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MANTIS: System Support for MultimodAl NeTworks of In-situ Sensors 

ABSTRACT 
Technology trends are extending the flexibility and convenience of today's sensor networks through the 
introduction of new capabilities such as multi-frequency radio transceivers, GPS, and innovative system 
management tools.  This paper expands upon these motivations to present an integrated general-purpose 
MultimodAl system for NeTworks of In-situ wireless Sensors (MANTIS).  The MANTIS system promotes 
multimodal flexibility and ease of use through its support for multimodal sensing including GPS-enabled 
location and time, multi-frequency communication, multitasking sensor nodes, and a new multi-platform 
operating system called MANTIS OS (MOS).  For the novice, MANTIS provides convenient tools such as 
a simple cross-platform API, a remote shell for debugging and logging into MOS nodes, fine-grained 
dynamic reprogramming via the radio, and in-board sensor placement.  For the expert, MANTIS supports 
true networked emulation of MOS sensor nodes as X86 processes, as well as seamless bridging between an 
X86-based network of MOS virtual sensors and an actual sensor network of active physical MOS nodes, 
called nymphs. 
 

1 INTRODUCTION 

The growing popularity of wireless sensor networks has placed increasing demands upon the infrastructure 
of today's general-purpose hardware/software sensor systems to support improved flexibility, ease of use, 
and lower cost.  Standard sensor systems such as Berkeley's Mote/TinyOS architecture [Hill00] and the 
MetaCricket [Mart00] have been highly successful in supporting the prototyping, programming, testing, 
and deployment of sensor networking applications.  Such systems offer an integrated combination of a 
general-purpose hardware platform, an open source embedded operating system, a uniform API and system 
management tools.  These sensor systems have been adapted for deployment in applications as diverse as 
habitat monitoring of seabirds [Main02] and communicating musical toys [Mart00]. 

As users expand the list of sensor networking applications to include military, home, office, marine, and 
meteorological scenarios, sensor systems will be expected to provide even more flexibility and 
functionality than ever before, e.g. location awareness via Global Positioning System (GPS) and flexible 
radios with multiple frequencies and transmit powers.  In addition, users of such systems will range from 
novices with little experience in software and/or hardware to technical experts building complex 
deployments and test suites.  This multimodal usage model places a premium on convenience and ease of 
use.   

In order to accommodate a broader range of applications and users, sensor networking systems can either 
become more specialized to fill specific niches or modes, or can become more generalized to meet the 
growing set of demands.  The first approach is to specialize sensor systems for each application, e.g. 
customized biomedical sensing systems.  Berkeley's tiny Smart Dust Spec is a general-purpose sensor 
platform and nephew to the Mote, yet is customized for miniaturization, achieving dramatically reduced 
size at the cost of reduced capability [Hill03].  An alternative approach is to increase the capabilities of 
existing general-purpose systems in both hardware and software.  For example, the MICA2 follows this 
approach by extending the flexibility and convenience of Mote-based sensor networks through the 
introduction of new capabilities such as multi-frequency radio transceivers and innovative system 
management tools [Xbow03].    

This paper presents an integrated general-purpose MultimodAl system for NeTworks of In-situ wireless 
Sensors (MANTIS).  The MANTIS system promotes multimodal flexibility and ease of use through its 
support for multimodal sensing including GPS-enabled location and time, multi-frequency communication, 
multitasking sensor nodes, and a new multi-platform operating system called MANTIS OS (MOS).  The 
MANTIS system leverages the core Mote hardware architecture but institutes additional multimodal 
enhancements that include extensions to the sensing via GPS, novel exploitation of the multi-frequency 
radio, and simplification of the hardware to lower costs and accommodate novice users.  These collective 
enhancements are combined with other modifications described in Section 3, leading to a hardware 
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platform that we term the "nymph".  To demonstrate the versatility and power of these integrated 
multimodal hardware enhancements, the implementation of a time synchronization application is described 
in Section 4.  GPS-enabled sensor nodes provide a pure clock for assessing the accuracy of various time 
synchronization algorithms over multi-hop sensor networks linked by multi-frequency radios.  The benefit 
of GPS sensing is that it supports additional sophisticated sensing modes such as time and location that 
exceed the capabilities of traditional resistive sensors such as temperature sensors and photo cells.  The 
benefit of multi-frequency communication compared to narrowband communication is that collisions and 
hence variations in packet latency can be reduced, resulting in improved accuracy of time synchronization 
algorithms.  The benefit of integrated system support for multimodal operation is that the combination of 
multimodal sensing and multimodal communication enables the in-situ deployment and evaluation of 
accurate time synchronization algorithms in real sensor networks.   

