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Experiments with E. Coli B. and its mutants B/l and B/l,5 

showed that the cells of each mutant strain will agglutinate and 

precipitate in certain definite ranges of concentration of H + ,

Na+ and Ca++ . This precipitation is reversible, and is 

apparently due to the neutralization of surface charge by the cations 

in a manner comparable to the flocculation of colloidal particles.

The regions of cation concentration within which B/l and 

B/l,5 precipitated ware identical within experimental error; the 

concentration needed to precipitate these mutants is markedly 

less than that required to precipitate the wild-type B. This 

differentiation is the first one other than their difference 

in virus resistance to have been made.

The metallic cation molar concentration needed to pre­

cipitate B and B/l,5 is given by the following tabulation:

Na + gone. Ca** conc.

B 0.6 0.06

B/l,5 0.25 0.01

The ratio of to /Ca*"̂ ]  required to precipitate B is

thus seen to be 1:0.1, while for B/l,5 this ratio is 1:0.04. 

Although the generally lower level of cation concentration
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needed for B/l, 5 precipitation may indicate that B/l, 5 has a 

lower surface charge than B, the difference in their Na* :

Ca ratios may also indicate a difference in the ion-binding 

properties of the surfaces of these mutant forms. The spe­

cific nature of this difference has not been identified.

In equilibrating T1 with B/l, to which it attaches in 

a completely reversible manner, it was found that the 

equilibrium constant was a function of cell concentration, 

which could be empirically approximated as K “1.9 x 10“̂ x 

(B/l) . This same dependence of K on cell concentration was 

found to hold between T1 and wild-type cells in which the 

second, irreversible, step had been inhibited by exposure 

to ultra-violet radiation.

In an effort to determine the cause of this variation 

of K with cell concentration, the following factors were 

investigated, and all found to be incapable of providing a 

satisfactory explanation:

(1) The effect of exudation of cell metabolic products 

into the medium.

(2) Distortion of experimental data as a result of a 

shifting of the equilibrium between phage and cells as 

the cell concentration is reduced in the process of 

centrifuging.
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(3) The effect of salt concentration. A reduction of 

the concentration of MgCl2 in the adsorption medium 

from 10” 3 to 3.3 x lCP^ molar caused an increase in K 

at all cell concentrations, presumably by increasing 

the rate of attachment. The value of K, however, 

remained proportional to (B/l)

(.4) The masking of accessible cell surface by the 

clumping of the bacteria cells at high concentrations. 

Although it is possible that this consideration may 

have some slight contributing effect, it may be 

ruled out as a major factor.

(5) The mechanical effect of cell—cell collisions in 

enhancing the rate of elution of phage from the cell 

surface.

(6) Electrostatic interactions between cells.

(7) Phage-phage interactions.

A pattern of heterogeneity of the phage population 

was postulated, and a distribution function proposed, de­

scribing a phage population composed of elements having 

different equilibrium constants. This was found to explain 

satisfactorily the observed variation in the overall equili­

brium constant as a function of cell concentration.

To confirm the actuality of such a heterogeneity, T1
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phage was equilibrated with B/l, centrifuged, the supernatant 

discarded, and the cells with their reversibly attached phage 

allowed to equilibrate again in a resuspension in fresh medium. 

This cycle was repeated several times, the measured equilibrium 

constant increasing in each cycle, due to the preferential ad­

sorption of phage of high K.

The nature of the heterogeneity was not determined.

This abstract of about 570 words is approved as to fora and 
content. I recommend its publication.
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PART I

INTRGDUCTICH

Work done in studying the mechanism of virus multipli­

cation in host cells has been focused for the most part on 

the series of bacteriophages parasitic on Sscherechia Coll B.

The ability to make accurate titers of these phages makes 

this a particularly favorable system for detailed study.

The parent, wild-type cell of S. Coll B is host to 

seven distinct strains of bacteriophage, which have been 

identified hy the designations Tl, T2, . . *T7. The seven 

phage strains exhibit wide variations in size, morphology, 

and rapidity of reproduction, despite their possession of a

common bacterial host.

The host bacterium undergoes infrequent spontaneous 

mutations to forms resistant to the reproduction of one or 

more of these virus parasites. These mutated strains are 

customarily designated as B/l, B/2, B/l,3»£»5»7, etc., the 

numerals serving to identify the phages to whose reproduction 

they are resistant. These bacterial strains reproduce their 

mutant characteristics through many generations, so that 

stocks which represent a wide range of stable and highly 

Specific host behaviors can be easily and dependably maintained.
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The use of certain of these mutants has been a most useful 

tool in investigating the pro-reproductive interactions between 

phage and bacteria. It has been demonstrated by Puck, Garen, and 

Cline (1, 2) that the initiation of a fertile invasion of a 

bacterium by a phage includes two distinct stepst an initial 

reversible attachment of the phage to its host, which appears to 

depend on the formation of ionic bonds between complementary 

patterns of electrostatic charges on the virus and on the bac­

terial surfaces; and a subsequent irreversible attachment ap­

parently of an enzymic nature, which leads to actual penetration 

of the bacterium and, under proper conditions, reproduction of 

the bacteriophage.

The two-step nature of this preliminary interaction may be 

clearly demonstrated by the behavior of T1 phage toward three 

different forms of S. Coli B. (2) T1 attaches rapidly to the 

wild-type bacterium, then proceeds to invade and reproduce. Kith 

the mutant B/l, the initial attachment proceeds at the same rate 

as to the wild form. This attachment remains a completely re­

versible one, however, no phage going on to the next, irrever­

sible, step; practically all of the attached phage can be 

eluted apparently unaltered from the bacterial surface by a 

simple dilution. With the mutant B/l,5, however, T1 does not 

form even the first reversible attachment to any measurable degree.

Thus, two specific functional abilities of the bacterial
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surface are demonstrated, which exhibit, in the various mutant 

strains of E. Coli B, radically different behaviors in their 

reaction to the invasion of various members of the T-serie3 of 

bacteriophage. Bacterial strains differing in these surface 

properties may still exhibit Identical growth, nutritional 

requirements, staining, and morphological characteristics.

It accordingly appears that these mutations bear no obvious 

relation to commonly studied metabolic functions.

The proposal has been offered that such mutations to 

virus resistance involve changes in electrostatic configurations 

on the surface of the bacterial cell (3,4»5)* The bond which 

must form between the phage and its host as the first step 

in the complicated series of reactions which leads ultimately 

to the synthesis of more virus material, has been shown to 

involve the interaction of strong electrostatic forces like 

those of ionic bonds (1,6). It has been shown further (7) 

that in the case of the bacterial virus T2 and its host, the 

bond forms only when ionized carboxyl groups on the surface 

of the bacterial cell are intact, and the pH dependence of 

the attachment reaction of both T1 and T2 phages to their 

host suggests that ionized carboxyl groups raact with amino 

groups when union takes place.

Since cell mutants resistant to specific viruses may 

still bind others at the same rate as the wild type (2), the
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surface changes arising from mutation must presumably be at 

specific sites. The new configuration, which is not comple­

mentary to that of the virus which can no longer attach, re­

tains enough of its original pattern 30 that other viruses can 

still form bonds with the cell. Because these surface changes 

are electrostatic in nature, other reactions which depend on 

changed surface groups might be affected. In agreement with 

this prediction, it has been possible to demonstrate differences 

in properties dependent on the surface changes of bacterial 

mutants which exhibit various specificities to the T—viruses.

Most bacteria are strongly negatively charged at pH 7 (8) 

and hence do not spontaneously agglutinate, because the repul­

sive forces arising from the similarity of their surface charges 

prevent a close enough approach for short-range binding forces 

to become effective. As the electrolytic strength of the 

medium is increased, this excess charge is progressively 

neutralized by cation binding and/or shielding by double-layer 

formation until the forces keeping the cells apart are diminished 

to the point at which the cells can approach sufficiently close 

to establish binding forces between their surfaces. Hence the 

effect of inorganic cations and pH on the cell agglutination of 

various virus—resistant B mutants was studied in the hope of 

finding differences which might reflect the surface differences 

responsible for virus specificity. This study is described in
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Part II.

