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Abstract: 
 
 Federal regulations of drinking-water quality regarding microbial contamination require 

the use of the culture-based heterotrophic plate count (HPC). This study compares HPC to 

culture-independent techniques for enumeration and identification of bacteria in environmental 

samples. Drinking water samples were collected from four different sites at two different times 

of year and analyzed using HPC, bacterial identification from 16s ribosomal RNA gene 

sequences, and direct cell counts from epifluorescence microscopy. No significant correlation 

was found between HPC measurements and either direct cell counts or measures of sample 

biodiversity from sequence analysis. 16s rRNA gene sequences from bulk DNA extractions 

reveal microbial communities in drinking water to comprise a broad array of bacterial diversity, 

including microbes of potential concern to human health such as mycobacteria. Conversely, HPC 

consistently selected for members of the Alphaproteobacteria (Sphingomonas, 45.8%; 

Methylobacteria, 33.8%; Porphyrobacter, 11.7%). These organisms comprised 25.0, 2.8, and 0.8 

percent respectively of all 16s rRNA gene libraries from bulk DNA extractions. This result 

suggests that the heterotrophic plate count is not a relevant measure of drinking water quality.  
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Introduction: 

The United States suffers an estimated 19.5 million cases of waterborne illness each 

year1. In approximately 47 percent of cases the etiology of the disease is unknown1,2. Despite this 

stark uncertainty in the actual quality of American drinking water, federally mandated tests of 

drinking water for microbial contamination rely largely on culture-based methods for microbial 

detection and assumptions about microbial ecology that have progressed little in the past 

century3. Though molecular, DNA-based methods currently exist to reliably and accurately 

identify the microbial constituents of environmental samples, information on the actual microbial 

consortia inhabiting water systems is lacking. 

Municipal water utilities in the United States are required to evaluate the risk of microbial 

contamination for drinking water pursuant to the Total Coliform Rule (TCR). This regulation 

requires municipalities to monitor for the presence of coliforms (bacteria often found in 

mammalian digestive tracts) at end-user locations throughout the water distribution system4. The 

absence of coliforms is the main indicator for determining whether water is safe for human 

consumption. The Heterotrophic Plate Count (HPC) is used as an ancillary indicator of the 

accuracy of total coliform tests and is used by water monitors to provide data about water quality 

by approximating the levels of live heterotrophic bacteria in a water sample5. However, the HPC 

is severely limited in the range and precision of information the test provides, because the 

bacteria detected by the test are not generally pathogenic, and the test does not detect all 

pathogenic bacteria6. Furthermore, the methods of disinfection used by treatment facilities 

(primarily chlorination and chloramination) often allow the growth of some pathogens not 

detected by total coliform and HPC assays, including Legionella pneumophila and many 

potentially pathogenic species of mycobacteria7,8. Furthermore, HPC bacteria have been shown 
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experimentally to inhibit the growth of Legionella, meaning low plate counts could potentially 

obfuscate their presence9. These organisms are now known to pose a public health risk to 

consumers8, yet the prevalence of these organisms is not well understood due to the lack of 

monitoring regimes for a broader suite of micro-organisms.  

 The Heterotrophic Plate Count is conducted by incubating a filtered sample of water on 

R2A agar plates, and counting number of resultant bacterial colonies that grow on each plate5. 

The number of colonies on a plate divided by the volume of water filtered onto that plate yields 

the number of colony forming units (CFU’s) per milliliter. If CFU/mL exceeds 500 in a sample 

with a low chlorine residual level, the total coliform test may be indeterminate5. Given the 

selective properties of the R2A medium, colonies are assumed to consist of hetertrophic enteric 

bacteria (bacteria often found in mammalian digestive tracts, potentially indicative of fecal 

contamination), and bacterial colonies are often vaguely identified as specific species based on 

morphology5. However, advances in sequencing technologies now allow scientists to examine 

environmental microbial communities in much greater depth than was previously possible from 

culture-dependent techniques, such as those used in HPC10.  

Earlier understanding of microbiology relied on the study of microbes grown in culture. 

However, less than one percent of known microbial species can be induced to grow in culture10. 

