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Abstract The motion of a spherical ball rolling with-

out slipping or plowing on a granular bed is studied. We

propose a definition of the rolling resistance force and

torque, and carry out experiments with a basketball

and medicine ball rolling on a bed of gravel to mea-

sure the corresponding rolling resistance coefficients.

These experiments reveal, in good agreement with lit-

erature, coefficients that are velocity-independent, and

show that little to no plowing of the spheres into the

granular substrate occurs. This indicates a regime of

motion distinctly different from those treated in previ-

ous works. A simplified model correctly predicts the ve-

locity independence and suggests an inverse dependence

of the rolling resistance coefficient on the reduced iner-

tia of the ball. These predictions match the experimen-

tally observed behavior. Numerical simulations based
on soft-sphere DEM shed more light on the mechan-

ics of energy dissipation that occur in this no-plowing

regime, and reveal a mass dependency that is not cap-

tured by the model. Our results provide insight into an

unstudied regime of motion, and are of interest to the

mission design of spacecraft to explore the surfaces of

asteroids and comets.
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1 Introduction

The deployment of instrumentation packages to the sur-

faces of asteroids and comets can be achieved with low-
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risk, low-cost, spherical lander pods that ballistically

descend to the surface and settle following a number of

bounces and a period of rolling motion [1,2]. To enable

development of appropriate pod and mission designs,

it is necessary to characterize this rolling motion with

realistic models of the interaction between a pod and

the asteroid surface, in the microgravity environment

of the asteroid.

Numerous studies have analyzed the motion of small

spheres, with sizes ranging between a few millimeters

and a few centimeters, rolling on a thin granular bed;

these studies are briefly summarized here. Rolling spheres

experience a force that reduces their rotation and ve-

locity, called rolling friction or rolling resistance [3].

The set-up where a single layer of grains is glued to

an inclined plane, a situation in which plastic defor-

mation and grain-grain interactions do not occur, has

been frequently documented. Centimeter-sized spheres

rolling on such inclined beds of sand demonstrate three

regimes of motion, each occurring at different ranges of

the angle of incline [4,5,6,7,8,9]. At intermediate-to-

high inclinations, the rolling resistance force behaves

viscous-like and is strongly dependent on velocity [10].

In contrast, at small angles of inclination, the force is

found to be constant for small spheres rolling on sand

at velocities higher than 0.2 m/s [11]. This friction force

allows for the definition of a coefficient of rolling fric-

tion, in analogy with the coefficient of sliding friction,

as done by [12], where its value is developed analytically

for a viscous sphere rolling on a hard, flat plane.

Comparatively few works have investigated the mo-

tion of a sphere rolling on a loosely packed bed of

sand, where individual grains are free to move and in-

teract with each other. Experiments with centimeter-

sized glass and steel spheres rolling on an inclined sand

bed again revealed a constant coefficient of rolling re-
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sistance, between 0.45 and 0.65 for the various spheres

tested [3]. In this configuration, the spheres’ plowing

into the sand was found to be the main mechanism

for energy dissipation and the source of the observed

rolling resistance force. This was shown through a mea-

surement of the depth of the sand grooves created by

the rolling spheres, which reach several millimeters for

centimeter-sized spheres. The authors of [3] suggest an

extension of their work to the motion of larger spheres

on similar granular beds.

This paper covers the regime of motion of such larger

spheres, which is observed to be differentiated from

that of smaller spheres through their relative levels of

plowing. We carry out experiments at 1g with spheres

roughly the size of pods proposed for small-body mis-

sions, measure the magnitude of their rolling resistance

coefficients, and examine the spheres’ level of plow-

ing into the granular substrate. Concurrently, a sim-

ple model is developed, based on the dynamics of con-

tact between the sphere and the grains in the absence

of plowing. Finally, numerical simulations are used to

gain further insight into the motion of the spheres and

the effect of their masses. Using this combination of

experiment, theory, and simulation, we provide insight

into what factors govern contact dynamics under the

assumption of no plowing, and provide an order-of-

magnitude estimation of the rolling resistance coeffi-

cients. Our results extend the existing knowledge on

the mechanics of rolling resistance by probing a previ-

ously unstudied regime of motion. They are relevant to

geophysical applications and simulations of lander tra-

jectories to the small bodies of our Solar System, such

as asteroids, comets, and small moons.

