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ABSTRACT 

 

Precipitation is a main abiotic cue for flowering and fruiting in tropical plants. Global warming is likely to alter 

abiotic cues in tropical montane cloud forests such as the Monteverde Cloud Forest in Costa Rica. The plants within 

the Monteverde Cloud Forest rely on cloud cover to provide precipitation through mist during the dry season. With 

rising sea surface temperatures caused by increased concentrations of atmospheric carbon dioxide, cloud bases are 

likely to move up in elevation. This has the potential to increase the number of days without mist during the dry 

season.  It is also possible that plant species have changed their altitude ranges in response to warming. Here, I 

repeat a 1979-81 census of flowering and fruiting plants in the Monteverde Cloud Forest Reserve for a two-week 

period in mid-July.  Sixty-four plant species were noted for flowering or fruiting, and sixteen showed evidence of 

phenological change. Eight plant species were also found that were previously reported only from lower elevations. 

Although a small number of plants had atypical patterns, the majority were flowering or fruiting on time. Still, 

phenology changes of even a few species could impact food webs. Novel communities are likely to form as plants 

move up in altitude in search of historical mist and seasonal conditions.  

 

Keywords: Costa Rica, phenology, cloud forest, climate change, altitude, novel communities 

 

  



Phenological and Altitudinal Changes in Plants of Cloud Forests 2 
 

INTRODUCTION 

Phenology 

Phenology, the timing of flowering, fruiting, and leaf production of plants, is sensitive to 

abiotic cues such as temperature and precipitation (Chapman et al., 1999; Gilman et al., 2010; 

Lenoir et al., 2008; Nadkarni and Wheelwright, 2000; Sherry et al., 2007). Although other biotic 

factors have an influence on phenology, plants that are able to respond to seasonal variability are 

better able to maximize the success of their offspring (Chapman et al., 1999; Hamann, 2004). 

While many temperate regions have plants that rely heavily on seasonal temperature and day 

length cues, tropical regions do not vary widely in their temperature ranges or day length 

throughout the year. Instead, these regions contain plants that are more responsive to variation in 

precipitation (Cleland et al., 2007). This is especially true in regions with one distinct annual wet 

and dry season, such as tropical regions located north or south of the equator (Cleland et al., 

2007). In the tropics, flowers are mostly produced in the late dry season and early wet season 

when dry pollen is more mobile and less likely to encounter moisture (Hamann, 2004; Koptur et 

al., 1988). Fruiting is less seasonal, but many fruits appear during the wet season (Hamann, 

2004; Koptur et al., 1988). By producing offspring before a rainy period, the seedling of the 

parent plant will be more likely to be successful in rooting before the next dry season arrives. 

In ecological communities, species interactions are driven in part by the timing of plant 

reproduction (Gilman et al., 2010). Primary consumers that expect resources such as nectar, 

pollen, seeds, and fruits from plants to arrive at certain times of the year must depend on the 

timing of phenology. Other organisms may then feed on those primary consumers. All trophic 

levels within a food web are dependent, in some way, to the timing of plant phenology. 

Frugivores, which eat primarily fruits, have even been found to be the most dominant group of 
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vertebrates in a majority of tropical forests and thus it is important for these organisms that 

flowering and fruiting of plants occur at anticipated times (Chapman et al., 1999).  

 

Climate Change 

 Phenology. In recent years, global climate change has threatened environments with 

increasing global temperatures and rising concentrations of carbon dioxide stemming from 

anthropogenic burning of fossil fuels (Gilman et al., 2010; IPCC, 2013). These changes have the 

potential to affect species interactions throughout trophic levels (Walther, 2010). Plants in the 

tropics tend to mechanistically respond to seasonal changes in precipitation between dry and wet 

seasons. Increased atmospheric carbon dioxide directly affects sea surface temperatures which 

have increased globally since the beginning of the 20th century (IPCC, 2013). Increased sea 

surface temperatures have an effect on tropical montane cloud forests where plant species rely on 

cloud cover for moisture through mist during the dry season (Foster, 2001; Goldsmith et al., 

2013; Lawton et al., 2001; Pounds et al., 1999; Still et al., 1999) (discussed in further detail in 

‘Cloud Forest’ section below).  