Instead of examining a microbe in enrichment culture, we can now infer the identity of a microbe 

in an environmental sample by the sequences of its ribosomal RNA (rRNA) genes. The ribosome 

is found in all living organisms, and the genetic sequences that encode rRNA are relatively 

highly conserved among the three domains of life, making rRNA gene sequences ideal for 

determining broad-scale microbial phylogeny and genetic relatedness10. 
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Though rRNA gene sequencing has been applied in many environmental contexts, the 

microbiology of drinking water is still relatively poorly characterized. Several studies have 

utilized rRNA gene sequencing to examine microbial communities in drinking water11,7,12. Kim 

Ross (Pace Laboratory, University of Colorado, Bouder) is currently conducting numerous 

surveys of the microbial ecology of drinking water system around the United States (unpublished 

data, personal communications, 2010-2011). These studies indicate that drinking water 

ecosystems are much more microbiologically complex than culture based surveys would suggest, 

and often contain potential pathogens not detected by standard water quality tests.  

Several studies have compared HPC to both other culture-dependent and culture-

independent techniques for examination of microbial ecosystems in drinking water. Carter et al. 

conducted HPC while monitoring physical and chemical properties of various water distribution 

systems and found HPC results to be uncorrelated with any chemical or physical parameter of 

water quality13. Hoefel et al. used culture-independent techniques to specifically monitor the 

effect of chloramine disinfection of water on the population of nitrifying bacteria and found that 

culture independent techniques revealed bacterial populations to be several orders of magnitude 

higher than indicated by HPC11. Lavender and Kinzelman compared agar-based enumeration of 

Escherichia coli in water samples to detection by quantitative polymerase chain reaction (qPCR), 

wherein an E. coli-specific gene was amplified to quantify the E. coli in the sample, and found 

qPCR to be more sensitive than culture-based methods14. 

Several studies have also attempted to correlate heterotrophic plate counts with measures 

of biodiversity from 16s rRNA gene analysis15-17. Burtscher et al. and Farleitner et al. both 

compared HPC results to denaturation-gradient gel electrophoresis (DGGE) profiles of 16s 

rRNA gene sequences in drinking water samples15,17. DGGE analysis is conducted by running 
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amplicons of 16s rRNA genes on a denaturation gel containing the denaturant in an increasing 

concentration gradient. Different DNA sequences will denature at different concentrations thus 

providing a fingerprint of the diversity of different sequences in the sample15,17. In some cases, 

DNA bands can be removed from the gel, purified, and sequenced to provide some insight into 

the specific microbial constituents of the sample15. Burtscher et al. conducted DGGE analysis on 

both DNA extractions from drinking water samples and on colonies of HPC plates from those 

same samples and did not find any of the same bands in either analysis, indicating differences in 

the make-ups of microbial communities as shown by DGGE and HPC. These results, however, 

are limited in the strength of their implications. Burtscher et al. sequenced the variable V3 region 

of several of the 16s rRNA bands of both the HPC and DNA extraction DGGE gels to give some 

idea of the specific organisms living in the water samples and isolated by HPC. However, these 

identifications are limited in phylogenetic accuracy based on the small sequence lengths 

compared to the entire 16s rRNA gene. Furthermore, the sequences represent only several 

samples of a community of thousands of organisms. At most, DGGE provides a general idea of 

the diversity of a sample. However, ecological fingerprinting methods such as DGGE cannot 

give as reliable statistical measures of biodiversity as full SSU rRNA gene sequencing studies, 

because fingerprints ignore the less abundant organisms that full phylogenetic analysis is capable 

of detecting17. In order to accurately evaluate the capabilities and limitations of the heterotrophic 

plate count, more precise molecular techniques for enumeration and identification of microbes 

must be employed.  

Despite consistent findings that heterotrophic plate counts are not correlated with other 

measures of drinking water quality, the method is still widely used18. One reason for HPC’s 

persistence is that high HPC observations (between 500 and 100 CFU/mL’s) have been shown to 
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interfere with common, lactose-based, culture methods for detection of coliforms, and the total 

coliform rule is the primary measure of microbial contamination of drinking water in the United 

States17. However, it is unclear that the presence of coliforms (such as E. coli) is the primary 

concern in evaluating drinking water for human-health risks; Payment et al. demonstrated that 

tap-water in compliance with federal regulations was still 14-40% more likely to cause 

gastrointestinal disease than purified water, or treated tap water that is constantly purged19. The 

results of this study imply that there are other potential pathogens in United States’ tap water not 

detected by current monitoring techniques. This highlights the dire need to understand how the 

heterotrophic plate count relates to the actual microbial biodiversity of drinking water sample—

an understanding that can only be illuminated through 16s rRNA gene sequencing.  

