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Abstract
We studyWeyl-loop semi-metals with short range interactions, focusing on the possible interaction
driven instabilities.We introduce an ò expansion regularization scheme bymeans of which the
possible instabilitiesmay be investigated in an unbiasedmanner through a controlledweak coupling
renormalization group (RG) calculation. The problemhas enough structure that a ‘functional’RG
calculation (necessary for an extended Fermi surface) can be carried out analytically. The leading
instabilities are identified, andwhen there are competing degenerate instabilities a Landau–Ginzburg
calculation is performed to determine themost likely phase. In the particle-particle channel, the
leading instability is found to be to a fully gapped chiral superconducting phasewhich spontaneously
breaks time reversal symmetry, in agreementwith general symmetry arguments suggesting thatWeyl
loops should provide natural platforms for such exotic forms of superconductivity. In the particle hole
channel, there are two potential instabilities—to a gapless Pomeranchuk phasewhich spontaneously
breaks rotation symmetry, or to a fully gapped insulating phasewhich spontaneously breaksmirror
symmetry. The dominant instability in the particle hole channel depends on the specific values of
microscopic interaction parameters.

1. Introduction

Themost genericmetallic states occur in systems that host Fermi surfaces whose dimension is one less than the
dimension of the system. In the presence of effective short-range interactions among the fermions, these
metallic states are described by the Tomonaga–Luttingermodel in one dimension [1–7], and frequently by
Landau’s Fermi liquid theory above one dimension [8]. Comparatively less commonmetallic states are realized
in systemswhere a filled valence band touches a conduction band. These semi-metallic states possess gapless
excitations about a zero-energymanifoldwith dimension two ormore below the spatial dimension of the
system. Although semi-metals have been theoretically investigated since at least 1970s [9], their properties have
garnered considerable interest in the last two decades with the advent of graphene [10–12] and other varieties of
Diracmaterials [13–28].Most of the known semi-metals contain a discrete set of gapless points in the bulk.
However, in recent years, three dimensional semi-metals with a ring of gapless points have become a possibility
[29–39]. Theoretical investigation into the effect of theweakly screened long-range Coulomb interaction on
theseWeyl-loop semi-metals suggests that single-particle excitations survive at low energy, as quantum
fluctuations render theCoulomb interactionmarginally irrelevant [40]. In contrast, strong short-range
interactions can lead to symmetry-breaking instabilities. Indeed, it has been argued that such ‘Weyl loop’
systemsmay serve as ideal playgrounds for realizing exotic forms of superconductivity [41, 42]. However, a
systematic and unbiased analysis of the potential interaction driven instabilities ofWeyl loop systems remains to
be performed.

In this paperwe investigate the effect of short-range interactions on aWeyl-loop semi-metal, and identify
the symmetry broken states that are probable at finite interactions.

The paper is organized as follows. In section 2we introduce the continuummodel whose low energy
properties are the subject of this work. A generalization based on tuning the dispersion of the fermions is
developed, which enables access tofinite coupling instabilities within the regime of applicability of a controlled
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weak coupling perturbation theory. In sections 3 to 5 the low energy properties of the perturbatively accessible
sector of the generalizedmodel is analyzedwithin a renormalization group (RG) scheme based onmode
elimination. The RG is shown to have enough structure that a ‘functional’ analysis (necessary for an extended
Fermi surface) can be carried out analytically. The particle-particle and particle-hole channels are found to
decouple.We deduce the fixed points of the running couplings in the particle-particle and particle-hole
channels respectively. In section 4.3 themost likely instability is identified through an analysis of anomalous
dimensions of the susceptibilities of various pairing channels, combinedwith a Landau–Ginzburg analysis. In
the particle particle channel wefind an instability to a novel formof superconductivity, wherein the order
parameter is fully gapped and chiral, and spontaneously breaks time reversal symmetry. In the particle-hole
channel there are two potential instabilities (with the dominant one being determined bymicroscopic values of
interaction parameters): either a Pomeranchuk instability to a gapless phase that spontaneously breaks rotation
symmetry, or an excitonic instability to a gapped (trivial) insulating state that spontaneously breaksmirror
symmetry. Finally, in section 6we concludewith a discussion of our results.

2.Model

In this sectionwe derive an effective theory that is appropriate for understanding the universal low energy
properties of theWeyl-loop semi-metal in the presence of short range interactions. Since short range
interactions are expected to be strongly irrelevant in the presence of linear band-touching, we develop a
convenient generalization of themodel in terms of the degree of band-curvature, which allows us to access
interaction driven instabilities within the regime of applicability of aweak coupling RG.

2.1. Non-interacting theory
The simplest realistic description of non-interacting fermionswhose dispersion admits a nodal line Fermi
surface in three dimensions is given by [40, 42]

ò s= Y + Y( )[ ( )] ( ) ( )†S K K E KKd ik , 10 0 0

where º
p( )

Kd
k K K Kd d d d

2

x y z0

4 , k0 is the Euclidean (Matsubara) frequency, K denotes three dimensionalmomentum,

σ0 is the 2×2 identitymatrix, and Y =( ) ( ( ) ( ))K c K c K,1 2 is a spinor representing fermions ( ( ))c K1,2 from
1, 2 orbitals.

The dispersion is

k s s= - +( ) ˜ (∣ ∣) (∣ ∣ ) ( )E v K K v KK , 2r z z1 2

 

where k= +˜ (∣ ∣) (∣ ∣ ) ( )v K K m2r

 
. Herewe have distinguished between the three dimensionalmomentum from

its projection, K

, on the plane of theWeyl-loop.We have chosen the loop to lie on the x –y plane, and it is

defined by k= + =∣ ∣K K Kx y
2 2


. Hereσ1 andσ2 are thefirst two Paulimatrices which encode the orbital

degrees of freedom, andm and vz are bandstructure parameters.We note that at finite doping, i.e. away from
perfect compensation, the non-interacting theory ismodified by replacing m-ik ik0 0 . Our theory will focus
on m = 0.

Diagonalizing ( )E K yields two bands that disperse as

x k=  - +( ) ˜ ( )(∣ ∣ ) ( )v K K v KK . 3r z z
2 2 2 2
 

Since the chemical potential m = 0, the ground state is defined by the configurationwhere k=∣ ∣K


andKz= 0,
which precisely corresponds to the loop. Thus at low energy k»∣ ∣K


and »K 0z , and the dispersion,

equation (2), can be approximated to

e s s= +( ) ( )k k v k v k, , 4r z r r z z1 2

where k kº =˜ ( )v v mr r , and kº -∣ ∣k Kr


and kz are deviations ofmomentum in the radial and z directions,

respectively. The band dispersion simplifies to x =  +( )k k v k v k,r z r r z z
2 2 2 2 .

We scale ( ) ( )k k v k k v, ,z r z z0 0 , and identify the longwavelengthfluctuations of the fermions (low energy
modes) through the relation,

t y tY ~ +k( ) ( ) ( )·r r, e , fast modes, 5ri


where k k q q= ( )cos , sin , 0


with θ specifying the position on the loop.We further sharpen the definition of the
low energymodes by requiring that themomentum carried by thesemodes to be such that

k+ < Lk kr z
2 2  , whereΛ is a UV cutoff on the -k kr z plane,measured from the loop (seefigure 1).

Integrating out themodeswhichmodulate over length scalesΛ−1 we obtain
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where L( )f k k,r z is a cutoff functionwhich suppressesmodes with + Lk kr z
2 2 2 3.We choose L( )f k k,r z to be

rotationally symmetric in -k kr z plane. The two dimensional vector k

is the deviation ofmomentum from the

loop, and is defined on the -k kr z plane by º ( )k k k,r z


.We emphasize that k


is not linearly related to the

deviations from the loop in K space. In particular, under inversion -K K , but = -( ) ( )k k k k k, ,r z r z


 .

2.1.1. Symmetries
The dynamics of the non-interacting fermions described by equation (6) enjoys a set of continuous and discrete
symmetries. In this sectionwe describe these symmetries, and the respective symmetry transformations.

