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Abstract: Aerosol measurements were collected at fifteen homes over the course of one year
in Colorado (USA) to understand the temporal variability of indoor air particulate matter and
bacterial concentrations and their relationship with home characteristics, inhabitant activities, and
outdoor air particulate matter (PM). Indoor and outdoor PM2.5 concentrations averaged (±st. dev.)
8.1 ± 8.1 µg/m3 and 6.8 ± 4.5 µg/m3, respectively. Indoor PM2.5 was statistically significantly higher
during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer
compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and
seasons and was not statistically significantly different across the seasons. Average indoor PM10

was 15.4 ± 18.3 µg/m3 and was significantly higher during summer compared to all other seasons.
Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal
differences across and within the homes. The qPCR I/O ratio was statistically different across seasons,
with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10

data and activity logs, it was observed that elevated particulate concentrations commonly occurred
when inhabitants were cooking and during periods with elevated outdoor concentrations.
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1. Introduction

Air pollution impacts human health and quality of life [1]. The air quality in the indoor
environment is especially important, as humans spend the majority of their time inside buildings.
Indoor air quality (IAQ) is impacted by indoor emissions (cooking, cleaning, volatile organic compound
(VOC) off-gassing), occupant activities, as well as infiltration of outdoor air pollution [2]. Ventilation
conditions modulate indoor air pollutants by removing them through filtration and dilution but can
also bring outdoor air pollutants into the built environment, especially when natural ventilation is
used or mechanical ventilation filters are not adequate [3].

Residential IAQ is highly dependent on occupant activities, and activities such as cooking,
home heating, cleaning, and opening windows or doors to increase natural ventilation modulate
indoor pollutant concentrations. Cooking typically emits a large number of submicron particles, but
emission characteristics such as particle size distribution and emitted organic species vary depending
on appliance used, cooking oils used, and the type of food being prepared [4,5]. In many IAQ
monitoring studies, the highest indoor aerosol concentrations occur during cooking or biomass
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burning events [6–8]. Vacuuming [9], dusting [10], and general occupant movement [11] can resuspend
settled dust. Dust resuspension tends to emit more mass in the super-micron size range than the
submicron range. Indoor particulate source apportionment studies indicate that road dust, soil
dust, vehicle emissions, biomass burning, road salts, secondary inorganics, and organic matter from
various emission/transport processes are common sources of indoor particulates [12–14]. Many of
these particles originate outside and infiltrate into the home, while cooking and burning biomass are
important indoor sources of organic particulate matter (PM) [5,15].

Home characteristics can also influence indoor particle levels. PM2.5–10 is inversely related to
home volume, the use of kitchen exhaust, and sealed windows and doors; location and building
density also are relevant [16]. Meng et al. reported that central air-conditioning, window fan operation,
and building type were significantly related to indoor PM2.5 in homes [17]. Klepeis et al. found room
volume, number of exterior doors and bathrooms, and central air to impact indoor particle levels [18].
Information about ventilation (air changes per hour, air flow and number of air cleaners) and the home
were two of 14 components identified as essential to assessing the indoor environment in a study
of Swedish homes [19]. Information about the home included year built, house volume, and house
heating method (nine variables total).

IAQ studies are often conducted during summer and winter to contrast the cooling and heating
seasons. Few studies have assessed IAQ during more than two seasons for multiple residences
to observe seasonality effects. Ramachandran et al. assessed indoor and outdoor PM2.5 mass
concentrations over spring, summer, and fall, finding little variability in outdoor concentrations
and increased indoor concentrations during summer compared to spring and fall [20]. Correlations
between indoor and outdoor particulate matter with diameters less than 2.5 µm (PM2.5) were higher in
spring and summer than fall, demonstrating the importance of outdoor pollution during seasons when
natural ventilation was typically used. The Research Triangle Park PM panel study was conducted in
37 homes over a one-year period and found no seasonally significant differences in indoor or personal
exposure concentrations for PM2.5 and PM10 [21].

Microbial aerosols are abundant in the atmosphere [22] and especially in indoor environments
where occupants are a major source of bacterial bioaerosols [23,24]. Exposure to bioaerosols has been
linked to asthma and allergies, as well as some infectious diseases [25]. A number of studies have
investigated the seasonal variation of bacteria using qPCR methods in indoor air and dust. Relative
bacterial biomass estimated by quantitative polymerase chain reaction (qPCR) was found to be higher
outdoors than indoors [23]. However, others found bacterial genome concentrations higher in indoor
air compared to outdoor air [24,26]. Bacteria concentrations are higher in occupied spaces compared to
unoccupied [24,26]. Mycobacterial biomass in house dust in Finland was highest in spring, followed
by summer, winter, then fall [27] In a study of two buildings in Finland, the bacterial flora in the
indoor dust differed statistically and the differences between the buildings were more pronounced
than differences between seasons. Kaarakainen et al. measured higher bacterial biomass by qPCR
during warmer weather periods [28].

