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Local Holographic Superconductors and Hovering Black Holes

Thesis directed by Associate Prof. of Physics Oliver DeWolfe

Understanding the behavior of the high-Tc superconductors is among the most important

open questions in physics where many conventional field theoretical methods fail due to strong

interactions of electrons. Recent advancements in string theory and holographic dualities that map

d+ 1 dimensional quantum field theories in strongly coupled regimes to d+ 2 dimensional weakly

curved classical general relativity proved to be useful for understanding the high-Tc superconduc-

tivity behavior. It is shown that the general properties of so-called “holographic superconductors”

of the field theory side can be extracted by investigating the “hair” of the charged scalar field

around the black hole in the Anti-de Sitter background. In this thesis, I numerically construct the

gravitational duals of local electrically charged defects, modeled by various spherically symmetric

chemical potential profiles in the boundary, when the charged scalar instabilities are presents at

finite temperatures, in order to model local holographic superconductivity behavior. My research

investigates the behavior of the superconducting order parameter and the critical temperature Tc

under the presence of such defects, and compare it with the global holographic superconductors.

Also, my research investigates the physics of hovering black holes, which these types of systems are

known to include.
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Chapter 1

Introduction

1.1 High-Tc Superconductors and Strange Metals

Understanding the physics of high-Tc superconductivity, such as the one that is observed in

cuprates [31], shown in figure (1.1), is one of the many open questions in the theoretical condensed

matter physics. However, because of the strong interactions of electrons and lack of apparent

quasiparticles in these systems, the usual field theoretical methods, such as naive perturbation

theory, often fails. As a result, physicists have employed various and sophisticated techniques,

ranging from numerical simulations to gravity [13, 18, 19, 20], in order to understand the behavior

of these systems.

Figure 1.1: The chemical composition of cuprates: a) The chemical composition of various cuprates,
b) 2-dimensional copper-oxide plane in cuprates which is thought to be where superconductivity
takes place, see [31]. Figure is taken from [4].
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At the time of writing this thesis, the normal phases of these superconductors, known as

strange metals or non-Fermi liquids, are thought to be at the finite density but lack a sharp Fermi

surface by theoretical motivations and experimental evidences [36]. This behavior is in contrast

to the normal phases of BCS superconductors which have a clearly defined Fermi surface. It is

believed that these strange metal phases might occur because of a quantum critical point at the

zero temperature, which impacts the finite temperature physics and making it a critical phase as

well [36]. It is thought that upon this quantum critical phase, superconductivity forms.

After assuming that the normal phase of high-Tc superconductors behaves critically, a natural

question one might ask is what happens when we add a certain defect or disorder to this system.

Obviously, superconductivity would be effected by the presence of such defects, because the defect

would modify the local charge density around it nontrivially. However, since there is no Fermi

surface in these phases, it is reasonable to think that the resulting effects would be widely different

from conventional superconductors. Also, inspiring from the common wisdom in the condensed

matter community regarding strong interactions, one might argue that this behavior might make

the system behave counterintuitively. For instance, it might make superconductivity more robust

in certain regimes and/or for certain types of defects.

Hence, the motivation behind this study is to understand, both quantitatively and qualita-

tively, how such impacts of defects and disorder change the physics of these systems, focusing on

the superconductive behavior and its critical temperature.

1.2 Why String Theory and Gravity?

In order to address the physics of high-Tc superconductors as mentioned in the previous

section, we must have some kind of mathematical framework in our toolbox to understand, and

most importantly calculate, what is going on. In this study, this framework would be provided,

maybe surprisingly, by the general theory of relativity and string theory.

It is a well-established fact that the general theory of relativity works perfectly as a theory of

classical gravitation. However, with the advancement of string theory, especially with the formula-
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tion of the Maldacena conjecture nearly two decades ago [29], we now have a more detailed answer

regarding its dynamics and general relativity is no longer limited to the realm of astrophysics, but

touches nearly every sub-discipline of physics.

One of the unexpected applications that general relativity enjoys can be found in condensed

matter physics via holography. It is now well-established that the physics of certain scale-invariant

field theories in condensed matter physics in d+1 dimensions are extremely similar to the physics of

classical gravity of d+2 dimensional spacetime with a negative cosmological constant [20]. Because

of appearance of one more dimension, this approach named as holography: Gravity is a “hologram”

of the condensed matter system.

This mysterious duality stems from string theory and one of the non-perturbative objects

that it contains: D-branes [32]. However, as we will see in the literature and in this thesis, the

“top-down” nature of such dualities often complicates the physics we try to extract unnecessarily

without providing too much calculable content from the application point of view. As a result,

using general theory of relativity with some additional matter fields is sufficient, provided that the

cosmological constant is negative and gravity lives in one more dimension than the field theory.

This approach often denoted as bottom-up in the holography literature [36], and this is the strategy

we will employ throughout this study.

For our systems of interest, namely superconductors that forms on top of charged defects

at finite temperature, we will discover that there is a natural way to incorporate them to the

gravity side of the duality. We will explicitly construct such gravitational “duals” of condensed

matter systems by solving the relevant Einstein Field Equations coupled to matter fields, such as

electromagnetic and charged scalar fields. Then we will extract the relevant physics using previously

established so-called “Anti-de Sitter/Conformal Field theory (AdS/CFT) dictionary” [36].

Along the way, we will encounter a novel type of black hole in AdS spacetime, known as hov-

ering black holes, first observed in [24] and further developed in [27]. These systems are interesting

for their own reasons,1 but we will try to understand their meaning from the condensed matter

1 For example, for its relation with the weak gravity conjecture, see [9].
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point of view, especially when the superconducting order and the corresponding scalar hair of the

black hole is present in the spacetime. Lastly, we will comment on the possibility of existence of

a hovering black hole whose horizon topology is planar, rather than spherical like those in [24],

and comment on some of its rather extraordinary implications to the field theory side that has no

analog in the weak coupling.



Chapter 2

Holographic Duality

In this chapter, we introduce the physics of holographic duality which is the main component

in our study. We first briefly describe some of the preliminary physics needed to understand the

duality, namely Anti-de Sitter (AdS) spacetime, its black holes that will be used in this thesis,

and conformal field theory (CFT). Then we show how AdS/CFT correspondence comes into being

using string theoretical arguments from D-branes and its inner workings, and discuss its limits,

properties, and appearance of an extra dimension. Below we work in the natural units where

~ = c = 1, Einstein summation convention is assumed and ηµν is taken to be the metric for d + 1

dimensional flat spacetime with the convention ηµν = diag(−1, 1, . . . , 1), for µ, ν = 0, . . . , d. We

will state explicitly if we use it differently from our convention.

2.1 Anti-de Sitter (AdS) Spacetime and Black Holes

Begin with considering Einstein Field Equations with a negative cosmological constant Λ < 0

and without any matter fields in d+ 2 dimensions, (i.e. Tµν = 0, and here µ, ν = 0, . . . , d+ 1),

Rµν −
1

2
Rgµν + Λgµν = 0. (2.1)

It is a straightforward exercise to show that the following metric satisfies this set of equations [1]:

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
. (2.2)

This is the metric for Anti-de Sitter (AdS) spacetime written in the so-called Poincare patch. Here,

L =

√
−d(d+1)

2Λ is the relevant length scale in the AdS spacetime, denoted as AdS radius, which we
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will eventually set to 1. This spacetime is often denoted as AdSd+2.

It is easy to show that AdS spacetime is a maximally symmetric spacetime with the isometry

group SO(d + 1, 2) [1]. Note that this metric is invariant under scaling of coordinates, (xµ, z) →

(λxµ, λz), where λ > 0 is some constant.

Also note that the metric (2.2) blows up as z → 0. We will call this region the asymptotic

boundary. Observe that at the asymptotic boundary the metric takes the form ds2 ∼ ηµνdx
µdxν

asymptotically, which is the metric for d + 1 dimensional flat spacetime and clearly describes a

timelike surface since its normal is spacelike everywhere on this surface. This justifies our usage of

Poincare patch, instead of other patches of AdS or global AdS, since, as we will see, corresponding

condensed matter systems can be thought of as living in the boundary of AdS spacetime and we

want these systems to be in the flat spacetime.

Lastly, observe that we can consider d+ 2 dimensional AdS spacetime, written in the patch

above, as a stack of d + 1 dimensional flat spacetimes curving in along the z direction. Looking

forward to section (2.6), this is an important observation, since it will give a natural interpretation

for the geometrization of the renormalization group in the holographic context.

Another solution to the equation (2.1) is (planar) AdS-Schwarzschild black hole whose metric

in the Poincare patch is given by [1]

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+ d~x2

)
, (2.3)

where f(z) is the so-called emblackening factor

f(z) = 1−
(
z

z+

)d+1

, (2.4)

and z+ is the position of the horizon which satisfies f(z+) = 0. We denoted d spatial coordinate

transverse to z collectively as ~x and we will keep this notation. Temperature of this black hole is

T =
d+ 1

4πz+
, (2.5)

which can easily be found by demanding regularity at the horizon z = z+. Observe that in the limit

of z+ →∞, i.e. in the limit where the metric approaches to the metric (2.2), we would have T → 0,
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so we can interpret the metric (2.2) has zero temperature. These points regarding temperature will

be important later on, which we will derive them in the section (2.7) below.

Additionally, if we couple gravity to the electromagnetic field we would get the equations of

motion for the Einstein-Maxwell Theory (here µ, ν = 0, . . . , d+ 1)

Rµν −
1

2
Rgµν + Λgµν =

8πG

e2

(
F ρ
µ Fνρ −

1

4
gµνF

µνFµν

)
, (2.6)

∇µFµν = 0. (2.7)

Again, it is a trivial pursuit to check that (2.3) is a solution to the equations above, but with a

slightly altered emblackening factor [1]

f(z) = 1 +Q2z2d −Mzd+1, (2.8)

where Q and M are two independent parameters. Additionally, we now have a nontrivial gauge

field

A = µ

(
1−

(
z

z+

)d−1
)
dt. (2.9)

Here z+ is the outer horizon distance, which is the smallest z that satisfies f(z) = 0 and µ is given

by the relation

µ =

√
d

8πG(d− 1)
eQzd−1

+ . (2.10)

This black hole is called (planar) AdS Reissner-Nordström (AdS-RN) black hole.

Again, by demanding regularity at the outer horizon z = z+, we can read the temperature of

this black hole, which equals to

T =
d+ 1

4πz+

(
1− d− 1

d+ 1
Q2z2d

+

)
. (2.11)

An AdS-RN black hole is said to be extremal if the term in the parenthesis above vanishes. In

this case, temperature vanishes, T = 0, but there is still a charged horizon present in the AdS

spacetime, since z+ 6= 0 still. Physically, if a black hole is extremal, it can be shown that all of its

energy is provided by electromagnetic field [36]. We will see how this black hole is related to the

strange metal phases in a surprising fashion.
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2.2 Conformal Field Theory (CFT)

Simply put, a conformally symmetric quantum field theory is called conformal field theory,

often abbreviated as CFT. We can think conformal symmetries as any transformation that pre-

serves the angles, but not necessarily the lengths. More precisely, CFTs are invariant under the

transformations x→ x′ for which

gµν(x)→ g′µν(x′) = e−2ω(x)gµν(x). (2.12)

The group of such transformations is SO(d + 1, 2) for d > 1 [1]. Note that this is the same as the

isometry group of AdS spacetime in the section (2.1) above. This will be a useful observation when

we map the symmetries and representations in two theories to each other in the section (2.7) below.

In this thesis, “heavy” machinery involving CFTs, such as conformal algebra or primary fields,

is neither required nor desired. But in passing, it is useful to list certain properties of CFTs that

will come in handy later on when we are building our model of local holographic superconductivity

in section (3.3). For expanded discussion from the perspective of AdS/CFT correspondence, see

[1].

• First of all, CFTs are scale-invariant theories. This implies that they can’t have a mass

gap, otherwise this scale invariance would be violated. In other words, all excitations are

massless. So truly, degrees of freedoms in CFTs are not like particles but more like a

“soup”.

• The scale invariance of CFTs holds not only at the classical level but at the quantum level

as well. As a result, it is required that beta function of CFTs vanish, β(λ(µ)) = 0 at

every energy scale µ. This will provide us a good playground to make the theory flow to a

nontrivial low-energy regime by adding relevant operators. For instance, we can consider

CFTs at finite density and ask what happens in the low-energy regime of the theory, as we

will do later when we’re considering gravitational duals of strange metals.

• Because of the high number of symmetries, the correlators of CFTs are highly constrained.
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For instance, consider a scalar operator O(x) with the property O(λx) = λ−∆O(x). Such

operators are said to have conformal dimension ∆. Its two-point correlation function is

given by

〈O(x)O(0)〉 =
C

|x|2∆
, (2.13)

where C is some constant. This form is completely fixed by the symmetries of the conformal

group: The two-point correlation function can only depend on the distance between two

points, |x|, by the Lorentz invariance, and this functional form is the only form that is

invariant under scaling of O(x). As we will see, the order parameter for superconductivity

in CFT will be a some operator of this type.

• It is believed that every scale-and Poincare-invariant theory is conformally symmetric [20].

Therefore, we are going to use scale invariance and conformal symmetry interchangeably

throughout this study.

2.3 AdS/CFT Correspondence

Having described what “AdS” and “CFT” mean in the sections (2.1-2.2) above, we can now

focus on the correspondence between these two, which will enable us to solve condensed matter

problems with gravity. Here, we opt to present the most well-known and studied version of the

duality, namely the correspondence between Type IIB closed superstring theory in AdS5 × S5

background with N = 4 SU(N) superconformal Yang-Mills (SYM) theory in 3 + 1 dimensions [29].

For most of the bottom-up purposes, the exact formulation and the matter content of these two

theories hardly matters, besides one of them is AdSd+2 and other one is CFT in d+ 1 dimension,

but it is instructive to know how the argument for holographic duality runs, at least heuristically.

Let gs be the dimensionless string coupling constant and let ls be the length of the string below.

The physics of Dp-branes lies at the heart of AdS/CFT correspondence. These are basically

examples of non-perturbative objects in string theory that are extended in p spatial dimensions

[32]. For our example above, we will consider the case of p = 3 and N of them stacked on top of
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each other, which can be realized in Type IIB superstring theory in flat background.

Now consider the low-energy regime of the system of N Dp-branes. In this regime, there are

two ways to view the physics of Dp-branes, depending on the coupling constants and the number

N . We can determine this dependence as follows. Since there are N Dp-branes and each one of

them contributes g−1
s to the total energy in the leading order, the energy of N Dp-branes goes like

E ∼ N
gs

[20]. At the same time, the strength of gravity goes like g−2
s for tree level [20]. Therefore, by

multiplying these two, we can find the quantity λ = 4πgsN determines how strongly these objects

gravitate: If λ � 1 the gravitation is strong and vice-versa, when λ � 1 it is weak. Here we add

4π because of conventions.

So, considering the limit ls → 0 and N → ∞ for technical purposes, we have two different

behaviors for the low-energy excitations,

• When λ � 1, N Dp-branes gravitate strongly. In this regime, we ought to consider this

system as a black brane (planar black hole) in 9 + 1 dimensions, since Dp-branes collapse

onto each other gravitationally. It is found that the system decouples into two parts, Type

IIB supergravity on AdS5 × S5 background with Type IIB supergravity theory in 9 + 1

dimensional flat space [29]. Here, the radius of AdS and sphere are both equal to L and

they are related to the string length by L = λ1/4ls, which is finite and non-zero in the limits

we are working in, see [20].