2 Rolling Resistance

A sphere rolling on a granular bed will experience a dis-

sipative force that resists its rolling motion. We postu-

late that this phenomenon can be captured by applying

a force Frr and torque Lrr, called the rolling resistance,

to a ball rolling on a perfectly flat surface. Frr is ap-

plied at the center of the ball and directed against the

velocity; Lrr is directed against the angular velocity.

We denote R the radius of the ball, I its massless iner-

tia and N the normal force from the surface (N = mg).

The magnitudes of the rolling resistance quantities are

defined as:

Frr = KrrN and Lrr = CrrRN (1)

where Crr and Krr, related through Crr = jKrr with

j = I/R2, are defined ad hoc and are called the coeffi-

cients of rolling resistance. This relationship must hold

in order for rolling resistance to preserve the slip state

of the sphere, which is determined by the (Coulomb)

friction force and torque. The quantity j is dimension-

less and represents the mass distribution of the ball

relative to its center. The value mR2 represents the

maximum inertia that can be reached by an object of

maximum radius R. It is in fact attained by the circle of

radius R. The quantity j varies between 0 (a ball whose

mass is concentrated at the center) and 1 (a hoop). For

a sphere of homogeneous density, j = 2/5, and for a

spherical shell, j = 2/3 [13]. Note that j ∈ [0, 1] implies

that Crr ≤ Krr.

The quantity (1+ j) is of further interest, and man-

ifests in the specific kinetic energy E of a ball rolling at

velocity V without slip, as: E = 0.5(1 + j)V 2. Applying

a force F to the center of a ball or a wheel rolling with-

out slip does not create an acceleration equal to F/m.

When rolling without slip is enforced, the friction force

partly counters the force F . In fact, the force F creates

an acceleration equal to F/(1+j)m. Remembering that

inertia is defined as the resistance an object has to a

change in its state of motion, then (1+j)m is the effec-

tive inertia of the ball, i.e. the resistance to change in

its motion. We therefore expect Krr to depend strongly

the quantity (1+j), which is seen as the reduced inertia

of the ball, while j is interpreted as its reduced moment

of inertia.

3 Experiments

Spherical lander pods have previously been proposed

for the Binary Asteroid in-situ Explorer (BASiX) space

mission, and are roughly the size of a basketball [1,2].
With this hardware description in mind, we have chosen

to use both a standard basketball and a similar-sized,

heavier medicine ball, and experimentally measure their

rolling resistance coefficients. The basketball has a ra-

dius of R ≈ 119 mm and a mass of m ≈ 0.63 kg; the

medicine ball has a radius of R ≈ 113 mm and a mass

of m ≈ 2.70 kg. We obtain measurements of the coeffi-

cient of rolling resistance by rolling these balls on a bed

of gravel, tracking their motion with a high-speed cam-

era, and processing the obtained video material with a

vision algorithm.

The granular bed consists of pea gravel with grain

sizes between 6.4 mm and 12.4 mm in size, assumed

to be distributed uniformly. This gravel was measured

to have a grain density of ρgrain = 2.62 g/cm3 and a

bulk density of ρbulk = 1.52 g/cm3, corresponding to

a filling fraction of 0.58 and a porosity of 0.42. Note

that these ratios are only valid for uncompacted and

unshaken grain samples. Finally, the angle of friction

was measured to be ≈ 41◦.
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Fig. 1 Camera distortion and calibration patterns.

The gravel was contained in a wooden box (1.6 m ×
1.0 m × 0.5 m); a ramp placed on one end of the box

was used to launch the balls from rest along the box’s

longest dimension (x-axis) with consistent specific en-

ergy. The motion of the balls was recorded using a Go-

Pro HERO3 Black Edition camera, which has a wide-

angle fish-eye lens capable of capturing video at high

resolution and frame-rate. The camera was mounted on

a tripod and positioned above the center of the longest

side of the box, providing an optimal overview of the

entire scene. Recording was set to a 1280 × 960 px

resolution, 100 fps frame-rate, and 127◦ field-of-view.

Moreover, a floodlight was mounted directly above the

camera to minimize shadowing, together with a wooden

casing protecting the camera from the floodlight’s heat.

Finally, both balls were spray-painted bright green to

facilitate detection in the video analysis, as discussed

further on.