The objective of this study was to better understand how residential airborne bacterial and
particulate matter concentrations vary over the course of a year. The study design implemented here
has several noteworthy elements. We paired each 24-h indoor bioaerosol and PM2.5 sample with an
outdoor sample. We also measured time-resolved indoor particulate matter with diameters less than
10 µm (PM10) concentrations and collected a time-activity diary from residents. We varied the location
of our homes across the Colorado Eastern Front Range to include mountain homes, urban, and rural
sites. We also collected detailed home characteristics, which allowed us to explore the association
between our measurements and typical residential variables.
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2. Methods

2.1. Study Home Characteristics

Fifteen households participated in this study. Homes were enrolled by verbal coordination and
email with personal contacts of the research team. Criteria for inclusion were non-smoking occupants
who had lived in the home for at least 2 years with two to five occupants, and a living space between
100–500 m2. All participants gave approval to participate in the study, in accordance with University
of Colorado Boulder’s Institutional Review BoardProtocol # 12-0624. Study homes were located in
five cities along the Front Range of Colorado (USA) within driving distance of Boulder (<two hours):
Boulder (both in the city and mountains, 10 homes), Niwot, Longmont, and Lyons (one home in
each), and Fort Collins (two homes). Figure 1 is a map of study homes labeled by the city in which
the home resides, with coordinates jittered to maintain anonymity (map made in R, using the ggmap
package [29]). Homes were assigned an alphabetical letter for identification purposes (A-R, skipping I,
L, and O). A summary of household and occupant characteristics are presented in Table 1.

Figure 1. Study homes in the Front Range of Colorado (marker size represents median outdoor
particulate matter (PM)2.5 in µg/m3 measured at each home, ©OpenStreetMap contributors).
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Table 1. Physical attributes and inhabitant characteristics of study homes.

Home Location Year Built
Time in
Home
(Years)

Surface
Area (m2)

Volume
(m3) Basement/Garage # Residents # Kids #Male # Female

A Boulder city 1 1965 2–5 167.4 333.9 Yes/Yes 3 1 1 2
B Fort Collins 1 1995 6–10 347.2 1011.1 Yes/Yes 3 1 1 2
C Boulder city 1 1999 6–10 318.5 885.1 Yes/Yes 4 2 2 2
D Lyons 1 1970 6–10 129.9 326.5 No/Yes 3 1 1 2
E Fort Collins 1 1965 6–10 278.1 663.4 Yes/Yes 4 2 2 2
F Boulder city 1 1985 6–10 279.6 765.4 Yes/Yes 3 to 5 1 to 3 1 to 2 2 to 3
G Boulder city 1 1986 11–20 465.7 1208.2 Yes/Yes 2 0 1 1

H Boulder
mountain 2 1985 >20 114.5 276.5 No/No 2 0 1 1

J Boulder city 1 1968 >20 229 517.7 Yes/Yes 3 0 2 1
K Boulder city 1 1968 >20 219.8 611.7 Yes/Yes 2 0 1 1

M Boulder
mountain 2 1970 >20 195.1 581.5 No/No 3 0 1 2

N Boulder city 1 1973 2–5 230.6 530.1 Yes/Yes 4 2 2 2
P Niwot 2 1977 11–20 372.5 930.3 Yes/Yes 2 0 1 1
Q Longmont 1 1960 2–5 131 299.5 Yes/Yes 3 0 1 2
R Boulder city 1 2006 6–10 255.2 759.6 Yes/No 4 2 1 3

1 Urban setting; 2 Rural setting.
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Eight home visits were scheduled for each home between 30 November 2012 and 4 December
2013. Seasonal splits for data analysis were determined by comparing meteorological seasons with
the sampling schedule, resulting in the following dates defining “seasons” in this analysis: winter
30 November 2012–19 March 2013, spring 20 March 2013–20 June 2013, summer 21 June 2013–10
September 2013, and fall 11 November 2013–4 December 2013. Home D was only visited six times
because major flooding occurred in the home after the sixth visit. Home M was visited three times
during fall, resulting in nine total visits, and Home K was only visited once during winter, resulting in
seven total visits.

