A Model and Algorithm for Concurrent
Access within Groupware

Clarence A. Ellis

CU-CS-593-92 April 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE



A Model and Algorithm for Concurrent
Access within Groupware*

by

Clarence A. Ellis
MCC Software Technology Program
Austin, Texas, USA

Abstract

Groupware supports a group of users engaged in a common task. This paper
introduces some groupware concurrency concepts and requirements, and pre-
sents a new model which has been useful in understanding concurrency
issues, as well as many other issues of groupware architecture. The model is
then applied to verify the cormrectness of a distributed algorithm which main-
tains consistency without locking, and without rollback, within a dynamic non-
serializable environment.

An important aspect of the paper is that it introduces a novel verification tech-
nique that allows a designer to look at static graph theoretic properties of a
groupware system to determine consistency of its dynamic distributed opera-
tion. The model, the algorithm, and the verification technique are applied to the
GROVE group editor which was implemented at MCC.

A

1. Introduction

Groupware aims to assist groups in communicating, in collaborating, and in coordinating their
activities. Groupware can be defined as computer based systems that support two or more
users engaged in a common task or goal, and that provide an interface to a shared environ-
ment. The groupware group at MCC’s software technology program has been researching
groupware and computer supported cooperative work for the past five years. A number of
prototypes have been produced, measurement and modeling of those prototypes has oc-
curred, and lessons learned have lead to various theories and models of the resultant pro-
cesses and systems.

These systems can be categorized as real-time groupware versus non-real-time groupware.
Examples of real-time groupware are real time group editors, video conferencing systems,
and group decision support (electronic meeting room) systems. Examples of non-real-time
groupware are office coordination systems, intelligent electronic mail, and software engineer-
ing project managers. See [Elli90b] for further examples and references.

* A preliminary version of this paper, without presentation of model and proof, appeared in
the proceedings of the ACM SIGMOD’ 89 International Conference on Management of Data.



It is useful to distinguish groupware from other multi-user systems. For example, both
database management systems and timesharing operating systems support multiple users.
However neither of these are considered groupware since they provide little notification - if
one user performs some action, perhaps inserting a tuple or creating a process, other users
are not normally notified of the action and may only learn of it by explicitly querying the sys-
tem.

This paper is concerned with concurrent access within real-time groupware. An example that
many find easy to relate to is the multi-player game. Here the movement of one player’s
token, perhaps a tank or spaceship, triggers updates on the displays of all players. Other
examples can be found in the area of computer supported cooperative work TCSCW86,
CSCWS88]. For instance, in real-time computer conferencing [Sari85], the users, ‘who are
often at different locations, communicate through a software medium. This software might
allow the users to view and modify a shared graph structure [Ste87] or edit a shared outline
[Elli88]. There are significant challenges in implementing groupware that typically do not
arise in other applications. Some of these challenges [Elli90b] reside in the areas of group in-
terfaces, access control, social protocols, and coordination of group operations. For instance,
groupware introduces new complexities to the user interface: the interface must depict group
activity, and designers must weigh the need for continuous display of group context against
the potential for distraction. Concurrency control also has novel aspects within groupware as
will be demonstrated in this paper.

An invocation of a groupware system is called a session. Groupware sessions at MCC are
typically an hour or two in length but may be much shorter or much longer. At any point in
time, a session consists of a group of users called the participants. The session provides
each participant with an interface to a shared context, for instance participants may see syn-
chronized views of evolving data. The data at participants’ sites is referred to as session ob-
jects. In groupware, it is useful to make a distinction between response time, and notifica-
tion time. The system’s response time is the time necessary for the actions of one partici-
pant to be reflected by their own interface; the notification time is the time necessary for one
participant’s actions to be propagated to the remaining participants’ interfaces.

Real-time groupware is characterized by the following:
e highly interactive - response times must be short.
e real-time - notification times must be comparable to response times.

e distributed - in general, one cannot assume that participants are all connected Ly,

to the same machine or even to the same local area network. o

e volatile - participants are free to come and go during a session.

e ad hoc - generally the participants are not following a pre-planned script, it is
not possible to tell a priori what information will be accessed.

e focused - during a real-time work session there is a high degree of synergistic
shared data access, and many unwanted access conflicts.

Groupware Systems Page 2

%
3

TN
w i



¢ external channel - often participants are connected by an external (to the
computer system) channel such as an audio or video link. We used
speaker phones within our offices for many of our groupware sessions.

One example of real-time groupware is GROVE (Group Outline Viewing Editor) [Elli88], a
fully distributed outline editor which we implemented in the Software Technology Program at
MCC. It was specifically designed for real-time use by groups of people simultaneously edit-
ing a document during a session. GROVE supports private, shared (subgroup), and public
views and windows. Figure 1 shows a typical GROVE shared group window; it appears on
the workstations of the three participants shown along the bottom border of the window.
Thus a participant can see at a glance who is currently sharing any group window because
the iconic bitmap image of participants is always present at the bottom of each window. '

5 view id
O | Outline Title {}
O | 1. ltem 1 is readable and writable. i
| 1.1 Hem 1.1 is also readable and writable.
O | * This shared item is readable and writable.
3%

*.* This shared item is read-only.

Figure 1. A GROVE group window.

Participants can modify the underlying document by performing standard editing operations
(insert, delete, cut, paste, etc.) in any of the windows in which they have appropriate permis-
sions. GROVE provides a fine-grained concurrent editing capability which allows several
people to type into the same sentence at the same time and immediately see the effects of
each others’ edits. Participants can also change the read and write permissions of the vari-
ous document items. This editor illustrates some key groupware architectural concepts such
as group window (e.g. a window which appears on multiple participants screens,) telepointer
(a pointer or cursor which appears on multiple participants screens,) and WYSIWIS

Groupware Systems Page 3



(acronym for “What You See Is What I See” and denotes an interface in which the shared
environment is guaranteed to appear the same to all participants.)

Other real-time group editors are being explored [Kill90; Knis90]. Very closely related to re-
al-time group editors are loosely coupled (non-real-time) group editors such as CES
[Grie86], Quilt [Cohe88], or Shared Books [Lewi88]. These editors allow a group of users
to work on the same document, however each user typically works on their own section at
their own pace. As a result sessions are less focused and are longer in duration (days or
even weeks in length); also real-time notification may not be necessary because of the asyn-
chronous nature of participants’ actions. '

Considering the above, it becomes clear that group windows and telepointers add extra chal-
lenge to the usual notions of concurrency control. In this paper, a very general model (called
Team Automata) and a general, non-locking, non-roll-back algorithm for concurrency control
within fully distributed real-time groupware will be presented. The next section explores is-
sues related to concurrency control in this context, briefly describes our approach, and de-
scribes some alternative approaches. Section 3 describes the Team Automaton model of
groupware. Section 4 describes the category of fully distributed architectures to which our al-
gorithm applies, and the correctness criteria. The algorithm is developed in Section 5, and
some examples in section 6. Discussion of the correctness proof is presented in Section 7,
and conclusions in section 8.

2. Concurrency Control Problem

o

Concurrency control is needed within real-time groupware to help resolve information access
conflicts between participants, and to allow them to perform tightly coupled group activities.
For example, with a group editor, clearly there is a conflict if one participant deletes a sen-
tence while a second inserts a word into the sentence. In the usage observations of GROVE,
we have noticed that there is a mode of operation in which a tightly coupled group will do a
complex sequence of edit operations in a concurrent fashion, getting the task performed in a
much more efficient manner. Many CASE tools (computer aided software engineering) dis-
courage rather than enhance closely coupled teamwork. There is a need for mechanisms
which go beyond today’s typical technology. The various approaches to providing concurren-
cy control, such as explicit locking or transaction processing, that have been developed for
database applications do not appear to be suitable in groupware contexts. Interactive concur-
rency control techniques are much more useful in this context. The following section identifies
some of the issues related to concurrency control in groupware, overviews our approach, and
then discusses the drawbacks of some current approaches.

2.1 Issues

WYSIWIS. Although there has been little experience in the evaluation of interfaces to group-
ware [Grud88, Elli89] it appears that some form of a WYSIWIS interface [Ste87] is neces-
sary to maintain group focus. If each user sees a slightly different or out-of-date version then
the session’s cohesiveness is soon lost. WYSIWIS interfaces have two implications on con-
currency control, First response times are important - the time taken to access data, modify
data, or notify users of changes must be as short as possible. Secondly, if the concurrency
control scheme entails the use of modes where actions of one user are not immediately seen

Groupware Systems Page 4



by the others, then the effect of these modes on the group’s dynamics must be carefully ana-
lyzed and only allowed if they are not disruptive.

Wide-area distribution. One of the main benefits of groupware is that it allows people to
work together, in real-time, even though separated by great physical distances. Consequent-
ly these systems may be geographically distributed. With current communications technolo-
gy, transmission times and rates for wide-area networks are significantly worse than those
found in their local area counterparts; the possible impact on response time must be taken
into account.