• When λ � 1, N Dp-branes do not gravitate and can be thought of as a plane in which

strings can end [32].1 In this case it is found that the low-energy excitations of N Dp-

branes correspond to N = 4 SU(N) superconformal Yang-Mills theory in 3 + 1 dimensions,

by considering strings stretching between the branes, along with the decoupled Type IIB

supergravity theory in 9 + 1 dimensional flat space [29]. Here, it is found that the coupling

constant of SYM theory is related to the string coupling constant by g2
YM = 2πgs [20].

Observe that the latter of the decoupled theories in both of the cases is Type IIB supergravity

1 Because of this boundary condition on open strings “D” in D-branes stands for Dirichlet.
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theory in 9 + 1 dimensional flat space. The degrees of freedom of this theory interpolates between

big and small λ, (i.e. for any λ degrees of freedom remain independent from other theory) so that

the other side of the decoupled theories are mapping into each other [20]. That means Type IIB

supergravity in AdS5 × S5 background and N = 4 SU(N) superconformal Yang-Mills theory in

3 + 1 dimensions are equivalent for N → ∞, with the certain equivalence between their coupling

constants and parameters discussed in [20]. This conjecture is believed to hold for not only low

energy but all the regimes. So we can replace “supergravity” with “superstring theory” above and

drop the requirement for N � 1 [1].

At this point, it is useful to establish some terminology. We will often call AdS spacetime

gravity side or bulk and CFT field theory side or boundary. The latter terminology would be clear

when we consider properties of the correspondence, which we will do after the discussion of the

limits of the duality.

2.4 Limits of AdS/CFT

Often times in physics we have to take some limits to calculate what we want and AdS/CFT

correspondence is no exception. In its full glory, called the strongest version, it is a nontrivial

statement about the dynamics of quantum gravity in certain backgrounds, however, it is often too

hard in this case to do an explicit numerical or analytical calculations for the field theory side using

gravity.

Moreover, we would like to understand strongly coupled quantum field theories (QFTs),

therefore the first thing we need to do is make the field theory side strongly coupled in some sense.

We can take gYM →∞ naively, however, note that this would also make gs � 1 (see section (2.3)),

which is not useful for practical purposes, since it will take us outside of the perturbative regime

of string theory, which we know so little about.

Another way to make the field theory strongly coupled is to take the so-called large-N limit,

that is taking N → ∞ while keeping λ = 4πgsN finite. In this limit, we see the gravity side

reduces to classical string theory since gs → 0, so effectively there is no quantum correction, i.e.
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loop diagrams in string theory (that is Riemann surfaces with holes) are suppressed. This version

of the duality is called the strong form [1].

In this limit, it is discovered that degrees of freedom have been organized with the new

coupling constant λ = 4πgsN in the field theory side by ’t Hooft [22]. So, by taking λ → ∞, we

can get strong coupling in the field theory side at large-N limit. Furthermore, by taking this limit,

we get L � ls, which effectively turns strings to point particles and reduces the gravity side to a

classical, weakly-coupled supergravity, by the relations we established the section (2.3) above. This

version, denoted as the weak form [1], is the limit we are going to use throughout this paper.

Using this logic, we established that some strongly coupled QFT is equivalent to some clas-

sical, weakly curved gravitational theory in one more dimension with a negative cosmological con-

stant, which we can use perturbation theory for, at the cost of making the number of degrees of

freedom, N , large. In practice, there might be some issues regarding this limit, which is in some

sense like a thermodynamic limit. However, so far it is observed that large-N limit is working

unreasonably well for the range of problems both in the duality itself and in the applications to

condensed matter theory [36], and it is a mystery by itself why it is working so well. In any case,

it is a good practice to be aware of this limit when we’re doing physics and we will note when it

might possibly cause trouble.

One last thing we need to illuminate regarding the nature of the duality is how we can apply

the physics of highly symmetric system, such as supersymmetric, conformal Yang-Mills theory

as we have seen above, to the field theories of condensed matter physics, for which the number

of symmetries are often limited. There is a twofold answer for this. First, in practice, these

high number of symmetries would be broken by the effects of the chemical potential and/or other

operators and they won’t survive in the low-energy limit of the theory, which is what we care in

the condensed matter theory.

Second, the correspondence between AdS and CFT is believed to hold for not only very

specific theories like above, but in general [36]. That is, we can find a gravitational AdS dual for

any given CFT and vice versa. In the bottom-up approach, this is usually one’s starting point.
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Hence, this more general understanding of the duality is sometimes called holographic duality or

gauge/gravity duality. We will use all of these terms interchangeably throughout our study.

2.5 Properties of Holographic Duality

Some of the reasons why we are interested in the holographic duality are listed in the sections

above. Here we will expand some of the points we made in more detail.

First and foremost, it is useful to emphasize again that holographic duality is a strong/weak

duality : It maps a weakly coupled, classical gravitational theory to a strongly coupled quantum

field theory [20]. In some sense, all of its power stems from this fact, because it enables us to look

at quantum field theory nonperturbatively by doing perturbative gravitational calculations. Also,

it is a duality between a quantum and a classical theory [20], which helps us understand quantum

effects just by considering a classical theory without considering any complications because of the

quantum nature (but with the possible complications of classical gravity, such as nonlinearity).

Secondly, we have already noted the isometry group of AdS and the global symmetry group of

CFT are the same group, namely SO(d+ 1, 2) for d > 1. This bring us to the fact that holographic

duality is a global/local duality. Local symmetries of the gravity side, i.e. isometries, are mapped to

the global symmetries of the field theory side [1]. Moreover, this equivalence of symmetries is not

limited to the spacetime symmetries, but can be extended to the internal symmetries, such as U(1)

symmetry [36]. That is, a global internal symmetry in the field theory side is mapped to the local

gauge symmetry in the gravity side with the same group. This point will be expanded in section

(2.7) once we establish the relation between the bulk and the boundary more precisely.

Now using the fact that symmetries map to each other, it is easy to map degrees of freedom

of each of the theories as well. All we need to do is dualize the operator O in the field theory

side with a field φ in the gravity side such that they are in the same irreducible representation of

both SO(d+ 1, 2) and the internal symmetry group, which we always take to be U(1) in this thesis.

Therefore, O and φ should have the same tensor indices and their scaling behavior should be the

same as we mentioned in the section (2.2) above (as well as charges if it is charged under internal
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symmetry).

We also need to have an explicit “master” equation for how these two objects relate to each

other mathematically and the GKPW rule provides this [17, 35]. The GKPW rule is motivated

by string theoretical top-down constructions, so we won’t get into details how it comes into being.

Assuming the operator O in the field theory side is dualized by the field φ in the gravity side, it

relates the partition functions of the theories on both sides of the duality formally as∫
φ→J

[dφ]eiS[φ]AdS = 〈ei
∫
dd+1xJ(x)O(x)〉CFT . (2.14)

Before moving on, note that by doing Wick rotation and taking the logarithm of both sides,

this equation reduces to, in the classical limit of AdS spacetime,

F

kBT
= log(ZCFT ) ≈ −SE [φsol]. (2.15)

Here F denotes the free energy of the given ensemble, T is temperature, and kB is the Boltzmann

constant (which we will set to 1 eventually). We related the free energy and the logarithm of the

Euclidean partition function (which we simply denoted as ZCFT ) using statistical mechanics. Also

note that φsol is the solution that satisfy the Euler-Lagrange equation, since at the classical level

the logarithm of the partition function of AdS evaluates to the on-shell value of the action by usual

path integral arguments [36]. What this equation means is that the free energy of the field theory

can be found using the on-shell value of the Euclidean action of AdS spacetime. We will use this

fact in chapter (5) later on when we try to check explicitly which solution dominates in the grand

canonical ensemble.

Continuing on, the GKPW rule (2.14) implies that the asymptotic behavior of the field φ

near the boundary provides a source for the operator O [20]. That is, if we have the following

asymptotic expansion of the field φ in the AdS side at z = 0, assuming δ1 < δ2,

φ(xµ, z) = φ0(xµ)zδ1 + φ1(xµ)zδ2 + . . . , (2.16)

we can take the leading coefficient of the expansion above to be the source for the operator O, i.e

φ0(xµ) = J(xµ), in the field theory side.
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Generally the exponents in the series above would be determined by the types of fields and

masses of them, so indicate this dependency with δ1 = δφ1 (m) [1]. Note that because of the scaling

invariance of AdS spacetime, the solution for the field φ does not scale, i.e. φ→ φ. From this and

by the first term in the expansion (2.16), we immediately see φ0 → λ−δ
φ
1 (m)φ0 as a result. Similarly,

assuming the operator O transform as O → λ−∆O under scaling x → λx, we see its source scales

as J → λ∆−d−1J .

Since we assumed that O and φ are dual to each other and we claimed that φ0(xµ) = J(xµ)

by the GKPW rule (2.14), their scaling behavior must be the same. That is, we need to have

∆− d− 1 = −δφ1 (m) =⇒ ∆ = d+ 1− δφ1 (m). (2.17)

This shows that the conformal dimensions in the field theory side are related to the masses of

the fields in the gravity side in a specific fashion. This relation, along with being in the same

representation of the Poincare group and/or internal group as we noted above, allow us to relate

the operators in the field theory and the fields in AdS spacetime to each other naturally. Some

of these dualizations are summarized in the table below. We will mostly be interested in relating

scalar operators in both sides together.

Operator in CFT Field in AdS Relation

Scalar Operator O∆ Scalar Field φ m2L2 = ∆(∆− d− 1)

U(1) Current Jµ U(1) Gauge Field Aµ m2L2 = 0 and ∆ = 1

Stress-energy Tensor Tµν Metric gµν m2L2 = 0 and ∆ = d+ 1

Table 2.1: The relation between some of the operators/fields in both sides. Here ∆ denotes the
conformal dimensions of the operators in CFT and m denotes the mass of the corresponding fields
in the AdS. For detailed analysis, see [1].

Observe that we also kept the subleading term in the expansion (2.16) above. Coefficient

of this subleading term corresponds to the vacuum expectation value (VEV) of the operator O

up to some multiplicative constant. In other words, we have 〈O(xµ)〉 ∼ φ1(xµ). This relation

immediately follows form the GKPW rule (2.14) by taking logarithmic functional derivative with
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respect to J = φ0 of both sides. We get

〈O〉 = i

(
δS[φ]AdS

δJ

)
φ→J

= i

(
δS[φ]AdS
δφ0

)
φ→φ0zδ1+φ1zδ2+...

. (2.18)

Here, there’s a complication regarding the terms that are linear in φ0, but it turns out they can

always be canceled by adding suitable formally infinite boundary counterterms [20].2 So, the next

term in S[φ]AdS is proportional to φ0φ1 in general, which will give the result 〈O(xµ)〉 ∼ φ1(xµ).

We will use this fact multiple times when we are investigating the charge density on the boundary

or VEV of the order parameter of superconductivity.

2.6 Extra Dimension

Maybe one of the mysterious features of the holographic duality is the appearance of an extra

dimension.3 That is, AdS side has one more dimension than the CFT side. Henceforth, this extra

dimension would be called holographic direction or holographic dimension.

We have already seen in the previous section (2.5) that the fields in AdS relate to the operators

in CFT in a rigid fashion. The asymptotic dynamics of AdS fields near the boundary are the same as

CFT. Intuitively, this suggests that we can think CFT lives in the boundary of the AdS spacetime.

In fact, this is part of a more general result. Holographic direction essentially parameterizes

the energy scale of CFT [20]: As z → 0, we approach to the high-energy/short-wavelength limit

of CFT, colloquially known as ultraviolet (UV) regime. This limit fits our intuition regarding that

CFT lives on the boundary of AdS which we had deduced from the GKPW rule (2.14).

Conversely, as z → ∞ in AdS, we are integrating more and more microscopic degrees of

freedom and looking into the low-energy/long-wavelength limit of CFT, colloquially known as the

infrared (IR) regime and this region is often called deep IR in AdS. This correspondence physically

makes sense if we think about the gravitational redshift [20]. If we look into deep IR from the

boundary where the UV regime of CFT lives, we would see that the perturbations in AdS are

2 As we will see in the next section, this is exactly analogous to the UV divergences in the usual field theory.
3 We ignore the other compact dimension, such as S5 above, that multiplies AdS for a moment. We will return to

this point at the end of this section.
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redshifted relative to the similar perturbations at the boundary because of AdS compression. This

redshifting effect is essentially taking the long-wavelength limit in the field theory.

For a better physical argument for the duality between the energy scale of CFT and the

holographic direction, consider stacking CFTs living in d + 1 dimensional flat spacetime in some

direction transverse to its dimensions, name it z, and effectively creating a spacetime in one more

dimensions.4 However, make it so that as z grows, we continuously integrate out microscopic

degrees of freedom of CFT. In other words, make it so that z parameterizes the energy scale µ of

CFT as z ∼ µ−1. By Poincare symmetry of CFTs in the transverse directions to the z, the metric

of this spacetime takes the following general form:

ds2 = f(z)dz2 + g(z)ηµνdx
µdxν , (2.19)

where f(z), g(z) are some functions to be determined.

Now recall that CFTs are also invariant under scaling of the type xµ → λxµ and the con-

structed metric (2.19) above ought to obey that. Also recall that the beta function of CFTs vanish,

as we noted in section (2.2). So when we scale the distances, not only should we take xµ → λxµ

but z → λz at the same time. This is because of the fact that as we scale the lengths the energy

should be scaled inversely (by dimensional grounds) to preserve β = 0, which results in the scaling

z → λz.

This uniquely restricts the choice of metric to be

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
. (2.20)

But this is no other than the pure AdS metric written in the Poincare patch. Note that this justifies

why we had used the Poincare patch too again. Starting with a QFT in flat dimension and running

this argument gave us AdS in the Poincare patch.

In a passing note, this interpretation justifies our usage of the hologram. In theory, every

energy scale of CFT can be inferred from its UV by taking limits. As we showed, AdS is basically

4 This discussion follows one that is made in [36].
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constructed by combining CFTs at different energy scales by effectively adding one more dimension.

So, forming the analogy that CFT is a 2D diffraction grating and AdS is the resulting 3D image,

we see that we can think AdS as a “hologram” of CFT, hence the name holographic duality [36].

Additionally, in the limit we are working, CFT is complicated, like the actual shape of the diffraction

grating, and AdS is simple, like the resulting image.

Having established the relation between the energy scale and the holographic dimension, we

see that the information about renormalization group of a quantum theory has been geometrized,

and it hasn’t been geometrized by some arbitrary geometry, but in the borders of the general theory

of relativity. This shows that understanding the gravitational dynamics in the holographic direction

would be the same as understanding the renormalization group.

Moreover, by this connection, making CFT flow to a nontrivial IR by adding relevant opera-

tors becomes physically the same as changing the geometry of the deep IR region of AdS spacetime

while keeping spacetime asymptotically AdS. So this, combined with the notion of strong emer-

gence or UV independence [36], we can engineer specific IR fixed points for our purposes by finding

suitable asymptotically AdS spacetime that dualizes the low-energy physics we want to probe.

The idea of the strong emergence basically comes from the Wilsonian idea of renormalization:

Our starting theory for the short-distance physics shouldn’t matter for the long-distance physics.

Therefore, in theory, as long as we can produce the same IR from two completely different high

energy theory it shouldn’t matter what we use for it, the degrees of freedoms in the higher scale

will decouple from lower ones in any case.

