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Spectrum of heavy-tailed elliptic random matrices*
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Abstract

An elliptic random matrix X is a square matrix whose (i, j)-entry Xij is a random vari-
able independent of every other entry except possibly Xji. Elliptic random matrices
generalize Wigner matrices and non-Hermitian random matrices with independent
entries. When the entries of an elliptic random matrix have mean zero and unit
variance, the empirical spectral distribution is known to converge to the uniform
distribution on the interior of an ellipse determined by the covariance of the mirrored
entries.

We consider elliptic random matrices whose entries fail to have two finite moments.
Our main result shows that when the entries of an elliptic random matrix are in the
domain of attraction of an α-stable random variable, for 0 < α < 2, the empirical
spectral measure converges, in probability, to a deterministic limit. This generalizes a
result of Bordenave, Caputo, and Chafaï for heavy-tailed matrices with independent
and identically distributed entries. The key elements of the proof are (i) a general
bound on the least singular value of elliptic random matrices under no moment
assumptions; and (ii) the convergence, in an appropriate sense, of the matrices to a
random operator on the Poisson Weighted Infinite Tree.
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1 Introduction

Let Matn(F) be the set of n× n matrices over the field F. For a matrix A ∈ Matn(C),
the singular values of A are the square roots of the eigenvalues of AA∗, where A∗ is
the conjugate transpose of A. We let sn(A) ≤ · · · ≤ s1(A) denote the ordered singular
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Heavy-tailed elliptic random matrices

values of A, and λ1(A), . . . , λn(A) ∈ C be the eigenvalues of A in no particular order. For
a matrix A ∈ Matn(C) we define the empirical spectral measure

µA :=
1

n

n∑
i=1

δλi(A)

and the empirical singular value measure

νA :=
1

n

n∑
i=1

δsi(A).

These measures are central objects in random matrix theory, and the goal of this paper
is to study the asymptotic behavior of the empirical spectral measure for a class of
heavy-tailed elliptic random matrices.

Elliptic random matrices can be thought of as interpolating between random matrices
whose entries are independent and identically distributed (i.i.d.) and Wigner matrices.
We now give a precise definition.

Definition 1.1 (Elliptic Random Matrix). Let (ξ1, ξ2) be a random vector with complex-
valued random variable entries, ζ a complex random variable, and Xn = (Xij)

n
i,j=1 be an

n× n random matrix. Xn is an elliptic random matrix if

(i) {Xii : 1 ≤ i ≤ n}∪{(Xij , Xji) : 1 ≤ i < j ≤ n} is a collection of independent random
elements.

(ii) the pairs {(Xij , Xji)}1≤i<j≤n are independent copies of (ξ1, ξ2).

(iii) the diagonal elements {Xii : 1 ≤ i ≤ n} are independent copies of ζ.

We refer to (ξ1, ξ2), ζ as the atom variables of the matrix Xn.

Elliptic random matrices were originally introduced by Girko [26,27] in the 1980s,
with the name coming from the limit of the empirical spectral measure. When the entries
of the matrix have four finite moments, the limiting empirical spectral measures was
investigated by Naumov [40]. The general case, when the entries are only assumed to
have finite variance, was studied in [42].

Theorem 1.2 (Elliptic law for real random matrices, Theorem 1.5 in [42]). Let Xn be an
n× n elliptic random matrix with real atom variables (ξ1, ξ2), ζ. Assume ξ1, ξ2 have mean
zero and unit variance, and E[ξ1ξ2] =: ρ for −1 < ρ < 1. Additionally assume ζ has mean
zero and finite variance. Then almost surely the empirical spectral measure µ 1√

n
Xn of

1√
n
Xn converges weakly to the uniform probability measure on

Eρ :=

{
z ∈ C :

Re(z)2

(1 + ρ)2
+

Im(z)2

(1− ρ)2
≤ 1

}
as n→∞.

Elliptic random matrices have also been studied in [29,30,43,44].
Our main result, Theorem 1.6, gives an analogous result for heavy-tailed elliptic

random matrices, i.e. when E|ξ1|2 and E|ξ2|2 are both infinite. In 1994, Cizeau and
Bouchaud [19] introduced Lévy matrices as a heavy-tailed analogue of the Gaussian
Orthogonal Ensemble (GOE). Instead of Gaussian entries, these matrices have entries
in the domain of attraction of an α-stable random variable, for 0 < α < 2. They
predicted a deterministic limit µα, which depends only on α, for the empirical spectral
measures of these matrices when properly scaled. Convergence to a deterministic limit
was first proved by Ben Arous and Guionnet [8] and later by Bordenave, Caputo, and
Chafaï [12] with an alternative characterization in their study of random Markov matrices.
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Heavy-tailed elliptic random matrices

In [13] Bordenave, Caputo, and Chafaï proved the empirical spectral measure of random
matrices with i.i.d. entries in the domain of attraction of a complex α-stable random
variable converges almost surely to an isotropic measure on C with unbounded support.
Notably for Lévy matrices the limiting spectral measure inherits the tail behavior of the
entries, while the limiting spectral measure of heavy-tailed random matrices with i.i.d.
entries has a lighter tail and finite moments of every order.

Much of the work on heavy-tailed random matrices has been on the spectrum of
symmetric matrices, either Lévy or sample covariance matrices [2,4,5,7,8,11,12,32,52].
Motivated by questions of delocalization from physics there has also been considerable
work done in studying the eigenvectors of symmetric heavy-tailed matrices [1,9,17–19,
39,55].

As is often the case in random matrix theory most of the work on heavy-tailed random
matrices has focused on ensembles where the entries are independent up to symmetry
conditions on the matrix. Work on matrices with dependent entries is still limited. Heavy-
tailed matrices with normalized rows have been considered for random Markov chains
in [12,15] and sample correlation matrices in [32]. In [6] extreme eigenvalue statistics
of symmetric heavy-tailed random matrices with m-dependent entries were studied and
shown to converge to a Poisson process. This m-dependence can be thought of as a short
range dependence meant to model stock returns that depend on stocks from the same
sector of size determined by m. To the best of our knowledge there are not any results
on non-Hermitian heavy-tailed matrices with long range dependence between entries
from different rows outside the random reversible Markov chains studied in [12].

The key question when approaching heavy-tailed elliptic random matrices is how to
measure the dependence between ξ1 and ξ2. Without two finite moments the covariance
between ξ1 and ξ2, which was the key parameter in Theorem 1.2, cannot be defined.
Similar notions, such as covariation or codifference, exist for α-stable random variables
but they do not seem sufficient for our purposes. The difference is that the covariation
does not provide as much information for α-stable random vectors as the covariance
does for Gaussian random vectors. If X = (X1, X2) is a bivariate Gaussian random vector
where X1 and X2 are standard real Gaussian random variables, then the correlation
ρ = E[X1X2] uniquely determines the distribution of X. Thus one approach to measuring
dependence is to find a parameter which uniquely determines the distribution of a
properly normalized α-stable random vector. The distribution of an α-stable random
vector Y in Rn is determined uniquely through its characteristic function of the form

E exp
(
iuTY

)
=

{
exp

(
−
∫
Sn−1 |uT s|α(1− i sign(uT s) tan(πα2 ))dθ(s) + iuT y

)
, α 6= 1

exp
(
−
∫
Sn−1 |uT s|(1 + i sign(uT s) log |uT s|)dθ(s) + iuT y

)
, α = 1

for a finite measure θ on the unit sphere Sn−1 and a deterministic vector y. Y can be
translated and scaled so that y = 0 and θ is a probability measure uniquely determining
the distribution of Y . θ is called the spectral measure of Y , and it turns out to be
the appropriate explicit description of the dependence between the entries of Y . The
definition of θ can be extended to random variables which are not stable but rather in
the domain of attraction of an α-stable random variable, see Definition 1.3.

If the components of Y are independent, then θ is supported entirely on the intersec-
tion of the axes and the unit sphere. Intuitively, when considering the mirrored entries
of a random matrix, if θ is close to a measure supported on the intersection of the axes
and the unit sphere, the entries are close to independent, after scaling. If θ is close to a
measure supported on the set {(z1, z2) : |z1|2 + |z2|2 = 1, z1 = z̄2} then the matrix is close
to Hermitian. Numerical simulations seem to reflect this intuition in the spectrum of
elliptic random matrices, see Figures 1, 2, and 3.
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Heavy-tailed elliptic random matrices

1.1 Matrix distribution

We will consider elliptic random matrices whose atom variables satisfy the following
conditions.

Definition 1.3 (Condition C1). We say the atom variables (ξ1, ξ2), ζ satisfy Condition C1
if

(i) there exists a positive number 0 < α < 2, a sequence an = `(n)n1/α for a slowly
varying function ` (i.e. limt→∞ `(tx)/t = 1 for all x > 0), and a finite measure θd
on the unit sphere in C2 such that for all Borel subsets D of the unit sphere with
θd(∂D) = 0 and all r > 0,

lim
n→∞

nP

(
(ξ1, ξ2)

‖(ξ1, ξ2)‖
∈ D, ‖(ξ1, ξ2)‖ ≥ ran

)
= θd(D)mα([r,∞)),

where mα is a measure on (0,∞) with density f(r) = αr−(1+α).

(ii) there exists a constant C > 0 such that P(|ζ| ≥ t) ≤ Ct−α for all t > 0.

We will reserve θd to denote the measure on a sphere associated to the atom variables
of a heavy-tailed elliptic random matrix; it may be worth noting that d stands for
“dependence” and is not a parameter. A key step in the proofs of the main results below
relies on the connections between heavy-tailed random variables and Poisson point
processes, and Definition 1.3(i) determines the intensity measure of the point process.
Heuristically the parameter α determines how heavy-tailed the atom variables are, while
the measure θd gives the direction (ξ1, ξ2) points in when conditioned to have large
norm. Definition 1.3(ii) simply rules out the possibility that the diagonal entries are more
heavy-tailed than the off-diagonal entries. As it turns out, Condition C1 is enough to
prove convergence of the empirical singular value distribution, see Theorem 1.5. We will
need more assumptions to prove convergence of the empirical spectral measure.

Definition 1.4 (Condition C2). We say (ξ1, ξ2), ζ satisfy Condition C2 if the atom variables
satisfy Condition C1 and if

(i) there does not exist (a, b) ∈ C2 \ {(0, 0)} such that

supp(θd) ⊆ {(z, w) ∈ C2 : az + bw = 0, |z|2 + |w|2 = 1}.

(ii) an/n1/α → c, for some constant c > 0 as n→∞.

Definition 1.4(i) states that θd is not supported on a hyperplane through the origin.
This rules out random matrices which should be avoided, such as random matrices that
are essentially upper or lower triangular. However, it also rules out real symmetric
matrices, suggesting there may be some room for refinement.

1.2 Main results

For simplicity, let An := 1
an
Xn. Our first result gives the convergence of the singular

values of An − zIn, which we will denote as An − z, for z ∈ C. Here and throughout, In
denotes the n× n identity matrix. While interesting on its own, this is the first step in
the method of Hermitization to establish convergence of the empirical spectral measure.
Throughout we will use ⇒ to denote weak convergence of probability measures and
convergence in distribution of random variables.

Theorem 1.5 (Singular values of heavy-tailed elliptic random matrices). Let Xn be an
n× n elliptic random matrix with atom variables (ξ1, ξ2), ζ which satisfy Condition C1.
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Heavy-tailed elliptic random matrices

Then for each z ∈ C there exists a deterministic probability measure νz,α,θd , depending
only on z, α and θd, such that almost surely

νAn−zIn ⇒ νz,α,θd

as n→∞.

The proof of Theorem 1.5 can be found following Theorem 4.11 in Section 4. Under
Condition C2 we prove the convergence of the empirical spectral measure of An.

Theorem 1.6 (Eigenvalues of heavy-tailed elliptic random matrices). Let Xn be an n× n
elliptic random matrix with atom variables (ξ1, ξ2), ζ which satisfy Condition C2. Then
there exists a deterministic probability measure µα,θd , depending only on α and θd, such
that

µAn ⇒ µα,θd

in probability as n→∞. Moreover for any smooth ϕ : C→ C with compact support∫
C

ϕ dµα,θd =
1

2π

∫
C

∆ϕ(z)

[∫ ∞
0

log(t) dνα,z,θd

]
dz, (1.1)

where να,z,θd is as in Theorem 1.5 and dz is the Lebesgue measure on C.

The proof of Theorem 1.6 is given in Subsection 6.5. A distributional equation
describing the Stieltjes transform of να,z,θd is given in Proposition 4.12, which, when
combined with (1.1), gives a description of µα,θd .

Remark 1.7. If θd = 1/2(θ1 + θ2) where θ1 and θ2 are probability measures with
supp(θi) ⊆ {(z1, z2) ∈ S : zi = 0} and θ1(A) = θ2 ({(z1, z2) : (z2, z1) ∈ A}), then να,z,θd
in Theorem 1.5 and µα,θd in Theorem 1.6 are the same measures as in the main results
of Bordenave, Caputo, and Chafaï [13]. This can be seen by computing θd when ξ1 and ξ2
are independent and identically distributed. It is also worth noting that if the matrix Xn

is complex Hermitian but not real symmetric, then (ξ1, ξ2) will satisfy Condition C2 (i),
and thus Theorem 1.6 holds.

Numerical simulations seem to give weight to the reasoning that the support of θd
determines how close µα,θd is to being isotropic or supported on the real line. In Figure 3
we see as supp(θd) moves further from {z1 = z2} the mass of the spectrum moves further
from the real line. A similar phenomenon appears in Figure 2: as supp(θd) moves further
from the intersection of the axes and the sphere the spectrum becomes further from
isotropic. We also see in Figure 1 that the tail behavior of the spectrum appears to
depend on θd and may vary in different directions.

Spectra similar to Figure 1 can be found in [31] where the authors study the spectral
measure of C1 + iC2 where C1 and C2 are free random Lévy elements. The authors use
tools in free probability to show the spectrum is supported inside the “hyperbolic cross”,
which appears to be the case for heavy-tailed elliptic random matrices for certain θd. The
limiting spectral measure in [13] is not contained in a “hyperbolic cross”, which suggests
C1 + iC2 is not the heavy-tailed analogue of a circular element, in contrast with the case
when C1 and C2 are free semicircular elements and C1 + iC2 is a circular element.

1.3 Further questions

Since our results capture both heavy-tailed Hermitian matrices and heavy-tailed
matrices with i.i.d. entries, µα,θd does actually depend on θd. However, as can be seen
from [13], µα,θd does not depend on every aspect of θd.

Question 1.8. What properties of θd determine µα,θd?
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Figure 1: The plot on the left is the spectrum of an n× n matrix n−1/αX where α = 1.25,
n = 2000, and the entries of X are i.i.d. random variables distributed as εU−1/α, where ε
is uniformly distributed on {−1, 1} and U is uniformly distributed on [0, 1]. The plot on
the right is the spectrum of an n× n elliptic random matrix n−1/αX where X has atom
variables (U−1/α cos(w), U−1/α sin(w)), 1 with α = 1.25, n = 2000, U uniformly distributed
on [0, 1], and w uniformly distributed on [0, 2π]. The plot window on the right is cropped
to avoid extreme values.

Figure 2: Both plots show the spectrum of an n×n elliptic random matrix n−1/αX where
X has atom variables (U−1/α cos(w), U−1/α sin(w)), 1 with α = 1.25, n = 2000, U uniformly
distributed on [0, 1], and w uniformly distributed on {0, π/2, π, 3π/2}+ [−bπ/4, bπ/4]. For
the plot on the left b = 0.1, while for the plot on the right b = 0.5. Both plot windows are
trimmed to avoid extreme values.

In the case when Xn has i.i.d. entries the limiting empirical spectral measure has an
exponential tail [13] while in the case when Xn is Hermitian it has the same tail behavior
as the entries [8,12]. This leads us to ask how the tail of µα,θd depends on θd.

Question 1.9. How does the tail behavior of µα,θd vary with respect to θd?

1.4 Outline

As expected with the empirical spectral measures of non-Hermitian random matrices,
we make use of Girko’s Hermitization method. However, instead of considering the
logarithmic potential directly, we follow the approach of Bordenave, Caputo, and Chafaï
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Figure 3: Both plots show the spectrum of an n × n elliptic random matrix n−1/αX

where X has atom variables (U−1/α cos(w), U−1/α sin(w)), 1 with α = 1.25, n = 2000, U
uniformly distributed on [0, 1], and w uniformly distributed on {π/4, 5π/4}+[−bπ/4, bπ/4].
For the plot on the left b = 1, while for the plot on the right b = 4/3. Both plot windows
are trimmed to avoid extreme values.

[12,13] by using the objective method of Aldous and Steele [3] to get convergence of the
matrices to an operator on Aldous’ Poisson Weighted Infinite Tree (PWIT). This objective
method approach was expanded by Jung [35] to symmetric light-tailed random matrices,
adjacency matrices of sparse random graphs, and symmetric random matrices whose
column entries are some combination of heavy-tailed and light-tailed random variables.

In Sections 2 and 3 we give a collection of results and background for approaching
the proof of Theorem 1.5. In Section 4 we define the PWIT, establish the local weak
convergence of the matrices An to an operator associated with the PWIT, and give a
proof of Theorem 1.5. In Section 5 we give a very general bound on the least singular
value of elliptic random matrices. In Section 6 we establish the uniform integrability of
log(·) against νAn−zIn and complete the proof of Theorem 1.6. The appendix contains
some auxiliary results.

We conclude this section by establishing notation, giving a brief description of
Hermitization, and stating some properties of ξ1 and ξ2 implied by Condition C2.

1.5 Notation

We now establish notation we will use throughout.

Let [n] := {1, . . . , n} denote the discrete interval. For a vector v = (vi)
n
i=1 ∈ Cn and a

subset I ⊂ [n], we let vI := (vi)i∈I ∈ CI . Similarly, for an m×n matrix A = (Aij)i∈[m],j∈[n]

and I ⊂ [m], J ⊂ [n], we define AI×J := (Aij)i∈I,j∈J . For a countable set S we will let IS
denote the identity on `2(S). In the case when S = [n], `2(S) = Cn we will simply write
In or I if the dimension is clear.