This study attempts to answer the above questions regarding HPC’s relationship to actual 

microbial diversity, specifically with respect to microbes of potential human concern (e.g. 

Mycobacteria, Legionellas, etc.). This is accomplished in two primary ways. The bacterial 

constituents of drinking water samples were identified from 16s rRNA gene sequences and 

qualitatively compared to the results of HPC. Correlation coefficients relating HPC 

measurements to direct cell counts and to measures of biodiversity were calculated to 

quantitatively compare HPC to other parameters of water quality. It seems likely, given previous 

studies that found no correlation between HPC results and other parameters of drinking water 

quality--and the general imprecision of the HPC technique--that no correlation will be found 

with regard to CFU/mL and biodiversity. However, it is also plausible to think that the two might 

negatively correlate, because more diverse samples would likely contain microbes that compete 

with the limited suite of heterotrophs that appear on HPC plates.  Such a result would indicate 

that low heterotrophic plate counts imply the presence of microbes that are not detected by 
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current monitoring techniques but which might be of potential human concern. Both hypotheses 

will be tested.  

 

Methods: 

Sample Collection: 

 Samples were collected from end-user locations and from the wastewater treatment plant 

around the area of Boulder, Colorado. Samples were collected by running taps until the chlorine 

residual of the water reached a value greater than 0.7 mg/L, then capturing 1 L of the sample in 

sterile containers for HPC and DNA extraction. Forty-five mL of water in a 50 mL conical tube 

containing 5 mL of 37% formaldehyde for epifluorescent staining and direct cell counting. 

Samples were collected from the same sites in July, 2010 and February, 2011. Samples collected 

in July were stored on ice until being returned to the lab. In order to maximize viability of 

bacteria in samples collected in February, samples were not stored on ice during transit. 

 

Heterotrophic Plate Counts: 

 Heterotrophic plate counts were conducted according to protocols outlined in Standard 

methods for the examination of water and wastewater20: water samples were diluted in sterile 

buffered dilution water (Hatch Company, Dusseldorf, Germany) and filtered through white-

gridded, 0.45 µm, 47 mm diameter Millipore membrane filters (EZ-Pak Membrane Filters, 

Millipore, Molsheim, France). The filters were then placed on R2A agar plates and incubated for 

7 days at 29°C. The number of colonies on each plate was then counted according to the color 

and morphology of each colony.  
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 Plates were made from dilutions of 1, 2, and 3 mLs of samples collected in July. Samples 

were collected in December, and again plated using 1, 2, and 3 mL dilutions. However, 

insufficient colonies grew on the plates made from the December samples to provide relevant 

HPC data, requiring recollection of samples in February. Based on the low plate counts from 

December’s samples, dilutions of 1, 10, 100, and 200 mL were filtered and plated for each 

sample collected in February. 

 

16s rRNA gene sequencing from HPC colonies: 

 For each sample, I selected one plate that was representative of the diversity in colony-

types present for a given sample. Several colonies of each type (color and morphology) were 

selected randomly from each chosen plate and picked into tris-EDTA (TE) buffer (10µL of TE 

were used for July samples and 30µL of TE for February samples, due to difficulties in obtaining 

reliable PCR product from July’s samples). Picked colonies in TE were boiled for 15 minutes at 

85°C and subsequently centrifuged at 3700 rpm for 10 minutes. One µL of supernatant was 

pipetted into a PCR reaction mixture with 5 Prime HotMasterMix (5 Prime, Inc., Hamburg, 

Germany) and 515 forward/1391 reverse universal small-subunit rRNA gene primers. The 

reaction mixtures then underwent 29 cycles of the polymerase chain reaction.  

