Coordinated Pair Systems:
Part I: Dyck Words and Classical Pumping

A. Ehrenfeucht, H. J. Hoogeboom, G. Rozenberg

CU-CS-275-84 September 1984

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ABSTRACT.

The notion of a coordinated pair system is a special instance of an ects sys-
tem which in turn provides a common framework for quite a number of gram-
mar and machine models encountered in the literature. In particular, the
notion of a coordinated pair system corresponds very closely to (is another for-

mulation of) the notion of a push-down automaton.

In this paper we analyze the combinatorial structure of Dyck words. The
properties of Dyck words we investigate stem from the combinatorial analysis of
computations in coordinated pair systems. In particular, we demonstrate the
use of our results on Dyck words in proving the (somewhat strengthened) classi-
cal version of the pumping lemma for context-free languages.

This paper is the first part of a two-part paper. In the second part we inves-
tigate the structure of sparse subwords of Dyck words and then using results
concerning this "sparse structure” of Dyck words we derive Ogden’s pumping

lemma for context-free languages.

INTRODUCTION.

The notion of an ects system provides a common framework for quite a
number of grammar and machine models considered in the literature (see [R]).
A considerably simplified model of an ects system consists of an m-tuple of
grammars which are working in a coordinated fashion - a direct rewriting step in
any of the grammars is coordinated with certain rewriting steps in some of the

other grammars.

In particular in the case of two grammars the first of which is right-linear
and the second is right-boundary (a right-boundary grammar is like a right-
linear grammar except that one does not distinguish between terminal and non-
terminal symbol symbols - still the rewriting is applied to the last symbol of a
string only) we speak of a coordinated pair system, cp system for short. It turns
out that cp systems correspond very closely to (are another formulation of)

push-down automata.

The systematic reseafch exploiting the cp system approach to the theory of
push-down automata v}as initiated in [EHR2]. There, the basic formalism to deal
with cp systems was settled as well as the basic technical tool - the Ezchange
Theorem. - was proved. The proofs presented in [EHR2] indicate very clearly that
in order to understand the structure of computations in cp systems one has to

study the combinatorial structure of Dyck words.,

The present paper takes up this idea. We formulate and prove a number of
combinatorial properties of Dyck words (Section 3). Since Dyck words are used
in the investigation of various types of data structures, these results seem to be

of independent (combinatorial) interest.
Moreover, in Section 4, combining these results with the Exchange

Theorem, we demonstrate a new proof of (a somewhat stronger version of) the

classical pumping property for context-free languages (see, e.g., [B], [H] or [S]).

Since this proof is based (in the formalism of cp systems) on the analysis of the
structure of computations, rather than on the analysis of derivation trees in
context-free grammars, we believe that it provides a new insight into the pump-
ing property and in particular a new insight into the structure of push-down

computations. -

PRELIMINARIES.

We assume the reader to be familiar with basic formal language theory, in
particular with tne ‘theory of push-down automata and context-free grammars
(see e.g. [H] and [S]). Although the definitions of notions concerning cp systems
that are used in this paper are provided in Section 2, it may be instructive for

the reader to consult [EHR2] for some additional background and examples.

We fix now some more specific notation and terminology used in this paper.

N denotes the set of all nonnegative integers and N* denotes the set of all
positive integers.

For a set W, #W denotes its cardinality; for sets U, W, U C W denotes the
inclusion of U in W and UCW denotes the strict inclusion of U in ¥.

Whenever a subset N is specified in the form {4, ..., 4,}, it is assumed that
i <+ <1i,; to remind the reader of this convention we often use the notation ‘
(i1, ..., 1z) to denote {i,, ..., i,}. Given U, W C N we write U < W if all elements
of U are smaller than all elements of #.

We assume that all the alphabets considered in this paper are finite and
nonempty. Given an alphabet Z, % will always mean the alphabet {a | @ € 2} and

it is assumed that Zﬂf =2.

For a word z, |z | denotes its length and if 1<k < |z |, then z(k) denotes
the k-th letter of z. A denotes the empty word.

In this paper it is necessary to distinguish carefully between different
occurrences of letters (or subwords) in a given word. Therefore we introduce
the following notions that lead to a clear distinction between an object (letter,

subword) and its occurrence in a word.

Definition 1.1. Let w be a word.
(1) Anelement of {1, ..., |w]} is called an occurrence in w. We say that i is an
occurrence of (the letter) w(t) in w.
(2.1) A subset U o£ {1,]w]|{ is called a support (in w); the set {1, ..., |w|] is
called the full support (in w) and is denoted by fs(w). If U = §i,i+1, ...,] for
some occurrences i and § in w, then U is called a segment (in w).