Prior to running the experiments, the camera is po-

sitioned in the desired location and parallel with the

local horizontal. It is then switched on and connected

to a mobile device using the GoPro App, removing the

need for the user to physically interact with the camera

and ensuring its position remains unchanged through-

out the entire batch of experiments. The wooden cas-

ing and floodlight are placed around the camera once

it has been switched on. Afterwards, the camera cap-

tures several photos of checkerboard patterns, sequen-

tially placed at different positions and orientations in

the field of view of the camera. These photos are to be

used for calibration purposes and the definition of a ref-

erence frame, prior to processing the video recordings,

as will be discussed shortly.

The gravel surface is then flattened to the best de-

gree possible using a flat wooden board, so as to min-

imize any bias acceleration due to an inclined surface.

This flattening compacts the grains, thereby affecting

the magnitude of the rolling resistance. The grains are

therefore decompressed by gently sweeping a broom

across the surface. This returns the surface to its ini-

tial rough and uncompacted state, while still ensuring

it remains flat and level.

In each experimental run, the ball is released from

the same point along the ramp using a restraint, to

ensure a consistent initial velocity on the gravel bed.

The camera starts recording, the ball is released, and

starts rolling. It accelerates down the ramp and contin-

ues rolling across the gravel surface, decelerating under

the influence of the rolling resistance force and torque

until it comes to a halt near the end of the box, complet-

ing one experimental run. As the ball compacts some of

the grains along its path on the gravel, the surface must

be swept with a broom after each single run to ensure

proper surface roughness. These procedures are consis-

tent with those applied for experiments on mobile beds

in previous work [3]. In addition, we also re-flatten the

surface every 5 runs. This strategy is repeated 50 times

to obtain a single video batch; two such batches are

recorded for each ball, yielding a total of 200 recorded

videos.

Before proceeding with an analysis of the video ma-

terial, the camera calibration parameters are first ob-

tained using the previously captured photos and Mat-

lab’s built-in calibration tool. This calibration is nec-

essary to account for the strong image distortion that

occurs because of the fish-eye lens of the GoPro, as

shown in Fig. 1.

The recorded video material is then analyzed through

a Matlab algorithm. This algorithm first applies a se-

lective grayscale filtering which weighs particular col-

ors more strongly than others, contrary to a ‘regular’
grayscale image in which all colors are weighted equally.

It was found that bright green objects are most eas-

ily detected by the algorithm, motivating our choice to

spray-paint the balls in this color. A sample frame with

such selective grayscale applied is shown in Fig. 2.

Next, edge detection is applied to the grayscale frames

to render visible only the edges of any distinct objects

or faces in the scene, through a detection of sudden

changes in the intensity between neighboring pixels. Fi-

nally, a Hough transform is applied to fit circles to the

resulting edge-detected frames, as the target ball will

be the largest spherical object present in each frame.

With the angular and pixel resolution given, the max-

imum position error for each individual pixel is 1.2 cm

when the camera is placed at a nominal distance of 1

m from the ball. As we assume the error distribution

to be Gaussian, the circle fitting applied by the Hough

transform effectively averages this error along the edge

of the ball. The resulting position error of the center of

the ball is therefore reduced by over an order of magn-
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Fig. 2 Video frame filtered with selective grayscale. The ball
is visible on the left.

Fig. 3 Vision algorithm steps applied in tracking of sphere.

tiude. By applying these three steps; selective grayscale,

edge detection, and circle fitting, the position of the ball

can be extracted from each video frame. The sequential

application of these three steps to the area of interest

in a sample frame is shown in Fig. 3.

By processing an experiment video with this vision

algorithm, we obtain the tracked ‘raw’ trajectory of the

ball across the two-dimensional view of the camera, as

shown in Fig. 4. Through a series of transformations

using the previously obtained camera calibration pa-

rameters and the known ball radius, we can account

for the fish-eye effect, apply undistortion to the coordi-

nates of the ball, and obtain a Cartesian representation

of its three-dimensional trajectory, where the ball moves

along the x-direction of the applied reference frame.

