existing classifications.

The flow out of critical point IVgs) is associated with the condensation of either oy 1) or 9o, 9. If this
occurs in the ] = 0 channel it leads to an effective Hamiltonian of the form H ~ (|I% | — K)oy + K00 + 4\
o1 + Ay0, where A ; are real parameters. Such a perturbation shifts the radius of the Weylloop to K — A, and
shifts it into the plane with K, = —A,. Anon-zero 4\ does not break any symmetries and can be absorbed into
aredefinition of the Weyl loop radius x. A non-zero A, breaks the mirror symmetry, and also the discrete
antiunitary symmetries Px and P, P, but preserves P, Px and T, - it simply shifts the Weyl loop out of the k, =0
plane. More interesting is the situation where the instability develops in a channel with J = 0 such that the
effective Hamiltonian takes the form H ~ (|I%| — K)o+ K,0p + Arsin(Jo + 6)) o1 + Aycos(JO + 6,) 0,
where 6, ; are constants and A, , are real. Non-zero A will lead to a #-dependent distortion of the nodal ring in
the K -plane, whereas non-zero A, will lead to a 6 dependent distortion perpendicular to the x-y plane. These
order parameters break the f-rotation symmetry, and correspond to Pomeranchuk instabilities. The competition
between A; and A, (in particular whether both A; and A, are non-zero, or only one is) will be determined by a
Landau Ginzburg calculation similar to those that have already been performed. Note that all of these are gapless
phases which continue to have aloop of Dirac nodes.

6. Conclusion

In this work we analyzed the finite coupling instabilities of a rotationally symmetric Weyl-loop semi-metal in three
space dimensions. The presence of the loop imposes strong kinematic constraints on short-range interactions,
similar to those present in a Fermi liquid. The rotational symmetry of the Weyl loop further endows the problem
with enough structure that the functional RG analysis necessary for an extended Fermi surface can be carried out
analytically. While the semi-metallic state is stable against weak short-range interactions, symmetry breaking
instabilities are present at finite coupling. We deform the dispersion of the system to allow us to access these finite
coupling instabilities within the regime of applicability of a weak coupling RG, through an € expansion type
procedure. We find that the only possible instabilities are in the the BCS and the forward scattering channels, which
decouple. In the BCS channel the leading instability is to a fully gapped odd angular momentum chiral
superconductor, which breaks time reversal symmetry. In the forward scattering channel, various possible
instabilities can arise, including a Pomeranchuk instability and a gap opening instability to a trivial insulator. This
analysis clarifies what instabilities might be obtained in Weyl loop materials. One question we did not address is the
potential competition between instabilities in particle-particle and particle-hole channels. The Pomeranchuk
instabilities in the particle-hole channel can presumably co-exist with superconductivity, whereas the gap opening
instability in the particle hole channel is likely to compete with superconductivity.

In the case of asymmetric Weyl-loop semi-metal the SO(2) rotational symmetry on the plane of the Weyl-
loop is broken down to a discrete C,, symmetry. Although, this will result in mixing of various angular
momentum channels during the course RG flow, it is possible that the leading instability still occurs in the lowest
angular momentum channel.

Detailed analyses in these directions are left to future works.

Note added: While finalizing the paper we became aware of a related work [61] that focused on the Dirac-
loop semi-metal using a different regularization scheme than ours. When applied to the Weyl-loop case a subset
of our results were obtained
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Appendix A. Computation of quantum corrections

Here we outline the steps for computation of the one-loop quantum corrections to the quartic vertices. Since the
computation of all the four one-loop vertex corrections follow identical procedure, we provide the details for
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Table 6. Multiplication rules for the y-matrices.

N Y3 Yo "N Y2

@ 7Y

o% Yo Re 72 —iy
Yo Vs Yo "N V2

M —iy M —% —iy
Y2 —iy Y2 iy ~%
®) '

g " —iy, & iy
Yo i, - Yo i3

N V3 Yo " V2

Y2 - i'Yo - i"/s Y2 ~—h
© Y

RE] V2 im —iy, &}

Yo —iy % —iy Yo

M o i —"% M

Y2 V3 Yo "N V2

only the BCS (particle-particle ladder) diagram. It is useful to list the contraction of various matrix vertices.
Recall that (7, v, V5> 13) = (03, 02, — 01, 0p), therefore 4,7y, = iy, 9,y = 17y, and 4,7, = i7,. With these
results we obtain the multiplication rules for y-matrices listed in table 6.