Intimately associated with the surface characteristics of 

both bacteria and phage are the interactions which take place be­

tween them prior to the penetration of the phage to that point 

where deeper structures of the host cell are involved in an iiv 

reversible manner. This presumably surface-controlled interaction 

includes the initial, reversible, 3tep in phage attachment, and 

has been the subject of extensive inquiry in this laboratory.

Study of this primary step in the attachment of the bacterio­

phage to its host may be facilitated by employment of the mutant 

B/l, to which the phage attaches reversibly at the same rate at 

which it does to the wild-type B, but with which no irreversible 

step can follow (2). Thus the isolated first step can be sepa­

rately studied without the more complex subsequent interactions 

which take place with the wild—type bacteria. One major investi­

gative method lies in measurement of rates of interaction as a 

function of different aspects of environmental conditions.

With the Tl-B/l system a very simple kinetic scheme of 

interaction might be anticipated:

V + B VB m

*2

where the virus and bacterium are renresented by V and B res­

pectively, and VB stands for the reversibly bound virus- 

bacterium complex. From this relationship one could predict the
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existence of a true equilibrium constant, K, such that

K - kl m ■ < V -  ^  , where £ 2 \J
k2 TvjTi) (V) (B)

(V)- concentration of free, unbound virus 

(B). concentration of bacteria
(VB)« concentration of reversibly bound virus
(VQ)» concentration of total virus

K, in this kinetic scheme, would be expected to be unchanged in 

value throughout a wide range of concentrations of both phage 

and bacteria.

This simple thermodynamic equilibrium has been assumed in 

the computation of standard free energy, heat of reaction, and 

entropy involved in this phage-bacterium interaction (6). In 

this analysis it was demonstrated that the steady state attained 

in the mixture of T1 and B/l was a true equilibrium in which the 

same final value was attained, regardless of from which direction 

equilibrium was approached. In this work, however, it was 

noted that the equilibrium constant, K, depended to 3ome extent 

on the bacterial concentration; it has also been qualitatively 

noted in this laboratory (l), that the measured value of k^ 

decreases with increasing bacterial concentration, while remain­

ing independent of the phage concentration. Vfollraan and Stent 

(9,10) also have recorded that the attachment rate of a certain 

T4 strain to E. Coli B, while varying linearly with bacterial 

concentration at low concentrations, becomes apparently inde­

pendent of it at higher concentrations.
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These variations of K and k^ in response to variations in 

(B) serve to make questionable the validity of the simple scheme 

of kinetic interaction diagrammed above, which assumes k^ to be a 

true constant, and hence implies the independence of K and (B). 

Apparently some modification of this model is required, and without 

a more trustworthy picture of the mechanism involved, any inter­

pretation of data obtained from the kinetics of phage-bacteria 

interactions must be regarded as dubious.

It was thus felt that a study of K as a function of (B) 

in the Tl-B/l system should be rewarding in shedding further 

light on the elements involved in this particular reaction between 

virus and bacterial surfaces. This study is described in Part III.



PART II

ELECTROSTATIC ASPECTS OF CELL SURFACES OF E. COLI B MUTANTS 

A. Experimental Procedures

All bacteria used in this work were harvested in their 

exponential growth phase. Overnight (approximately 16-hour) 

cultures in 0.8$ Difco Nutrient Broth + ^6 NaCl were grown at 

37° with aeration, inoculations being made from laboratory stock 

slants. Inoculations of $6 by volume of this culture were trana- 

ferred to culture flasks containing 0.5# Difoo Nutrient Broth ♦ 

NaCl, and the cells grown for about 2£ hours at 37° with 

aeration. These cultures were then centrifuged, washed as 

described in detailed experimental procedures, and resuspended 

in the appropriate medium in sufficient quantity to give the 

desired final titer.

Such cultures of various B mutants were washed in dis­

tilled water and resuspended at a concentration of approximately 

9 /
10 /cc in sets of culture tubes containing a range of concen­

trations of calcium chloride or of sodium chloride, buffered at 

different pH values. Cell density in these settling tubes, since 

it is not critical, was based on an estimate of the bacterial 

titer at the time of oentrifugation of the culture. Checks made 

at various concentrations from 10® to 10^/cc indicated that in
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Figure 1

Photograph showing effect of salt concentration of 

medium on E. Coli B, after 6 hours at 3°C.

Left Tubei E. Coli B cells, initially at approxi- 
9

raately 10 /cc, precipitated by a 0.1 molar concentration 

of CaCl2.

Q /
Right Tubei A 10 /cc suspension of E. Coli B, 

remaining in homogeneous suspension in a 0.01 molar 

CaC^ solution.
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pt'ecipiiated by CaC/z .

R/GHT: lu b e  containing a suspension of 
E.Co/t & ce//s /n a sub - agg/u t mat/ng 
concent rat /on o f Oa C/2
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suspension.

Figure 2 shows the network of points examined with S. Coll 

B in media containing various concentrations of C&** and H*, with 

a contour line drawn to separate the regions of stability and ag­

glutination. This represents conditions at the end of 15 hours1 

settling. The contour line was arbitrarily drawn at an optical 

density equal to 5036 of that of a group of unagglutinated control 

tubes containing an equal cell density, with no Ca++, 0.01M Na+ 

(in the buffer), and at pH's in the neutral range from pH6 to 

pH8o

Microscopic examinations were made of cells from tubes 

on each side of this sedimentation contour. In every case, 

cells from the stable suspension showed no evidence of clumping, 

while cells from agglutinated tubes without exception showed 

conspicuous aggregation into clumps, some of massive size.

The clumps were roughly spherical, with no indication of pre­

ferential orientation of the bacterial cells along any particu­

lar axis. The fact of this three-dimensional polymerization of 

the bacteria into clumps suggests that structures which may 

enter into this cell-cell binding are distributed over a large 

part of the surface of the cell.

It can be seen from Figure 2 that precipitation of E. Coli 

B occurs whenever the pH falls below a value in the neighborhood 

of 5, regardless of the cation concentration. At higher pHfs
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Precipitation pattern of E. Coli B as a function of 

Ca++ concentration and H+ concentration.

Cells in exponential phase were placed in culture tubes 

containing CaCl2 in various concentrations, buffered over a 

wide range of pH values. Initial cell titer was approxi-
Q

mately 10 /cc. The optical density and pH of each tube were 

measured after 15 hours at 3°C»

Figures by each point show the optical density relative 

to that of the average of a group of salt-free control tubas 

in the neutral pH region, expressed as percent. 50% was 

arbitrarily chosen as the relative optical density value 

to separate precipitated cells from those remaining in 

suspension. On the basis of this criterion, points repre­

senting precipitated cells are shown by open circles; those 

representing cells remaining in suspension, by solid 

circles.

Figura 2
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F/GU/Z£: cl : Precipitation Pattern of E.Co/f & 
ir> Alee//'a o f Various Ca** concentrations and p/V’̂ .
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precipitation can be elicited if the calcium concentration is 

raised to 0.03 molar or higher.

When the sedimentation contours for the two mutants B and 

B/l,5 were constructed by this procedure, it was found that their 

precipitation zones were distinctly different, as indicated by 

Figure 3. Both curves display the same agglutination point at 

approximately pH5, but at higher pH's the B/l,5 mutant requires 

only about one-fifth as much Ca++ to effect agglutination as does 

the wild-type oell. This is the first distinguishing characteris­

tic between these forms that has been described, aside from 

their virus sensitivity.

Figure U shows the result of using sodium as the cation. 

Similar regions of precipitation are found, but the amount of Ha* 

required for precipitation is much greater than Ca++, by a factor 

of about 25 for B/l,5 and about 6 for B. Further, the difference 

between the precipitation patterns of the two bacterial forms

is not as marked.

Since the same anion, Cl”, is involved in both experi­

ments, the charge of the cation seems to be the predominant 

factor in this effect. The effect of the anionic charge was 

shown to be negligible, NAgSO^ produoing the same pattern as 

NaCl, when plotted against Na+ concentration.