Replication. Because the response time demands of groupware are so high, the data state is
usually replicated for each participant. This allows many potentially expensive operations to
be done locally. For instance, consider an editing session where one participant is in Los
Angeles and the other in New York. Typically each participant would be working in a win-
dowing environment. If the objects being edited and the data state are not replicated then
even simple scrolling operations require communication between the two sites. The resulting
degradation in response time may be catastrophic.

Robustness. Traditionally robustness refers to recovery from unusual circumstances, typically
these are component failures - the crash of a site or a communications link. While these are
also concerns within groupware, there is also a second form of robustness these system
must achieve, in particular, robustness to user actions. For example, the addition of a new
user to the set of users issuing transactions on a database is not normally considered a
major problem. However, with groupware, the addition of a participant may result in what
amounts to a reconfiguration of the system. Clearly the concurrency control algorithm must
adapt to such reconfigurations and in general recover from “unexpected” user actions
(abruptly leaving the session, going away for coffee, etc.).

2.2 Our Approach

At MCC, we have explored notions of soft locks [Elli87], and interactive concurrency control
[Yeh89]. This paper describes the dOPT algorithm which, when combined with the above
techniques, provides a powerful new concurrency control mechanism for groupware. dOPT ab-
breviates distributed operation transformation algorithm, and proceeds without locking or.
roll-back. This approach relies upon application specific semantic knowledge of the desired
outcome of concurrent operations. For example, when two participants make concurrent edits
to the same data structure, their local copies are updated immediately, and messages con-
taining the edit operation and carefully selected local state are sent to all other sites. When
each of these sites receives the other’s message, they know if they are performing the pair of
edit operations in different orders. Each first performs an application dependent transforma-
tion on the operation, and each applies the transformed operation to their local copy of the da-
ta structure. Voila! It is shown that for a significant class of applications, all is guaranteed to
end up consistent. '

2.3 Other Approaches

Locking. One solution to concurrency control is simply to lock data before it is written. Dead-
lock avoidance can be handled by the standard techniques (e.g., pre-locking all data to be

Groupware Systems Page 5



used within a transaction) or by methods more suited to interactive environments. For exam-
ple, with “tickle locks™ [Grie86], a request to a locked resource will be granted if the current
holder is inactive. Another technique is to provide participants with visual indicators of
locked resources [Stef87] and so decrease the likelihood of requests being issued for locked
objects. There are three main problems with locking: First there is the overhead in request-
ing and obtaining the lock, this may include waiting if the data is already locked. In any case,
there will be a degradation in response time. Secondly, there is a question of granularity. In
the text editing example, it is not clear just what should be locked when the user moves the
cursor to the middle of a line and inserts a character. Should the enclosing paragraph or sen-
tence be locked, the file? Or just the word or character? Fine granularity locking is less con-
straining to the participants but entails greater overhead. The third problem is determining
when locks should be requested and released. Using the previous example, should the lock
be requested when the cursor is moved or when the key is struck? The system should not
burden the user with these questions but it is hard to automatically embed locking into editor
commands. For example, if locks are released when the cursor is moved then a user could
move to one place to copy some text only to be locked out from pasting it into their original
location.

Transactions. Transaction mechanisms have been used for concurrency control in interactive
multi-user systems (for example, CES or Quilt), but, these are loosely-coupled systems and
have less demanding response time requirements. For real-time groupware there are a num-
ber of problems. First there is the complication of distributed concurrency control algorithms
based on transaction processing and the subsequent cost to response time. Secondly, if
transactions are implemented using locks there are the problems mentioned above, while if
some other method is used, such as timestamps, a user’s actions may be aborted by the sys-
tem. (Only aborts explicitly requested by the user should become visible at the user inter-
face.) Generally, transactions are not well suited to interactive use; for instance, a user with
two transactions active in separate windows on the same object would be presented with
two different data states - it would be better if the windows showed the same state.

There is a basic philosophical difference between databases and groupware. The former
strive to give each user the illusion of being the only user of the system, while groupware
strives to make the actions of each user visible to others. There has been some work on
“opening up” transactions [Banc85], however, the emphasis of this work has been on coor-
dination of nested transactions rather than elimination of the constraints imposed by locking
and transactions. :

Single Active Participant. Some real-time computer-conferencing systems are intended for
situations where only one participant at a time “has the floor” [Lant86]. Access to the floor
may be controlled by software or through an external protocol (for example, verbal agreement
by the participants). The main problem with this approach is that it is limited to just those
situations where having a single active participant fits the dynamics of the session, in partic-
ular, it is not suited for sessions with much parallelism among participants. It may overly in-
hibit the free and natural flow of information among participants. Additionally, if change of
floor is left to an external protocol, then participants’ errors in following the protocol, or non-
cooperation (refusal to follow the protocol), can result in two participants believing they have
the floor (and potentially issuing conflicting operations).

Groupware Systems Page 6



Dependency-detection. One proposal for concurrency control in groupware is the dependen-
cy-detection model [Stef87]. Dependency detection is based on the use of timestamps to
detect conflicting operations; conflicts are resolved by manual intervention. The great advan-
tage of this method is that no synchronization is necessary, non-conflicting operations are
performed immediately upon receipt, so response is very good. Mechanisms which involve
the user, in general, are appropriate and valuable in groupware applications. However, any
method which requires user intervention to assure data integrity is, of course, vulnerable to
user error.

Reversible execution. Other schemes have been proposed, and several are under active
investigation. Reversible execution is one of these proposals for concurrency control in group-
ware. With reversible execution [Sari85], operations are executed immediately but informa-
tion is kept so that they may be undone later if necessary. Many optimistic concurrency con-
trol mechanisms fall within this category. A global time ordering in defined for the operations
(this may be provided by a central sequencer or ordering on timestamps and site identifiers).
When it is detected that two operations have been executed out of order, they are undone
and re-executed in the correct order. As with dependency-detection, this method is very
responsive. Its disadvantages are the need of a global ordering of operations and the
unpleasant possibility that an operation will appear on the user’s screen and later disappear
because it is undone. There are groupware scenarios in which the forcing of a total ordering
produces undesirable behavior, as will be shown later in this paper.

3. The Model .

Groupware presents a need to integrate technical, social, and organizational concemns to
produce systems which are truly beneficial. The author therefore believes that groupware
modeling should encompass organizational goals and procedures, people (and groups) and
their social structures, and the tools and systems which can aid in the achievement of these
goals [Olson90]. The author also believes that no one model will satisfy all needs and be
good for all modeling purposes. In that spirit, this paper describes one of a number of models
of interest, and does not represent the spectrum of our groupware concerns. The model is
novel and useful in the domain of analysis of groupware architectural structures. It models
the communication network, the application domain, and the information structures of
groupware, but does not explicitly model the social or organizational aspects.

There are a number of important and outstanding issues that must be faced in the design and
implementation of groupware [Elli90b]. Some of these issues, such as distribution, privacy,
notification, and group control, fall within the domain of groupware architecture. Our group
within MCC has implemented a variety of types of groupware, and strongly believes that a
groupware architecture model is needed for (at least) two reasons. First, the implementation
of these systems becomes quite complex, and algorithms that have been implemented at
MCC and elsewhere to solve problems have been elusively inadequate. A model is much
needed to reason about the correctness and performance of these implementations. Secondly,
there is a need to understand the underlying commonalities of these implementation
constructs. A model such as this can suggest general constructs, elucidate the spectrum of
implementation possibilities, and help lay the groundwork for a "groupware implementation
language."

Groupware Systems Page 7



3.1 Team Automaton Definition

Within our model, one composes a groupware system (modeled as a team automaton), by
creating instances of one or more of the four basic classes of component automata, and
hooking them together in a loosely coupled or tightly coupled fashion. This aggregate can
then, in turn, be used as a component in a larger team automaton. The four basic classes of
automata are:

1) Application Automata (which capture the computations on application objects),

2) Information Base Automata (which capture the information structures or the DBMS),

3) Connection Automata (which capture the network protocols and transmission buffering),
and

4) User Interface Automata (which capture the info presentation and user input aspects).

One then specifies the internal operations performed by each of these component automata.
The component automata are all defined in the same way. They are an embellishment upon
the Input/Output Automata conceived by Professor Nancy Lynch at MIT [Lync87]; they are
nondeterministic, they interact via “shared actions,” they can have an infinite number of
states, they can be iteratively nested to form composite automata which satisfy the same
definitions, and they can be used to specify simultaneous group operations. The Lynch model
is embellished by allowing multiple automata to participate as active inputs to the “shared
action” as occurs within groupware sessions.