It has been found both experimentally and theoret-

ically in various works that the motion of a sphere on

a granular bed can be affected by constant rolling re-

sistance forces [3,11,12] as well as viscous rolling resis-

tance forces [10]. As it is visually clear that the spheres

did not significantly plow into the granular bed, we do

not anticipate significant viscous forces. Nonetheless,

we allow for the existence of both constant and viscous

terms to exist, as both are encountered in the literature,

and assume the force to be quadratically dependent on

velocity. This allows us to investigate the possible ex-

istence of viscous terms in a mathematically rigorous

manner. Noting x and ẋ as respectively the position

and velocity along the x-axis, and a, b, and c as con-

Fig. 4 Tracked trajectory of a single experiment. The green
crosses are the final positions of previously analyzed videos.

stant positive coefficients, the motion of the balls was

hence assumed to follow the equation:

ẍ = −(a+ bẋ+ cẋ2) (2)

This model captures dependencies on the velocity through

the inclusion of the b and c terms. This differential equa-

tion is an integral form of Ricatti’s differential equation,

with the initial condition ẋ(0) = V0. Its solution can be

expressed analytically as:

x =
1

c
ln

[
cos

(
1

2
δt− φ

)]
− 1

c
ln [cos(φ)]− γt (3)

where δ =
√

4ac− b2 ; κ =
δ

2c
; γ =

b

2c

and φ = arctan

(
V0 + γ

κ

)
Please note that the previous equation does not place

constraints on the reals a, b, and c. In particular, they

do not require that 4ac−b2 > 0 as long as one considers

the functions presented above (square root, logarithm,

and trigonometric functions) with their natural com-

plex extensions. Moreover, singularities can be resolved

by taking limits.

The extracted x-position data of the ball was fit

to Eq. 3 using a non-linear batch least squares estima-

tor, applied to all 100 videos of each ball. This pro-

duced negligible b and c values close to machine pre-

cision level (≈ 10−12), experimentally confirming our

intuition and the results of [3,11] that, for this regime,

the rolling resistance force is independent of velocity.

Furthermore, this lack of velocity-dependent terms in-

dicates that aerodynamic drag did not have a notable

effect on the motion of the balls. Taking the limit of

c → 0 and b → 0, the complex expression of Eq. 2

simplifies to the classic constant deceleration motion:

x = v0t−
1

2
at2 (4)
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A simple second-order polynomial fit on the position of

the ball during this deceleration then yields the value

of the coefficient a, and thus of Krr = a/g, as defined

through Eq. 1. We note that, although the balls travel

purely along the x-axis for most of the experiment du-

ration, they display some deviation perpendicular to

the direction of travel near the end of each run. For

this reason, the final portion of the trajectories (where

V < 0.1 m/s) are excluded from our fitting; the in-

cluded portion is marked by a cyan box in Fig. 4. This

results in a mean Krr = 0.0524 with a standard de-

viation σ = 0.0067 for the basketball, and a mean

Krr = 0.0655 with σ = 0.0116 for the medicine ball.

Given that both balls have similar radii, are made of

similar material, and roll on the same granular sub-

strate, the difference between the two Krr must be due

to the differing mass m and inertia j of the two balls.

Comparing the values of these Krr to those mea-

sured for the motion of the centimeter-sized spheres

rolling on an inclined sand bed where Krr = [0.45, 0.65]

[3], we find that the values obtained in our experiments

are an order of magnitude lower. The authors of [3]

measured the groove left behind by a glass sphere with

radius R = 14.2 mm rolling on sand as h ≈ 4 mm,

corresponding to the significant plowing ratio of ηgs =

h/R ≈ 0.28. Measuring the grooves in our experiments,

we have found depths in the gravel of hbb ≈ 1 mm for

the basketball and hmb ≈ 3 mm for the medicine ball,

resulting in comparatively low plowing ratios of respec-

tively ηbb = 0.01 and ηmb = 0.03. This matches the

visually observed absence of plowing in our considered

regime of motion, and appears to be the source of the

(relatively) low magnitude Krr.

In conclusion, these experiments indicate a velocity-

independent coefficient of rolling resistance for large

spheres rolling on an a granular surface without plow-

ing. Given the similar sphere radii, the differences in

measured coefficient magnitudes must be due to the

spheres’ different mass and inertia. These dependencies

invite further study, and are investigated in the remain-

der of this work.

4 A Simple Model

In parallel with the experiments discussed above, we de-

veloped a simple model that attempts to capture some

of the observed trends. As early experimental results

showed that both balls displayed little to no plowing

into the substrate, we develop this model based on the

no-plowing assumption. In other words, the rolling re-

sistance force experienced in this regime can be esti-

mated with the assumption that grains in the substrate

do not move as the sphere rolls across the granular bed.