In Figure 5, optical density after seven hours* settling 

at pH8 is plotted against Ca*+ concentration, for B, B/l and
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Figure 3

Contours dividing regions of precipitation of cells 

from regions of stable cell suspensions, for B and B/l,5, 

shown as functions of Ca++ and of H+ concentrations. 

Initial titer of suspensions was approximately 10^/cc; 

settling for 16 hours at 3°. Procedure employed is the 

same as in Figure 2.
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Figure 4

Contours dividing regions of precipitation of cells 

from regions of stable cell suspensions, for B and B/l,5,

+ +
shown as functions of Na and of H concentrations.

9
Initial titer of suspensions was approximately 10 /cc; 

settling for 16 hours at 3°.

Procedure employed is the same as in Figure 2.
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F/GURE 4 - : Precipitation Contours of E. Co/i B o/?c/ 
3 / / . 5  /n media of var/ous /Va* concentrations 
and pH 'sS.
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Figure 5

Optical density of suspension of B, B/l and B/l,5 

as a function of Ca+* concentration, after 7 hours' 

settling at 3°, in media of pH 8.

Optical densities are expressed as the percent of 

initial optical density.

\
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B/l,5. It is apparent that the precipitation patterns shown hers 

for B/l and B/l,5 are identical within experimental error, and 

for both of these mutants agglutination occurs at a concentration 

of Ca++ which is markedly less than that required for the wild- 

type B.

C. Discussion

The results described above can be explained on the 

following basis: £. Coli cells normally carry a strong negative 

charge, and hence in distilled water there will exist a potential 

barrier preventing their close approach (8). As the negative 

surface charge is reduced, either by binding of H* or other 

cations to specific sites, or by double-layer formation, the 

potential barrier is lowered, and interaction can occur. Electro­

static bonds can then form between regions of opposite polarity.

The problem of the interactions which take place be­

tween cells may be considered to be analogous to that of the 

stability of colloids, as discussed and developed by Verwey and 

Overbeek (11). Here the forces between particles arise from the 

combined effects of two factors: (a) London, or Van der Waals 

attractive forces, and (b) the repulsive force due to the inter­

action of two similarly charged double layers.

The attractive London forces, when considered acting between 

a pair of isolated induced dipoles, fall off inversely with the
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seventh power of the distance. Since these universal forces act 

between each atom and eveiy other atom in its neighborhood, 

essentially unaffected by intervening material, the net attraction 

between two particles may be computed by summing the intern-atomic 

forces between each atom in one particle and every atom in the 

other particle. When this is carried out for the case of large 

particles with parallel flat faces,tthe total force is found to 

change inversely as the square of the distance. In the case of 

spheres, the attractive force initially drops off inversely with 

the distance, then more quickly; but at a separation of nearly a 

half-radius the rate of decrease of the force Is still less 

than inversely as the square of the distance.

The repulsive forces between particles, based on the 

interaction of their diffuse ionic double layers, drop off in 

an exponential manner with increasing distance.

Hence, the behavior of neighboring particles may be 

considered to be governed by a superposition of these two 

opposing effects. If this superposition results in a zone 

within which the repulsive forces are stronger, the particles 

will be unable to make a sufficiently close approach to enable 

the attractive London forces, which are strong at close range, 

to effect a binding.

Neglecting any energe.tie binding of specific ions to 

oppositely charged sites on the cell surface, the primary effect
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of changes in the salt concentration of the medium may be considered 

to be upon the thickness of the double layer. This thickness, 

measured from the surface to the center of gravity of the dif­

fuse ion atmosphere, is given as 1/ k  , where

X 2- 8Trn*2sJbkT » and

n ■ ion concentration per cc 
e • electronic charge 
z ■ ion valence 
D f dielectric constant

This evaluation of K is an approximate one, based on the assumption 

made by Debye and Huckel (12) that the electric potential, ^ , 

is sufficiently small that zei|/kT<£ i . It can be shown 

that the ions whose charge is of the same sign as the surface 

of the particls have a negligible effect upon the formation of 

the double layer. Accordingly, 2 may be taken as the valence 

of the ions bearing a charge opposite to that of the surface 

without introducing any appreciable error in determining the 

magnitude of K . The double layer thickness is thus seen to 

be inversely proportional to the valence, and inversely pro­

portional to the square root of the concentration. Reduction 

of this thickness reduces the range of the repulsive forces, 

and in excess of some critical concentration, attraction will be 

predominant at all distances, thus leading to a binding contact

between particles.

The effect of ion valence on colloid coagulation is quali­

tatively expressed by the rule of Schultz and Hardy which states
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that the flocculating concentration is determined primarily by the 

valency of the ions bearing a charge opposite that of the sol 

particles, their specific nature being of secondary importance. 

Verwey and Overbook have computed the effect of the valency of 

oppositely charged ions in the case of flat surfaces of high po—

»•
tential to which the approximating assumptions of Debye and Huckel 

are inapplicable, and to which no ion binding takes place. They 

find that the coagulating concentrations for univalent, bivalent, 

and trivalent salts should be in the proportions

1 * (£)6 j (1/3)6

• 1: 0.016 J 0.0014. This is found to be 

substantially true for the flocculation of a number of inorganic

crystalline sols.

In the case of spherss, however, of small surface potential, 

to which the approximate methods of Debye and Huckel are appli­

cable, the flocculating concentration ratios can be theoretically 

expected to be

li (*)2 i (3/3)2 

• 1: 0.25 » 0.11.

For approximately cylindrical bacterial cells it might be 

anticipated that the corresponding ratios should fall somewhere 

between these extreme values. Taking the agglutinating concen- 

tration of Na* for E. Coli B to be 0.6 molar, and of Ca 0.06 

molar; and for B/l,5 0.25 and 0.01, respectively, we get the ratios
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for monovalent NA+ to divalent Ca* *, 

for (B) h  0.1

for (B/l,5) 1» 0.04, both of which fall within the 

range bounded by the two cases considered by Verwey and Overbeek.

The fact that B/l,5 is agglutinated by lower concentrations 

of both Na+ and Ca++ than are required by B might be qualitatively 

accounted for by postulating that the surface charge of B/l,5 is 

less, or that it contains a larger number of sites capable of 

forming an energetic bond with the metallic cations, or both.

These considerations alone, however, provide no accounting 

for the wide difference in the coagulating concentration ratios 

of Na+ and Ca *'* between B and B/l,5. Manifestly, the two 

cell surfaces exhibit different behaviors toward these two ions, 

which must reflect differences in chemical composition.

A number of naturally occurring long-chain polyelectrolytes 

have been found to have a marked ability to bind Na and K 

(13) i arable a d d , agar, and nucleic acids all display this 

behavior. The presence of a larger number of such molecular 

configurations on the surface of B could explain the relatively 

smaller amount of Na + required to effect its coagulation.

Sites on the surface of B/l,5 exhibiting a stronger binding of 

Ca could also produce this effect. Steric and structural 

differences, differences in the configurations of charged 

sites, and/or differences in the deformability of these surface
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characteristics in the presence of an ionic atmosphere might 

also be contributing factors.

No quantitative analysis of the relative importance of 

double-layer formation and of ion-binding can be made on the 

basis of the data here presented. Supplementary micro-electro- 

phoretie measurements which this laboratory expects to carry 

out, however, may lead to a quantitative comparison of the 

charges on the surfaces of various bacterial mutants previously 

known to differ only in their patterns of virus resistance.

The experimental data here presented have not closely 

defined the pH below which agglutination occurs in the presence 

of low concentrations of metallic cations. Its location in 

the neighborhood of 5, however, points to the conclusion that 

neutralization of ionized carboxyl groups by H* is the mechanism 

that is effective in the reduction of the negative charge on 

the surface of the cell.