So, in the context of holographic duality, we can replace, say strongly coupled Hamiltonian

of electrons in cuprates with some CFT with additional operators (such as the chemical potential

as we will see) so that we have the similar low-energy physics in both cases. Then knowing that

the physics is dualized by gravity, we can acquire information regarding low-energy field theory

nonperturbatively using general relativity. This is the heart of research program of holographic

duality and its application to condensed matter physics, known as Anti-de Sitter/Condensed Matter

Theory (AdS/CMT) correspondence.
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Lastly note that, we should account for the compact dimensions that generally multiply

AdS to completely cover all of extra dimensions. However, their effect on AdS would be just the

addition of extra fields by Kaluza-Klein dimensional reduction [1], which we emphasized that they

don’t matter for our purposes. So they won’t alter the bottom-up discussion we would make in the

next chapters.

2.7 AdS/CFT Dictionary

In the sections (2.5) and (2.6), we have discussed how some of the physical observables in

both sides are equivalent, or dualized, to each other. For example, we have discussed how local

gauge symmetries in AdS spacetime are dual to the global symmetries of the same type in the

corresponding CFT.

Let’s make this relation between symmetries clear by considering a U(1) gauge field in AdS,

Aµ. It has a gauge freedom Aµ → Aµ +∇µχ as usual. Here χ = χ(xµ, z) is a spacetime dependent

parameter. Considering only the asymptotic flat boundary of AdS, this gauge field will couple to

some field Jµ, and this term will transform under gauge transformation as follows [20]:∫
∂
dd+1xAµJ

µ →
∫
∂
dd+1x (Aµ + ∂µχ) Jµ =

∫
∂
dd+1x (AµJ

µ − χ∂µJµ) . (2.21)

In the last step we integrated-by-parts and ignored the boundary terms. Note that this term ought

to be gauge invariant, so we must have ∂µJ
µ = 0. This shows that Jµ conserved at the boundary,

hence there should be a conserved current in CFT. This is an indicator of a global symmetry

in CFT, in this case it is naturally U(1) global symmetry. This relation can be applied to any

gauge symmetry, including diffeomorphisms, showing that the symmetries in both sides are indeed

mapping to each other.

In general the physical observables are mapped to each other in “natural” fashion under

holographic duality, like symmetries do, as we showed above. We won’t go over how each of these

maps are constructed. We refer the reader to the excellent literature for how these rules are derived,

see [1, 11, 20, 30, 36]. These rules are collectively known as AdS/CFT dictionary.
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However, we will quickly go over some of the important features of the dictionary which we

will use later on. First, we see that temperature of a black hole is mapped to temperature of the

dual CFT [20]. This entry in the dictionary basically comes from demanding regularity for the

black hole horizon in AdS. Say we have a metric like in (2.3). Consider the Euclidean version of

this metric with imaginary time τ = it, and Taylor expand near the horizon z = z+ to obtain the

following metric

ds2 =
L2

z2
+

(
|f ′(z+)|(z+ − z)dτ2 +

dz2

|f ′(z+)|(z+ − z)
+ . . .

)
. (2.22)

Now by changing the coordinates (z, τ)→ (ρ, ϕ) where

z = z+ −
z+|f ′(z+)|

4L2
ρ2 τ =

2

|f ′(z+)|
ϕ, (2.23)

the metric near the horizon becomes

ds2 = dρ2 + ρ2dϕ2 + . . . . (2.24)

Clearly, there shouldn’t be any (conical) singularities at the horizon. That means the coordinate

ϕ must be periodic with a period 2π. This gives

ϕ ∼ ϕ+ 2π =⇒ τ ∼ τ +
4π

|f ′(z+)|
. (2.25)

This result implies that the imaginary time is periodic, and note that it is periodic at the asymptotic

boundary of AdS, where CFT lives, as well. It is a standard result of statistical field theory that

the periodicity of imaginary time is given by inverse temperature.5 Hence temperature of the field

theory given by the presence of the black hole horizon is

T =
|f ′(z+)|

4π
, (2.26)

which confirms temperatures (2.5) and (2.11). Interestingly, this temperature is found classically,

but they match the semi-classical result of Hawking temperature of black holes. From this reasoning,

we can say temperature of the black hole is mapped to temperature of the dual CFT. Additionally,

5 We set the Boltzmann constant to 1, kB = 1, for simplicity. We can rescale time coordinate to do that easily.
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observe that for an extremal black hole horizon, the corresponding temperature vanish, and dual

CFT is at zero temperature but still at finite density by having a nonvanishing temporal gauge

field as we show now.

The second important point is that the presence of an electric potential in AdS means that

we have a chemical potential µ in CFT [20]. This is easy to see, as we showed above current Jµ is

dualized by the gauge field Aµ and having a chemical potential in the field theory side is simply

adding the following term to the action of CFT:

Schem = −
∫
∂
dd+1x(µρ) = −

∫
∂
dd+1x(µJ0), (2.27)

where ρ = J0 is the charge density in CFT. By the duality, the coefficient of the leading term of

A0 = −A0 at the boundary should provide the source for J0, which is −µ, so we see the gauge field

in AdS must take the following form on the boundary:

A|∂ = µdt. (2.28)

This indicates there should be a nonvanishing electric potential in AdS and it corresponds to dual

CFT having a finite (charge) density. The physics of the chemical potential is important, because

it allows us to encode the finite density physics.

In fact, we have already encountered the case where the gauge field is present, AdS-RN

black hole. It has temperature and a non-vanishing electric potential, so the corresponding CFT

is at both finite temperature and density. Especially, the IR regime of such CFT is extremely

interesting, it has been found that at low temperatures, µ � T , the deep IR geometry takes the

form AdS2-Schwarzschild black hole times Rd [20].

To show this feature, first consider the extremal case, T = 0 but µ 6= 0. Recall that in

this case we have 1 − d−1
d+1Q

2z2d
+ = 0. This relation, combined with the fact f(z+) = 0 = f ′(z+),

evaluates the emblackening factor (2.8) when z ≈ z+ by Taylor expansion

f(z) = 1 +
d+ 1

d− 1

(
z

z+

)2d

− 2d

d− 1

(
z

z+

)d+1

≈ d(d+ 1)

(
z − z+

z+

)2

. (2.29)
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Then the metric (2.3) near the horizon becomes

ds2 ≈ L2

z2
+

−d(d+ 1)

(
z − z+

z+

)2

dt2 +
dz2

d(d+ 1)
(
z−z+
z+

)2 + d~x2

 (2.30)

=
L2

2

ζ2

(
−dt2 + dζ2

)
+ d~y2. (2.31)

Here we defined the ζ, ~y, and L2 as follows:

ζ =
z2

+

z+ − z
1

d(d+ 1)
; ~y =

L

z+
~x; L2 =

L√
d(d+ 1)

. (2.32)

Similarly when z ≈ z+ the gauge field (2.9) becomes

A ≈ µ(d− 1)
z+ − z
z+

dt =

√
d(d+ 1)

8πG
e
z+ − z
z2

+

dt. (2.33)

Observe that by the metric (2.31), spacetime has the topology AdS2 × Rd near the horizon.

Why does this matter? Consider the scaling behavior in this region. The metric (2.31) is invariant

under the transformation (ζ, t, ~y)→ (λζ, λt, ~y) as can be easily seen. By introducing the parameter

dynamical critical exponent z (not to be confused with the holographic direction), we can write the

scaling of time and spatial coordinates in the following suggestive manner

t→ (λ1/z)zt = kzt ~y → λ1/z~y = k~y as z →∞. (2.34)

Above we also introduced a parameter k = λ1/z.

In the condensed matter literature, such scaling behavior is called local quantum criticality

[36]. It is local in the sense that while the spatial directions do not scale, time scales infinite-fold.

It has been suggested empirically that such a purely temporal critical behavior might be similar to

the physics of strange metals [14, 36].

Moreover, we see that AdS spacetime has produced an emergent scaling behavior in the IR

which is suspected to carry very similar low-energy physics with strange metals, by the quantum

criticality we will discuss in the next chapter [14, 20]. All we needed to do was consider strongly

coupled large-N CFT at finite density and zero temperature, and in the end it didn’t matter which

Hamiltonian we started with. This is precisely the reason why holographic duality gives us a
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gateway to understand the physics of strange metals. From now on, we can just consider AdS-RN

black hole and solve for observables gravitationally and carry it into the field theory side with

AdS/CFT dictionary to make predictions/postdictions for strange metals.

Additionally, in the low temperatures T � µ, it is not hard to show that we produce AdS2-

Schwarzschild black hole times Rd, with the similar reasoning [20]. Also note that as temperature

grows, the horizon of black hole also grows as well, which eventually “eats” this deep IR region.

This is the same physics as the suppression of the scaling behavior at higher temperatures in field

theory. We won’t repeat it here, but it is important to know this for our purposes.

Lastly, we will briefly mention objects for which Wilson loops in the field theory corresponds

in the gravity side, since it will be a useful tool to understand the effects of hovering black holes

to the field theory side. It has been suggested that the Wilson loops are dualized by the string

worldsheet that minimizes its surface area in AdS with its boundary shaped as the dual Wilson

loop [1].

It has been found that if the top of the string worldsheet is connected when it is dipped

down in the AdS, it is an indicator for the confinement and vice versa, when the top becomes

disconnected it indicates deconfinement [36]. As we will see, this fact might give an interesting

result when we consider Wilson loops in disordered chemical potentials.



Chapter 3

Holographic Models of Superconductivity and Charged Defects

In this chapter, we describe the holographic models of superconductivity [18, 19, 23] and

charged defects [9, 24, 27]. We mostly focus on what we call global holographic superconductors,

for which superconductivity is formed on top of the constant and global chemical potential µ. First,

we will describe strange metals and how superconductivity is thought to be formed on top of them.

Then we will describe the general features of holographic superconductors. Lastly, we will review

the physics of charged defects in the holographic context.

3.1 Superconductivity

Before we start, we should note that the aim of the holographic models of superconductors is

to describe non-BCS superconductors effectively. That means most of the time we will ignore the

microscopic physics, such as pairing mechanism, and focus more on macroscopic features. Unlike

BCS superconductors for which electron-phonon interactions mediate the electron pairing, the

pairing mechanism in the high-Tc superconductors is not clear at the time of writing this thesis.

Some suggestion are given in [31].

Having said that, phenomenological theories of superconductors usually start with introduc-

ing an order parameter, Φ, a complex field which has a non-zero vacuum expectation value when

superconductivity forms. This field can in general be a tensor, however to simplify the physics we

will take it to be a scalar. Superconductors with a scalar order parameter is called s-wave super-

conductors. In cuprates, it is established that the superconductivity is a d-wave (i.e. the order
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parameter is rank-2 tensor) [31], but in practice including this would cause too much complication,

especially in the holography context. We will comment on this issue later on.

In theory, the order parameter can be constructed from the microscopic degrees of freedom, if

they are known. In BCS theory, for instance, the order parameter is simply given by the correlation

functions of electron pairs. However, even in the case where the microscopic physics is not known

or not clear, we can still write models with the order parameter. This phenomenological model

of superconductivity is known as Ginzburg-Landau Theory, or its relativistic cousin, Abelian-Higgs

Model, and it is based on the idea that superconductivity transition is a second-order, i.e. continu-

ous, phase transition and happens because of the spontaneous symmetry breaking [36]. In the case

of complex scalar order parameter, the broken group is U(1).

Now we will quickly sketch out how this theory works for the case of complex scalar order

parameter Φ. Basically, the Abelian-Higgs Model states that the (Euclidean) action of the system

can be written as follows [1]:

SE =

∫
dd+1x

(
1

2
| (∂µ − iqAµ) Φ|2 + α(T )|Φ|2 +

1

2
β(T )|Φ|4 +

1

4e2
F 2

)
. (3.1)

As usual Aµ is the gauge field, Fµν = ∂µAν − ∂νAµ is the field strength, and F 2 = FµνF
µν . For

the existence of ground state, we have to take β(T ) > 0.

We can easily see that the vacuum of the system is 〈Φ〉 = 0 when α(T ) > 0. The Abelian-

Higgs Model states that there exists a critical temperature Tc such that α(T ) changes sign, i.e

α(Tc) = 0, and α(T ) < 0 when T < Tc. Note that for temperatures T < Tc, the vacuum of the

system then becomes 〈Φ〉 =
√
−α(T )
β(T ) , which means formation of superconductivity at temperature

below the critical temperature in this picture. Note that this is extremely similar to the Higgs mech-

anism, and this shouldn’t be surprising, since the same physics of spontaneous symmetry breaking

is at work. So, by this wisdom, we can say what we call superconductivity is the spontaneous

symmetry breakdown of the associated symmetry.

Also, considering the mean-field transitions, we find when temperature is sufficiently close to
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the critical temperature T ≈ Tc, the order parameter scales as [36]

〈Φ〉 ∼ (T − Tc)1/2. (3.2)

Of course, considering one-loop corrections to this, we will renormalize the exponent to some value

other than 1/2, depending on the universality class.

For our purposes, it is enough to know such description of superconductivity exists without

going too much into details. However, we should note that we made a hidden assumption regarding

the spatial dependence of the VEV of the order parameter Φ above. We assumed that it doesn’t have

any spatial dependence. However, in general, there might be some variation and it is a reasonable

question to ask what happens in those cases, such as asking how the scaling of 〈Φ〉 changes.

In the Abelian-Higgs model of superconductivity the answer is trivial, any spatial dependence

of the VEV 〈Φ〉 should add additional energy due to positive kinetic energy term contribution.

However, in general, especially for the holographic models of superconductivity, we don’t have clear

cut answer like this because of subtleties associated with AdS spacetime. In the next chapters, we

will answer this question in the context of holographic superconductors.

3.2 Quantum Critical Phases

Now we will describe the physics that is thought to be at work in strange metals in more

detail. There is no point of telling the importance of the thermal phase transitions in physics.

However, a phase transition might also occur because of quantum fluctuations rather than thermal

fluctuations. In this case, we usually vary some parameter, say g, at zero temperature and at

some g = gc the system undergoes a (second-order) phase transitions. Such transition points are

called quantum critical points and these phase transitions are called quantum phase transitions [1].

Here critical denotes to fact that at this point the beta function of the theory vanishes and theory

becomes scale-invariant, like in the thermal phase transitions.

We should note that by the same reasons for the case of the thermal phase transition, in the

quantum phase transitions microscopic details are not important up to universality classes (they
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are “washed” away) and in general there’s no restriction for the strength of the critical point g = gc.

So in general these systems should be considered strongly coupled rather than perturbative.

Moreover, these quantum critical points leave an impact to the finite temperature physics

[20]. We can see that by considering the dynamical scaling exponent z defined in section (2.7).

By dimensional analysis, the correlation length ξ and the characteristic energy ∆ of the phase

transition with dynamic scaling exponent z should be related to each other as follows:

∆ ∼ ξ−z ∼ |g − gc|zν . (3.3)

Above we use the fact that the correlation length is related to parameter g in the fashion ξ ∼

|g − gc|−ν , where ν is the critical exponent that depends on the system.

Now recall the usual interpretation of correlation length in the statistical field theory. It

basically means that for the distances less than ξ, the system is critical. Similarly, we can also say,

the system is critical for energies greater than the characteristic energy by dimensional analysis.

So for the energies T > ∆ ∼ |g − gc|zν ., the system should still be critical. Such regions define a

“wedge” in the phase space as shown in figure (3.1). These phases are then denoted as quantum

critical phases. Lastly, observe that at finite temperatures we would have ∆ ∼ T near the transition,

so they mark the boundaries of the edges of this wedge.