While multimodal hardware support required only modest enhancements to existing designs, multimodal 
software support requires a broader and deeper design that encompasses support for multi-platform 
operation, true multitasking, and multimodal tools/UI that enable both novices and experts to conveniently 
utilize this general-purpose system.  To support the novice user, MANTIS' design goal is to provide 
convenient tools such as a simple cross-platform API, a remote shell for debugging and logging into MOS 
nodes, fine-grained dynamic reprogramming 
via the radio, and in-board sensor placement.  
For the expert, MANTIS' design goals are to 
support multitasking on ATMEGA platforms, 
true networked emulation of sensor nodes on 
X86 platforms, and mixed-mode 
heterogeneous networking that seamlessly 
bridges between an X86-based network of 
virtual sensors and an actual sensor network of 
active sensor nodes.  The benefit of mixed-
mode networking is to enable phased 
deployment of algorithms and protocols such 
that testing begins in a virtual network 
followed by a seamless transition into a 
functioning physical network.  The breadth 
and depth of these multimodal software design 
goals and features motivated the development 
of a new embedded MANTIS OS (MOS).  
These multimodal features of MOS are 
summarized in Figure 1, along with the 
multimodal nymph hardware platform.   

 

Figure 1.  Multimodal features enhance the 
standard architecture of sensor systems, enabling 
multi-platform interoperability, multitasking, 
multimodal sensing including GPS, and multi-
frequency communication. 

In the remainder of the paper, Section 2 provides a more detailed overview of the MANTIS system 
architecture.  Section 3 describes multimodal network programming via the MOS shell, dynamic 
reprogramming, and uniform API.  Section 4 focuses on multimodal sensing via GPS and multi-frequency 
communication.  Section 5 focuses on multimodal deployment, highlighting the cross-platform support of 
MANTIS. 

2 MULTIMODAL SYSTEM ARCHITECTURE 

The objectives of the MANTIS platform called for the design of a new multimodal hardware platform that 
would support the advanced features of the MANTIS operating system (MOS).  Using the Berkeley Mica 
mote as a starting point, we have developed a new sensor node that combines new power management 
capabilities with a sophisticated, streamlined software development cycle, yet maintains interoperability 
with many sensor networks that are in place today. The MANTIS sensor node, or Nymph (a nymph is a 
baby Mantis), also features all the characteristics that must be expected of a wireless sensor node: small 
size, a good performance/power consumption ratio, wireless networking, and low cost.  This section 
presents a high-level overview of the Nymph hardware, and discusses the implications of our design 
decisions. 
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Figure 2.  GPS-enabled MANTIS Nymph.  GPS antenna extends to the right. 

 

2.1 Hardware architecture 

The MANTIS Nymph is a single-board design, incorporating the microcontroller, analog sensor ports, RF 
communication, EEPROM, and serial ports on one dual-layer 3.5 x 5.5 cm printed circuit board.  The 
Nymph is centered around the Atmel ATmega128(L) microcontroller unit (MCU), which provides low 
power operation and has very good I/O support, including interfaces for two UARTs, an SPI bus, an I2C 
bus, and eight analog-to-digital converter channels.  In addition to the 4kB EEPROM included in the 
ATmega128(L), the Nymph provides an additional 64kB EEPROM external to the MCU.  The unit may be 
powered by either batteries or an AC adapter, and a set of three on-board LEDs are included to aid in the 
debugging process. 

The Nymph includes a built-in JTAG interface, which allows the user to easily download code to the 
hardware.  This addition eliminates the requirement for a separate programming board, simplifying the 
process of reprogramming the nodes while reducing the cost of the overall system. As an added benefit, the 
JTAG port allows the user to single-step through code on the MCU, and also supports our remote shell, a 
capability that is discussed in more detail in section 3. 

As mentioned above, the ATmega128(L) has 2 built in USARTs.  The Nymph uses one of the USARTs to 
supply a serial port (RS232) for connection to a PC, while the second is used as an interface to the optional 
GPS unit, described below.  Due to the importance of low power consumption, we chose the MAX3221 
RS232 serial chip, which may be set to three different power saving modes: power-down, receive only, and 
shutdown.  MOS is able to take advantage of these modes to wake the chip on an as-needed basis, helping 
to reduce the overall power consumption of the Nymph. 

To handle wireless communication, the Chipcon CC1000 radio was chosen.  The CC1000 supports four 
carrier frequency bands (315, 433, 868, and 915 MHz) and allows for frequency hopping, which is very 
useful for multi-channel communication.  The CC1000 is also one of the lowest power commercial radios 
currently available, and provides an RSSI output that connects to the ATmega128(L), allowing MOS to 
optimize the radio to further reduce the power consumption. The radio uses a Manchester encoding scheme 
that allows up to 76.8 kBaud, and has a range of up to 200 meters in an obstacle free environment. 

Since the power efficiency and size of the MANTIS Nymph was of greatest priority we had to choose a 
voltage regulator that came in a very small package and of maximum efficiency.  We decided to use Texas 
Instruments TPS60204 100mA, 3.3V DC/DC converter due to its 90% efficiency, as well as its voltage 
input capabilities, allowing the connection any DC power source in the range of 1.8V to 3.6V.  This 
converter also features a low-battery interrupt output pin, which tells the MCU when the power is low so 
that the Nymph can perform any backup tasks it needs to perform before mandatory system shutdown.  The 
Nymph can be powered by either a battery or an AC adapter; it is designed to hold a 24mm diameter 
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lithium ion coin cell battery (CR2477), but any other battery in the range of 1.8V to 3.6V can be connected 
using a special battery plug. 