Edsall (14.) gives values of the pK for the aspartyl 

carboxyl from 3.0 to 4.7, and for the glutamyl carboxyl as 

about 4.4, as measured for these groups when present in peptides 

of known composition. Although these values are somewhat less 

than the pH at which neutralization of the cell surface appears 

to take place, a deviation in this direction is to be expected. 

Interaction with positive groups on the surface, which wouldbe 

expected to raise the required concentration of H + above that
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for relatively isolated groups, is probably an unimportant factor,

a3 evidenced by work in this laboratory (15 ) demonstrating

that there are relatively few positive groups on the surface

7 &
of 2, Coll B. Tolmach has shown (15) that between 10 and 10 

positively charged dye molecules can be bound per 3. Coli 

cell. Since this attachment presumably can take place only 

onto negative groups, an average spacing of about 5& between 

negative groups follows from assuming the bacterial surface 

to be equivalent to that of a smooth cylinder 1  micron in 

diameter and 2 microns long. Interaction with these closely 

neighboring negative groups could be expected to diminish 

the concentration of H + needed for neutralization, and 

hence materially to raise the pH at which cell agglutination 

occurs.

Tolmach and Puck have shown (7) cellular surface car­

boxyl groups to be functional in the attachment of T2 to E.

Coli B, and that this attachment is almost completely in­

hibited at pH’s below 4-.S. The approximate coincidence 

of this pH value with that below which the agglutination 

of cells occurs strengthens the assumption that ionization 

of carboxyl groups is a determining factor in the attachment 

of this phage, just as their neutralization is for cell pre­

cipitation*

Because B/l and B/l,5 were found to precipitate at
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lower Ca++ concentrations than wild-type E, the negative surface 

potential on these resistant mutants must be smaller than on the 

wild type. It can be concluded, however, from these data that 

charge alone does not determine virus sensitivity: B/l and B/l,5 

exhibit precipitation patterns that are identical within experi­

mental error, and yet the former attaches T5 virus, while the 

latter does not. Also T1 reversibly attaches to B/l at a rate 

identical with that of its attachment to the wild type, while 

no measureable attachment to B/l,5 is observable (2). It there­

fore appears inescapable that it is the specific pattern of 

charge distribution, rather than the gross charge, which is the 

factor that determines whether or not a given virus will be able 

to attach to a particular host cell. A similar conclusion was 

reached by Puck and Sagik (16) on the basis of the interaction 

of bacteriophage with anionic and cationic exchange resins.

It is possible to present a purely schematic picture of 

this conception of the differences in the surfaces of the re­

sistant mutants on the basis of a theory proposed in this labora­

tory (4,5). Figure 6 shows how the wild-type cell surface might 

be visualized as bearing a repeating pattern of charged groups. 

Attachment of a particular virus, say T2, might involve specific 

charged groups in this pattern, for example, groups a, b, and c. 

Another virus, say T4, could make use of groups c, d, f, and h 

when it attaches. Mutation to B/2 could then come about by a
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Figure 6

Hypothetical, schematic repeating pattern of electro­

static charges on a cell surface.

A phage strain requiring the pattern of groups a, 

b, and c to effect its attachment would be unable to attach 

to a bacterial mutant in which any of these groups were 

eliminated or altered in cliarge or position. Simi­

larly, a mutation altering or eliminating any one of 

the groups c, d, f, or h would bring about resistance 

to a phage strain requiring these groups to effect 

attachment.

Alteration of group c would thus cause a resistance 

to both phage strains.
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FIGURE 6

Hypothetical Schematic Pattern of 
Charges on Ce/t Surface



32

removal or a spatial displacement of groups a, b, or c. If no 

other virus made use of groups a or b, then the change in these 

would lead to B/2 only. But we have imagined that group c is 

used also by T%. Hence its removal would result in the mutant 

B/2,4.

A more complex extension of this simple picture would pro­

vide, insofar as the first reversible step is concerned, an ex­

planation of the many observed examples of single-step mutation 

to multiple virus resistance (17). It is obvious that the cus­

tomary classification of resistant mutants, however, with the 

sole criterion for resistance being merely the inability of the 

virus to reproduce, presents only a part of the picture. This 

inability may arise from the impossibility of effecting the 

initial attachment, as is the case with T1 and B/l,5; or from 

the blockage of a subsequent irreversible step, as occurs with 

T1 and B/l. Presumably specific resistances based on later 

steps may exist, but cannot be studied until means are avail­

able for their isolation, as may be done for the first two 

steps. A complete understanding of specific cellular resistance 

to virus invasion will require identification, isolation, and 

analysis of the particular phase of invasion in which the 

resistance is based. Conversely, further study of the patterns 

and nature of virus resistance may be expected to point the way 

to a fuller understanding of the entire process of virus invasion.
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These experiments have emphasized the role of the ionic 

groupings on the surface of the virus and of the host cell. 

Multipolar and Van der Waals* forces probably are also involved, 

but different experimental techniques will be required to es­

tablish their role.

Elaboration of this theory must await a more detailed molecu­

lar picture of the bacterial surface, as well as that of the 

virus. This can be obtained by means of the direct titration 

of the active surface groups. These studies are now under way 

by others in this laboratory.



PART II I

INVESTIGATION OF THE KINETICS OF THE REVERSIBLE ATTACHMENT OF 
T1 TO E. COLI B AND ITS MUTANTS

A. K as a Function of Cell Concentration

For the experimental investigation of the observed decrease 

in th8 equilibrium "constant," K, with increasing cell titer, the 

Tl-B/l system was employed as the primary tool. Since T1 engages 

in only a reversible attachment to this bacterial mutant (2) 

the complicating factor of the rate of formation of a subsequent 

irreversible bond is not present in this system. Accordingly, it 

is necessary to consider only the rate of attachment, k^, and 

the elution rate, k^, as factors governing the value of K under 

any given circumstances, as given by equation /£/ of Part I, 

for the steady-state condition.

Bacteria used in this series of experiments were grown and 

prepared as described in Section A of Part II.

The particular T1A8 strain used here was grown on E. Coli 

B in nutrient broth ♦ NaCl, then purified by slow centri­

fugation and filtration through a Mandler Candle filter. The 

stock phage titer was 3.0 x 10^/cc.

Cell titers were made by making a suitable dilution in 

nutrient broth ♦ )t% NaCl, suspending aliquots of this in U cc.
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of 0.6$ agar ("soft" agar) at 45°, and immediately pouring onto 

1.2$ agar ("hard" agar) plates in Petri dishes. Incubation was 

from 16 to 24 hours at 37°. Both soft and hard agars contained 

0.8J6 nutrient broth ♦ ^  NaCl.

Phage titers were made in the same manner, except that a 

few minutes previous to pouring, the 45° soft agar tubes were
g

inoculated with approximately 10 cells of a 24-hour E. Coli B 

culture. Such T1 plates were incubated about 16 hours at 19°.

In early experiments concerning Tl-B/l equilibrium, pro­

gressive inactivation of the phage in a number of synthetic 

media was observed, which did not occur in broth. Examples of 

this inactivation are shown in Figure 7. Inasmuch as the nature 

of the inactivation was not known, it was felt that the possi­

bility existed that in addition to a portion of the phage being 

inactivated, the survivors might suffer some alteration which 

would make their behavior not representative of normal phage.

The inactivation is not reversible; no measureable reactivation 

appears even after transfer of the inactivated phage to nutrient 

broth «*» NaCl for 24 hours at room temperature.

It was found that addition to the adsorption medium of 1 

part in 800 of standard 0.8% Difco Nutrient Broth (10 7/cc of 

the dehydrated broth) sufficed to prevent inactivation, and yet 

provided insufficient nutrient to permit bacterial multiplication 

in appreciable amount during the course of any experiments 

undertaken. The factor or factors in the broth serving to offer
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Figure 7

Inactivation of T1 bacteriophage by inorganic madia.

Phage stocks were grown on 2. Coli B in nutrient 

broth ■* NaCl with aeration; and purified by low-spaed 

centrifugation and filtration. Stock was diluted 1:10° 

into broth and in identical dilutions into buffered solutions 

of MgClg •

Ordinates show phage counts expressed as percent 

of average of initial titers.

t
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FIGURE 7 : Inactivation of 77 Bacteriophage 
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this protection were not identified, but this broth addition was 

subsequently made routinely to all synthetic adsorption media used.