Figure 3.1: The generic phase diagram for quantum critical phase (left) and a sketch of experimen-
tally observed phase diagram of cuprates (right). Figures are taken from [15, 28].

The experimental phase space diagram for cuprates is shown in figure (3.1) as well. Notice

the similarity between the wedge of the quantum critical phase and the region for the strange metal,
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if we take coupling g above to be the doping. This is one of the indication that the quantum critical

phases might at work in the strange metals. It is thought that a quantum critical point hides under

so-called the superconductivity dome in cuprates [15].

Because of the physics quantum critical phases contains, namely strong-coupling, scale-

invariant behavior, and its strong emergence from microscopic dynamics makes it a natural target

for holographic duality. Because, as we saw in section (2.7), the similar physics can be found in the

gravity side of the duality near the horizons of AdS-RN in deep IR. Hence, since the strange metal

phase is believed to be in the subset of quantum critical phases, holographic duality can also be

applied to the physics of strange metals. We should note that the analog of the doping (i.e. what

we vary for quantum phase transition) in strange metals is the chemical potential in the gravity

side. Again, we refer reader to the literature for many applications of this idea [20].

3.3 Holographic Superconductors

One of the distinguishing features of the two figures in (3.1) is the appearance of supercon-

ductivity in the phase diagram of cuprates for latter. Now we know that strange metal phases ≈

AdS-RN black holes, how should we account for this fact?

It turns out that there’s a neat way to do that using holographic duality and again the

symmetries will be our guide for constructing this model. For more details of these models, see

[18, 19, 23]. Consider we have a CFT at finite density and temperature and correspondingly its

gravitational dual AdS-RN black hole. Now assume there’s a scalar order parameter O associated

with the superconductivity and superconductivity results from spontaneous breakdown of global

U(1) symmetry in the field theory side.1

How should one dualize that? From section (2.5), we know that the scalar order parameter O

must be dualized by the scalar field Φ with a particular mass m related to the conformal dimension

ofO. Additionally, we know that they must carry the same charge under U(1), so let it be equal to q.

1 Because of the symmetry is global at the boundary, this would be a superfluid rather than a superconductor.
However, we can promote it to be a superconductor by higgsing the global symmetry. We will keep this loose
terminology which is shamefully common in the holography literature.



29

Therefore, our toy action in AdS must take the following form in order to model superconductivity:

S =

∫
dd+2x

√
−g
[

1

16πG

(
R+

d(d+ 1)

L2

)
− 1

4e2
FµνF

µν − |(∂µ − iqAµ)Φ|2 − V (|Φ|2)

]
. (3.4)

Here, we assumed the scalar field minimally couples to gravity to keep the toy model simple and

V (|Φ|2) is the potential energy for the scalar field Φ. Near the transition temperature, we can ignore

any self-interaction of the scalar field because of the physics of spontaneous symmetry breaking;

higher order terms should be equal to zero. So it is sufficient to take the potential to be

V (|Φ|2) = m2|Φ|2 + . . . . (3.5)

Here dots means higher dimensional terms, which will be important away from the transition

temperature. This choice, together with the action above is known as minimal s-wave holographic

superconductor [36]. Before explaining the dual mechanism related to the superconductivity in the

field theory side, observe that AdS-RN black hole is a solution to this action, together with Φ = 0.

By varying the action (3.4) with respect to Φ and setting δS = 0, we get the following

equation of motion, as one can easily check [16]

(DµDµ −m2)Φ = 0, (3.6)

where Dµ = ∇µ − iqAµ is the covariant derivative both in gauge symmetry and coordinate trans-

formations. This is a linear equation, so consider perturbations of the scalar field on the AdS-RN

black hole background, i.e. take Φ → δΦ, and ignore the gravitational back-reaction of the scalar

field, which is known as probe-limit. Only time component of the gauge field is non-vanishing in

this background, A0 6= 0, as a result the equation of motion for the scalar perturbations δΦ takes

the form [
∇2 −

(
m2 − q2|g00|A2

0

)]
δΦ = 0. (3.7)

This is a Klein-Gordon-like equation in the background of AdS-RN black hole with the effective

mass squared m2
eff = m2 − q2|g00|A2

0. Note that we write the effective mass in this queer fashion

to show explicitly m2
eff ≤ m2, since the second term is only composed by positive quantities.



30

Note that near the asymptotic boundary, g00 ≈ z2

L2 and A0 ≈ µ, so the effective mass is

essentially m2
eff ≈ m2 − µ2z2

L2 ≈ m2. On the other hand, at the (extremal) horizon we have

g00 ≈ z2

L2f(z)
|z→z+ where f(z) near horizon is give by (2.29) and A0(z ≈ z+) is given by (2.33).

Combining these we see the effective mass is constant near the horizon and equals to

m2
eff = m2 − q2e2

8πG
. (3.8)

Now we can describe the dual physics of superconductivity in the bulk theory. Recall that

in the flat spacetime any particle with the effective negative mass squared will lead to tachyonic

instabilities, since the particle has unbounded potential energy in those cases. It turns out there

is an analog of the same instability in AdS spacetime discovered by Breitenlohner and Freedman.

Their result states that the fields that satisfy Breitenlohner-Freedman (BF) bound are stable in

AdS [6, 7]

m2L2 ≤ −(d+ 1)2

4
. (3.9)

So unlike the flat spacetime, AdS can support negative mass squared fields if they are sufficiently

small in their magnitude. Roughly, the reason for this is the additional gravitational compression

provided by AdS spacetime.

So we see in order to Φ to be stable in the asymptotic AdS and properly dualize the order

parameter, the effective mass must satisfy the inequality (3.9). However, the effective mass can vi-

olate the bound near the extremal horizon, where a new AdS2 factor appears at small temperatures

as we showed in the last chapter. So the scalar field would be unstable in deep IR if it satisfies the

inequality

(meffL2)2 ≈ (mL2)2 − q2e2L2
2

8πG
≤ −1

4
. (3.10)

Also recall we had different radius, L2, for this deep IR AdS2. This violation of BF bound in the

deep IR would not lead to inconsistencies in theory because, as we will see, it will drive the theory

to different IR, which will be superconducting.

As a result, we conclude that there’s a window for which the scalar field is stable in UV while
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unstable in IR. That happens when the mass of the scalar field is in the range

−(d+ 1)2

4
≤ (mL)2 ≤ q2e2L2

8πG
− d(d+ 1)

4
, (3.11)

We find this range for extremal case(i.e. T = 0), but the same logic also applies non-extremal case

but it is more cumbersome [20], which is usually investigated with numerics.

When the mass of scalar field enters this range of instability, which is usually achieved by

decreasing the temperature, AdS-RN black hole goes under so-called superradiant instability, which

discharges the black hole [36]. What happens is that the potential energy becomes unbounded from

below in the deep IR similar to tachyonic instability in the flat space, so the vacuum begins to

decay from 〈Φ〉 = 0 configuration by spontaneously producing pairs of positive and negative scalar

particles of Φ. If black hole is positively charged, negative particles are attracted towards black

hole, while positive particles are repulsed. With the introduction of these particles to the black

hole, the charge of the black hole begins to decrease, i.e. black hole discharges.

Eventually, the system must find an equilibrium by completely discharging the black hole

or sufficiently changing the geometry of deep IR so that the spontaneous pair production is no

longer possible. Additionally observe that the repulsed positively charged particles cannot escape

to infinity because of the gravitational pull of AdS toward to the horizon. So, in equilibrium, the

scalar particles should be around the black hole and the vacuum must gain a new VEV which do

not vanish, 〈Φ〉 6= 0. This corresponds to formation of a so-called scalar hair around the black hole

[18].

Remarkably, in asymptotically AdS spacetime well-known no-hair theorems for asymptoti-

cally flat spacetime do not hold and there is a rich structure of phase transitions of black holes. At

the end of such instability on top of AdS-RN black hole, the solution of the action (3.4) found such

that the scalar field can have a non-vanishing amplitude outside of the black hole. Typical solution

would look like in the figure (3.2) below.

We should note that this hair is what encodes the superconductivity of the field theory side

gravitationally. Recall that we can expand the scalar field near the asymptotic boundary in the
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Figure 3.2: The shape of the gauge fields At and scalar hair Φ (denoted as φ in the plot) along the

holographic direction r = L2

z for the massive complex scalar field with mass-squared m2L2 = −2
and charge q = 3 in the standard normalization for T = 0.157. Here every dimensional quantity is
in the units of µ. Dashed line represent the solution without hair at the same temperature. The
figure is taken from [36]

following fashion:2

Φ = Jzδ1 + C 〈O〉 zδ2 + . . . , (3.12)

where C is some constant. In the back-reacted hair solutions, we have the freedom to set J = 0,

but if we do that, we still observe that the VEV 〈O〉 is nonvanishing. In the field theory side, the

order parameter gains a VEV without a presence of any source, which means that the symmetry

of U(1) is broken spontaneously, i.e superconductivity is formed.

We should note that since the geometry of the deep IR is altered below some critical temper-

ature Tc, the field theory flowed to a new IR, where superconductivity is present as we argued. It

2 We will not discuss normalizable vs. non-normalizable solutions here. By our choice in the later chapters, every
solution we consider will be normalizable.



33

is argued that this transition is similar to the formation of superconductivity in the strange metals.

For a comparison of these phenomenons look [36].

Also we swept the fact that cuprates are d-wave superconductors rather than s-wave under

the rug in the discussion above [31]. It turns out that it is possible to model these systems

via holography and get the relevant physics, however the complication associated with it in the

gravitational side (i.e having another spin-2 field besides graviton and making it massive) makes

them hard to deal with compared to the s-wave models [8]. So often times s-wave models give us

general features without too much complication.

Lastly, note that this model of superconductivity is global, in the sense that superconduc-

tivity forms on the boundary has the same VEV at every point on the boundary, as suggested

by the shape in figure (3.2). Related to that, its critical temperature increases linearly with the

chemical potential, Tc ∼ µ. However, in the real-world strange metals, this model might be an

oversimplification and it is easy to imagine that the superconductivity is localized to some region

on boundary because of some impurity of dopants or any other experimental reason. So it might

be a good idea to model these system holographically as well then. We will turn this question in

chapter (5).

3.4 Charged Defects

In the last section of this chapter, we change gears and discuss the models of charged defects

in the holographic context discussed in [9, 24, 27]. Our aim is to summarize important points

and describe how to combine the physics of superconductivity on top of charged defects in strange

metals at finite temperature.

So, start with defining what we mean by a charged defect. An electrically charged defect is a

configuration of the chemical potential at the boundary that is spherically symmetric and dies off

far away from the symmetry axis [24]

µ = µ(r) and lim
r→∞

µ(r) = 0. (3.13)
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Here, and henceforth, r will denote the radial coordinate and ϕ will denote the angular coordinate

in the boundary of AdS.3

From now on we will focus on the case d = 2. That means we are considering 2+1 dimensional

CFT and naturally its dual becomes AdS4. This choice is motivated by the fact that in cuprates

or related materials are essentially quasi-two-dimensional when their superconductivity properties

are considered [31].

Note that we have broken one of the translational symmetries in the system by introducing a

spherically symmetric modulation for the chemical potential. Therefore in AdS dual, we will only

have two Killing vectors ∂t and ∂ϕ corresponding to the time-invariance and cylindrical symmetry.

So the solutions we are looking for are going to be static, axisymmetric asymptotically AdS4 space-

times, possibly with a scalar hair and nonvanishing gauge field. Killing vectors of this configuration

shows that our problem is cohomogenity-2, meaning that the solutions we are looking for is going

to be effectively two dimensional, depending on the holographic and radial directions, z and r.

As we will see explicitly, this complication results in 7 coupled, nonlinear, partial differential

equations we need to consider on a rectangular domain, which poses a great technical challenge to

solve. We will describe the numerical methods we will employ in the chapter (4) below in more

detail.

It is easy to imagine that adding such a chemical potential will in general makes the CFT flow

to different low-energy. In general, this is true, however it is not complete. We should determine

the RG flow the charged defects induces to decide this, which we will do by counting dimensions,

following [24]. In order to do this, observe that the chemical potential should have mass dimension 1,

by the fact that the action is dimensionless and the charge density has mass dimension 3 considering

the coupling (2.27). That means, given the large r behavior for charge defect is

µ(r) ∼ α

rn
, (3.14)

we see the mass dimension of α is 1− n. From this we immediately conclude for n < 1 the defect

3 Note that some authors use r for the holographic direction. For us z is always the holographic direction and r
is always the radial direction in the boundary.
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is relevant, for n = 1 it is marginal and n > 1 it is irrelevant deformation. Note that this matches

our intuition, sufficiently localized defects do not alter the low energy physics too much and can be

investigated perturbatively.

The relevant deformations are going to change the low-energy physics significantly by driving

the field theory to a different IR fixed points. In practice, we discovered that it is hard to construct

these solutions numerically since IR becomes singular and those solutions are numerically unstable.

So in this study, we won’t consider relevant defects.

Therefore, we will mostly consider irrelevant defects for which IR is not significantly altered

and generally numerically stable.4 These defects are numerically easy to work with because imple-

menting the boundary condition at the horizon is a trivial pursuit, for which we will just demand

regularity.

In the literature, the solutions at zero [24] and finite temperature [27] for irrelevant and

marginal defects (without scalar hair) are discovered numerically. These systems are interesting in

various ways. For example, at the zero temperature it is found that the solutions of these systems

include a spherical hovering black hole for which entropy scales the same way for every type of

defect [24] . We postpone our discussion of hovering black hole for later in chapter (6).

At finite temperature, with the presence of the charged defect, it has been found that the

horizon of the black hole is highly deformed and looks like a “mushroom” when it is isometrically

embedded to R2 [27]. The authors therefore called this solution black mushroom and we will

adopt this terminology as well. Moreover, it has been found that these solution might violate

the cosmic censorship in the same study [27]. Later, these results discussed more in depth with

the consideration of the scalar field at the zero temperature and its relation to the weak gravity

conjecture [9].5

As one can sense, in these studies the focus was mostly on the gravitational dynamics of the

system and occasional comments on the corresponding physics at the boundary. In this study, we

4 We might consider marginal defects as well, but we opt not to do so since they don’t give any new physics.
5 This system can actually be considered the zero temperature version of the system we are going to study here.
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will reverse this direction and ask the question what these systems mean from the boundary point

of view, especially what it implies for condensed matter physics of impurities and superconductivity

it forms on top of them at finite temperature, with the occasional comments on the gravitational

dynamics.



Chapter 4

Numerical Methods

In this chapter, we will briefly go over the numerical techniques and tricks we used to solve

the differential equations we encountered during this study. As we noted in the previous chapter,

we will deal with nonlinear, coupled, partial differential equations (PDEs) and occasionally their

linearized versions. We will begin with describing how we discretize our differential equations

to program them into a linear solver, namely pseudo-spectral collocation on a Chebyshev grid.

Then we will describe the Newton-Raphson algorithm and how we implemented it to solve the

nonlinear equations and generalized eigenvalue problems for our linear equations. Lastly, we will

nonrigorously touch upon the Einstein-DeTurck trick which allowed us to do all of this. We refer

reader to [2, 12, 21, 33] for deeper analysis.

4.1 Pseudo-Spectral Collocation on Chebyshev Grid

Before we can program any differential equation into a computer, we need to choose a suitable

grid with Ni points in the ith direction to turn the set of n differential equation equations into

N × N matrix equations, where N = n
∏
iNi. The most common type of such grids are finite

difference grids, where grid points are equidistant. However, as it is somewhat common in the

applied holography literature, we choose our grid to be Chebyshev grid or Chebyshev-Gauss-Lobatto

grid between 0 and 1. It is the set of Ni points in the ith direction [12]

CGi =

{
1

2
− 1

2
cos

(
jπ

Ni

)
: j = 0, 1, . . . , Ni

}
. (4.1)
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Observe that the grid points are not equidistant but collected near the edges because of cosine.