2.2. Instrumentation and Metadata Collection

During each home visit, particulate matter (PM2.5 and PM10), total suspended particles (TSP) for
microbial analysis, temperature (T), and relative humidity (RH) were monitored inside, and PM2.5,
TSP, T and RH were monitored outside the home, for 24 h. Instruments were set up inside the home on
a stand in the main living area. Outdoor instruments were installed in the backyard and were housed
inside a weather-proof stand. Each resident filled out a web-based questionnaire to assess home
characteristics, occupancy, cleaning product use, cleaning schedule, numbers of plants and animals,
pesticide use, volunteer allergies and health conditions [30]. A walk-through inspection was also
completed during every visit to document the physical attributes of the home (size, age, construction
materials, general cleanliness, upholstered furniture, pets, plants, and ventilation). A time activity
diary was filled out by residents during each 24-h sampling period, documenting activities that were
classified as cooking, resuspension-inducing (cleaning, vigorous activity, vacuuming), fireplace use,
increasing or using natural ventilation (opening bedroom, kitchen, or living room window, leaving
the front or back door open, turning on the kitchen exhaust fan, or using an air filter in the bedroom,
kitchen, or living room), occupying the kitchen, occupying rooms other than the kitchen, having 5 or
more people at the house, or leaving the house unoccupied.

Three different methods were used to collect and measure particulate matter. Indoor and outdoor
24-h time-integrated mass concentrations of particle matter less than 2.5 µm in diameter (PM2.5) were
measured by sampling at 20 L/min with a vacuum pump (Sensidyne Aircon 2, St. Petersburg, FL,
USA) connected to a Harvard Impactor housing a 37-mm diameter Teflon filter (2-µm pore size,
Pall CorporationR2PJ037, Port Washington, NY, USA). Gravimetric PM2.5 mass concentrations were
determined by weighing Teflon filters before and after sampling in a temperature and RH-controlled
weighing chamber according to well-established protocols [31]. Indoor PM10 concentrations were
measured optically on a one-minute basis using a TSI Model 8530 DustTrak II Aerosol Monitor with
an inlet flow rate of 3 L/min (sample flow rate of 2 L/min and sheath flow rate of 1 L/min, TSI,
Shoreview, MN, USA). To summarize the seasonality of indoor PM10, average concentrations were
calculated for each sampling day. DustTrak airflow was calibrated monthly. Total suspended particles
were collected indoors and out by sampling onto nitrocellulose filters (4.15 cm in diameter, 0.45-µm
pore size) for 24 h at 10 L/min with a vacuum pump (KNF Neuberger Inc., UN816.1.2 KTP Mini
Diaphragm Vacuum Pump, Trenton, NJ, USA). DNA extraction from the TSP filters for sequencing
and qPCR has been described elsewhere [32,33]. Temperature and relative humidity sensors (HOBO,
Onset Corp., Cape Cod, MA, USA) were used to monitor indoors, outdoors, and inside the pump
housings to check for overheating.

DustTrak (DT) data was reviewed weekly by the research team to note any unusual discrepancies;
none were, however, found. Note that DustTrak 8530 mass concentrations are equivalent concentrations
based on Arizona Road Dust tests, unless specific calibrations are undertaken to compare to the actual
aerosol of interest. Therefore, direct comparison to other methods used to measure real outdoor or
indoor aerosol made near and in homes may not be exact due to different optical properties [20,34,35].
The value of the DT measurements in our study was to have relative real-time concentrations that
could be compared with the activity diaries. The DustTrak DRX’s 8533 and 8534 have been reported to



Atmosphere 2018, 9, 133 6 of 18

exhibit sudden artifact jumps in concentration especially at low PM levels, but this behavior has not
been reported for the DustTrak II 8530 that we used [36].

Table 2 shows the heating, ventilating, and air-conditioning characteristics along with potential
pollutant sources in the homes. The ventilation potential score (VPS) (0–6) was based on questionnaire
data and has been previously described and validated [37]. The VPS assessed the potential for adequate
ventilation, assigning points for having at least one exterior window per room excluding bathrooms
(1 point), a functional window or working exhaust fan for every bathroom (2 points), working exterior
exhaust fans for all stoves (2 points), and additional exterior exhaust fans (1 point). Four study homes
had a VPS equaling 3, which is considered less than adequate, and 11 homes had a VPS equal to or
greater than four, which is adequate. During one visit for each home, a blower door test was conducted
to measure air changes per hour when the house is depressurized to 50 Pascals (ACH50) (Minneapolis
Blower Door, Model 3 Single Fan Unit, The Energy Conservatory, Minneapolis, MN, USA). ACH50 is
a useful metric for comparing leakage of houses of different sizes [38]. Three homes had an ACH50

of less than or equal to 5, nine homes had an ACH50 between 5 and 10, and three homes had an
ACH50 above 10. A house is considered tight when ACH50 is <3 for climate zones 3–8 (Colorado is
5–7) and 5 for climate zones 1–2 [39]. A tight house will have lower heating bills, fewer drafts but less
infiltrating fresh air.