Sbcperimants were conducted by allowing T1 to equilibrate 

with B/l at 37° in an adsorption medium composed of 10“̂ molar
„ 3

hgClp, 10 molar P0  ̂buffer of pH 7.1, and 10 'T/co of dehydrated 

broth. A series of adsorption tubes was prepared, each contain­

ing 1.9 cc of a suspension of B/l cells, previously washed twice 

in the adsorption medium. To each tube was added 0.1 cc of a 

A x 10V c c  T1 suspension, diluted from the stock culture in the 

adsorption medium. This gave a phage titer of approximately 2.0 

x 10^/cc in each adsorption tube.

Pilot experiments indioated 25 to 30 minutes to be an 

adequate time for T1 to reach equilibrium with a 10̂ /oa cell sus­

pension. Accordingly, all adsorption tubes were kept in the 37°
*

bath for 35 minutes, then centrifuged to remove cells, and the 

3upematants titered to determine the concentration of free, 

unattached phage. As a check on the constancy of the total 

phage titer, samples were diluted and plated from each adsorption 

tube at the beginning and at the end of the adsorption period.

A series of determinations of the equilibrium "constant®

•See Appendix for a discussion of ths adequacy of this 
equilibration time..
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K by the experimental procedure outlined above shows it to have 

an apparent relationship to bacterial concentration as indicated 

in Figure 8. K here has been computed in accordance with equation 

f27 of Part I. The functional relationship between K and (B/l) 

can be approximated by the empirical relationship

K “1.90 x 10~4 (B/l)-*, f ) J

which represents the data with an uncertainty probably no greater 

than that of the experimental measurements.

No theoretical justification for equation 3_7 has been 

discovered, and arbitrarily curved lines could be drawn which would 

fit the plotted points equally well or better. It may be assumed 

that this simple linear relationship between log K and log (B/l) 

is a fortuitous one. It is nevertheless a useful, and hitherto 

unavailable, tool for the phage experimenter, to serve as a guide 

in the design of experiments involving T1 adsorption.

It has been shown that arrest of the second, irreversible, 

step of virus invasion can also be accomplished by exposure of 

wild-type cells to ultra-violet radiation (2). It was therefore 

important to determine whether these cells would also exhibit the 

characteristic depression of K with increase of cell concentration. 

If this were the case, the conclusion could be drawn that the 

factors responsible for this action lie entirely within the

parameters controlling the first step of the invasion cycle.

10/
Cells at a concentration of about 10 /cc were exposed to
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Equilibrium constant of adsorption of T1 onto B/l 

in ICf^ molar MgC ^  + 10”-* molar P0̂  at pH 7.1, as a 

function of B/l concentration. Both K find / ”b/1_7 

plotted on logarithmic scale.

Adsorption tubes> each containing approximately

2 x l o V co ox Tl, and B/l cells in concentrations ranging 

from 107/cc to lO^/cc were incubated 35 minutes at 37° 

to allow establishment of an equilibrium between phage 

attachment and elution in this reversible reaction.

Cells, with their attached phage, were removed by 

centrifugation, and the supernatant titered for free 

phage. The value of K for each different bacterial 

concentration was computed as:

I - f w J  * f i i J  - C H  , where

m b * /  b u W

L = total phage titer 

/TO7 = titer of reversibly bound phage 

tS  = titer of free phage 

/"b7 - B/l concentration

The straight line graphs the empirical relationship 

K a 1.9 x Iff** x (B/l)“fr

Figure 3



/
/

/
r/

um
 

C
on

st
on

t 
, /

C 
/n 

q
/d

 
£>c

?c 
te

r/
 u 

m

a

Ni

F/GUHC: Q ; Log-/og grap/i o f  equilibrium  constan  t, 
A', a s  a fu n c t io n  o f  ce// c o n c e n tra t io n  , /n the 
re fe rs/ b / e  oc/sorpt/on o f  77 onto B//.



42

ultra-violet radiation in 3-cc batches in Petri dishes subjected

to continual mechanical agitation. This was continued for 15

minutes at a distanoe of 15 cm from a 30-watt General .Electric

sterilizing lamp, 80$ of the radiation from which consists of

the 2537ft mercury line. Post-exposure cell titer showed approxi-

6
mately one survivor in 2 x 10 cells.

Pre-exposure cell titers made by the usual colony-count 

method were in these experiments supplemented by post-exposure 

direct microscopic cell counts. For this purpose, the red-cell 

count of blood was made in a hemocytometer. A mixture of this 

blood and the cell suspension was then examined microscopically, 

and the ratio of red cells to bacteria determined by a series of 

counts of each which appeared in the microscopic field. Cell 

titers thus determined were in excellent agreement with those 

obtained by the colony-count method. This check also served 

to demonstrate that the cell preparation methods routinely used 

resulted in no appreciable mortality, and that the colony-count, 

which provides viable cell titers, is, within the limits of ex­

perimental error, an accurate representation of the total cell 

concentration.

Determination of K at various cell concentrations was carried 

out according to the identical procedure followed for previous 

similar experiments with B/l. Results obtained are, within 

experimental error, the same as those obtained with B/l, as is
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indicated in Figure 9»

B. Investigation of the Possible Influence of Various
Factors on the Dependence of K on Cell Concentration

(1) Effect of Metabolic Products in the Medium

An experiment was designed to determine whether the observed 

relationship between K and (B) is dependent upon the cell concen­

tration itself, or results from effects of cell metabolism on the 

medium. Bacterial metabolic products capable of influencing the 

attachment characteristics of the phage might be present in 

larger quantities in media in which higher bacterial concentrations 

had been present. Therefore the effect of such products on the 

attachment was tested by the following experiment*

a) A B/l culture was washed twice in the standard 

adsorption medium, and resuspended in this sane medium 

at a titer of approximately 5 x 10^/cc. This was 

designated as "H" (for "high") titer. A 1$100 dilution 

of this suspension in adsorption medium was prepared and 

designated as ttLn (for "low" titer).

b) Equal portions of H and L were centrifuged; the 

H cells were resuspended in the supernatant from L and 

designated as "ET." Similarly, a resuspension of the 1 

cells in the supernatant from H was designated as "LT."

c) T1 was added to each tube to give a phage concen­

tration of approximately 2*5 x 10̂ /cc in each; each tube
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Equilibrium constant 01 adsorption of 71 onto S.

Goli B killed by ultra-violet radiation, as a function of 

cell concentration.

Cells wsre killed by exposure of 10^/cc suspensions 

to radiations from a 30-watt sterilising lamp for 15 minutes 

at a distance of 15 cm0 Survivors were approximately 1 

in 2 x 106 .

Experimental procedure was identical with that 

followed in adsorbing T1 onto B/l, as shown in Figure 8.

Hollow circles show K computed from adsorption onto 

ultra-violet-killed S. Coli B; solid circles duplicate 

Figure 8 to show results from adsorption onto B/l.

Figure 9
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was titered for total phage at the beginning and end of an adsorption 

period of 35 minutes at 37°. The tubes were then centrifuged, and 

the titer of free phage measured in each supernatant.

Results of this experiment, as indicated in the following 

tabulation, appear to indicate conclusively that the depression 

of the equilibrium constant results from the physical presence 

of the cells themselves, rather than from any exudation from them 

into the medium.