Discretizing the equations on this grid is called pseudo-spectral collocation on Chebyshev grid.

One of the significant advantages of using Chebyshev grids is the fact that if the functions are

smooth and remain finite (which is always true in numerics), we get an exponential convergence

with the increasing grid number Ni [12], which we showed this is the case for our code in the

appendix A for our system of equations. However, these grids also result in poorly-conditioned

dense matrices which should be dealt with somehow. In our study, we discovered that this problem

can be easily controlled by normalizing diagonal entries of resulting N ×N matrix to 1.

It is a trivial exercise to derive the derivative operator on these grids. It is given by [12]

Dii =
∑
i 6=j

1

xi − xj
, (4.2)

Dij =
ai

aj(xi − xj)
where ai =

∏
i 6=j

(xi − xj). (4.3)

and higher order derivatives can be calculated by multiplying this matrix by that derivative’s order,

D(n) ≈ Dn.

Lastly, as we said before, our problems are cohomogenity-2, which means they are effectively

2 dimensional, so as a result we have to use product of two grids, CG1×CG2. But we need to

somehow create a single grid from a given product CG1×CG2 to get a proper matrix equation.

This can be easily implemented by co-lexicographic ordering, which orders the elements of the grids

as follows [2]:


a11 a12 . . .

...
. . .

aN11 aN1N2

→



a11

...

a1N2

a21

...

aN1N2


, (4.4)

where aij represents the value of the function associated with the ith point in the grid CG1 and

the jth point in the grid CG2.
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Additionally, with this choice of ordering, the partial derivative operators are given by the

Kronecker product of the derivative operator in single grid with the identity operator in the other

one. In other words, if Ii denotes the identity operator associated with the grid CGi, the partial

derivative operators that acts on the co-lexicographically ordered grid is given by [2]

∂1 = I1 ⊗D2 and ∂2 = D1 ⊗ I2, (4.5)

where Di represent the derivative operator on the grid CGi and ∂i is the partial derivative in the

combined grid in the direction of CGi. We wrote an automatic routine to implement this ordering

in our code.

4.2 Newton-Raphson Algorithm

Now we will discuss the Newton-Raphson (NR) algorithm in the context of solving differential

equations formally. Assume that we have a set of N partial differential equations in M dimensions

(collectively shown as x) and K functions (collectively shown as f). Then this collection of differ-

ential equations can be written in the following form:1

Fi = Fi[x, f, ∂f ]. (4.6)

Written in this form we can view the set of PDEs as a functionals of f . Then by Taylor expanding

around some set of functions, say f (0), we get formally

Fi = F (0)
i +

(
δFi
δfj

)(0)

δfj + . . . . (4.7)

Here the superscript (0) indicates the functionals are evaluated at the set of functions f (0) and

δfj = fj − f (0)
j . Also note that the functional derivative basically indicates the linearization of

PDEs around the background f (0), which we can do very easily by varying functions in PDEs

around f (0) and set the coefficient of variation to zero.

1 We assumed that the boundary conditions, if there are any, are encoded in the functional Fi.
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Observe that if f (0) is sufficiently close to the solution we are looking for we can solve the

equation

−F (0)
i =

(
δFi
δfj

)(0)

δfj , (4.8)

for δfj and get the solution for F with f = f (0) + δf . This is the main idea behind the NR

algorithm. Of course, when we encode these differential equations into a computer, the analog of

the equation (4.8) becomes a finite matrix equation and it reduces to a linear algebra problem.

Hence we can summarize the NR algorithm as follows [12]:

(1) Start with choosing a suitable seed. In the example above this is the set of functions

f (0) that are sufficiently close to the solution. Often times this is the hardest step in

the NR algorithm, however for our problem we will always have a known solution that is

continuously connected to the solution that we are looking with a parameter. This will

guarantee that we can reach the solution we are looking for by taking little steps in the

parameter space.

(2) Solve the discretized analog of the equation (4.8). In the example above this is equivalent to

solving for δf . This is going to be the most computationally expensive part of the algorithm

since the matrix equation we are solving is poorly-conditioned and dense. However, as we

mentioned, this won’t cause too much problem in the regime we are interested in. In order

to solve this equation, we will use LinearSolve which is built-in function in Mathematica,

which implements usual LU decomposition.

(3) Obtain the improved solution by adding the solution to the discretized analog of the equa-

tion (4.8) to our initial seed. If the desired convergence is reached, stop and take this to

be the solution. Otherwise, make this improved solution to be the new seed and start the

process again until the desired convergence is reached.

Lastly, we can quickly estimate the error of the Newton-Raphson algorithm in each iteration.

Define the set of solution to be f (s) for the functionals F , and let the error functions as ε(n) =
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f (s) − f (n) at the given step where the set f (n) denotes the values of the functions at the nth

iteration. Now observe, with the suppressed indices,

0 = F [f (s)] = F [f (n) + ε(n)] = F [f (n)] + ε(n) δF
δf

+
1

2
(εn)2 δ

2F
δf2

+ . . .

=⇒ −F [f (n)]

(
δF
δf

)−1

= ε(n) +
1

2
(ε(n))2 δ

2F
δf2

(
δF
δf

)−1

=⇒ ε(n+1) = f (s) − f (n+1) = f (s) −

(
f (n) −F [f (n)]

(
δF
δf

)−1
)

= −1

2
(ε(n))2 δ

2F
δf2

(
δF
δf

)−1

=⇒ ε(n+1) ∼ (ε(n))2.

This shows that the NR algorithm is quadratically convergent. During our numerical calculations,

this was a useful check whether or not the NR algorithm is working properly. We saw that it was

following this pattern indeed.

4.3 Generalized Eigenvalue Problems

Some of the differential equations we encountered during this study were linear and they

contained some parameter λ which we would like to solve for. In these cases our differential

equations take the following form:

(
D0 + λD1 + λ2D2

)
f = 0. (4.9)

Like above, f denotes the set of functions, and Di for i = 1, 2, 3 are some operators that act on this

set of functions. Note that we can put this equation into the following form:
D1 D0

1 0

− λ
−D2 0

0 1



λf
f

 = 0. (4.10)

After discretizing functions and operators Di properly, we see that this equation becomes a gen-

eralized eigenvalue problem in λ, which is easy to solve using built-in EigenSystem function in

Mathematica. We explicitly checked that the upper half of the elements are proportional to the

lower half and see that was indeed the case.
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Lastly, we should note that for both δF
δf and operators Di, we write them in the following

fashion in the expansion of the derivative operators:

δF
δf

or Di =
∑
i n

c
(n)
i ∂ni , (4.11)

and only calculated the coefficients c
(n)
i . Here ∂i are the differential operator for partial derivatives

on the combined grid we introduced in the previous section. The reason why we do that was to

save the memory.

4.4 Einstein-DeTurck Trick

So far, we haven’t discussed the existence of the solutions that we are looking for the case of

nonlinear coupled PDEs. One can imagine that they might not even exist, and all the things might

be for naught. However, this turns out not to be the case if we implement the Einstein-DeTurck

trick that will render our problem into a well-posed boundary value problem [21].

As we will see in the next chapter, we are going to get a boundary value problem for a system

of PDEs in two dimension. However, the PDEs we get would be a mix of elliptic-hyperbolic PDEs,

since we are going to look for static solutions of general relativity [12]. So, the boundary value

problem, as itself, is not well-defined.

However, we can render the system to be an elliptic set of equations and obtain a well-posed

boundary value problem. This is done with choosing a reference metric ḡ which has the same

boundary conditions as the metric g we are looking for and shifting the Einstein tensor in the

equations of motion [21]

Gµν → G′µν = Gµν −∇(µξν), for ξµ = gνλ
(
Γµνλ(g)− Γµνλ(ḡ)

)
, (4.12)

where Γµνλ(g) denotes the Levi-Civita connection for the metric g as usual.

It has been proven [21] that this renders a system of equations into elliptic as we desired, so

we get a well-posed boundary value problem. We won’t repeat the proof here, since it is out of the

scope of this thesis, but we should note that it achieves that by essentially adding a kinetic term

to non-physical degrees of freedom of the metric and making the gauge fixing dynamical.
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Then, it is clear that the solution exists for the metric and matter fields using the equations

with the shifted G′µν . In order to get a solution for the original equations with unshifted Gµν ,

however, we must guarantee that ξ = 0 at the end. But how can we do that? Namely how can we

make sure that we don’t have any solutions with ξ 6= 0? These type of solutions are called Ricci

solitons, which is shown to not exist for gravity without matter fields [21]. On the other hand, for

our case with matter fields, there are no proofs that guarantee that such solutions do not exist.

However, since we are considering elliptic boundary value problems, we know that the solu-

tions we find must be locally unique [12], which means that our desired solutions with ξ = 0 cannot

be arbitrarily close to the Ricci solitons. Therefore, in numerical practice, by carefully checking the

condition Max(ξ) = 0, it is possible to obtain the solutions of the original equations.2 However, we

find that even though ξ becomes large, the solutions we find remain robust, which shows that it

doesn’t create a huge problem in terms of convergence.

2 For its descent with increasing grid size, look appendix A.



Chapter 5

Local Holographic Superconductors

In this chapter, we explain our construction of local versions of holographic superconductors

at finite temperature along with the physics they contain both from boundary and bulk point of

views. First, we consider linear perturbations of the charged massive scalar field on top of the

charged defect solutions at finite temperatures. We start by investigating the effective mass of the

scalar field, as well as how it results in instabilities with its zero modes numerically. We show that

zero modes of the linear perturbations of the scalar field exist for low enough temperatures or high

enough charges. We see that these modes mark the boundary between stable and unstable regimes

by explicitly showing the progression of the lowest-lying zero mode from the lower half frequency

plane to the upper half frequency plane.

After we solved for linear perturbations, we construct the fully back-reacted solution which

is the end point of the scalar instability we mentioned above. We call this solution hairy black

mushroom, since it basically develops a hair on top of the black mushroom solution in [27]. We

will show that superconductivity on the boundary is localized around the charged defect as our

intuition suggests. We explain the similarities and differences between the previously constructed

global holographic superconductors and find that there are novel effects that have no analog in

the global case, such as in what regime superconductivity is more robust and how the critical

temperature changes with increasing amplitude of the defect.

Moreover, we will check the scaling behavior and confirm that the transition to local holo-

graphic superconductivity is a mean-field type, like in the global case, but with different coefficients
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on each point on the boundary. Lastly we will briefly look at the free energy and explicitly check

that the superconducting phase we constructed is dominant in the grand canonical ensemble against

the normal phase.

5.1 Setup

Our setup will be like in chapter (3), but with a slight difference in the normalization of fields

to make the numerics simpler. Our action is given by

S =
1

16πG

∫
d4x
√
−g
[
R+

6

L2
− FµνFµν − 4 |∂µΦ− iqAµΦ|2 − 4m2 |Φ|2

]
, (5.1)

here L is the AdS radius, the field Φ is a massive charged complex scalar field with a mass m and

charge q. The Maxwell field satisfies F = dA as usual. Henceforth, we will set L = 1 without

loss of generality, which we can restore by dimensional analysis later on if we want.1 The resulting

equations of motion are

Gµν = Rµν + 3gµν = 2(TEMµν + TΦ
µν), (5.2)

∇µFµν = JΦ
ν , (5.3)

DµDµΦ = 0, (5.4)

where the stress-energy tensors TEMµν , TΦ
µν for the electromagnetic and the scalar fields, the electro-

magnetic current JΦ
µ , and the covariant derivative (both for coordinate and U(1) gauge transfor-

mations) Dµ are given by

TEMµν = F ρ
µ Fνρ −

1

4
gµνF

σλFσλ (5.5)

TΦ
µν = (DµΦ)(DνΦ)† + (DµΦ)†(DνΦ) + gµνm

2 |Φ|2 , (5.6)

JΦ
µ = iq

(
(DµΦ)Φ† − (DµΦ)†Φ

)
, (5.7)

Dµ = ∇µ − iqAµ. (5.8)

1 Also, by our choice of gauge couplings, all of the formulas will be independent of Newton’s Constant. So we will
not set it to 1.
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where ∇ is the covariant derivative just for the coordinate transformation. Observe that we can

make a global U(1) transformation on the scalar field Φ → eiχΦ, for constant χ, and the field

equation would remain invariant. So, without loss of generality, we can take the field Φ to be real,

Φ ∈ R, which we will do below. Also, this means the sign of Φ does not matter as well, we can

always change the sign by taking χ = π above.

Since we are seeking solutions that asymptote to AdS4 and the asymptotic boundary of AdS

is timelike [1], we are free to specify the metric and the gauge field on the boundary. We choose

them to be

ds2|∂ = −dt2 + dr2 + r2dϕ2, (5.9)

A|∂ = µ(r)dt = αζ(r)dt, (5.10)

in order to have a radially decreasing chemical potential on the flat boundary, as we mentioned

before. Here (r, ϕ) are the usual polar coordinates on the flat boundary. We have taken the

dimensional amplitude α out of the chemical potential µ(r) and we call the remaining part ζ(r)

the defect profile, which is just a chemical potential for which the amplitude is normalized to unity.

Some of the examples of (irrelevant) profiles we used in this thesis are shown in figure (5.1).

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

r

ζ
(r
)

1

1+r2 4

1

1+r2 8

exp-r2

Figure 5.1: Profiles we focused on in this thesis. Note that they are spherically symmetric and
irrelevantly dies off as r →∞ in the sense of chapter (3).
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For numerical simplicity, rather than working in the coordinates (t, z, r, φ), we make the

following change of coordinates

z =
1− y
z+

, r =
x
√

2− x2

1− x2
. (5.11)

Here, z+ would be the distance of the horizon given in the AdS-Schwarzschild metric (2.3) which

we will use as the reference metric in the Einstein-DeTurck trick (4.4).

Note that, the horizon is mapped to y = 0 while the asymptotic boundary is mapped to y = 1

in these coordinates. On the other hand, the radial coordinates mapped between 0 and 1: The

symmetry axis of spacetime is mapped to x = 0 and the asymptotic radial boundary is mapped to

x = 1. Basically, this squishes the conformal plane determined by z and r to a rectangular region

[0, 1]× [0, 1], for which we will put the discretized grid on, defined in chapter (4).

We write (2.3) again, but in the coordinates (5.11) for reference,

ds2 =
1

(1− y)2

(
−z2

+g(y)dt2 +
dy2

g(y)
+

4z2
+dr2

(2− x2)(1− x2)4
+
z2

+x
2(2− x2)

(1− x2)2
dϕ2

)
(5.12)

where g(y) = y3−3y2 +3y is the emblackening factor in these coordinates. Observe that it vanishes

for y = 0, where the horizon resides as it should be.

5.1.1 Black Mushroom

We will first solve for the case without a scalar field to investigate the scalar perturbation on

top of the charged defect. In [27], the authors have solved the equations of motion numerically for

the static case with a vanishing scalar field and nontrivial radially decreasing chemical potential

for the following metric and gauge field ansatz already,

ds2 =
1

(1− y)2

(
− z2

+g(y)Q1(x, y)dt2 +
Q2(x, y)

g(y)

[
dy +

yQ3(x, y)

(1− x2)2
dx

]2

(5.13)

+
4z2

+Q4(x, y)

(2− x2)(1− x2)4
dx2 +

z2
+x

2(2− x2)Q5(x, y)

(1− x2)2
dφ2

)
,

A = yQ6(x, y)dt. (5.14)
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Here Qi(x, y) for i = 1, . . . , 6 are the metric functions that have been solved numerically. The

sample plots of these functions for the profile ζ(r) = (1 + r2)−4 we produced with our code again

are shown in figure (5.2) and its convergence analysis is given in the appendix A.