Since the fermion dynamics is independent of the position of the fermionicmomentumon the loop, the
loop coordinate θ acts as a label for theψ fields. The cyclic nature of θ leads to three continuous symmetries of S0.
Thefirst is a SO(2) rotational invariance of the action under q q q+q : 0 . In order to isolate the second
symmetry let us write the spatial part of the propagator in terms of polar coordinates j( )k, as

j s j s+( )k cos sin1 2 , where j j=( ) ( )k k k k, cos , sinr z . Under the transformation y yj
xq : ei , with

s= - ¶j 2 i3 , the lagrangian

q j y y q j s j s j s y q j= + +[ ] ( )[ ( )] ( ) ( )†L k k k k k k k k, , , ; , , , i cos sin , , , 70 0 0 0 0 1 2 0

transforms to q j x y+ q[ ]L k k, , , ;0 0 , implying j is a symmetry of S0. j corresponds to a rotation in the
plane perpendicular to the loop at each point θ. The third symmetry is the invariance of the action under a θ-
dependentU(1) transformation y ywqei . Since the latter two symmetry transformations are locally defined
on the loop, they lead to distinct emergent ¥( )U 1 symmetries whichwewill distinguish as pseudospin- ¥( )U 1
and charge- ¥( )U 1 , respectively.While the former corresponds to the conservation of q̂ component of total
angularmomentum, the latter originates fromparticle number conservation at each θ.We note that the charge-

¥( )U 1 symmetry is present in any non-interacting theory where the single particle dispersion isminimized on a
degeneratemanifold. Since short-range interactionsmixmomenta at different parts of the loop, these ¥( )U 1
symmetries are broken by generic scatterings among the fermions. Nevertheless, it is possible for subgroups of
the ¥( )U 1 symmetries to emerge atfixed points of the interacting theory [43].

The action is also invariant under three sets of discrete transformations. Thefirst is amirror-plane symmetry
which originates from the symmetry between the dynamics above and below the kz=0 plane. It is effected by
the transformation q j y q j y= -- [ ] [ ] L k k L k k, , , ; , , , ;z z

1
0 0 0 0 , where the ‘operator’ z flips the sign of kz

such that q j q j= -- { } { } k k k k, , , , , ,z z
1

0 0 and y q j s y q j= -- ( ) ( ) k k k k, , , , , ,z z
1

0 1 0 . The second
is a pair of ‘anti-unitary’ symmetries, thefirst of which is defined through the transformation

q j y q p j y= + -- [ ] [ ] L k k L k k, , , ; , , , ;K K
1

0 0 0 0 . Here K inverts the three-momentum K, and acts on
the fermionfields as y q j- { ( ) k k, , , ,K

1
0 y q j( )}† k k, , ,0 y q p j y= + - -{ ( )* k k, , , ,K 0

q p j+ -( )}k k, , ,0 with y yº ( )†* . The second element of the pair is obtained by combining z with K.We
note that while these are symmetries of the action, they act on theHamiltonian in an unusual way. In particular at
the level of afirst quantizedHamiltonian they change the sign of the s1 term, and hence effectively connect the
Hamiltonianwith k- = <∣ ∣K k 0r


to theHamiltonianwith k- >∣ ∣K 0


. The last of the sets of discrete

symmetries is another pair of antiunitary transformationswhose first element is defined by
q j y q j y= -- [ ] [ ] L k k L k k, , , ; , , , ;0

1
0 0 0 0 0 , where 0 inverts the Euclidean frequency k0 and transforms

thefields as y q j- { ( ) k k, , , ,0
1

0 y q j( )}† k k, , ,0 s y= { *0 2 q j y q j s- -( ) ( ) }k k k k, , , , , , ,0 0 2 . The

Figure 1.The (blue) ring on the x– y plane is the nodal loop. The torus enveloping the loop is theUV cutoff.

3
Two examples of L ( )f k kr z areQ L - +( )k kr z

2 2  (theHeavisideΘ-function), which imposes a hard cutoff, and
/- + L[ ( ) ̸ ]k kexp r z

2 2 2 , which imposes a soft cutoff.
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second element of the pair is obtained by combining z with 0.We summarize all the symmetries of S0 in
table 1.

2.1.2. Generalization
Aswewill show later in the paper, in order to obtain a controlled truncation of the beta functions of various
operators it is convenient to generalize the linear band-touchingmodel to higher order band-touchings.We use
the polar coordinates introduced in section 2.1.1 to generalize the dispersion of fermions as
e j j s j s= +h

h( ) ( )k k, cos sin1 2 for any real number h > 0. The band dispersion ismodified accordingly
as x j = h

h
( )k k,; . Thus, the dynamics of the non-interacting fermionswith η-th order band-touching is

given by

ò ò ò
k q j

p p p
y q j s

j s j s y q j

=

+ +

h
p

p

h
- -¥

¥ ¥

L( )
( ) ( )[

( ( ) ( ) )] ( ) ( )

†S
v

v

k k k
f k k k k

k k k

d d

2

d

2

d

2
, , , i

cos sin , , , . 8

r

z
;0

3

2
0

0
0 0 0

1 2 0

Since the value of η does not affect the symmetry transformations, hS ;0 and S1;0 share the same set of symmetries.
TheGaussianfixed point described by hS ;0 is invariant under the following choice of scaling,

q j h y h= = = = - +[ ] [ ] [ ] [ ] [ ] ( ) ( )k k, 0, 1, , 1 , 90

where the quantityX scales as ¢ = ℓ[ ]X Xe X d with ℓd being a logarithmicmomentum scale.We note that within
our scheme the radius of the loop (κ) is dimensionless, which implies coarse-graining towards the loop in
momentum space [43, 44].

2.2. Interactions
In this sectionwe introduce the vertices describing instantaneous short-range interactions that are consistent
with the discrete symmetries of the non-interacting theory. After scaling k0 andKz, as was done for S0, to obtain

òå  p d

y s y y s y

= - + -

´
m n

m n

m n

= L =

˜ ( ) ( ) ({ })

[ ( ) ( )][ ( ) ( )] ( )

( )

† †


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟S

v

v
K K K K K

K K K K

Kd 2

, 10

int
r

z n
n n

2 3

, 0

3

1

4
4 4

1 2 3 4 ,

1 2 3 4

where ò ò k= -
L L(∣ ∣ )K K f K Kd d , z


.We assume =m n n m({ }) ({ }) K Kn n, , to be real valued functions of

momentum. In general, there are 16 vertices corresponding to four choices each forμ and ν. In this paper we
focus on only those vertices that are invariant under the discrete symmetries of S0, viz. z , K, and 0. The terms
that have odd parity under these symmetries aremarkedwith corresponding labels in table 2. From the table we
see that only those terms forwhich m n= have the same parity as S0. Thus, theminimal set of interactions that
respect the discrete symmetries of S0 is given by

ò 

å

p d

y s y y s y

= - + -

´
m

m m m

L =

( ) ( )

˜ ({ })( ( ) ( ))( ( ) ( )) ( )

( )

† †

⎛
⎝⎜

⎞
⎠⎟S

v

v
K K K K K

g K K K K K

d 2

, 11

int
r

z n
n

n

6

3
1

4
4 4

1 2 3 4

1 2 3 4

where = ∣ ∣K K Kn n n

  , andwe have Taylor expanded m m( ) K K K K, , ,, 1 2 3 4 about the loop to obtain the coupling

functions m̃ ( )g K K K K, , ,1 2 3 4
    . Since, K and θ are physically equivalent, m̃ ({ })g Kn

 are functions of the loop
coordinates only.

Table 1.The symmetries of theGaussianfixed point action
equation (6). q0 is a constant, and wq and xq are functions of θ. The
first three are continuous symmetries, while the lastfive are discrete.
The first three antiunitaries square to−1while the last squares
to+1.

Symmetry Operation

θ-rotation q q q+q : 0
Pseudospin- ¥( )U 1 y x yj q( ) : exp i
Charge- ¥( )U 1 y w yq( )exp i
Mirror plane (z ) -k kz z and y s y1
Antiunitary (K) -K K and y y y y-{ } {( ) }† † , ,
Antiunitary (z K) -K K , y y s y y s-{ } { ( ) }† † , ,1 1
Antiunitary (0) -k k0 0 , y y s y y s{ } { ( ) }† † , ,2 2
Antiunitary (z 0) -k k0 0 y y s y y s{ } { ( ) }† † , ,3 3
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Weadd equations (8) to (11), and scale y y( )v vz r
3 , to obtain the action for the interacting theory for

any η. It is useful to introduce g g g g s s s sº -( ) ( ), , , , , ,0 1 2 3 3 2 1 0 , and define the conjugate field

y y g=¯ ( ) ( ) ( )†K K , 120

such that the generalized low energy effective theory is

ò

ò 

h y g k k g g y

p d
k

y g y y g y

k
y g y y g y g g

k
y g y y g y g g

k
y y y y

= + - + - +

+ - + -
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+

L
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-
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( ) ¯ ( ) ((∣ ∣ ) ) ((∣ ∣ ) ) ( )

( ) ( )
({ })

( ¯ ( ) ( ))( ¯ ( ) ( ))

({ })
{( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

({ })
{( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

({ })
( ¯ ( ) ( ))( ¯ ( ) ( )) ( )

( )

( )⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

S K K k K K K K K

K K K K K
g K

K K K K

g K
K K K K

g K
K K K K

g K
K K K K

i d

d 2

, 13

z z

n
n

n

n

n

n

0 0
2 2

1 2

1

4
4 4

1 2 3 4
1

1 0 2 3 0 4

2
1 1 2 3 1 4 1 2

2
1 1 2 3 1 4 1 2

3
1 2 3 4

1
2

 









where º + -k
+ -( ) ( ˜ ( ˜ ˜ ) ( ˜ ˜ ) ˜ )g g g g g g g g g g, , , , , ,

v1 2 2 3 0
1

2 1 2
1

2 1 2 3
z

.We note that in contrast to theGaussian part, the

interaction terms generally do not admit a straightforward decomposition in terms of angular patches because
the short-range scatteringsmix angular coordinates. Nevertheless, the diagonal structure of theGaussian part in
terms of the patch index θ is useful for the evaluation of quantum corrections.