Tube Cell Medium % of Virus in
supernatant

K

H 6.3 x 109 Original 3.7 3.9 x 10~9

HT 6.8 x 10^ Transposed 3.0 4.8 x 10“9

L 5.7 x 107 Original 43 2.3 x 10~B

LT 5.7 x 107 Transposed 44 2.2 x 10*8

(2) Sffect of Centrifugation

In the unrealized circumstance of the centrifugation of an

ideally homogeneous cell suspension, the phage would undergo an

abrupt transition from an environment of constant cell titer with

which it was in equilibrium, to a completely cell-free environment

as the boundary descended past it. This would give an accurate 

and undistorted titer of free phage from the supernatant, no 

matter at what speed the centrifugation were carried out. In the

real situation, however, with the cell population exhibiting wide
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variations in siae and shape, the phage finds itself in an environ­

ment of gradually decreasing cell titer, as can be attested by 

periodic inspection of a centrifuging suspension. In the event 

that this decrease were sufficiently slow for the phage population 

to maintain a changing equilibrium with it, the end result would 

be an increasing proportion of free phage during the course of 

the centrifugation. Qualitatively, then, the titer from the 

final supernatant should be expected to contain more free phage 

than the initial suspension, and this discrepancy should be more 

pronounced at higher cell concentrations, in which the phage- 

bacterial equilibrium is more rapidly established. The direction 

of this effect is, then, in the proper direction to cause a de­

pression of K at high (B), as is observed.

This possibility was experimentally checked by centri­

fugation at two speedst (a) for U minutes in 1-cc tubes in a 

high-speed Micro centrifuge at approximately 5000g, which can 

clear a dense bacterial suspension in less than 30 seconds; and 

(b) in the manner employed routinely in the determinations of K: 

for 20 minutes in a Sorvall angle-head centrifuge at approxi­

mately 600g. This procedure was carried out at four bacterial

7 £ 9 T.0 /
concentrations: approximately 10 , 10 , 10 , and 10 /cc.

Discrepancies between K*s determined at the two centrifugation

speeds were within the range of experimental error.

Garen (6) has determined the value of the dissociation rate, 

k2, to be approximately 0.1 min”̂ for the Tl-B/l system in 10”̂
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molar MgCl , as was used in this experiment. It is apparent that 
2

the dissociation reaction with a rate constant of this magnitude 

cannot deviate appreciably from its initial state of equilibrium 

during the fraction of a minute required to remove the cells from 

suspension in the high-speed Micro centrigue. Since K values de­

termined in this centrifugation deviate by no more than normal 

experimental error from those obtained by centrifuging in the 

manner used throughout this work, we may be confident that any 

error introduced hereby cannot be appreciable.

(3) Effeot of Salt Concentration

It has been shown (2) that the ionic strength of the ad­

sorption medium has a profound effect on the rate of T1 attach­

ment to wild-type S. Coli B, this rate decreasing markedly with 

a variation of salt concentration in each direction from a well- 

defined optimum attained at approximately 5 x 10 molar Ca++ 

or Mg++. Experiments by Puck and Sagik (16) have indicated that 

at least the initial increase of the equilibrium constant for 

attachment, as the salt concentration is raised from zero to 

its optimum value, is due to electrostatic interaction of the 

inorganic ions with the bacteriophage surface. Hence it was 

important to determine whether the change in K with bacterial 

concentration is also influenced by the ionic constitution of 

the medium. If such an effect were found, it would raise the
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possibility that the lowaring of K produced by a high bacterial 

concentration ia an effect which operates through the same 

molecular groups that display the strong salt-sensitivity of 

virus attachment.

Accordingly, in order to investigate the effect of salt 

concentration on the variation of K with cell concentration, 

equilibration experiments were performed, identical with those 

previously described, but with a concentration of Mg++ equal to 

3.3 x 10 molar instead of 10 molar. This, as may be seen 

from Figure 10, resulted in an approximate doubling of the 

equilibrium "constant," an effect consistent with the changes 

observed by Garen (6) at a constant bacterial concentration. 

However, the curve obtained possesses substantially the same 

form and slope, and hence the equilibrium constants are ex­

hibiting the same variation with bacterial concentration as 

-3
in the 10 molar medium. Therefore the effect of the in­

creased bacterial concentration does not seem to involve the 

same mechanism responsible for the variation of attachment 

rate with the ionic constituents of the medium.

(4) Effect of Bacterial Clumping

Another factor whose possible role in reducing K with in­

creasing cell concentration was investigated, was that of actual 

reduction of effective cell surface as a result of clumping.
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Figure 10

Equilibrium constant of adsorption of T1 onto B/l

in 3.3 x 10”̂ molar MgCl- + 10"-* molar P0 at pH 7.1,
4

as a function of B/l concentration.

Procedure was identical with that carried out in

_ 3
10 molar MgC^, as shown in Figure 8.

Hollow circles show values of K obtained by 

equilibrium in the 3.3 x 10**̂  molar MgGl^ medium; solid 

circles duplicate Figure 8 to show comparative data in 

10"3 molar MgCl2.
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F/G U RE 10 : Log- Jog graph o f eguii/Sriu//? constant , K ,  
as a /csnct/on o f  cell concentration, fn the oc/'sorption o f  
77 onto ti/f /n o r?ediurrj conto//;i//g 3.3 * /O * /no/or 
MgC/z . Sim/tor po/nts for a med/um contv/n/ny /0~3 
moior M  ̂Ci? are /Oc/uded for co/vpcr/son.



Qualitatively, at least, any reversible bacteria-bacteria attach­

ment which might lead to clump formation would be more effective 

in reducing the total exposed cell surface at higher concentration.

By a rough analysis we may gain an idea of the magnitude of

clumping which might be anticipated if surface masking by this

mechanism is the major factor involved. Whan the cell concen-

7 10
tration was increased from 10 /cc to 10 /cc, an approximate 25- 

fold reduction was encountered in the measured value of K. On 

the assumption that the clumps are roughly spherical, we should 

expect to find in cell suspensions titering 10^/cc, that most 

of the cells would be present in the form of clumps which must 

average at least 20 or 30 cells in diameter if surface masking 

were to account for the entire observed reduction in K, since 

the volume of a sohere varies as the cube of its radius, while 

its surface varies as the square. Such extensive agglutination 

could not escape being immediately apparent on microscopic 

examination. Although occasional small aggregations may some­

times be observed in these suspensions, the amount is far too 

little to account for the observed decrease in the virus attach­

ment constant. Therefore, although it may be to some extent 

contributory to the observed effect, cell aggregation cannot 

constitute the major factor involved.
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(5) Mechanical Cell Interactions

Investigation was made of the possibility that the reduction 

of K with increasing cell concentration might be due to an increase 

in the phage-bacteria dissociation rate, k2, through the purely 

mechanical action of the increasing frequency of inter-bacterial 

collisions.

It has been established (2) that T1 does not exhibit any 

measurable reaction of any sort with B/l,5. Accordingly, the 

only effect this bacterial mutant might be expected to exhibit 

would be such a purely mechanical one as was being investigated.

The experimental procedure was as follows*

a) B/l and B/l,5 were centrifuged and washed 

twice in the standard adsorption medium, and then resus­

pended in the same medium.

b) To each of a series of tubes at 37°, containing 

dilutions of B/l,5 ranging in titer from 7 x 10^ to

7 x 107, was added an equal aliquot of B/l and of Tl.

c) After standing 35 minutes, the tubes were 

centrifuged and phage titers made from eaoh supernatant. 

Results are indicated in the following tabulation*
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Tube Number 

1

B/L I & a x

5.1 x 107

5.1 x 107

5.1 x 10?

5.1 x 107

5.1 x 107

5.1 x 107

5.1 x 107

B/l, 5 titer Supernatant T1 titer

3

2

7.0 x 109 7950

3.5 x 109 7800

1.4 x 109 0 7300

4 8200

5 9100

6 8150

7 7500

Since the quantity of supernatant phage remined constant 

within the limits of experimental error over this wide range of 

added B/l, 5, which may be presumed to have the same purely 

mechanical effect as an added equal amount of B/l, it appears 

inescapable that the mechanical effect of increased bacterial 

collisions cannot be a pertinent factor in the observed varia­

tions of K with (B).

Since electrostatic forces play a major part in the 

primary, reversible, phago—bacterium attachment, the possibility 

of this attachment being seriously affected by the proximity 

of other, and in this medium, strongly charged, bacteria cannot 

be overlooked. Several pieces of experimental evidence, however, 

make this on untenable hypothesis.