For a vector x ∈ Cn, ‖x‖ is the Euclidean norm of x. For a matrix A, AT is the
transpose of A and A∗ is the conjugate transpose of A. In addition, ‖A‖ = s1(A) is the
spectral norm of A and ‖A‖2 is the Hilbert–Schmidt norm of A defined by the formula

‖A‖2 =
√

tr(AA∗).

We will use the convention that the Kronecker product, A⊗B, of a k × k matrix A and
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an n× n matrix B = (bij)
n
i,j=1 is an nk × nk block matrix

A⊗B =

b11A · · · b1nA
...

. . .
...

bn1A · · · bnnA

 .

For a linear, but not necessarily bounded, operator A on a Hilbert space we let D(A)

denote the domain of A. We will often use the shorthand A+ z to denote A+ zI where I
is the identity operator.

For two complex-valued square integrable random variables ξ and ψ, we define the
correlation between ξ and ψ as

Corr(ξ, ψ) :=
Cov(ξ, ψ)√

Var(ξ) Var(ψ)
,

where Cov(ξ, ψ) := E[(ξ −Eξ)(ψ − Eψ)] is the covariance between ξ and ψ, and Var(ξ) =

E|ξ − Eξ|2 is the variance of ξ. For two random elements X and Y we say X
d
= Y if

X and Y have the same distribution. We will also say a positive random variable Y

stochastically dominates a positive random variable Z if for all x > 0

P(Y ≥ x) ≥ P(Z ≥ x).

For a topological space E, B(E) will always denote the Borel σ-algebra of E. R+ will
denote the positive real numbers.

Throughout this paper we will use asymptotic notation (O, o,Θ, etc.) under the
assumption that n → ∞. X = O(Y ) if X ≤ CY for an absolute constant C > 0 and
all n ≥ C, X = o(Y ) if X ≤ CnY for Cn → 0, X = Θ(Y ) if cY ≤ X ≤ CY for absolute
constants C, c > 0 and all n ≥ C, and X ∼ Y if X/Y → 1.

1.6 Hermitization

Let P(C) be the set of probability measures on C which integrate log | · | in a neighbor-
hood of infinity. For every µ ∈ P(C) the logarithmic potential Uµ of µ on C is a function
Uµ : C→ [−∞,∞) defined for every z ∈ C by

Uµ(z) =

∫
C

log |z − w|dµ(w).

In D′(C) one has ∆Uµ = 2πµ, where D′(C) is the set of Schwartz-Sobolev distributions
on C endowed with its usual convergence with respect to all infinitely differentiable
functions with compact support.

Lemma 1.10 (Lemma A.1 in [13]). For every µ, ν ∈ P(C), if Uµ = Uν a.e. then µ = ν.

To see the connection between logarithmic potentials and random matrices consider
an n× n random matrix A. If P (z) = det(A− zIn) is the characteristic polynomial of A,
then

UµA(z) =

∫
C

log |z − w|dµA(w) =
1

n
log |PA(z)| =

∫ ∞
0

log(t)dνA−z(t). (1.2)

Thus, through the logarithmic potential we can move from a question about eigenvalues
of A to singular values of A− z. We refer the reader to [16] for more on the logarithmic
potential in random matrix theory. One immediate issue is that log(·) is not a bounded
function on R+, and thus we need more control on the integral of log(·) with respect to
{νAn−z}n≥1.
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Definition 1.11 (Uniform integrability almost surely and in probability). Let {µn}∞n=1 be
a sequence of random probability measures on a measurable space (T, T ). We say a
measurable function f : T → R is uniformly integrable almost surely with respect to
{µn}∞n=1 if

lim
t→∞

lim sup
n→∞

∫
|f |>t

|f |dµn = 0,

with probability one. We say a measurable function f : T → R is uniformly integrable in
probability with respect to {µn}∞n=1 if for every ε > 0

lim
t→∞

lim sup
n→∞

P

(∫
|f |>t

|f |dµn > ε

)
= 0.

Lemma 1.12 (Lemma 4.3 in [16]). Let (An)n≥1 be a sequence of complex random
matrices where An is n×n for every n ≥ 1. Suppose for Lebesgue almost all z ∈ C, there
exists a probability measure νz on [0,∞) such that

• a.s. (νAn−z)n≥1 tends weakly to νz
• a.s. (resp. in probability) log(·) is uniformly integrable for (νAn−z)n≥1.

Then there exists a probability measure µ ∈ P(C) such that

• a.s. (resp. in probability) (µAn)n≥1 converges weakly to µ

• for almost every z ∈ C,

Uµ(z) =

∫ ∞
0

log(t)dνz(t).

1.7 Individual entries and stable random vectors.

We now state some useful properties of ξ1 and ξ2 implied by Condition C2. First, if
(ξ

(1)
1 , ξ

(1)
2 ), (ξ

(2)
1 , ξ

(2)
2 ) . . . are i.i.d copies of (ξ1, ξ2), then Condition C1 (i) guarantees, see

Theorem 2 in [49], there exists a sequence bn such that

1

an

n∑
i=1

(ξ
(i)
1 , ξ

(i)
2 )− bn ⇒ Z = (Z1, Z2),

for some α-stable random vector Z with spectral measure θd. Condition C2 (i) guaranties
neither Z1 nor Z2 is identically 0. We need the following theorem to get results on stable
random vectors.

Theorem 1.13 (Theorem 2.3.9 in [50]). Let (X1, . . . , Xd) be an α-stable vector in Rd.
Then (X1, . . . , Xk) is an α-stable random vector for any k ≤ d.

From this, with k = 1 for real ξ1 and k = 2 for complex ξ1, we get that ξ1 is in the
domain of attraction of an α-stable random variable and satisfies

P(|ξ1| ≥ t) = L(t)t−α (1.3)

for some slowly varying function L. In addition,

lim
t→∞

P

(
ξ1
|ξ1|
∈ ·

∣∣∣∣∣|ξ1| ≥ t
)

= θ1(·) (1.4)

for some probability measure θ1, again see [49]. The same holds for ξ2 with a possibly
different probability measure θ2. Also note

E[|ξi|p] <∞ (1.5)

for all 0 ≤ p < α and i = 1, 2.
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2 Poisson point processes and stable distributions

In this section we give a brief review of Poisson Point Processes (p.p.p.) and their
relation to the order statistics of random variables in the domain of attraction of an
α-stable distribution. See [22,46,47], and the references therein for proofs.

2.1 Simple point processes

Throughout this section we will assume E = R̄n\{0} with the relative topology, where
R̄n is the one point compactification of Rn, but many of the results can be extended to
other topological spaces.

Denote byM(E) the set of simple point Radon measures

µ =
∑
x∈D

δx

where D is such that D ∩ (Br(0))c is a finite set for any r > 0 and Br(0) is the ball
of radius r around the point 0. Denote by H(E) the set of supports corresponding to
measures inM(E). The elements of H(E) are called configurations.

Let CK(E) denote the set of real-valued continuous functions on E with compact
support. The vague topology onM(E) is the topology where a sequence µn converges
to µ if for any f ∈ CK(E) ∫

E

fdµn →
∫
E

fdµ.

M(E) with the vague topology is a Polish space, and thus complete and metrizable.
If one considers the one-to-one function I :M(E)→ H(E) given by I(µ) = supp(µ),

then the topology ofM(E) can be pushed forward to H(E). The vague convergence in
M(E) can be stated in terms of a convergence of the supports. Let µn

v−→ µ and give
some labeling supp(µ) = {x(1), x(2), . . . }. Then this vague convergence implies there

exists labeling supp(µn) = {x(1)
n , x

(2)
n , . . . } such that for all k, x(k)

n → x(k). This description
will be particularly useful for our case.

A simple point process N is a measurable mapping from a probability space (Ω,F ,P)

to (M(E),B(M(E))), where B(M(E)) is the Borel σ-algebra defined by the vague topol-
ogy. Weak convergence of simple point processes is defined by weak convergence of the
measures in the vague topology.

2.2 Poisson point process

Definition 2.1. Let m be a Borel measure on E. A point process N is called a Poisson
Point Process (p.p.p.) with intensity measure m if for any pairwise disjoint Borel sets
A1, . . . , An, the random variables N(A1), . . . , N(An) are independent Poisson random
variables with expected values m(A1), . . . ,m(An).

Remark 2.2. N is a.s. simple if and only if m is non-atomic.

The next proposition makes clear the connection between point processes and stable
random variables. See Proposition 3.21 in [46] for a proof. First, we describe an
important point process. Let θ be a finite measure on the unit sphere in Rn, and mα

be a measure with density αr−(α+1)dr on R+. We let Nα denote the p.p.p. on Rn with
intensity measure θ ×mα.

Proposition 2.3. Let {ξn}n≥1 be i.i.d. Rd-valued random variables. Assume there exists
a finite measure θ on the unit sphere in Rd such that

lim
n→∞

nP

(
ξn
‖ξn‖

∈ D, ‖ξn‖ ≥ rbn
)

= θ(D)mα([r,∞)),
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for every r > 0 and all Borel subsets D of the unit sphere with θ(∂D) = 0, where
bn = n1/αL(n) for 0 < α < 2 and a slowly varying function L. Then

βn :=

n∑
i=1

δξi/bn ⇒ Nα

as n→∞.

Remark 2.4. In [22], Davydov and Egorov prove this convergence in `p-type topologies,
under a smoothness assumption on the ξn.

2.3 Useful properties of Nα

The following are useful and well known properties of the p.p.p. Nα. Again, see
Davydov and Egorov, [22], and the references therein for more information and proofs.

Proposition 2.5. Let {λi} and {wi} be independent i.i.d. sequences where λ1 has expo-
nential distribution with mean 1, and w1 is 1

θ(Sd−1)
θ distributed, with θ a finite nonzero

measure on Sd−1. Define Γi = λ1 + · · ·+ λi. Then, for any α > 0,

Nα
d
=

∞∑
i=1

δ
Γ
−1/α
i (θ(Sd−1))1/αwi

.

Lemma 2.6. The p.p.p. Nα has the following properties.

(1) Almost surely there are only a finite number of points of supp(Nα) outside a ball of
positive radius centered at the origin.

(2) Nα is simple.

(3) Almost surely, we can label the points from supp(Nα) according to the decreasing
order of their norms supp(Nα) = {(y1, y2, . . . ) : ‖y1‖ > ‖y2‖ > . . . }.

(4) With probability one, for any p > α,

∞∑
i=1

|yi|p <∞.

3 Bipartized resolvent matrix

In this section we follow the notation of Bordenave, Caputo, and Chafaï in [13] to
define the bipartizations of matrices and operators.

3.1 Bipartization of a matrix

For an n× n complex matrix A we consider a symmetrized version of νA−zI ,

ν̌A−z :=
1

2n

n∑
k=1

(δsk(A−z) + δ−sk(A−z)).

Let C+ := {z ∈ C : Im(z) > 0} and

H+ :=

{
U =

(
η z

z̄ η

)
: η ∈ C+, z ∈ C

}
⊂ Mat2(C).

For any z ∈ C, η ∈ C+ and 1 ≤ i, j ≤ n define the following 2× 2 matrices

U = U(z, η) :=

(
η z

z̄ η

)
and Bij :=

(
0 Aij
Āji 0

)
.
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Define the matrixB ∈ Matn(Mat2(C)) ' Mat2n(C) byB = (Bij)1≤i,j≤n. As an element
of Mat2n(C), B is Hermitian. We call B the bipartization of the matrix A. We define the
resolvent matrix in Matn(Mat2(C)) by1

R(U) = (B − U ⊗ In)−1,

so that for all i, j, R(U)ij ∈ Mat2(C). For 1 ≤ k ≤ n we write,

R(U)kk =

(
ak(z, η) bk(z, η)

b′k(zη) ck(z, η)

)
.

Letting B(z) = B − U(z, 0)⊗ In we have

R(U) = (B(z)− ηI2n)−1.

Let mµ denote the Stieltjes transform of a probability measure µ on R defined by

mµ(η) =

∫
R

1

x− η
dµ(x), η ∈ C+.

Theorem 3.1 (Theorem 2.1 in [13]). Let A ∈ Matn(C). Then µB(z) = ν̌A−z,

mν̌A−z (η) =
1

2n

n∑
k=1

(ak(z, η) + ck(z, η)),

and in D′(C), the set of Schwartz-Sobolev distributions on C endowed with its usual
convergence with respect to all infinitely differentiable functions with compact support,

µA(·) = − 1

πn

n∑
k=1

∂bk(·, 0).

3.2 Bipartization of an operator

Let V be a countable set and let `2(V ) denote the Hilbert space defined by the inner
product

〈φ, ψ〉 :=
∑
u∈V

φ̄uψu, φu = 〈δu, φ〉,

where δu is the unit vector supported on u ∈ V . Let D(V ) denote the dense subset of
`2(V ) of vectors with finite support. Let (wuv)u,v∈V be a collection of complex numbers
such that for all u ∈ V , ∑

v∈V
|wuv|2 + |wvu|2 <∞.

We then define a linear operator A with domain D(V ) by

〈δu, Aδv〉 = wuv. (3.1)

Let V̂ be a set in bijection with V , and let v̂ ∈ V̂ be the image of v ∈ V under the
bijection. Let V b = V ∪ V̂ , and define the bipartization of A as the symmetric operator B
on D(V b) by

〈δu, Bδv̂〉 = 〈δv̂, Bδu〉 = wuv,

〈δu, Bδv〉 = 〈δû, Bδv̂〉 = 0.

Let Πu : `2(V b) → Span{δu, δû} denote the orthogonal projection onto the span
of δu, δû. Span{δu, δû} is isomorphic to C2 under the map δu 7→ e1, δû 7→ e2. Under

1See Subsection 1.5 for the definition of the Kronecker product.
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this isomorphism we may think of ΠuBΠ∗v as a linear map from C2 to C2 with matrix
representation

ΠuBΠ∗v =

(
0 wuv
w̄vu 0

)
.

Let B(z) = B − U(z, 0)⊗ IV . For simplicity we will denote by B(z) the closure of B(z).
Recall the sum of an essentially self-adjoint operator and a bounded self-adjoint operator
is essentially self-adjoint, thus if B is (essentially) self-adjoint then B(z) is (essentially)
self-adjoint. For η ∈ C+, U(z, η) ∈ H+ we define the resolvent operator

R(U) := (B(z)− ηIV b)−1,

and

R(U)vv = ΠvR(U)Π∗v =

(
av(z, η) bv(z, η)

b′v(z, η) cv(z, η)

)
. (3.2)

Lemma 3.2. If av, bv, cv, b′v are defined by (3.2), then

• for each z ∈ C, av(z, ·), cv(z, ·) : C+ → C+,

• the functions av(z, ·), bv(z, ·), b′v(z, ·), cv(z, ·) are analytic on C+,

• and

|av| ≤ (Im(η))−1, |cv| ≤ (Im(η))−1, |bv| ≤ (2 Im(η))−1, and |b′v| ≤ (2 Im(η))−1.

Moreover, if η ∈ iR+, then av, cv are pure imaginary and b′v = b̄v.

The first statement follows from the fact that the imaginary part of (B(z)− ηIV b)−1 is
positive. See Reed and Simon [45] Theorem VIII.2 for a proof of the second statement
and Lemma 2.2 in [13] for the last.

4 Convergence to the Poisson weighted infinite tree

4.1 Operators on a tree

Consider a tree T = (V,E) on a vertex set V with edge set E. We say u ∼ v if
{u, v} ∈ E. Assume if {u, v} /∈ E then wuv = wvu = 0, in particular wvv = 0 for all v ∈ V .
We consider the operator A defined by (3.1). We begin with useful sufficient conditions
for a symmetric linear operator to be essentially self-adjoint, which will be very important
for our use.

Lemma 4.1 (Lemma A.3 in [12]). Let κ > 0 and T = (V,E) be a tree. Assume that for
all u, v ∈ V , wuv = w̄vu and if {u, v} /∈ E then wuv = wvu = 0. Assume that there exists a
sequence of connected finite subsets (Sn)n≥1 of V , such that Sn ⊂ Sn+1,

⋃
n Sn = V , and

for every n and v ∈ Sn, ∑
u/∈Sn:u∼v

|wuv|2 ≤ κ.

Then A is essentially self-adjoint.

Corollary 4.2 (Corollary 2.4 in [13]). Let κ > 0 and T = (V,E) be a tree. Assume that
if {u, v} /∈ E then wuv = wvu = 0. Assume there exists a sequence of connected finite
subsets (Sn)n≥1 of V , such that Sn ⊂ Sn+1,

⋃
n Sn = V , and for every n and v ∈ Sn,∑

u/∈Sn:u∼v

(|wuv|2 + |wvu|2) ≤ κ.

Then for all z ∈ C, B(z) is self-adjoint.
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The advantages of defining an operator on a tree also include the following recursive
formula for the resolvents, see Lemma 2.5 in [13] for a proof.

Proposition 4.3. Assume B is self-adjoint and let U = U(z, η) ∈ H+. Then

R(U)∅∅ = −

(
U +

∑
v∼∅

(
0 w∅v

w̄v∅ 0

)
R̃(U)vv

(
0 wv∅

w̄∅v 0

))−1

, (4.1)

where R̃(U)kk := ΠvRBvΠ∗v where Bv is the bipartization of the operator A restricted to
`2(Vv), and Vv is the subtree of V of vertices whose path to ∅ contains v.

4.2 Local operator convergence

We now define a useful type of convergence.

Definition 4.4 (Local Convergence). Suppose (An) is a sequence of bounded operators
on `2(V ) and A is a linear operator on `2(V ) with domain D(A) ⊃ D(V ). For any u, v ∈ V
we say that (An, u) converges locally to (A, v), and write

(An, u)→ (A, v),

if there exists a sequence of bijections σn : V → V such that σn(v) = u and, for all
φ ∈ D(V ),

σ−1
n Anσnφ→ Aφ,

in `2(V ), as n→∞.

Here we use σn for the bijection on V and the corresponding linear isometry defined
in the obvious way. This notion of convergence is useful to random matrices for two
reasons. First, we will make a choice on how to define the action of an n × n matrix
on `2(V ), and the bijections σn help ensure the choice of location for the support of
the matrix does not matter. Second, local convergence also gives convergence of the
resolvent operator at the distinguished points u, v ∈ V . This comes down to the fact that
local convergence is strong operator convergence, up to the isometries. See [13] for
details.