From equation (13)wededuce the bare propagator

y y p dá ¢ ñ = - ¢( ) ¯ ( ) ( ) ( ) ( ) ( )( ) K K K K K2 , 14a b a b0
4 4

,

where

j
g j g j g

º = -
+ +

+

h

h
( ) ( ) ( ) ( ) K k k

k k

k k
, , i

cos sin
, 150

0 0 1 2

0
2 2

By applying the scaling relations in equation (9) to the interaction vertices, we obtain the scaling dimension for
the coupling functions,

h= -[ ] ( )g 2. 16i

Therefore, for h < 2 (h > 2) the interactions are irrelevant (relevant) at theGaussian fixed point. In the
presence of irrelevant interactions theGaussianfixed point is stable and has afinite basin of attraction, whose
volume in coupling space is controlled by the parameter h= - 2 . Thus, it is expected that for > 0weak
short range interactions cannot lead to newphases, and the nodal loop semi-metal is stable. TheWeyl-loop
semi-metal corresponds to = 1, where the short-range interactions have bare scaling dimension−1, and are
strongly irrelevant. Although irrelevant in RG sense,microscopically strong interactions can still drive the
system towards a non-trivial phase by pushing the couplings out of the basin of attraction of theGaussian fixed
point. Such finite-coupling instabilities of the h = 1 ( = 1) system is the focus of this paper.However, at h = 1
the bare scaling dimension of the couplings are ( ) 1 , which obstructs a controlled access to the potential finite-
couplingfixed points and instabilities. In order to achieve perturbative control we turn to the limit where

0 1 . In particular, = 0 corresponds to aWeyl-loop semi-metal with quadratic band-touching. Here
the short-range interactions are eithermarginally relevant or irrelevant, as is the case for Fermi surfaces with unit
codimension.Motivated by the smooth interpolation between the quadratic and linear band-touchingmodels
at tree level, we analyze the finite coupling instabilities close to h = 2, using ò as the control parameter. In the
spirit of all ò expansions, it is hoped that the small ò analysis would be able to access qualitative elements of the

Table 2.The vertices in equation (10) that are disallowed by the
discrete symmetries of S0 (see table 1). The m n( ), -th cell in the
table represents the corresponding vertex. The cells are labeled by
the symmetry transformations underwhich the parity of the ver-
tex is odd.

ν⧹μ 0 1 2

3

0 0   , ,z K 0 z , 0

1 0  ,z K z

2   , ,z K 0  ,z K K

3  ,z 0 z K
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h = 1 theory 4.We note that our approach is complementary to reference [45], where the codimension of a one-
dimensional Fermi surface was used as a tuning parameter to controllably access afinite coupling pairing
instability. Similar strategies based on tuning the dispersion of the dynamicalmodes [46, 47], and the
codimension of the Fermi surface [48–51] have been applied to the study of strongly coupled field theories in the
presence of a Fermi surface. Although herewe adopt the former strategy, it is possible to utilize the latter
approachwith the deviation from spatial dimension d= 2 as the small parameter.

3. Renormalization group

In this sectionwe outline our RG scheme for understanding the low energy properties of theWeyl-loop semi-
metal in the presence of short-range interactions.Wewill use theWilsonian RG scheme due to Shankar [43] to
derive the beta functions. In particular, we coarse-grain towards the nodal loop by eliminatingmodes that lie in
the region dL L - L[ ], , where dL L , as shown infigure 2. The chemical potential remains unrenormalized,

i.e. at perfect compensation, since theHartree and Fock diagrams infigure 3 vanish due to ò =
L

( )K Kd 0. In

the rest of this sectionwe focus on the renormalizations to the quartic vertices.
The combination of theUV cutoff imposed by L( )f k k,r z in equation (13), and conservation ofmomentum

at the quartic vertices on the plane of the loop imposes strong kinematic constrains onmost scattering channels
[43]. Thus, instead of studying the complicated RG flowof entire coupling functions, we focus on the dominant
scattering channels, which are identified by applying the kinematic constrains. There are three scattering
channels that dominate the low energy dynamics,

• Pairing (BCS):  - -({ }) ( )g K g K K K K, , ,i i i 1 2 1 2
     º Lh- ( )V K K,i

2
1 2
  ,

• Small angle forward scattering (FS): ({ }) ( )g K g K K K K, , ,i i i 1 1 3 3
     º Lh- ( )( )U K K,i

2 FS
1 3
  ,

• Large angle forward scattering (ES): ({ }) ( )g K g K K K K, , ,i i i 1 3 3 1
     º Lh- ( )( )U K K,i

2 ES
1 3
  .

Figure 2. Schematic of the strategy for coarse-graining towards the loop.Herewe show a segment of the loop (blue arc). At each point
of the loopwe coarse-grain in the -k kr z plane (shaded annular disk).

Figure 3.TheHartree–Fock diagrams that renormalize the self-energy at one-loop.Here they vanish identically.

4
Tuning η away from integer values introduces non-locality in the fermion dispersion, because dispersions with non-integer η cannot be

represented by local operators in coordinate space.Since perturbative RG generates only local terms, notwithstanding logarithms, non-local
vertices remain unrenormalized. Although this artifact affects the estimates for a subset of critical exponents, one-loop vertex corrections are
not expected to be affected.
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Since ({ })g Ki i
 are dimensionful for h ¹ 2, we have expressed the scaling dimension of ({ })g Ki i

 in units ofΛ,

such that ( )V U, ,i i
FS and ( )Ui

ES are dimensionless. Since there are 4 types of interactions in equation (13), the three
channels generate 12 coupling functions. However, the FS and ES couplings are not truly distinct due to non-
conservation of pseudo-spin, and the interactions in the non-BCS, i.e. forward scattering, channel can be
represented either in terms of ES or FS couplings. Herewe adopt the FS representation, such that there are only
eight independent coupling functions— four each for the BCS channel and the FS channel. Aswewill show
below, the RG flow in the eight dimensional coupling space is further simplified by the fact that, at one-loop
order, theflowof the BCS couplings are decoupled from the flowof the FS couplings to the leading order in

kL 1 . Additionally, owing to the θ-rotation symmetry, the one-loopRG flow remains diagonal in the
angular-momentumbasis with identical flow for each harmonic. This eliminates the complications arising from
the functional nature of the couplings, since onemay separately analyze the flowof coupling constants in a
particular angularmomentum channel, without worrying about coupling between different channels.

We note that this simplification is a consequence of the θ-rotational symmetry. In the absence of θ-rotation,
for amodel with one coupling function, it is still possible to diagonalize the RG flowby a suitable choice of basis
[52]. However, such a diagonalization is generally not possible for a systemwithmultiple coupling functions that
mix under RG flow.

Because of its generic importance in the presence of extended zero-energymanifold in fermionic systems, we
willfirst focus on the BCS channel, and then discuss the forward scattering channel in section 5where exciton
condensates arise. In both sections 4 and 5we derive the one-loopRG flow for the respective couplings, show
theirfixed point structure, and determine the trajectories of the RG flow towards strong-coupling.We also
identify the nature of the states that are realized at strong-coupling by tuning a single parameter. These states
may be considered as finite coupling instabilities of theWeyl-loop semi-metal.

4. RG analysis of BCS couplings

In this sectionwe analyze the RGflowof the BCS couplingswhich are identified through the following kinematic
constraint on the interaction vertices of the action,

ò  p d d d

k
y g y y g y

k
y g y y g y g g

k
y g y y g y g g

k
y y y y

= L - + - + +

´

- + 

- - 

+

h-

L =

+

-

( ) ( ) ( ) ( )

( ) ( ¯ ( ) ( ))( ¯ ( ) ( ))

( ) {( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

( ) {( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

( ) ( ¯ ( ) ( ))( ¯ ( ) ( )) ( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

S K K K K K

V K K
K K K K

V K K
K K K K

V K K
K K K K

V K K
K K K K

K K K Kd 2

,

,

,

,
. 17

n
nint

BCS 2

1

4
4 4

1 2 3 4 1 3 2 4

1 1 2
1 0 2 3 0 4

2 1 2
1 1 2 3 1 4 1 2

2 1 2
1 1 2 3 1 4 1 2

3 1 2
1 2 3 4

   

 

 

 

 

Here Kn
 is the unit vector along Kn. Imposing the rotational invariance under the action of q , constrains the

functional formof q q-( ) ( )V K K V,j j1 2 1 2  , where qi are the angular positions on the loop and are physically

equivalent to Ki
 .We note that the two dimensional unit vector Ki

 is the projection of the three dimensional unit
vector K i

 on the plane of the loop; the dependence ofVj on the third component of K i
 is irrelevant. Aswewill

show, different angularmomentum channels further decouple, so that onemayworkwith sets of coupling
constants in a particular angularmomentum channel. Additionally, the action +h

( )S S,0 int
BCS with =+V 02 is

invariant under j for x q q x=( ) ( ) ˜sgn with x p pÎ -˜ ( ], . Since the symmetry involves a quasi-global choice
of x q( ), it is a subgroup of the pseudospin- ¥( )U 1 symmetry, andwe refer to it as BCS-U(1) symmetry. The
BCS-U(1) symmetry ensures that +V2 vertex is not generated by scatterings in the BCS channel, if it is absent at
tree level.