(6) Electrostatic Cell Interactions



In Part II it has bean shown that, since 3/l and B/l,5 

agglutinate at approximately the same concentration of Ca++ and 

of H+ , these two mutant forms have, at these points at least, the 

same surface charge. In the absence of any contradictory in­

dications, the assumption may be made from this evidence that 

these two mutant bacterial forms also possess the same overall 

surface charge at the lesser cation concentrations used in the 

phage adsorption experiments. Yet the presence of B/l, 5 has 

no observable effect on the attachment equilibrium of T1 with 

Bl, which is so strongly dependent on the B/l concentration. 

Hence, this fundamental difference in behavior cannot have been 

brought about through the action of quantitative!;' different 

surface charges.

It is true that B/l and B/l,5, since they display differ­

ent behaviors with respect to the attachment of different 

viruses, must have differences in the detailed configurations 

of their surface charges. Such configurational differences 

can be represented as alterations of magnitude, location, or 

orientation of electric multipoles on the cell surface. Forces 

existing as a result of electric fields arising from multi­

polar effects decrease rapidly with increasing distance, in 

accordance with the following tabulation (18, 19)s
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Nature of fore© Rate of decrease

ion - dipole inversely as d^

dlpole-dipole inversely as d̂ *

ion-quadrupole inversely as d^

ion-induced dipole inversely as d^

dipole-induced dipole inversely as d*̂

Van der Waals'
7

inversely as d

Experimental work presented here shows the increase in 

K with decreasing (B) to be effective at cell concentrations
rjr

as low as 10 /cc. Even at concentrations of 10^/cc, intern- 

cellular distances are of the order of 20 microns, or 2 x 

10"* These distances are of the order of 10^ to 10^ times 

as large as the separation of charges in an amino acid 

dipole, or the estimated 5 ^ separation between negative 

sites on the E. Coli B surface. That any multipolar forces 

which decrease so rapidly with distance might have appreciable 

effect at such distances seems highly improbable.

In further support of this argument, it has been shown 

in Section A that the magnitude and variation of K is the 

same for B/l and for wild-type B in which the irreversible 

second step of attachment has been inhibited by ultra-violet 

irradiation. In Part II, however, it was demonstrated that a 

considerable difference in overall electric charge must exist
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between B/l and the wild-type B. Forces arising from actual charge

2
magnitude vary inversely as d } since th©3Q have no appreciable 

effect on K, it follows that the even more rapidly diminishing 

multipolar forces must likewise be ineffective. It thus appears
I

impossible that the observed variation in K can be due to any 

form of electrostatic cell-cell interactiono

(7) Phage-phage Interaction

The frequency of phage-phage collisions, based on the 

assumption that no repulsive forces act between them, can be 

computed from the relation (20):

G » 8xaDn, where (^collisions/30c/phage particle 
a*radius of particle 

D a2D“2 x diffusion constant 
if number of particles/oc

Using the established value D=kT/6fl̂ a, this gives ub

G= 8fcTn
3*1

—16
Talcing k*l,38 x 10 erg-deg 

T=298 deg
x 10”3 poise, this gives

G^l.2 x 10” collisions per second per phage particle.

This corresponds, for any single phage particle, to an interval of

more than a month between collisions with another phage particle,

at a concentration of 2 x 10^/cc, a3 was used in these experiments.

In 2 cc of such a suspension, a phage—phage collision occurs once

in 10 seconds. It is obvious that any effects which might arise
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from such infrequent encounters may be neglectedo

(8) Phage Heterogeneity

%
Heterogeneity of phage populations, with respect to the 

rates of adsorption onto their hosts, has been previously noted 

by others. Garen (6), in experiments with Tl, determined that 

at least several percent of the phage attached at a rate ap­

preciably slower them that of the rest of the population.

Sagik (<£ found that freshly prepared T2 stocks contained as 

much as 80% of the phage particles which attached at a very 

low rate, apparently due to the association with the phage of 

inhibitory material which could be removed by proper treatment.

It may immediately be seen that the presence of a por­

tion of the phage population which has a low K (whether due 

to a small k^ or a large k^, or to both) will result in a 

larger fraction of free phage at high cell concentration than 

wul d  be the case if the population were a uniform one.

From the fundamental equilibrium conditions, we can 

define an equilibrium constant for each section of the popu­

lation, taken sufficiently small as to be considered homo­

geneous*

of this section of the phage population free at equilibrium ia

* (T°i) - w  , from which the fraction
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<vi> » 1 /“ 5_7
(Vol) KX(B) ♦ 1

Computed on this basis, Figure 11 shows the fraction of

free phage to be expected in equilibrium with B/l concentrations 

7 / 10 ,
ranging from 10 /cc to 10 /cc, for homogeneous phage populations 

having K's varying by decades from 10~7 to 10” cm3/min, to­

gether with the fraction of free phage as has been experimentally 

measured.

The problem thus resolves itself into the determination

of a distribution function describing a phage population divided

into elements, each having a different K, in such a manner as

to give the experimentally determined amount of free phage at

7 10
all cell concentrations from 10 /cc to 10 /cc. For this pur­

pose, the population was arbitrarily divided into groups a, b,

-7 - f t
c,..., with K&=10 , K^-10 , etc. The following tabulation 

shows the fraction of each group remaining unattached when in 

equilibrium with various concentrations of B/l:

_____ferae___ K <B> -  IQ7. .lo8 .-IQ9...
10

10 __________________

______ .a . -  icr7 ...0.500 0.091 .0.040 .. 0.001

b H T * 0.909 0.500 0.091 .0.010

—  .. -6 . 10-9 0.990 0.909 0.500 0.091 .

______4 . . . . !Q- 10.. 0.999 0.990 0.909 . 0.500 .

. - ....e io“n ... i.ooo .0.999. 0.990 0.909 _

f Iff12 — j « m .. __ -J2*222_ . 0*222.-
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Fraction of total phage remaining free at

equilibrium as a function of cell concentration, for

various homogeneous phage populations, each having a

different equilibrium constant.

Each curve depicts the fraction of free phage

at equilibrium with bacterial cells at concentrations

7 10
from 10 /cc to 10 /cc, as computed on the basis of 

the assumption that the phage population is homogeneous, 

each phage particle having the same equilibrium con­

stant, K, whose value is as noted on the graph.

The heavy, nearly straight line shows the 

fraction of free phage for the actual heterogeneous 

T1 population as used in the experimental work of 

this investigation.

Figure 11
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F/GURE // .' Fraction  o f tot a/ phage remo/'n/ng free a t  
egu/t/br/urr/ <?*> o funct/on o f  ce// concent rat/on ; fo r  
vor/ous homogeneous phoge popufot/ons, eoct> characfer- 
rzed o cf/fferent egu/Z/dr/u/n constant, K .  The actual 
heterogeneous Ft pop u tat/on /s atso /nc/uded
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Manipulation of these groups led to the distribution 

diagrammed in Figure 12;

67^ having average K=10*7 om^/baoterium 

22* " " 10"8 

6% ” « 10“9 

356 * * 10-10

l£jt » « io-1!

$> ” * 10“12 or smaller

On the basis of this distribution, the following table 

shows the percentage of free phage contributed by each group, 

together with the total free phage and computed overall K, at 

various cell concentrations.
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Figure 12

Proposed distribution function of equilibrium constants 

in a heterogeneous phage population whose behavior will con­

form to the actual observed data.

The entire population has been divided into six 

fractions, and each fraction assigned a diffarent value 

of K. Computations have been carried out on the assumption 

that each fraction is a homogeneous group. In any real 

population, however, such a distribution would be ex­

pected to be continuous, rather than the discrete step- 

function shown. The value of K for each group may be 

interpreted as representing the average for the group.
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Figure 13

Equilibrium constant as a function of cell concentration 

for the heterogeneous phage population described in Figure 12.