Theorem 4.5 (Theorem 2.7 in [13]). Assume (An, u) → (A, v) for some u, v ∈ V . Let
Bn be the self-adjoint bipartized operator of An. If the bipartized operator B of A is
self-adjoint and D(V b) is a core for B (i.e., the closure B restricted to D(V b) is B), then
for all U ∈ H+,

RBn(U)uu → RB(U)vv.

To apply this to random operators we say that (An, u)→ (A, v) in distribution if there
exists a sequence of random bijections σn such that σ−1

n Anσnφ→ Aφ in distribution for
every φ ∈ D(V b).

4.3 Poisson weighted infinite tree (PWIT)

Let ρ be a positive Radon measure on Cn \ {0} such that ρ(Cn \ {0}) =∞. PWIT(ρ)

is the random weighted rooted tree defined as follows. The vertex set of the tree is
identified with Nf :=

⋃
k∈N∪{0}N

k by indexing the root as N0 = ∅, the offspring of the

root as N and, more generally, the offspring of some v ∈ Nk as (v1), (v2), · · · ∈ Nk+1.
Define T as the tree on Nf with edges between parents and offspring. Let {Ξv}v∈Nf
be independent realizations of a Poisson point process with intensity measure ρ. Let
Ξ∅ = {y1, y2, . . . } be ordered such that ‖y1‖ ≥ ‖y2‖ ≥ · · · , and assign the weight yi
to the edge between ∅ and i, assuming such an ordering is possible. More generally
assign the weight yvi to the edge between v and vi where Ξv = {yv1, yv2, . . . } where
‖yv1‖ ≥ ‖yv2‖ ≥ · · · .
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Consider a realization of PWIT(θd ×mα), with yvk = (y
(1)
vk , y

(2)
vk ). Even though the

measure θd×mα has a more natural representation in polar coordinates, we let (y
(1)
vk , y

(2)
vk )

be the Cartesian coordinates of yvk. Define an operator A on D(Nf ) by the formulas

〈δv, Aδvk〉 = y
(1)
vk , and 〈δvk, Aδv〉 = y

(2)
vk (4.2)

and 〈δv, Aδu〉 = 0 otherwise. For 0 < α < 2, we know by Lemma 2.6 that the points in Ξv
are almost surely square summable for every v ∈ Nf , and thus A is actually a well defined
linear operator on D(Nf ), though is possibly unbounded on `2(Nf ). Before showing the
local convergence of the random matrices An to A we will show the bipartization of A is
self-adjoint.

Proposition 4.6. With probability one, for all z ∈ C, B(z) is self-adjoint, where B(z) is
the bipartization of the operator A defined by (4.2).

We begin with a lemma on point processes, proved in Lemma A.4 from [12], before
checking our criterion for self-adjointness.

Lemma 4.7. Let κ > 0, 0 < α < 2 and let 0 < x1 < x2 < · · · be a Poisson process of
intensity 1 on R+. Define τ = inf{t ∈ N :

∑∞
k=t+1 x

−2/α
k ≤ κ}. Then Eτ is finite and goes

to 0 as κ goes to infinity.

Proof of Proposition 4.6. For κ > 0 and v ∈ Nf define

τv = inf

{
t ≥ 0 :

∞∑
k=t+1

‖yvk‖2 ≤ κ

}
.

Note if N is a homogeneous Poisson process on R+ with intensity 1 and f(x) = x−1/α,
then f(N) is Poisson process with intensity measure αr−1−αdr. Thus by Lemma 4.7,
κ > 0 can be chosen such that Eτv < 1 for any fixed v. Since the random variables
{τv}v∈Nf are i.i.d. this κ works for all v. Fix such a κ. We now color the vertices red and
green in an effort to build the sets Sn in Corollary 4.2. Put a green color on all vertices
v such that τv ≥ 1 and a red color otherwise. Define the sub-forest T g of T where an
edge between v and vk is included if v is green and 1 ≤ k ≤ τv. If the root ∅ is red let
S1 = {∅}. Otherwise let T g∅ = (V g∅, E

g
∅) be the subtree of T g containing ∅. Let Zn denote

the number of vertices in T g∅ at a depth n from the root, then Zn is a Galton-Watson
process with offspring distribution τ∅. It is well known that if Eτ∅ < 1, then the tree is
almost surely finite, see Theorem 5.3.7 in [23]. Let Lg∅ be the leaves of the tree T g∅. Set
S1 :=

⋃
v∈Lg∅

{vk : 1 ≤ k ≤ τv}
⋃
V g∅. It is clear for any v ∈ S1,∑

u/∈S1:u∼v

(|yuv|2 + |yvu|2) ≤ κ.

Now define the outer boundary of {∅} as ∂τ{∅} = {1, . . . ,max(τ∅, 1)} and for v =

(i1 · · · ik) set ∂τ{v} = {(i1 · · · ik−1(ik + 1))} ∪ {(i1 · · · ik1), . . . , (i1 · · · ik max(τv, 1))}. For a
connected set S define its outer boundary as

∂τS =

(⋃
v∈S

∂τ{v}

)
\ S.

Now for each u1, . . . , uk ∈ ∂τS1 apply the above process to get subtrees {T gui = (V gui ,

Egui)}
k
i=1 with roots ui and the leaves of tree T gui denoted by Lgui . Set

S2 := S1 ∪

(
k⋃
i=1

(V gui ∪v∈Lgui {vj : 1 ≤ j ≤ τv})

)
.

Apply this procedure iteratively to get the sequence of subsets (Sn)n≥1. Apply Corol-
lary 4.2 to complete the proof.
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4.4 Local convergence

For an n × n matrix M we aim to define M as a bounded operator on `2(Nf ). For
1 ≤ i, j,≤ n, let 〈δi,Mδj〉 = Mij and 〈δu,Mδv〉 = 0 otherwise.

Theorem 4.8. Let (Pn)n≥1 be a sequence of uniformly distributed random n× n permu-
tation matrices, independent of An. Then, in distribution, (PnAnP

T
n , 1)→ (A,∅) where

A is the operator defined by (4.2).

Remark 4.9. This theorem holds for any sequence of permutation matrices Pn regard-
less of independence or distribution, but for our use later it is important they are
independent of An and uniformly distributed. This is to get around the fact the entries of
An are not exchangeable.

The rest of this subsection is devoted to the proof of Theorem 4.8.

Proof of Theorem 4.8. The procedure follows along the same lines as Bordenave, Caputo,
and Chafaï in [12] and [13]. We will define a network as a graph with edge weights taking
values in some normed space. To begin let Gn be the complete network on {1, . . . , n}
whose weight on edge {i, j} equals ξnij for some collection (ξnij)1≤i≤j≤n of i.i.d. random
variables taking values in some normed space. Now consider the rooted network (Gn, 1)

with the distinguished vertex 1. For any realization (ξnij), and for any B,H ∈ N such that
(BH+1 − 1)/(B − 1) ≤ n, we will define a finite rooted subnetwork (Gn, 1)B,H of (Gn, 1)

whose vertex set coincides with a B-ary tree of depth H. To this end we partially index
the vertices of (Gn, 1) as elements in

JB,H :=

H⋃
l=0

{1, . . . , B}l ⊂ Nf ,

the indexing being given by an injective map σn from JB,H to Vn := {1, . . . , n}. We set
I∅ := {1} and the index of the root σ−1

n (1) = ∅. The vertex v ∈ Vn \ I∅ is given the index
(k) = σ−1

n (v), 1 ≤ k ≤ B, if ξn1,v has the k-th largest norm value among {ξn1j , j 6= 1}, ties
being broken by lexicographic order2. This defines the first generation, and let I1 be the
union of I∅ and this generation. If H ≥ 2 repeat this process for the vertex labeled (1)

on Vn \ I1 to order {ξn(1)j}j∈Vn\I1 to get {11, 12, . . . , 1B}. Define I2 to be the union of I1
and this new collection. Repeat again for (2), (3), . . . , (B) to get the second generation
and so on. Call this vertex set V B,Hn = σnJB,H .

For a realization T of PWIT(ρ), recall we assign the weight yvk to the edge {v, vk}.
Then (T,∅) is a rooted network. Call (T,∅)B,H the finite rooted subnetwork obtained by
restricting (T,∅) to the vertex set JB,H . If an edge is not present in (T,∅)B,H assign the
weight 0. We say a sequence (Gn, 1)B,H , for fixed B and H, converges in distribution, as
n→∞, to (T,∅)B,H if the joint distribution of the weights converges weakly.

Let πn be the permutation on {1, . . . , n} associated to the permutation matrix Pn. We
let

ξnij =
(
ξ
n,(1)
ij , ξ

n,(2)
ij

)
:=

(
Xπn(i),πn(j)

an
,
Xπn(j),πn(i)

an

)
.

We now consider (Gn, 1)B,H with weights ξnij and a realization, T , of PWIT(θd ×mα).
We aim to show (Gn, 1)B,H converges in distribution to (T,∅)B,H , for fixed B,H as
n→∞.

Order the elements of JB,H lexicographically, i.e. ∅ ≺ 1 ≺ 2 ≺ · · · ≺ B ≺ 11 ≺ 12 ≺
· · · ≺ B · · ·B. For v ∈ JB,H let Ov denote the offspring of v in (G, 1)B,H . By construction
I∅ = {1} and Iv = σn

(⋃
w≺v Ow

)
, where w ≺ v must be strict in this union. Thus at every

2To help keep track of notation in this section, note that v = (w) ∈ Vn if w ∈ JB,H and σn(w) = v.
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step of the indexing procedure we order the weights of neighboring edges not already
considered at a previous step. Thus for all v,

(ξnσn(v),j)j /∈Iv
d
= (ξn1j)1<j≤n−|Iv|.

Note that by independence, Proposition 2.3 still holds if you take the empirical
sum over {1, . . . , n} \ I for any fixed finite set I. Thus by Proposition 2.3 the weights
from a fixed parent to its offspring in (Gn, 1)B,H converge weakly to those of (T,∅)B,H .
By independence we can extend this to joint convergence. Because for any fixed
n, (Gn, 1)B,H is still a complete network on V B,Hn , we must now check the weights
connected to vertices not indexed above converge to zero, which is the weight given to
edges not in the tree. For v, w ∈ JB,H define

xnv,w := ξnσn(v),σn(w).

Also let {znv,w, v, w ∈ JB,H} denote independent variables distributed as ‖ξn12‖. Let
EB,H denote the set of edges {v, w} ∈ JB,H×JB,H that do not belong to the finite subtree
(T,∅)B,H . Because we have sorted out the largest elements, the vector {‖xnv,w‖, {v, w} ∈
EB,H} is stochastically dominated by the vector Zn := {znv,w, {v, w} ∈ EB,H} (see [12]
Lemma 2.7). Since JB,H is finite, the vector Zn converges to 0 as n → ∞. Thus
(G, 1)B,H ⇒ (T,∅)B,H .

Let A be the operator associated to PWIT(θd ×mα) defined by (4.2). For fixed B,H
let σB,Hn be the map σn above associated to (G, 1)B,H , and arbitrarily extend σB,Hn to a
bijection on Nf , where Vn is considered in the natural way as a subset of the offspring of
∅. From the Skorokhod Representation Theorem we may assume (Gn, 1)B,H converges
almost surely to (T,∅)B,H . Thus there is a sequences Bn, Hn tending to infinity and
σ̂n := σBn,Hnn such that for any pair v, w ∈ Nf , ξnσ̂n(v),σ̂n(w) converges almost surely to

yvk, if w = vk for some k

ywk, if v = wk for some k

0, otherwise.

Thus almost surely

〈δv, σ̂−1
n PnAnP

T
n σ̂nδw〉 = ξ

n,(i)
σ̂n(v),σ̂n(w) → 〈δv, Aδw〉,

where (i) = 1, 2 depending on whether w is an offspring of v, vice versa, or we take the

convention i = 1 if neither in which case ξn,(1)
σ̂n(v),σ̂n(w) → 0. To prove the local convergence

of operators it is sufficient, by linearity, to prove point wise convergence for any δw. For
convenience let φwn := σ̂−1

n PnAnP
T
n σ̂nδw. Thus all that remains to be shown to complete

the proof of Theorem 4.8 is that almost surely as n→∞∑
u∈Nf

|〈δu, φwn 〉 − 〈δu, Aδw〉|2 → 0.

Since for every u, 〈δu, φwn 〉 → 〈δu, Aδw〉 and 〈δu, Aδw〉 is square summable in u it is
enough to show that if u ∈ Nf are given some indexing by N u1, u2, . . . , then

sup
n≥1

∞∑
i=k

|〈δui , φwn 〉|2 → 0

as k → ∞. This follows from the uniform square-integrability of order statistics, see
Lemma 2.4 of [12]. This completes the proof.
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4.5 Resolvent matrix

Let R be the resolvent of the bipartized random operator of A. For U(z, η) ∈ H+, set

R(U)∅∅ =

(
a(z, η) b(z, η)

b′(z, η) c(z, η)

)
. (4.3)

We have the following result.

Theorem 4.10. Let Pn, An, and A be as in the Theorem 4.8. Since B(z) is almost surely
self-adjoint we may almost surely define R, the resolvent of B(z). Let R̂n be the resolvent
of the bipartized matrix of PnAnPTn . For all U ∈ H+,

R̂n(U)11 ⇒ R(U)∅∅

as n→∞.

Proof. This follows immediately from Theorem 4.8, Proposition 4.6, and Theorem 4.5.

As functions, the entries of the resolvent matrix are continuous, and by Lemma 3.2
are bounded. Thus

lim
n→∞

ER̂n(U)11 = ER(U)∅∅. (4.4)

Note that by independence of πn and An

ER̂n(U)11 = ERn(U)π−1
n (1)π−1

n (1) = E
1

n

n∑
i=1

Rn(U)ii. (4.5)

This is the reason for the choice of uniformly distributed Pn independent of An.

Theorem 4.11. For all z ∈ C, almost surely the measures ν̌An−z converge weakly to a
deterministic probability measure ν̌α,z,θd whose Stieltjes transform is given by

mν̌α,z,θd
(η) = Ea(z, η),

for η ∈ C+ and a(z, η) in (4.3).

Proof. By Proposition 4.6 for every z ∈ C, B(z) is almost surely essentially self-adjoint.
Thus, using the Borel functional calculus, there exists almost surely a random probability
measure ν∅,z on R such that

a(z, η) = 〈δ∅, R(U)δ∅〉 =

∫
R

dν∅,z(x)

x− η
= mν∅,z (η).

See Theorem VIII.5 in [45] for more on this measure and the Borel functional calculus
for unbounded self-adjoint operators. Define Rn as the resolvent matrix of Bn(z), the
bipartized matrix of An. For U(z, η) ∈ H+, we write

Rn(U)kk =

(
ak(z, η) bk(z, η)

b′k(zη) ck(z, η)

)
, R̂n(U)kk =

(
âk(z, η) b̂k(z, η)

b̂′k(zη) ĉk(z, η)

)
.

By Theorem 3.1

mEν̌A−z (η) = E
1

2n

n∑
k=1

(ak(z, η) + ck(z, η)) =
1

2
(Eâ1(z, η) + Eĉ1(z, η)) = Eâ1(z, η).

Thus, by (4.4) and (4.5),
lim
n→∞

mEν̌A−z (η) = Ea(z, η).

It follows that Eν̌An−z converges to some deterministic probability measure ν̌z,α,θd =

Eν∅,z. By Lemma A.2 ν̌An−z concentrates around its expected value, and thus by the
Borel-Cantelli Lemma ν̌An−z converges almost surely to ν̌z,α,θd .
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Proof of Theorem 1.5. Theorem 1.5 follows immediately from Theorem 4.11.

We conclude this section with a recursive distributional equation describing R(U)∅∅.

Proposition 4.12. Let θd be a probability measure. Let (w(1), w(2)) be a θd distributed
random vector independent of the matrix given in (4.3). Additionally let ρz,η be the
measure on C4 ∼= R8 which is the distribution of the random vector

c(z, η)|w(1)|2
b′(z, η)w(1)w(2)

b(z, η)w̄(1)w̄(2)

a(z, η)|w(2)|2

 , (4.6)

where a(z, η), b(z, η), b′(z, η), and c(z, η) are as in (4.3). Then the matrix given in (4.3)
satisfies the following recursive distributional equation(

a(z, η) b(z, η)

b′(z, η) c(z, η)

)
d
= −

((
η z

z̄ η

)
+

(
S1 S2

S3 S4

))−1

(4.7)

where S = (S1, S2, S3, S4) is an α/2-stable random vector with spectral measure is given
by the image of the measure Γ(2−α/2) cos(πα/4)

1−α/2 ‖v‖α/2dρz,η(v) under the map v 7→ v
‖v‖ .

The proof of Proposition 4.12 is given in Appendix A.4.

5 Least singular values of elliptic random matrices

Now that we have proven Theorem 1.5, we move on to show that log(·) is uniformly
integrable, in probability, with respect to {νAn−zIn}n≥1. We begin with a bound on the
least singular value of an elliptic random matrix under very general assumptions. This
section is entirely self contained.

Theorem 5.1 (Least singular value bound). Let X = (Xij) be an n× n complex-valued
random matrix such that

(i) (off-diagonal entries) {(Xij , Xji) : 1 ≤ i < j ≤ n} is a collection of independent
random tuples,

(ii) (diagonal entries) the diagonal entries {Xii : 1 ≤ i ≤ n} are independent of the
off-diagonal entries (but can be dependent on each other),

(iii) there exists a > 0 such that the events

Eij := {|Xij | ≤ a, |Xji| ≤ a} (5.1)

defined for i 6= j satisfy

b := min
i<j

P(Eij) > 0, σ2 := min
i 6=j

Var(Xij | Eij) > 0,

and

ρ := max
i<j
|Corr(Xij | Eij , Xji | Eji)| < 1.

Then there exists C = C(a, b, σ) > 0 such that for n ≥ C, any M ∈ Matn(C), s ≥ 1,
0 < t ≤ 1,

P

(
sn(X +M) ≤ t√

n
, s1(X +M) ≤ s

)
≤ C

(
log(Cns)√

1− ρ

(√
s5t+

1√
n

))1/4

.
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Remark 5.2. The constant C from Theorem 5.1 only depends on a, b, σ and does not
depend on ρ. This allows one to apply Theorem 5.1 to cases where ρ depends on n.