(22) Let U=(i),ig....,%,) be a nonempty support in w. Then

w(i)w(iz) - - - w(i,) is called a sparse subword of w. If U is a segment in w,
then we say that w(i)w(iz) - - - (wy,) is a subword of w. U is referred to as an
occurrence of w(i)w(iz) - - w(i,); on the other hand, w(i,)w{iz) - - - w(i,) is

referred to as the image of U (in w) and it is denoted by w(U).

Additionally, we define w(#) = A and we say that the empty set is an occurrence

of the empty word inw. #

Dy denotes the Dyck language (see, e.g., [S]) over the alphabet (I,
where, for each letter @ in I, its matching "right parenthesis" is @ in Y. For-

mally, Dy is the minimal language L over Zuf that satisfies
{DAe L,
(i) if w € L, then awa € L for every a € ¥, and
(iii) if w,, wy € L, then wyw; € L.
Elements of Dy are called balanced words.
In this context symbols from T and S are referred to as left and right letters (or
parentheses) respectively.
A letter to letter homomorphism is called a coding and a homomorphism
that maps each letter either into a letter or into the empty word is called a

weak coding.

Two languages are considered equal if they differ at most by the empty
word, two language generating devices are said to be eguivalent if their
languages are equal.

A contezt-free“ grammar, abbreviated cf grammear, is specified in the form

G = (Z,P,S,A) where L is its alphabet, P its set of productions, S € E\A its

1T
axiom and ACE its terminal alphabet. Forz,y € £* and 7 € P we write z =G; Y

if directly derives ¥ using 7. We use I{CF’) to denote the class of context-free
languages.
A right-linear grammar, abbreviated rl grammar, is a context-free gram-
mar G = (Z,P,S,A), which has its productions in the set (Z\A) x A ((ZN\NA) UAD.
A right-boundary grammar, abbreviated rb grammar, differs from the

right-linear grammar essentially in the fact that it does not distinguish between

terminal and nonterminal symbols. A rb grammar is specified in the form of a

3-tuple G = (I, P, S), where I is its alphabet, P C ¥ X 2" is its set of produc-

tions and S € X its axiom. As in the case of a rl grammar productions are

applied to the last occurrence in a word only. Thus, for z,y € T and
' ™
m=A->we€ P, z directly derives ¥ (in G using =), written z —-'-'é;y, if z =24

and ¥ = zw for some 2 ez’

2. CP Systems; Basic Notions and Results

In this section we recall a number of notions and results presented in
[EHR2]. We start by deﬁning a coordinaled pair system.

Definition 2.1. A coordinated pair system, abbreviated cp system, is a tri-
ple G = (G4, Gg, R) such that
(1) Gy =(Z;, P,, Sy, A) is a rl-grammar,
(2) Gz =(Z;, Py, Sy)is arb-grammar, and

(8) R CPxP, =

G, and Gp are referred to as the first and second component of G respec-

tively. Elements of K are called rewritfes of G.

Definition 2.2. Let G=(G, G, F) be a cp system where
Gy = (2, Py, Sy, A) and G, = (Sp, Pq, Sy). |

(1) Letz =(z1, z2), ¥y = (¥, ¥2) € Z;XE;. z directly computes y (in G), denoted

m
z ?y, if there exists a rewrite 7= (m, mp) € £ such that z, ?yl and
1

HY,) ™
2 —E? Y2; we write then = =G> Yy and we say that z directly computes y (in G)
2
using .
* ”*
==G:> denotes the reflexive and transitive closure of =G;‘» Ifz ? Y, then we say

that z computes y (in G).

(R) A computation (in G) is a sequence p = p(0), ..., p(n) of elements from
£,'xZs such thatn = 0, o(0) = (S, Sg) and, for 1 i <n, p(i—1) ? o(7).
We say that p is successful if p(n) = (u,A) for some u € A*; then the result of p,

denoted by res(p), is defined by res{p) = u.

(8) Let p=p(0),...p(n),n>=1 be a computation in G. The sequence

T
7y, Tz, ..., Tp of rewrites from R such that, for 1<i<mn, p{i—1) ? pfi) is

called the control sequence of p and it is denoted by cont (o).

It p = p(0), then we vdeﬁne cont{p) to be the empty sequence.

(4) The language of G, denoted L{G), is defined by

L(G) = {res{p) | p is a successful computation in G};

it is also referred to as a coordinated pair language or cp language for short. =
If G is a cp system, then we say that G computes the language L(G). The class

of all cp languages is denoted by L{CP).

We realize that we somewhat abuse the notation by writing sequences in the
form p = p{0), ..., p(n) rather than p = <p(0), ..., p{n) > (this leads to some-
what ambiguous expressions like, e.g., p = p{0)). However, using brackets to del-
imit sequences would lead to an additional burden on the already involved nota-
tion. We hope that abuses of notation of this type will not lead to misunder-

standings.