The fraction of free phage at equilibrium for each of the

six groups shown in Figure 12 was computed at cell concen-

7 8 9 10
trations of 10 , 10 , 10 , and 10 /cc. For each cell con­

centration, the free phage contribution of all the groups was 

summed to give a total fraction of free phage, /"VJ7. K at 

each cell concentration was then computed as

K =  1 - f v j
r u i B j

These points are shown as heavy filled circles. The hollow 

circles represent the experimentally determined points ob­

tained with both B/l and ultra-violet-killed E. Coli B, 

as shown in Figure 9o
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As a check on the reality of the heterogeneity as described 

above, the following experiment was performed:

(1) A 3^—hour B/l culture was centrifuged and resuspended 

in half its initial volume of standard adsorption medium. To 

2.7 cc of this resuspension in a 37° bath was added 0.3 cc of a 

T1 stock. Titers in this tube w&re: (B/l)*1.3 x lO^/ocj 

(Tl)-6.0 x 108/co.

(2) After 20 min incubation at 37°, the adsorption tube 

was centrifuged, the supernatant decanted, and the cells resus­

pended in adsorption medium. The T1 titer in the supernatant 

was 9.7 x 10*V oc.

(3) The resuspended cells were incubated 40 min at 37°, 

centrifuged, the supernatant decanted, and the cells resuspended 

in adsorption medium. T1 titer in the supernatant was 4.9 x
7 g

10 /cc; in the resuspension, 4..1 x 10 /cc.

(A) The resusoended cells were again incubated 40 min 

at 37°, centrifuged, and the supernatant decanted. T1 titer 

in the supernatant was 2.8 x 10^/cc.

In the three adsorption cycles performed, it would be 

anticipated that those phage having the highest K would be 

selectively adsorbed, leaving those of lower K to be decanted 

in the supernatant. Thus, in each cycle, the fraction of free 

phage should decrease, and the computed K should rise. The 

results of this experiment are summarized in the following 

tabulation:



Qycle
Total
phage

Supernatant

----------------------
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Fraction of Apparent 
free phage K

6.0 x 108 9.7 x 107 0.161 Z..0 x 10~9

..  2 — 5-0 x }08 _ 4.9 x 107 0.098 7.1 x 10-9

3 4.1 x 108 2.8 x 107 0.068 1.0 x 10”8

This trend of values for K constitutes definite evidence of 

the heterogeneity of the phage population, as postulated on the 

basis of the previous experiments.
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C. Appendix

The 35-minute period chosen for the establishment of 

equilibrium conditions between T1 and its cellular environment 

was based on adsorption curves such as the one shown in Figure 

14• It was later noted that on the basis of the heterogeneity 

postulated in Part III, a much longer time might be required 

for the more slowly adsorbing components of the phage to attain 

even a roughly approximate equilibrium state. An analysis was 

accordingly made to determine the extent of the error which 

might have been thus introduced.

The assumed model for interaction between virus and 

bacteria (equation /~lJ7, page 5 ), gives us

d(V) * -k,(V) ♦ ko(VB) a kg - (k T k2)(V), from which, 
dt x 

at the steady state in which d(V)/dt ■ 0, we have that (V) ■

k2A kl ♦ k2)*

In the attainment of equilibrium, (V) changes from a 

value of 1 to kg/^l ♦ kg). Denoting by x the fraction of 

this total adsorption which will have taken place at time t, 

we then have at this time

(Vt) . 1 . =  . (1 - *)kn .

kl * *2 kl * k2

The differential equation describing (B) is given by

d(V) - dt, which integrates to
k2 - (kx ♦ k2)(v)



■
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Figure 14

Adsorption curve of T1 onto B/l, showing fraction of 

free phage as a function of time.
rj

At time zero, a 1.03 x 10 /cc suspension of B/l cells

-3
in 10 molar MgCl + 10”̂ molar P0. at pH 7.1 was inoculated

2 4

with T1 to give a phage titer of approximately 2 x 10^/cc. The 

adsorption was carried out in a 37° bath. At times as indi­

cated by the graphed points, aliquots were withdrawn and 

immediately centrifuged. Supematants were then titered for 

free phage.
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Time t'n m/nutvs

FIGURE 14 : fca te  o f  o Js o rp t/ o n  o f  77 onto &//. 
&// c o n c e n t  ra t/ o n  = 7. 03 * /O7 p e r  c m 3.
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In k2 - (kj ♦ kj)(T)J^ , - (1^ . y t j *  .

Substitution of limits in this expression gives 

In(l-x) a - (k-̂  ♦ kgjt, from which 

x a 1 - e-U l  * k2)t
•

Garen (6) has determined the value of kj for T1 nhage 

at the salt concentration used in the present experiments to be 

0.1. In order to make an unfavorable allowance for error in this 

determination, we may take instead the value 0.05. On the 

assumption that this elution rate is not a factor influencing 

phage heterogeneity, this value may be assigned to all the 

elements of the phage population. We then have for the groups 

a, b, c, etc., kla • 5 x 10“9, . 5 x H T 10, etc., and 

kla° W 0) a °*°5» W 8) * etc., for (B) * 107/cc.

A tabular analysis follows, comparing conditions at 35 

minutes with those obtaining at final equilibrium!
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a 0.05 0.10 3.50 0.97 0.500 0.485 0.500 0.515 0.335 0.345

b 0.005 0.055 1.93 0.86 0.091 0.077 0.909 0.923 0.200 0.203

c O • o 8 0.0505 1.77 0.83 0.009 0.008 0.991 [0.992 0.059 0.059

d 0 0.05 1.75 0.83 0 0 1 .0 0 1 .0 0 0.030 D.03C

e 0 0.05 1.75 0.83 0 0 1 .0 0 1 .0 0 3.015 0.015

f 0 0.05 1.75 0.83 0 0 1 .0 0 1 . 0 0 D.005 0.005

Total fraction free phage

!
5.6U 3.657*

The difference between the computed free phage titer 

at 35 minutes end that to be expected at equilibrium is thus 

seen to be about 2$ of the measured value, an amount well 

within the attainable limits of experimental accuracy.



SUMMARY

Experiments with B, B/l and B/l, 5 showed that these bac­

terial cells w111 agglutinate and precipitate in certain ranges 

of concentration of H*, Na+ , and Ca++. This precipitation is 

reversible, and is apparently due to the neutralization of the 

surface charge by the cations, in a manner comparable to the 

flocculation of colloidal particles. The data available did 
#

not permit distinction to be made between the effects of ion 

binding and of double layer formation.

The regions of cation concentration within which B/l and 

B/l,5 precipitated were identical within experimental error; 

the concentration needed to precipitate these mutants is 

markedly less than that required to precipitate the wild-type 

B, It can hence be concluded that the total surface charge 

of B/l and B/l,5 is less than that of B, or that their ion- 

binding properties are markedly different. This differentiation 

is the first one other than their difference in virus resis­

tance to have been made.

In equilibrating T1 with B/l, it was found that the equilib­

rium constant was a function of cell concentration, which could 

be empirically approximated as K»1.9 x 10"^ x (B/l)“£, a hither­

to undescribed relationship which should be of use to the phage 

experimenter. This same dependence of K on cell concentration
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was found to bold between T1 and wild-type cells in which the 

second, irreversible, step had been inhibited by exposure to 

ultra-violet radiation.

In an effort to determine the cause of this variation of 

K with cell concentration, the following factors were investi­

gated, and all found to be incapable of providing a satisfactory 

explanation:

1) the effect of exudation of cell metabolic products into 

the medium.

2) distortion of experimental data as a result of the 

shifting of the equilibrium between phage and cells during the 

process of centrifuging.

3) the effect of salt concentration.

4.) the masking of accessible cell surface by the clumping 

of the bacterial cells at high concentrations.

5) the mechanical effect of cell collisions in enhancing 

the rate of elution of phage from the cell surfaces.

6) electrostatic interactions between cells.

7) phage-phage interactions.

A pattern of heterogeneity of the phage population was 

postulated, and a distribution function proposed, describing a 

phage population composed of elements having different K’s, which 

was found to explain satisfactorily the observed variation in the 

measured overall equilibrium constant. Experimental evidence was 

presented to show that such a heterogeneity does exist.
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