The automata defined by Lynch represent a rather low level mathematical specification,
rather than a high level language specification such as CSP [Hoar78] or Raddle [Form89].
The mechanism is simpler, and at a much differeént level than the multiway rendezvous
[Char87] or the n-party interaction [Fran90]. They are known to be adequate to specify
shared variable systems, and message passing systems, although they are neither. They
have the power to specify synchronous or asynchronous, blocking or nonblocking systems.
Thus their utility is derived from mathematical tractability rather than from human readability
or machine executability. Indeed, for some applications, we have encountered aspects of the
model which make precise description of the system behavior awkward [Malm89]. Thus,
although the author is not completely contented with the model, a large body of literature,
theorems, and proof techniques on automata theory is available, and applicable to this model.
This has been quite useful.

The automata are rather ordinary, but their interconnection strategy is intriguing because, as
we mentioned, it is neither shared variable nor message passing. Lynch classifies the
actions which take an automaton from one state to another into three categories:

1) input actions (from another automaton),

2) output actions (to other automata),

3) internal actions (strictly local visibility).

Thus the automaton interconnection strategy is ‘“shared action” in which one or more
automata specify within their input action sets, the same action as one or more other
automata specify within their output action sets.

A component automaton C consists of the following four mathematical entities:
1) a nonempty state set, S(C),

Groupware Systems Page 8



2) a nonempty initial state set, I(C) contained in S(C),
3) an action signature, A(C),
4) a transition relation, F(C) contained in S(C) X A(C) X S(C).

[/O automata as defined in [Lync87] also include a fifth component, an equivalence relation
part(C) which is used for describing fair executions. Since it is not needed in this paper, it is
omitted from the current definition. Likewise it is sometimes convenient within the user
interface automata to specify an output function which controls the display of information to
the users. That is a different topic, and omitted from this paper.]

An action signature A is an ordered triple consisting of three pairwise disjoint sets of
actions. We write in(A), out(A), and int(A) for the three components and refer to the actions
in the three sets as input actions, output actions, and internal actions of A, respectively. In
the system being modeled, the distinctions are that input actions are not under the local
system’s control and are caused by another non-local component, the output actions are
under the system’s control and are externally observable by other components, and internal
actions are under the local system’s control but are not externally observable.

A component automaton is considered to start in some initial state of I(C), and to execute
instantaneous transitions into other states of S(C). Note that the state sets need not be
finite. This means among other things, that one can model asynchronous message passing
systems with unbounded buffer capacity. The transition relation relates a state and an action
to another state. If the triple (51’ a, s2) is in the relation, then this is interpreted to.mean

that the automaton, when in state $1 and presented with the action a, can transition into
state s,. We refer to (sl, a, 52) as a step of C. An execution of C is a finite (also can be
extended to infinite) sequence sg, ay, $y, @y, ...8,, s, of alternating states and actions of C

such that S0 is contained in I(C), and (Si’ 8,158 +1) is a step of A for every i.

Given a collection, {Ci} of component automata, a team automaton T consists of the

following four mathematical entities;
1) a nonempty state set, S(T) =II(S;) where II denotes the cartesian product,

2) a nonempty initial state set, I(T) = I(I,) where IT denotes the cartesian product,

—

3) an action signature, A(T) = E(Ai) where E denotes the action signature composition

operation described below,
4) a transition relation, F(T) containing all admissible triplets (s, a, s’) such that s and s’
are members of S(T) and a is a member of A(T).

If there are n component automata being combined to compose a team automaton T, then the
state set S(T) is composed of states which are n-tuples or n element state vectors, one
element from each of the contributing Ci' On the other hand, the action signature, A(T), is

composed of all single actions from any one of the component automata, not vectors of
actions. An action is executed by this team automaton by finding all component automata
which can execute the action from their given state at the given time, and requiring them all

Groupware Systems Page 9



to simultaneously do it. All component automata which do not recognize that action are
dormant during that cycle. A requirement for a set of component automata to be composed is
that their internal action sets be disjoint. Then the internal action set of T is the union of the
internal action sets of the components. Also the T output action set is the union of the
component automata output sets, and the T input action set is the union of all component
inputs minus the set of all component outputs.

3.2 Team Automaton Example

To illustrate these concepts and definitions, a simple example is next presented of two
component automata, Cl and 02 which each have two states and three actions (an input

action, an internal action, and an output action) as shown diagrammatically in figure 2. Notice
that the composed team automaton, T = C; IT C,, has two output actions and only one input

action. All other actions of C1 and C2 are members of the internal action set of T. The formal
definitions of Cl’ C2 and T are as follows:

Component Automaton Cy:

S5=1{81-init> $1-home >
A={ag_oup 21-int’ 81-out’ <note that ag . is the only input action for C;>

F={(s l-init’aO—out‘Sl-home)’ (sl-home’al-int’sl—init)’ (s l-home’al-out’sl—home) > .
Component Automaton Cy:
S={s,_init> $2-home >
A={ag_our 21-our 82-inp 32-outs <note thatay . anda; ., are input actions for C,>
F={(s7_init0-out52-home)* (2-init®1-out'S2-home”
(82-home’22-out’S2-home” 2-home22-int>S2-init) +*
Team Automaton T:
S={ [Sl-init’s2-init] <this is the initial state for T>,
[31-init'S2-home!
[31-homeS2-init!

[$1-home-S2-home!»
A={ ag_yyp <this is input action of T>

aj_int 80-ipp <internal actions of T>

21_our 22-out) <output actions of T> }

F={  [(51.init20-our’1-home)> 82-iniv0-out’2-home)
[(5:21_outS1-home) $2-init?1-outrS2-home)l
[(51-home?1-int"S1-init» 0
[0: 52-home22-int52-init)}

Groupware Systems ) Page 10



[0: (52-home'22-outS2-home1 -

Braces {} denote sets; parentheses () denotes relations, brackets [] denote vectors, and
angular brackets <> denote comments.

a0-out
Team Automaton T
al-int Y
Automaton
¢
al-out
a2-int \ A J
Automaton .
. ©2
al-out \ aZ-out

Figure 2. Example Team Automaton

Component automata deviate from Lynch’s definition of /O automata by not requiring that
there must exist a transition for every combination of state and input action. Thus our
automata are not forced to be input enabled, and an algorithm can choose to ignore (not be
interrupted by) certain input actions while in certain states. Team automata deviate from
Lynch’s definition of composition of automata by not requiring that the output actions of the
component automata be disjoint. This allows the modeling of group operations that mirror the
ways that tightly coupled, well coordinated groups work.

4. The Architecture

A groupware system consists of a set of participants and other components. Frequently, par-
ticipants have sub-systems to help them communicate and attain their goals. Groupware
architectures can be classified according to the connectedness of the sub-systems, and
according to the level of centralization or decentralization. There is a spectrum of design pos-

Groupware Systems Page 11



sibilities from fully centralized to fully distributed implementation for each of the four compo-
nents of a system corresponding to the four classes of component automata which were intro-
duced in the previous section. Data can be centralized, distributed, or hybrid (modeled by the
information base automata.) Control can be centralized, distributed, or hybrid (modeled by
the connection automata.). But in addition, groupware needs to pay careful attention to the
group user interface. Thus, the computation of the user views as seen on participant screens
(or other devices) can be done once centrally, or done separately at each site (modeled by
the user interface automata.) The same argument for a spectrum of possibilities holds for the
application computations (modeled by the application automata.)

It should be clear that the model presented is capable of expressing a wide range of group-
ware architectures. See [Elli90a] for further examples. However, in the remainder of this pa-
per, the focus will be on using the model to describe and analyze the architecture selected for
the distributed GROVE system.

4.1 Fully Distributed Systems

A particularly interesting category within the above classification is the fully distributed sys-
tems (distributed control, distributed data, distributed application, and distributed user inter-
face.) These systems have very high performance potential, exhibit tantalizing distributed
computing challenges to implementors, and can be sculpted to elegantly fit the real-time
groupware requirements previously listed. The further discussion in this paper assumes a
distributed workstation environments where the local computing facilities associated with
each participant, called the participant’s site, are capable of storing a significant subset of the
operational data, performing operations on this data locally, and displaying the data via differ-
ent user interfaces and different views. Given the decreasing price and size of computation
power (processors,) this is a viable option, and may be a very popular option of the future. It
is one of the options available within our lab, and provides the platform for GROVE (which is
built upon a platform of Sun workstations, ethernet, NeWS window manager, and UNIX
based tools.)

Usually, there is one site per user, and a site corresponds to one or more machines (the us-
er’s workstation and assessories); however some machines may run multiple sites. It is as-
sumed that any site can communicate with any other site; they are typically connected via
high speed networks. Within the category of fully distributed systems, there are still many
possible choices of architecture. One must decide, for example, which modules are directly
connected to which other modules. E.g. should the information base automata be directly in-
terconnected?