It is easily seen that the notions push-down automaton and cp system are
closely related (see [R]); the first component of a cp system acts as input, the

second component as a push-down store. Hence we have the following result.

Theorem 2.1. L{CP) = L{CF). =

We will now recall some notions used to describe computations in cp sys-
tems. Our first definition is that of a trail of a rewrite - it represents the
detailed record of the way the rewrite is used after it has been split into "ele-
mentary actions”. Once the notion of a trail is defined for rewrites, it carries
over to computations through their control sequences. We use the symbol

[S1;Sz] to indicate the beginning of this record.

Definition 2.3. Let G=(G,,G:, K) be a cp system, where
Gl= (ZI,PI,SI,A) and Gz=(22,.P2, Sg) Then let

N(G) = [SuS] utlm,i]l | n=(m.A>w)eR,icNandi=< |wl]

(1) Letm={(m,A->w)ecR.

The trail of m, _denoted by fri(m), is the word over I'(G) defined by
tri () = [m0][m1] - - - [m]w]]

(2) Let p be a computation in G with contro! sequence T = 1y, ..., Ti,, for some
n=07,.. "7, €K&

The trail of p, denoted 7! {p), is defined by tri{p) = [Sy;Seltrl(m,) - - - tri{m,). =

Given a trail 7 of a computation 2, its contrituticn, ctb (1), gives the word
that is generated on the first componant during this comnutstion. On the other

™

hand, the weak description of 7, wdzz/7), 7iclds the word thzt describes the

sequence of actions taken during the commputation p on the second component.
Definition 2.4. Let G = {G1,G2,F) be a cp system, where & = (2.PLS1LA)
and Gp = (Zg,Ps5,S5).
(1) ctb is the homomorphism from I{&) into & defined as clows.
For 7 € T(G), ctb () equals
u , if 7 =[m,0] for some 7 € R where either 7 = (X » uw¥, mg)
or 7 = (X - u, mg), for some X,¥Y € 5,\A, u € A",

A , otherwise.

£2: 2

For a word a € T{G)" ctb (o) is referred to as the confridbuiion of .
(R) wdes is the coding from I’(G)* into (ZaUSs)™ defined as follows.
For 7 € [(G), wdes (1) equals

Sp if T =[S;; S,

A ,if T =[m0] where 7 = (m,, A - w) € R,

wk),if 7=[mk]wheren = (m ,A>w)and 1<k < |w|.

L
For a word a € T(G) ", wdes (o) is referred to as the weak description of o, ®

insGG, then wdes{tri(p)) is called the weck

¢

that if pis succgssful, then ctb (trl(p)) = Tes (o).

The following I'ESUit concerning weak descriptions of successful computa-
tions is closely feiaﬁed to thé fact that the second component acts like a pusi-
cown store: the last symbol introduced is the first symbol to be rewritien.

Lemma 2.1. Let p be a successful computation in a cp system G. Then

wdes {(trl{p)) € Dy, , where Zj is the alphabet of the second component of G. #

A basic property for cp systems is the real-time property. A real-time co
system is a cp system which generates exactly one terminal symbol on the firs!
component in every computation step.

Definition 2.5. Let G = (G, Gg, R) be a cp system, where G, = (£,,P.5,,4)

and Gp = (8, P5,55). We say that G is real-time if every rewrite r€ R is ¢

oy
(@]
ry
8
|
i

(X »aY, mg), where X € T)\A, Y€ (ZN\A)UAlL c €Aand rrp € Py, =

The following result establishes a normal form for cp systems. It is closely
related to the Greibach normal form for cf grammars and it can be obtained by
translating this grammatical normal form into the terminology of cp systems.

In [EHR1] this result was proved directly within the theory of cp systems.

n

Theorem 2.3. For every cp system H there exists an equivalent real-time

L ol
cp system &. =

The Exchange Theorem enables us to swap equivalent pieces of successful
computations in a cp system to obtain new computations. (Using it we wiil show
in Section 4 that given a suitable successful computation we can "pump it up”
and obiain an infinite sequence of new computations.) In the formulation of e

i we shall use the following notions.

2

11

Ig
PEICEV

Let & = (Gy7Ge, R7) be a cp system and let I, be the aiphabol

° — * — “n
1) Aword a € I(G) is balenced, if wdes () € Dy,

() Two nonempty words o and g in T(G)* are equivalent, denoted ot ™~ g, if they

are balanced and «(1) = (1), a|a]) = (| B]). =

Theorem 2.4. (Exchange Theorem). Let G be a cp system and let oy , g ke
two (not necessarily different) sdccessful computations in &, where
tri{p1) = «1B171 and tri(pg) = agBeye with B ~ Be.

Let wyp = oy fpy; and we; = agfrye.