In the tropics, each organism varies in its response to changing climatic patterns and as 

this occurs, interactions among species have the potential to fall out of synchronization (Walther, 

2010). Tropical plant species can respond to climatic changes by gradually altering the timing of 

reproductive activities to coordinate with precipitation patterns (Lenoir et al., 2008). This change 

has been documented in many studies as evidence of the impact of global climate change on 

ecosystems, although a considerable amount of studies focus on temperate as opposed to tropical 

environments (Cleland et al., 2007; Sherry et al., 2007). Monitoring changes in the phenology of 

plants in tropical ecosystems can provide insight as to which plant species are responding to 
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altered climate patterns and is an important indicator as to whether an ecosystem is experiencing 

a shift. 

Altitude Range. Another effect that climate change has been shown to have on plant 

species is the adjustment of altitude ranges (Gilman et al., 2010). Some plant species may 

gradually migrate toward cooler temperatures at higher elevations, while the ranges of other 

species may expand to include higher elevations. Research conducted by using pollen data from 

lake sediment cores illustrates this process as plant species of the time moved downslope away 

from cold temperatures during the Last Glacial Maximum (Colwell et al., 2008). Now, as 

temperatures are exceeding any maximum experienced during the current Holocene period, we 

would expect this trend to reverse (Colwell et al., 2008). While some plant species are able to 

adapt, others are more vulnerable to changing climate (Gilman et al., 2010). This includes those 

that have specialized resource requirements and that are limited in their ability to migrate to 

suitable conditions (Gilman et al., 2010). This process has been well documented in temperate 

regions, but studies of the same process in the tropics are scarce (Colwell et al., 2008; Lenoir et 

al., 2008). It is difficult to monitor changes in altitude ranges of plant species in the tropics due 

to generally dense vegetation as well as a lack of baseline information.  

Models of elevation range shifts by plant species in the tropics have shown ecotones 

moving upslope (Foster, 2001). As plant species shift upward in altitude, populations decrease, 

and elevation ranges tend to be smaller than those for temperate species (Colwell et al., 2008). 

Other anthropogenic activities such as deforestation and fragmentation can inhibit the movement 

of plant species, at which time it is difficult to predict their future (Colwell et al., 2008). 

Available baseline data for tropical plant species’ altitude ranges can be used to observe if the 

altitude ranges of any species have changed. This has implications for the entire ecosystem as the 
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decrease in diversity or abundance of plant species could possibly affect adjacent trophic levels. 

Observing both altitude range shifts and changing phenology of plant species in the tropics can 

be an important indication of whether increased atmospheric carbon dioxide concentrations are 

having, and will continue to have an impact on the community as a whole. 

 

Cloud Forests 

Monteverde is located on the Pacific slope of Costa Rica and is home to a tropical 

montane cloud forest. Cloud forests form as orographic uplift of trade winds creates clouds over 

tropical montane forests (Lawton et al., 2001). These are known as one of the earth’s most 

endangered and rare ecosystems (Goldsmith et al., 2013). They play a large role in capturing 

water for the hydrologic cycle and prevent runoff and erosion in watersheds (Nadkarni et al., 

2000). Tropical montane cloud forests make up less than two percent of the tropical forests of the 

world (Goldsmith et al., 2013) and are lost at a higher rate than tropical forests per year through 

deforestation and timber extraction (Nadkarni et al., 2000).  

During the dry season in Monteverde, which typically lasts from February to May, 

montane cloud forests rely on cloud cover as a main source of moisture through mist (Foster, 

2001; Lawton et al., 2001; Pounds et al., 1999). As carbon dioxide concentrations in the 

atmosphere continue to rise, tropospheric and sea surface temperatures increase (Graham, 1995). 

Consequently, this affects cloud patterns and forces cloud bases hundreds of meters upslope 

during the dry season, known as the lifting-cloud-base hypothesis (Goldsmith et al., 2013; 

Lawton et al., 2001; Pounds et al., 1999; Still et al., 1999). The shifting of cloud bases toward 

higher elevations has been observed within montane forests of Central America (Benning et al., 

2002). Along with decreasing the frequency of mist days during the dry season, increasing 

carbon dioxide concentrations are projected to increase surface temperatures and decrease 
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precipitation (Karmalkar et al., 2011; Pounds et al., 1999). These trends prevail even when the 

effects of El Nino are taken into account (Lawton et al., 2001; Pounds et al., 1999). Decreased 

cloud cover increases water demand for cloud forest plant species and increased temperatures 

could worsen the effect by increasing evapotranspiration (Goldsmith et al., 2013; Still et al., 

1999). Not only are tropical montane cloud forests rare and endangered, they harbor many 

aesthetic endemic species (Still et al., 1999). Without contact with clouds, it is unknown what 

will happen to cloud forests and how the plant community will respond. 