There are four diagrams at one-loop order as shown infigure 4. The contribution from theBCS diagram is
enhanced by a factor ofκwith respect to the other three diagrams. This underscores the fact that the FS
couplings do notmixwith the BCS couplings at leading order inΛ/κ.We note further that the BCS diagramhas
a log divergence at = 0whichmakes the problem suitable for a RG analysis.While the analysis here is
developed for the undopedmaterial, this log divergence persists even at non-zero doping (whereupon it
becomes just the familiar Cooper log). The situation in the doped casewas discussed in [42] and is not discussed
further here.
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The quantum correction due to theBCS diagram, d ( )Sint
BCS , is calculated in appendix A. After adding d ( )Sint

BCS

to ( )Sint
BCS , we rescale the dimensionful quantities to restore theUV cutoff toΛ. By comparing this renormalized

actionwith the classical (tree level) actionwe obtain the RG flow equations for the BCS couplings at the leading
order inΛ/κ,

h
p p

¶ = - - + + - + + +- + - -( ) ( ) ( ) ( )ℓ
⎡
⎣⎢

⎤
⎦⎥V V V V V V V V V2

1

4
2

1

4
2 2 2 181;J 1;J 1;J 2 ;J 3;J

2
2 ; J
2

2 ;J
2

3;J 2 ;J

h
p

¶ = - - + -+ + ( ) ( ) ( )ℓ
⎡
⎣⎢

⎤
⎦⎥V V V V2

1

2
, 192 ; J 2 ; J 1;J 3;J

h
p

¶ = - - - + +- - -( ) ( ) ( )ℓV V V V V2
1

8
2 , 202 ;J 2 ;J 2 ;J 1;J 3;J

2

h
p p

¶ = - - + + + - -- + - -( ) ( ) ( ) ( )ℓ
⎡
⎣⎢

⎤
⎦⎥V V V V V V V V2

1

2

1

2
. 213;J 3;J 1;J 2 ;J 2 ; J

2
2 ;J
2

1;J 2 ;J

HereVn;J represents the J-th angularmomentumharmonic of q( )Vn . Since ¶ µ -+ +ℓV V2 ; J 2 ; J, if bare
=+V 02 ; J , then it is not generated during the course of the RG flow.

4.1. Fixed points
The expressions of the beta-functions are simplified by changing coordinates in the coupling space as

=  - =  + +  -( ) ( ) ( )f V V V f V V V
1

2
,

1

2
. 221 ;J 2 ; J 1;J 3;J 2 ;J 2 ;J 1;J 3;J

Theflows of fn ;J for h = - <2 2 are governed by

p
¶ = - ++ + + ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥f f f

1

2
, 231 ; J 1 ; J 1 ; J

p
¶ = - -- - - ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥f f f

1

2
, 241 ;J 1 ;J 1 ;J

p
¶ = - ++ + + ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥f f f

1
, 252 ; J 2 ; J 2 ; J

¶ = -- - ( )ℓ f f . 262 ;J 2 ;J

The beta-functions imply that fn ;J do notmix at one-loop order.We plot the projections of the four
dimensional RG flowon the + -( )f f,1 ; J 1 ;J and + -( )f f,2 ; J 2 ;J planes infigure 5. Thefixed points are derived from
the conditions for simultaneous vanishing of the four beta functions, which result in 3 quadratic and 1 linear
equations that have 23 solutions. TheGaussian fixed point is the only stablefixed point of the RG flow. It has a
finite basin of attraction, whose volume is controlled by ò. The non-Gaussian fixed points have at least one
relevant directionwhich take(s) theflow towards theGaussian fixed point or strong-coupling, depending on
which side of the separatrices the couplings lie. In table 3we list all non-Gaussianfixed points according to the
number of relevant directions they possess.

In order to interpret thefixed points in terms of the original couplings of themodel we invert the relations in
equation (22) to obtain

Figure 4.The four one-loop diagrams that renormalize the quartic vertex.We use the naming convention in [43] for (a), (b) and (c).
Here, due to thematrix structure of the vertex, a fourth diagram is possible whichwe label asP for ‘penguin’ diagrams.
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= - + -

= +

= +

= - - -

+ - + -

+ + -

- + -

+ - + -

(( ) ( ))

( )

( )

(( ) ( )) ( )

V f f f f

V f f

V f f

V f f f f

1

2
,

1

2
,

1

2
,

1

2
. 27

1;J 2 ; J 2 ;J 1 ; J 1 ;J

2 ; J 1 ; J 1 ;J

2 ;J 2 ; J 2 ;J

3;J 2 ; J 2 ;J 1 ; J 1 ;J

From table 3we note that at ( )III BCS +V2 ; J vanishes, which implies the emergence of the BCS-U(1) symmetry at
the criticalfixed point. The BCS-U(1) symmetry is also present at the bi- and tri-critical fixed points ( )IVBCS and

( )VII BCS , respectively. For the rest of this sectionwe focus on the subspacewhere =+V 02 ; J , i.e. the subspace
invariant under BCS-U(1). Tomotivate this approximation, note that it is natural to take the bareUV scale
interaction to be pure density-density, without any pseudospin structure. An interacting theorywith only

Figure 5.RGflow lines on (a) + -( )f f,1 ; J 1 ;J and (b) + -( )f f,2 ; J 2 ;J planes.

9

New J. Phys. 18 (2016) 115006 S Sur andRNandkishore



density-density interactionswill have this BCS-U(1) symmetry. Interactions with non-trivial pseudospin
structure will then be generated under the RG, but only those interactions that lie within the ‘maximally
symmetric subspace.’ In particular, +V2 , which breaks the BCS-U(1) symmetry, will not be generated.
Additionally of course, restricting to themaximally symmetric subspace has the advantage of providing uswith a
‘toymodel’ that ismore amenable to analysis.

We therefore restrict ourselves to the subspacewith =+V 02 . Since +V2 ; J was a relevant perturbation at

( )IVBCS and ( )VII BCS , these fixed points become critical and bicritical, respectively, with respect to BCS-U(1)
invariant perturbations. Thus, we obtain oneGaussian, two critical, and one bi-critical fixed points. The non-
Gaussianfixed points are listed in table 4 in terms ofVn;J.

Since both ( )III BCS and ( )IVBCS are criticalfixed points, they potentially separate the non-interactingGaussian
fixed point (Weyl-loop semi-metal phase) from superconducting phases.Wefirst discuss the stability of ( )III BCS ,
and then apply the same analysis to ( )IVBCS . Since the RGflowof fn ;J mutually decouple and they are irrelevant

when ∣ ∣ fn ;J  , the criticalfixed point ( )III BCS , which is realized at = -f f, 01 ;J 2 ;J , can only be destabilized by

perturbations with non-zero component along +f2 ; J. As depicted infigure 5(b), the sign of the deviation

d = -+ + +
*f f f2 ; J 2 ; J 2 ; J

determines whether the perturbation takes theflow towards theGaussian fixed point or

towards strong couplingwhere +f2 ; J is large and negative.
In contrast to ( )III BCS , ( )IVBCS is located on the + -( )f f,1 ; J 1 ;J planewith =f 02 ;J . Since in the =+V 02 ; J

subspace f1 ;J are equivalent, the RG flow in the neighborhood of ( )IVBCS is governed by

d d d d¶ = ¶ = -- -   ( )ℓ ℓ f f f f, . 281 ;J 1 ;J 2 ;J 2 ;J

Therefore, perturbations with d ¹-f 01 ;J are relevant and, depending on its sign, take the flow either towards the
Gaussianfixed point, or towards strong couplingwhere -f1 ;J is large and positive.

4.2. Flow to strong coupling
In this subsectionwe identify the effective interactions along the stable RG flow trajectory that takes the theory
towards strong coupling, as we tune away from the critical fixed points. As in the preceding subsection, we
discuss theflow away from ( )III BCS first, followed by ( )IVBCS .