Then there exist (unique) successful computations p;z and p,, in G such that

trl{p1e) = w1z and trl{pz)) = wey. ®

1e

L Properiies of Dyck Words.

o

= section we prove some basic properties of Dyck words. The resuiis

we prove are useful in the analysis of computations in ep systems. As a matter

providing an alternative proof for the classical pumping lemma for context-

¥We start by defining the following very basic noticns.

Definition 3.1. Letw € Dy.

(1) A pair (1,7) € fs(w) is called a (w-)balanced poir if w{ilw(i+1) - - wi)

forms a balanced subword of w.

4

(2} A w-belanced pair (i,j) is called a (w-)nested pair if either 7 =i+1 or

{i+1, —-1)is a w-balanced pair. ®

Definition 3.2. Let w € Dy and let U = (i,i+1, ...,) be a nonempty sez-

rent in w. U is called (w-)balanced (fw-)nested), if (i,j) is a w-baianced {w-

We will say that a word w € Dy is nested if fs(w) is a w-nested segment.

Remariz. Note that a w-balanced pair (i,7) is not w-nested if and only i

¢ an occurrence k£, 1 <k <j-—1, such that (i,k) and (k+1,7) are ©.-

balanced pairs. In [B] nested words are called (restricted) Dyck prin

are the balanced words that are not the product of two ncnempty bzinncon

224 (9,14) are w-balanced pairs.

. ° M . . -~ ~ - ~
(0,14} is not a w-nested pair, since the subword abad of w is not balanced.

(6,15) and {11,14) are w-nested pairs. =

It turns out that Dyck words must contain balanced segments satislying

sarticular length constraints. This result will be used extensively in the

@)
.
m
e
Y
v

Theorem 3.1. Let w €Dy and let m be an integer such thal

‘lw/|. Then there exists a w-balanced segment U with

\
Proof. Ifm = —g—iw! then U = fs{w) satisfies our lernma.

So we consider m withm < —i—-lw |

Let Uy be a balanced segment in w such that #U; > 2m and moreover I/, is
a shortest w-balanced segment with that property; hence if /' is wi-balancad
and #U' > 2m, then #U' = #U,. It is obvious that such a subword exists
We consider separately two cases.
(i) Ug={i,4i+1, ..., 7) is w-nested.

—1) is w-balanced and clearly shorter than ;. We have

Ly sy

e

L

then Ug = U J U, for some nonempty w-balanced segments U; < Uz Soth U

L

e smaller than Us Hence #U) <2m and #Uz < 2m. On the other hand

either #U; >m or #Us > m (because 2m < #Uy = #U,+#U,). Thus one of the

14
ossignments I = Uy or U = [satisfies the statement of the lemma. ®

The relative positions of w-nested words in a Dyck word fall into two basic

ories: w-chein and w-cochain. This fact will be exploited in many con-

b

he length of © and is denoted by

P
LIS O
For zach 1

{2) A sequencs £ =(11,71), ..., {im » Jm)» m =0, of w-nested pairs is called a

Kl.

l=l<m,(i,])is referred to as a (nested) pair of «.

w—cochain if ©; <J; <1 <fa< + <ip <Jm and if, for every 1=k <l =m,

& and is denoted by | k.

Foreach L<i<m, (4, 7)is referred to as a (nested) pair of k. ®

‘2 3.1. {continued)

18}, (8,15}, {11,14), {12,13) is a w-chain, but also £' = (5,18), (11,14) is a

w#i-chain. They have length 4 and 2 respectively.

w= {78} (8,10), (11,14) is a w-cochain of length 3.
pf= {7.8% (11,14} i5s a w-cochain of length 2.

., (8,15) consists of w-nested pairs, but it is not a w-cochain

it coes not satisfy the second requirement: (1,15) is not w-balanced. =

¢, denoted cp{w), is the length of the longest w-chain.

15

- {7 15 aw-balanced segment and w = w{U), then dp{u) = 2

(1w, because every w-(co)chain u obviously corresponds o o
w—(cojchain k& with (x| = |u|.

Ezampie 3.1. (continued)

dp{w) = 4, wd{w) =3, =

The following relationship holds between the depth, width and length of a

Dyck word.

Theorem 3.2. Let w be a word in Dy. Then |w| =2 (q +g¢°+ -+ +g?
where p = dp{w) and ¢ = wd(w).

Proof. We keep g fixed and prove the lemma by induction onp.

Let w € Dy and let p = dp{w), ¢ = wd(w).
{i) Ifp = 0, then obvicusly w = A.
Hence 'w! =0 (note that forp = Othe sum g + g®+ - -+ + ¢g? becomes 0).
{(ii) Induction step. Let p = 1. We assume the lemma holds for every ' £ Dz
with do{w') < p.