The goal of this case study is to examine typical and atypical phenology as well as range 

shifts in the Monteverde Cloud Forest Reserve.  I specifically address the following questions: 1) 

are observed plant species occurring in the same elevation ranges and 2) are observed plant 

species flowering and fruiting at the same time as observed by Koptur et al. (1988). By using 

baseline data by Koptur et al. (1988), on the timing of fruiting and flowering and altitude ranges 

of understory plants in the Monteverde Cloud Forest Reserve, I attempt to uncover typical and 

atypical phenology as well as range shifts to determine if these findings are related to increased 

temperatures and moisture demand in the Monteverde cloud forest. This case study uses 

observations of flowering and fruiting as well as altitude ranges of plants in the Monteverde 

Cloud Forest to test the theory that increasing atmospheric carbon dioxide concentrations will 

alter the phenology and ranges of understory plant species within cloud forests. 

 

METHODS 

Study Site 
This case study was located on trails within the Monteverde Cloud Forest Reserve on the 

Pacific side of the continental divide in Costa Rica. Monteverde is in the tenth district of the 
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county Canton in the Province of Puntarenas (Nadkarni et al., 2000). This area is situated 

between 1550-1650 m asl and is classified as a Lower Montane Rain Forest life zone with a 

canopy height of 25-35m (Haber et al., 2000). The Monteverde Cloud Forest is found in an 

altitudinal range that experiences cloud cover during most of the year (Nadkarni et al., 2000). 

Clouds allow for increased precipitation through interception of water by the canopy and 

decreased evapotranspiration and solar radiation (Nadkarni et al., 2000).  

Temperatures in Monteverde range from 9-27 degrees Celsius annually with a mean of 

18.5 degrees (Nadkarni et al., 2000). Annual precipitation ranges from 2-3 meters per year 

(Nadkarni et al., 2000). This tends to be an underestimation because of the inability of rain 

gauges to measure cloud precipitation and mist accurately (Nadkarni et al., 2000). The 

Intertropical Convergence Zone gives Monteverde a six month wet season from May to October, 

a three month transition season from November to January, and a three month dry season from 

February to April (Nadkarni et al., 2000). 

 

Observation Scheme 

All plant species observed to be fruiting and flowering were recorded within 1550-1650 

m asl for two weeks in mid-July of 2014. Species were identified using Costa Rican field guides 

when possible (Gargiullo et al, 2008; Haber et al., 2000). The remaining species were identified 

by Costa Rican plant experts William Haber and Willow Zuchowski. The baseline study by 

Koptur et al. (1988) included areas of three different forest types in Monteverde; Lower Montane 

Wet Forest (1320-1460 m asl), Lower Montane Wet Forest/ Rain Forest Transition (1480-1520 

m asl), and Lower Montane Rain Forest (1550-1650 m asl). This case study only examined 

places described as Lower Montane Rain Forest, by Koptur et al. (1988). Observations were 

conducted on the full length of all of the trails inside the reserve with the exception of Sendero El 
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Rîo, Sendero Pantanoso, and Sendero Chomogo north of where it meets Sendero Roble because 

these were closed due to the number of trees that had fallen (Fig 1) (Monteverde Cloud Forest 

Biological Reserve, n.d.). This study represents a non-random, spot sampling method in order to 

abide by the rules set forth by the Cloud Forest Reserve to reduce disturbance by remaining on 

the trails. Plant species located off of the trails, which were easily identifiable from a distance, 

were included. This sampling method may introduce bias towards the similar environments that 

are represented by the presence of trails. 

 

Figure 1. A map of trails located within the Monteverde Cloud Forest Reserve that were used to 

observe flowering and fruiting in understory plants. The same location was used by Koptur et al. 

(1988) allowing a uniform comparison of phenology of plants from 1978-81 to 2014. 

(Monteverde Cloud Forest Reserve, n.d.). 