Let us label theflow away from the critical point towards strong coupling on the +f2 ; J axis as a strong

coupling trajectory (SCT). Due to the stability of theGaussian fixed point in the + - -( )f f f, ,1 ; J 1 ;J 2 ;J subspace, the
SCT is stable against perturbations perpendicular to it.With the aid of equation (27)wenote that on the SCT

= = = < -p
- +

V V V f1;J 2 ;J 3;J
1

2 2 ; J 2
. Thus, the BCS vertices on the SCT are given by

Table 3.Non-Gaussian fixed points in units of p for the BCS cou-
plings, with at least one relevant direction. The number of relevant
couplings required to be tuned to achieve the criticality determines
its order, viz. stable (0), critical (1), bicritical (2), and tricritical (3),
where the numbers within the parentheses are the number of rele-
vant couplings. Thus,fixed points ( )I BCS - ( )III BCS are critical, ( )IVBCS

- ( )VI BCS are bicritical, and ( )VII BCS is tricritical.

# +
*f1 ; J -

*f1 ;J +
*f2 ; J -

*f2 ;J Tune

( )I BCS −2 0 0 0 +f1

( )II BCS 0 2 0 0 -f1

( )III BCS 0 0 −1 0 +f2

( )IVBCS −2 2 0 0 f1

( )VBCS −2 0 −1 0 + +f f,1 2

( )VI BCS 0 2 −1 0 - +f f,1 2

( )VII BCS −2 2 −1 0  +f f,1 2

Table 4.The fixed points (in units of p ) in table 3 that lie in the
=+V 02 ; J subspace. The first two are critical fixed points, while the

last one is bicritical.

# *V1;J -*V2 ;J *V3;J Tune

( )III BCS -1 2 -1 2 -1 2 +f2

( )IVBCS −2 0 2 -( )V V1 3

( )VII BCS -5 2 -1 2 3/2 -( )V V1 3 , +f2
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k
yg y yy yg y yg y= + - +({ }) ( ˆ ˆ )[( ¯ ) ( ¯ ) ( ¯ ) ( ¯ ) ] ( )( )L K V K K

1
, , 29nIII

BCS
1 1 2 0

2 2
1

2
2

2

wherewe have suppressed themomentumdependence of the fields. On the plane of theWeyl-loop the vertices
simplify to

k
y y y y= - -( ) ( ˆ ˆ ){ ( )( ( )) }{ ( ) ( )} ( )( ) † †  L K K V K K K K K K,

1

2
, . 30III

BCS
1 2 1 1 2 1 1 2 2

     

Since <V 01 on the SCT, this indicates that a pairing instability is driven by the condensation of y y-( ) ( ) K K
 

.
The SCToriginating at ( )IVBCS is defined by = - - -( ) ( )V V V f f, , , 0,1;J 2 ;J 3;J 1 ;J 1 ;J . Therefore, along the SCT

the BCS vertices withmomenta on the plane of theWeyl-loop simplifies to

y s y y s y

y s y y s y

= - -

+ - -

( ) ( ˆ ˆ )[{ ( ) ( ( )) }{ ( ) ( )}
{ ( ) ( ( )) }{ ( ) ( )}] ( )

( ) † †

† †

 

 

L K K V K K K K K K

K K K K

, ,

. 31

IV
BCS

1 2 1 1 2 1 1 1 2 1 2

1 2 1 2 2 2

     

   

Since <V 01 along the SCT, both vertices in equation (31) can drive a pairing instability. In the following
subsectionwe verify the identity of the superconducting states indicated above through explicit computation of
the anomalous scaling dimension of various pairing susceptibilities along the two SCTs.

4.3. Symmetry broken states
In this subsectionwe determine the nature of the superconducting states that arise as instabilities of the critical
points in the =+V 02 ; J subspace. In particular, we compute the change of scaling dimension of the pairing
susceptibilities along the SCT as the systemflows towards strong-coupling.

We consider insertions of fermion pairs,

ò g= D Y - Y +m
m m( ) ( ) ( ) ( )( ) * S K K K Kd h.c., 322


where m = 0, 1, 2, 3. The pairing amplitude g gD = -D -m m m m( ) ( ) K K  , withDm ( )K being a complex valued

function. The ‘singlet’ pairing corresponds to g g= -m m
 andD = D -m m( ˆ ) ( ˆ )K K , while for g g=m m

 and

D = -D -m m( ˆ ) ( ˆ )K K the pairing occurs in a ‘triplet’ channel. At one-loop orderDm ( )K is renormalized by

figure 6. As derived in appendix B the RGflowof each angularmomentumharmonic ofDm ( )K is governed by

d¶ D = D +m m m[ ({ })] ( )ℓ V2 , 33i;J ;J ;J

where the anomalous dimension ofDm;J, dm ({ })Vi;J , is defined in equation (B6).
Along the SCToriginating from ( )III BCS the susceptibility for γ3 ismost strongly enhanced, and the RGflow

ofD ( )K3
 is governed by

p
¶ D = D - ( )ℓ

⎡
⎣⎢

⎤
⎦⎥

V
2 , 343;J 3;J

1;J

wherewe have used the fact that along the SCT = = =- +V V V f1;J 3;J 2 ;J
1

2 2 ; J. Since <V 01;J ,D ( )K3
 obtains a

positive anomalous dimension. The scaling dimensions ofDm ( )K for m ¹ 3 do not change because d =m¹ 03 .

From the symmetry properties of the gap function, we obtainD - = -D( ) ( )K K3 3
  , which is equivalent to

q p qD + = -D( ) ( )3 3 in terms of the loop coordinate θ. Decomposing qD ( )3 in terms of angularmomentum
harmonics,

åqD = Dq

=-¥

¥
-( ) ( )e , 35

J

J
3

i
3;J

Figure 6.One loop contribution to pairing susceptibility.
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wenote that only the odd J harmonics are non-zero.While the flow equations in different odd angular
momentum channels are identical, the degeneracy between different angularmomentum channels will be
broken by the initial conditions. The largest ‘bare interaction’ is likely to arise in the lowest allowed angular
momentum channel (i.e. = J 1)whichwill then be the leading instability. Therefore, the leading instability is
expected to be ‘p-wave’ consistent with general arguments [42]. Retaining only the = J 1harmonic we express

q q qD = D + D+ -( ) ˜ ˜ ( )cos i sin , 363

where the constantsD = D  D -
˜ ( )2 3; 1 3;1 . Allowing forweak radialmomentumdependence on the plane of

the loopwe generalize qD ( )3 to

k k
D = D + D+ -( ) ˜ ˜ ( )K

K K
i . 37x y

3



In terms of the generalized expression for a superconducting order parameter

s sD
«

= +( ) ( ( ) ( ) · ) ( )K d K Kdi , 380 2

  

the current state corresponds to =( ) ( ) ( )d K d K d K, , 00 1 3

  
, and = - D( ) ( )d K Ki2 3

 
.

Note that we have two degenerate channels = J 1which are related by time reversal symmetry.We now
discuss the competition of these two channels belowTc. For the superconducting statewhere = J 1
components are ‘in-phase’ (D = D -3;1 3; 1) and ‘out-of-phase’ (D = -D -3;1 3; 1), D D = D+ - -( ˜ ˜ ) ( ), 4 , 03; 1 and

D D = D+ - -( ˜ ˜ ) ( ), 0, 4 3; 1 , respectively. Therefore, in this state the gap function vanishes at two points on the
Fermi surface— this is nodal superconductivity which spontaneously breaks rotation symmetry. In contrast if
only one out of the J± channels develops a non-zero order parameter this corresponds to

k

k

D =

D
+ = -

-
D

- = +

-

( )
( )

( )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

K
K K J

K K J

2
i for 1

2
i for 1.

39
x y

x y

3

3; 1

3;1



This type of ordering spontaneously breaks time reversal symmetry and corresponds to chiral superconductivity.
Note that these gap functions do not vanish on the Fermi surface, and thus are expected to have a larger
condensation energy.We show this explicitly byminimizing theGinzburg-Landau free energy, similar to
[53–57].