While a number of results are known for the smallest singular value of elliptic random
matrices with light-tailed entries [30,40,42], we are not aware of any results for the
heavy-tailed case studied here. Theorem 5.1 can be applied in the special case when X
contains i.i.d. heavy-tailed entries, but in this case stronger bounds are known [13,16],
including in the case when X is a rectangular matrix [56]. In fact, Louvaris [37] recently
obtained the asymptotic distribution of the smallest singular value for a class of non-
Hermitian random matrices with i.i.d. entries following a stable law. Least singular value
bounds are also known for several other models of random matrices with dependent
entries, e.g., [14,15,41], however, none of these results apply to elliptic random matrices.

5.1 Proof of Theorem 5.1

In this section we prove Theorem 5.1. Suppose X and M satisfy the assumptions of
the theorem and denote A := X +M . We will use A throughout this section and it may
be worth noting it is not the An of Theorems 1.5 and 1.6. Throughout the section, we
allow all constants to depend on a, b, σ without mentioning or denoting this dependence.
Constants, however, will not depend on ρ; instead we will state all dependence on ρ

explicitly.
For the proof of Theorem 5.1, it suffices to assume that A and every principal

submatrix of A is invertible with probability 1. To see this, define X ′ := X + t√
n
ξI, where

I is the identity matrix and ξ is a real-valued random variable uniformly distributed
on the interval [−1, 1], independent of X. It follows that X ′ satisfies the assumptions
of Theorem 5.1. However, since ξ is continuously distributed, it also follows that
A′ := X ′ + M and every principal submatrix of A′ is invertible with probability 1. By
Weyl’s inequality for the singular values (see, for instance, [10, Problem III.6.13]), we
find

max
1≤k≤n

|sk(A)− sk(A′)| ≤ t√
n
≤ s.

Hence, we conclude that

P

(
sn(A) ≤ t√

n
, s1(A) ≤ s

)
≤ P

(
sn(A′) ≤ 2t√

n
, s1(A′) ≤ 2s

)
.

In other words, it suffices to prove Theorem 5.1 under the additional assumption that
A and every principal submatrix of A is invertible. We work under this additional
assumption for the remainder of the proof.

5.2 Nets and a decomposition of the unit sphere

Consider a compact set K ⊂ Cn and ε > 0. A subset N ⊂ K is called an ε-net of K if
for every point v ∈ K one has dist(v,N ) ≤ ε.

For some real positive parameters δ, τ > 0 that will be determined later, we define
the set of δ-sparse vectors as

Sparse(δ) := {x ∈ Cn : | supp(x)| ≤ δn}.

We decompose the unit sphere Sn−1 into the set of compressible vectors and the comple-
mentary set of incompressible vectors by

Comp(δ, τ) := {x ∈ Sn−1 : dist(x,Sparse(δ)) ≤ τ}

and
Incomp(δ, τ) := Sn−1 \ Comp(δ, τ).

We have the following result for incompressible vectors.
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Lemma 5.3 (Incompressible vectors are spread; Lemma A.3 from [16]). Let x ∈
Incomp(δ, τ). There exists a subset π ⊂ [n] such that |π| ≥ δn/2 and for all i ∈ π,

τ√
n
≤ |xi| ≤

√
2

δn
.

5.3 Control of compressible vectors

The case of compressible vectors roughly follows the arguments from [16]. For
i, j ∈ [n], we let Cj denote the j-th column of A and C(i)

j denote the j-th column of A with
the i-th entry removed.

Lemma 5.4 (Distance of a random vector to a deterministic subspace). There exist
constants ε, C, c, δ0 > 0 such that for all 1 ≤ i ≤ n and any deterministic subspace H of
Cn−1 with 1 ≤ dim(H) ≤ δ0n, we have

P
(

dist(C
(i)
i , H) ≤ ε

√
n
)
≤ C exp(−cn).

Proof. The proof follows the same arguments as those given in the proof of [16, Theorem
A.2]. Fix 1 ≤ i ≤ n; the arguments and bounds below are all uniform in i. Recall the
definitions of the events Eij given in (5.1). By the assumptions on Eij , the Chernoff bound
gives

P

∑
j 6=i

1Eji ≤
(n− 1)b

2

 ≤ exp

(
− (n− 1)b

8

)
.

In other words, with high probability, at least m :=
⌈

(n−1)b
2

⌉
of the events Eji, j 6= i occur.

Thus, it suffices to prove the result by conditioning on the event

Em :=
⋂

j∈[m],j 6=i

Eji. (5.2)

There are two cases to consider. Either i ∈ [m] or i > m. The arguments for these two
cases are almost identical except some notations must be changed slightly to remove
the i-th index. For the remainder of the proof, let us only consider the case when i > m;
the changes required for the other case are left to the reader.

Recall that it suffices to prove the result by conditioning on the event Em defined
in (5.2). In fact, as i > m, the definition of the event Em given in (5.2) can be stated as

Em :=
⋂
j∈[m]

Eji.

Let Em[·] := E[· | Em,Fm] denote the conditional expectation given the event Em and
the filtration Fm generated by Xji, j > m, j 6= i. Let W be the subspace spanned by H
and the vectors

u := (0, . . . , 0, Xm+1,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i)

and
w := (Em[X1,i], . . . ,Em[Xm,i], 0, . . . , 0).

By construction, dim(W ) ≤ dim(H) + 2 and W is Fm measurable. In addition,

dist(C
(i)
i , H) ≥ dist(C

(i)
i ,W ) = dist(Y,W ),

where
Y := (X1,i − Em[X1,i], . . . , Xm,i − Em[Xm,i], 0, . . . , 0) = C

(i)
i − u− w.
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By assumption, the coordinates Y1, . . . , Ym are independent random variables which
satisfy

|Yk| ≤ 2a, Em[Yk] = 0, Em|Yk|2 ≥ σ2

for 1 ≤ k ≤ m. Thus, since the function x 7→ dist(x,W ) is convex and 1-Lipschitz,
Talagrand’s concentration inequality (see for instance [53, Theorem 2.1.13]) yields

Pm(|dist(Y,W )− Em[dist(Y,W )]| ≥ t) ≤ C exp

(
−c t

2

a2

)
(5.3)

for every t ≥ 0, where C, c > 0 are absolute constants. In particular, this implies that

(Em dist(Y,W ))2 ≥ Em dist2(Y,W )− c′a2 (5.4)

for an absolute constant c′ > 0. Thus, if P denotes the orthogonal projection onto the
orthogonal complement of W , we get

Em dist2(Y,W ) =

m∑
k=1

Em|Yk|2Pkk

≥ σ2

(
trP −

n−1∑
k=m+1

Pkk

)
≥ σ2((n− 1)− dim(H)− 2− (n− 1−m))

≥ σ2

(
(n− 1)b

2
− δ0n− 2

)
.

The last term is lower bounded by c′′σ2n for all n sufficiently large by taking δ0 := b/4.
Combining this bound with (5.3) and (5.4) completes the proof.

The next bound, which follows as a corollary of Lemma 5.4, will be useful when
dealing with compressible vectors.

Corollary 5.5. There exist ε, C, c, δ0 > 0 such that for any deterministic subset π ⊂ [n]

with |π| ≤ δ0n and any deterministic u ∈ Cn, we have

P

(
min
i∈π

dist(Ci, Hi) ≤ ε
√
n

)
≤ Cn exp(−cn),

where Hi := Span ({Cj : j ∈ π, j 6= i} ∪ {u}).

Proof. We will apply Lemma 5.4 to control dist(Ci, Hi). To this end, define u(i) to be the

vector u with the i-th entry removed, and set H(i)
i := Span

(
{C(i)

j : j ∈ π, j 6= i} ∪ {u(i)}
)

.

Then
dist(Ci, Hi) ≥ dist(C

(i)
i , H

(i)
i )

for all 1 ≤ i ≤ n. Note that H(i)
i is independent of C(i)

i . Hence, conditioning on H(i)
i and

applying Lemma 5.4, we find the existence of ε, C, c, δ0 such that for any π ⊂ [n] with
|π| ≤ δ0n and all i ∈ π

P
(
dist(Ci, Hi) ≤ ε

√
n
)
≤ P

(
dist(C

(i)
i , H

(i)
i ) ≤ ε

√
n
)
≤ C exp(−cn).

Therefore, by the union bound,

P

(
min
i∈π

dist(Ci, Hi) ≤ ε
√
n

)
≤
∑
i∈π

P
(
dist(Ci, Hi) ≤ ε

√
n
)
≤ Cn exp(−cn),

and the proof is complete.
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Let ε, δ0 be as in Corollary 5.5. From now on we set

τ :=
1

4
min

{
1,

ε

s
√
δ

}
. (5.5)

(Recall that s ≥ 1 is the upper bound for s1(X + M) specified in the statement of
Theorem 5.1.) In particular, this definition implies that τ ≤ 1/4. The parameter δ is still
to be specified. Right now we only assume that δ < δ0.

Lemma 5.6 (Control of compressible vectors). There exist constants C, c, δ > 0 such that
for any deterministic vector u ∈ Cn and any s ≥ 1

P

(
inf

x∈Comp(δ,τ)
‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
≤ C exp(−cn).

Proof. Let 0 < δ < δ0 be a constant to be chosen later. We decompose Comp(δ, τ) as

Comp(δ, τ) =
⋃

π⊂[n]:|π|=bδnc

Sπ,

where
Sπ := {x ∈ Comp(δ, τ) : dist(x, Sparseπ(δ)) ≤ τ}

and
Sparseπ(δ) := {y ∈ Sparse(δ) : supp(y) ⊂ π}.

So by the union bound,

P

(
inf

x∈Comp(δ,τ)
‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
(5.6)

≤
∑

π∈[n]:|π|=bδnc

P

(
inf
x∈Sπ

‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
.

Fix π ⊂ [n] with |π| = bδnc, and suppose there exists x ∈ Sπ such that ‖Ax − u‖ ≤ ε
2
√
δ

and s1(A) ≤ s. Then there exists y ∈ Sparseπ(δ) with ‖x − y‖ ≤ τ . In particular, this
implies that ‖y‖ ≥ 3/4. In addition, we have

ε

2
√
δ
≥ ‖Ax− u‖ ≥ ‖Ay − u‖ − τ‖A‖ ≥ ‖Ay − u‖ − ε

4
√
δ

by the assumption that ‖A‖ ≤ s and the definition of τ (5.5). Hence, we obtain

‖Ay − u‖ ≤ 3ε

4
√
δ
. (5.7)

We now bound ‖Ay − u‖ from below. Indeed, we have

‖Ay − u‖2 =

∥∥∥∥∥∑
i∈π

Ciyi − u

∥∥∥∥∥
2

≥ max
i∈π
|yi|2 dist2(Ci, Hi), (5.8)

where Hi := Span ({Cj : j ∈ π, j 6= i} ∪ {u}). In addition, we bound

max
i∈π
|yi|2 dist2(Ci, Hi) ≥ min

i∈π
dist2(Ci, Hi)

1

|π|
∑
i∈π
|yi|2 ≥ min

i∈π
dist2(Ci, Hi)

(
3

4

)2
1

δn
.

Thus, combining (5.7) and (5.8) with the bound above, we find

min
i∈π

dist(Ci, Hi) ≤ ε
√
n.
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To conclude, we have shown that

P

(
inf
x∈Sπ

‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
≤ P

(
min
i∈π

dist(Ci, Hi) ≤ ε
√
n

)
.

In view of Corollary 5.5, there exist C, c > 0 such that for any π ∈ [n] with |π| = bδnc, we
have

P

(
inf
x∈Sπ

‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
≤ Cn exp(−cn).

Returning to (5.6), we conclude that

P

(
inf

x∈Comp(δ,τ)
‖Ax− u‖ ≤ ε

2
√
δ
, s1(A) ≤ s

)
≤
(

n

bδnc

)
Cn exp(−cn)

≤
(

ne

bδnc

)bδnc
Cn exp(−cn)

≤ C ′ exp(−c′n)

for some constants C ′, c′ > 0 by taking δ sufficiently small (in terms of c).

We now fix δ to be the constant from Lemma 5.6. Thus, δ and τ are now completely
determined. We will also need the following corollary of Lemma 5.6.

Corollary 5.7. There exist constants C, c > 0 such that for any deterministic vector
u ∈ Cn and any s ≥ 1

P

(
inf

x/‖x‖∈Comp(δ,τ)

‖Ax− u‖
‖x‖

≤ ε

4
√
δ
, s1(A) ≤ s

)
≤ Cs exp(−cn). (5.9)

Proof. The proof is based on the arguments given in [57]. We first note that if u = 0,
then the claim follows immediately from Lemma 5.6. Assume u 6= 0. Let E denote the
event on the left-hand side of (5.9) whose probability we would like to bound. Suppose
that E holds. Then there exists x0 := x/‖x‖ ∈ Comp(δ, τ) and u0 := u/‖x‖ ∈ Span(u) such
that ‖Ax0 − u0‖ ≤ ε

4
√
δ

and s1(A) ≤ s. In particular, this implies that

‖u0‖ ≤ ‖Ax0 − u0‖+ ‖Ax0‖ ≤
ε

4
√
δ

+ s.

Let N be a ε
4
√
δ
-net of the real interval [− ε

4
√
δ
− s, ε

4
√
δ

+ s]. In particular, we can choose
N so that

|N | ≤ C ′s (5.10)

for some constant C ′ > 0. Here, we have used the assumption that s ≥ 1. In particular,
there exists c0 ∈ N such that ∥∥∥∥ u

‖x‖
− c0

u

‖u‖

∥∥∥∥ ≤ ε

4
√
δ
.

By the triangle inequality, this implies that∥∥∥∥Ax0 − c0
u

‖u‖

∥∥∥∥ ≤ ε

2
√
δ
.

To conclude, we have shown that

P(E) ≤ P
(

inf
c0∈N

inf
x0∈Comp(δ,τ)

∥∥∥∥Ax0 − c0
u

‖u‖

∥∥∥∥ ≤ ε

2
√
δ
, s1(A) ≤ s

)
,
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and thus, by the union bound, we have

P(E) ≤
∑
c0∈N

P

(
inf

x0∈Comp(δ,τ)

∥∥∥∥Ax0 − c0
u

‖u‖

∥∥∥∥ ≤ ε

2
√
δ
, s1(A) ≤ s

)
.

The claim now follows by the cardinality bound for N in (5.10) and Lemma 5.6.

When dealing with incompressible vectors we will need the following corollary.

Corollary 5.8. There exists constants C, c > 0, such that, for any u ∈ Cn with u 6= 0, and
any s ≥ 1, we have

P

(
A−1u

‖A−1u‖
∈ Comp(δ, τ), s1(A) ≤ s

)
≤ Cs exp(−cn).

Proof. If x := A−1u, then (Ax− u)/‖x‖ = 0. Thus, we have

P

(
A−1u

‖A−1u‖
∈ Comp(δ, τ), s1(A) ≤ s

)
≤ P

(
inf

x/‖x‖∈Comp(δ,τ)

‖Ax− u‖
‖x‖

= 0, s1(A) ≤ s
)
.

The conclusion now follows from (5.9).

5.4 Anti-concentration bounds

In order to handle incompressible vectors, we will need several anti-concentration
bounds. The main idea is to use the rate of convergence from the Berry–Esseen Theorem
to obtain the estimates. This idea appears to have originated in [36] and has been used
previously in many works including [16,36,48].

Lemma 5.9 (Small ball probability via Berry–Esseen; Lemma A.6 from [16]). There exists
C > 0 such that if Z1, . . . , Zn are independent centered complex-valued random variables,
then for all t ≥ 0,

sup
z∈C

P

(∣∣∣∣∣
n∑
i=1

Zi − z

∣∣∣∣∣ ≤ t
)
≤ C

(
t√∑n

i=1E|Zi|2
+

∑n
i=1E|Zi|3

(
∑n
i=1E|Zi|2)

3/2

)
.

We begin the following anti-concentration bound for sums involving dependent
random variables.

Lemma 5.10. Let {(ξi, ψi) : 1 ≤ i ≤ n} be a collection of independent complex-valued
random tuples, and assume there exist a, b, σ > 0 such that the events

Ei := {|ξi| ≤ a, |ψi| ≤ a}

for 1 ≤ i ≤ n satisfy

b ≤ min
1≤i≤n

P(Ei), σ2 ≤ min
1≤i≤n

Var(ξi | Ei), σ2 ≤ min
1≤i≤n

Var(ψi | Ei).

In addition, assume there exists ρ < 1 such that

max
1≤i≤n

|Corr(ξi | Ei, ψi | Ei)| ≤ ρ. (5.11)

Then for any δ, τ ∈ (0, 1), any w = (wi)
n
i=1 ∈ Incomp(δ, τ), any w′ = (w′i)

n
i=1 ∈ Cn with

‖w′‖ ≤ 1, any J ⊂ [n] with |J | ≥ n(1− δ/4), and any t ≥ 0, we have

sup
z∈C

P

(∣∣∣∣∣∑
i∈J

(ξiwi + ψiw
′
i)− z

∣∣∣∣∣ ≤ tτ
)

≤ C

σ
√
δb(1− ρ)

√⌈
1

2
log2

(
2

τ2δ

)⌉⌈
log2

(√
n

τ

)⌉(
t+

a√
n

)
+ exp(−δnb/32),
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where C > 0 is an absolute constant.

Proof. The proof is based on the arguments from [16]. Since w ∈ Incomp(δ, τ) and
|J | ≥ n(1− δ/4), Lemma 5.3 implies the existence of π ⊂ J such that |π| ≥ δn/4 and

τ√
n
≤ |wi| ≤

√
2

δn

for all i ∈ π. By conditioning on the random variables ξi, ψi for i 6∈ π and absorbing their
contribution into the constant z, it suffices to bound

sup
z∈C

P

(∣∣∣∣∣∑
i∈π

(ξiwi + ψiw
′
i)− z

∣∣∣∣∣ ≤ tτ
)
.