 

Study Organisms 

Along the trails of the Monteverde Cloud Forest Reserve, trees and shrubs in the 

understory bearing flowers and fruits were observed and recorded. Epiphytes and climbing plants 

were purposefully excluded to repeat methodology conducted by Koptur et al. (1988) who only 
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observed trees, subshrubs, shrubs, and herbs. Plants were located close to trails for ease of 

identification with minimal damage to surrounding understory. Height of plants observed were 

typically below 3 m due to inability to identify plants of taller stature. A few species were 

recorded from the height of a suspension bridge located within the reserve to include a few taller 

tree species. The species that were recorded by Koptur et al. (1988) spanned a larger range and 

individuals were tagged and recorded over a two-year period. This case study differs because it 

only represents plants from similar environments near trails in one elevation zone over a two-

week period. 

 

Phenological Census 

During two weeks, beginning mid-July of 2014, flowers and fruits were observed along 

the trails in the Monteverde Cloud Forest Reserve. Plants were identified to the species level. 

The number of individuals of each species flowering, fruiting or both was also noted. 

Methodology remained consistent with Koptur et al. (1988) with the exception of time spent 

observing individual plants as well as a transect method. I also only looked for fruiting and 

flowering phenology and did not take leaf dropping and other phenology behaviors into 

consideration. 

Data were then compared to phenology patterns of Koptur et al. (1988) to determine 

whether the flowering and fruiting patterns were typical or atypical. Koptur et al. (1988) 

provided a list of the months each species were seen flowering or fruiting from 1978-81 and this 

was used as a baseline. Plants found both flowering and fruiting were considered atypical if 

timing of either fruiting, flowering or both were outside the range defined by Koptur et al. 

(1988). If both flowering and fruiting were observed in a species and the timing of either 
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flowering or fruiting was outside the range provided by Koptur et al. (1988) it was also 

considered atypical.  

Next, I noted whether the timing was early or late. If the months of flowering and fruiting 

provided by Koptur et al. (1988) indicated that phenology observed was one or two months prior 

to or after those I observed, then those were considered to be flowering or fruiting either late or 

early accordingly. If there were more than two months between phenological observations by 

Koptur et al. (1988) and those I recorded, then those species were considered ‘greater than three 

months’ as opposed to defining them as early or late. 

 

Altitude Range Census 

When comparing observed species to the study by Koptur et al. (1988), elevation zone 

where the species was found was also taken into consideration. Koptur et al. (1988) provided a 

description of three life zones over different altitudinal gradients that were repeatedly observed 

over the span of two years. Koptur et al. (1988) noted the life zone where each individual species 

were found. Because I only observed plants in the highest of the three forest types described by 

Koptur et al. (1550-1650 m asl), plants observed previously by Koptur et al. (1988) in only one 

of the two lower forest types were considered to have possibly migrated to higher elevations or 

expanded their altitude range. 

 

RESULTS 

Phenology 

In the two years of study completed by Koptur et al. (1988) 81 species of plants in 

flowering or fruiting stages were recorded from 1550-1650 m asl in the Monteverde Cloud 

Forest Preserve. In the two weeks I conducted this study, 64 species of understory trees and 
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shrubs were recorded flowering or fruiting during mid-July of 2014 (Appendix A). Of these 64 

species, 27 species appeared in the study conducted by Koptur et al. (1988) and the other 37 did 

not appear in Kopter et al. (1988).  

 In comparison with phenology recorded by Koptur et al. (1988) ten species expressed 

typical flowering and fruiting patterns while sixteen were found to be atypical (Fig 2). One 

species, Solanum pertenue (Solanaceae) was unknown to show typical or atypical phenology 

because it was only observed fruiting in the current season and Koptur et al. (1988) did not 

provide information about months of fruiting for this species. There were eight species that were 

observed to be atypically flowering, five species that were observed to be atypically fruiting, and 

three species that were both flowering and fruiting atypically. 
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Figure 2. Patterns of flowering and fruiting in plants recorded in the Monteverde Cloud Forest 

Reserve for two weeks in mid-July. Months of typical flowering and fruiting recorded by Koptur 

et al. (1988) during two years of observation in the same areas were compared with data found of 

plants that were currently flowering and fruiting. Depending on whether or not plants recorded 

were flowering, fruiting, or both, timelines provided by Koptur et al. (1988) were used as a 

baseline to determine if the timing of flowering and fruiting were typical or atypical according to 

timing observed between 1978-81. One species, Solanum pertenue (Solanaceae) could not be 

regarded as typical or atypical because it was only seen fruiting and a timeline for fruiting of this 

species was not given in the study by Koptur et al. (1988). 