 Amplified 16s rRNA genes from each colony were then aliquotted into two reactions and 

cleaned (to remove unincorporated nucleotides and other leftover reagents) using ExoSAP-IT 

(Affymetrix, Inc., Santa Clara, CA). Cleaned PCR product was prepared for sequencing using 

the DYEnamic ET Dye Terminator Kit (MegaBACE, GE Healthcare, Piscataway, NJ) as per 

manufacture instruction. Sequences were obtained using the Pace Laboratory’s MegaBACE 96-

well capillary sequencer.  
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DNA extraction and amplification:  

 Water samples were filtered through 0.2µm polycarbonate filters. Genomic DNA was 

then extracted from the filters using phenol-chloroform extraction and resuspended in TE. SSU 

rRNA genes from the DNA extractions were amplified using 515f and 1391r universal SSU 

rRNA gene primers and 5 Prime HotMasterMix (5 Prime, Inc., Hamburg, Germany).  

 

SSU rRNA gene cloning: 

 Amplified SSU rRNA genes from the DNA extractions were gel-purified. Gel 

purification allows separation of eukaryotic 18s rRNA genes from bacterial and archeal 16s 

rRNA genes. However, as sequences obtained from DNA extractions were only to be compared 

with gene sequences from bacterial colonies picked from HPC plates, only 16s rRNA genes were 

cloned for the purpose of this study (that is, the smaller (16S) band was excised and purified and 

the 18S band was not used). Purified DNA was incorporated into PCR4-TOPO vector 

(Invitrogen Corp.) containing ampicillin-resistance genes and T3/T7 primer sites. Vectors 

containing the incorporated 16s rRNA genes were cloned into electrocompetent TOPO-4 

Esherichia coli cells using electroporation. Transfected cells were incubated overnight on LB-

agar/ampicillin plates.  

 

16s rRNA gene sequencing from DNA-extraction amplicons: 

 Cloned colonies were picked, regrown, and boiled in TE. Supernatant from boiled 

biomass underwent T3/T7 PCR. PCR product was cleaned using ExoSAP-IT. Cleaned PCR 

product was prepared for sequencing using DYEnamic ET Dye Terminator Kit. 16s rRNA gene 
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sequences were obtained for each sample using the Pace Laborotory’s MegaBACE 96-well 

capillary sequencer. 

 

Sequence Analysis: 

 16s rRNA gene sequences from both HPC colonies and from bulk DNA extraction clone 

libraries were BLASTed against the all-species Living Tree Project 16s rRNA gene database for 

named species21 using XplorSeq22.  BLASTed sequences were then aligned using SILVA’s 

SINA online SSU rRNA gene aligner23. Aligned sequences were inserted into SILVA’s SSU 

reference database 104 using ARB’s parsimony insertion function24. Phylogenetic lineage 

information about each sequence was then exported from ARB for bacterial identification and 

biodiversity calculations.  

 

Direct cell counts: 

 Water samples were fixed at 3.7% formaldehyde. Samples were filtered through 0.2µm 

black polycarbonate 25mm diameter filters. Filters were mounted on glass microscope slides 

using citifluor mounting agent. 0.5 mL of 2.5 µg/mL 4’-6-diamidino-2-phenylidole (DAPI)--

diluted in pH 7.8 10 mM filter-sterilized tris buffer--was spotted onto each filter. Each filter was 

allowed to stain for 5 minutes then cleaned with filter-sterilized tris. Cells were then visualized 

and counted at 40x magnification using epifluorescence microscopy. Counts per field of view 

were multiplied by the area of each filter over the area of each field then divided by the volume 

of sample filtered ((count x (area of filter / area of field)) / volume), then averaged for each 

sample to obtain counts in cells/mL for each sample.  
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Results: 

 Samples were collected from four sites. Three of the four sites (HS, C1, and MC) were 

collected from public end-user taps around Boulder, Colorado. The remaining sample (WW) was 

collected from the outflow of a wastewater treatment plant. Samples were collected from these 

same four sites in July and December of 2010, and February of 2011, then processed as per the 

procedures outlined above. Samples collected in December did not yield results sufficient for 

data analysis and discussion. The remainder of this paper will focus on data obtained from 

samples collected from the four aforementioned sites in July and February.   