2.3. Data Analyses

Pearson’s correlation coefficient and linear regression were used to observe patterns between PM10,
PM2.5, and PM2.5 indoor/outdoor (I/O) ratios. The nonparametric Kruskal–Wallis one-way analysis
of variance (ANOVA) test was used to compare seasonal data. Nonparametric multiple comparison
tests were assessed (two-sided Tukey contrast with the multivariate T-distribution asymptotic
approximation method) after the Kruskal–Wallis ANOVA to determine which seasonal differences
were statistically significant. Activity logs were assessed by calculating the total number of hours each
activity was performed, referred to as activity-hours. The percent of total reported activity-hours for
each activity by home was also calculated. The average relative reported activity-hours for each home
is included in Figure S1.

To group homes showing similar seasonal variability and average concentrations, medoid
clustering was performed using Euclidean distances for indoor PM10, indoor PM2.5, outdoor PM2.5,
PM2.5 I/O ratios, indoor qPCR results, and outdoor qPCR results. Medoid clustering was performed
using the Gower dissimilarity matrix for home characteristics, inhabitant characteristics, and HVAC
system/emission source characteristics. Cluster number was determined iteratively by starting with
fewer clusters (3–4) and increasing cluster number until meaningfulness of the resulting groupings
diminished; individual time series often clustered by themselves when too many clusters were assessed.
Agglomerative hierarchical clustering and principal component analysis aided in validating final
cluster numbers.
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Table 2. Heating, ventilation and air-conditioning (HVAC) and potential pollutant source characteristics of study homes.

Home Cook Stove Heating Fireplace Ventilation/Heating Type Air-Conditioning (AC) Filter 1 VPS 2 ACH50
3

A Gas Gas Wood Forced Air None/Evaporative MERV 4 6 11.8
B Electric Gas Gas Forced Air Central MERV 4 3 4.4
C Gas Gas Gas Forced Air Central MERV 8 5 5.0

D Gas Gas Wood Radiator, Baseboard, or
Space Heater None No 5 16.4

E Gas Gas Gas Forced Air Central MERV 8 3 5.9
F Gas Gas Wood Forced Air Evaporative MERV 4 5 8.8

G Gas Gas Wood Forced Air Central Electrostatic,
MERV 12 5 6.8

H Electric Wood Wood Wood-burning or pellet
stove/Fireplace None No 5 9.6

J Electric Gas Wood Forced Air Central Electrostatic,
MERV 12 3 8.9

K Electric Gas Wood Forced Air None Electrostatic,
MERV 12 3 9.0

M Gas Gas/Wood Wood Wood-burning or pellet
Stove/Fireplace None No 5 7.0

N Gas Gas Gas Forced Air Central Electrostatic,
MERV 12 4 5.6

P Gas Gas None Forced Air Central MERV 4 6 6.3

Q Electric Gas None Radiator, Baseboard, or
Space Heater Window AC Unit(s) No 4 15.6

R Gas None Gas None/Radiant Heat Evaporative No 5 4.2
1 Minimum efficiency reporting value (MERV); 2 Ventilation Potential Score (VPS) (0–6) assessed the potential for adequate ventilation [37]; 3 Air changes per hour at a pressure difference
of 50 Pa during the blower door test.
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3. Results and Discussion

3.1. Indoor and Outdoor Particulate Matter

Indoor and outdoor PM2.5 concentrations of 24-h time-integrated samples and I/O ratios are
presented in Figure 2a,c,e, respectively, where color and marker size represent PM concentration
or I/O ratio. Box plots of seasonally grouped indoor and outdoor PM2.5 concentrations and I/O
ratios are also shown in Figure 2b,d,f, respectively. Table S1 in the supplemental information presents
overall and seasonal summary statistics for all measured PM concentrations. The average (±st. dev.)
indoor and outdoor PM2.5 over the course of the year were 8.1 ± 8.1 µg/m3 and 6.8 ± 4.5 µg/m3,
respectively. The average I/O ratio was higher than one, 1.6 ± 2.4, showing contributions from indoor
sources. Table S2 contains summary statistics by home. These concentrations are 30% lower compared
to a study of PM2.5 in Minneapolis, which reported yearly 24-h average PM2.5 indoor and outdoor
concentrations of 10.9 ± 11.6 µg/m3 and 8.6 ± 6.6 µg/m3, respectively. The I/O ratio is comparable
between the two studies [20]. In a study of PM2.5 in North Carolina, the concentrations were much
higher compared to this study, measuring a mean indoor and outdoor concentration of 19.3 and
19.1 µg/m3 respectively [21].