Note that temperature of this solution is given by

T =
3z+

4π
(5.15)

as we can easily find by demanding regularity on the horizon as we mentioned before, which is in

fact assumed as boundary conditions. For more details regarding the numerical implementation,

boundary conditions, and its physics, see [27]. However, the authors there didn’t give induced

charge density at finite temperature, so we are going to spend some time on them because we will

need them when we are describing our system of interest, namely local holographic superconductors,

later on.

The charge densities induced on the boundary by such electrically charged defect profiles are

shown in figure (5.3), which we find them using AdS/CFT dictionary. As we can see, such chemical

potentials localize charges around the origin. But since the defect collects too much charge it

screens itself and results in oscillating behavior. This is typical to the behavior of impurities in the

plasma or metal mediums and in some sense similar to Friedel oscillations in Fermi liquids. For

holographic investigation of this effect in the linear response, see [5].

As can be seen from the figures, as we increase the chemical potential, it induces more charge,

which is somewhat expected. Moreover, as temperature increases, there is more induced charge.

Lastly, by making the defect more local, we make the charge density at the boundary more local.

Again, these fit our intuition as well.

We are going to use this finite temperature solution (5.13) as our background to investigate

the behavior of the scalar field, and later on, using zero modes of the scalar field perturbations as

a seed for the Newton-Raphson algorithm to find the hairy solution. Since we are going to use the

metric (5.13) as our seed, temperature would still be given by (5.15) for our new solutions.
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Figure 5.2: The functions Qi, i = 1, . . . , 6 for T = 0.119 and α = 8 in the conformal plane are
shown above. As we can see they are nontrivial.
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Figure 5.3: Sample charge densities ρ induced by the defect profile ζ(r) = (1 + r2)−4 for T =
0.119, α = 3 (upper-left), T = 0.119, α = 8 (upper-right), and T = 0.239, α = 3 (lower-left). Lastly
we have the charge density induced by the defect for ζ(r) = (1 + r2)−8 for T = 0.119, α = 3
(lower-right).

5.2 Scalar Field Perturbations

Now we will consider the linear perturbations of the scalar field in the background (5.13) of the

type Φ = Φ(x, y)e−iωt at finite temperature. We will assume that there is no angular dependence

on the scalar field Φ, which will result in spherically symmetric superconductivity at the end. Also

we will consider the case where the perturbations of the scalar field have e−iωt dependence in time

since the solution is static (i.e. translationally symmetric in time so it is sufficient to consider only

one of its Fourier components in its decomposition which we can add them later on if we want to

add the time dependence). Below, we will first specialize in the case of ω = 0, which is known as

the zero mode and in the next subsection we will investigate its progression in the complex ω plane.

Henceforth, we will work with a scalar field with a mass m2 = −2, corresponding to the scalar
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order parameter with the conformal dimension ∆ = 2 on the boundary by (2.1) and the solutions

we will choose are going to be normalizable [1]. These choices are motivated by the fact that

exponents of the asymptotic expansion of the scalar field near the boundary will be non-negative

integers with such choices, which will improve the convergence and numerics. In theory, any other

choice of m and/or non-normalizablility shouldn’t change the results below.

5.2.1 Zero Modes

Note that for the zero modes of the scalar field perturbations of the type Φ = Φ(x, y), the

scalar equation of motion (5.4) simplifies to

∇2Φ = (m2 + q2A2)Φ, (5.16)

where ∇2 is the Laplacian in the black mushroom background (5.13). Observe that the right hand

side defines the effective mass of the scalar field in the background (5.13). This is given explicitly

as

m2
eff (z, r) = m2 + q2A2(z, r) = m2 − q2(y − 1)2y2Q6(x, y)

g(y)z2
+Q1(x, y)

. (5.17)

Observe that it is always the case that m2
eff ≤ m2, as we can easily see from the fact that every

factor in the second term is positive. Also, observe that the effective mass depends on the radial

direction in the conformal plane of AdS through the dependence of the coordinate x, unlike the

AdS-RN black hole background which has no such dependence, look at the figure (5.4). This would

be the main reason why we will have localized behavior for the instabilities and scalar hair below.

We want to find a solution of (5.16) for the scalar field Φ at the given temperature T . By

noting that the equation (5.16) is just a quadratic eigenvalue problem in q, we can solve it using

the methods described in chapter (4) to find the smallest q = qmin such that a nontrivial solution of

(5.16) exists. In order to do that we demand the following boundary condition for the perturbations,

∂xΦ(0, y) = 0, Φ(1, y) = 0, Φ(x, y ≈ 1) = O(y3), (5.18)

and we demand regularity on the horizon by imposing the series expansion of the equation of motion
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Figure 5.4: The (numerical) effective mass for the defect profile ζ(r) = (1 + r2)−4 and the global
(AdS-RN) case for T = 0.119 and α = 8 in the conformal plane (left). The (closed-form) effective
mass in the AdS-RN background at the same temperature with the uniform chemical potential
µ = 8 (right). In both of the graphs, the charge of the scalar field is normalized to unity, q = 1.
As one can see, there is no radial dependence on the second plot and the position of the horizon is
reversed. In theory, the shape is similar for other profiles as well.

at y = 0 which results in a smooth metric and fields at the horizon. Doing this was somewhat long

so we didn’t report it here.

Note that these choices for the boundary conditions are well-motivated. For the first condi-

tion, we want the scalar field to be smooth on the symmetry axis without any “kinks”. For the

second condition, we want no scalar perturbation away from the symmetry axis, since there is no

charge there and fluctuations should die away in that region. For the third condition, we want

the VEV of the operator that the scalar field Φ dualizes to be nonzero without a source to model

superconductivity, so we demand that the leading term in the asymptotic expansion for the field Φ

vanishes by AdS/CFT dictionary. Lastly, we demand regularity on the black hole horizon in order

not to change the temperature of the system.

We solved the equation (5.16) with the boundary conditions (5.18) for the scalar field Φ at

various temperatures T , strengths α and types of the charged defects ζ(r). From this, we deduce the

dependence of the minimum charge q = qmin to nontrivial zero mode to appear at that particular

temperature and strength of the defect. Plots for these are shown below in figure (5.5).

As one can see, the minimum charge necessary for the zero mode to appear decreases as the



53

� � � � � � � �

�

�

�

�

�

��

��

α

��
��

●

●

●

●

●

■

■

■

■

■

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

● T=0.0239

■ T=0.0716

◆ T=0.119

▲ T=0.167

▼ T=0.215

� � � � �
�

�

�

�

��

��

��

α

�
�
��

Figure 5.5: Dependence of qmin to the strength of the defect for the profile ζ(r) = (1 + r2)−4 at
temperature T = 0.119 with an inverse square root fit for sufficiently large α (left) and dependence
of curves to different temperatures for the same defect profile (right). Note that as temperature
increases the minimum charge also increases, because it becomes harder to violate the BF-like
bound in such cases.

strength of the defect increases. This result makes perfect sense when we consider the effective

mass (5.17) and the instability bound. As we increase the defect strength, the function Q6(x, y)

increases, which makes the bound being more easily violated. Although it is hard to see in figure

(5.5), the minimum charge qmin actually slowly descends to zero, which again makes sense by this

reasoning as well.

Also, we should note that changing the defect profile doesn’t alter the shape of the plot

significantly, see figure (5.6). That includes the AdS-RN solution, i.e. where the chemical potential

is constant on the boundary. We can see it by using dimensional analysis. In the AdS-RN solution,

we can relate the critical temperature and the magnitude of the chemical potential as follows. First

note that the critical temperature should be related to the charge density as Tc ∼ ρ1/2, using the

residual conformal invariance in these solutions [18]. Then recalling that ρ ∼ µe2 [20] in the regime

(that is µ � T ) we are interested in, we see the relation at constant critical temperature is just

e ∼ µ−1/2, which is essentially what we see in figure (5.5). So we can simply explain the effect we

saw in figure (5.5) by noting that the scale related to the defect α becomes larger than the thermal

scales, which effectively makes the defect look like a global chemical potential.

Because of this reasoning, we fit our result to α−1/2 for large α. As we can see from figure
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Figure 5.6: Here we plot qmin for two profiles (1 + r2)n at temperature T = 0.119, where n = 4
for the orange curve and n = 8 for the blue curve. As we can see, the only effect of making the
defect more localized is to increase the charge required for the field to condense, otherwise the
shape remains similar.

(5.5), the fit was successful and shows that qmin ≈ 5.94α−1/2 for α � T , which then makes us

conclude that this system is similar to AdS-RN for sufficiently high enough chemical potentials and

fits our intuition. Similar reasoning shows that the charge necessary for a zero mode to appear

increases as temperature increases, since now it is harder to violate the instability bound. We

will interpolate the dependence of the critical temperature to the strength of the defect for a fixed

charge from these results later on after we build the back-reacted solution, since it deserves its own

section.

Sample shapes for the the zero mode perturbations are given in figure (5.7). Observe that

it indeed shows a local behavior which is somewhat expected by the spherically symmetrically

modulated chemical potential and charge density above. However, what is not expected is the

behavior in the holographic direction z when α is small. As we can see the perturbations are
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maximum in some mid-scale in z, rather than near the horizon like in the AdS-RN, for which an

example is given in figure (3.2), if α is sufficiently small. However, when it gets big we see that the

shape becomes similar to figure (3.2), only with somewhat expected radial modulation.

Figure 5.7: The shape of the scalar hair for the profile (1 + r2)−4 at temperature T = 0.096 and
α = 3 and α = 8 in the probe-limit. Notice the interesting behavior for z ≈ 0.75 for α = 3. Also
recall that these are in the linear approximation, so the size of the perturbation doesn’t matter.

Since we are working in the linear regime (probe-limit) at the moment, we avoid making

any interpretation of this fact, since this modulation might be removed by the gravitational back-

reaction of the scalar field. However, we will observe that this is not the case below and this

novel shape will stay robust. We will describe this interesting behavior after we construct the

back-reacted solution.

5.2.2 Progression of Zero Modes

In the last section, we showed that zero modes of linear perturbations of the scalar field in

the background of the defect exist at certain q = qmin , given temperature T , the strength and

type of the defect, which indicates that the scalar perturbations with q ≥ qmin lead to instability.

Now, we are going to show that such zero modes are indeed an indicator of the scalar instability,

by showing the progression of the zero frequency mode of the scalar perturbation as we vary the

charge q, from below qmin to above it, in the complex frequency plane.

We will do this by solving the equation (5.4) with the ansatz Φ = Φ(x, y)e−iωt using the
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boundary conditions (5.18) again. However, for the boundary condition at the black hole horizon,

we now additionally impose infalling boundary conditions, which means the scalar field near the

horizon y ≈ 0 is given by

Φ(x, y ≈ 0) = y
− iω

3z+ (c0(x) + c1(x)y + . . . ) , (5.19)

in order to get a proper dissipate behavior at the horizon, see [20].

In this case we will input the charge q to the equation and we are going to think the problem

as a quadratic eigenvalue problem in the frequency ω instead, which we know how to solve for

numerically as well. Note that this is a quadratic eigenvalue problem because the equation (5.4)

is simply a second-order, linear differential equation, so we just replace ∂
∂t → −iω by our ansatz,

which results in ω2 dependence.

If the zero modes we discovered above mark the boundary between stable and unstable modes,

it must be the case that as we increase q from below qmin to above it, the corresponding mode

should shift from the lower half-plane to the upper half-plane in the complex frequency plane.

That way, we will show the existence of the scalar instability precisely, since the perturbation

Φ ∼ e−iωt ∼ eIm(ω)t will grow without a bound, and it will drive the system to a new solution. The

progression plot for the case with the defect µ(r) = 3(1 + r2)4 is shown in figure (5.8).

As one can see, as we increase the charge q from below qmin to above it, the lowest lying mode

moves gradually to the upper half of the frequency plane, indicating that the scalar instability and

the zero mode we found in the previous subsection is indeed marking the boundary between the

stable and unstable perturbations. This also indicates that there must be new solutions of (5.2),

(5.3), and (5.4) at the end of these instabilities, which will discharge the black mushroom and form

a scalar hair outside by the spontaneous pair production process we mentioned in section (3.3).

The only difference would be the change in the region where discharging happens as evident by

figure (5.7) or the effective mass meff .

This behavior happens for all of the cases we investigated in this project, so we won’t repeat

all of them here because it would be redundant. Similarly, we varied the critical temperature above
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Figure 5.8: The progression of the zero mode in the complex frequency plane with charge at
temperature T = 0.119 (top) and with temperature for α = 3 (bottom). Here T denotes z+. As
can be easily seen, it indeed moves toward the upper half-plane for both of the cases.

and below for the lowest lying mode and saw that it also marked the instability, as can be seen in

figure (5.8) as well.

Note that by the shape of the perturbation in figure (5.7), these instabilities are local in

nature, they will only alter part of the spacetime close to the horizon and symmetry axis, since

the perturbation localized on that area and can violate the analog of the BF bound only there.

So, by this reasoning and AdS/CFT dictionary, we discover that the low-energy physics near the

origin would be modified nontrivially. In the next section we will find the endpoint of these local

instabilities considering their gravitational back-reaction.
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5.3 Hairy Black Mushroom

In this section, we are going to numerically construct the endpoint of the local scalar insta-

bility that we discovered in the section above using the zero modes on the background of the black

mushroom. Our ansatz for the solution would be

ds2 =
1

(1− y)2

(
− z2

+g(y)F1(x, y)dt2 +
F2(x, y)

g(y)

[
dy +

yF3(x, y)

(1− x2)2

]2

(5.20)

+
4z2

+F4(x, y)dr2

(2− x2)(1− x2)4
+
z2

+x
2(2− x2)F5(x, y)

(1− x2)2
dφ2

)

A = yF6(x, y)dt (5.21)

Φ = F7(x, y). (5.22)

Here the functions Fi(x, y) for i = 1 . . . 7 are assumed to be smooth. Note that the metric and the

gauge field ansatz are the same as the black mushroom ansatz (5.13) and (5.14). However, we now

have a nonvanishing scalar field which will produce the scalar hair in spacetime. We assume that

these functions satisfy the following boundary conditions on the asymptotic boundary y = 1:

F1(x, 1) = 1, F2(x, 1) = 1,

F3(x, 1) = 0, F4(x, 1) = 1, (5.23)

F5(x, 1) = 1, F6(x, 1) = µ

(
x
√

2− x2

1− x2

)
,

F7(x, 1) = 〈Φ
(
x
√

2− x2

1− x2

)
〉 z3 +O(z4)

in order to have the metric asymptote to AdS4, At to the charged defect, and get the superconduct-

ing phase for which there is a nonvanishing VEV without a source turned on for the scalar field,

like in the global case. Here, the function 〈Φ〉 = 〈Φ(r)〉 denotes the radially dependent VEV of the

scalar field on the boundary, which we used the same symbol Φ to denote the order parameter in

CFT and its dual field in AdS.
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Similarly, for the radial infinity x = 1, we assume the following boundary conditions:

F1(1, y) = 1, F2(1, y) = 1,

F3(1, y) = 0, F4(1, y) = 1, (5.24)

F5(1, y) = 1, F6(1, y) = 0,

F7(1, y) = 0.