A.1. BCS diagram
Contraction of two vertices in the BCS channel leads to the quantum correction,

int

4 4
05" loes == 7.5 f [T dK. dK; 8@ (K — Ky + K3 — Ky) (K] — K3 + Kj — KJ)
n=1

PPN

X byt yabbl ity (R K, Ky, Re) 1, (K, K, K, Ky)
X (P31 (KD Py (K ) (10! (K) Py (K3) ) ) (K3) 1, (Ko) ) (K ), (K. (A1)

Here for notational and computational convenience we have used u,, to identify the coupling functions for the
- 5 X
() 7, ¥)* vertex. In particular

Ug = gp U = *(g2+ + gz_): Uy = *(g2+ - gz_)r uz = g31 (AZ)

where we have suppressed the dependence on loop-coordinates on both sides. Utilizing the definition of the
propagator in equation (15), and integrating over K, K;, and K; leads to

2
85U Ips = — — f dK,dK,dK/dK] 2m)*6D(K} — K; + K| — KJ)
K

nt
X TRt (KL Ky, Ky Ka) Bl (K30, (K) D! (K] 3, (Ko, (A3)
where
(K Ko Ko K = [[dQ 3 G(Q@ ol G(Ks+ Ko — Q) ]
x u,(Q, Ky (K Ky — Q), K) u, (K, (K + Ky — Q), K, Q),

with A o B = A, p, Ba,p,, and (K T K- Q) being the unit vector along (K, + K, — Q). Here the internal
momentum Q is restricted to lie within the shell being eliminated (c f figure 2).

The BCS channel is defined by (K, K;) = (—Ks, —Kj). Because we are interested in the IR, we set the
external frequency to 0, and external momenta to lie on the loop. Combined with the angular constraint, this
implies & + Ky = 0 = K, + K;. Therefore,

Tu(® Ko —K ~R) = [ dQ 1 G(Q ylely G(-Q) 3]
X uy(Q, =K, —Q, K 1, (K, —Q, =K, Q). (A5)

(A4)
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Let us define
AV (0 — 6) = u, (K, K, —Ki, —Ky), (A6)

where 6 is the angle the loop momentum ~K; makes with respect to the x-axis. Thus, we obtain an equivalent
expression to equation (A5) in terms of the angles,

™ déd oo d A d
Tu0) 00, 61+ 7, 6+ ) = kA [ ] (mf N % j: Hm% VIO — 0+ MV — 0 — )
X [w Gy g> ©) Wlolw G(—=qp g5 —©) Wl
(A7)

We note that G (g, g, ¢) does not have a specific parity under spacetime inversion. As a result, the integrand of
equation (A7), up to terms that are even in ¢ equals,

a5 w0l © Yol — 42 (cos? o [ mydelwmnl — sin? @ [yl e lwy2%])
(qOZ 4 q2(27€))2

The opposite sign for the v; and vy, terms will lead to unequal quantum corrections to the ; and -y, vertices, as
we will see below. This is a manifestation of the absence of R, symmetry for the interaction vertices, in general.
Noting that 6 decouples from rest of the internal variables, it is simplest to integrate in the order ¢, g, and g.
We cannot explicitly integrate over 6, but we can simplify the V/L dependence of the quantum correction by
expressing the coupling functions in terms of angular momentum harmonics. The inverse Fourier transform of

, (A8)

/ . .
V,,(0)is given by
V;/L(e) = Z e7i6] V;L;]) (A9)
J=—00
which leads to
T 4o / SO0 [
f VIO~ b WV — 0 =) = e 0y (A10)
,,T ;

Therefore, equation (A7) evaluates to,

kA€
167
X [(w ) © (vnw) — ey o y2%) — 20w Y% © (o)l

Y;u/(ob 92) 91 + e 92 + 71') = *df Zeii(gliez)] ‘7/1,;] Vu;]
J

(Al1)