The highest average PM2.5 concentrations occurred during summer both indoors
(10.6 ± 7.4 µg/m3) and outdoors (9.2 ± 4.6 µg/m3). Outdoor PM2.5 was also higher during
winter (7.5 ± 5.4 µg/m3) compared to spring and fall. The lowest seasonal average indoor PM2.5

value occurred during winter (6.1 ± 5.7 µg/m3). Indoor PM2.5 was statistically different during
the summer compared to winter (p = 0.04) and spring (p = 0.02). Outdoor PM2.5 was statistically
different during summer compared to fall (p = 0.0008) and spring (p = 0). Ramachadran et al. reports
comparable levels to our study and also found higher indoor and outdoor PM2.5 in the summer and
spring compared to fall, mainly due to open windows and doors [20]. Williams et al. did not find any
seasonal differences, possibly due to the different climate conditions in North Carolina compared to
Minnesota and Colorado, and measured levels that were twice as high as those measured in this study,
19 µg/m3 [21]. Urso et al. reports indoor PM1–2.5 levels of 3.1 and 4.1 µg/m3 during summer and
winter, respectively, and much higher outdoor PM2.5 levels of 19.8 and 38.3 µg/m3 during summer
and winter, respectively [16]. The PM2.5 levels measured in this study were low (and the Front Range
typically has low PM2.5 concentrations). and below the USA’s Environmental Protection Agency
current National Ambient Air Quality Standard of 35 µg/m3.

The seasonal average I/O ratio was lowest in the winter (1.2 ± 1.3) and summer (1.2 ± 0.7) and
highest in the spring (2.0 ± 3.7) and fall (2.2 ± 2.5), but an analysis of variance (ANOVA) indicated
no significant differences between seasons. These higher I/O ratios indicate either increased natural
ventilation in study homes bringing more outdoor PM indoors or increased indoor emission events.
I/O ratios above five occurred in every season and were observed to be mostly related to indoor cooking
events (Figure 2): For example, Home A in May, Figure S8, and Home M in January, Figure S17. Very
low I/O ratios (<0.3) also occurred and were due to elevated outdoor PM2.5 events or the home being
unoccupied for much of the sampling period. Table S3 presents all seasonal hypothesis test results.

A linear regression of indoor versus outdoor PM2.5 concentrations showed no association
(Figure 3a, R2 = 0.03), indicating that indoor PM2.5 was mainly due to sources in the homes. As shown
in Figure 3b, Homes A (4.6 ± 6.5), N (2.6 ± 4.1), and R (3.8 ± 3.8) had the highest average I/O ratios.
Home J had the lowest average I/O ratio (0.4 ± 0.3), likely due to the low indoor PM concentrations
and elevated ambient PM2.5 concentrations measured at this home compared to other homes in Boulder
(Figure 1). According to the random component superposition (RCS) model [40], the slope of the
indoor-outdoor regression line provides an estimate of the fraction of the outdoor aerosol concentration
that remains airborne in the home under equilibrium conditions, termed the infiltration factor, which
for this study was 0.31 ± 0.17 (±st. error). The intercept is an estimate of the average contribution
of indoor sources, which for this study was 5.97 ± 1.36 µg/m3. A parallel zero-intercept line to the
regression line was drawn on Figure 3a, and if the assumptions of the RCS model are met, very few
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data points should reside below this line. This data set meets this assumption moderately well, as
there are a few days where indoor PM2.5 levels were below the zero-intercept regression line.

Figure 2. (a) Indoor PM2.5 concentrations; (b) box plots of seasonal indoor PM2.5 concentrations;
(c) outdoor PM2.5 concentrations; (d) box plots of seasonal outdoor PM2.5 concentrations; (e) PM2.5

indoor/outdoor ratios; and (f) seasonal box plots of PM2.5 indoor/outdoor ratios (in (a,c,e) color and
marker size are scaled logarithmically and indicate pollutant values; vertical bars separate seasons).
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Figure 3. (a) Scatterplot of indoor vs. outdoor PM2.5 mass concentrations and linear regression
(dashed line is the regression line with the intercept removed); and (b) bar plot of mean (±SD) PM2.5

indoor/outdoor ratios per house. The bar color for each home in (b) corresponds to the marker color
in (a).

The infiltration factor and the contribution from indoor sources estimated in this study are similar
to those in previous studies. Wallace et al. [41] reported an average infiltration factor across six cities
of 0.50 and an indoor source contribution of 6 µg/m3. The infiltration factor is a major variable
determining the indoor-outdoor PM relationship and depends on the penetration coefficient, the
air exchange rate, and the particle decay rate [42]. Ott et al. (reported an infiltration factor of 0.53
and an indoor source contribution of 18 µg/m3 [40]. Miller et al. reported for homes in Commerce
City, CO (USA) an infiltration factor of 0.66 and an indoor source contribution of 21 µg/m3 [43].
Comparing the current study with the Commerce City study, the infiltration factor is more than
two times higher in Commerce City homes, and the indoor source contribution is more than three
times higher. This indicates the homes were leakier with many more indoor sources. The Commerce
City study participants had much lower home ownership, higher home occupancy, fewer detached
single-family homes, and lower VPS. The percentage of homes that were built before 1980 were similar
for the two studies.