In order to make the superconductivity results from the localized defect, we choose F6 to vanish,

which obviously makes F7 vanish like in the linear perturbations, since there is no electric field to

develop the hair in the region infinitely far away from the symmetry axis. Moreover, these boundary

conditions make the solutions reduce to AdS4 away from the symmetry axis as well.

On the symmetry axis x = 1, we impose regularity in a sense that the metric functions and

fields do not develop a kink like before

∂xF1(0, y) = 0, ∂xF2(0, y) = 0,

∂xF3(0, y) = 0, ∂xF4(0, y) = 0, (5.25)

F5(0, y) = F2(0, y), ∂xF6(0, y) = 0,

∂xF7(0, y) = 0.

Lastly, we impose regularity on the non-extremal horizon at y = 0 by imposing that temperature

of the black hole horizon is uniform. We omitted to report these mixed boundary conditions, since

they are rather lengthy expressions and unenlightening.

In order to use the Einstein-DeTurck trick, we need to provide a reference metric for the

ansatz (5.20), as we mentioned in the section (4.4) before. Note that the AdS-Schwarzschild black

hole (2.3) can easily provide that, since it has the same boundary conditions with the solution we

are looking for and has a simple closed form expression.

We choose the metric (5.13) and the gauge field (5.14) combined with the zero mode we found

in the previous section as our seed for the Newton-Raphson algorithm. Note that since zero mode

perturbations are continuously connected to the solution we are looking for (that is there exists
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a parameter, the strength of the defect α, that we can use to label solutions), we had no issue

regarding the issues related to the choice of seed. We observed that our solution converged with a

quadratic error in each iteration for any amplitude if the grid was sufficiently large. Some of the

convergence properties for this solution are given in the appendix A. Since the resulting solution

would be the hairy version of the black mushroom solution (5.13), we will denote this solution as

hairy black mushroom henceforth.

After solving the equations of motion, our result for the shape of the scalar hair for the

profile (1 + r2)−4 at temperature T = 0.096 is shown in figure (5.9). As one can see, the hair is

formed outside of the black hole like in global holographic superconductors by the same mechanism

of condensation we mentioned in the previous chapter. For comparison, look at the shape of the

scalar hair for the global holographic superconductor (3.2) and observe it doesn’t have a radial

dependence. Additionally, we explicitly checked that this solution is indeed a nonlinear solution of

the equations of motion by scaling our linear solution for Φ in the previous section and using that

as a seed. In principle, this should still give the same solution and we observed that it did.

Figure 5.9: Back-reacted local scalar hair in AdS spacetime for α = 3 (left) and α = 6 (right).
Observe the interesting behavior for small α around z ≈ 0.75 which we also observed in the probe-
limit.

As can be seen in figure (5.9), unlike the global holographic superconductors, the scalar hair

is localized around the symmetry axis. The reason is the same as why zero modes appear around

that region: The effective mass of the charged scalar field becomes the same as the actual mass of
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the scalar field farther away from the axis and the horizon getting weaker, therefore no condensation

via violating BF bound and pair production occurs away from the region near the symmetry axis.

The radially dependent VEV of the scalar field 〈Φ(r)〉, and the charge density ρ(r) on the

boundary for the same profile and temperature with α = 6 is shown in figure (5.10). Again, we

note that for the global holographic superconductors these quantities would be mere constants.
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Figure 5.10: The charge density induces by the charged defect (left) and the vacuum expectation
value of the scalar field (right) on the boundary for the hairy solution with the parameters mentioned
in the text. As expected, superconductivity is localized around the origin and smoothly transforms
to the normal phase as r →∞.

As one can inspect from figure (5.10), the expectation value of the charged scalar 〈Φ〉 has

a radial dependency and is most prominent around the charged defect, while vanishing smoothly

as we move farther away from the origin r = 0. We saw that this is always the case for different

defect profiles we investigated at different temperatures as well, along with the shape of the hair

in (5.9). That means superconductivity is most robust around the charged defect and smoothly

transforms to the normal phase as we go away from the origin of the boundary. Hence, we call this

novel phenomenon local holographic superconductivity.

It is interesting to note that the VEV 〈Φ(r)〉 doesn’t follow the shape of the charge density,

as one would naively expect, but rather modulated by the shape of the chemical potential. So

this shows that there is a certain ring on the boundary where there is little-to-no charge but it is

superconducting nonetheless, as well as it is energetically more expensive to go to the normal phase
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and then go back to the condensed phase on the boundary for strongly interacting field theories.

However, the most novel effect of the presence of a charged defect is shifting the place of

the maximum amplitude of the scalar field for small α in AdS. As we can see from figure (5.9),

the maximum of the scalar hair is not near the black hole horizon, but rather shifted away from

it. Observe that as we increase the strength of the defect, this effect becomes less prominent. We

relate this fact to the geodesic equation for the spacetime which we will explore more in the chapter

below. So we postpone our discussion of this fact from a gravitational point of view for later.

Although, as we will see, the gravitational explanation of this phenomenon is elegant, the

field theoretical meaning of this effect is not so clear. By AdS/CFT dictionary and the meaning

of the holographic direction, this result implies that superconductivity impacts the frequencies in

the mid-IR range for low enough α more than it impacts the frequencies in the deep IR range, in

contrast to the global case. So if we imagine sending some signal on this frequency range in the

boundary, we should see novel effects due to this modulation. These effects should be explored

more by perturbing our solutions and looking at the correlation functions. For example, looking

at the conductivity and the evolution of the superconducting gap might give interesting results for

the perturbations in the mid-IR range frequencies.

The corresponding physical picture in the field theory of this phenomenon is most likely

coming from the strongly interacting nature of the underlying field theory, but again, we should

emphasize that understanding this effect from the field theory perspective would be challenging

with our current methods. Our best bet to understand this phenomenon would be with gravitation,

which we try to interpret in the next chapter under the umbrella of the physics of hovering black

holes and using the geodesic equation.

5.4 The Critical Temperature

It would certainly be interesting to investigate the dependence of the critical temperature

Tc, that is the temperature for which the superconducting phase forms for a fixed charge q, to the

strength α and compare it with the global case. In this section, we will do that by choosing a
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fixed charge and draw a horizontal line in figure (5.5) and interpolating the strength of the defect

when it crosses qmin curves at different temperature.2 The resulting behavior for the defect profile

ζ(r) = (1 + r)−4 is shown in figure (5.11) for different charges of the scalar field.
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Figure 5.11: Dependence of the critical temperature Tc on the strength of the defect α = 3 for the
charges q = 3 (top-left), q = 5 (top-right), q = 7 (bottom-left), q = 9 (bottom-right).

As we can see the behavior is nonlinear for the charged defects, in contrast to the global

case, where the critical temperature scales with the chemical potential linearly, Tc ∼ µ in all

regimes, by dimensional grounds. This is somewhat expected since the spherically symmetric

charged defect is inherently nonlinear compared to the constant chemical potential in the global

holographic superconductors. However, as we increase the strength of the defect α, it seems that

the critical temperature begins to scale with the strength of the defect, which is consistent with

the interpretation we had in section (5.2).

2 We should note that there is an error associated with this interpolation. However, we are just looking for the
proof of concept here, not the explicit numerical values. So in the end, we believe that this additional error shouldn’t
alter the behavior significantly.
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It would be interesting to see that whether this effects are realized for real-world high-Tc

superconductors, such as in cuprates. If this is the case, it might pave the road to modify the critical

temperature to the desired temperature more precisely,3 at the expense of sufficiently localizing

the superconductivity in some region, rather than making it superconducting everywhere on the

copper-oxide plane in cuprates. Still, if it isn’t case, we believe that this work wouldn’t be for

naught though. We hope that if this type of behavior is not realized in experiments, it will still

provide us with better understanding in which way the strange metal physics and the physics of

AdS spacetime differs.

5.5 The Scaling Behavior and Free Energy

We also wanted to determine the scaling behavior of the scalar order parameter 〈Φ〉 near

the critical temperature Tc to check if there are any surprises. However, we found that the order

parameter follows the usual second-order mean-field type behavior which is given by the scaling

(3.2) as shown in figure (5.12) for the defect µ(r) = 3(1 + r2)−4 near the critical temperature

Tc = 0.119.
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Figure 5.12: The scaling behavior of the order parameter near the critical temperature, for different
radial distances (left) and specifically at the origin with a properly fitted curve given in the text
(right). For the reason why we plot them this way, see [18].

We can see it is a mean-field type phase transition by the example fit we made for the scaling

3 Even increase Tc for certain defects, which was our hope in the beginning of the study. However, we didn’t find
any evidence of it.
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of 〈Φ〉 at the origin. We find the best fit for these points to be

√
qmin〈Φ(0)〉

Tc
≈ 27.8774

(
1− T

Tc

)1/4

when T ≈ Tc, and from this we immediately see 〈Φ〉 ∼ (Tc − T )1/2, like in the global case [18].

The argument works in a similar fashion and plot would look similar for other cases, however

possibly having different constants because of the different types of defects and strengths of them.

Additionally, from figure (5.12) we see that if the superconductivity is more robust in some region,

such as near the origin, the scaling behavior is sharper.

Figure 5.13: The difference between the free energy densities ∆f of the hairy black mushroom and
the black mushroom solutions for the profile µ(r) = 3(1 + r2)−4 at temperature T = 0.096. Note
that ∆f ≤ 0 always.

Lastly, we decide to check the difference between the free energy of black mushroom and hairy

black mushroom solutions, in order to confirm that the hairy black mushroom solution dominates

over the black mushroom solution in the grand canonical ensemble. The difference between the

free energy densities, ∆f ,4 in AdS spacetime of these solutions are shown in figure (5.13) which is

generated using the equation (2.15). Note that we haven’t included ∆f at the asymptotic boundary

in our plots, since at this region ∆f actually diverges. But as we noted before, these UV divergences

4 Technically this is the grand potential, however we are going to us symbol f loosely as it is somewhat common
in holography literature. Also we subtract the free energy density of hairless solution from the hairy solution
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can be canceled with the addition of suitable counterterms like in the usual field theory, so they

don’t pose a threat to the argument we are making now.

Clearly, we see that ∆f ≤ 0 when T < Tc everywhere on the spacetime, which implies that,

after properly integrating by canceling the divergences due to the boundary to find the difference

in the total free energy ∆F , the hairy black mushroom dominates below the critical temperature in

the grand canonical ensemble, by the fact that ∆F ≤ 0 for the total free energy. In some sense, this

is nothing surprising just by the point of view provided by the instabilities we mentioned before.

Nonetheless, it was a reassuring check we made.



Chapter 6

Hovering Black Holes

In this chapter, we will briefly comment on the effects of the formation of a scalar hair at

finite temperature to hovering black holes semi-quantitatively, which is discussed in [27] for the

case without a scalar hair. Moreover, we will speculate about the bulk effects arising from disorder

in the chemical potential at the boundary and discuss the possibility of hovering black holes with a

planar horizon instead of a spherical one. As we will see, such black holes in AdS spacetime might

result in extremely novel phenomenon and can have far reaching consequences for the field theory

side.

6.1 Basics

For this we will follow the discussion in [24]. The motion of the particle with a mass m and

charge q in spacetime is determined by the geodesic equation coupled to the electromagnetic field

dxν

dλ
∇ν
(
dxµ
dλ

)
=

q

m
Fµν

dxν

dλ
. (6.1)

Here, λ is an affine parameter and ∇ is the covariant derivative for the coordinate transformations.

In our case, we consider a static and axisymmetric spacetime with a negative cosmological constant

and want to learn if it is possible to put a black hole somewhere in the spacetime and get a stable

solution. As the first approximation, we can consider our black holes small and extremal, namely,

we can assume that they satisfy |q| = m and treat them as charged point particles that obey

the geodesic equation coupled to electromagnetism (6.1). So the problem reduces to finding the
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stationary points of this equation. Here by stationary points we mean that the worldlines of the

particles for which particles have no acceleration in their rest frames. Expanding the equation

(6.1) around the background (5.13), the (stable) stationary points can be found by minimizing the

potential,

V =
√
−gtt −At. (6.2)

We must make a couple of remarks before proceeding. First note that by the axisymmetry

of our spacetime any extremum point should lie on the symmetry axis, namely r = 0. So, for a

spherically symmetric charged defect we will only consider this axis and we will use the thermal

length of the points on this axis defined by lT =
√
−gtt to compare the potential V across different

backgrounds.
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Figure 6.1: Plot of V without the scalar hair for the defect µ(r) = 7.1(1 + r2)−4 at the temperature
T = 0.014 (blue), T = 0.015 (green), and T = 0.024 (red) on the symmetry axis r = 0. Note that
there are two minimums in the blue curve, one at when the thermal length is zero corresponding to
the black mushroom and one ot when the thermal length is around

√
−gtt ≈ 0.175, corresponding

to a stable stationary point of the geodesic equation.
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Moreover, observe that because of the normalization of the action (5.1), the potential V

equals to 0 for the flat spacetime without electromagnetism for stationary points of the geodesic

equation. This is an important choice, since we know particles with V > 0 are not stable in flat

spacetime, finding minimum of V is actually not sufficient and we must also look for the minimum

below zero. A typical progression of the potential V with temperature is shown in figure (6.1).

After non-thermal minimums are found, like in the second minimum around
√
−gtt ≈ 0.175

in the figure (6.1) above, it is possible to “grow” a black hole by putting a particle there and slowly

increasing its size, until a hovering black hole forms, using the fact that the point we put the particle

at is a stable stationary point of the geodesic equation. Although this idea is simple, implementing

it is a great technical challenge, see [24] for more details how to construct these solution. We won’t

comment on building such solutions but we hope that it is in principle possible (and necessary) to

construct such solutions accordingly.

6.2 Hovering Black Holes with Hair

The shapes of the potential V for the cases with and without a hair at the temperature

T = 0.014 for the charged defect µ(r) = 7.1(1 + r2)−4 are given in figure (6.2). Inspect that for

the hairy solution, the potential V is slightly lower than the one without a hair around the second

minimum
√
−gtt ≈ 0.175. This is exactly what we would expect since we know that the black hole

in deep IR is discharged slightly when the scalar hair is formed, which means that the hair formed

outside of the black mushroom, as we described in the previous chapter. As a result of this, the

scalar hair gravitationally attracts more towards to the second minimum. Observe that this effect

is tiny, but not negligible in the numerical accuracy we are working in.

There are many interesting questions we might ask for these systems, from both the bulk and

boundary point of views. Unfortunately, we should add a disclaimer and mention that answering

many of these question will not be in our grasp without constructing the solution of hairy black

hole which we have already noted is nearly impossible to construct with our current numerical

techniques. However, we can get some idea regarding which answers would be more plausible using
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Figure 6.2: The potential V for the solutions with (blue) and without (red) hair, given on the
symmetry axis r = 0. As one can see, they are nearly the same curve, except there is a slight
decrease in the second minimum of the potential for the case with the scalar hair.

physical reasoning.

The first question we ought to ask is which of the two solutions, the hairy black mushroom we

found in the previous chapter or the hairy black mushroom with hovering black hole as indicated by

the potential V, would be the dominant solution and in what regimes and ensembles? It is intuitive

to expect that for a sufficiently dense scalar hair, it would eventually form a hovering black hole

by collapsing onto itself. Overall, by figure (6.2) and the fact that the minimum slightly lowered,

we see that forming hovering black hole must be easier in general, therefore this argument seems

reasonable.