This leads to quantum corrections to the BCS channel,

Aff

8 lses =
3w

nt

I/p 4
3 [ 11 dk, @r60(K — Ko + K — Ki) 8K+ K9) 6K, + K
J n=1

x e =0TV {h (KD e ¥ (Ko) HD (Ks) v ¢ (Ko}
— {(KD) 2w ¥ (K) M (K3) vy 1 (Ka) }
— 2{P (K) uvow ¥ (K) P (K3) o ¥ (Ko (A12)

The net quantum correction is obtained by summing over p and v,

3
5SBCS) _ Z 5S1)

nt nt

1v=0

BCS
A<€d? 4 |
= — 4 Zf H dKn (27‘(‘)4(5(4)(& - K2 + K3 — K4) 6(K1 + K3) 6(K2 _|_ K4) e_l(gl_gz)]
TR n=1

X [{2(\73;1‘70;1 - ‘71;1‘72;1) + (VO;IVZ;I + ‘73;1‘72;1 - \73;1171;1 - VO;IVI;I)} (TZ ¢)2
+ {((‘73;])2 + (‘70;1)2 + (VI;])Z + (‘72;])2) + (VO;]VZ;] + ‘73;]‘72;] - VO;]VI;] - \73;]‘71;])} (72)%1@2

- o~ - o~ - o~ - o~ 1 - ~ - ~ _
+ {2(‘/0;]‘/1;] - V_“);IVZ;]) + (\/1;] \/2;1 - ‘/3;IVO;]) - E((VS;])2 + (VO;])2 + (Vl;])2 + (VZ;])Z) }(¢'71w)2
- o~ - o~ - o~ ~ o~ 1 - ~ - - _
+ {z(vo;;vz;] = Vi Vi) + (T oy — iy T+ (T + (T + (Fig)? + (V) }(WW],
(A13)

where the dependence of ¢ on K}, is made implicit for notational convenience.
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A.2.Non-BCS diagrams

The forward scattering channels are renormalized by figures 4(b), (c), and (d). In order to compute their
contributions it is convenient to distinguish between the FS and ES channels at an intermediate step, and unify
them at the end through the relationship

Ué(ES) U6(FS)
U/(ES) -1 -1 1 U/(ES)

1 _1f-1 1 -1 1 1 (A14)
v |~ of-1 1 1 —1fluges |

where the primed and their unprimed counterparts defined in the main section are related in the same way as
equations (A2) and (A6). The relationship between the ES and FS representation of the coupling functions in the

forward scattering channel is defined on the loop through the equivalence of L = 3°, U/,

(QZryu Ves) = 2 A ({m# ¥)irs) = L, where the subscript in the ¢* term denotes the arrangement of the
fermion momenta in accordance with the definition of the FS and ES channels.

Atleading order in A/k the external legs of the ZS’ diagram are arranged as in the ES channel, while those of
the ZS and P diagrams are arranged as in the FS channel. Repeating the computation presented above for the BCS
diagram to the present set of diagrams leads to the quantum corrections

sss) — A2 : dK, 2m)*6W(K — K + Kz — Ky) §(K; — Ky) 6 (K3 — Ky) e i0=027
e = T ;fnl:ll n QM) (K — K + K3 2 0 (K D o(Ks—Kye

~(ES) 7 (ES) ~(ES) ~(ES) ~(ES) 1 (ES) ~(ES) ~(ES) ~(ES) 7 (ES) ~(ES) ~(ES)y , 7
X [{Z(UO;J U3;l + Ul;] U2;l ) + UI;I U3;l + UO;] U2;l + U2;l US;I + UO;] UI;I } (@ ¢)2

~(ES) ~(ES) , 7+ (ES) ~(ES)

+{Z(U,§,;Ef))2 + (Og + O (O + O )}(WW
"