We can decompose w into nested subwords: for some m < ¢ there exist m bel-

~ -~

anced words W, .., ¥, such that w =ow,;0," " - 0,W,0,,, whar

Gy, ...y Oppy [Z.
Obviously, for every 1€i=m, p; =dp({w;)<p-land g =wd(w)=<g.
Conseguently, by our assumption,

o . —1
! = 2{g kgl o +qP T =2 (g +q%+ - +gPY).

P, | =

2mime2{g+¢®+ - +gPTH= 2:(g+q%+ - - +gP). ®

16

Coroliary 33 Llet p 21,9 =22 and let w € Dy be such that iw :

Then either do{w) > p or wd (w) > q.

v
N

Prool. Assume to the contrary that, for a word w € Dg with |w]

e

both dp{w) <2 and wd{w) = q.

F

Then, combining Theorem 3.2 with the assumption of the corollary, we zet
AnP Cap ! gty

4q7 = w| = 2(qg +g°+ +gP).

However

P
2(g+g3+ - +g7) = 2g T < 4(gp 1),

and so we get 4¢P < 4(gP —1); a contradiction.

Hence the result holds. @

Once a w-chain or a w-cochain is fixed in a Dyck word w it leads ¢ a

natural partition {splitting) of w.

Definition 3.5. Let w € Dy,
(1) Lete={(i;,71), . 3 » jm), m = 1, be a w-chain and let
fjg = :1, 2, Leay 11“13,
(‘:]E_ = éi’:i ,'Z.@‘*'l PR 'LL+1_15 foralll =l <m,
< P 41
\"’m ’(Z'?T?- T Ly "‘!Jm.)s
Ugpn—y = i+l 41, il foralil <1 <m, and
+1.im 2, ..., lwll
he sequence Ug, Uy, ..., Usy is called the xspliffing of w.
4] 1 24 &

.

(@ Lete={0,51, .. G . Jm), m = 1 be aw-cochain and let

V= L Ll Ll foralll sl = m,

=
3
]
.
‘

1
+
-}

=

*_

A 2., Y~ foralll<l <m, and

17

. S - .J_Q Daes 12
R

4
TAdm T I TSy e

The sequence Uy, Uy, ..., Ugy is called the x-splitting of w. =

o

We say thal a segment V of w contains the w-(co)chain

=0, 50, 0)y m= 1, i (4, 7,) CV{{(i1,5m) € V respectively), or
gm—1

equivalently if _j U, CV, where Up, Uy, ..., Ugy, is the x-splitting of w.
k=1

h

Example 3.1. (continued)

The sequence {1,2,3,4},15{,{6,7, ...,104,§113},§12,133,§14},§15},§16,17,18}, @ is the
k-splitting of w.

The x'-splitting of w is the sequence

§1,2.3,4},15,8, ..., 10},{11,12,13,14],{15,16,17,18}, 2.

The p-splitting of w is the sequence

1,2, ..., B, {7.8], 2, (9,10}, @, {11,12,13,14}, §15,16,17,18).

The w'-splitting of w equals {1,2, ...,64,§7,8},{9,10,§{11,12,13,144,§15,16,17,18}. =

In analyzing the structure of Dyck words (especially in the context of com-
putations in cp systems) it is often useful to group together various occurrences

in a Dyck word. This leads us to the following notion.

Definiticn 3.8. Let w € Dy and let I" be an alphabet.

{1} AT-coloring of wis a mapping 6 : fs{w) - .

Let § be a T-coloring of w.

{(2) Two occurrencest and 7 inw are §-equivalent if 6(1) = 8(5).

18

Example 3.1. (continued)
We define the {0,1}-coloring & of w as follows.

1,if £ is prime,

Fork €{1,2, ..., 18}, 6(k) = {O, otherwise .

Then «' is a é-uniform w-chain. u'is a é-uniform w-cochain. Both x and w are

not d-uniform. =

Our next result formulates the basic property of colorings of Dyck words.

We start with the following lemma.

Lemma 3.4. Let 7,p =1, g =2, Let w € Dy and let § be a coloring of w
with ind(5) < 7.
If jw]| = 4-(gr?)?"® then there exists
either a 6-uniform w-chain k£ with || > p
or a d-uniform w-cochain « with |k| > g.

Proof. According to Corollary 3.3 either dp(w) > pr? or wd(w) > gr2. A

Assume that dp (w) > pr®.
Hence there exists a w-chain g with || > pr®. 6 may have at most 7* values on
the set of all balanced pairs in w. Consequently more than p pairs of x must be

6-equivalent. These pairs form a w-chain «, with |k| > p, which is §-uniform.
If, on the other hand, wd{w) > gr? then by the same arguments there

exists a d-uniform w-cochain k¢ with |x| > q. =

Theorem 3.5. Letr,p =1, g =2 Let w € Dy and let § be a coloring of w
with ind(6) <.
If U is a w-balanced segment with #U > 4-(qr?)P™°, then
either U contains a é-uniform w-chain &, with |k| > p,

or U contains a d-uniform w-cochain &, with |«| > g.