Figure 3 shows a block diagram of the team automaton model of the distributed GROVE ar-
chitecture. An arbitrary, finite number of sites are allowed; notice that the sites are shown
connected by a transport connection automaton in figure 3. The transport connection automa-
ton (TCA) is a subclass of the connection automaton which is frequently needed to model
buffering in asynchronous systems and delay in communication lines. Thus, this automaton
simply acts as a broadcast communications buffer by accepting input events from any site,
and delivering them to all other sites after some finite delay. Events may be delivered with a
computed or random delay, they may arrive out of order, and arrive at different times to differ-

Groupware Systems Page 12



ent sites. Our model assumes that the number of sites is fixed, and that no failures occur;
these simplifying assumptions can be removed, as shown later.

Figure 3. Groupware Fully Distributed Architecture

Transport Connection Automaton (TCA)

NCA UIA NCA UIA NCA UIA
AA AA AA
IBA IBA IBA

site I-1 site I site I+1

legend:

NCA means Network Connection Automaton
AA means Application Automaton

UIA means User Interface Automaton

IBA means Information Base Automaton
TCA means Transport Connection Automaton

4.2 Internal Architecture

Internally a site consists of four components as shown in figure 3. The network connection
automaton (NCA) is a site manager, the application automaton (AA) executes the applica-
tion operations, the information base automaton (IBA) handles data manipulation, and the
user interface automaton (UIA) handles all input from and presentation to the local partici-
pant. Each of these automaton types is next described in slightly more detail.

The network connection automaton (NCA) is a subclass of the connection automaton which
implements the distributed control algorithm. It receives all relevant events from other sites
via the TCA and delivers them to the local UIA and AA, Also, it is the sender of local events
from the local participant via the UIA to other sites via the TCA. It maintains eventcounts

Groupware Systems Page 13



and history lists so that it can send and receive local state information to/from other NCAs.
It is independent of the details of the application. The GROVE distributed control algorithm,
which executes within a set of NCAs, will be a primary object of study in this paper. That al-
gorithm will be described and verified.

The application automaton (AA) contains and executes all application specific data and algo-
rithms. It receives requests to perform application specific operations from its local NCA. Lo-
cal requests are passed from the local UIA to the local NCA to the AA. Other sites non-lo-
cal requests are passed from another site to the TCA to the local NCA, and then to the AA.
Modularity which separates the AA in this manner has the advantage that all application
operations, local and non-local, have a single locus of execution at any site. Applications can
be either collaboration aware as in GROVE, or collaboration unaware in which case the
application does not know that it is servicing more than one client. Collaboration aware appli-
cations can use their knowledge of the participants and of the application domain to assist
the UIA to present tailored and enhanced information to the participants, to assist the NCA,
and to do more sophisticated application computation. Collaboration unaware applications
represent the vast majority of currently existing applications. This option implies that there
is no need to laboriously alter or recreate an existing application in order to allow it to be
shared in real time by a group.

The information base automaton (IBA) is concerned with the storage structures and algo-
rithms of the information objects being manipulated. This sub-system may range from an
elaborate object oriented database to a simple string manipulation program. The information
may be standard database data (e.g. employee records,) or a set of documents, or multime-
dia nodes of a hypermedia system, or CAD design objects. Since these structures are typi-
cally application dependent, this module is frequently directly connected to the AA (see fig-
ure 3.) Architectural issues arise in this domain as to whether the set of IBAs should trans-
parently handle all replication of data, and be interconnected as a separate subsystem, or
whether replication should be a system visible property. In the GROVE design, we have cho-
sen the latter approach, partly because distributed object oriented databases fulfilling our
requirements were not available at the time, and secondly because system visibility allows
us to experiment with more options and alternatives.

The user interface automaton (UIA) implements presentation and user input functions. It re-
ceives input (e.g. keystrokes) from its local participant which it must pass to the AA. It re-
ceives data from the AA which it must present in an appropriate manner to the local partici-
pant. Frequently the UIA cannot simply spit out the next output, but needs to input the com-
plete set of objects which form the relevant context, perform a transformation, and then
regenerate a new output object set. If the participant manipulates the application by sophisti-
cated input devices in interesting non-procedural ways, this must be mapped to standard
high level input and output events that are expected and can be processed by AAs. If the par-
ticipant wants to view the items of data which are output by the application as graphs or as
animations, then these transformations must be handled by the UIA. The UIA describes and
monitors the participant’s IO environment, and is directly connected to the local NCA so that
both local and non-local communication can occur without the AA necessarily being collabo-
ration aware.

Groupware Systems Page 14



In this analysis, the UIA is not explicitly employed. Correctness is viewed in terms of the
consistency of the replicated information objects, independent of the manner in which these
objects, or a subset thereof, are presented to the participant. Likewise, the IBA is not explic-
itly employed; instead the discussion is simplified by assuming that the AA can directly ac-
cess the information objects via a predefined set of actions.

4.3 Model Definitions

A session is defined to be a finite execution of a team automaton. Associated with a session
is a session object set - the set of information items manipulated by the application. In the
fully distributed case, this session object set is replicated at each site. Thus there is an in-
stance of all of the working data, called a site object set, resident at each site, and controlled
and manipulated by the local information base automaton (or the AA in simplified cases.)
Note that session object sets are an abstraction, and there is no "master copy" stored any-
where.

The concurrency control team automaton presented in the next section is the specification of
an NCA and an AA. Informally, it works by testing each incoming event into the NCA to see
if it possibly overlaps with other events. If not, the event is passed to the AA to be execut-
ed. If so, the event is queued, passed to the AA at the correct time to be transformed, and
then executed. A team automaton is defined to be correct if it guarantees that an initially con-
sistent system will, at the conclusion of any admissible execution, still maintain consistency,
semantic integrity, and temporal ordering. N

Definition. The consistency property states that all site object sets (replications of
the session object set) must be identical at the conclusion of any admissible team au-
tomaton execution. Note that the automaton must begin in a valid start state. This is
a state in which the data sets (site object sets) at each site are identical. The compo-
nent NCA’s and AA’s must all execute the dOPT algorithm specified in the next sec-
tion.

Definition. The temporal ordering property states that if one event is completed at
site s before a second event is initiated at site s, then the effect of the first event
should precede the effect of the second at all sites at quiescence.

Definition. The semantic integrity property states that any site object set, at quies-
cence, must conform to the operation semantics and to the concurrency semantics
specified for the application.

Examples employing these definitions will be presented later. The first two properties are
enforced by the concurrency control algorithm which executes on the NCAs, The third proper-
ty, which insures that consistency is not maintained via semantically meaningless transfor-
mations, is application dependent, and must be enforced by the AA when it performs the
transformations, The algorithm presented next applies to applications executing within a fully
distributed architecture as depicted by figure 3. It handles non-serializable event sets, and
requires no locking.

5. The Algorithm

Groupware Systems Page 15



We will now look at a distributed non-locking algorithm for solving the concurrency control
problem in fully distributed groupware. This algorithm has two properties which make it suit-
able for such systems. First, operations are performed immediately on their originating site,
thus responsiveness is good. Secondly, the algorithm is completely distributed; this can also
help achieve responsiveness and robustness.

We make the following assumptions:
1) the number of sites is constant,
2) sites do not fail,
3) messages are received without error
4) messages are not lost.

Note that it is not assumed that messages arrive in the order in which they were sent. (This
has a practical advantage of simplifying implementations using datagram protocols. A prob-
lem with virtual circuits is that each site must maintain a link to all other sites. With data-
gram protocols this is not necessary, however, messages may arrive out of order.)

It is possible to extend the algorithm to account for a varying number of sites over time and
site failure. These extensions will be discussed at the end of this section. The third and
fourth assumptions should be satisfied by the communications protocols so we take them as
given.

5.1 Data Structures

State Vectors. Let N be the number of sites in the system (we are assuming that N is con-
stant). Each site has a unique identifier (for example, its network address). For simplicity,
assume that the sites are identified by the integers 1....N. The state vector of site j, is a N
component vector where the i’th component indicates how many operations from site i have
been processed by j. Given two state vectors, s; and sj, we say that:

)s;= 5 if each component of s, is equal to the corresponding component
of S
2)s;< 5 if each component of s; is less than or equal to the corresponding

component in 5; and at least one component of s; is less than the

corresponding component in Sj

3)s;>s; if at least one component of s; is greater than the corresponding
component in S

Groupware Systems Page 16



Requests. Requests are tuples of the form <i, s, o, p> where i is the originating site’s
unique identifier, s the originating site’s state vector, o an operation, and p is the priority as-
sociated with o.

Request list. Requests waiting to be processed by a site manager are kept in the site’s
request queue. A request, <j, s, o, p>, in Q;, the request queue for site i, indicates that o has

been requested by site j while in state s. An entry is added to the request queue when: 1)
the site manager receives a request from the network, or 2) the site manager receives a
request from the user interface. Entries are removed from the request queue when the site
manager determines that the requested operation may be executed. (Note, although the term
“queue” is used, entries need not be removed in first-in-first-out order.)