 

 Koptur et al. (1988) provided ranges of months that each species of plant recorded could 

be flowering or fruiting in based upon observations. When looking at species with atypical 

phenology in comparison to that found by Koptur et al. (1988), this study found the average 

length of time that flowering or fruiting occurred spanned about 3.5 months. On the other hand, 

species whose phenology seemed to be occurring at typical times had fruiting and flowering 

ranges of an average of 5.8 months. Although there is a statistical difference in the two values 

(W = 39.5, p-value = 0.0496), it is inconclusive whether this is an accurate representation of 

differences in phenology between the groups of plants that suggest typical and atypical patterns. 
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Further examination of plant species that exhibited atypical phenology revealed whether 

early timing, late timing, or timing greater than three months was occurring (Fig 3). Of species 

with atypical flowering timing, one was found to be early, four were found to be late, and three 

were greater than three months away from the range defined by Koptur et al. (1988). Atypical 

fruiting patterns were found to be early in two species, late in one species and greater than three 

months out of their range from 1979-81 in two species. Of those species with atypical flowering 

and fruiting, late patterns were found in two species and patterns greater than three months away 

from the baseline was found in one species. 

 

Figure 3. Distribution of plant species found to be flowering, fruiting or both atypically from 

observations made by Koptur et al. (1988) in the Monteverde Cloud Forest Reserve on the 

Pacific slope in of Costa Rica in Monteverde. Once a species was determined as expressing 

atypical phenology when compared to Koptur et al. (1998) whether that species was exhibiting 

early or late timing was determined. If a plant species was flowering, fruiting, or both greater 

than three months away from the time period provided by Koptur et al. (1998) than it was 

considered as being neither early nor late. 
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Altitude Range Changes 

Koptur et al. (1988) documented the forest type defined by elevation range where each 

plant species recorded was found at. Being in the highest forest type according to that study, 19 

of the species found had been from a similar altitudinal zone during 1978-81. Seven of the 

species recorded had previously only been seen at elevations 1480-1520 m and were observed in 

July of 2014 up into elevations of 1550-1650 m. One plant species, Besleria solanoides 

(Gesneriaceae), had only been seen at elevations 1320-1460 m. This was also a species that 

exhibited atypical flowering and fruiting greater than three months from the timeline of 

phenology in comparison with previous studies. In the study conducted by Koptur et al. (1988) 

B. solanoides was only found to be fruiting between January and February. 

DISCUSSION 

Phenology 

Out of the 64 species observed flowering and fruiting during mid-July of 2014, only 27 

appeared in the study by Koptur et al. (1988). The reasons for this are not entirely clear, but 

could be because Koptur et al. used a transect and tagging method while species observed for 

this study were located near the public trails inside the Monteverde Cloud Forest Reserve in only 

one of the three elevation ranges Koptur et al. (1988) described. While Koptur et al. examined 

the diversity of certain tagged plant species over a wide range of elevations and area beyond 

public access in the reserve, this study concentrated on a more specific region within the study 

area of Koptur et al. (1988). Incorrect identification of some species is another explanation.  

Although recent studies have noticed a trend in flowering of many plant species 

occurring earlier in the year (Gilman et al., 2010), no pattern was discerned about whether the 

plant species observed in this study were exhibiting earlier or later timing of phenology.  Further 

investigation into each specific plant species observed to have exhibited atypical phenology 
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during this study gave more information about the unique phenology of some of these species. 

Although timing of phenology of individual tropical plant species is not well documented, 

Tropicos.org, sponsored by the Missouri Botanical Garden, supplies phenology charts of some of 

the plant species in its collection. It is not documented where or when the data for these charts 

were collected. According to these phenology charts, the timings of flowering in the plant 

species seems to vary widely throughout the year and are consistent with observations of 

flowering during this study in all species except for Pitcairnia brittoniana (Appendix B). This 

may indicate that the variability in timing of flowering and fruiting in these plant species extend 

beyond what was documented by Koptur et al. (1988). Within “A Field Guide to Plants of Costa 

Rica”, it is noted that the species Notopleura uliginosa and Hoffmania congesta, that were 

observed to be flowering atypically during this study compared with findings of Koptur et al., 

actually bloom throughout the year (Garguillo et al., 2008). A more detailed baseline study of 

plant phenology in the Monteverde Cloud Forest may be required to determine whether the plant 

species in this area have shifting flowering and fruiting patterns. 