 

Test Input Voltage Load Current
Performed (V) (mA)

Just Operating System Running 3.0 15
Scheduled Single Thread While(1) 3.0 16
Scheduler with blinking LED ON 3.0 24
Scheduler with blinking LED OFF 3.0 16
Reading Sensor Data on while(1) 3.0 16
Sensing and Sending over Serial at 19.2kBaud 3.0 16
Sensing and Sending over radio, Transmitting at max power 3.0 75
Sensing and Sending over radio, Transmitting at min power 3.0 42
Sensing and Sending over radio, Receiving at max power 3.0 42
Sensing and Sending over radio, Receiving at min power 3.0 29
Absolute Max power with all LEDs on and radio transmit at max power 3.0 95
Absolute Max power with all LEDs on and radio receive at max power 3.0 62
Single LED power consuption 3.0 9
Everything in sleep mode 3.0 under 1
Ellite Nymph - Operating System and GPS 3.0 101
Ellite Nymph - Everything Running at maximum power including LEDs 3.0 174  

Table 1. Power consumption of the Nymph in various modes of operation. 

 

The attention paid to power-conserving measures in the hardware design of the Nymph allows for very low 
power operation, making the platform well suited for use in environments where external power is not 
available.  Table 1 summarizes the power consumption of the Nymph under a variety of operating 
conditions. 

2.2 Sensor connectivity 

The Nymph provides three interfaces to which sensing hardware can be connected.  In order to facilitate 
rapid prototyping in a research environment, the Nymph has solderless plug connections for both analog 
and digital sensors, which eliminates the need for an external sensor board for many applications.  An 
additional advantage is lower cost - a user need only buy a 10-cent sensor in order to build a prototype, as 
opposed to an expensive external sensor board.  Each connector provides lines for ground, power, and 
sensor signal, allowing basic sensors such as thermistors and photo sensors to be easily connected, as well 
as more complex devices such as infrared and ultrasound receivers.  The I2C bus permits additional 
extensions to the hardware if so desired.  The Nymph also has exported serial capabilities via the second 
UART, allowing the connection of daughterboards that can communicate via a serial connection.  Our first 
such addition is a GPS package that seamlessly outputs both position and time information to the sensor 
node, described below. 

2.3 Development 

In order to make programming for the MANTIS platform easy and flexible, we have developed both 
hardware and software support for multiple types of developer environments.  In addition to the onboard 
JTAG interface, discussed above, we have developed a bootloader mechanism that allows developers to 
connect the Nymph directly to a PC via the serial port; this avoids the expense of the additional hardware 
that is required to support reprogramming via the JTAG port.  This feature has been extended to the radio 
interface so that it is even possible to reprogram the system software without being in direct physical 
contact with a sensor node.  This allows both the operating system and user applications to be completely 
reprogrammed while the sensor nodes are deployed. 
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A major concern for the design of the MANTIS platform was ease of debugging.  Due to the fundamentally 
limited nature of the feedback mechanisms that sensor nodes have onboard, debugging sensor network 
applications can be a very difficult process.  To address this problem, we have sought to create a set of 
tools that simplify debugging at every stage in the development cycle. 

Foremost among these features is the ability to compile and run one or more instances of MOS on the 
Linux platform as standard x86 processes. The x86 version of MOS (XMOS) can communicate not only 
with other XMOS nodes, but it can also communicate over a serial link to MOS running on the AVR 
(AMOS) Nymph hardware. This system is unique in that each node is actually an instance of the operating 
system itself rather than a simulation.  Using standard Unix socket interfaces it is also possible to 
communicate with other XMOS nodes over the Internet or a local TCP/IP network.  Once an application 
has been developed and tested in the XMOS environment, it can be easily downloaded to a nymph running 
AMOS. 

In addition to the MOS operating system, we have developed a suite of Linux tools that greatly simplify the 
problems of cross-platform development.  A tool installation script allows the complete development to be 
set up by executing a single command. Next, we have developed a shell utility that communicates with 
programs on the nymph platform.  This tool is initially used for communicating with the bootloader for 
downloading code from the host system, but once running, it is possible to connect to a command-server 
application that gives developers easy access to various operating system diagnostics.  This functionality 
will be extended to include various network analysis and application configuration features as well.  
Another important capability of the MANTIS platform is that a developer can connect to the nymph and 
inspect its state while software is running.  In difficult debugging situations, the JTAG interface can be 
used for line by line, in-system debugging using GDB. 

2.4 Global Positioning System (GPS) 

The MANTIS Nymphs are the first sensor nodes that support GPS, allowing the Nymphs to correlate 
sensor readings with chronological and geographic data.  This feature is implemented as an external sensor 
board connected to the Nymph via the second UART. We currently use the Lassen SQ GPS board from 
Trimble, which may draw up to 30mA when running at the highest level of performance.  Due to the 
complexity of GPS, the board may require up to two minutes to compute its initial location on power-up; 
however, once this initial information is computed only 30 seconds are required for further location 
readings. The GPS position is accurate to within 10 meters 90% of the time. 