19

Proof. Apply Lemma 3.4 to w'=w(U). Obviously a w'-(co)chain «'

corresponds to a w-(co)chain « with || = |«'|. =

20

4. The Classical Pumping Lemma for Context-Free Languages.

In this section we demonstrate how using results from the last section
(combined with the Exchange Theorem) one proves (a somewhat strengthened

version of) the classical pumping lemma for context-free languages.

We start by observing the relationship between the length of a contribution
from a segment of (the trail of) a successful computation and the number of
occurrences of (letters corresponding to) right parentheses in the Dyck words

corresponding to the weak description of the computation.

Lemma 4.1. Let p be a successful computation in a real-time cp system G.

Let o = tri{p), £ = wdes {a) and let U be a segment in a.

Then |ctb(a{U)) | = fitk € U | &(k) € 5y}, where I, is the alphabet of the

second component of . Furthermore, if «(U) is balanced, then
£ r _1
letb (a(U)) | = S-#U.

Proof. Let G = (G,, G,, R) be a real-time cp system, where
Gi1= (21, Pz, Sz, A) and G; = (Zz, Pz, Sg).
Then (directly from the real-time property) it follows that, for any 7 € I'(G),
ctb(T) € Aif 7 = [m,0] with 7 € R and
ctb (T) = A, otherwise.
Moreover, for T € I[{G),
wdes (1) € 5y, if T = [r,0] with 7 € R and
wdes (1) € g, otherwise.

“Now consider T = a{k) for some k € fs(a).
Since wdes is a coding, £(k) = wdes(a(k)). Consequently,

ctb(a(k)) = Aif and only if £(k) € Zp, and

ctb (a(k)) € Aif and only if £(k) € X,.

21

From the above the lemma easily follows. =

Given a word w over an alphabet &, we can interpret w as a function from

fs{w) into &, which maps an occurrence k& in w to the letter w(k) in Z.

So, let & be the trail of a successful computation in a cp system G and let ¢
be the weak description of «. Then fs{a) = fs(£), hence, using the above
interpretation of &, we can regard a as a I'(G)-coloring of £. ¢ itself is a balanced
word (see Lemma 2.1) thus it is now possible to talk about o-equivalent balanced
pairs of {. As our next lemma shows such pairs are closely related to equivalent

(in the sense of Definition 2.6.(2)) subwords in the trail a of p.

Lemma 4.2. Let p be a successful computation in a cp system G and let
a=trl{p) and ¢ = wdes(a). Let (i), 7,), (iz, 7z) be two a-equivalent balanced
pairs in § and let U;=(i,,%+1,...,5.), Uz ={(iz,92+1, ..., jo). Then
a(Uy) ~ aUg).

Proof. (1) First we will show that a(l/,) and a(Us) are balanced. This is
seen as follows.

According to our assumption (i,, ;) is a balanced pair in £ This means
that ¢(U;) € Dg,. But wdes is a coding, hence &(U;) = wdes(a(U;)). Now, by

Definition 2.6.(1), «(U,) is balanced.

The same argument used for (i, j;) leads to the conclusion that a{Us) is
balanced.
(R) We now prove the equivalence of a{U;) and o Us).

(i1.71) and (iz, j2) are a-equivalent pairs in £, so we have a(i,) = a(iz) and
o1} = a(j,). But this implies that the first (and last) letters of a(U,) and a{Us)
are equal to each other, because o{U;) = a(i)a(i;+1) - aj,) and

(Uz) = aliz)aliztl) - - alia).

22
This completes the proof of the lemma.

The next lemma is about the "regularity” of occurrences of right letters
between the océu;”fences of left letters in Dyck words (corresponding to weak
descriptions of successful computations).

Lemma 4.3. Let p be a successiul computation in a ¢p system G and let
a = tri{p) and § = wdes (). Leti and 7 be two c-equivalent occurrences in ¢ of
left letters, where i <j. Then there exists an occurrence © with i < k <j such
that £(k) is a right letter.

Proof. Leti <j be two occurrences in £ as in the slate.ncnl of the lemma.
afi) # [S;; Sg], because otherwise the symbol [S ; 5] would cceur twice in a.
So let a{i) = a(j) = [m,t] for some 7€ R, t € N.

Then clearly t > 0, because £(i) and £(j) have to be left letiers.
Since ¢ is the weak description of a computation, there exists an occurrence k
with 2 <k <j such that a(k) = [#,0]. Obviously % is an occurrence of a right

letterin £. =

We are now ready to provide an alternative proof of the pumping property.