In a coarse approximation, the bed may thus be

modeled as a succession of collisions on a rigid sur-

face with very small asperities. When a ball, rolling

without slipping, impacts a small rock, it dissipates en-

ergy through two collisions occurring in rapid succes-

sion. First, the ball impacts the rock and the velocity

normal to this impact is damped. At the same time, the

friction force transfers part of the angular momentum

into linear momentum, increasing slightly the velocity

of the ball, but diminishing slightly its angular velocity,

and dissipating energy in the process. The ball is then

launched into a short ballistic arc. Second, the normal

velocity is damped again when it re-impacts the ground,

and the friction force once again synchronizes the body

spin and velocity, returning it to its initial state but

with a reduced velocity and rotation rate. Fig. 5 de-

picts these events.

Fig. 5 Micro-collision model of a sphere rolling on a granu-
lar bed. The size of the granular bed and particle have been
exaggerated for clarity of the drawing.

The value of the coefficient Krr can be established

using the micro-collision approach introduced. The two

collisions are assumed to take place with a null coeffi-

cient of restitution (whose influence is otherwise neg-

ligible at first order for small collision angles θ) and

an infinite coefficient of friction (to ensure no-slip con-

ditions throughout the motion). Let V0 be the initial

speed of the ball and d the height of the feature being

impacted, then the total loss of speed ∆V is:

∆V = V0(1− ζ(θ)2) (5)

where ζ(θ) =
j + cos θ

j + 1

and θ = arccos

(
R− d
R

)
Assuming that micro-collisions are so frequent that one

occurs right after the ball has re-impacted the ground,

the time between two events is:

∆t =
2V0ζ(θ) sin θ

g
(6)

Dividing Eq. 5 by Eq. 6 and normalizing by g, we ob-

tain:

Krr =
1

g

∆V

∆t
=

1− ζ(θ)2

2ζ(θ) sin θ
(7)
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Taking d/R� 1, as the radius of the ball is much larger

than the size of the impact features, Eq. 7 simplifies to:

Krr ≈
1

1 + j

√
d

2R
(8)

The value of d should be the average difference of height

between successive grains of the gravel bed. For a uni-

form size distribution of range [dmin, dmax], this average

difference is d = 1/3(dmax − dmin). Using the numbers

provided by the gravel manufacturer, the ratio d/R was

estimated to be close to 0.0166. For this configuration,

the analytical model predicts a value of Krr = 0.055 for

a spherical shell, and Krr = 0.066 for a solid sphere.

This very simple expression predicts some key re-

sults that shed light on the experimental observations.

Most importantly, it predicts a rolling resistance coef-

ficient which is independent of the ball velocity. This

matches the observed behavior and agrees with litera-

ture [3]. Second, the model predicts that in the consid-

ered regime, any variation in Krr comes purely from

variations in the reduced inertia (1 + j). This predicted

variation is in very good agreement with the observed

values; indeed, the predicted and observed coefficients

match almost exactly. Given the simplicity of the model,

it is likely that the exact match is coincidental, though

it remains that the model predicts a correct order of

magnitude and the observed dependencies. The inverse

dependency on the reduced inertia (1 + j) makes intu-

itive sense, as this quantity represents the resistance of

a ball to change in its rolling motion.

Although the observed trends appear to match the

inertia dependency, the model does not suggest any

dependency on the ball mass or the properties of the
granular substrate. This is likely the result of the no-

plowing assumption, and illustrates the limitations of

this simple model. In order to gain further insight into

the experiments and potential mass dependencies, we

will continue our investigation using simulations.

Additionally, we may compute the ratio of rolling

resistance coefficients of respectively the experimental

data and the model. Using the measured coefficients,

we find a ratio of:(
Krr,mb

Krr,bb

)
exp

= 1.25 (9)

When instead using Eq. 8 to compute this ratio, we

predict:(
Krr,mb

Krr,bb

)
mod

=

1
1+jmb

√
d

2Rmb

1
1+jbb

√
d

2Rbb

=
1 + jmb

1 + jbb

√
Rmb

Rbb
= 1.22

(10)

This shows that the predicted coefficient ratio is inde-

pendent on the grain height d, and matches the mea-

sured ratio to within 2.5%. This further strengthens

the agreement between the model prediction and the

experiments.