Request Log. Each site manager maintains a log of requests performed on the site. A
request, <j, s, o, p>, in L; indicates that site i while in state s, performed operation o

(requested by site j). The log is ordered by insertion, so it is possible to find the first entry,
the most recent entry, and to step through in insertion order.

Transformation Matrix. The transformation matrix is the key to resolving conflicting opera-
tions and is how semantic knowledge of the application is introduced into the algorithm. The
transformation matrix, T, is an m x m matrix, where m is the number of actions defined over
the session objects. Each component of T is a function which transforms events in conflicting
situations into other events. These functions are executed at the appropriate times by the
AA.

5.2 The Distributed Operational Transformation (dOPT) Algorithm

A specification of the distributed operational transformation (abbreviated as dOPT) algo-
rithm is presented next using a generic algorithmic specification language augmented by
send, receive, and broadcast operations. The following is the algorithm as executed by the
network connection automaton (NCA) at the i’th site. All other NCA’s execute an identical
algorithm.

Initialization:
Qi o

L« o

Si «— <0,0,...,>

Main Loop:
do while TRUE

i <.l 1] ' y
receive <J sJ 0] p)>

Ql(_ Qi+ <J' sj; Oj: Pf

Groupware Systems Page 17



for each <j, Sj Ojs pj> € Q; where sjssi begin

Q; ¢ 0;-<, Sp 0p Py
if i=j
broadcast <i, s;, 0}, pj> to all other sites

fi

iij(Si

<k, s, 0, pp> ¢ most recent entry in L; where s;, < 5
do while <k, s;, 0y, pp># ¢ and 0] # 0
if the k’th component of 5 is < the k’th component of s,
let v be the index of oj (ie, oj € Mu)

let v be the index of 0} (ie, oy € Mv)

o; «— Tuv(oj’ O Pj: P i) {by application automaton}
fi
<k, sp, Oj» Pj> ¢ nextentry in L; (or @ if none)
od
fi
if oj Zz¢

perform operation o ; on i’s site object set {by application automaton}

Li — Li + <j, Si' Oj, PJ>

fi

s; ¢— s; with j’th component incremented by 1

end

od

Groupware Systems Page 18



The initialization section simply sets the site’s log and request queue to be empty and initial-
izes the site’s state vector. The algorithm then enters its main loop. The first statement re-
ceives a request (which would come from the network (TCA) or the user interface (UIA));
the request is then added to the queue. Next the queue is examined for requests which may
be executed. Let S be the state vector of an entry in the request queue, there are three pos-

sibilities:

Case I: Sj > 8

The operation cannot be executed at this time (site j has performed operations
which have not yet been performed by site i) and so is left on the queue.

Case IT; sj =5;

When the two states are equal the operation is performed immediately (and, if
i = j, the entry is also broadcast to the other sites).

Case III: sj <s;

In this case the operation can also be performed. However, since the execution
order of operations on site { will differ from that on site j, the operation must first
be transformed by examining the log entries site i has accumulated and which are

more recent than sj.

The second and third case both lead to the execution of an event by the application automa-
ton. When this occurs, an operation is applied to the site object set by the AA, added to the
log by the NCA, and the state vector is incremented.

5.3 Transform Algorithms

Since the transform algorithms are application dependent, the following discussion will focus
upon the text editing application as exemplified by the GROVE editor with a text string (set
of characters) as its site object set. Consider a group editor with two types of operations
(actions) defined as follows:

A1 = insert[X; P] insert character X at a position P in the text string,

A2 = delete[P] delete the character at position P in the string.

The events which can be applied to the site objects are instantiations of the actions. In the
previous case, this would be operation instances such as o = A,[a, 3]. Each event changes

the state of the site object, for instance o(“xyz”) is “xyaz”.

If a string is represented as a set of (value, position number) pairs, S = {(Si' ui), i=1..k}
then we can define the standard textedit semantics for insert and delete as follows:

Groupware Systems Page 19



insert(x, u) applied to a string S yields string S” whose elements are (S;’, u;’) such that:
Si, = Sl’ and Ui’ = ui if ui <uy;

Si’ = Si’ and ui’ = ui+l ifui 2u;

and add (x, u) to the set S’.

delete(u) applied to a string S yields string S” whose elements are (S;’, u;”) such that:

omit the pair (x,u);
Sl = Si, and ui ==ui1fui <u;

Si, = Sl’ and ui’ = Ui-l lful 2u

Other GROVE edit operations such as cut, paste, copy, and move have similar semantics,
and can be derived from insert and delete. The transformation matrix T which is executed by
the application automaton, has four entries in the case of two actions (insert and delete). We
call this the GROVE transform matrix. This transform is applied in case III of the above algo-
rithm. This is the case when i is not equal to j. If we have two operations o; = insert[X; ; P

and 0j= insert [X 7 Pj} originating from sites i and j, then T ; is defined as:

Tll(ol’ ,pi, pj) = Oi’ where

%
if(P; < Pj) .
ol-’ = insert[Xi,' Pé]
else if(Pi > Pj)
o; = insert[Xi; Pi +1]
else /* P; = Pj */
if(X; =X j)
o/ =9

else
if(P,' >p j)

oi’ = insert[Xi; Pi + 1]

else /* p; Spj */

Groupware Systems Page 20



fi
fi
fi

There are two interesting cases in the definition of T;;. First, when the arguments of both

operations are equal, o;” is set to null. The reason is that since i # j (T is never applied to

pairs of operations from the same site), it must be that two different sites have requested
the same operation before seeing each others’ request, hence it is possible to ignore one re-
quest. The second interesting case is when P; = Pj (i.e., the insertion positions are equal),

such conflicts are resolved by using the priority order associated with each request. Priority
is used for tie-breaking when similar operations are initiated concurrently. All nodes must or-
der these in the same way. One would think that a unique site identifier would be sufficient,
but we will see in the next section that it is not. The priority of an operation used in T is a
composite of its predecessor’s priority and its originating site identifier.

The remaining entries of T are simpler; they are listed here for completeness:

T22(delete[Pi], de]ete[Pj], pypp j) = oi’ where
if (Pi < Pj) . .
o/ = delete[P; ]
else if (Pi > Pj)
o= delete [P; -1]

else

fi
T 1 Z(insert[Xl-; Pi]’ delete[Pj], Pp pj) = ol-’ where
if(pP; < Pj)
Oi’ = insert[Xi; Pi]

else

fi

Groupware Systems Page 21



T, (delete[P;], insert[X i P j]’ ppp J-) = 0;’ where
if(Pi <P J)
o/ = delete[Pi]

else

o = delete[Pi +1]

fi
5.4 Quiescence

As mentioned at the beginning of this section we have made a number of assumptions (fixed
number of sites, no failures) that would in practice limit the usefulness of this algorithm. Fur-
thermore, as it stands, the algorithm has a continuously growing data structure (the log)
which must be scanned when calculating a request’s priority and when transforming a
request on an earlier state. These problems can be solved by regularly quiescing the system.
Quiescence should be enforced periodically (e.g., once every few minutes) and when the sys-
tem falls quiet for an extended period of time (e.g., ten seconds). Detection of quiescence is
equivalent to the well known distributed consensus problem; algorithms for this problem may
also detect site failures (dependent upon the characteristics of the underlying processing and
message systems). When the system is quiescent the log can be reset (set to null) and par-
ticipants can enter and leave the session. Furthermore the session object set can be check-
pointed by each site.

6. Examples

Our algorithm maintains consistency without locking. In this section, motivation is given for
the algorithm and its proof via several examples. For enhanced understanding, and de-
creased size of this paper, we provide informal proofs at a high level rather than rigorous
proof presentation in the team automaton notation.

To summarize our assumptions, a set of participants are simultaneously editing a session
object set which is implemented as a replicated set of objects (called the site object set) at
each workstations of each of the participants (called a site). The site object sets are initially
all identical, but this does not mean that the views of the objects seen by the participants are
necessarily identical, since different hardware and software may reside at the different sites,
and different participants may most appropriately see different views. Each site can perform
operations only on their local site object set; also sites can send, broadcast, and receive mes-
sages. An event can be initiated by any participant at any time at their local site, and should
eventually be applied at all sites. This operation is immediately performed locally, and simul-
taneously sent to all other participants. Some scenarios can aid our discussion.

6.1 Two Party Scenarios

Groupware Systems Page 22



0y time

<.
-

1 2 1 2 <« Sites

Figure 4. Non-overlapping (a) and Concurrent (b) Event Sets

A session can be depicted graphically by a time line diagram. Figure 4a shows a time line for
two sites as two thick vertical lines with time progressing downward. The point 0; on the

first vertical line denotes a point in time at which the event 0, is executed at site 1, and a
message is sent to site 2. The thin directed line labelled r; denotes the request message
from site 1 to site 2, requesting that o; be executed at site 2. Likewise, 0, denotes an event
at site two that is passed to site 1 via request rp. This is an example of two events, 0; and
0, which are not concurrent because o arrives at site 2, and is executed there, before 0, is
initiated. Thus there is no potential for conflict. We say that 0, has temporal precedence over
07 written 0y >, 0.