Figure 4a,b show the time series of average PM10 concentrations and seasonal boxplots of
daily averages, respectively. The average (±st. dev.) PM10 concentration over the entire study
was 15.4 ± 18.3 µg/m3. As was observed for indoor and outdoor PM2.5, the highest overall
concentrations of PM10 occurred in the summer; two-way comparison tests showed summer indoor
PM10 concentrations were significantly different from concentrations measured during all other seasons.
Figure 4c shows the correlation observed between log-transformed indoor PM2.5 and indoor PM10

concentrations (Pearson’s correlation = 0.79, R2 = 0.63), indicating that changes in the fine fraction
explain much of the variability in the larger size fraction. Some values in Figure 4c fall above the 1:1
line (PM2.5 > PM10), which may occur because we are comparing time-integrated filter-based PM2.5

measurements with averages of continuous optical-based PM10 measurements. Comparisons between
these two measurement techniques are difficult, as both techniques have potential biases [44–46].

Statistical tests comparing PM concentrations and I/O ratio to ventilation characteristics were also
conducted. No significant differences were observed between indoor PM2.5 or PM10 concentrations for
homes with different ventilation potential scores (VPS). There were marginally significant differences
(p = 0.10) in average I/O ratios between homes with VPS of six (2.8 ± 4.6, n = 15), five (I/O ratios of
1.7 ± 19, n = 54), and homes with a VPS of three, (1.0 ± 0.7, n = 31). No linear trends were observed
between ACH50 and pollutant concentrations.
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Figure 4. (a) Average indoor PM10 concentrations (color and marker size are on a logarithmic scale
and indicate PM10 concentrations; vertical bars separate seasons); (b) seasonal box plots of average
indoor PM10 concentrations; and (c) scatter plot and linear regression between indoor PM10 and
PM2.5 concentrations.

3.2. Indoor and Outdoor qPCR

Indoor and outdoor bacterial biomass concentrations of 24-h time-integrated samples are
presented in Figure 5a,c, where color and marker size represent genome equivalent copy numbers
(gen eq)/m3. Our results are reported in E. coli genome equivalents, but they can be interpreted as
estimates of the total number of bacterial cells per sample. As indicated in a previous study using the
same qPCR methods, these results are useful for relative microbial abundance comparisons within
a study, but the values should not be interpreted to represent absolute cell concentrations [32,33].
Box plots of seasonally grouped indoor and outdoor bacterial biomass concentrations are shown in
Figure 5b,d. There was no seasonal variability in the time series of qPCR data, based on Kruskal–Wallis
ANOVA test. Outdoor levels (average 675 ± 1158 gen eq/m3) were generally higher than indoor levels
(average 391 ± 522 gen eq/m3). This result is similar to the results from a residential Berkeley, CA
(USA) study, which showed bacterial biomass was higher outdoors than indoors [23], but is opposite a
study of a Berkeley, CA classroom that showed indoors higher than outdoors [26]. A linear regression
of indoor versus outdoor qPCR concentrations showed limited association (R2 = 0.20).
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Figure 5. (a) Indoor qPCR concentrations; (b) seasonal box plots of indoor qPCR concentrations;
(c) outdoor qPCR concentrations; and (d) seasonal box plots of outdoor qPCR concentrations (color
and marker size are on a logarithmic scale and indicate qPCR concentrations; vertical bars separate
seasons).

The qPCR I/O ratios varied by season with spring being the highest (p-value = 0.006). Winter,
spring, summer and fall average I/O ratios were 1.6 ± 1.8, 18 ± 46, 0.71 ± 1.3, and 2.3 ± 3.3, respectively.
Multiple comparison tests showed that the summer I/O ratios were statistically significantly lower
than all other seasons (Su/W p = 0.006; Su/Sp p = 0.03; and Su/F p = 0.03). We saw no indoor-outdoor
correlation for the entire data set, but there were significant correlations when the data were split
according to season, with the strongest in fall (Pearson’s Corr = 0.66) and summer (Pearson’s Corr =
0.63), followed by winter (Pearson’s Corr = 0.26) then spring (Pearson’s Corr = 0.16).

Emerson et al. is a companion paper to this study and reported that the indoor air bacterial
community composition was significantly different between homes and within each home over
time [33]. Indoor air bacterial communities from the same home were often just as different at
adjacent time points as they were across larger temporal distances. Temporal variation correlated
with temperature and relative humidity. Individual taxa that were significantly more abundant
in indoor, relative to outdoor, air included Pasteurellales, which has been shown to be associated
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with cats and dogs in indoor environments. Interestingly, none of the environmental variables
(i.e., those described in this paper including PM2.5, PM10) were correlated with the indoor air microbial
community composition.