 

Heterotrophic Plate Counts: 

 Multiple dilutions (from different volumes) were plated of each sample. The 

heterotrophic plate count data presented here represents the mean CFU/mL calculated from all 

plates for each sample. If the number of colonies that grows on a plate is not linearly related to 

the volume of water that was filtered for that plate, it is plausible to think that the volume filtered 

will influence the CFU/mL calculation for that plate. This would suggest that averaging across 

plates with different volumes filtered for the same sample may not accurately represent the 

CFU/mL level of that sample. To test for this a correlation coefficient was calculated for all 

CFU/mL calculations across all volumes-filtered and all samples. The correlation coefficient was 

calculated as -0.243 with a p-value of 0.0829 (degrees of freedom = 32). This test indicates that 

there is no significant correlation (at a 95% confidence level) between CFU/mL calculated for a 

specific plate, and the volume of water filtered for that plate, lending credibility to the procedure 

of averaging across plates for the same sample.  
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Figure 1 shows the average CFU/mL calculated for each sample from both collections 

(July and February). The average CFU/mL for all eight samples was 18.8. Plate counts of the 

samples collected in July yielded and average CFU/mL of 34.5, whereas samples collected in 

February averaged only 3.5 CFU/mL.  

 
Figure 1: Average CFU/mL for four predominant sample-sites calculated from all plates for each sample. Error bars 
represent standard deviation.  
 

Direct Cell Counts: 

 The average cell count across all eight samples was on the order of 103 cells/mL. On 

average, samples collected in July had an order of magnitude more cells/mL than samples 

collected in February with significant differences in average cell counts for samples collected in 

July and February (p = 5.058x10-7, df = 113). Cell counts ranged from 102 cells/mL to 103 

cells/mL. This range corroborates expectations of cell concentrations in drinking water from 

previous studies; Hoefel et al. compared the enumeration of bacteria in drinking water in 
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Southern Australia using HPC and flow cytometry (staining samples with propidium iodide/Syto 

9) and found both that cell counts from flow cytometry consistently ranged from 102 to 104 

cells/mL and were 1-2 log units higher than CFU/mL from HPC24,25.  

 
Figure 2: Direct cell counts (cells/mL on log scale) of eight primary samples. Error bars represent 95% confidence 
intervals under the assumption that the data follows a t-distribution.  
 

Nevertheless, the precision of the data is limited by several elements of the experiment’s 

design. Several counts were performed over the course of the study on each sample by filtering 

only part of the sample each time. The cell counts in cells/mL reported here represent the mean 

of all counts for each sample. Nested analysis of variance was performed to test whether there 

was significant variance in each sample’s average cell count between each time that the sample 

was counted, the results of which are summarized in table 1. 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Squares 

F Ratio 
 

P(F) 

Sample 8 134546250 16818281 5.606656 0.01741311 
Count 7 20997892 16818281 1.952968 0.06916349 
Error 99 152060956 1535969   
Table 1: Nested analysis of variance in cell count data between samples and within each sample between counts.  
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This test shows that, although there is significant variation in the mean cell counts between 

samples, the variation in each sample’s average from the different preparations (i.e. each time the 

sample was aliquoted and counted) is not significant. This allows the legitimate averaging of cell 

counts for each sample across preparations, which in turn enables the performance of the model-

I, 1-way analysis of variance above, comparing averages from the same collection site across 

collection times.  

 

16s rRNA Gene Sequences: 

Sequences from bulk DNA extractions: 

 Figure 4 summarizes the relative abundance of bacteria identified by phylogenetic 

analysis from the DNA libraries of all eight samples. The predominant groups in most samples 

were Sphingomonadaceae, Cyanobacteria, and Rhizobiales. General patterns of relative 

abundance within the bacterial libraries appear to be conserved across samples, and even more 

strongly within the same samples collected at different times.   
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Figure 5: SChao1 vs sequences sampled for different numbers of sequences (clustered at 97% sequence identity) from 
all samples except WW_j; because of the relatively low number of observed sequences, almost all sequences 
observed in WW_j’s library were observed only once, causing the SChao1 measure for WW_j to be an order of 
magnitude higher than for any other sample. 
 
 Figure 5 shows the predicted diversity in each sample, estimated by SChao1. There does 

appear to be a difference in predicted diversity between the libraries, although this may reflect 

the small size of the libraries: because of the relatively low number of observed sequences, 

almost all sequences observed in WW_j’s library were observed only once, causing the SChao1 

measure for WW_j to be an order of magnitude higher than for any other sample. SChao1 is 

calculated from the total number of species observed in a sample plus the square of the number 

of species observed only once, divided by twice the number of species observed two times26. 