2.5 Preview of the MANTIS Operating System 

The MANTIS Nymph hardware platform was designed to complement our operating system, the MANTIS 
OS (MOS).  A central goal of MOS is to provide a programming environment that is similar to UNIX, 
giving developers a familiar set of tools for constructing sensor network applications.  MOS is a true multi-
threaded operating system that provides an abstraction layer in order to reduce the complexity of multi-
threaded programming in a resource-constrained environment.  A layered network stack and hardware 
driver system are also included, simplifying communication in an embedded platform. 

3 MULTIMODAL NETWORK PROGRAMMING  

The MANTIS system is intended to support users with a broad range of programming experience, from the 
beginner to advanced systems programmers.  To this end, the MANTIS operating system presents a 
familiar API and programming interface, and provides a range of programming modes to accommodate 
many users. 

The main design goals of the MOS kernel are: 

• Small memory footprint 

• Fast context switching 
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• Thread safe device drivers to protect I/O access 

• Simple programming (user) interface 

3.1 Features of the programming environment 

The MANTIS operating system (MOS) itself is coded mostly in C, and it presents a simplified UNIX-like 
C programming interface.  An application developer may write application code in standard ANSI C and 
compile it with gcc, avoiding the need to learn a specialized language or compiler.  MOS implements 
largely UNIX-like semantics, including a subset of POSIX threads, mutual exclusion semaphores, counting 
semaphores, and standard POSIX thread management functions.  This structure provides several 
advantages over existing sensor network systems: 

1.  Many programmers are already familiar with POSIX thread semantics, which flattens the 
learning curve considerably. 

2.   MOS can be implemented easily on top of existing operating systems, such as Linux or Mac OS 
X, increasing the number of devices that can participate in a MANTIS network. 

3.   A great deal of existing code, including a significant amount of open-source code, can be 
trivially ported to MOS. 

Traditional micro-kernel operating systems [Rash89] are inherently inefficient due to the overhead of 
communication between the user space components of the OS, making the use of a more extensive but 
preemptible kernel preferable. This however leads to a more difficult design and implementation of the 
kernel as now a single address space supports concurrent actions. With multiple concurrent threads, it is 
possible to design more flexible sensor network applications. Despite the similarities to many flavors of 
UNIX, MOS is distinct in several important ways.  MOS provides flexibility to the end application 
developer and abstracts away the resource management from the developer. For example, in a typical 
event-driven operating system for sensor networks tasks must be carefully designed and are required run to 
completion before other tasks can be scheduled. Since MOS is intended for use on sensor nodes it is 
optimized for efficiency (especially with respect to data memory), and thus provides a simpler set of system 
calls.  The entire MOS kernel uses only 12 Kbytes of text memory, and approximately 500 bytes of data 
memory.  In addition, MOS makes weaker assumptions about the capabilities of the underlying hardware:  
For example, it is possible to run MOS on a platform that has no memory protection hardware. 

Since MOS accepts applications written in ANSI C, expert developers are given a great deal of power and 
flexibility.  For beginning developers, a higher-level front end language that compiles down to C code is 
appropriate; the development of such a language specifically tailored to sensor network applications is 
currently being considered. 

MOS also supports dynamic memory allocation for the core kernel modules, enabling runtime thread 
execution. Thus, multiple sensor network application threads can be loaded onto the flash initially, and 
commands can be sent at runtime to start up new threads. This enhances the flexibility available to the 
expert developer. 

3.2 Dynamic reprogramming 

Once an application has been developed or modified, the sensor network user has the additional challenge 
of testing and deploying the application in the network.  Using existing sensor network systems, this task 
may be difficult, possibly requiring physical interaction with every node in the network.  This is clearly 
undesirable, since sensor networks may be deployed in inaccessible areas and may scale to thousands of 
nodes [Tila02], making physical access to each node prohibitively expensive or even impossible.  To 
overcome the difficulty of reprogramming the network, MOS includes two reprogramming modes. 

The simpler programming mode is similar to that used in many other systems and involves direct 
communication with a specific MANTIS node.  On a Nymph, this would be accomplished via the serial 
port: The user simply connects the node to a PC and opens the MANTIS programming tool.  Upon reset, 
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MOS enters a bootstrap routine that checks for communication from the programming tool.  At this point, 
the node will accept a new code image, which is downloaded from the PC over the direct communication 
line.  From the programming tool, the user also has the ability to inspect and modify the node's memory 
directly (peek and poke), as well as spawn threads and retrieve debugging information—including thread 
status, stack fill, and other such statistics—from the operating system. 