Since <V 01 along the SCT,we introduce an auxiliaryfield, f ( )k , to decompose thefirst term in
equation (30). Integrating out the fermions generates an effective Ginzburg–Landau action for f ( )k . In the
symmetry broken state below the critical temperature we ignore spatiotemporalfluctuations of f ( )k , and focus
on the ‘potential’ part of the effective action.We ignore contributions from scattering betweenCooper pairs at
different parts of the loop, and express the total free energy as a sumover free energy per unit length of the loop,

ò ò
q
p

q
q
p

f q f q= ¢ = +
p

p

p

p

- -
( ) ( ∣ ( )∣ ∣ ( )∣ ) ( )  a b

d

2

d

2
, 402 4

where a and b are effective parameters. Substituting f q q= D( ) ( )3 (defined in equation (36)) leads to

= D + D + D + D + D D -
D D

D D
-+ - + - + -

+ -

+ -
(∣ ˜ ∣ ∣ ˜ ∣ ) (∣ ˜ ∣ ∣ ˜ ∣ ) ∣ ˜ ∣ ∣ ˜ ∣

˜ ˜

∣ ˜ ∣∣ ˜ ∣
( )

*


⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

a b b

2

3

8 4
1

1

2
c.c. . 412 2 4 4 2 2

2

Wenote that the third term represents a repulsion between the two components of qD ( )3 . For a condensate to
form the condensation energy needs to overcome the energy barrier due to the repulsion. Since in the
superconducting phase <a 0 and >b 0, the configuration thatminimizes  is determined by the relative
magnitude of ∣ ∣a and b. By expressing D D = D+ - +( ˜ ˜ ) ˜ ( )x, 1, e Ai , in units of D+∣ ˜ ∣b 4 (or equivalently D-∣ ˜ ∣b 4)
we obtain

D
= -

D
+ + - + +

+ +∣ ˜ ∣
∣ ∣

∣ ˜ ∣
( ) ( ) ( ) ⎜ ⎟⎛

⎝
⎞
⎠b

a

b
x x x A

2
1

3

4
1 2 1

1

2
sin . 42

4 2
2 2

Minimization of the scaled free energywith respect to the relativemagnitude x and the relative phaseA leads to
three possible states corresponding to x=0, p p> =( )x A0, 2 or 3 2 , and p> =( )x A0, 0 or as long as

>
D+

∣ ∣
∣ ˜ ∣

1 2a

b 2
. The conditional inequality is selfconsistently satisfied by D+∣ ˜ ∣at eachminimum. Thefirst two

minima correspond to nodal states, while the last one is a pair of nodeless states which are equivalent to those in
equation (39) for x=1. The lower bound on the dimensionless ratio

D+

∣ ∣
∣ ∣

a

b 2 originates from the competition

between the repulsion and condensation energy. By comparing the free energy at theseminimawe conclude that
the nodeless state is realized at the globalminimumof the free energy. Thus the leading instability associated
with theflow to strong coupling emerging from the ( )III BCS vertex is to a fully gapped chiral state with odd
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angularmomentum andwithD( )k

proportional to the unitmatrix in pseudospin space (i.e. = =d d 01 3 ).

Further, we note that this is the only state that involves solely intra-band pairing, and is smoothly connected to
paired states in both the conduction and valence band. Thus this state is expected to bemost robust to chemical
potential disorder [42]. Indeed, itmay even be enhanced by disorder through themechanism discussed in
[58–60].

Applying the above analysis to the SCToriginating from ( )IVBCS , wefind that pairing susceptibilities for γ1
and γ2 vertices are enhanced identically, while γ0 and γ3 are unaffected. From the symmetry of gDm m we identify
the γ1 (γ2) pairing vertex as a singlet (triplet). The triplet pairing is distinguished from the one associatedwith

( )III BCS with the aid of equation (38), and it corresponds to =m¹ ( )d K 03
 and = D( ) ( )d K K3 3

  . The singlet

corresponds to =( )Kd 0 and = - D( ) ( )d K Ki0 1
  .While the quantum scaling dimensions of the singlet and

triplet pairings are identical due to the BCS-U(1) symmetry, the pairings occur in distinct angularmomentum
channels: the singlet (triplet) pairing occurs in even (odd) angularmomentum channel. Since there is no reason
why the bare couplings (which set the initial conditions for the RG flow) should be equal in distinct angular
momentum channels, the apparent degeneracy will thus be broken by the initial conditions, and the leading
instability will occur in the channel =m¹ ( )d K 03

 and = D( ) ( )d K K3 3
  if themost attractive bare coupling is an

odd angularmomentum channel, and in the channel =( )Kd 0 and = - D( ) ( )d K Ki0 1
  if themost attractive

bare coupling is in an even angularmomentum channel. In the case where the leading instability is in a channel
with non-zero J, theJ channels will again be degenerate, and onemay have either fully gapped chiral
superconductors or gapless non-chiral superconductors. An analysis of themost likely symmetry broken state
resulting from the instability driven by the γ2 pairing vertex indicates a fully gapped p-wave state as obtained
above.However, it is distinguished from the same through the nontrivialmatrix structure of the order
parameter in the pseudospin space since ¹d 03 . Themost likely candidate for the symmetry broken state for the
singlet pairing is a uniform s-wave superconductor.We note that these states involve interband pairing [42] and
thuswill likely be rapidly disrupted by chemical potential disorder, unlike the state arising from the flowout
of ( )III BCS .

5. RG analysis of forward scattering channel

In this sectionwe discuss the RG flowof the forward scattering channel. In the absence of nesting, condensation
of intra-orbital particle-hole pairs carrying afinitemomentum is suppressed by a lack of density of states.
Consequently, additional fine tuning is necessary to drive such a phase transition. Thus in a single-orbital system
the forward scattering channel does not lead to aweak coupling instability of themetallic state [43]. However, in
multi-orbital systems additional forward scatterings between different orbitals are present, which can lead to the
condensation of inter-orbital particle-hole pairs which carry zero netmomentum. In the presence of a Fermi
surface or nodal lines, the zero-momentumpairing of electrons and holes can utilize the extendedmanifold of
degenerate states available at the Fermi level to enhance their condensation energy. Another way to say this is to
note that there is a log divergence in the forward scattering channel for the undopedWeyl loop system (at h = 2)
which can lead to an excitonic instability. Since the exciton condensation crucially depends on the degeneracy of
the two bands, this log divergence is cut off by doping and there is noweak coupling instability for the torus
Fermi surface. However our focus here is on the possible symmetry broken phases resulting from instabilities
driven by forward scatterings in the undoped system.

As noted earlier, there are two equivalent ways of representing the interaction vertices for the forward
scattering channel. Herewe have adopted the FS representation, and express the vertices as

ò  p d d d

k
y g y y g y

k
y g y y g y g g

k
y g y y g y g g

k
y y y y

= L - + - - -

´

- + 

- - 

+

h-

L =

+

-

( ) ( ) ( ) ( )

( ) ( ¯ ( ) ( ))( ¯ ( ) ( ))

( ) {( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

( ) {( ¯ ( ) ( ))( ¯ ( ) ( )) ( )}

( ) ( ¯ ( ) ( ))( ¯ ( ) ( )) ( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

S K K K K K

U K K
K K K K

U K K
K K K K

U K K
K K K K

U K K
K K K K

K K K Kd 2

,
,

,

,

,
, 43

n
nint

FS 2

1

4
4 4

1 2 3 4 1 2 3 4

1 1 3
1 0 2 3 0 4

2 1 3
1 1 2 3 1 4 1 2

2 1 3
1 1 2 3 1 4 1 2

3 1 3
1 2 3 4

   

 

 

 

 

where q qº -( ) ( )U K K U,j j1 3 1 3
  , andwe have dropped explicit reference to the representation for the coupling

functions. Due to the kinematic restriction, the charge- ¥( )U 1 symmetry is present in the forward scattering
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sector. Indeed +h
( )S S0; int
FS resembles the Fermi liquidfixed point. Although j is not a symmetry of ( )Sint

FS for
any non-trivial choice of x q( ), it becomes a symmetrywhen =-U 02 with x q x=( ) ˜ . In order to contrast a
similar symmetry present in the BCS sector, we refer to the current one as the FS-U(1) symmetry. The RG flow in
the =-U 02 subspace is protected by the FS-U(1) symmetry, which implies that ¶ µ- -ℓU U2 2 .

5.1. Fixed points
In the forward scattering channel, even at zero energy, the net incomingmomentum is generically non-zero as
themomenta of typical incoming states are not anti-parallel in K-space. In order to transfer the finite
momentumof the incoming states to the outgoing states, the virtual excitationsmust carry a netmomentum.
Therefore, scattering processes that favor virtual excitations with zero netmomentum are suppressed for
forward scattering channels at low energy, as is the case for theBCS diagram. The internal loop in the other three
diagrams infigure 4 carry a netmomentum, and renormalizesUj at leading order inΛ/κ. The FS couplingsflow
according to

¶ = - ( )ℓ U U , 441;J 1;J

p p
¶ = - + -+ + + - ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥U U U U

2 2
, 452 ; J 2 ; J 2 ; J 2 ;J

2

p
¶ = - +- - + ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥U U U

4
, 462 ;J 2 ;J 2 ; J

p
¶ = - + ( )ℓ 

⎡
⎣⎢

⎤
⎦⎥U U U

4
. 473;J 3;J 3;J

It is interesting to note that when all four couplings are repulsive, they are irrelevant.Moreover, theU1 vertex
whichmediates scatterings between total densities inmomentum space, å = ( ) ( )†c cK Ki i i1,2 , remains
unrenormalized.