On a final note, we see that Eq. 8 is also inde-

pendent of the gravitational acceleration g, which al-

lows for our model to be applied to the microgravity

environment present on the small bodies of our Solar

System. The time required for a ball to come to rest

under the influence of rolling resistance can be found

as t = V0/(Krrg), which does depend on the gravita-

tional acceleration. As an example, we compute this

time on asteroid Itokawa, which has a surface gravita-

tional acceleration of g ∼ 10−5 m/s. The minimum ve-

locity at which continued contact is possible is roughly

V0 ∼ 8 mm/s [14], such that we find a settling time

of t ∼ 3.3 hr for a solid sphere. In contrast, a solid

sphere rolling with an initial velocity of V0 = 1 m/s on

Earth (where g = 9.81 m/s2) has a settling time of only

t = 1.5 s, in agreement with our experiments.

5 Simulations

We carry out numerical simulations using a computa-

tional code that implements a soft-sphere DEM [15,16,

17,18,19,20,21]. In this method, the bed particles are

modeled as spheres that follow a predetermined size dis-

tribution, can shift around within the bed, and inter-

act through a soft-repulsive potential when in contact.

When two particles overlap, they are considered to be

in contact. When this happens, normal and tangential

contact forces are calculated [22]. The former is mod-

elled by a linear spring-dashpot system and is always

repulsive, keeping the particles apart; the latter is also

modelled with a linear spring that satisfies the local

Coulomb yield criterion. The calculation of the normal

forces between colliding particles is modeled by a linear

spring and a dashpot. The elastic force is modelled as:

fe = knξn̂, (11)

Similarly, the damping force is modeled as:

fd = −γnξ̇n̂, (12)

The total normal force is calculated from these as fn =

fe+fd. In these equations, kn is the elastic constant, ξ is

the overlap of the particles, γn is the damping constant

(related to the dashpot), ξ̇ is the rate of deformation,

and n̂ is the vector joining the centres of the colliding

particles. This dashpot models the energy dissipation

that occurs during a real collision.
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The tangential component of the contact force mod-

els both static and dynamic surface friction. These are

calculated by placing a linear spring at the contact

point, attached to both particles, at the beginning of

the collision [22,23], producing a restoring frictional

force f t. The magnitude of the elongation of this tan-

gential spring is truncated in order to satisfy the local

Coulomb yield criterion |f t| ≤ µ|fn|. In addition, we

have also implemented rolling resistance [24]. The fol-

lowing, though not an exact transcription, is the model

as was presented by Ai et al. [25] so the the term co-

efficient of rolling resistance µr is defined as a dimen-

sionless parameter:

µr = tanβ (13)

where β is the angle of rolling resistance, which is the

maximum angle of a slope on which the rolling resis-

tance torque counterbalances the torque produced by

gravity acting on the body. The total rolling resistance

torque Mr consists of a spring torque Mrk and a viscous

damping torque Mrd in this model:

Mr = Mrk +Mrd (14)

In our code, this is implemented in an incremental fash-

ion just as suggested by Ai et al. [25]; this is:

∆Mrk = −kr∆θr (15)

For any two particles i and j in contact, kr = 2JnRrFn

is the rolling stiffness and ∆θr is their incremental rela-

tive rotation. Jn is a dimensionless coefficient theoreti-

cally found to be between 0.25 and 0.5 for cylinders [26].

The quantity Rr = (rirj)/(ri + rj) is the rolling radius

of the particles in contact. For this, a winding spring

provides a torque to particles in contact. In form, it is

very similar to surface friction, but is instead related to

the relative angular displacement. This type of friction

allows us to obtain aggregates with angles of friction of

up to ∼35o, typical of cohesionless aggregates on Earth,

though angles of ∼40o are not rare.

The simulation consists of a rectangular box with

periodic boundary conditions and the same dimensions

as in the experiments. The grains are spherical, but we

have implemented a rolling friction model as suggested

by Ai [25] such that an angle of friction of 37o could be

supported. The grain sizes were uniformly distributed

in the range [6.0, 12.5] mm and randomly assigned to

different particles. Surface-surface friction was fixed at

µk = 0.6 (as specified by the material supplier); grain-

grain collisions had a coefficient of restitution e between

0.25 and 0.65. An illustration of the simulation set-up

is shown in Fig. 6.

Fig. 6 Typical simulation set-up; the spherical pod has the
mass of the medicine ball used in the experiments. The blue
particles are those that were touched by the pod as it passed.
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Fig. 7 Distributions of the measured Krr = j−1Crr for the
experiments, simulations, and model.