3.3. Clustering

The primary goal of the data clustering analysis, which is a common exploratory data mining
technique, was to place homes into groups suggested by the data, such that the homes in a given cluster
tend to have similar pollutant concentrations, physical attributes, inhabitant characteristics, or HVAC
system configuration. This analysis was undertaken to identify common characteristics that explain the
data. Details of the clustering results are described in the Supplemental Information. Table S4 contains
a summary of categorical home characteristic results. Homes tended to cluster depending on whether
there were children in the home, leakage area, size of the home, location, and fireplace/furnace/air
conditioning (AC) type. These data agree with previous studies of home characteristics and healthy
indoor air quality, e.g., [16,19]. Emerson et al. found that similar categorical home characteristics
were significantly correlated with the indoor air microbial community composition in these same
study homes, including presence of one or more dogs, how long the family had lived at the residence,
fireplace/furnace/AC type, and whether or not the HVAC system used electrostatic filters [33].
Table S5 details the clustering results for all pollutant time series. Time series for clustering were
based on sample number as shown in the time series of clusters (Figures S2–S7) for indoor and
outdoor PM2.5, PM2.5 I/O ratio, indoor PM10 and indoor and outdoor qPCR data. Indoor PM2.5 and
PM10 clusters identified homes with similar elevated concentrations from cooking and infiltration of
summertime outdoor pollution. Outdoor PM2.5 clusters substantiated the results that outdoor particle
concentrations varied spatially and depended on location. Clusters from I/O ratios identified homes
with common characteristics that lead to elevated ratios.

3.4. Activity Journals and Indoor PM10

Relationships between occupant activities and one-minute indoor PM10 concentrations were
explored. Figure 6 shows the two data sets plotted together for home E. Plots for all other homes are
included in the supplemental information (Figures S8–S21). These figures show the complex interplay
between occupant activities, home ventilation conditions, indoor particulate matter emissions, and
outdoor pollutant infiltration, the combination of which helps to explain the clustering trends observed
for daily PM10 means. Completeness of the activity logs varied between homes, and comparisons
between activity logs and pollutant concentrations for some homes were limited due to low activity
log response rates. The average time spent on each activity relative to the total reported activity-hours
by home is presented in Figure S1.

Cooking frequently elevated PM10 concentrations at night and in the mornings when dinner
and breakfast were prepared (Figure 6a, 14 December 2012), though not all cooking events were
accompanied by increased PM10 concentrations. This is likely because only some cooking activities
(using the stove or oven) produce particulate emissions [5].

PM10 concentrations often decreased overnight when occupants were asleep and whenever the
home was unoccupied (Figure 6a, 28 April 2013). Sometimes peaks were observed when resuspension
activities were reported, but resuspension-caused peaks were much lower than peak concentrations
for cooking events (Figure 6a, 14 December 2012).
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Figure 6. (a) Indoor PM10 diurnal profiles; (b) activity journal on half-hour intervals; and (c) summed
activity-hours per day, indoor PM10, and outdoor PM2.5 concentrations for Home E.

Most events classified as increased ventilation involved opening windows or doors. The indoor
PM10 response to this activity depended on outdoor aerosol concentrations, estimated with the outdoor
PM2.5 filter samples. Infiltration of poor outdoor air combined with cooking events increased indoor
PM10 concentrations for many homes that increased their ventilation during summer and winter
(Figure 6c, 28 July 2013). Increasing ventilation during cooking events was observed to often shorten
the residence time of the emitted particles, unless outdoor aerosol concentrations were elevated.

The two days with the highest PM10 values occurred at home A on 19 May 2013 (Figure S8),
reaching about 850 µg/m3, and at home R on 11 April 2013 (Figure S21), reaching about 3000 µg/m3.
These two days correspond to days with similarly high indoor PM2.5, but not necessarily elevated
outdoor PM2.5. These days are cases of cooking emissions and poor ventilation leading to unhealthy
concentrations of indoor aerosols. Home A is also interesting because PM10 decayed very slowly over
night during the first three sampling days in Nov, Jan and May. This is likely because the home had an
oversized forced-air heating unit and no air-conditioning that mixed the PM10 efficiently through the
entire house, and no actions were taken to increase natural ventilation. The cooking event at home R
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on 11 April 2013 (Figure S21) can be attributed to burning pancakes and an inability to exhaust the
smoke, as there was no exhaust hood over the stove.