There are 23 solutions to ¶ =ℓU 0i;J , which correspond to distinct combinations of thefixed points ofUi;J.
The non-Gaussianfixed points are listed in table 5. There are 3 critical, 3 bicritical, and 1 tricritical fixed points in
the four dimensional coupling space. Among the criticalfixed points, the FS-U(1) symmetry emerges at ( )I FS , due
to the vanishing of -U2 ;J. Since it is protected by an emergent symmetry, in the rest of the sectionwe focus on the

=-U 02 ;J subspace. Twomore interacting fixed points are present in the subspace, both of which lose a relevant
direction due to the projection to the subspace. Thus, in the =-U 02 ;J subspace there are 2 critical ( ( )I FS , ( )IVFS )
and 1 bicritical ( ( )VII FS )fixed points.

The critical points are expected to separate theWeyl-loop semi-metal phase fromsymmetry brokenphases,
which are realized by tuning a single parameter. In the =-U 02 ;J subspace the twocritical points ( )I FS and ( )IVFS are
achieved by tuningU3;J and +U2 ; J, respectively.On tuning these coupling beyond their critical values the system is
set toflow towards twodistinct strong couplingfixedpoints. In this sectionwedetermine the stable RGflow
trajectories that lead to thosefixedpoints,whichwill help us identify thepossible symmetry broken states that can
be realized atfinite (or strong) coupling.Wefirst discuss the SCToriginating from ( )I FS , followed by ( )IVFS .

Since all couplings butU3;J vanish at ( )I FS , it is easy to see that the SCTmust lie along p< - U 43;J . This
trajectory is stable against small perturbations since theGaussian fixed points of ¹Ui 3;J are stable. The effective
interaction along the SCT,

k
y s y y s y=

( ) ( ( ) ( ))( ( ) ( )) ( )( ) † †L
U K K

K K K K
,

, 48I
FS 3 1 2

1 3 1 2 3 2

 

indicates that particle-hole pairs y s y( ) ( )† K K3 are progressively favored as ∣ ( )∣U K K,3 1 2
  increases. Condensation

of y s y( ) ( )† K K3 produces amass term for the fermions, which gaps out the fermionic excitations. An identical
analysis for the SCToriginating at ( )IVFS reveals a stable SCT along p< -+ U 22 ; J , and effective interaction

Table 5.The non-Gaussian fixed points for the couplings in the forward scattering
channel, in units of p . In the four dimensional coupling space ( )I FS - ( )III FS are
critical, ( )IVFS - ( )VI FS are bicritical, and ( )VII FS is tricritical.

# *U1;J +*U2 ; J -*U2 ;J *U3;J Tune

( )I FS 0 0 0 -1 4 U3;J

( )II FS 0 -1 4 -1 4 0 ++ -( )U U2 ; J 2 ;J

( )III FS 0 -1 4 1/4 0 -+ -( )U U2 ; J 2 ;J

( )IVFS 0 -1 2 0 0 + -U U,2 ; J 2 ;J

( )VFS 0 -1 4 -1 4 -1 4 ++ -( )U U U,3;J 2 ; J 2 ;J

( )VI FS 0 -1 4 1/4 -1 4 -+ -( )U U U,3;J 2 ; J 2 ;J

( )VII FS 0 -1 2 0 -1 4 + -U U U, ,3;J 2 ; J 2 ;J
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on the SCT,

k
y s y y s y y s y y s y= ++( ) [( ( ) ( ))( ( ) ( )) ( ( ) ( ))( ( ) ( ))] ( )( ) † † † †L

U K K
K K K K K K K K

,
. 49IV

FS 2 1 2
1 1 1 2 1 2 1 2 1 2 2 2

 

5.2. Symmetry broken states
In this subsectionwe compute the anomalous scaling dimension of susceptibility along the two SCTs identified
above.We also identify the symmetry broken strong couplingfixed points towhich the SCTsflow.

Let us consider an insertion of particle-hole pairs carrying a netmomentum P

on the plane of the loop,

ò y g y= F + +m m m
L

( ) ( ) ¯ ( ) ( ) ( )( )S P K P K P K Kd ; h.c. 50DW
2,

  

Here the four-dimensional vector º ( )P P0, , 0


. In contrast to the pairing susceptibility, the density wave
susceptibility obtains quantum correction from the two diagrams infigure 7. At low energy quantum corrections
to the susceptibility at anyfinite P


are suppressed, compared to =P 0


. This is because of a lack of phase space

for both the virtual particle and hole to be near the loopwhen ¹P 0


. Thuswe consider the susceptibility for
density wave states with =P 0


.

The source Fm ( )K0;  scales as

h¶ F = Fm ( )ℓ , 510;J ;J

h
p

¶ F = F - ++ -( ) ( )ℓ
⎡
⎣⎢

⎤
⎦⎥U U

1
, 521;J 1;J 2 ; J 2 ;J

h
p

¶ F = F - -+ -( ) ( )ℓ
⎡
⎣⎢

⎤
⎦⎥U U

1
, 532;J 2;J 2 ; J 2 ;J

h
p

¶ F = F - ( )ℓ
⎡
⎣⎢

⎤
⎦⎥U

2
, 543;J 3;J 3;J

where h = - 2 is the bare scaling dimension of Fm;J. Thus at the critical point ( )I FS and the ensuing SCT, only
F3;J is enhanced, while the scaling dimension of Fm¹3;J remain unchanged. For ( )IVFS and the associated SCT F1;J

and F2;J are equally enhanced. This degeneracy is protected by the FS-U(1) symmetry. Again theflow equations
do not distinguish between angularmomentum channel, and the leading instability will be determined bywhich
angularmomentum channel has the largest bare couplings (and J= 0 is allowed). There is however a constraint,
namely that the overall Hamiltonianmust beHermitian. This then enforces that the order parametermust be
real i.e. either the instability will be in the J=0 channel, or if the instability is in a channel with non-zero angular
momentum then a real superposition ofJ statesmust arise (i.e. qµ Jsin or qJcos ).

Theflowout of ( )I FS is associatedwith the condensation of y s y†
3 . If this occurs in a channel with non-zero J

then it leads to a low energyHamiltonian k s s q q s~ - + + D -(∣ ∣ ) ( )H K K Jsinz1 2 3 3 3


, whereΔ3 and q3 are

real parameters. Such an instability opens a gap almost everywhere on theWeyl loop, with nodes surviving at
q q p= + n J3 (integer n) i.e. this is a gap opening instability that simultaneously breaks the θ-rotational
symmetry. It also breaks several discrete symmetries, in particular the antiunitary symmetries z K (K) for
even (odd) J, z 0, and themirror symmetry z . However the symmetries K (z K) for even (odd) J, and 0

are preserved.Meanwhile, if this occurs in a channel with J=0 then the gap function is independent of θ, and
the θ-rotation symmetry is preserved, while the discrete symmetries identified above are still broken.
Condensation in the J=0 channel uniformly gaps out theWeyl loop, with an effectiveHamiltonian of the form

k s s s~ - + + D(∣ ∣ )H K Kz1 2 3 3


(realD3) and a dispersion k~  - + + D(∣ ∣ )E K Kz

2 2
3
2


. Since this is a

gap opening instability that preserves an antiunitary symmetry K, which squares to−1, one can askwhether
the resulting insulating state is topological or trivial. To address this issue, note that theWeyl loop can be
obtained by startingwith (spinless) graphene in the y–z planewith it’s two (opposite sense)Dirac points located

Figure 7.One loop contributions to susceptibilities in the particle-hole channel.
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at k ŷ and rotating it through 180 degrees about the ẑ axis. Gapping out the twoDirac points of (spinless)
graphenewith amass termof the same sign on eachDirac point yields a trivial insulator, and rotating a trivial
two dimensional insulator through 180 degrees should yield a trivial three dimensional insulator. Nonetheless,
we note that on the plane of theWeyl-loop K has the interesting property ofmapping the region outside the
loop to its interior, which is an unusual implementation of an anti-unitary symmetry that does not appear tofit
naturally into the existing classifications.

Theflowout of critical point ( )IVFS is associatedwith the condensation of either y s y†
1 or y s y†

2 . If this

occurs in the J=0 channel it leads to an effectiveHamiltonian of the form k~ -(∣ ∣ )H K


s s+ + DKz1 2 1

s s+ D1 2 2 whereD1,2 are real parameters. Such a perturbation shifts the radius of theWeyl loop to k - D1, and
shifts it into the planewith = -DKz 2. A non-zeroD1does not break any symmetries and can be absorbed into
a redefinition of theWeyl loop radiusκ. A non-zeroD2 breaks themirror symmetry, and also the discrete
antiunitary symmetries K and z 0, but preserves z K and 0 - it simply shifts theWeyl loop out of the kz= 0
plane.More interesting is the situationwhere the instability develops in a channel with ¹J 0 such that the
effectiveHamiltonian takes the form k~ -(∣ ∣ )H K


s s+ + DKz1 2 1 q q+( )Jsin 1 s q q s+ D +( )Jcos1 2 2 2

where q1,2 are constants andD1,2 are real. Non-zeroD1will lead to a θ-dependent distortion of the nodal ring in

the K

-plane, whereas non-zeroD2 will lead to a θ dependent distortion perpendicular to the x-y plane. These

order parameters break the θ-rotation symmetry, and correspond toPomeranchuk instabilities. The competition
betweenD1 andD2 (in particular whether bothD1 andD2 are non-zero, or only one is)will be determined by a
LandauGinzburg calculation similar to those that have already been performed.Note that all of these are gapless
phaseswhich continue to have a loop ofDirac nodes.