We now proceed to truncate the random variables ξi, ψi for i ∈ π. Indeed, by the
Chernoff bound, it follows that ∑

i∈π
1Ei ≥

|π|b
2
≥ δbn

8

with probability at least 1− exp(−δbn/32). Therefore, taking m := dδbn/8e, it suffices to
show

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

(ξiwi + ψiw
′
i)− z

∣∣∣∣∣ ≤ tτ
)

≤ C

σ
√
δb(1− ρ)

√⌈
1

2
log2

(
2

τ2δ

)⌉⌈
log2

(√
n

τ

)⌉(
t+

a√
n

)
,

where Pm(·) := P(·|Em,Fm) is the conditional probability given Fm, the σ-algebra
generated by all random variables except ξ1, . . . , ξm, ψ1, . . . , ψm, and the event

Em := {|ξi| ≤ a, |ψi| ≤ a : 1 ≤ i ≤ m}
⋂{

τ√
n
≤ |wi| ≤

√
2

δn
: 1 ≤ i ≤ m

}
.3

By centering the random variables (and absorbing the expectations into the constant z),
it suffices to bound

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)
.

We again reduce to the case where we only need to consider a subset of the co-
ordinates of w and w′ which are roughly comparable. Indeed, as the random tuples
(ξ1, ψ1), . . . , (ξm, ψm) are jointly independent under the probability measure Pm, we can
condition on any subset of them (and again absorb their contribution into the constant
z); hence, for any subset I ⊂ [m], we have

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)

(5.12)

≤ sup
z∈C

Pm

(∣∣∣∣∣∑
i∈I

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)
.

3When defining this event, we consider the wi to be constant random variables.
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We now choose the subset I in a sequence of two steps. First, define

L := 2

⌈
1

2
log2

(
2

δτ2

)⌉
,

and for 1 ≤ j ≤ L set

Ij :=

{
1 ≤ i ≤ m :

2j−1τ√
n
≤ |wi| <

2jτ√
n

}
.

By construction, I1, . . . , IL partition the index set [m]. Hence, by the pigeonhole principle,
there exists j such that |Ij | ≥ m/L. Second, we partition the set Ij as follows. Define

K := 2

⌈
log2

(√
n

τ

)⌉
,

and for 1 ≤ k ≤ K set

Ij,k :=

{
i ∈ Ij :

2k−1τ√
n
≤ |w′i| <

2kτ√
n

}
and define

Ij,0 :=

{
i ∈ Ij : |w′i| <

τ√
n

}
.

As ‖w′‖ ≤ 1 by assumption, the sets Ij,0, Ij,1, . . . , Ij,K form a partition of Ij . By the
pigeonhole principle, there exists k such that

|Ij,k| ≥
m

L(K + 1)
≥ m

2LK
. (5.13)

Applying (5.12) to the set Ij,k, it now suffices to show

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ
 (5.14)

≤ C
√
LK

σ
√
δb(1− ρ)

(
t+

a√
n

)
for some absolute constant C > 0.

We will apply Lemma 5.9 to obtain (5.14). For i ∈ Ij,k, define

Zi := (ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i.

Then

q2 :=
∑
i∈Ij,k

Em|Zi|2

≥
∑
i∈Ij,k

[
|wi|2 Varm(ξi) + |w′i|2 Varm(ψi)− 2ρ|wi||w′i|

√
Varm(ξi) Varm(ψi)

]
by assumption (5.11). Thus, we deduce that

q2 ≥ (1− ρ)
∑
i∈Ij,k

[
|wi|2 Varm(ξi) + |w′i|2 Varm(ψi)

]
≥ (1− ρ)σ2

∑
i∈Ij,k

[
|wi|2 + |w′i|2

]
. (5.15)
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In addition, ∑
i∈Ij,k

Em|Zi|3 ≤ 2aτ

(
2j + 2k√

n

)
q2.

Hence, Lemma 5.9 implies the existence of an absolute constant C > 0 such that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ


≤ Cτ

q

(
t+

a(2j + 2k)√
n

)
. (5.16)

We complete the proof by considering two separate cases. First, if k = 0, then
using (5.13) and (5.15), we obtain

q2 ≥ σ2(1− ρ)
∑
i∈Ij,k

|wi|2 ≥ σ2(1− ρ)|Ij,k|
22j−2τ2

n
≥ σ2(1− ρ)δb

22jτ2

64LK
.

Hence returning to (5.16), we find that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ


≤ C ′
√
LK

σ
√
δb(1− ρ)

(
t+

a√
n

)
, (5.17)

where C ′ > 0 is an absolute constant. Similarly, if 1 ≤ k ≤ K, then

q2 ≥ σ2(1− ρ)|Ij,k|
τ2

n

(
22j−2 + 22k−2

)
≥ σ2(1− ρ)δbτ2 22j + 22k

64LK
.

In this case, we again apply (5.16) to deduce the existence of an absolute constant
C ′′ > 0 such that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ψi − Em[ψi])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ


≤ C ′′
√
LK

σ
√
δb(1− ρ)

(
t+

a√
n

)
. (5.18)

Combining (5.17) and (5.18), we obtain the bound (5.14) (with the absolute constant
C := max{C ′, C ′′}), and the proof of the lemma is complete.

Lastly, we will need the following technical anti-concentration bound which is similar
to Lemma 5.10.

Lemma 5.11. Let {(ξi, ψi) : 1 ≤ i ≤ n} ∪ {(ξ′i, ψ′i) : 1 ≤ i ≤ n} be a collection of
independent complex-valued random tuples with the property that (ξi, ψi) has the same
distribution as (ξ′i, ψ

′
i) for 1 ≤ i ≤ n, and assume there exist a, b, σ > 0 such that the

events
Ei := {|ξi| ≤ a, |ψi| ≤ a}

for 1 ≤ i ≤ n satisfy

b ≤ min
1≤i≤n

P(Ei), σ2 ≤ min
1≤i≤n

Var(ξi | Ei), σ2 ≤ min
1≤i≤n

Var(ψi | Ei).
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In addition, let δ1, . . . , δn be i.i.d. {0, 1}-valued random variables with Eδi = coo ∈ (0, 1],
and assume δ1, . . . , δn are independent of the random tuples {(ξi, ψi), (ξ′i, ψ′i) : 1 ≤ i ≤ n}.
Then for any δ, τ ∈ (0, 1), any w = (wi)

n
i=1 ∈ Incomp(δ, τ), any w′ = (w′i)

n
i=1 ∈ Cn with

‖w′‖ ≤ 1, and any t ≥ 0, we have

sup
z∈C

P

(∣∣∣∣∣
n∑
i=1

(δiξiwi + δiξ
′
iw
′
i)− z

∣∣∣∣∣ ≤ tτ
)

≤ C

σ
√
cooδb2

√⌈
1

2
log2

(
2

τ2δ

)⌉⌈
log2

(√
n

τ

)⌉(
t+

a√
n

)
+ exp(−δncoob2/16),

where C > 0 is an absolute constant.

Lemma 5.11 is very similar to Lemma 5.10. The statement of the lemma is somewhat
unusual since the hypotheses involve the variables ξi, ψi, ξ′i, ψ

′
i, but the conclusion only

involves the random variables ξi, ξ′i. This is to match the assumptions of Theorem 5.1.
The proof of Lemma 5.11 presented below follows the same framework as the proof of
Lemma 5.10.

Proof of Lemma 5.11. Since w ∈ Incomp(δ, τ), Lemma 5.3 implies the existence of π ⊂ [n]

such that |π| ≥ δn/2 and

τ√
n
≤ |wi| ≤

√
2

δn

for all i ∈ π. By conditioning on the random variables ξi, ψi, ξ′i, ψ
′
i, δi for i 6∈ π and

absorbing their contribution into the constant z, it suffices to bound

sup
z∈C

P

(∣∣∣∣∣∑
i∈π

(δiξiwi + δiξ
′
iw
′
i)− z

∣∣∣∣∣ ≤ tτ
)
.

We now proceed to truncate the random variables ξi, ψi, ξ′i, ψ
′
i for i ∈ π. Define the

events
E ′i := {|ξ′i| ≤ a, |ψ′i| ≤ a},

and observe that E ′i is independent of Ei for 1 ≤ i ≤ n. By the Chernoff bound, it follows
that ∑

i∈π
1Ei∩E′i∩{δi=1} ≥

coo|π|b2

2
≥ cooδb

2n

4

with probability at least 1 − exp(−cooδb2n/16). Therefore, taking m := dcooδb2n/4e, it
suffices to bound

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

(δiξiwi + δiξ
′
iw
′
i)− z

∣∣∣∣∣ ≤ tτ
)

= sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

(ξiwi + ξ′iw
′
i)− z

∣∣∣∣∣ ≤ tτ
)

(5.19)

where Pm(·) := P(·|Em,Fm) is the conditional probability given Fm, the σ-algebra
generated by all random variables except ξ1, . . . , ξm, ψ1, . . . , ψm, ξ′1, . . . , ξ

′
m, ψ′1, . . . , ψ

′
m,

δ1, . . . , δm, and the event

Em :=

m⋂
i=1

{|ξi| ≤ a, |ψi| ≤ a, |ξ′i| ≤ a, |ψ′i| ≤ a, δi = 1}
m⋂
i=1

{
τ√
n
≤ |wi| ≤

√
2

δn

}
.

Here, we have exploited the fact that on the event Em, δi = 1 for i ∈ [m], and so all
factors of δi have been replaced by 1 on the right-hand side of (5.19). By centering the
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random variables (and absorbing the expectations into the constant z), it suffices to
bound

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)
.

We again reduce to the case where we only need to consider a subset of the co-
ordinates of w and w′ which are roughly comparable. Indeed, as the random vectors
(ξ1, ψ1, ξ

′
1, ψ
′
1), . . . , (ξm, ψm, ξ

′
m, ψ

′
m) are jointly independent under the probability measure

Pm, we can condition on any subset of them (and again absorb their contribution into
the constant z); hence, for any subset I ⊂ [m], we have

sup
z∈C

Pm

(∣∣∣∣∣
m∑
i=1

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)

(5.20)

≤ sup
z∈C

Pm

(∣∣∣∣∣∑
i∈I

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣ ≤ tτ
)
.

We now choose the subset I in a sequence of two steps as was done in the proof of
Lemma 5.10. First, define

L := 2

⌈
1

2
log2

(
2

δτ2

)⌉
,

and for 1 ≤ j ≤ L set

Ij :=

{
1 ≤ i ≤ m :

2j−1τ√
n
≤ |wi| <

2jτ√
n

}
.

By construction, I1, . . . , IL partition the index set [m]. Hence, by the pigeonhole principle,
there exists j such that |Ij | ≥ m/L. Second, we partition the set Ij as follows. Define

K := 2

⌈
log2

(√
n

τ

)⌉
,

and for 1 ≤ k ≤ K set

Ij,k :=

{
i ∈ Ij :

2k−1τ√
n
≤ |w′i| <

2kτ√
n

}
and define

Ij,0 :=

{
i ∈ Ij : |w′i| <

τ√
n

}
.

As ‖w′‖ ≤ 1 by assumption, the sets Ij,0, Ij,1, . . . , Ij,K form a partition of Ij . By the
pigeonhole principle, there exists k such that

|Ij,k| ≥
m

L(K + 1)
≥ m

2LK
. (5.21)

Applying (5.20) to the set Ij,k, it now suffices to show

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ
 (5.22)

≤ C
√
LK

σ
√
cooδb2

(
t+

a√
n

)
for some absolute constant C > 0.
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We will apply Lemma 5.9 to obtain (5.22). For i ∈ Ij,k, define

Zi := (ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i.

Then

q2 :=
∑
i∈Ij,k

Em|Zi|2

=
∑
i∈Ij,k

[
|wi|2 Varm(ξi) + |w′i|2 Varm(ξ′i)

]
(5.23)

≥ σ2
∑
i∈Ij,k

[
|wi|2 + |w′i|2

]
since ξi and ξ′i are independent under the measure Pm for 1 ≤ i ≤ n. In addition,∑

i∈Ij,k

Em|Zi|3 ≤ 2aτ

(
2j + 2k√

n

)
q2.

Hence, Lemma 5.9 implies the existence of an absolute constant C > 0 such that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ


≤ Cτ

q

(
t+

a(2j + 2k)√
n

)
. (5.24)

We complete the proof by considering two separate cases. First, if k = 0, then
using (5.21) and (5.23), we obtain

q2 ≥ σ2
∑
i∈Ij,k

|wi|2 ≥ σ2|Ij,k|
22j−2τ2

n
≥ σ2cooδb

2 22jτ2

32LK
.

Hence returning to (5.24), we find that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ξ′i − Em[ξ′i])w
′
i]− z

∣∣∣∣∣∣ ≤ tτ


≤ C ′
√
LK

σ
√
cooδb2

(
t+

a√
n

)
, (5.25)

where C ′ > 0 is an absolute constant. Similarly, if 1 ≤ k ≤ K, then

q2 ≥ σ2|Ij,k|
τ2

n

(
22j−2 + 22k−2

)
≥ σ2cooδb

2τ2 22j + 22k

32LK
.

In this case, we again apply (5.24) to deduce the existence of an absolute constant
C ′′ > 0 such that

sup
z∈C

Pm

∣∣∣∣∣∣
∑
i∈Ij,k

[(ξi − Em[ξi])wi + (ξ′i − Em[ξi]
′)w′i]− z

∣∣∣∣∣∣ ≤ tτ


≤ C ′′
√
LK

σ
√
cooδb2

(
t+

a√
n

)
. (5.26)

Combining (5.25) and (5.26), we obtain the bound (5.22) (with the absolute constant
C := max{C ′, C ′′}), and the proof of the lemma is complete.
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5.5 Incompressible vectors

In order to control the set of incompressible vectors, we will require the following
averaging estimate.

Lemma 5.12 (Invertibility via average distance; Lemma A.4 from [16]). Let A be a
random matrix taking values in Matn(C) with columns C1, . . . , Cn. For any 1 ≤ k ≤ n, let
Hk := Span{Ci : i 6= k}. Then, for any t ≥ 0,

P

(
min

x∈Incomp(δ,τ)
‖Ax‖ ≤ tτ√

n

)
≤ 2

δn

n∑
k=1

P(dist(Ck, Hk) ≤ t).

Let A = X +M be the matrix from Theorem 5.1. Let C1, . . . , Cn be the columns of A
and Hk := Span{Ci : i 6= k} be as in Lemma 5.12. Our main result for controlling the set
of incompressible vectors is the following.

Lemma 5.13. There exists C, c > 0 such that for every 1 ≤ k ≤ n, any t > 0 and any
s ≥ 1,

P(dist(Ck, Hk) ≤ t, s1(A) ≤ s) ≤ C
(

log(Csn)√
1− ρ

(
s2
√
t+

1√
n

))1/4

.

The rest of the subsection is devoted to the proof of Lemma 5.13. We complete the
proof of Theorem 5.1 in Subsection 5.6. We will also need the following result based
on [57, Proposition 5.1] and [30, Statement 2.8].

Lemma 5.14 (Distance problem via bilinear forms). Let A = (Aij) ∈ Matn(C), let
C1, . . . , Cn denote the columns of A, and fix 1 ≤ k ≤ n. Let Hk := Span{Ci : i 6= k}, u be
the k-th row of A with the k-th entry removed, v be Ck with the k-th entry removed, and
let B be the (n− 1)× (n− 1) submatrix of A formed from removing the k-th row and k-th
column. If B is invertible, then

dist(Ck, Hk) ≥ |Akk − uB
−1v|√

1 + ‖uB−1‖2
. (5.27)

Proof. The proof presented below is based on the arguments given in [30, 57]. By
permuting the rows and columns, it suffices to assume that k = 1. Let h ∈ Sn−1 denote
any normal to the hyperplane H1. Then

dist(C1, H1) ≥ |h∗C1|.

We decompose

C1 =

(
A11

v

)
, h =

(
h1

g

)
,

where h1 ∈ C and g ∈ Cn−1. Then

dist(C1, H1) ≥ |h∗C1| = |h̄1A11 + g∗v|. (5.28)

Since h is orthogonal to the columns of the matrix

(
u

B

)
, we find

0 = h∗
(
u

B

)
= h̄1u+ g∗B,

and hence
g∗ = −h̄1uB

−1.

Returning to (5.28), we have

dist(C1, H1) ≥ |h1||A11 − uB−1v|. (5.29)
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In addition,

1 = ‖h‖2 = |h1|2 + ‖g‖2 = |h1|2(1 + ‖uB−1‖2),

and so

|h1|2 =
1

1 + ‖uB−1‖2
. (5.30)

The conclusion now follows from (5.29) and (5.30).

Our study of the bilinear form uB−1v is based on the following general result, which
will allow us to introduce some additional independence into the problem to deal with
the fact that u and v are dependent. Similar decoupling techniques have also appeared
in [20,21,28,30,57]. The lemma below is based on [57, Lemma 8.4] for quadratic forms.

Lemma 5.15 (Decoupling lemma). Let M ∈ Matn(C), and let x = (xi)
n
i=1, y = (yi)

n
i=1

be random vectors in Cn such that {(xi, yi) : 1 ≤ i ≤ n} is a collection of independent
random tuples. Let (x′, y′) denote an independent copy of (x, y). Then for every subset
π ⊂ [n] and t ≥ 0, we have

sup
z∈C

P(|xTMy − z| ≤ t)2

≤ Px,y,x′,y′
(
|xT
πMπ×πc(yπc − y′πc) + (xπc − x′πc)TMπc×πyπ + z0| ≤ 2t

)
,

where z0 is a random variable whose value is determined by Mπc×πc , xπc , yπc , x
′
πc , y

′
πc .

The proof of Lemma 5.15 is based on the following decoupling bound from [51,57].

Lemma 5.16 (Lemma 8.5 from [57]). Let ξ and ψ be independent random vectors, and
let ψ′ be an independent copy of ψ. Let E(ξ, ψ) be an event which is determined by the
values of ξ and ψ. Then

P(E(ξ, ψ))2 ≤ P(E(ξ, ψ) ∩ E(ξ, ψ′)).

Proof of Lemma 5.15. Let ξ be the random vector formed by the tuples {(xi, yi) : i ∈ π},
and let ψ be the random vector formed from the tuples {(xi, yi) : i 6∈ π}. Then ξ and ψ

are independent by supposition, and we can apply Lemma 5.16. To this end, let x̃, ỹ be
random vectors in Cn defined by

x̃π := xπ, x̃πc := x′πc , ỹπ := yπ, ỹπc := y′πc .