The more advanced programming mode is used when a node is already deployed, and does not require 
direct access to the node.  The spectrum of dynamic reprogramming of in-situ sensor networks ranges from 
fine grained reprogramming (modifying constants like sampling rate) to complete reprogramming of the 
sensor nodes. MOS has a provision for reprogramming any portion of the node—up to and including the 
operating system itself—while the node is deployed in the field.  This is accomplished through the MOS 
dynamic reprogramming interface.  The capability to use the dynamic reprogramming interface will be 
built into the MANTIS programming tool. 

Current solutions for dynamic reprogramming [Levi02b] are virtual machine (VM) -based where the VM 
resides over the underlying sensor operating system and processes the incoming code capsules. A special 
stack-based instruction set is used to reprogram the sensor nodes, reducing the amount of data that is 
transmitted over the network. In contrast to the VM based approach, MOS allows binary updates to 
reprogram a node.  The developer does not need to learn a new stack-based instruction set; instead, the 
existing deployed application only needs to be modified and recompiled, then transmitted to the MANTIS 
node. One disadvantage with our technique is that the size of the update that is transmitted over the wireless 
link to reprogram the sensor nodes may be large, resulting in a high communication cost. We use 
techniques commonly used in software Distributed Shared Memory (DSM) systems [Cart95] to reduce 
communication due to false sharing. In a DSM system a diff of the modified virtual memory page and the 
original page is constructed. As an update, only this diff is transmitted, rather than the entire modified 
virtual memory page. 

Similarly, the MANTIS programming tool maintains a copy of each node's currently loaded code image at 
the user's PC.  When the user wishes to update the code image, the tool will first compiles the new code 
image.  It will then produce a patch that will transform the old code image into the new, which is sent to the 
node over the network in the normal way. Upon receiving the patch, the node reads its existing code image 
and applies the patch, storing the revised code image into its EEPROM (or whichever nonvolatile storage is 
available on the given platform).  The node then sets the “reprogram on boot” flag and resets itself.  This 
flag is recognized by the MOS bootstrap code, which then reprograms the text memory with the new code 
image, clears the reprogram flag, and resets the node again.  Thus, the entire code image, with the 
exception of the locked bootstrap section, may be reprogrammed over an arbitrary network while the node 
is deployed. 

3.3 Remote shell 

Traditional solutions for network management such as SNMP [Case90] are not applicable to highly 
dynamic sensor networks. Existing solutions for monitoring sensor networks look at topology extraction 
[Deb01] and computing summaries of network properties for energy efficient monitoring of sensor 
networks [Zhao03]. In addition to these mechanisms, the user may wish to manage the nodes in the 
network in other ways.  To provide this ability, MOS includes a remote shell.  From any device in the 
network equipped with a terminal (a PC, for example), the user may invoke the remote shell and “log in” to 
a node.  This node may be either a physical node (e.g. on a Nymph or Mica board) or it may be a virtual 
node running as a process on a PC.  From the remote shell, the user may alter the node's configuration 
settings, run or kill programs, display the thread table and other operating system data, inspect and modify 
the node's data memory, and call arbitrary user-defined functions.  The shell is a powerful debugging tool, 
since it allows the user to examine and modify the state of any node, without requiring physical access to 
the node.  
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Figure 3.  Screenshot of the remote shell. 

4 MULTIMODAL SENSING AND COMMUNICATION 

To demonstrate the benefits of integrated multimodal sensing and multimodal communication, we construct 
and analyze GPS-enabled sensor networks in this section.  Section 4.1 implements a location mapping 
application using mobile GPS-enabled sensor nodes.  Section 4.2 describes a joint multimodal framework 
for testing time synchronization algorithms in sensor networks.  GPS-enabled sensor nodes provide clocks 
at each sensor node to assess the accuracy of time synchronization algorithms, including variations of the 
Network Time Protocol (NTP) [Mills94]. 

4.1 Location Mapping With GPS-

enabled Sensor Nymphs 

        With the addition of GPS to the MANTIS 
system, we have greatly expanded the potential 
of the nymph platform.  Instantly we have added 
location awareness to any outdoor deployment of 
the system; furthermore, we additionally get an 
accurate time signal and elevation information. 
Using the TSIP interface of the Trimble 
LassenSQ module we can receive periodic 
messages containing all the GPS information, or 
it is possible to put the module in query mode 
which allows us to request specific pieces of 
information.  After the initial startup period 
where the GPS receiver constructs an almanac of 
satellite information, it is possible to get 
continuous location updates even if the whole 
module is moving at very high speeds.  This feature enables vehicle or wildlife tracking to be integrated 
into a sensor network like never before.  For application scenarios where the sensor nodes will be placed in 
static locations, it is possible to get a single GPS reading and then power down the whole module to minize 
power usage.  This location information can then be used in a multitude of algorithms such as the 
construction of routing tables or the determination of rf output power levels.  As shown in Figure 4, our 

 

Figure 4.  (Top) computed GPS path taken by
mobile GPS-enabled sensor node.  (bottom)
overlaid path on satellite picture of campus. 
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initial test of the new GPS capability was to log the location information on a single node as it was taken 
across the university campus at walking speeds.  This simple demonstration of the GPS unit tests the 
mobility of the system as well as our driver implementation for MOS. 