6. Conclusion

In thisworkweanalyzed thefinite coupling instabilities of a rotationally symmetricWeyl-loop semi-metal in three
spacedimensions. Thepresence of the loop imposes strong kinematic constraints on short-range interactions,
similar to those present in a Fermi liquid.The rotational symmetry of theWeyl loop further endows the problem
with enough structure that the functional RGanalysis necessary for an extended Fermi surface canbe carried out
analytically.While the semi-metallic state is stable againstweak short-range interactions, symmetry breaking
instabilities are present atfinite coupling.Wedeform the dispersion of the system to allowus to access thesefinite
coupling instabilitieswithin the regimeof applicability of aweak couplingRG, through an ò expansion type
procedure.Wefind that the only possible instabilities are in the the BCS and the forward scattering channels, which
decouple. In the BCS channel the leading instability is to a fully gapped odd angularmomentumchiral
superconductor,which breaks time reversal symmetry. In the forward scattering channel, various possible
instabilities can arise, including a Pomeranchuk instability and a gap opening instability to a trivial insulator. This
analysis clarifieswhat instabilitiesmight be obtained inWeyl loopmaterials.One questionwedidnot address is the
potential competition between instabilities inparticle-particle andparticle-hole channels. The Pomeranchuk
instabilities in the particle-hole channel can presumably co-exist with superconductivity,whereas the gap opening
instability in the particle hole channel is likely to competewith superconductivity.

In the case of asymmetricWeyl-loop semi-metal the SO(2) rotational symmetry on the plane of theWeyl-
loop is broken down to a discreteCn symmetry. Although, this will result inmixing of various angular
momentum channels during the course RG flow, it is possible that the leading instability still occurs in the lowest
angularmomentum channel.

Detailed analyses in these directions are left to futureworks.
Note added:Whilefinalizing the paper we became aware of a relatedwork [61] that focused on theDirac-

loop semi-metal using a different regularization scheme than ours.When applied to theWeyl-loop case a subset
of our results were obtained
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AppendixA. Computation of quantum corrections

Herewe outline the steps for computation of the one-loop quantum corrections to the quartic vertices. Since the
computation of all the four one-loop vertex corrections follow identical procedure, we provide the details for
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only theBCS (particle-particle ladder) diagram. It is useful to list the contraction of variousmatrix vertices.
Recall that g g g g s s s sº -( ) ( ), , , , , ,0 1 2 3 3 2 1 0 , therefore g g g= i1 2 0, g g g= i0 1 2, and g g g= i2 0 1.With these
results we obtain themultiplication rules for γ-matrices listed in table 6.

A.1.BCSdiagram
Contraction of two vertices in theBCS channel leads to the quantum correction,

ò d
k

d d

g g g g

y y y y y y y y

=- ¢ - + - ¢ - ¢ + ¢ - ¢

´ ¢ ¢ ¢ ¢
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m n

m m n n m n
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Here for notational and computational convenience we have used uμ to identify the coupling functions for the
y g ym( ¯ )2 vertex. In particular

= = - + = - - =+ - + -( ) ( ) ( )u g u g g u g g u g, , , , A20 1 1 2 2 2 2 2 3 3

wherewe have suppressed the dependence on loop-coordinates on both sides. Utilizing the definition of the
propagator in equation (15), and integrating over ¢K2, ¢K4, andK3 leads to
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with º◦A B A Ba b a b, ,1 1 2 2
, and + -( )K K Q2 4

 being the unit vector along + -( )K K Q2 4

  
. Here the internal

momentum Q is restricted to lie within the shell being eliminated (c f figure 2).
The BCS channel is defined by = - -( ) ( )K K K K, ,1 2 3 4

    . Becausewe are interested in the IR, we set the
external frequency to 0, and externalmomenta to lie on the loop. Combinedwith the angular constraint, this
implies + = = +K K K K02 4 1 3

   
. Therefore,
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Table 6.Multiplication rules for the γ-matrices.

γ⧹g ¢ γ3 γ0 γ1 γ2

(a) gg g ¢0

γ3 γ0 γ3 iγ2 g-i 1

γ0 γ3 γ0 γ1 γ2

γ1 g-i 2 γ1 g- 0 g-i 3

γ2 g-i 1 γ2 iγ3 g- 0

(b) gg g ¢1

γ3 γ1 g-i 2 γ3 iγ0
γ0 iγ2 g- 1 γ0 iγ3
γ1 γ3 γ0 γ1 γ2

γ2 g-i 0 g-i 3 γ2 g- 1

(c) gg g ¢2

γ3 γ2 iγ1 g-i 0 γ3

γ0 g-i 1 g- 2 g-i 3 γ0

γ1 iγ0 iγ3 g- 2 γ1

γ2 γ3 γ0 γ1 γ2

17

New J. Phys. 18 (2016) 115006 S Sur andRNandkishore



Let us define

q qL ¢ - = - -m m
- ( ) ( ) ( )V u K K K K, , , , A61 2 1 2 1 2   

where qi is the angle the loopmomentum kKi
 makeswith respect to the x-axis. Thus, we obtain an equivalent

expression to equation (A5) in terms of the angles,
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Wenote that j( )G q q, ,0 does not have a specific parity under spacetime inversion. As a result, the integrand of
equation (A7), up to terms that are even inj equals,
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The opposite sign for the γ1 and γ2 termswill lead to unequal quantum corrections to the γ1 and γ2 vertices, as
wewill see below. This is amanifestation of the absence of j symmetry for the interaction vertices, in general.

Noting that θ decouples from rest of the internal variables, it is simplest to integrate in the orderj, q, and q0.
We cannot explicitly integrate over θ, but we can simplify the ¢mV dependence of the quantum correction by
expressing the coupling functions in terms of angularmomentumharmonics. The inverse Fourier transformof

q¢m ( )V is given by
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Therefore, equation (A7) evaluates to,
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This leads to quantum corrections to the BCS channel,
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The net quantum correction is obtained by summing overμ and ν,
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where the dependence ofψ onKn ismade implicit for notational convenience.
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A.2. Non-BCS diagrams
The forward scattering channels are renormalized by figures 4(b), (c), and (d). In order to compute their
contributions it is convenient to distinguish between the FS and ES channels at an intermediate step, and unify
them at the end through the relationship
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where the primed and their unprimed counterparts defined in themain section are related in the sameway as
equations (A2) and (A6). The relationship between the ES and FS representation of the coupling functions in the
forward scattering channel is defined on the loop through the equivalence of º å ¢m m
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ES ES
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FS where the subscript in the y4 termdenotes the arrangement of the
fermionmomenta in accordance with the definition of the FS and ES channels.

At leading order inΛ/κ the external legs of the ¢ZS diagram are arranged as in the ES channel, while those of
theZS andP diagrams are arranged as in the FS channel. Repeating the computation presented above for theBCS
diagram to the present set of diagrams leads to the quantum corrections
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Applying the transformation in equation (A14) leads to the net quantum correction to the forward scattering
vertices in the FS representation (wedrop explicit reference to FS),
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Appendix B. Susceptibilities

In this sectionwe outline the computation of the anomalous dimension of the susceptibilities of both pairing
and density-wave channels.
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B.1. Pairing susceptibility
Let the quadratic-insertion be
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The labelΛ reminds us of the cutoff for the effective action. The quantum corrections to equation (B1) are
generated by contracting it with the quartic vertices in the action, which result in processes represented by
figure 6,
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Here the primed integration sign implies that the integral is restrictedwithin the high-energy regionwhich
corresponds to Î - L Lℓ[( ) ]k 1 d , . After introducing the angularmomentumharmonics, themode
elimination leads to
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where the prime over the sum represent the restriction of J to even (odd) integers when g g=m m
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Adding the quantum correction to d m
( )S2,
BCS and rescaling all dimensionful quantities to restore the cutoff toΛ

gives the beta function ofDm l, ,
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B.2.Densitywave susceptibility
Figures 7(a) and (b) leads to the quantum corrections,
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The difference in overall sign between the two quantum corrections in equation (B8) arises from the fermion-
loop infigure 7(b).We set =P 0


, and apply the steps in appendices A2 andB1 to obtain the beta functions for

Fm J, quoted in themain section.
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