As a result of the extremely high PM levels observed in home R and the adverse health impacts
(asthma symptoms, respiratory infections) reported by the residents upon moving into this home,
further investigation was warranted. Home R was weatherized, heated with radiant heating from
flooring, and was cooled by a swamp cooler in the summer with no forced-air ventilation. It had
the lowest ACH50 of all our study homes (4 1/h). At the conclusion of our study, we suggested the
family install a ventilation system in their home to increase their outdoor air exchange rates. An
energy recovery ventilation (ERV) system was added to the home. This system was designed to always
bring some outside air into the home. Since the installation, the homeowners noticed their health
significantly improved and they were able to stop using their asthma inhalers during the winter. At
the request of the homeowners, a follow up assessment was performed March 2015 to determine the
impact of the ERV system on the indoor air quality in the home. The TSI DustTrak that was used in the
previous study was no longer available for the follow-up study; therefore, a Dylos Pro1100 (Riverside,
CA, USA) was used to measure particulate matter counts. The small particle counts were converted to
PM2.5 mass concentrations using the calibration curve determined by Klepeis et al. [47]. The average
PM2.5 concentration during the 2015 sampling was 4.7 µg/m3, which is much lower than the average
PM2.5 concentration of 18.7 µg/m3 found in the 2013 study.

Studies such as this one that occur over the course of the year in a small number of homes will
capture outlier activities and events that drive indoor air quality. For example, in home N, during
the fall season on 8 October and 9 November 2013 flood remediation activities took place and drove
the PM10 concentrations higher. In home R, pancakes were burned on 11 April 2013, resulting in
severely elevated PM10 concentrations. On the other end of the scale, there were many sampling
days in which no one was home and the PM10 levels were very low. Because cooking with a stove
or oven has such a significant impact on indoor PM2.5, collecting more information about what was
cooked and the appliances used would be useful in future long-term residential air quality studies. In
future long-term home indoor air quality studies, it would be useful to control for many of the home
characteristics to limit the possible covariates in cross-home statistical comparisons between IAQ and
building design factors.

4. Conclusions

The results of this study show that indoor particulate concentrations in homes and outside of
homes around Boulder, Colorado vary seasonally with highest levels in summer. The climate in this
area is classified as semi-arid, climate zone number 5 [48], which has a strong seasonal component to
temperature and relative humidity and results in closed-up homes with heating activities in the winter,
and more natural ventilation and/or air-conditioning in the summer.

Indoor pollutant concentrations were observed to be highly dependent on occupant cooking, use
of natural ventilation, and outdoor air conditions. Little variability in indoor pollutant data can be
explained by home characteristic attributes alone. Strong impacts of home location could also be seen
in the data. Results also support the conclusion that most residential indoor PM10 is actually PM2.5

and is from either indoor cooking or outdoor PM2.5.
Clustering analysis revealed that home characteristics were more directly related to indoor PM2.5

levels, including type of heating and air-conditioning, stove type, ACH50, and home size. Location of
the home was more directly related to outdoor PM2.5, with northern front range locations experiencing
higher PM2.5. Home A and R were typically separated from all clusters, due to their very distinct
ventilation characteristics. Home R had the highest indoor PM2.5, elevated I/O ratio, high indoor
PM10. This home had no furnace, used radiative floor heating, evaporative cooling and had an ACH50

of 4.2 (lowest in our sample). Home A had an oversized furnace for the home and a high ACH50 of
11.8. Home B and E also regularly clustered together and they were both Fort Collins homes. Home Q
also separated by itself with the highest indoor qPCR and the highest ACH50.
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Implications of this work are that while we saw very little seasonal variability in the indoor
air bacterial community composition in these homes (companion paper Emerson et al. [33]) and no
relationship between microbial community composition and airborne particulate matter, we did see
strong seasonal variability in the airborne particulate matter in and outside of the study homes. Thus,
when outdoor PM2.5 concentrations are elevated such as in the summer, indoor exposures can be
reduced by keeping windows closed, using air-conditioning, or in-home filtration. Cooking often
elevated indoor air particulate concentrations, suggesting exposures could be reduced by using stove
exhaust hoods continuously while cooking and in-home filtration. The impact of home characteristics
could be seen both in the microbial community composition and particulate matter data, although with
a larger sample size of homes, a clearer relationship would be better elucidated. For example, our study
showed that home HVAC design impacts indoor PM2.5 concentrations, suggesting residential exposure
could be mitigated through good design, sizing systems correctly, and even using an ERV system to
bring in fresh air. Home leakage as measured by ACH50 was also another impactful characteristic both
on microbial communities and particle levels. Tighter homes both keep out outdoor air pollution and
keep in indoor air pollution. A move towards home designs with outdoor air filtered and supplied
with ERVs would allow for much tighter building construction while maintaining healthy indoor
particle levels, as long as cooking emissions were ventilated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/4/133/s1.
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