Theorem 4.4. Let K be a context-free language over an alphabet A.
Then there exists a constant d € N* such that, for every w € K with |w/| =d,
there exist words w; , wg , W3, Wy, W5 € A satisfying
(1) w = w wawgwws,
(i) w; #A forall1<1i <5,
(iii) |wswzwy| =d and
(iv) wwiwgwiws € K for every n € N.
Proof. Let G =(G,, Go, F) be a real-time cp system computing the
language K = L(G), where G, = (,, P;, Sy, A) and Gg = (23, Pz, Sp).

23

We choose d = 4(47'2)(272), where 7 = #I(G) and we will prove that the

theorem holds for this choice of d.

Now consider w € K with |w] = d and let p be a successful computation in
G with res {p) = w. Let a = tri(p) and ¢ = wdes(a). Thus w = ctb ().
As before we can regard « as a ['(G)-coloring of €. Then «, seen as a coloring,
has index 7.
By Lemma 2.1, £ is a word in Dy, and so it is possible to apply to ¢ our results on
balanced words from Section 3.
The relationship between occurrences in w and occurrences of right letters in £
as well as the relationship between occurrences in o and £ has already been dis-
cussed to some extent in the proof of Lemma 4.1. From this discussion it easily
follows that || = [£ =2|w]| > 2d.
According to Theorem 3.1 there is a ¢-balanced segment U such that
d < #U=<2d.
Theorem 3.5 implies that U contains
either an a-uniform ¢-chain « with |k| = 3
or an o-uniform §-cochain k with | k| = b.
We consider separately each of these cases.

(a)x=(i,,71).(i2., 72).(i3, j3) is an a-uniform ¢-chain contained in U.
Let Uy, Uy, ..., Ug be the k-splitting of £.
Thenlet W, = UgUU,, Wag= Uz, Wg= Us, Wy = Usand W5 = UslyUs.
We will consider the image of the sequence W, , Wy, W3, Wy, W5 both in £ and in
a;let & = EW), o = (W) fori =1, ..., 5.
Clearly §; = wdes{a;) for 1 <7 <5,
Note that (i, js) and (ig, j3) are a-equivalent balanced pairs in ¢ Thus,

according to Lemma 4.2, ag = o{Wg) ~ a(Wol U WalU W) = 0e0gtts.

24

Now it is possible "to pump'' the pieces oy and o, in the computation p as
follows.

Let p, =p and apply the Exchange Theorem to p; and p ; there exist
{unique) successful computations pg and ps in G such that frl (po) = ay0z305 and
trl(pg) = 00 0p0E0,040.

Once more we consider the equivalent pieces opoge, and g, this time in p
and pp respectively. If we apply the Exchange Theorem to these pieces we obtain
a successful computation pg in G such that trl{pg) = & afcz0z0,0ias.

Continuing this process inductively yields an infinite number of successful
computations pg, p1, P2, P3, ... in Gwith trl{p,) = a afazalos for allm € N.
Let, for 1 <1 <5, w; = ctb{oy).

Then w = res{p) = ctb{a) = ctb (o 0p030405) = W wWswzw,ws and, for all n € N,
res{p,) = ctd (o, afozales) = wwhwzwiws,

This proves the existence of words wj; satisfying requirements (i) and (iv) from
the statement of the theorem.

We proceed now by proving that |wswgw,| =d. First we observe that
WalUW3 U W, C U, because & is contained in U.

Consequently
lwawgw,| = [ctb oWz UWsUWa)| < [ctba(U)|.
On the other hand, using Lemma 4.1 we see that
letb (V)| = %— #U
-remember that U is a §-balanced segment.
Hence |wawgw,| < —é— #U <d.
This proves (iii).
Finally we will show that each of the words w; is nonempty.

This is clear for wg, w4 and ws, because each of £g, £, and ¢5 explicitly contains

25

a right letter (¢(53), £(jz) and £(j,) respectively) and the corresponding symbols
in o contribute letters to ctb {ag),ctb{oy) and ctb (as).

So we are left with w; and w,.

i,,13 and iz are cx-eéuivalent occurrences of left letters in £, By Lemma 4.3
there exist occurrences k; and kg of right letters in § such that
iy <k, <iz<kz<iz Hence £ and £ contain occurrences of right letters.

Thus, by an argument as above, we conclude that w; and wj are nonempty.

This proves (ii) and concludes the proof of the theorem in the chain-case.

(b)uw =(i,,7,), ... (i5, J5) is an a-uniform ¢-cochain contained in /.

Let Up, U;,.., Uy be the k-splitting of ¢ and let W, = UpUU,UU,,
We=UsUUy Wy = Us, Wy=UgUUyand W5 = UglyUsJUse

As in the first case we consider & = &(W;) and o; = a{W;), for 1 =1 <5, and we
continue thé proof by showing that for each n € N, a;afozalas is the trail of a
successful computation in G. We then prove {analogously to (a) above) that con-
ditions (i) through (iv) hold. Actually, the situation is somewhat simpler now - to
see that the words w; = ¢tb(e;), 1<1 <5, are nonempty we observe immedi-
ately that each of the words £, contains an occurrence of a right letter.