Figure 4b shows a session where there are concurrent events o, and o,. Messages are sent

a
by both sites at approximately the same time, before the first of them is received. Each site
executes its event without knowledge of the other’s, so the messages cross in transmission,
shown by crossing lines labelled r, and ry in the figure. In this example, this results in the

operations 0, and o, being executed in opposite orders at the two sites.

Groupware Systems Page 23



Suppose o, = insert[a; 2] and op = insert[b; 3]. Then oa(“xyz”) yields xayz, and 0, fol-
lowed by oy, yields xabyz. At the second site, oy is first executed which yields xybz, and op
followed by o, yields xaybz. The two site object sets are unequal, so this is an inconsistent
execution.

In this example, the participant who inserted the b did not see the insertion of a, and thus in-
tended the b to be placed after the y within the string xyz. This suggests a transformation
which adds one to the insertion point if an insert event occurs concurrently with another in-
sert at an earlier position in the string. Note that concurrent events can be detected by com-
paring a site’s state vector to the state vector attached to the incoming message. Applying
this transform to the current example, the final string at both sites would be xaybz. We state
the generalization of this rule as follows.

Concurrent Edit Semantics: If an operation o; at string position P; is concurrent with j inserts
at earlier positions, and k deletes at earlier positions, then this should be transformed to o;’
= [the event o, applied at position P+j-k], where j-k > 0.

Since there is no locking, it is possible that several participants invoke actions to operate on
the same position in the string at the same time. Consider the session of figure 4b in which
the operations being executed are both delete operations with the same parameter. Clearly,
both participants were intending to delete the same character, and clearly, neither participant
saw the other’s delete operation before performing their own. Thus, the intent of these ac-
tions was to get rid of a single character. If no transformation was performed, then the end re-
sult would be the erroneous deletion of two characters. In GROVE, this crossing is detected
and only one character is deleted (see T,, above). Redundant deletes must be marked as

such within the log, and the concurrent edit semantics modified appropriately. This has been
incorporated within the delete-delete component of the transform matrix T. This is an exam-
ple of a DWWM facility (Do What We Mean). It appears to be quite useful to implement
DWWM facilities within groupware.

Notice that this is one of many examples of non-serializable behavior. Much of the literature
concerning database consistency and replicated systems defines correctness in terms of seri-
alizability [Bern87]. There is no serial ordering of the pair of delete operations which produc-
es the desired result. Thus groupware implementation considerations suggest new frontiers
where non-serialized correctness criteria are needed.

Another interesting case is the one in which the scenario of figure 4b is carried out with two

insert operations at the same insertion point. Suppose o, = insert[a; 2] and oy = insert[b; 2].

These two events are inserting different characters at the same position. At site 1,
0,(“xyz”) yields xayz, and o, followed by o yields xbayz. At the second site, oy is first ex-

ecuted which yields xbyz, and oy followed by o, yields xabyz. The two site object sets are

unequal, so this is an inconsistent execution. One attempt to correct this problem is to again
add one to the event if a concurrent event at the same position is detected by comparing

Groupware Systems Page 24



state vectors. Thus, in the above example, when the second operation, o, is executed at site

1, it is inserted at position 3 rather than position 2 which yields xabyz rather than xbayz. At
site 2 the second operation is transformed to insert[a; 3] so that the final string is xbayz.
Opps; the two strings are still unequal and inconsistency again occurs. If both events are
transformed, then the same problem arises. We must construct a method to choose only one
of the two events to transform.

A solution to this inconsistency might assign priorities to each event, and when two events
collide as above, then the one with a lower priority would be incremented, but the higher pri-
ority one would not. Considering this as a race condition, the priority comparison is a tie
-breaking mechanism. Since sites have unique integers as site identifiers, the site identifier
can be used as the priority since this conflict only arises with events from different sites.
Note that priority comparison is not needed in the scenario of figure 4a even if both events
are insertions at position 2 because of temporal precedence. The explicit intent at site 2 in
this case, was to place the second insertion (b) in front of the a, and the result of the inser-
tions would naturally be xbayz at both sites. Since there are no concurrent events, there is
no need to apply a transformation in this case.

The transformation rule which we have discussed says that whenever concurrent insertions
at the same position are detected, we compare priorities, and if the operation to be performed
has a lower priority, then we increment its insertion position by 1. Using this rule for the
specified two insertions within figure 4b, when the insert[b; 2] event arrives at site 1, it
would not be altered by the transform T and would result in the insertion of b at the second
position in the string in front of the a character yielding xbayz. When the insert[a; 2] event
arrives at site 2, its priority of 1 would be compared to the priority of the receiving site which
is 2. Since its priority is lower, we transform the event by incrementing its insertion position
yielding insert[a; 3]. The application of this transformed event places the 2 in the third posi-
tion after the b, also yielding the string xbayz. Using this transformation rule, the final string
at each site is the same. Thus consistency is maintained in this case by the transformation. If
there were multiple crossings then an event’s insertion position might be incremented nu-
merous times. It seems that this solves our consistency problem; however, intuitions can be
deceptive as previously mentioned.

6.2 Three Party Scenarios

Groupware Systems Page 25



insert ¢

time

3 1 2 -« Sites

Figure 5. Mixed Priority Example

Lets examine the workings of our algorithm for the session shown in figure 5 which has three
sites and two crossings of messages. Assume that site 1 initiates operation insert{a; 1],
site 2 initiates insert[b; 1]; and site 3 insert[c; 1]. At site 3, the c is first prepended to the
initial string, then the insert a operation arrives. Although its priority is lower, it is prepend-
ed in front of the ¢ (due to temporal precedence). Finally the insert b operation arrives and its
priority is compared to both of the previous two operations. Since its priority (2) is lower
than that of site 3, it is changed by the transform T to insert[b; 2] and is inserted after the a
and before the c. The final string begins with abc.

At site 2, it first prefixes b to its initial string, and then prefixes ¢ from site 3. When the in-
sert[a; 1] arrives from site 1, its priority is compared to that of the previously executed insert
b operation, and this causes the incoming operation to be changed to insert[a; 2]. Note that
due to temporal precedence, the operation’s priority is not compared to the insert ¢ from site
3. The final string in the view buffer at this node begins with cab which is inconsistent with
the abc at node 3.

We can gain some perspective on why this solution fails by further examining our notion of
correctness. Recall that the temporal precedence property implies that if operation 0, is initi-

Groupware Systems Page 26



ated after its site has executed some other operation 04, then the final site object set must
reflect 05’s knowledge of 0;. This means that the transformation T must not under any condi-
tions change o, to appear to have occurred before oy. Thus, in figure 5, the a generated by

the operation instigated by site 1 must occur to the left of the c instigated by site 3 because
the participant at site 1 saw the insertion of the c, and then explicitly requested an operation
which would place an a in the position in front of (to the left of) the c. Transformations and
other insert operations could cause other characters to be between the a and the c, but they
should not cause the a to occur after (to the right of) the c in the final string.

Temporal precedence suggests a problem with one of the transforms in the session depicted
by figure 5. At site 2, the position parameter of the insert a operation is incremented before it
is executed. The intent is to move the a past the b which has higher precedence, but the actu-
al effect is to move the a past the ¢ which violates the temporal precedence constraint. At
this point we might try changing the rule so that if the priority of X is less than the priority of
Y, then we put X to the left of Y (rather than to the right as we proposed above.) Although
this patch works in this case, it fails in other rather similar cases; the problem is deeper than
this and requires more rethinking as we illustrate next.

We can obtain assistance in our quest for a solution by using theorems in the literature of
automata theory. One useful theorem specifies that there is an equivalence between any
composite automaton such as our team automaton and a nondeterministic single stream au-
tomaton [Lync87]. Different execution sequences of this single stream automaton implement
the behavior of the various sites, and any other permutations of inputs that are possible.
Consider the session depicted by figure 5; figure 6a is a temporal precedence graph which
shows the temporal ordering t of the three events which will drive the equivalent single
stream automaton. The three nodes represent the events; the thick solid line denotes a tem-
poral precedence relation - it says that, in our example, the insert a event comes after (and
therefore knows about) the insert ¢ event. Notice that there are no arcs touching the insert b
event. This means that it has no knowledge of others when it is initiated, and others know
nothing about it at their initiation, so insert b is executing concurrently.

insert c @ priority 3 @
@ insert b @ priority 2
insert a @ priority 1 @
Figure 6a. Temporal Precedence Graph Figure 6b. Combined Precedence Graph

Groupware Systems Page 27



Figure 6b is a combined precedence graph which takes into account the temporal relations as
well as priorities between the events. This figure explicitly shows via thin lines that ¢ should
appear in the final string before b, and b should appear before a (due to priorities). Notice
that we do not draw a thin line between any two nodes connected by a thick line because if
there is temporal precedence, this over-rides the priority associated with an event. The thick
line shows that a should appear before ¢ (due to temporal precedence). These three con-
straints are mutually unsatisfiable. One cannot have c before b and b before a and a before c.
This dilemma arises because node 2 has a precedence that separates a predecessor priority
(3) from its successor’s priority (1).