In our simulations, we initially used pods of the

same size, mass, and inertia as those tested in the ex-

periments. The mean rolling resistance coefficient ob-

tained through the simulations was Krr = 0.038 for the

basketball-equivalent and Krr = 0.080 for the medicine

ball-equivalent. These values differ by respectively−27%

and +22% relative to the experimental values, and are

included in Fig. 7 together with the experimental re-

sults. In other words, the simulations agree on the order

of magnitude of both experimentally measured coeffi-

cients, but slightly underestimate the basketball’s co-

efficient and slightly overestimate the medicine ball’s

coefficient.

To further investigate this difference, we carry out

additional simulations where the masses of the two balls

are varied between 0.1 kg and 5.0 kg, while maintaining

their respective massless inertias and sizes. The corre-

sponding coefficients have also been included in Fig. 7,

and reveal a clear mass-dependency in the rolling resis-

tance coefficient. For the basketball (j = 2/3, in blue),

a sharp increase in Krr is observed at higher masses,
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seemingly indicative of the onset of significant plow-

ing effects. This sharp increase is not observed for the

medicine ball (j = 2/5, in red). To further investigate

these trends, we review the pods’ energy characteristics

in the simulations.

We find that part of the pods’ initial energy is trans-

ferred to the gravel as they roll, and then dissipated

through friction or used to plastically deform the gran-

ular surface in a plowing process. Heavier pods are sub-

ject to more plowing and thus experience a greater re-

sistance from the surface. This suggests that the con-

tinuous collisions between the ball and the individual

grains, a second source of energy dissipation, govern

the considered regime of motion. To substantiate this

claim, we investigate how much energy is spent by both

factors. Additionally, we are interested in the limit case

of very light and very heavy balls. Given that the initial

and final state of the system are known, as well as the

amount of dissipated energy, it is possible to calculate

a number of revelant quantities. Specifically, these are:
Wfr : Work done by friction

∆EPg : Potential energy change of grains

∆EPb : Potential energy change of ball

∆EKb : Kinetic energy change of ball

The amount of energy Wimp dissipated by the micro-

collisions between the ball and the grains is then found

as:

Wimp = ∆EPg +∆EPb +∆EKb −Wfr (16)

Calculating this energy balance for our simulations, we

find that balls with a low mass spend most of their en-
ergy in collisions. Both ∆EPg and Wfr increase with

the mass of the ball, indicating a greater degree of plow-

ing for heavier balls, regardless of their internal geom-

etry. As this happens, the amount of energy that is

dissipated through micro-collisions between the differ-

ent balls and the regolith decreases from 90% to 60%.

This shows that plowing becomes important at higher

masses, which was particularly visible in a sharp in-

crease in Krr of the basketball for masses greater than

5 kg.

6 Discussion

In experiments with a basketball and medicine ball rolling

on gravel, we found that both balls left behind a shal-

low groove, which indicates that plowing is negligible

in the considered regime of motion. This is further jus-

tified by a computation of the plowing ratio, which is

much smaller than ratios encountered in previous works

where plowing was found to be significant. The mea-

sured coefficient values are independent of the ball ve-

locity, which is in agreement with literature.

When assuming a sphere to roll without plowing

on a granular bed, the geometry of micro-collisions be-

tween the sphere and the bed allows the development

of a simplified model for the coefficient of rolling resis-

tance. This model predicts a coefficient independent of

the velocity of the sphere, which matches the experi-

mentally measured behavior and agrees with literature.

Second, it predicts an inverse relationship of Krr with

the reduced inertia (1+j) of the considered sphere. This

again agrees with the experimentally observed trends

and makes intuitive sense, as the reduced inertia rep-

resents the resistance of a sphere against changes in its

rolling motion. In other words, the model states that

for a given granular bed and sphere size, a sphere will

experience less rolling friction when its mass is con-

centrated in its shell, and will experience more rolling

friction when its mass is concentrated at its center.

This model is also in agreement with soft-sphere

DEM simulations that recreated the experiments. The

simulations further allow for an investigation of the

sources of energy dissipation responsible for the rolling

resistance force and torque. For the tested ball masses,

we find that the percentage of energy dissipated through

micro-collisions varies between 90% and 60%. The sim-

ulations hence reveal a mass dependency that is not

captured by the analytical model. It is expected that

this becomes negligible in the limit of low gravity. At

higher masses, further simulations reveal a significant

increase in the amount of energy dissipated through

plowing.