1 ~ (ES ~(ES) 7~ (ES ~ (ES) ~(ES ~(ES) 7~ (ES ~ (ES) ~(ES -
N {5 SO + 205, O + 0570357 + (T U™ + O O ))}W%w)z
i

1 ~ (ES ~(ES) ~(ES ~(ES) ~(ES) ~(ES) ~(ES ~(ES) ~(ES) =
+ {5 SO + 2005 Oy + 05037 + (O Osy” + 04y Oy )}WWZWZ]’
/l/

(A15)
@8) A edr u (0,0
08 =— Z—ZI H dK, @m)*D(K — K + K3 — Ky) §(K; — Ky) §(Ks — Ky) e 1@:i=02)]
K ] n=1
X 200572 @ )2 — (T2 @m)? — (Osy”) @) (A16)
@ A dZ . 46(4) —i(01—-6,)]
5S4 = WZI [] dK, @m)*6™ (K — Ky + K3 — Ky) 6(Ki — Kp) 6 (Kz — Ky) e 1002
] n=1
x lea(ff)(ZUﬁ'f}“) @2 — Oy (O — Oy + 05 — O35 (@mwy?
n
— U305 — Uy — O + U37) ()] (A17)

Applying the transformation in equation (A14) leads to the net quantum correction to the forward scattering
vertices in the FS representation (we drop explicit reference to FS),

s 4
ss89 = = VS [T dk, @rf6 0 — Ko 4 Ky — K 50K — Ko 6(Ks — Ky e 0
J n=1

nt
TR

x [2(Us5)? (¥ ¥)* — (O @nip)* — (Uy)? @y2)2].
(A18)

Appendix B. Susceptibilities

In this section we outline the computation of the anomalous dimension of the susceptibilities of both pairing
and density-wave channels.
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B.1. Pairing susceptibility
Let the quadratic-insertion be

S = fAdK AR Y (—K) 3 (K) + hee. B1)

The label A reminds us of the cutoff for the effective action. The quantum corrections to equation (B1) are
generated by contracting it with the quartic vertices in the action, which result in processes represented by
figure 6,

G0 = =% [, 4K KO Tl (R0 0.K) + b (B2)
where
w oy~ A "B YA T
Tlies () = = [ QU@ DAHQ) & (- Q1,6 (Q (B3)

Here the primed integration sign implies that the integral is restricted within the high-energy region which
correspondsto k € [(1 — d£)A, A]. After introducing the angular momentum harmonics, the mode
elimination leads to

, 1 1 o
Félgcs) 0y) = de— YoYuYo + = Z ViV Vi Z/ e Vz/;IATL;]) (B4)
8w 2.0 7
where the prime over the sum represent the restriction of J to even (odd) integers when 'y; = (7; = =)

Substituting I'fys) into the expression of quantum correction, and summing over v results in
5P — de Y f( o SKEVED) A5 0T (<K 3 9K + e (B5)
; .

where
8m 6o ({Viy}) =0,
8m o1({Vigh) = — My — Vo) + 2V = 2f ),
8m o, ({Vig}) = — (Vi — Vay) — 2Vaugy = —2f, )
8m 63 ({Vig}) = — 2(Viy + V3) — 4Vayy = —4f, . (B6)

Adding the quantum correction to (582(5?5) and rescaling all dimensionful quantities to restore the cutoff to A
gives the beta functionof A,

afAu;I = Aﬂ;][n + 6u({‘/i;l})]- (B7)

B.2. Density wave susceptibility
Figures 7(a) and (b) leads to the quantum corrections,

oSOV Plla=— 23 [ dKDP + K) 0Ll P K () + he,
TJA1-de)
8SEW(B)l, =23 fA o KT (B, B) (P + K) 5, $(K) + hec, (B8)

respectively, where (1, are defined in equation (A2))

Llwya (P, K) = %f’d@@,,(ﬁ; Q) u,(Q, K, K+ P), @+ P) GQ+ P)G(Q,
) e (BY)
Ll @ K) = %f dQ®, (P; Q) u,(Q, (Q + P), (K + P), K) tr {,G(Q + P)%,G(Q)}.

The difference in overall sign between the two quantum corrections in equation (B8) arises from the fermion-
loop in figure 7(b). We set P = 0, and apply the steps in appendices A2 and B1 to obtain the beta functions for
®, ; quoted in the main section.
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