The impacts of plants flowering and fruiting earlier or later in response to drying 

conditions induced by global climate change can potentially radiate through intraspecific 

competition for pollinators and dispersers as well as adjacent trophic levels (Walther 2010).  

Species in higher trophic levels tend to show a greater reaction to abiotic change than those of 

lower trophic levels (Gilman et al. 2010).  Individual plants within a species tend to flower at 

different times to avoid competition for pollinators. As climate change continues to affect the 

flowering and fruiting of plants, phenologies are likely to become more homogenous (Reich 

1995). This will become a stress for animals as the time range of flowering and fruiting will 
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become shorter and provide limited resources to mutualistic partners that may be active at 

different times (van Schaik et al. 1993).  

 

El Nino 

El Nino is an oceanic and climatic process that tends to create warm, dry conditions for 

tropical areas (Neelin, 2003). El Nino occurs about once every four or five years and is a natural 

weather occurrence. Studies concerned with whether this phenomenon has an effect on plant 

phenology have found mixed results (Asner et al., 2000; Hamann, 2004; Wright et al., 1999). A 

study recording phenology changes in the tropical Philippines in 2004 found that flowering 

occurred later during an El Nino year, yet concluded that plants are dominated by their “internal 

seasonal rhythms” and are only minimally altered by El Nino events (Hamann, 2004). While 

some studies have seen increased productivity during mild El Nino events, others claim that El 

Nino has been shown to contribute to increased CO2 levels and leaf drop in tropical areas (Asner 

et al., 2000; Wright et al., 1999). Although regional variations may result in minute phenology 

changes of tropical plant species, it has not been concluded that El Nino directly affects long-

term patterns of changes in flowering and fruiting patterns of plants (Asner et al., 2000).  

The future of El Nino events in association with climate change is also up for debate. 

Studies tend to agree that precipitation in the tropics will be altered with increased global 

warming, but different models predict both increases and decreases in precipitation for places 

like Costa Rica (Neelin, 2003). Climate change has also been projected to increase the frequency 

and intensity of El Nino events which have the ability to modify large-scale tropical climate 

patterns due to changes in the thermocline of the Pacific equatorial region (Yeh et al., 2009). The 

question of whether tropical plant species are capable of adapting to such changes remains 

unanswered. Differentiating the effects of climate change from El Nino is difficult, although 



Phenological and Altitudinal Changes in Plants of Cloud Forests 17 
 

research suggests that long-term fluctuations due to climate change have more of an impact on 

phenology and altitude ranges of plant species than the short-term presence of El Nino (Asner et 

al., 2000).  

 

Altitude Range Changes 

Just as animals such as birds and reptiles have been documented to be moving up in 

elevation as the climate in Monteverde warms, understory plants may be starting the same 

process but at a much slower rate due to their immobility (Pounds et al. 1999, Lenoir et al. 

2008). Plants are a part of closed communities that cannot migrate long distances and either must 

cope with changing environmental conditions by adapting or go extinct (Gilman et al., 2010). 

One way species may be found moving up in elevation could be by their mutualistic disperser 

also inhabiting slightly higher elevations (Pounds et al. 1999, Lenoir et al. 2008). The one 

species that was found only between 1320-1460 m asl by Koptur et al. and observed between 

1550-1650 m asl during this study, Besleria solanoides, has fleshy fruits that are dispersed by 

birds, bats, and a number of other organisms. Bird populations in Monteverde have been found to 

be migrating up in elevation (Pounds et al., 1999). A study conducted in Costa Rican Lower 

Montane Forest in 1984 observed birds to be eating the fruits of Ossaea micrantha, Neea 

amplifolia, and Witheringia solanaceae (Wheelwright et al., 1984). These three species had also 

only been found by Koptur et al. at elevations lower than 1540 m asl. Piper phytoloaccifolium, 

also only found at elevations lower than 1540 m asl by Koptur et al., is known to be a food for 

herbivorous bats. While bats have wider elevation ranges and ecological niches than birds, new 

species of bats have been appearing at higher elevations than previously recorded in the 

Monteverde Cloud Forest Reserve (LaVal, 2004). Another way plant species could be found at 

higher than normal elevation ranges may be a result of general mortality of plant species in lower 
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reaches of their elevation ranges. As species continue to move to higher and higher ranges in 

mountain ecosystems, decreases in population sizes or even extinctions of such species are 

possible as habitable area decreases as you move up a mountain (Gilman et al., 2010).  