4.2 Time Synchronization with GPS Clock and Multi-channel Radio 

Time synchronization is an important issue in general sensor networks for a variety of reasons.  First, it is 
often critical to know the time stamp when a sensor reading is taken.  If there is no globally synchronized 
clock on board each sensor node, then the time stamp given for a certain sensor reading may be inaccurate 
after the local clock has drifted away from the true time.  Inaccurate time stamps for sensor readings from 
different sensor nodes can lead to reordering of events, and possibly even a reversal of actual events.  A 
second motivation behind distributed time synchronization is to synchronize the wake and sleep periods of 
a sensor network, i.e. employ time synchronization to enhance low power management.  An effective 
technique is to sleep the sensor network with a low duty cycle and periodically wake up it up briefly to 
query the sensor readings before going back to sleep [Main02].  However, in a sensor network, the sleep 
times need to be coordinated rather than random.  Because sensor networks involve multi-hop routing, 
random sleep times may very well sleep a neighbor just as an adjacent node wakes, resulting in slow 
propagation of packets through the network graph filled with sleeping nodes.  Rather, the intent is to 
synchronize the wake and sleep times of the entire network, so sensor data can be quickly routed to the 
base station while the network is briefly awake. 

Figure 5 illustrates a general network topology in which some nodes are GPS-enabled while others either 
lack GPS or lack line of sight to be able to observe GPS satellites, perhaps because of obstacles such as 
foliage, mountains, or buildings.  Those nodes that lack GPS can employ a time synchronization protocol 
like NTP to obtain an accurate local clock from 
the GPS backbone nodes   In NTP, a node 
calculates the local clock by first querying a 
node with a true clock, namely our GPS-enabled 
nodes, and then constructs a local estimate of the 
true time returned in the response packet by 
factoring in the roundtrip time and processing 
time at the true-clock node.  For example, nodes 
N1 and N2 are shown querying the nearest GPS-
enabled node to obtain their clocks.  A variety of 
other time synchronization protocols have also 
been evaluated for wired networks [Liao99], ad 
hoc networks [Rome01], and have been proposed 
for wireless sensor networks [Gane02, 
Elson02a], though without the benefit of GPS 
evaluation in a true deployment.  Even in a 
network that is fully GPS-enabled, some nodes 
may be obscured, so that a time synchronization 
protocol is still a requirement.   

Figure 5. Active GPS sensor nodes (G) provide
clock synchronization to N1 (indoors) and N2
(outdoors, lacks GPS) via a protocol like NTP.
(dark squares have GPS but are obscured)  
 

The goal of this section is to demonstrate the strength and versatility of multimodal sensing and 
communication by providing a GPS-enabled framework for evaluating the accuracy of any time 
synchronization algorithm deployed in-situ within a real sensor network.  As shown in Figure 2, we have 
integrated Trimble's Lassen SQ GPS chip onto our nymph platform via the second USART interface to the 
ATMEGA 128 microcontroller.  Through this simple multimodal extension to the hardware, we have 
attained the capability to evaluate the accuracy of any number of time synchronization protocols.  On a 
given sensor node, the estimated clock obtained from any arbitrary time synchronization algorithm is 
compared to the authoritative clock available on the GPS-enabled sensor node right after reception of query 
response in order to assess the accuracy of the time estimation algorithm. 

We selected NTP as an obvious first time-synchronization candidate for evaluation, as pictured in Figure 5.  
We constructed an experiment consisting of a network topology with five sensor nymphs in a row, with the 
outermost node requesting time synchronization from the innermost node.  This linked routing chain is 

10 



Technical Report, University of Colorado, Department of Computer Science, CU-CS-950-03 

similar to the linear route in Figure 5 taken by node N2's NTP request, which propagates to the GPS-
enabled node four hops away.  Broadcast routing was used to connect each node to its neighbors.  The 
outermost node made one request to the GPS-enabled node three hops away and estimated the clock from 
that roundtrip time using NTP.  This estimate was compared to the authoritative clock from GPS.  Sync-
requests are initiated by the client every 10 seconds. Each nymph nodes picks a random start point. This 
experiment was repeated a hundred times to obtain an average estimate of the inaccuracy.  We selected a 
second algorithm to evaluate called Hierarchical NTP (HNTP), similar to [Gane02].  In HNTP, each node 
only makes an NTP query to its upstream parent.  Thus, in HNTP, clocks are distributed outward from an 
authoritative source, neighbor by neighbor.  The advantage of HNTP is that clock updates can be 
distributed in a scalable manner.  Queries are only local to an upstream neighbor, rather than global back to 
the source.  This is helpful in a sensor network where energy efficiency is at a premium.  Time 
synchronization requests no longer propagate throughout the network.   