An application of Lemma 5.16 yields

P(|xTMy − z| ≤ t)2 ≤ Px,y,x̃,ỹ(|xTMy − z| ≤ t, |x̃TMỹ − z| ≤ t)
≤ Px,y,x̃,ỹ(|xTMy − x̃TMỹ| ≤ 2t),

where the last inequality follows from the triangle inequality. We now note that

xTMy − x̃TMỹ = xT
πMπ×πc(yπc − ỹπc) + (xπc − x̃πc)TMπc×πyπ + z0,

where z0 depends only on Mπc×πc , xπc , yπc , x̃πc , ỹπc . Since x̃πc = x′πc and ỹπc = y′πc , the
claim follows.

We now turn to the proof of Lemma 5.13. The arguments presented here follow the
general framework of [57, Section 8.3]. Fix 1 ≤ k ≤ n; the arguments and bounds below
will all be uniform in k. Let u be the k-th row of A with the k-th entry removed. Let v
be the k-th column of A with the k-th entry removed, and let B be the (n− 1)× (n− 1)
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matrix formed by removing the k-th row and k-th column from A. In view of Lemma 5.14,
it suffices to prove that

P

(
|Akk − uB−1v|√

1 + ‖uB−1‖2
≤ t, s1(A) ≤ s

)
≤ C

(
log(Csn)√

1− ρ

(
s2
√
t+

1√
n

))1/4

(5.31)

for some constants C, c > 0. Our argument is based on applying Lemma 5.15 to decouple
the bilinear form uB−1v and then applying our anti-concentration bounds from Subsec-
tion 5.4 to bound the resulting expressions. We divide the proof of (5.31) into a number
of sub-steps.

5.5.1 Step 1: constructing a random subset π

Following [57], we decompose [n− 1] into two random subsets π and πc. Let δ1, . . . , δn−1

be i.i.d. {0, 1}-valued random variables, independent of X, with Eδi = coo/2, where coo is
a constant defined by

coo := δ/8

and δ ∈ (0, 1) was previously fixed. We then define π := {i ∈ [n − 1] : δi = 0}. By the
Chernoff bound, it follows that

|πc| ≤ coon (5.32)

with probability at least 1− C ′oo exp(−c′oon) for some constants C ′oo, c
′
oo > 0.

5.5.2 Step 2: estimating ‖B−1‖2

Lemma 5.17 below will allow us to estimate the denominator appearing on the right-hand
side of (5.27). To this end, let (u′, v′) be an independent copy of (u, v), also independent
of X.

Lemma 5.17. There exist constants C, c > 0 such that, for any s ≥ 1, the random matrix
B has the following properties with probability at least 1 − Cs exp(−cn). If s1(B) ≤ s,
one has:

(i) for any t0 ≥ 0, with probability at least 1− C log(Cns)
(
st0 + n−1/2

)
in u, u′, π,

‖(u− u′)πcB−1
πc×[n−1]‖ ≥ t0‖B

−1‖2.

(ii) for any t0 ≥ 0, with probability at least 1− C log(Cns)
(
st0 + n−1/2

)
in v, v′, π,

‖B−1
[n−1]×πc(v − v

′)πc‖ ≥ t0‖B−1‖2.

In order to prove the lemma, we will need the following elementary result.

Lemma 5.18 (Sums of dependent random variables; Lemma 8.3 from [57]). Let Z1, . . . ,Zn
be arbitrary non-negative random variables (not necessarily independent), and p1, . . . , pn
be non-negative numbers such that

n∑
j=1

pj = 1.

Then, for every t ≥ 0, we have

P

 n∑
j=1

pjZj ≤ t

 ≤ 2

n∑
j=1

pjP(Zj ≤ 2t).
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Proof of Lemma 5.17. By Corollary 5.8 and the union bound, under the assumption
s1(B) ≤ s, we have

xj :=
B−1ej
‖B−1ej‖

∈ Incomp(δ, τ), yj :=
e∗jB

−1

‖e∗jB−1‖
∈ Incomp(δ, τ)

for 1 ≤ j ≤ n − 1 with probability at least 1 − Cs exp(−cn). Here, e1, . . . , en−1 are the
standard basis elements of Cn−1. Fix a realization of B for which this property holds. We
will prove that both properties hold with the desired probability for this fixed realization
of B.

For (i), we note that

‖(u− u′)πcB−1
πc×[n−1]‖

2 =

n−1∑
j=1

|(u− u′)πcB−1
πc×[n−1]ej |

2

=

n−1∑
j=1

|(u− u′)πc(xj)πc |2‖B−1ej‖2.

Taking pj := ‖B−1ej‖2/‖B−1‖22, we see that
∑n−1
j=1 pj = 1, and hence

Pu,u′,π

(
‖(u− u′)πcB−1

πc×[n−1]‖ ≤ t0‖B
−1‖2

)
≤ Pu,u′,π

n−1∑
j=1

|(u− u′)πc(xj)πc |2pj ≤ t20


≤ 2

n−1∑
j=1

pjPu,u′,π(|(u− u′)πc(xj)πc |2 ≤ 2t20)

≤ 2 sup
w∈Incomp(δ,τ)

Pu,u′,π(|(u− u′)πcwπc | ≤
√

2t0)

by Lemma 5.18. Recalling our choice of δ, τ (5.5), and coo, the claim now follows from
the anti-concentration bound given in Lemma 5.11.

The proof of (ii) is similar. Indeed, we have

‖B−1
[n−1]×πc(v − v

′)πc‖2 =

n−1∑
j=1

|(yj)πc(v − v′)πc |2‖e∗jB−1‖2.

Applying Lemma 5.18 with pj := ‖e∗jB−1‖2/‖B−1‖22, we conclude that

Pv,v′,π

(
‖B−1

[n−1]×πc(v − v
′)πc‖ ≤ t0‖B−1‖2

)
≤ 2

n−1∑
j=1

pjPv,v′,π

(
|(yj)πc(v − v′)πc | ≤

√
2t0

)
≤ 2 sup

w∈Incomp(δ,τ)

Pv,v′,π

(
|wT
πc(v − v′)πc | ≤

√
2t0

)
.

As before, the conclusion now follows from the anti-concentration bound given in
Lemma 5.11.

5.5.3 Step 3: working on the appropriate events

We have one last preparatory step before we can apply the decoupling lemma, Lemma
5.15. In this step, we define the events we will need to work on for the remainder of the
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proof. To this end, define the events

BA := {s1(A) ≤ s}, BB := {s1(B) ≤ s}, Bu := {‖u‖ ≤ s}.

We note that BA ⊂ BB and BA ⊂ Bu since u and B are sub-matrices of A. Consider the
random vectors

w := (u− u′)πcB−1
πc×[n−1], w′ := B−1

[n−1]×πc(v − v
′)πc . (5.33)

It is possible that w = 0 or w′ = 0, although we will show that these events happen with
small probability momentarily.

Let t0 > 0. Consider the event

‖B−1‖2 ≤
1

t0
min{‖w‖, ‖w′‖}. (5.34)

By Lemma 5.17, we find

PB,u,u′,v,v′,π((5.34) holds ∨ BcB) ≥ 1− C log(csn)(st0 + n−1/2)− Cs exp(−cn)

for some constants C, c > 0. In particular, since ‖B−1‖2 > 0, it follows that when the
event in (5.34) occurs, it must be the case that w and w′ are both nonzero. In order to
avoid several different cases later in the proof, let us define ω and ω′ as follows. If w is
nonzero, we take ω := w, and if w is zero, we define ω to be a fixed vector in Incomp(δ, τ).
We define ω′ analogously in terms of w′. It follows that on the event (5.34), we have

ω = w, ω′ = w′. (5.35)

Next, consider the event

ω

‖ω‖
∈ Incomp(δ, τ),

ω′

‖ω′‖
∈ Incomp(δ, τ). (5.36)

Let us fix an arbitrary realization of u, v, u′, v′ and a realization of π which satisfies (5.32).
We will apply Corollary 5.8 to control the event in (5.36). Indeed, we only need to
consider the cases when w 6= 0 or w′ 6= 0. In these cases, it follows that ω = w or
ω′ = w′. Let us suppose this is the case. Then ω = (u−u′)PπcB−1 or ω′ = B−1Pπc(v− v′),
where Pπc is an orthogonal projection onto those coordinates specified by πc. Thus, from
Corollary 5.8, we deduce that

PB((5.36) holds ∨ BcB | u, v, u′, v′, π satisfies (5.32)) ≥ 1− C ′s exp(−c′n)

for some constants C ′, c′ > 0. Combining the probabilities above, we conclude that

PB,u,v,u′,v′,π (((5.32), (5.34), (5.36) hold) ∨ BcB)

≥ 1− C ′′ log(C ′′sn)(st0 + n−1/2)− C ′′s exp(−c′′n)

=: 1− p0

for some constants C ′′, c′′ > 0.
It follows that there exists a realization of π that satisfies (5.32) and such that

PB,u,v,u′,v′ (((5.34), (5.36) hold) ∨ BcB) ≥ 1− p0.

We fix such a realization of π for the remainder of the proof. Using Fubini’s theorem, we
deduce that the random matrix B has the following property with probability at least
1−√p0:

Pu,v,u′,v′ (((5.34), (5.36) hold) ∨ BcB | B) ≥ 1−√p0.

Since the event BB depends only on B and not on u, v, u′, v′, it follows that the random
matrix B has the following property with probability at least 1−√p0: either BcB holds, or

BB holds and Pu,v,u′,v′ ((5.34), (5.36) hold | B) ≥ 1−√p0. (5.37)
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5.5.4 Step 4: decoupling

Recall that we are interested in bounding PB,u,v,Akk(E ∧ BA), where

E :=

{
|Akk − uB−1v|√

1 + ‖uB−1‖2
≤ t

}
.

We first observe that

PB,u,v,Akk(E ∧ BA) ≤ PB,u,v,Akk(E ∧ BB ∧ Bu).

On the event Bu, we have

‖uB−1‖ ≤ ‖u‖‖B−1‖ ≤ s‖B−1‖2.

In addition, if s1(B) ≤ s, then ‖B−1‖2 ≥ 1/s. Hence, on the event BB ∧ Bu,

1 + ‖uB−1‖2 ≤ 1 + s2‖B−1‖22 ≤ 2s2‖B−1‖22.

Thus, we obtain
PB,u,v,Akk(E ∧ BA) ≤ PB,u,v,Akk(E ′ ∧ BB),

where
E ′ :=

{
|Akk − uB−1v| ≤

√
2ts‖B−1‖2

}
.

Thus, we find

PB,u,v,Akk(E ∧ BA) ≤ PB,u,v,Akk(E ′ ∧ (5.37) holds) + PB,u,v,Akk(BB ∧ (5.37) fails).

The last probability is bounded above by
√
p0 by the previous step. We conclude that

PB,u,v,Akk(E ∧ BA) ≤ sup
B satisfies (5.37)

Akk∈C

Pu,v(E ′ | B,Akk) +
√
p0.

We now begin to work with the random vectors u′, v′ (recall that (u′, v′) are independent
of X). To do so, we will work on a larger probability space which also includes the
random vectors u′, v′. Indeed, computing the probability above on the larger space which
includes u′, v′, we conclude that

PB,u,v,Akk(E ∧ BA) ≤ sup
B satisfies (5.37)

Akk∈C

Pu,v,u′,v′(E ′ | B,Akk) +
√
p0.

For the remainder of the proof, we fix a realization of B which satisfies (5.37) and
fix an arbitrary realization of Akk. By supposition, both B and Akk are independent of
u, v, u′, v′. It remains to bound the probability

p1 := sup
z∈C

Pu,v,u′,v′(E ′z),

where
E ′z :=

{
|z − uB−1v| ≤

√
2ts‖B−1‖2

}
.

To bound p1, we apply the decoupling lemma, Lemma 5.15. Indeed, by Lemma 5.15,

p2
1 ≤ Pu,v,u′,v′(E ′′),

where

E ′′ :=
{
|uπB−1

π×πc(v − v′)πc + (u− u′)πcB−1
πc×πvπ + z0| ≤ 2

√
2st‖B−1‖2

}
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and z0 is a complex number depending only on B{π
c×πc}, uπc , vπc , u′πc , v′πc . Using (5.37)

(where the conditioning on B is no longer required since B is now fixed), we find

p2
1 ≤ Pu,v,u′,v′(E ′′ ∧ (5.34), (5.36) hold) +

√
p0,

and hence
p2

1 ≤ Pu,v,u′,v′(E ′′′ ∧ (5.35), (5.36) hold) +
√
p0,

where

E ′′′ :=

{
|uπw′π + wπvπ + z0| ≤ 2

√
2
st

t0
max{‖w‖, ‖w′‖}

}
;

here, we used the fact that on the event (5.34), the event (5.35) holds.

5.5.5 Step 5: applying the anti-concentration bounds

Recall that w,w′ depend only on uπc , vπc , u′πc , v
′
πc . In addition, uπ and vπ are independent

of these random vectors. Let us fix a realization of the random vectors uπc , vπc , u′πc , v
′
πc

which satisfy (5.35) and (5.36). This completely determines w and w′; moreover, z0 is
also completely determined. Therefore, we conclude that

p2
1 ≤ sup

w,w′ satisfy (5.35),(5.36)
z0∈C

Puπ,vπ

(
|uπw′π + wπvπ + z0| ≤ 2

√
2
st

t0
max{‖w‖, ‖w′‖}

)
+
√
p0.

In order to bound this first term on the right-hand side, we will apply the
anti-concentration bound given in Lemma 5.10. Without loss of generality, let us assume
that max{‖w‖, ‖w′‖} = ‖w‖. Then dividing through by ‖w‖, we find that

p2
1 ≤ sup

w,w′ satisfy (5.35),(5.36)
z0∈C

Puπ,vπ

(∣∣∣∣uπ w′π‖w‖ +
wπ
‖w‖

vπ + z0

∣∣∣∣ ≤ 2
√

2
st

t0

)
+
√
p0,

and
‖w′‖
‖w‖

≤ 1.

In view of Lemma 5.10 (where we recall that |π| ≥ n(1− δ/8) due to (5.32)), we conclude
that

p2
1 ≤ C ′′′

1√
1− ρ

log(C ′′′ns)

(
s2t

t0
+

1√
n

)
+
√
p0

for some constant C ′′′ > 0.

5.5.6 Step 6: completing the proof

Combining the bounds from the previous steps, we obtain

PB,u,v,Akk(E ∧ BA) ≤ p1 +
√
p0.

We now proceed to simplify the expression to obtain (5.31). We still have the freedom to
chose t0 > 0; let us take t0 :=

√
t. In addition, we may assume that the expression

C ′′′ log(C ′′′ns)

(
s2
√
t+

1√
n

)
(5.38)

is less than one as the bound is trivial otherwise. In particular, this implies that s ≤
exp(
√
n). Among others, this means that the error term C ′′s exp(−c′′n) can be absorbed
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into terms of the form (5.38) (by increasing the constant C ′′′ if necessary). After some
simplification, the bound for p1 obtained in the previous step (with the substitution
t0 :=

√
t) yields

PB,u,v,Akk(E ∧ BA) ≤ C
(

log(Csn)√
1− ρ

(
s2
√
t+

1√
n

))1/4

for some constant C > 0. This completes the proof of (5.31), and hence the proof of
Lemma 5.13 is complete.

5.6 Proof of Theorem 5.1

In this subsection, we complete the proof of Theorem 5.1. Indeed, for any s ≥ 1 and
any 0 < t ≤ 1, we have

P

(
sn(A) ≤ t√

n
, s1(A) ≤ s

)
≤ P

(
min

x∈Sn−1
‖Ax‖ ≤ t√

n
, s1(A) ≤ s

)
≤ P

(
min

x∈Incomp(δ,τ)
‖Ax‖ ≤ t√

n
, s1(A) ≤ s

)
(5.39)

+ P

(
min

x∈Comp(δ,τ)
‖Ax‖ ≤ 1√

n
, s1(A) ≤ s

)
due to our decomposition of the unit sphere into compressible and incompressible
vectors. It remains to bound each of the terms on the right-hand side.

For the incompressible vectors, we combine Lemmas 5.12 and 5.13 to find that, for
any t > 0,

P

(
min

x∈Incomp(δ,τ)
‖Ax‖ ≤ tτ√

n
, s1(A) ≤ s

)
≤ 2

δn

n∑
k=1

P(dist(Ck, Hk) ≤ t, s1(A) ≤ s)

≤ 2C

δ

(
log(Csn)√

1− ρ

(
s2
√
t+

1√
n

))1/4

for some constant C > 0. Recalling the definitions of δ and τ (5.5), we conclude that

P

(
min

x∈Incomp(δ,τ)
‖Ax‖ ≤ t√

n
, s1(A) ≤ s

)
≤ C ′

(
log(C ′sn)√

1− ρ

(√
s5t+

1√
n

))1/4

(5.40)

for some constant C ′ > 0. For compressible vectors, Lemma 5.6 implies the existence of
constants C ′′, c′′ > 0 such that

P

(
min

x∈Comp(δ,τ)
‖Ax‖ ≤ 1√

n
, s1(A) ≤ s

)
≤ C ′′ exp(−c′′n). (5.41)

Combining (5.40) and (5.41) with (5.39), we conclude that, for any s ≥ 1 and any
0 < t ≤ 1,

P

(
sn(A) ≤ t√

n
, s1(A) ≤ s

)
≤ C ′

(
log(C ′sn)√

1− ρ

(√
s5t+

1√
n

))1/4

+ C ′′ exp(−c′′n)

≤ C ′′′
(

log(C ′′′sn)√
1− ρ

(√
s5t+

1√
n

))1/4

for some constant C ′′′ > 0, where the second inequality follows from the fact that the first
error term dominates the second for all n sufficiently large. The proof of Theorem 5.1 is
complete.
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6 Singular values of An and uniform integrability

6.1 Tightness

We begin with a bound on the largest singular values of An − z.
Lemma 6.1. If Condition C1 holds, there exists r > 0, C > 0 such that the following
hold.

• For all z ∈ C, there exists Cz > 0 such that almost surely

lim sup
n→∞

∫ ∞
0

trdνAn−z(t) < Cz and thus (νAn−z)n≥1 is tight.

• Almost surely

lim sup
n→∞

∫
C

|w|rdµAn(w) < C and thus (µAn)n≥1 is tight..