Such shifts in elevation ranges are very scarcely documented within the tropical regions, 

although many such trends have been observed within temperate regions. These temperate region 

studies describe montane plant species as having the most pronounced shifts in response to 

changes in abiotic conditions (Colwell et al. 2008, Lenoir et al. 2008). Elevation ranges tend to 

be smaller for tropical plants than for temperate plants, but human fragmentation through 

deforestation in tropical regions increase the potential for inhibited movement (Colwell et al., 

2008). Although it is uncertain whether true elevation range shifts were observed in the plant 

species of this case study because a large-scale evaluation of each species in the regions was not 

undertaken, the effects of changes in elevation ranges of plant species in tropical montane cloud 

forests can result in the reorganization of species, leading to novel communities. 

 

Novel Communities 

Individuals and species take different approaches to dealing with variation in abiotic 

conditions and novel communities have the potential to form as a result (Lurgi et al. 2012). 

Variation in sensitivity to new climatic conditions plays a large role in determining the onset of 

novel communities as each species attempts to satisfy individual needs (Lurgi et al. 2012). Even 

if climate plays a dominant role in determining phenology in an ecosystem, each plant species 

will not respond in the same way (Walther et al., 2010). The onset of novel communities will 

contribute to new combinations and organizations of species if the distributions of plant species 

are changing (Walther et al., 2010). Present interactions between species that had not occurred 

previously can occur when plants that were spatially separated come to occupy the same area and 
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can also allow new species to become dominant (Lurgi et al. 2012; Walther et al., 2010). This 

has the potential to affect the species evenness of an ecosystem which results in a loss of 

ecosystem resilience (Elmqvist et al., 2003; Walter et al., 2010). Specialists would be more 

affected by this than generalists as niche requirements might not be met (Lurgi et al. 2012). The 

lack of evolutionary history shared by new plant species coming into contact with one another 

has unpredictable consequences, which may not be wholly negative, but are still unpredictable 

(Gilman et al., 2010).  

 

Future Research 

 This particular topic could benefit greatly from more long-term and methodical 

observational research as well as research into true historical range and phenology of these plant 

species. The Monteverde Cloud Forest spans a far greater distance than the trails allotted for 

public use. Creating a transect method of study more similar to the original study design by 

Koptur et al. using tags to monitor many individuals of many species of plants over time in this 

region could uncover more understanding about how the plant community is responding to 

changing climatic conditions. Looking at population dynamics of specialist mutualistic partners 

of observed plant species in higher trophic levels could potentially show more significant results 

as well. More in-depth research and observations concerning cloud cover and mist could 

accompany this.  

 

CONCLUSION 

Observations of phenology changes in understory tree and shrub species in the Tropical 

Cloud Forest in Monteverde illustrate that many plants exhibit similar reproduction timing 
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compared to almost 40 years ago. A number of species showed the possibility of a new 

phenology. Possible elevation range changes were also present among eight plant species. If 

these observations are evidential, this is less likely to be the result of  El Nino events because 

long-term trends from almost 40 years ago indicate that many plants may be shifting their 

patterns of phenology. These are more likely to be the response to warming sea surface 

temperatures and shifting precipitation patterns brought on by global climate change than the 

recurrence of a short-term warming caused by El Nino (Walther, 2010). The data may also 

indicate that tropical plants that are highly sensitive to changes in precipitation may be adapting 

to the gradual moisture stress occurring over long periods of time by altering timing of flowering 

and fruiting or adjusting to new altitudinal ranges. 

 Although there were observations of plants with new phenology patterns and elevation 

range changes, many species showed little to no change in either phenology or elevation change. 

Even though studies have shown that certain species have been disturbed by climatic changes, 

the effects may not be visible until organisms in higher trophic levels show a difference in 

behavior (Voigt et al. 2003). Population analyses of pollinators or dispersers might be better 

indicators of whether small-scale changes are occurring in phenology and elevation range 

changes of plant species that might be too minute to quantify by comparison. Another reason 

why changes might not be observable in these plant species is because high biodiversity has been 

found to increase resilience of species within an ecosystem to environmental change (Elmqvist et 

al. 2003). The adaptive capacities of species that inhabit an ecosystem with great species 

abundance have been shown to have more resilience toward environmental change in both 

terrestrial and aquatic habitats (Elmqvist et al. 2003). Drying of Tropical regions may ultimately 

lead to environments never before seen and the finite effects of this are largely unexplored. 
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