Our suggested solution, which we call the list priority scheme, is to define the priority of an
event dynamically as a concatenation of its predecessor’s priority and its own site identifier.
Thus, an unrelated event’s priority can never be less than some event, but more than its pre-
decessor.

Definition: The list priority scheme defines the priority p of an event to be a list constructed
according to the following priority calculation.

Priority calculation:

The list priority of an event o is a list of the site 1dentxf"1ers of the relevant predecessors of o
in order, along its maximal chain. To compute this we use the site identifier of o as the final
element of the list. We find the maximal immediate predecessor of o, and use its site identifi-
er as the list element preceding the final element. Maximal means largest list priority, where
the list priority is specified below. We continue building up the list from last element to first.
The first element means an operation in this session which has no predecessor. Note that
this priority calculation only needs to be applied to events with the same position parameter.
The site identifier of this element is the first item on the list which composes the priority of o.
This list can also be easily computed on the fly if messages all contain the priority of their
senders. An event simply appends its site identifier to the priority of its maximal immediate
predecessor.

Priority value comparison:

Two list priorities are compared element by element, from beginning of the list to the first ele-
ment in which they differ. Whichever is larger at the element where the lists differ has the
higher priority value. If one list is a sublist of the other, then the longer list has a higher prior-
ity value.

In the example depicted by figure 5, the event insert a would have a priority of (3,1) which is
a list containing its site identifier preceded by its predecessor’s priority. The priority of (3,1)
as well as its predecessor (3) is defined to be larger than (2), so this operation will have a
very similar priority to its predecessor, avoiding inconsistency. In the next section we will
state some theorems and proofs showing that, among other propernes this list priority
scheme always guarantees consistency.

7. Theorems and Proofs

We first prove a general theorem (the concurrent consistency theorem) equating the acyclic
property of a graph to consistency of a concurrent execution. This theorem can be used for

Groupware Systems Page 28



many different types of priority schemes. Next we informally prove the correctness of any
team automaton executing the dOPT algorithm by verifying that the properties of temporal or-
dering, semantic integrity, and consistency are all maintained. This latter property is proven
by showing that the list priority scheme always results in an acyclic graph, and then applying
the concurrent consistency theorem. This section presents the proof steps at a hlgh level
without using the precise but voluminous notation of team automata.

Definition: A temporal precedence relation, t, over a set E of events is a set of pairs of
events such that (x,x) is not in t, and if (x,y) is in t, then (y,x) is not in t for all x and y. The
interpretation of this is that (x,y) in t means that x occurs before y in time. We say that y has
temporal precedence over X, x <, y. Thus, in any valid execution of E, the event y is executed

at its initiating site with full knowledge of the prior execution of x at the same site. Clearly, t
viewed as a graph over E must be acyclic. This relation helps us to prove the temporal order-

ing property.

Definition: A priority precedence relation, p, over a set E of events is a set of pairs of events
such that (x,x) is not in p, and if (x,y) is in p, then (y,x) is not in p for all x and y. The inter-
pretation of this is that (x,y) in p means that for tie breaking purposes, x has a lower priority

than y. We say that y has priority precedence over x, x <p y. Thus, when need arises to de-

cide which of two concurrent events should be chosen to appear first, p can be used, and x
will be chosen to execute before y. Clearly, p viewed as a graph over E must be acyclic.
There are many possibilities for the choice of p; judicious choice of this relation helps.us to
prove the consistency property.

Definition: Given a team automaton A executing the dOPT algorithm, we define a set E of
events of A to be an interaction set if the elements of E are all non-commutative events op-
erating upon the same session object (e.g. same position parameter).

Definition: Given an interaction set E, a temporal precedence relation t over E, and a priority
precedence relation p over E, we define the interaction graph G(E, t, p) whose nodes are the
elements of E, and whose edges are the elements of (t +* p). This is the set of all elements
(u,v) of t augmented by all elements (x,y) of p such that (x,y) is not a member of t, and (y,x)
is not a member of t.

Theorem 1 (The Concurrent Consistency Theorem): Every valid execution of an interaction
set E maintains consistency iff the interaction graph G is acyclic.

Proof via contradiction:

(only_if case) Given that every valid execution of E maintains consistency, suppose the inter-
action graph, G(E, t, p) is cyclic. Since there is a cycle, there are two chains of events of E
which can be described as x <x; <xp <..<x <y,andy <y; <y .. <y, <x. Itis then

possible to construct a valid execution in which one passive site has knowledge of the x to y
chain inferring (x < y), and another passive site has knowledge of the y to x chain inferring (y
< x). This construction can be done by judiciously arranging the order in which messages ar-
rive at these two sites. Thus the events x and y will be executed in opposite orders at the
two sites. Since events are non-commutative, the resulting site object sets will be non-iden-

Groupware Systems Page 29



tical. This contradicts our workmg hypothesis, so it must be the case that the interaction
graph G is not cyclic.

(if case) Given that the interaction graph is acyclic, suppose that there is a valid execution of
E which results in inconsistency. This means that at two or more sites, the site object sets
are different at quiescence. This in turn means that at least one pair of events, x and y, were
executed in different orders. One of the sites had local knowledge of a chain of events infer-
ring x < y. Another site had local knowledge of a chain of events inferring y < x. From these
two we can construct an argument that x < y < x. Since the interaction graph is acyclic, this
is clearly a contradiction. Q.E.D..

Theorem 2 (The dOPT Correctness Theorem): If the transform matrix T maintains semantic
integrity, then every admissible execution of a team automaton using the dOPT algorithm
maintains correctness.

Proof:

(Serial Execution case) Since execution is not concurrent, we know that the incoming state

vector, sj is never less than the current state vector at the current site, 8- If sj =5 then exe-

cution at the receiving site is performed immediately, and the order of execution at the receiv-

ing site is the same as at the sending site, so temporal ordering is maintained. If S > s;, then

the execution of the event is delayed by putting the incoming message in a queue until the

messages that preceded 5 have all arrived and been executed. In both of these casés, no

transformations are performed, and the order of execution at the receiver is identical to the
order of execution at the sender. Thus, the temporal ordering property is maintained.

Since no transformations are performed, there is no need to use the (tie breaking) priority
precedence relation p. Therefore the precedence, (t +* p) reduces to simply t. Recall that the
temporal precedence relation t can have no cycles, since event a cannot occur before b, with b
also before a. The graph is acyclic, and no transforms are applied in this case. Thus, the con-
sistency property is maintained.

Since it is given that the transform maintains semantic integrity, all three properties neces-
sary for correctness have been shown to hold. This proves correctness in the non-concurrent
case.

(Concurrent Execution case) By definition (list priority), the priority of an event is a list com-
posed of the originating site identifier of the event concatenated onto the end of the priority
list of its maximal predecessor. The priority denoted by list 1, is greater than list 1, iff the val-

ue of the first entry in which the two lists differ is larger in 15; or the values of all entries
which they share in common are equal, but 1, is a longer list than 1. This implies that if event

2 occurs temporally after event 1, then it will always have a priority which is greater than its

predecessor. Therefore, for all events x and y, the case can never arise of x <, y, and y <p X.

Therefore, no loops can occur in the interaction graph (t +* p). We can then apply theorem 1
to conclude that the consistency property is maintained.

Groupware Systems Page 30



Consider the construction of a passive automaton which only receives all of the events gener-
ated by the other sites. For any pair of events, there is an ordering of the arrival of those
events such that no transformation is necessary. For non-concurrent events, it is the order of
their initiation. For concurrent events, they should arrive in priority order (lowest p first;
highest p last). We can thus arrange the order of amival of events to this passive site such
that no transforms are done on this site. Therefore, this site is guaranteed to maintain the
temporal ordering property. Since we have shown that the site object sets will be identical at
all sites (consistency,) the temporal ordering property is maintained at all sites.

Since it is given that the transform maintains semantic integrity, all three properties neces-
sary for cormrectness have been shown to hold. This proves correctness in the concurrent
case. Q.E.D..

Theorem 3 (The GROVE Correctness Theorem): Assume the standard textedit semantics for
insert and delete. Assume the automaton is using the GROVE transform matrix. Then, every
admissible execution of a team automaton using the dOPT algorithm maintains correctness.

Proof:

(Serial Execution case) We must verify that the dOPT algorithm fulfills the standard textedit
semantics of insert and delete. In the case of no overlap of operations at different sites, the
algorithm performs no transformations. Thus the generated events of the form insert[X; P]
and delete[P] are directly executed as previously defined with the appropriate semantics.