In addition to NTP and HNTP, we chose to evaluate both algorithms over multi-frequency radios, to further 
demonstrate the utility of joint multimodal operation simultaneously in both the sensing and 
communication dimensions.    The Chipcon CC1000 radio on the nymphs supports spread spectrum multi-
channel communication.  We observe that the accuracy of NTP's time synchronization's algorithm is highly 
dependent on the variation in delay experienced during the roundtrip NTP query.  Indeed, the research 
literature goes to great lengths to statistically model this variation [Arvi94,Cris89].  MAC-layer collisions 
in a wireless sensor network increase the variation in delay experience by NTP queries, and hence reduce 
the accuracy of NTP time estimation.  By employing a separate control channel for time synchronization 
queries and responses, variations in latency due to collisions are reduced, resulting in more accurate clock 
estimation.  We labeled multi-channel NTP as MNTP, and similarly multi-channel HNTP as M-HNTP.  To 
model modest packet traffic consisting of sensor data, a sixth node neighboring one of the three 
intermediate nodes injected 150 packets to the network within the 10 minute trial period. 

The results of our experiments are shown in Table 2.  NTP by itself achieves an average accuracy within 38 
µs of the authoritative GPS clock.  Hierarchy via HNTP reduces the error further, achieving mean time 
synchronization within 23 µs of the true clock.  Hierarchy via hop-by-hop synchronization significantly 
reduces the roundtrip deviation.  We speculate that hop-by-hop synchronization bounds the delay variance 
at each hop, removing the cumulative effect of multi-hop latency that increases variation.  Multi-channel 
communication achieves a further reduction in both the mean and variance, MNTP achieving 20.9 µs 
accuracy, while MHNTP achieves the best accuracy of around 10.44147 µs. As we had surmised, multi-
frequency communication reduced collisions hence the variance in delay compared to the simple NTP time 
synchronization algorithm and thereby improved the time estimation accuracy.  This simple experiment 
demonstrates the flexibility of integrated multimodal sensing and communication.  We believe the 
performance could be improved by further optimization. 

Algorithm Mean Error StdDev 

NTP 39.81979 43. 2736 

HNTP 23.6972 26.438 

MNTP 20.9021 22.9463 

MHNTP 10.44147 11.5746 

Table 2.  Time synchronization accuracy in µs. 

5 MULTIMODAL DEPLOYMENT 

Due to the wide availability and support of the complete programming environment for the AVR 
microcontroller under Linux and Windows, it is possible to build MOS, with minor modifications, as an 
application that runs on the X86 platform.  We call this user space application running on an X86 platform 
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XMOS. XMOS provides wrappers around some of the core kernel modules of MOS viz. networking and 
scheduler, thus enabling XMOS nodes to provide the same uniform interface as that provided by AMOS. 
This enables MANTIS to support mixed-mode networks, consisting of XMOS nodes and AMOS node 
seamlessly interacting with each other resulting in simplified development, experimentation, phased 
deployment and debugging of sensor network applications. 

5.1 Bridging to AMOS: phased deployment into physical world 

Typically, sensor network applications are initially tested either in simulation or in a small scale test 
deployment before the actual real deployment. Both these methods fall short of thoroughly testing the 
sensor network application leading to unforeseen problems. For example, data centric routing protocols like 
[Inta00] are sensitive to the physical phenomena that are sensed and simulations may not be able to 
completely verify all the test cases. However, our hybrid XMOS/AMOS multimodal deployment allows 
phased deployment of the sensor network application into the physical world.  Initially only a small number 
of AMOS nodes are deployed and a set of XMOS nodes are simulated in the virtual environment. As the 
sensor network application is developed and tested, more AMOS nodes are deployed into the physical 
environment, leading to a controlled, phased deployment. For example sensor networks are often deployed 
in extreme habitats like mountains, forests, industrial plants, etc. Our phased deployment scheme allows a 
small network to be deployed and the XMOS nodes are fed with the actual sensor data of the small scale 
deployment. The XMOS network is tested thoroughly and gradually more AMOS nodes are deployed, 
eventually leading to a full scale sensor network deployment. At each stage of the phased deployment, the 
modified sensor network application is migrated from the XMOS platform to the AMOS platform using the 
dynamic re-programming scheme. 

Figure 6 shows the structure of the network, with the two networks connected to each other via a serial 
RS232 link. A simple flooding algorithm is deployed on the AMOS nodes as well as the virtual XMOS 
nodes.  Transparent flooding of packets from one network to another via the serial link is facilitated by the 
uniform API, allowing the two hybrid XMOS/AMOS platforms to co-exist. Thus, a mos_send(…) system 
call on the AMOS nodes causes the data to be transmitted over the radio. Node X which is configured as a 
bridge node would additionally also send the data over the serial link using the mos_uart_send(..) call. 
Similarly, a mos_send(…) call on the XMOS nodes causes the data to be transmitted over the IP network 
with the bridge node Y additionally transmitting the data over the serial link using the mos_uart_send(…) 
system call. Hence, the same application runs transparently over the XMOS and AMOS platforms allowing 
detailed and fine grained simulation of the sensor network application via seamless bridging of the physical 
and virtual network. 