At low masses, these simulation results are consis-

tent with the model assumption that micro-collisions

between the ball and the granular bed govern rolling

friction in the considered regime of motion, and ex-

plains why our simplified model can successfully pre-

dict the order of magnitude of the coefficient of rolling

resistance. In fact, the analytical model over-estimates

the dissipation of energy through micro-collisions by

assuming the grain is not movable, i.e. that the ball is

very light. In doing so, it also neglects the energy spent

in plowing. Within the conditions of our experiments,

it seems these two small effects have compensated each

other, and an order-of-magnitude Krr estimate is ob-

tained with the analytical model, for balls with a mass

lower than 3 kg.

The estimates of rolling resistance coefficient val-

ues have a number of geophysical applications, such

as analyses of the evolution of talus slopes [27]. An-

other application of interest relates to the exploration

of small bodies of the Solar system such as asteroids and
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Fig. 8 Simulations of lander descent trajectories to asteroid Itokawa for various Crr values. The dark trajectory has a high
Crr = 0.0175, the intermediate trajectory has a nominal Crr = 0.035, and the light trajectory has a low Crr = 0.0705.

comets, which are known to have loose, granular sur-

faces. Missions such as the proposed Binary Asteroid

in-Situ Explorer (BASiX) aim to explore these bodies

using uncontrolled, spherical lander packages [1]. These

landers are released from orbit, balistically descend to

their respective target, and operate a number of scien-

tific instruments once settled on its surface [28,29]. As

identified in [30,31,32], rolling resistance is one of two

major sources of energy dissipation of the landers. It

therefore affects the landers’ settling time and profile,

and in turn imposes mission and hardware constraints

such as required battery capacity. As our model for the

rolling resistance is independent of the gravitational ac-

celeration g, it can be applied to the microgravity envi-

ronment present on these small bodies (ignoring cohe-

sion effects that may contribute to rolling resistance).

To illustrate the influence of rolling resistance on

the descent and settling trajectory of lander, Fig. 8

shows three simulations of lander deployment to aster-

oid Itokawa, where different values of Crr were used.

These simulations take into account the complex grav-

itational field, surface shape, and contact interactions

between a lander and an asteroid; for detailed discus-

sions the reader is referred to [33]. Rolling resistance

affects the dissipation of energy during collisions and

contact between a lander and the asteroid surface. Due

to this difference in Crr, the landers in the simulations

have slightly different velocities following the first im-

pact, shifting the location of the second impact. As the

surface features on the asteroid have local slopes that

vary strongly, the location of third impact is offset even

further from the nominal trajectory. This effect propa-

gates throughout the lander trajectory and provides a

chaotically different descent profile. From a global per-

spective, the coefficient of rolling resistance affects the

rate of energy dissipation throughout the lander tra-

jectory, thereby controlling the time a lander takes to

come to rest on the asteroid surface. An accurate esti-

mate of Crr is therefore required to predict this settling

time, which will influence the hardware selection.

7 Conclusions

In this paper, we have studied the coefficient of rolling

resistance of a spherical pod rolling without slipping

and without plowing on a granular bed, by means of

experiment, analysis, and simulation. For this regime

of motion, experiments reveal a rolling resistance co-

efficient independent of mass and velocity. We found

mean coefficient values of Krr = 0.052 for a basketball

and Krr = 0.066 for a medicine ball.

An exhaustive rolling resistance model should ac-

count for this plowing, but for the considered regime,

we have constructed a simplified model that provides an

approximation for the contribution of micro-collisions

to rolling resistance, by ignoring plowing effects. This

model predicts a rolling resistance coefficient indepen-

dent of the pod velocity, matching the experimentally

observed behavior. Additionally, it predicts an inverse

relationship between the coefficients and the reduced in-

ertia (1 + j) of the considered spheres. This too agrees

with the observed trends.

Simulations further supported these coefficient val-

ues, but did reveal a mass dependency that is not cap-

tured by the model. Analysis of the sources of energy

dissipation in the simulations showed that this depen-

dency results from the plowing of the spheres into the

granular bed, but that its contribution remains small

for low weights. For heavy weights, plowing becomes
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the dominating source of energy dissipation. The co-

efficient estimates have applications to the design and

dynamics of lander pods on asteroid and comets, as

landers on these bodies have very low weights.
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