Proof. We follow the approach of Lemma 3.1 in [13]. The tightness follows from the
moment bound and Markov’s inequality. The moment bound on µAn follows from the
bound on νAn and Weyl’s inequality, Lemma A.7. One has from Lemma A.3, sk(An − z) ≤
sk(An) + |z| for every 1 ≤ k ≤ n and thus using the fact for any x, y ≥ 0, (x + y)r ≤
2r(xr +yr) we can assume z = 0. We aim to work with matrices with independent entries,
and thus decompose An = Un +Ln where Ln is strictly lower triangular, and Un is upper
triangular. Note for all 0 ≤ k ≤ n− 1, we have by Lemma A.3

s1+k(An) ≤ s1+bk/2c(Un) + s1+dk/2e(Ln).

We now restrict r such that 0 < r ≤ 2. Thus∫ ∞
0

trdνAn(t) ≤ 8

[∫ ∞
0

trdνUn(t) +

∫ ∞
0

trdνLn(t)

]
.

We show only

lim sup
n→∞

∫ ∞
0

trdνUn(t) <∞ a.s.

as the proof that

lim sup
n→∞

∫ ∞
0

trdνLn(t) <∞ a.s.

follows in the exact same way.
By the Schatten bound, Lemma A.8,∫ ∞

0

trdνUn(t) ≤ Zn :=
1

n

n∑
i=1

Yn,i

where

Yn,i =

 n∑
j=i

a−2
n |Xij |2

r/2

.

For every 1 ≤ i < j ≤ n we let X ′ji be a copy of ξ1, independent of all Xij and all other
X ′ji. In addition let

Y ′n,i :=

 n∑
j=i

a−2
n |Xij |2 +

i−1∑
j=1

a−2
n |X ′ij |2

r/2

then

Zn ≤
1

n

n∑
i=1

Y ′n,i,

since Yn,i ≤ Y ′n,i. The proof then follows exactly as in Lemma 3.1 of [13].

EJP 27 (2022), paper 125.
Page 40/56

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP849
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Heavy-tailed elliptic random matrices

6.2 Distance from a row and a vector space

Throughout the rest of this section we assume the atom variables of Xn satisfy
Condition C2. The proof of Proposition 3.3 from [13] can be adapted in a straight
forward way to get Proposition 6.2 below. We give a brief explanation of the changes
to the proof needed for entries that are independent but not necessarily identically
distributed.

Proposition 6.2. Let 0 < γ < 1/2, and R be the i-th row of an(An − z) with the i-th
entry set to zero. There exists δ > 0 depending on α, γ such that for all d-dimensional
subspaces W of Cn with n− d ≥ n1−γ , one has

P
(

dist(R,W ) ≤ n(1−2γ)/α
)
≤ e−n

δ

.

Proof. Assume R is the i-th row of an(An − z) with the i-th entry set to zero. If X(i) is
the i-th row of Xn with the i-th entry set to zero, we have

dist(R,W ) ≥ dist(X(i),W1)

where W1 = Span(W, ei). Note the entries of X(i) are independent, but have two
potentially different distributions, in contrast with [13] where the entries are independent
and identically distributed. However, Lemma A.9 can be applied to either distribution.
Under Condition C2 the slowly varying function, L(t), in (1.3) is bounded and L(t) →
c > 0 as t → ∞ for both entries. To adapt the proof of Proposition 3.3 in [13] apply
Lemma A.9 to the entries of X(i) to get uniform bounds on the truncated moments
without assuming the entries are identically distributed.

We now give some results for stable random variables which will be helpful. For
0 < β < 1, let Z = Z(β) denote the one-sided positive β-stable distribution such that for
all s ≥ 0,

E exp(−sZ) = exp(−sβ). (6.1)

Recall for y,m > 0,

y−m = Γ(m)−1

∫ ∞
0

xm−1e−xydx.

Thus for all m > 0,

E[Z−m] = Γ(m)−1

∫ ∞
0

xm−1e−x
β

dx, (6.2)

and if Z1, . . . , Zn are i.i.d. copies of Z and w1, w2, . . . , wn are non-negative real numbers
then

n∑
i=1

wiZi
d
=

(
n∑
i=1

wβi

)1/β

Z1. (6.3)

Lemma 6.3 (Lemma 3.5 in [13]). Let 0 < α < 2 and Y be a random variable such that
tαP(|Y | ≥ t) → c as t → ∞ for some c > 0. Then there exists ε > 0 and p ∈ (0, 1) such
that the random variable |Y |2 dominates stochastically the random variable εDZ, where
P(D = 1) = 1 − P(D = 0) = p is a Bernoulli random variable, Z = Z(α/2) and D and Z

are independent.

Lemma 6.4. Let X(i) be the i-th row of the matrix Xn, with the i-th entry set to zero. Let
wj ∈ [0, 1] be numbers such that w(n) :=

∑n
j=1 wj ≥ n1/2+ε for some ε > 0. Let Z = Z(β)

with β = α/2. Then there exists δ > 0 and a coupling of X(i) and Z such that

P

 n∑
j=1

wj |Xij |2 ≤ δw(n)1/βZ

 ≤ Ce−cnδ
for constants C, c > 0.
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Proof. Let D = (Dj)
i
j=1 and D′ = (Dj)

n
j=i+1 be two independent vectors of i.i.d. Bernoulli

random variables given by Lemma 6.3 for Y = X21 with parameter p and Y = X12 with
parameter p′ respectively. We know from Lemma 6.3 there exists ε′ > 0, such that
for independent random variables Zj satisfying (6.1) such that for every j, wj |Xij |2
stochastically dominates ε′wjDjZj . Then there exists a coupling (see Lemma 2.12
in [33]) such that

P

 n∑
j=1

wj |Xij |2 ≥ ε′
n∑
j=1

wjDjZj

 = 1.

Let a = (a1, . . . , an) ∈ {0, 1}n, and Aa be the event Dj = aj for all j. Then define the
random variable Z pointwise on Aa, a 6= 0

Z(ω) :=

∑n
j=i wjajZj(ω)(∑n
j=1 w

β
j aj

)1/β
,

for ω ∈ Aa and Z(ω) = Z1(ω) on A0. From (6.3), we see Z satisfies (6.1) and the
distribution of Z does not depend on D1, . . . , Dn. Thus it is sufficient to show there exists
ε′′ > 0 such that

P

 n∑
j=1

wβjDj ≤ ε′′w(n)

 ≤ Ce−cnε′′ .
Note wβj ≥ wj , and thus E

∑n
j=1 w

β
jDj ≥ min(p, p′)w(n). Therefore for 0 < ε′′ < min(p, p′),

P

 n∑
j=1

wβjDj ≤ ε′′w(n)


≤ P

∣∣ n∑
j=1

(wβjDj − EwβjDj)
∣∣ ≥ (min(p, p′)− ε′′)w(n)


≤ 2e−

1
2 (min(p,p′)−ε′′)2w(n)2/n,

where the last bound follows from Hoeffding’s inequality.

We now give another bound on the distance between a row of An and a deterministic
subspace.

Proposition 6.5. Take 0 < γ < α/4. Let R be the i-th row of an(An − z) with the i-th
entry set to zero. There exists an event E such that for any d-dimensional subspace W
of Cn with n− d ≥ n1−γ , we have for sufficiently large n

E[dist−2(R,W );E] ≤ c(n− d)−2/α and P(Ec) ≤ cn− 1
2 +γ( 2

α−
1
2 ),

where c > 0 is an absolute constant which does not depend on the choice of row.

Proof. We follow the approach of the proof of Proposition 3.7 in [13]. The only difference
with Proposition 3.7 in [13] is the entries here are independent but not necessarily
identically distributed. Assume that R is the i-th row of an(An − z) with the i-th entry
set to zero. Note

dist(R,W ) ≥ dist(X(i),W1), (6.4)

where W1 = Span(W, ei), ei is the i-th basis vector, and X(i) = (Xij)1≤j≤n. Though the
i-th entry of X(i) is not necessarily zero, inequality (6.4) still holds since the subspace
spanned by ei is contained in W1. Let J denote the set of indices j such that |Xij | ≤ an.
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It is a straight forward application of the Chernoff bound to show there exists δ > 0 such
that

P(|J | < n−
√
n) ≤ e−n

δ

.

We begin by showing for any set J ⊂ {1, . . . , n} such that |J | ≥ n−
√
n,

E[dist−2(R,W );EJ |J = J ] ≤ c(n− d)−2/α,

for some event EJ satisfying P(EcJ |J = J) ≤ cn−
1
2 +γ( 2

α−
1
2 ). Without loss of generality

assume J := {1, . . . , n′} with n′ ≥ n−
√
n. Let πJ be the orthogonal projection onto the

first n′ canonical basis vectors. Let W2 = πJ(W1), set

W ′ = Span
(
W2,E(πJ(X(i))|J = J)

)
.

Note d−
√
n ≤ dim(W ′) ≤ dim(W1) + 1 ≤ d+ 2. Define

Y = πJ(X(i))− E(πJ(X(i))|J = J).

One has
dist(R,W ) ≥ dist(Y,W ′).

Y is a mean zero vector under P(·|J = J). Note W ′ ⊆ πJ(Cn) and Y ∈ πJ(Cn), so we
will work with both as objects in only πJ(Cn) ' Cn′ and not the larger vector space Cn.
Let P be the orthogonal projection matrix onto (W ′)⊥ in Cn

′
. Note trP = n′ − dim(W ′)

satisfies for sufficiently large n

2(n− d) ≥ trP ≥ 1

2
(n− d). (6.5)

By construction

E(dist2(Y,W ′)|J = J) = E

 n′∑
j,k=1

YjPjkȲk|J = J

 =

n′∑
j=1

PjjE[|Yj |2|J = J ]. (6.6)

Let S :=
∑n′

j=1 Pjj |Yj |2. Before beginning note by Lemma A.9 there exists C > 0 such

that E[|Yj |2|J = J ] ≤ Ca2
n/n for 1 ≤ j ≤ n′. Thus4

E(|dist2(Y,W ′)− S|2
∣∣J = J) = E


∣∣∣∣∣∣
∑
k 6=j

YjPjkȲk

∣∣∣∣∣∣
2 ∣∣J = J


≤ 2Ca4

n

n2

∑
j,k

|Pjk|2

=
2Ca4

n

n2
‖P‖22

=
2Ca4

n

n2
tr(P ∗P )

=
2Ca4

n

n2
tr(P ).

Thus

E(|dist2(Y,W ′)− S|2
∣∣J = J) = O

(
a4
n

n− d
n2

)
. (6.7)

4We believe there is a small typo in the bound of E(| dist2(Y,W ′)− S|2
∣∣J = J) in the proof of Proposition

3.7 in [13]
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Let Z be as in Lemma 6.4. Set wj = Pjj and for ε > 0, consider the event

ΓJ :=


n′∑
j=1

wj |Xij |2 ≥ ε(n− d)1/βZ

 ,

where β = α/2. From Lemma 6.4 there exists a coupling of Xi1, . . . , Xi,n′ and Z such
that

P(ΓcJ) ≤ Ce−cn
δ

, (6.8)

for some δ > 0 and some choice of ε > 0. Since (a− b)2 ≥ a2/2− b2 for a, b ∈ R we have
S ≥ 1

2Sa − Sb where

Sa :=

n′∑
j=1

wj |Xij |2,

and

Sb :=

n′∑
j=1

wjE[|Xij |
∣∣Xij ≤ an]2.

From Lemma A.9 and (6.5) one has

Sb ≤ h(α)(n, d)

where h(α)(n, d) = Θ((n − d)a2
n/n

2) if α ∈ (0, 1] and h(α)(n, d) = Θ((n − d)) if α ∈ (1, 2).
Let G1

J be the event that Sa ≥ 3Sb. There exists some c0 such that

P((G1
J)c ∩ ΓJ |J = J) ≤ P(Z ≤ c0(n− d)−1/βh(α)(n, d)|J = J).

From the assumption n−d ≥ n1−γ with 0 < γ < α/4 we have (n−d)−1/βh(α)(n, d) ≤ Cn−ε0
for some C, ε0 > 0. From here, using the bound (6.2) on the negative second moment of
Z, it is straightforward to show that for every p > 0 there exists a constant κp such that

P((G1
J)c ∩ ΓJ |J = J) ≤ κpn−p. (6.9)

Set Γ̃J = G1
J ∩ ΓJ . On Γ̃J , S ≥ 1

6Sa ≥
ε
6 (n− d)2/αZ, and therefore

E[S−2; Γ̃J |J = J ] ≤ c1(n− d)−4/αE[Z−2].

and thus using again the negative second moment bound on Z,

E[S−2; Γ̃J |J = J ] = O
(

(n− d)−4/α
)
. (6.10)

Let G2
J be the event {dist2(Y,W ′) ≥ S/2}. Note using Markov’s inequality and the

Cauchy-Schwarz inequality leads to

P
(

dist2(Y,W ′) ≤ S/2; Γ̃J |J = J
)
≤ P

(
|dist2(Y,W ′)− S|

S
≥ 1/2; Γ̃J |J = J

)
≤ 2E

[
|dist2(Y,W ′)− S|

S
; Γ̃J |J = J

]
(6.11)

≤ 2
√
E
[
|dist2(Y,W ′)− S|2|J = J

]
E[S−2; Γ̃J |J = J ].

Then by (6.7), (6.10), and (6.11)

P
(

(G2
J)c ∩ Γ̃J |J = J

)
= O

(
a2
nn
−1(n− d)

1
2−

2
α

)
. (6.12)
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By the Cauchy-Schwarz inequality

E
[
dist−2(X,W );G2

J ∩ Γ̃J |J = J
]
≤ 2E

[
S−1; Γ̃J |J = J

]
= O

(
(n− d)−2/α

)
.

To conclude take EJ = G2
J ∩ Γ̃J . Then

P(EcJ |J = J) ≤ P(ΓcJ |J = J) + P((G1
J)c ∩ ΓJ |J = J) + P

(
(G2

J)c ∩ Γ̃J |J = J
)
.

It is then straightforward to show using (6.8), (6.9), and (6.12)

P(EcJ |J = J) = O
(
n−

1
2 +γ( 2

α−
1
2 )
)
.

Take E =
⋃
J∈JEJ ∩ {J = J} where J = {J ⊆ [n] : |J | ≥ n −

√
n} to complete the

proof.

6.3 Application of Theorem 5.1

We now show that Theorem 5.1 can be applied to An to bound sn(An − z) from below
with high probability. The difficulty is connecting the hypothesis on the spectral measure
in Condition C2 to the correlation of truncated random variables in the statement of
Theorem 5.1.

Theorem 6.6. For all z ∈ C, there exists C, r > 0 such that

P
(
sn(An − z) ≤ Cn−r

)
= o(1).

It is worth noting o(1) can be improved to n−ε for some sufficiently small ε > 0. The
proof of Theorem 6.6 will be an application of Theorem 5.1. First we need a bound on
the operator norm, and hence the largest singular value, of An − z.
Lemma 6.7. For every z ∈ C, there exists C > 0 depending on the distribution of the
entries and z such that for any k > 1/α and n sufficiently large,

P(‖Xn − anz‖ ≥ nk) ≤ C

n((k−1)α/2)−2
.

Proof. Since
‖Xn − anz‖ ≤ ‖Xn‖+ an|z| ≤ ‖Xn‖+ Czn

1/α,

it is sufficient to bound P
(
‖Xn‖ ≥ cnk

)
, for some 0 < c < 1 and n sufficiently large. Note

‖Xn‖2 ≤ n2 max
1≤i,j≤n

{|Xij |2}.

Thus, by the union bound,

P
(
‖Xn‖ ≥ cnk

)
= P

(
‖Xn‖2 ≥ c2n2k

)
≤ P

(
max

1≤i,j≤n
{|Xij |2} ≥ c2n2(k−1)

)

≤ P

 ⋃
1≤i,j≤n

{|Xij |2 ≥ c2n2(k−1)}


≤ n2 max

i,j=1,2

{
P
(
|Xij |2 ≥ c2n2(k−1)

)}
≤ n2C

′E|X12|α/2

n2(k−1)α/4
,

where the last inequality follows from Markov’s inequality and (1.5).
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Proof of Theorem 6.6. Clearly Xn satisfies conditions (i) and (ii) of Theorem 5.1, so it
only remains to check condition (iii) before we can apply Theorem 5.1. Let Enij := {|Xij | <
log(n)an, |Xji| < log(n)an}. Since {(Xij , Xji) : 1 ≤ i < j ≤ n} is a collection i.i.d. random
tuples we focus on showing for some n, En12 satisfies the desired conditions. From the
tail bounds on X12, and X21,

P(En12) ≥ 1− C

log(n)αn
.

Var(X12|En12) = 0 if and only if X12 is constant on En12, and hence on any subset of En12.
Thus if Var(X12|En0

12 ) > 0 for some n0, then Var(X12|En12) > 0 for all n ≥ n0. Since X12 is
non-constant, there must be some n sufficiently large such that X12 is non-constant on
En12. Thus Var(X12|En12) > 0 for all n sufficiently large. The same argument follows for
Var(X21|En12).

Now assume for all n sufficiently large,

|Corr (X12|En12, X21|En12) | = 1.

Then there exists θn ∈ [0, 2π) such that on En12,

X12 − E[X12|En12] = eiθn

√
Var(X12|En12)

Var(X21|En12)
[X21 − E[X21|En12]] .

For α < 1, by Lemma A.9
E[|X12|1{|X12|≤t}](

α
1−αL(t)t1−α

) → 1,

as t →∞, for some slowly varying function L. We assumed the atom variables satisfy
Condition C2 (ii), specifically an ∼ cn1/α and thus L(t)→ c′ for some constant c′ > 0 as
t→∞. For α ≥ 1, E[|X12|1{|X12|≤t}] is dominated by tr for any r > 0. Thus on En12

X12 = RnX21 + Cn

where Rn is a sequence of complex numbers and

lim
n→∞

Cn
an

= 0, (6.13)

since
√

Var(X12|En12)
Var(X21|En12) is slowly varying by Lemma A.9. If Rn has a bounded subsequence

Rnk , we shall take the corresponding sequences ank , and nk and for simplicity denote all
three by Rn, an, and n. If not, then we note on En12

X21 = (Rn)−1X12 + C ′n

where (Rn)−1 is bounded, and (6.13) still holds for C ′n. Thus we will assume Rn is
bounded and we take a subsequence which converges to R. Let r > 0 and B be a Borel
subset of the unit sphere in C2 such that θd(∂B) = 0. Note

θd(B)mα([r,∞) = lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ B, ‖(X12, X21)‖ ≥ ran

)
=

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ B, ‖(X12, X21)‖ ≥ ran, En12

)
(6.14)

+ lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ B, ‖(X12, X21)‖ ≥ ran, (En12)c

)
,
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and

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ B, ‖(X12, X21)‖ ≥ ran, (En12)c

)
≤ lim
n→∞

nP((En12)c)

= lim
n→∞

nP(|X12| ≥ log(n)an, or|X21| ≥ log(n)an) (6.15)

≤ lim
n→∞

Cn(log(n)an)−α

= lim
n→∞

C ′n(log(n)n1/α)−α

= 0.