SChao1 thereby provides an estimate of the diversity of organisms observed in a sample. Because 

total number of species observed and the number of species rarely observed increase with the 

number of samples taken until all species have been observed multiple times, SChao1 increases 

with sampling. Therefore, SChao1 also provides a measure of how thoroughly a sample has been 

sequenced; as the full range of biodiversity in a sample approaches complete observation, SChao1 

of the sample no longer increases with increased sequences sampled. By this measure, it would 
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appear that none of the samples collected in this study have been sequenced fully enough to get a 

complete idea of the biodiversity contained within each sample. 

 

Sequences from HPC plates: 

 Colonies on HPC plates were counted by color and morphology if obviously different 

colony structures existed within the same color-group (e.g. large rough versus small round 

yellow colonies). Colonies representative of each colony-type on each plate were picked for 16s 

rRNA gene sequencing to identify each colony’s constituent bacteria. Sequences were 

categorized primarily by the sample from which they originated and the color of the colony they 

represented. All of the HPC-plate sequence data, aggregated by color and identified through 

phylogenetic analysis are presented in table 2. 

Bacterial Lineage Colony type 
Phylum Class Order Family Genus p w y o b 
Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 0 0 1 0 0 
Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 37 3 1 0 0 
Proteobacteria Alphaproteobacteria Rickettsiales   0 0 1 0 0 
Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Porphyrobacter 1 0 1 5 5 
Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae  0 0 1 0 0 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Blastomonas 0 0 11 0 0 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 0 1 49 0 0 
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 0 0 1 0 0 
Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae  0 0 0 0 1 
Proteobacteria Gammaproteobacteria Xanthomonadales Sinobacteraceae Nevskia 0 0 0 0 18 
Table 2: Phylogenetic identification of all HPC colonies classified by color. p=pink, w=white, y=yellow, o=orange, 
b=brown. 
 
 The pink colonies were most likely Methylobacteria. The white colonies were too small 

to get consistent PCR, so whichever wells were labeled as white more likely contained genetic 

material from other colonies and were therefore identified predominantly as species attributed to 

other colony-types; as a result, and because of their relative inabundance, the white colonies will 

be ignored for the remainder of the study. Yellow colonies were identified predominantly as two 
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different Sphingomonodacae bacteria, but there was no consistent pattern regarding which 

colonies were identified as each genus, so all yellow colonies will be treated as Sphingomonas 

for the purpose to this study. Orange colonies are assumed to be Porphyrobacter and all brown 

colonies are treated as Nevskia.  

 

Comparison between HPC sequences and extraction sequences: 

 Table 3 compares the relative abundance of bacterial species identified by phylogenetic 

analysis of sequences obtained from DNA extractions with the relative abundance of each 

species ascribed to each colony-type on each HPC plate, for each sample.  

Table 3: Relative abundance of bacteria in bulk DNA extraction clone libraries and on HPC plates. Values in 
columns labeled “ext” represent the percentage of sequences in the clone library for that sample that were identified 
as a particular bacterial group. Values in columns labeled “HPC” represent the percentage of colonies on the HPC 
plates that were identified as belonging to a particular bacterial group.  
 

Total 

ext

Total 

HPC

C1_f 

ext

C1_f 

HPC

C1_j 

ext

C1_j 

HPC

HS_f 

ext

HS_f 

HPC

HS_j 

ext

HS_j 

HPC

MC_f 

ext

MC_f 

HPC

MC_j 

ext

MC_j 

HPC

WW_

f ext

WW_

f HPC

WW_

j ext

WW_

j HPC

Sphingomonadaceae Sphingomonas 25.0 45.8 10.4 32.2 38.9 18.2 56.1 29.0 95.2 1.2 97.8 26.3 22.2 41.1 47.2 20.0 4.64

Rhizobiales F0723 16.2 29.2 18.9 22.7 1.4 0.0 41.1 2.7 13.3

Cyanobacteria MLE1-12 13.4 22.9 1.1 18.2 40.6 4.8 2.1 13.7 46.7

Peptococcaceae Desulfosporosinus 4.4 10.4 0.0 0.0 0.0 19.0 0.0 1.4 0.0

Hyphomicrobiaceae Hyphomicrobium 4.0 0.0 3.2 0.0 17.4 0.0 4.2 1.4 0.0

Mycobacteriaceae Mycobacterium 3.4 2.1 13.7 0.0 0.0 1.2 0.0 2.7 0.0

Methylobacteriaceae Methylobacterium 2.8 33.8 0.0 52.5 11.6 49 0.0 43.1 1.4 4.76 0.0 2.22 2.1 55.6 0.0 52.8 0.0 1.99