Thus the theorem holds also in the cochain case.

From (a) and (b) the theorem follows. =

We conclude this section by the following remarks.

In the proof of Theorem 4.4 we have analyzed separately two cases: the
"chain” and the "cochain" case. The analysis of these two cases lead us to the
classical context-free pumping property.

Let us consider now the "cochain’ case in more detail - in this way we will

obtain a "regular-like" pumping property.

26

Lemma 4.5. Let p be a successful computation in a real-time cp system G
, and let o = trl(p) and £ = wdes(a). If there exists an a-uniform ¢-cochain of

length 3, then there exist nonempty words w, , w; and wg such that
(i) res (p) = 'wlwgwhs and
(ii) wlw;’wa < L(G).

Proof. Let k¥ be an a-uniform §-cochain with || = 3 and let Uy, Uy, ..., Ug
be the «-splitting of ¢.
Fori =0,1,....,6 let ; = {U}).
Then o; ~ ay0p0g. Within the trail of p we apply repeatedly the Exchange
Theorem to oy and a;0z05 to obtain successful computations pg, p1 = £, P2+ P3 .-
such that, for eachn € N,
trl{pn) = cox(azas)™ asatstg.
Hence if we write w,; = ctb(age,), wy = ctb(agag) and wg = ctb (a,u0504), then
res{(pn) = wwhws for eachn € N. |
But w; , wy and wg are nonempty, because U;, Uz and Us contain occurrénces
of right letters in £ and consequently ctb(a,), ctb(ag) and ctb {as) are nonempty

- see Lemma 4.1.

From these considerations the lemma follows. ™

27
Discussion.

In this paper we have exploited the "ep system point of view" in the analysis

of the structure of computations on a push-down store.

In particular we have depicted a number of properties of Dyck words that
seem to be very basic in such an analysis. We believe that these results are of

independent interest in the general theory of Dyck words.

We have demonstrated the use of these results {combined with the
Exchange Theorem) in providing an alternative proof of the classical pumping
property of context-free languages. We have tried to illustrate that the
Exchange Theorem and the combinatorial properties of Dyck words we have
given in this paper form a very basic and useful set of tools in the investigation
of context-free languages (through push-down computations and not through

derivation trees in context-free grammars !).

This paper points to {at least) two areas of research which seem to be
worthwhile to continue.
(1) Analyze in more detail the combinatorial structure of Dyck words, so that it
can be connected to other known (and hopefully new) pumping properties of
context-free languages.
(2) Can a comparative study of the chain and cochain cases lead to a combina-

torial characterization of those context-free languages that are regular?

We believe that further research in this direction will increase our under-
standing of the nature of push-down computations {(and context-free languages).
As a matter of fact in the second part of this paper we present results pertinent
to (1) above. We will investigate the structure of sparse subwords of Dyck words
and use our results about £his sparse structure to derive Ogden's pumping

lemma for context-free languages.

28

ACKNOWLEDGEMENTS.

The authors are very obliged to the Leiden TIC group and in particular to J.
Engelfriet, H.C.M. Kieijn and E. Welzl for very useful comments concerning the
first draft of this paper. The first and the third author gratefully acknowledge

the support of NSF grant MCS 83-05245.

29

REFERENCES.

[BPS] Bar-Hillel, Y., Perles M. and Shamir, E., “On formal properties of simple

[B]

phrase-structure grammars," Zeitschrift fur Phonetik, Sprachwissen-

schaft, und Kommunikationsforschung, v. 14, pp. 143-177, 1961.

Berstel, J., Transductions and context-free languages, Teubner,

Stuttgart, 1979.

[EHR1] Ehrenfeucht, A., Hoogeboom, H.J. and Rozenberg, G., "'Real-time coordi-

nated pair systems”, Dept. of Computer Science, University of Colorado

at Boulder, Techn. Rep. No. CU-CS-259-83, 1983.

[EHRR] Ehrenfeucht, A., Hoogeboom, H.J. and Rozenberg, G., "Computations in

[H]

[R]

[s]

coordinated pair systems,” Dept. of Computer Science, University of

Colorado at Boulder, Techn. Rep. No. CU-CS-260-84, 1984.

Harrison, M., Introduction to formal language theory, Addison-Wesley

Publ. Co., Reading, Massachusetts, 1978.

Rozenberg, G., "On coordinated selective substitutions: Towards a unified
theory of grammars and machines, Theoretical Computer Science, to

appear.

Salomaa, A., Formal languages, Academic Press, London-New York, 1973.