Also, this is rather evident from the shape of the hair in figure (5.9). As we can see and as

noted in the previous chapter, the scalar field is localized in the mid-IR range near the symmetry

axis, which roughly corresponds to the minimum of the potential V when α is small enough. This



71

shape of the hair makes total sense then, since the geodesic equation creates a sort of potential

well in AdS with the combination of AdS compression and electromagnetic push which makes the

scalar field to move over to this region as a result. Although they are in the same spirit, we should

note that the potential V and the potential that gives the equilibrium of forces in this argument

are different in general. On the other hand, when α is large, the scalar hair becomes more spread

out in the spacetime, which makes the shape in figure (5.9) to disappear.

The second question we might ask is whether the order of formation of a hair and hovering

black hole makes any difference. Again, we can’t say anything regarding issue with the results and

tools we have and further studies are needed.

6.3 Planar Hovering Black Hole

So far, the horizon of the hovering black hole we mentioned was spherical. In passing, we will

discuss the possibility of the existence of hovering black holes, with a planar horizon along with its

novel implication for the field theory.

Before we begin our discussion, we should note that everything we will say below assumes the

existence of such solutions, which we provide the evidence for. However, it is also likely that such

solutions might not exist and even if they do, they might not be stable.1 So, without constructing

the solution, everything we say should be taken with a grain of salt and being cautious is the best

bet. However, we include the discussion here, because we believe the possible effects are extremely

novel and may indicate the end points of disordered instabilities and deserves a mention.

With these considerations in mind, start with imagining the case for which there are multiple

defects added in a disordered fashion in the asymptotic boundary like in figure (6.3).2 The potential

V would definitely be altered, and it would be (possibly) altered in such a way that there would

be multiple copies of the shape shown in figure (6.1) under each defect in the direction of z. Now

consider the case for which these defects are either sufficiently close or sufficiently strong. Then it

1 This instability argument can be made for the spherical black hole as well.
2 Putting an array of them might also work, but here we will only consider the disordered case.
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Figure 6.3: Typical profile of disordered chemical potential. Here Gaussian defects are used to
construct a patch of this random chemical potential.

is not unreasonable to think that such minimums of potentials combine into a region so that the

every point on the region is below zero.

Now in that region, instead of a single extremal particle like above, put an extremal and thin

slab. Such a slab would be stable, like the small spherical black hole, because it lies in the region

where potential is below zero. However this doesn’t guarentee that the slab will be flat. It might

be curved according to the actual shape of the region.

Now grow the slab incrementally. If we grow it sufficiently large, it will be a hovering black

hole, but with a planar horizon topology. Again, we ignore the issues regarding instability, this

planar solution might nucleate into a number of spherical hovering black holes, and be similar to

the solution in [3], but with a back-reaction. But assume for a moment that there is a certain

regime where it is stable and its horizon is planar and maybe more importantly connected. This

case looks schematically like in the diagram (6.4) below.

Why do we want this hovering black hole with planar (or more importantly connected)

topology? In order to answer that, consider the following thought experiment. Imagine that we

perturb the field theory in the UV, for example by adding an external electron to the field theory.
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Thermal Black Hole

Hovering Black Hole

Boundary

Figure 6.4: Diagrammatic representation of a planar hovering black hole. Here the curly line
indicates the RG evolution of a perturbation in the field theory, such as adding an external particle.

By the AdS/CFT dictionary, the interaction of this electron with its surroundings would be dualized

by the motion of the perturbation induced by this electron inside AdS spacetime, represented by

the curly line in figure (6.4). Without the hovering black, this perturbation would move towards to

the deep IR where a black hole corresponding to the thermal physics resides. Naturally, it will move

into this black hole and won’t come out. This is basically the AdS dual of coming into thermal

equilibrium in the field theory, which is the expected behavior for such systems.

Now consider the case with the planar hovering black hole, i.e consider CFT with disordered

chemical potential. In this case before this perturbation reaches to the deep IR, it should move into

this newly appeared black hole first. But one good thing about black holes is that once something

is inside, it never comes out, and this perturbation is no exception.3 From the field theoretical

point of view, this means that this external electron cannot reach into thermal equilibrium (or

cannot diffuse), but localizes because of the disorder, like in the usual Anderson localization. We

see the reason why having one-piece hovering black hole horizon is important now, because this

argument would not work in the case where there is a hole in the black hole horizon. Although we

should mention that, in that case, it will still make coming into thermal equilibrium harder, if not

impossible, by weakening the signal when it crosses disconnected horizon.

3 At least in the leading order. Hawking radiation will emit the perturbation to deep IR by quantum effects. But
we are working in large-N , which will suppress these effects.
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It is no coincidence that we use the term localization here, because we think this physics

might be related to the localization using the heuristic reasoning that having a black hole in the

mid-IR scale basically represent a huge number of states in that energy regime [36] and localization

also holds states by not allowing them not to diffuse. This connection ought to be established

more precisely since it might reveal the dual mechanism of localization in the strongly interacting

systems.

Moreover, we can interpret the result of this thought experiment from the perspective of

the information spread in strongly coupled CFTs at finite density under the presence of strong

disorder. This result implies that the information from the high energy scales does not reach into

the low-energy regime. The low-energy physics always seems irrespective of UV information which

in some sense implies that the low-energy physics of such system should behave irregardless of any

perturbation in UV. We can not find any related phenomenon to this effect in field theory.

Lastly, we can similarly look at the effects of disorder to the confinement of degrees of freedom

in strongly coupled CFTs using Wilson loops. Recall that the Wilson loops are dualized by the

string worldsheet in the AdS spacetime and deconfinement is indicated by the process of the top

of worldsheets becoming disconnected due to the black hole horizon.

Like in the AdS-RN case we described in chapter (2), the string worldsheet would be dis-

connected because of the black hole horizon, but the black hole that rips it apart would be the

hovering one, not the thermal one. Since the scale of the hovering black hole position in AdS is set

by the scale of disorder, deconfinement happens at the scale of disorder, which is much earlier than

the thermal scale in the energy scale. So this implies that disorder makes the theory deconfine at

higher energy scales.4

This result might be somewhat argued from the fact that disorder makes it harder for the

degrees of freedom to interact with each other, so they become deconfined earlier in the energy

scale. We should note that this effect is most-likely due to the large-N limit in which we are

4 Since we are considering irrelevant defects here, the dependence on the specific direction in the boundary
shouldn’t matter because they will die off as we go deep in AdS. However, the Wilson loop might have a nontrivial
shape near the boundary.
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working, but it would be a good exercise to investigate it if there is any corresponding phenomenon

in QCD as well.

There are so many questions to be asked and beautiful physics is waiting to be found in these

systems. However, extraordinary claims requires extraordinary evidence so we cannot be precise

enough to see whether the claims above contains any truth without constructing such solutions. The

worst part of constructing such solutions is that they are cohomogenity-1 instead of cohomogenity-

2, so numerics become extremely challenging, bordering impossible. It might be useful to find some

sort of toy model that contains similar physics like the one suggested above.



Chapter 7

Conclusion and Outlook

In this study, we constructed a gravitational dual for the local holographic superconductors:

Superconductivity confined in a local region as a result of a spherically symmetry charged defects.

We investigated its similarities and differences with each other and with the global case. We found

that the critical temperature can be tuned at the expense of making superconductivity local. Also

we concluded that its gravitational dual in AdS might contain a hovering black hole by investigating

the stationary points of the geodesic equation.

We first studied the linear scalar instabilities in AdS spacetime under the presence of the

charged defects and discovered that the zero modes are present in such spacetime. We observed

that the perturbations are more robust in a region around and under the defect in the direction

of z for sufficiently high charge or low temperature. We characterized the minimum charge and

temperature needed for such instabilities to be present.

Secondly, we constructed the gravitationally back-reacted solution corresponding to the end

points of these scalar instabilities. We found that a local scalar hair develops around the black hole

as a result of violating BF-like bound. Interestingly, we find that superconductivity is most robust

not in the deep IR, but between the IR and UV regimes of the theory if the defect is small enough

in magnitude. We relate this observation to the geodesic equation in our hairy black mushroom

solution. We briefly commented on what it would imply for the field theory, but this question

remains open. Lastly, we saw that it was possible to change the critical temperature with defects

nonlinearly and commented on the scaling behavior and free energy of the solution we constructed.
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In order to understand local holographic superconductivity phenomenon and its relation to

the normal phase of charged defects better, it is imperative that we understand the correlators

of the currents and the stress-energy tensors, both in the normal and superconducting phases.

Especially studying conductivity would help us detect the differences between the charged defect

and the uniform chemical potential more precisely, and would allow us to see how superconducting

gap evolves. Because of the nontrivial effects we have seen in the mid-IR regime (such as the

possibility of having a hovering black hole or having the scalar hair maximized in amplitude in the

mid-IR scales for small defects), there might be nontrivial effects of the defect in the mid-range

frequencies for the conductivity. We attempted to implement this in the spirit of [26], but hit the

usual problem of gauge fixing for perturbing numerical black holes. We leave this for our future

work.

Also, we discovered that having a hair in the spacetime lowers the non-thermal minimum of

the potential for the stationary point of the geodesic equation by attracting more matter through

there and in principle making it easier to form a hovering black hole. We think that the interactions

between the hovering black holes and the scalar hair need further study to understand which

solutions dominate in which ensemble to give us a complete picture of the phase space, and find a

region and ensemble for which the local holographic superconductivity we solved for dominates. For

example, it would be interesting to form a scalar hair and then hovering black hole and in reverse

order to compare the resulting solutions to look for any differences. But again, these solutions pose

great technical challenges.

Lastly, one interesting direction for the future research for CFTS with non-uniform chemical

potential might be applying charged defects randomly and constructing the full solution for disor-

dered chemical potential, which we discussed their physics without constructing the solution. We

argued that for such solutions with sufficiently disordered and/or strong defects there might exists

a region in AdS at fixed z for which the potential is below zero and contains a minimum. Using

that possibility, we argued that the possibility of growing a hovering black hole, like in [24], but

instead of having a spherical black hole hovering, we argued that it might have a planar black hole
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hovering above the deep IR.

We think planar hovering black holes would be extremely interesting consequences for the

boundary field theory. Since the deep IR and the UV regimes of the theory are separated com-

pletely by a black hole, we believe that dissipation-like effects might occur in the mid-IR scale of

the theory, determined by the scales of disorder, rather than thermal scales, and information from

high energy degrees of freedom cannot evolve to low energies. We argued that such physics might

be related to the localization in the context of strongly coupled conformal field theories, noting

that similar effects happen in localization under disorder and black holes basically represent huge

number of states by AdS/CFT dictionary, and might be the related to the physics in [3], as well as

shed more light on the mid-IR effects of the hairy black mushroom solutions. Also we argued that it

might have consequences for deconfinement under the random potential by making deconfinement

scale much earlier than the thermal scale.

However, we should repeat that these solutions would be cohomogenitiy-1, which makes

them extremely challenging to solve numerically. We experienced that even getting the analytical

equations is computationally very expensive. Again, a simple toy model containing the same physics

would be very handy in this situation and would provide us a way to understand the nature of

these extraordinary effects better.

Lastly, we think there is a high possibility that similar effects discovered in local holographic

superconductors might be observed in real-world high-Tc superconductors if they are formed around

a local doped region.1 We challenge experimentalists to realize the similar system in cuprates or any

other high-Tc superconductors to see if the modification of the critical temperature is possible in a

similar fashion. We hope this will not only provide a novel way to modify the critical temperature,

but will be a useful test for AdS/CMT research program and how similar these systems are.

1 This is motivated by the observed match between cuprates and holographic lattices, see [26].
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[4] Neven Barǐsić, Mun K Chan, Yuan Li, Guichuan Yu, Xudong Zhao, Martin Dressel, Ana
Smontara, and Martin Greven. Universal sheet resistance and revised phase diagram of the
cuprate high-temperature superconductors. Proceedings of the National Academy of Sciences,
110(30):12235–12240, 2013.

[5] Mike Blake, Aristomenis Donos, and David Tong. Holographic charge oscillations. Journal of
High Energy Physics, 2015(4):19, 2015.

[6] Peter Breitenlohner and Daniel Z Freedman. Positive energy in anti-de sitter backgrounds and
gauged extended supergravity. Physics Letters B, 115(3):197–201, 1982.

[7] Peter Breitenlohner and Daniel Z Freedman. Stability in gauged extended supergravity. Annals
of Physics, 144(2):249–281, 1982.

[8] Jiunn-Wei Chen, Ying-Jer Kao, Debaprasad Maity, Wen-Yu Wen, and Chen-Pin Yeh. Towards
a holographic model of d-wave superconductors. Physical Review D, 81(10):106008, 2010.

[9] Toby Crisford, Gary T Horowitz, and Jorge E Santos. Testing the weak gravity-cosmic cen-
sorship connection. Physical Review D, 97(6):066005, 2018.

[10] João Pedro Alves da Silva. Ads black holes from localized boundary sources. 2015.

[11] O. DeWolfe. TASI Lectures on Applications of Gauge/Gravity Duality. ArXiv e-prints, Febru-
ary 2018.

[12] Oscar JC Dias, Jorge E Santos, and Benson Way. Numerical methods for finding stationary
gravitational solutions. Classical and Quantum Gravity, 33(13):133001, 2016.

[13] Bernhard Edegger, Vangal N Muthukumar, and Claudius Gros. Gutzwiller–rvb theory of high-
temperature superconductivity: Results from renormalized mean-field theory and variational
monte carlo calculations. Advances in Physics, 56(6):927–1033, 2007.



80

[14] Thomas Faulkner, Hong Liu, John McGreevy, and David Vegh. Emergent quantum criticality,
fermi surfaces, and ads 2. Physical Review D, 83(12):125002, 2011.

[15] Dimitrios Galanakis, Ehsan Khatami, Karlis Mikelsons, Alexandru Macridin, Juana
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Appendix A

Convergence Tests

In this appendix, we discuss the convergence of our solutions briefly. By the pseudo-spectral

collocation on Chebyshev grid, we know that the convergence can be improved exponentially by

increasing the number of grid points. In order to explicitly check that, we chose the DeTruck norm

Max(|ξ|2) from the section (4.4) as our parameter indicating convergence and measured how it

changes with increasing number of N for an N × N Chebyshev grid. For black mushroom and

hairy black mushroom solutions, the results are shown in the figure below.
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Figure A.1: Convergence tests for the black mushroom solution for T = 0.239 and α = 3 (right) and
for a hairy black mushroom solution for T = 0.096 and α = 3 (left) for the profile ζ(r) = (1+r2)−4.

As we can see, the convergence is improved exponentially with increasing the number of grid

points until a certain point in which it becomes flat. We will generally assume that the convergence

is reached when the error of the solution is below 10−6 − 10−7 for both for the DeTurck norm and

the errors in the NR algorithm (this is reasonable since we are working with 8 significant figures).

Therefore it was generally sufficient to use 20× 20 to 30× 30 grids for our solutions. However, we
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sometimes needed to calculate quantities in 70× 70 grid to reach the desired accuracy.

We should note that as the strength of the defect increases or the temperature becomes small,

the convergence is decreased. In such cases, it is better and safer to use bigger grids. So in the

cases where we observed the maximum value of DeTurck norm increases, we increased the grid

number proportionally to reach the desired accuracy. However, we discovered that in the end it

didn’t matter too much, since for the majority of the quantities we are looking for, such as scalings,

hasn’t been affected by the errors we propagated and our results stayed robust. So when suitable,

we opted to use a smaller grid to save time and computational resources.