Acetobacteraceae Rhodovarius 2.0 0.0 2.1 0.0 0.0 0.0 8.4 0.0 0.0

Methylobacteriaceae Meganema 2.0 0.0 0.0 0.0 0.0 0.0 10.5 0.0 0.0

Comamonadaceae 1.6 0.0 0.0 0.0 0.0 3.6 0.0 6.8 0.0

Moraxellaceae Acinetobacter 1.6 0.0 0.0 4.5 0.0 4.8 0.0 4.1 0.0

Comamonadaceae Acidovorax 1.4 0.0 0.0 4.5 0.0 2.4 0.0 2.7 13.3

Chitinophagaceae Sediminibacterium 1.2 4.2 0.0 0.0 0.0 3.6 0.0 1.4 0.0

Sphingomonadaceae Sphingobium 1.2 2.1 0.0 0.0 0.0 6.0 0.0 0.0 0.0

Anaerolineaceae 1.0 0.0 0.0 22.7 0.0 0.0 0.0 0.0 0.0

Comamonadaceae Variovorax 1.0 0.0 0.0 0.0 0.0 3.6 0.0 2.7 0.0

Clostridiaceae Oxobacter 1.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0

Erythrobacteraceae Porphyrobacter 0.8 11.7 0.0 14.6 4.2 49.5 0.0 0.0 0.0 0.0 0.0 0.0 26.5

Rickettsiales SM2D12 0.8 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0

Acetobacteraceae 0.8 0.0 2.1 0.0 2.9 0.0 0.0 0.0 0.0

Comamonadaceae Simplicispira 0.8 0.0 0.0 0.0 0.0 1.2 0.0 4.1 0.0

Hyphomonadaceae 0.6 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0

Caulobacteraceae uncultured 0.6 4.2 0.0 0.0 0.0 1.2 0.0 0.0 0.0

Pseudomonadaceae Pseudomonas 0.6 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.0

Lachnospiraceae 0.6 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0

Erythrobacteraceae 0.4 0.0 0.0 0.0 1.4 0.0 0.0 1.4 0.0

Planctomycetaceae Planctomyces 0.4 0.0 0.0 0.0 1.4 0.0 0.0 1.4 0.0

Bradyrhizobiaceae 0.4 0.0 0.0 0.0 1.4 1.2 0.0 0.0 0.0

Streptococcaceae Streptococcus 0.4 0.0 0.0 0.0 0.0 1.2 0.0 1.4 0.0

Bacillaceae Bacillus 0.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0

Chloroplast 0.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0

Ruminococcaceae Incertae Sedis 0.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0

Staphylococcaceae Staphylococcus 0.4 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0

Phyllobacteriaceae 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7

Sinobacteraceae Nevskia 0.2 8.73 0.0 0.0 0.0 0.81 0.0 0.0 0.0 0.0 6.7 66.9

Chitinophagaceae 0.2 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0

Hyphomicrobiaceae Blastochloris 0.2 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0
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 Sphingomonas was the only bacterium generally common to sequences both from DNA 

extractions and plates. The species that predominated on HPC plates were rarely significant in 

the bacterial population as determined by 16s rRNA gene libraries for the same water samples. In 

particular, methylobacteria appeared to be much more dominant on HPC plates than in the actual 

bacterial communities. 

 The phylogenetic lineage information displayed above was obtained by inserting SINA-

aligned sequences into SIVLA’s SSU rRNA reference database using ARB’s parsimony 

insertion function. Sequences were also aligned using BLAST against the Living Tree Project’s 

non-environmental species 16s rRNA gene database, comprised primarily of organisms cultured 

in a clinical setting22. BLAST hits were not used for species identification. Interestingly, 

however, the average percent identity for HPC sequences BLASTed against the database was 

97.2, whereas sequences obtained from clone libraries, on average, were matched to sequences in 

the database at 96.1 percent identity. Of the ten identified groups of sequences from all HPC 

plates, two were matched at 94 percent sequence identity and one at 95 percent; the remaining 

sequences all BLASTed at 98 or 99 percent sequence identity. Sequences from bulk DNA 

extraction ranged from 89 to 100 percent sequence identity.  