(Concurrent Execution case) We must verify that the transform T yields the concurrent edit
semantics as previously defined: o;” = [the event o; applied at position P+j-k]. This semantic

statement is unconcermned with which of several inserts to the same position is placed first.
That is a concern of consistency, not semantic integrity. Notice that the algorithms specified
for T have +1 operations within the insert, and -1 operations within the delete. Thus, explicit-
ly via this transform, or implicitly via other insertions or deletions, j additions, and k subtrac-
tions are performed in some order; potentially different orders at different sites. Since these
operations are commutative, the distributed implementation exactly realizes the desired
summation effect. Thus semantic integrity is maintained.

We can simply apply theorem 2 to prove the temporal ordering property and the consistency
property. These, together with the semantic integrity property proved above, imply correct-
ness. Q.E.D..

8. Conclusions and Future Developments

This paper has introduced the notion of groupware, and presented a novel algorithm and proof
for concurrency control within real-time groupware. Groupware reflects a change in emphasis
from using the computer to solve problems to using the computer to facilitate human interac-
tion. For these systems to be accepted requires fine-granularity sharing of data, rapid re-
sponse time, and rapid notification time. Therefore, the algorithm presented does not use
locking, performs non-serializable sets of operations, and works in a workstation environ-
ment with replicated data and distributed control.

Groupware Systems Page 31



The concept of Team Automaton was introduced to characterize and prove the correctness of
the algorithm. In the latter part of the paper, we developed a rather general theorem which al-
lowed us to prove consistency of the replicated object set by examining properties of the
combined precedence graph.

The model, the algorithm and the proof were presented in the context of GROVE, a group ed-
itor which we have implemented within the Software Technology Program at MCC. They also
are applicable to other groupware such as the rIBIS group hypertext system [Rein90]. No-
tice that in these systems, users frequently apply associative access techniques rather than
accessing objects by name. Thus, within a text editing application, users browse and point at
the items they want to update; the individual characters are not given separate immutable
names or unique addresses.

A primary difference between these systems, and the majority of database systems, is the
visibility criterion. DBMS’s are constructed with an intent to hide the presence of other us-
ers (transactions, locking, etc.); groupware is constructed with the intent of making visible
the presence and state of other participants. Future work of our research team includes em-
bellishing the group user interface to better make this happen. There is also work in progress
to generalize the characterization of our transform matrix, and extending our proof technique
to encompass other systems. This has been done to some extent with rIBIS. We will also
continue to incorporate these ideas within other groupware which we are constructing, and
will be constructing in the future. One challenging issue is the implementation of the UNDO
function because there is only a partial ordering on previous operations. We also havesome
ideas for the implementation of further DWWM features. We have been developing and ap-
plying the notions of team automata to model and prove various other properties of group-
ware. We are also exploring alternative models. We hope that this will be useful in further
correctness proof extensions. In conclusion, we believe that the new emphasis on groupware
suggests a number of interesting and challenging frontiers. Perhaps this paper can help to
stimulate work at these frontiers.

Acknowledgments

Special thanks to Simon Gibbs, co-author of our previous SIGMOD paper on this subject,
and chief designer / programmer of GROVE. His creative ideas and programming have been
critical to the success of this project. Thanks to Gail Rein, the other member of the group-
ware team who put in much effort to help implement and evaluate GROVE and its user inter-
face.

References

[Back88] Back, R., and Kurki-Suonio, R. Distributed Cooperation with Action Systems,
ACM TOPLAS, 10(4), pp. 513-554, 1988.

[Banc85] Bancilhon, G., Kim, W., and Korth, H.F. A Model of CAD Transactions, Proceed-
ings of the Intl. Conference. on Very Large Data Bases, pp. 25-33, 1985.

[Bern87] Bermnstein, P., Goodman, N., and Hadzilacos, V. Concurrency Control and Recovery
in Database Systems, Addison-Wesley, 1987.

Groupware Systems Page 32



[Chan88] Chandy, M., and Misra, J. Parallel Program Design: A Foundation, Addison-Wes-
ley, 1988.

[Char87] Charlesworth, A. The Multiway Rendezvous, ACM TOPLAS, 9(3), pp. 350-366,
1987.

[Cohe88] Cohen, M., Fish, R., Kraut, R., and Leland, M. Quilt: A Collaborative Tool for coop-
erative writing, Proc. ACM SIGOIS Conference, pp. 30-37, 1988.

[CSCWB6, CSCWS8S, and CSCW90] Conferences on Computer-Supported Cooperative Work,
Proceedings editor: ACM, New York, N.Y.

[ELiB7] Ellis, C.A., and Ege, A. Design and Implementation of Gordion, an Object Base
Management System, Proceedings of the International Conference on Data Engineering,
1987. -

[E1li88] Ellis, C.A., Gibbs, S. J., and Rein, G. Design and Use of a Group Editor, Report STP-
263-88, MCC Software Technology Program, Austin, Texas, 1988.

[Elli89] Ellis, C.A., Rein, G.L., and Jarvenpaa, S.L. Nick Experimentation: Some Selected
Results, Hawaii International Conference on System Sciences, 1989.

{ENli%0a] Ellis, C.A., and Malmquist, J., Team Automata and Teamsheets, Report STP-131-
90, MCC Software Technology Program, Austin, Texas, 1988. N

[ENli90b] Ellis, C.A., Gibbs, S.J., and Rein, G. Groupware: The Research and Development
Issues, To appear in Communications of the ACM, December 1990, also available as MCC
Software Technology Program technical report.

[Evan89] Evangelist, M., Nissim Francez, and Shmuel Katz. Multi-Party Interactions for
Interprocess Communication and Synchronization. IEEE-TSE 15(11), pp. 1417-1426, 1989.

[Fran89] Francez, N., Cooperative Proofs for Distributed Programs with Multi-Party Inter-
actions. IPL 32, pp. 235-242, 1989.

[Fran90] Francez, N., and Forman, 1., Interaction Processes: A Multiparty Approach to Coor-
dinated Distributed Programming, Forthcoming book,1990.

[Form89] Forman, I. Design by Decomposition of Multiparty Interactions in RADDLES7,
Proceedings of the Fifth International Workshop on Software Specification and Design, 1989.

[Grie86] Grief, 1., Seliger, R., and Weihl, W, Atomic Data Abstractions in Distributed Col-
laborative Editing System, Proceedings of the 13th Annual Symposium on Principles of Pro-
gramming Languages, pp. 160-172, 1986.

[Grud88] Grudin, J. Why CSCW Applications Fail: Problems in the Design and Evaluation of
Organizational Interfaces, Proceedings of the CSCW’88, 1988.

[Hoar78] Hoare, C.A.R. Communicating Sequential Processes, Communications of the ACM,
21(8), pp.666-677, August 1978.

Groupware Systems Page 33



[Kill90] Killen, L., et.al. ShrEdit: A Shared Text Editor - A User’s Manual, University of
Michigan Internal Report 1990.

[Knis90] Knister, M., and Prakash, A., DistEdit: A Distributed Toolkit for Supporting Multi-
ple Editors, Proceedings of the CSCW’90, 1990.

[Lamp78] Lamport, L. Time, Clocks and the Ordering of Events in a Distributed System,
Communications of the ACM 21(7), pp. 558-565, 1987. <

[Lant86] Lantz, K.A. An Experiment in Integrated Multimedia Conferencing, Proceedings of
the CSCW’ 86, pp.267-275, 1986.

[Lewi88] Lewis, B. and Hodges, J. Shared Books: Collaborative Publication Management for
an Office Information System, Proceedings of the Fourth ACM SIGOIS Conference on Office
Information Systems, pp. 197-204, 1988.

[Lync87] Lynch, N. and Tuttle, M. Hierarchical Correctness Proofs for Distributed Algo-
rithms, Proceedings of the Sixth Annual Symposium on Principles of Distributed Computing,
1987.

[Lync88] Lynch, N., et.al. A Theory of Atomic Transactions, MIT Laboratory fof Computer
Science Report LCS/TM-362, 1988. .

[Malm89] Malmquist, J. Private conversations. N

[Lamp78] Lamport, L. Time, Clocks and the Ordering of Events in a Distributed System,
Communications of the ACM 21(7), pp. 558-565, 1987.

[Olson90] Olson, G., and Olson, J., User-Centered Design of Collaboration Technology, Uni-
versity of Michigan Report, to appear in Organizational Computing 1,1 January, 1991,

[Sari85] Sarin, S. and Grief, I. Computer-Based Real-Time Conferences, Computer, 18(10),
pp- 33-45, 1985.

[Stef87] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., and Suchman, L. Be-
“yond the Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings,
CACM 30(1), pp. 32-47,1987.

[Yeh89] Yeh, S., Ellis, C., Ege, A., and Korth, H. Performance Analysis of Two Concurrency
Control Schemes for Design Environments, Information Sciences Journal 49(1), 1989.

Groupware Systems Page 34