 

             

Base 
Station

Y X

AMOS Wireless Network XMOS IP 
Network 

Serial 
Link 

Figure 6. Heterogeneous XMOS/AMOS network. 

For large scale sensor network deployments, multiple XMOS nodes can be simulated over a single physical 
PC. This facilitates testing scalability of a sensor network and provides a centralized control point to 
simulate the power usage model, different network topologies, the radio communication, different sensor 
drivers etc. However, a drawback of the simulation is the difficulty of simulating wireless communication 
channels, especially indoor communication [Hash93]. Simulating the wireless channel using an 802.11 
network interface is not sufficient to simulate the nymph wireless channel. We address this problem by 
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connecting a nymph to the serial interface of a laptop and using the nymph as a wireless interface for the 
XMOS process running on the laptop. 

5.2 Framework for sensor network simulator 

[Levi02a] is a simulator for TinyOS, allowing applications built for the PC platform to be debugged and 
verified before they are deployed on actual sensor nodes. Packet injection into the network is simulated by 
either injecting packets by statically reading from a pre-configured file or by a java application which can 
inject packets created by the user. However, behavior of most sensor network applications is sensitive to 
the real sensor readings and the physical environment in which the applications are deployed are very 
difficult to simulate on the virtual sensor nodes.  By routing the actual physical phenomena into the virtual 
network, MANTIS allows the developer to observe the true behavior of the application on the virtual 
nodes. [Park00], an extension to ns2, is a simulation framework which models the sensor nodes and also 
provides a “hybrid” simulation combining the real and virtual network. However, the sensor network 
applications are required to be re-implemented for the target platform, resulting in two completely different 
code bases that must be maintained. The transparent bridging between the AMOS/XMOS networks, 
MANTIS provides a prototype extensible framework for simulating applications and hardware for sensor 
networks and also simultaneously expediting the develop-test-deploy cycle for sensor network applications. 

5.3 Multiple base station flexibility 

Topology of sensor networks is typically asymmetric, with a centralized controller called the base station 
controlling the underlying sensor network. The base station is responsible for maintaining the global state 
of the network and the book keeping information required for the management of the sensor network. In 
such an asymmetric topology the centralized base station is a single point of failure and failure of the base 
station may lead to the collapse of the entire sensor network. Very often it is required to have multiple base 
stations in a network which distribute the load and also maintain redundant information about the network 
to make base station failures transparent. In a typical asymmetric topology the base station is connected to 
the sensor network via a single serial link. Compromise of this sensor node could also bring the entire 
sensor network down by not allowing any of the sensor network data routed up to the base station. Our 
hybrid XMOS/AMOS network topology fosters the experimentation of placement of multiple base stations 
in a sensor network.  Figure 7 shows a configuration of a sensor network with multiple XMOS base stations 
connected via serial links to the AMOS nodes. Thus failures of multiple XMOS nodes can be gracefully 
tolerated. 

 

                               

B4

B3 

B2 

B1 
Multiple 
Base Stations 

Figure 7. Multiple XMOS base stations interfacing with AMOS network. 

Very often in a sensor network deployment it is not possible to have the base station which is directly 
connected to the sensor network to behave as a gateway to the Internet and ship data to a centralized 
reliable data collection repository.  Often this reliable centralized repository may be many hops away from 
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the sensor network. By bridging the AMOS and XMOS network, multiple XMOS nodes transparently route 
the data over multiple hops over the IP network to the centralized repository. Figure 6 shows the base 
station located 2 hops away from the network of AMOS nymphs. The uniform interface across XMOS and 
AMOS platforms allows the same routing protocol bridge seamlessly across the two networks.  

6 RELEASE PLAN 

Our plan is to release MOS online by the late Spring of 2003 at the following Web site, 
http://mantis.cs.colorado.edu.  Similarly, the hardware design will be released on this site.  All code and 
schematics will be freely available.  As the MANTIS project evolves, updates to MOS and the hardware 
design will be posted on this Web site.  Forums for discussion and continued development by the research 
community will also be provided, and may be eventually migrated to sourceforge.  Our intent is to enable 
researchers and developers to participate in the design and evolution of the MANTIS nymph and open 
source OS, thereby accelerating the introduction and integration of new features and improved 
performance. 

7 CONCLUSION 

The MANTIS platform has been designed to meet the demands of advanced multimodal sensor network 
deployments while simplifying the process of application development.  The MANTIS Nymph sensor node 
provides a hardware implementation that is ideally suited to take advantage of the unique power 
conservation and dynamic reprogramming capabilities of MOS in a small, robust, and inexpensive package.  
As the core of the MANTIS system, MOS provides developers with a familiar programming environment, 
and the flexible, platform-independent nature of the kernel allows MOS software to be deployed on a 
variety of architectures with little or no modification.  We have demonstrated the practical significance of 
these features by a new approach to sensor network simulations that leverages the ability of MOS to run as 
a UNIX process, and the integration of a GPS unit that allows the synchronization of timing and location 
information with sensor data. 
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