 

Correlation between cells/mL and CFU/mL: 

 Figure 6 shows a plot of the calculated cells/mL for all eight samples against CFU/mL 

for those same samples. The correlation coefficient was calculated as 0.4576731 with a p-value 

of 0.1508896 (n = 8), meaning the data did not show a significant correlation between cell counts 

and plate counts. 
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Figure 6: Scatterplot of CFU/mL vs Cells/mL for all samples. 

 However, the power of this estimate of correlation is 0.18 meaning there is a probability 

of 0.82 of not seeing a significant correlation when correlation is in fact present (power was 

calculated using Z transformations of the correlation coefficient27). In order to achieve a power 

of 0.80 for a similarly weak correlation, approximately 35 observations would be required.  

 

Correlation between biodiversity and CFU/mL: 

 A correlation coefficient was also calculated relating CFU/mL of a sample calculated 

from plate counts to the biodiversity of a sample, estimated by SChao1. Figure 7 summarizes the 

relationship between CFU/mL and SChao1 for seven of the eight samples (WW_j was excluded for 

reasons explained above). The correlation coefficient was calculated as 0.3076833 with p-value 

of 0.2510151 (n = 7), meaning the data was insufficient to observe any significant correlation 

between CFU/mL and SChao1. The power of this test was calculated to be 0.08. In order to 

achieve power of 0.80, approximately 80 observations would be required.  
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Figure 7: Scatterplot of CFU/mL vs SChao1 for all samples except WW_j.  

 

Discussion: 

 The data collected in this study showed no significant correlation between heterotrophic 

plate counts and either direct cell counts, or relative biodiversity. Furthermore, side-by-side 

comparisons of the bacteria identified by 16s rRNA gene sequencing from bulk DNA extraction 

and heterotrophic plate counts reveals little similarity in overall community diversity as well as 

significant distortions in relative abundance, particularly for Methylobacteria. Together, these 

results imply that the heterotrophic plate count has little relevance for determining parameters of 

drinking water quality regarding microbial communities. This is particularly striking given that 

HPC may not detect the potential presence of microbes of concern to human health. In particular, 

this study found significant levels of Mycobacteria in the sample collected from C1 in July.  

The genus mycobacterium is of particular concern for human health because of the 

diversity of obligate and opportunistic human pathogens contained within the genus28. The 

particular sequences identified as Mycobacteria in the July C1 sample were identified by BLAST 

as Mycobacteria asiaticum with 98% sequence identity, an average bit score of 1364, and 
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sequences of average length 744 base pairs. M. asiaticum has been identified as possible source 

of pulmonary diseases and infection29. However, given high conservation in mycobacterial 16s 

rRNA gene sequences, further analysis would need to be conducted before making any strong 

conclusions about the presence of possible mycobacterial pathogens in the C1 sample. 

Interestingly, the July C1 sample had the highest plate count of any of the eight samples 

processed for this study. However, the CFU/mL of the July C1 sample was still less than one 

fifth the amount set as the upper limit for acceptable drinking water in the United States.  

 The primary limitation of the data collected for this study was that the samples collected 

represent a small subset of the range in drinking water quality that is acceptable under federal 

regulations. Heterotrophic plate counts up to 500 CFU/mL are considered acceptable for human 

consumption under the Total Coliform Rule. However, HPCs of samples collected for this study 

were consistently observed to be less than 100. Estimates of correlation are known to be weaker 

over smaller ranges of data, meaning that even if a correlation could have been observed between 

HPC and biodiversity or bacterial load, it is unlikely that such correlation could have been 

accurately estimated given the scope of this study. It is difficult to conclude from the results of 

this study that the heterotrophic plate count is of no value as an indicator of drinking water 

quality. Instead, however, the results of this study suggest the strong need for further 

investigations into exactly what HPC measures regarding drinking water quality. Such 

investigations will require samples over a broader range of water qualities, as well as more 

robust estimates of total bacterial load and bacterial diversity within those samples.   
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