Thus we will consider only

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ B, ‖(X12, X21)‖ ≥ ran, En12

)
. (6.16)

Define the set A as

A = {(z, w) ∈ C2 : z = Rw, |z|2 + |w|2 = 1},

where R is the limit of Rn. Let (z1, z2) ∈ C2 be such that (z1, z2) /∈ A and |z1|2 + |z2|2 = 1.
Let O be a small open neighborhood of (z1, z2) in C2 such that A∩Ō = ∅. We will consider
the limit

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ O, ‖(X12, X21)‖ ≥ ran, En12

)
. (6.17)

Before we deal with this limit note that on En12

(X12, X21)

‖(X12, X21)‖
=

(RX21, X21)

‖(X12, X21)‖
+

((Rn −R)X21, 0)

‖(X12, X21)‖
+

(Cn, 0)

‖(X12, X21)‖
, (6.18)

|‖(RX21, X21)‖ − ‖((Rn −R)X21, 0)‖ − ‖(Cn, 0)‖| ≤ ‖(X12, X21)‖, (6.19)

and

‖(X12, X21)‖ ≤ ‖(RX21, X21)‖+ ‖((Rn −R)X21, 0)‖+ ‖(Cn, 0)‖. (6.20)

We aim to show the unit vector in (6.17) is approaching the bad set A, which will lead to
a contradiction of Condition C2. To this end note by factoring out ‖(RX21, X21)‖ from
(6.19) and (6.20), we get

‖(X12, X21)‖ ≥ ‖(RX21, X21)‖
∣∣∣∣1− ‖((Rn −R)X21, 0)‖+ |Cn|

‖(RX21, X21)‖

∣∣∣∣ ,
and

‖(X12, X21)‖ ≤ ‖(RX21, X21)‖
[
1 +
‖((Rn −R)X21, 0)‖+ |Cn|

‖(RX21, X21)‖

]
.

Since |Cn| = o(an), it follows from (6.20) that if ‖(X12, X21)‖ ≥ ran, then ‖(RX21, X21)‖ ≥
can for some c > 0. It then follows that on {‖(X12, X21)‖ ≥ ran, En12}

‖(X12, X21)‖ ≥ ‖(RX21, X21)‖ [1− o(1)] ,

and

‖(X12, X21)‖ ≤ ‖(RX21, X21)‖ [1 + o(1)] .
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Thus

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ O, ‖(X12, X21)‖ ≥ ran, En12

)
= lim
n→∞

nP

(
(RX21, X21)

‖(RX21, X21)‖
+ o(1) ∈ O, ‖(X12, X21)‖ ≥ ran, En12

)
(6.21)

= 0,

since (RX21,X21)
‖(RX21,X21)‖ + o(1) is a small perturbation of a vector in A which is disjoint from O.

From (6.14), (6.15), and (6.21) we see

lim
n→∞

nP

(
(X12, X21)

‖(X12, X21)‖
∈ O, ‖(X12, X21)‖ ≥ ran

)
= 0.

Thus for arbitrary (z1, z2) ∈ C2, (z1, z2) /∈ supp(θd) and supp(θd) ⊆ A, a contradiction of
Condition C2 (i). Therefore there exists arbitrarily large n such that

|Corr (X12|En12, X21|En12) | < 1.

From the above we see Theorem 5.1 may be applied to An − z, which combining with
Lemma 6.7 completes the proof of Theorem 6.6.

6.4 Uniform integrability

For 0 < δ < 1 we define Kδ = [δ, δ−1]. We aim to show that log(·) is uniformly
integrable in probability with respect to {νA−z}n≥1, i.e. for all ε > 0

lim
δ→0

lim
n→∞

P

(∫
Kc
δ

| log(x)|dνAn−z(x) > ε

)
= 0. (6.22)

From Lemma 6.1 there exists a constant c0 > 0 such that with probability 1

lim sup
n→∞

∫ ∞
1

| log(x)|dνAn−z(x) < c0.

From this, the part of the integral in (6.22) over [δ−1,∞) is not a concern. Thus it suffices
to prove that for every sequence δn converging to 0,

1

n

n−1∑
i=0

1{sn−i≤δn} log s−2
n−i

converges to 0 in probability. By Theorem 6.6 we may, with probability 1− o(1), lower
bound sn−i by cn−r for all i. Take 0 < γ < α/4 to be fixed later. Using the polynomial
lower bound for 0 ≤ i ≤ n1−γ , it follows that it is sufficient to prove that

1

n

n−1∑
i=bn1−γc

1{sn−i≤δn} log s−2
n−i

converges in probability to 0.
We next aim to show there exists an event Fn such that for some δ > 0 and c > 0

P(F cn) ≤ c exp(−nδ),

and
E[s−2

n−i|Fn] ≤ c(n
i

)
2
α+1,
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for bn1−γc ≤ i ≤ n− 1. First to see why this implies convergence in probability to zero,
note

P(sn−i ≤ δn) ≤ P(F cn) + cδ2
n(
n

i
)1+2/α.

It follows there exists a sequence εn = δ
1/( 2

α+1)
n tending to zero such that P(sn−bnεnc ≤ δn)

converges to 0. Hence it is sufficient to prove, given Fn,

1

n

bεnnc∑
i=bn1−γc

log s−2
n−i (6.23)

converges to zero in probability. Using the negative second moment bound on Fn and
the concavity of log we have

E

 1

n

bεnnc∑
i=bn1−γc

1{sn−i≤δn} log s−2
n−i
∣∣Fn
 ≤ 1

n

bεnnc∑
i=bn1−γc

logE[s−2
n−i|Fn]

≤ c1
n

bεnnc∑
i=1

log(
n

i
)

→ 0

where the last sum converges to zero by a Riemann Sum approximation. Thus, by
Markov’s inequality we obtain convergence (given Fn) of (6.23) in probability to zero.

Now we finish with the construction of such an event Fn. Let Bn be the matrix formed
by the first n − bi/2c rows of an(An − z). If s′1 ≥ s′2 ≥ · · · ≥ s′n−bi/2c are the singular
values of Bn, then by Cauchy interlacing

sn−i ≥
s′n−i
an

. (6.24)

By the Tao-Vu negative second moment lemma, Lemma A.4, we have

s′ −2
1 + · · · s′ −2

n−bi/2c = dist−2
1 + · · · dist−2

n−bi/2c (6.25)

where distj is the distance from the j-th row of Bn to the subspace spanned by the other
rows. Using (6.24) and (6.25) we get

i

2
s−2
n−i ≤ a

2
n

n−bi/2c∑
j=i

dist−2
j .

Now let dist′j be the distance from the j-th row of Bn with its j-th entry removed and
the subspace spanned by the other rows minus their j-th entry. Since distj ≥ dist′j we
have

i

2
s−2
n−i ≤ a

2
n

n−bi/2c∑
j=i

dist′ −2
j (6.26)

Let Fn,i be the event that for all 1 ≤ j ≤ n− bi/2c, dist′j ≥ (n− 1)(1−2γ)/α. Since the
span of all but 1 row of Bn is at most n− i/2, we can use Proposition 6.2 to obtain, for
sufficiently large n,

P(F cn,i) ≤ exp(−(n− 1)δ
′
),

for some δ′ > 0 (after a union bound). Let Fn =
⋂n1−γ

i=0 Fn,i, then

P(F cn) ≤ exp(−(n− 1)δ),
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for some δ > 0.
We now aim to show the desired negative second moment bound on Fn. Recall from

Proposition 6.5 there exists an event Ej independent from the rows i 6= j of Bn without
their i-th entry such that P(Ecj ) ≤ n−

1
2 +γ( 2

α−
1
2 ) and for any subspace W with dimension

d < n− n1−γ one has
E[dist(R,W )−2;Ej ] ≤ c(n− d)−2/α

where R is the j-th row of Bn with the j-th entry removed. Thus

E[dist′ −2
j ;Ej ] = O(i−2/α),

for i ≤ j ≤ n− bi/2c.
By taking the lower bound of dist′j ≥ (n− 1)(1−2γ)/α on Ecj ∩ Fn, we get

E[dist′ −2
j ;Fn] ≤ c2

(
i−2/α + n−

1
2 +γ( 2

α−
1
2 )−2(1−2γ)/α

)
.

So for γ, not dependent on i, sufficiently small one has

E[dist′ −2
j ;Fn] ≤ c3i−2/α.

Thus by (6.26)
E[s−2

n−i;Fn] ≤ c3a2
nni
−(1+2/α).

The result then follows from the assumption an ∼ cn1/α.

6.5 Proof of Theorem 1.6

We have shown that almost surely νAn−zIn converges weakly to νz,α,θd and that log(·)
is uniformly integrable in probability with respect to (νAn−zIn)n≥1. Thus by Lemma 1.12,
µAn converges weakly to some deterministic probability measure µα,θd in probability.

A Additional lemmas

A.1 Concentration

Lemma A.1 (McDiarmid’s inequality, Theorem 3.1 in [38]). Let X1, X2, . . . , Xn be in-
dependent random variables taking values in R1, R2, . . . , Rn respectively. Let F :

R1 × · · · × Rn → C be a function with the property that for every 1 ≤ i ≤ n there
exists a ci > 0 such that

|F (x1, x2, . . . , xi, . . . , xn)− F (x1, x2, . . . , x
′
i, . . . , xn)| ≤ ci

for all xj ∈ Rj , x′i ∈ Ri for 1 ≤ j ≤ n. Then for any t > 0,

P(|F (X)− EF (X)| ≥ σt) ≤ C exp(−ct2)

for absolute constants C, c > 0 and σ2 :=
∑n
i=1 c

2
i .

For the following lemma we need a way of breaking up an elliptic random matrix X
into independent pieces. For a matrix M = (mij)

n
i,j=1 we let the k-wedge of M be the

n× n matrix Ck with entries cij = mij if either i = k and j ≥ i or j = k and i ≥ j, with
cij = 0 otherwise. Note

Mn =

n∑
k=1

Ck,

and rank(Ck) ≤ 2 for all 1 ≤ k ≤ n. Recall the total variation norm of a function f : R→ R

is given by
‖f‖TV = sup

∑
k∈Z

|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z with xk+1 ≥ xk.
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Lemma A.2. Let M be a n× n random matrix with independent wedges. Then for any
f : R→ R going to 0 at ±∞ with ‖f‖TV ≤ 1 and every t ≥ 0,

P

(∣∣∣∣∫ fdνM − E
∫
fdνM

∣∣∣∣ ≥ t) ≤ C exp(−cnt2),

for absolute constants C, c > 0.

Proof. If A,B ∈ Matn(C) let FA and FB be the cumulative distribution functions of νA
and νB. By the Lidskii inequality (see Theorem 3.3.16 in [34]) for singular values

‖FA − FB‖∞ ≤
rank(A−B)

n
.

Assume f is smooth. Integrating by parts we get∣∣∣∣∫ fdνA −
∫
fdνB

∣∣∣∣ =

∣∣∣∣∫
R

f ′(t)(FA(t)− FB(t))dt

∣∣∣∣ ≤ rank(A−B)

n
‖f‖TV . (A.1)

Since
∣∣∫ fdνA − ∫ fdνB∣∣ depends on only finitely many points for any f , we can extend

the previous inequality to any function of finite total variation.
Now fix f : R → R going to 0 at ±∞ with ‖f‖TV ≤ 1. Let Ck be the space of all

k-wedges and Ff : C1 × C2 × · · · × Cn be the function defined by

Ff (C1, C2, . . . , Cn) =

∫
fdνA

where A is the matrix with k-wedge Ck. By (A.1)

|Ff (C1, C2, . . . , Ci, . . . , Cn)− Ff (C1, C2, . . . , C
′
i, . . . , Cn)| ≤ 2

n
,

and thus by McDiarmid’s inequality, Lemma A.1, and the definition of Ff ,

P

(∣∣∣∣∫ fdνM − E
∫
fdνM

∣∣∣∣ ≥ t) ≤ C exp(−cnt2).

A.2 Singular value estimates

Lemma A.3 (See [34], Chapter 3). If A and B are n× n complex matrices then

s1(AB) ≤ s1(A)s1(B) and s1(A+B) ≤ s1(A) + s1(B),

max
1≤k≤n

|sk(A+B)− sk(A)| ≤ ‖B‖,

si+j−1(A+B) ≤ si(A) + sj(B)

for 1 ≤ i, j ≤ n and i+ j ≤ n+ 1. In addition,

max
1≤i≤n

|si(A)− si(B)| ≤ s1(A−B).

Lemma A.4 (Tao-Vu Negative Second Moment, [54] Lemma A.4). If A is a full rank n′ × n
complex matrix with rows R1, . . . , Rn′ and R−i := Span{Rj : j 6= i}, then

n′∑
i=1

si(A)−2 =

n′∑
i=1

dist(Ri, R−i)
−2.
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Lemma A.5 (Cauchy interlacing, see [34]). Let A be an n× n complex matrix. If B is an
n′ × n matrix obtained by deleting n− n′ rows from A, then for every 1 ≤ i ≤ n′,

si(A) ≥ si(B) ≥ si+n−n′(A).

Lemma A.6 (See Remark 1 in [24]). Let A be an n×n matrix and let Re(A) = (A+A∗)/2

denote the real part of A. If s1 ≥ s2 ≥ · · · ≥ sn and λ1 ≥ λ2 ≥ · · · ≥ λn denote the
singular values of A and eigenvalues of Re(A) respectively, then

λj ≤ sj (A.2)

for every 1 ≤ j ≤ n.

Lemma A.7 (Weyl’s inequality, [58], see also Lemma B.5 in [13]). For every n×n complex
matrix A with eigenvalues ordered as |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| one has

k∏
i=1

|λi(A)| ≤
k∏
i=1

si(A) and
n∏
i=k

si(A) ≤
n∏
i=k

|λi(A)|

for all 1 ≤ k ≤ n. Moreover for r > 0

n∑
k=1

|λk(A)|r ≤
n∑
k=1

sk(A)r.

Lemma A.8 (Schatten Bound, see proof of Theorem 3.32 in [59]). Let A be an n × n
complex matrix with rows R1, . . . , Rn. Then for every 0 < r ≤ 2,

n∑
i=1

sk(A)r ≤
r∑
i=1

‖Rk‖r.

A.3 Moments of stable distributions

Lemma A.9 (See [13] and [25] Theorem VIII.9.2). Let Z be a positive random variable
such that for every t > 0,

P(Z ≥ t) = L(t)t−α

for some slowly varying function L and some α ∈ (0, 2). Then for every p > α,

lim
t→∞

E[Zp1{Z≤t}]

c(p)L(t)tp−α
→ 1,

where c(p) := α/(p− α).

A.4 Proof of Proposition 4.12

From Proposition 4.3 one has(
a(z, η) b(z, η)

b′(z, η) c(z, η)

)
= −

((
η z

z̄ η

)
+

∞∑
k=1

(
0 y

(1)
k

ȳ
(2)
k 0

)
R̃(U)kk

(
0 y

(2)
k

ȳ
(1)
k 0

))−1

.

We will consider the point process {(y(1)
k , y

(2)
k )}k≥1 in the polar form {(rk, wk)}k≥1 where

{rk}k≥1 is a Poisson point process with intensity measuremα and w1, w2, . . . is a collection
of independent identically θd distributed random variables independent of {rk}k≥1. We

will denote the coordinates of wk by (w
(1)
k , w

(2)
k ). In polar coordinates the recursive

equation becomes(
a(z, η) b(z, η)

b′(z, η) c(z, η)

)
= −

((
η z

z̄ η

)
+

∞∑
k=1

r2
k

(
ck(z, η)|w(1)

k |2 b′k(z, η)w
(1)
k w

(2)
k

bk(z, η)w̄
(1)
k w̄

(2)
k ak(z, η)|w(2)

k |2

))−1

,

(A.3)
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where (
ak(z, η) bk(z, η)

b′k(z, η) ck(z, η)

)
:= R̃(U)kk.

To complete the proof that the matrix in (4.3) satisfies the distributional equation we
need the following lemma, which is essentially Theorem 10.3 in [8].

Lemma A.10. Let {rk}k≥1 be a Poisson point process with intensity measure mα for α ∈
(0, 2) and v1, v2, . . . be a collection of bounded independent and identically ν distributed
random vectors for some probability measure ν. Then

∞∑
k=1

r2
kvk

d
= S, (A.4)

where S is an α
2 -stable random vector with spectral measure Γν , where Γν is the measure

on the unit sphere obtained by the image of the measure Γ(2−α/2) cos(πα/4)
1−α/2 ‖v‖α/2dν(v)

under the map v 7→ v
‖v‖ .

Proof. Let (Xk)k≥1 be a sequence of i.i.d. non-negative random variables such that

P(X1 ≥ u) =
L(u)

uα/2
, (A.5)

for some slowly varying function L, and define the normalizing constants

bn := inf

{
b : P(X ≥ b) ≤ 1

n

}
. (A.6)

From Theorem 10.3 in [8], 1
bn

∑n
k=1Xkvk converges in distribution to S. It also follows

from Proposition 2.3 that
n∑
k=1

δXkvk/bn ⇒
∞∑
k=1

δr2kvk , (A.7)

as n → ∞. It then follows from the almost sure uniform summability of the sequence
(Xk)k≥1 that

1

bn

n∑
k=1

Xkvk ⇒
∞∑
k=1

r2
kvk, (A.8)

as n→∞.

An application of Lemma A.10 to the series in (A.3) gives (4.7).
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