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Baresi, Nicola (Ph.D., Aerospace Engineering Sciences)

Spacecraft Formation Flight on Quasi-periodic Invariant Tori

Thesis directed by Prof. Daniel J. Scheeres

Since the successful rendezvous of the Gemini VI and VII spacecraft in 1965, spacecraft

formation flying has attracted the interest of many researchers in the field. Yet, existing methodo-

logies do not currently account for the oblateness of a central body when the distance between the

satellites exceeds the reach of standard analytical techniques such as Brouwer-Lyddane theory and

thereof.

In this dissertation, the problem of designing bounded relative orbits is approached with a

dynamical systems theory perspective in order to overcome the limitations imposed by mean-to-

osculating orbit element mappings and linearization errors. We find that the dynamics of satellites

in the Earth zonal problem can be fundamentally described by three periods, whose averaged

values can be accurately computed through numerical integration. To ensure long-term bounded

relative motion between the satellites in a formation, at least two of their fundamental periods

need to be matched on average. This condition is enforced by including additional constraints into

existing techniques for calculating families of quasi-periodic invariant tori. The result is a numerical

procedure that searches for the invariant curves of a stroboscopic mapping while changing the polar

component of the angular momentum vector for each of the quasi-periodic tori within the family.

Upon convergence, the algorithm outputs several curves that can be interpolated to obtain an

entire surface of bounded relative motion. That is, by selecting arbitrary initial conditions on this

surface, bounded relative motion can be established, regardless of the number of zonal harmonics

terms that are included in the geopotential.

Given this encouraging result, we move beyond Earth’s orbit and investigate the problem

of designing bounded relative orbits about small irregular bodies. First, we consider the case of

asteroid (4179) Toutatis, and build on previous research to identify periodic and quasi-periodic
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orbits that ensure boundedness in spite of the complex shape and rotational state of the target

asteroid. Next, we move to the Martian system and design spacecraft formations near Phobos.

Once again, we aim at improving the realism of previous simulations found in the literature by

modeling the nonspherical shape and nonzero eccentricity of the Martian moon. The resulting

higher fidelity model causes entire families of periodic orbits to become quasi-periodic invariant

tori that eventually serve as initial conditions for bounded spacecraft formations.

The last part of this thesis is dedicated to assessing the robustness of the relative trajectories

computed throughout the manuscript. Although atmospheric drag and solar radiation pressure have

catastrophic effects on the relative dynamics of satellites in LEO and near Toutatis, it is found that

spacecraft formations in MEO, GEO, and about Phobos are quite resilient to mismodeled dynamics,

making quasi-periodic invariant tori a robust option for flying satellite clusters in these complex

dynamical environments.
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Chapter 1

Introduction

1.1 Spacecraft Formation Flying

Groups of satellites that cooperate in space to fulfill their mission requirements are usually

referred to as Distributed Space Systems (DSS) . This architecture is a relatively new concept in

space mission design that offers several advantages over single satellite missions [1]. First, DSS

can be designed to be cheaper and more practical than large monolithic spacecraft, as the tasks

required for the mission are usually spread among a flock of smaller cost-effective satellites that

can be manufactured with standard components and techniques. Accordingly, DSS are commonly

acknowledged to be more robust than single-satellite missions due to the possibility of replacing

faulty units with new pieces of technology that can be launched in space if needed. Even when unit

replacement is prohibited by costs and engineering constraints, the geometry of the formation can

sometimes be reconfigured to proceed with the mission objectives in spite of the loss of one or more

vehicles. Finally, DSS enable space-based scientific investigations that cannot be performed with

single satellites due to launch, budget, and physical restrictions. Examples of the latter include

space-borne telescopes with long focal lengths or large-baseline Synthetic Aperture Radars (SAR)

like the DLR’s TanDEM-X, a SAR mission that started as soon as TerraSAR-X was joined by

its twin satellite in order to deliver the most accurate and detailed digital elevation models of the

Earth up to date [67].

The example of TanDEM-X is just one of several cases in which distributed space systems have

contributed to improve our understanding and monitoring capabilities of the Earth environment.
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Currently, NASA’s GRACE is still measuring the inter-satellite distance between two twin satellites

separated by a few hundreds of kilometers in order to capture the tiniest variations of the Earth’s

gravity field [106]. At much higher altitudes, the Magnetospheric Multiscale Mission (MMS) is

studying the phenomenon of magnetic reconnection between the Sun’s and Earth’s magnetic fields

based on the measurements of four identical satellites flying in a tetrahedral formation [54]. GRAIL

just recently terminated its mission to the Moon after measuring the gravity field of our satellite

with unprecedented accuracy [119], whereas PRISMA successfully tested new key technologies for

upcoming DSS missions [26]. In the future, there is hope that ESA will commit to build the first

space-based gravitational waves observatory by placing three satellites in a triangular configuration

with separation distances on the order of millions of kilometers [10]. By then, the Asteroid Impact

Mission (AIM) might have been the first spacecraft to ever establish an inter-satellite network

about an asteroid with a mothercraft and two 3U Cubesats to be deployed upon arrival at (65803)

Didymos [110].

A prerequisite for all of these ambitious missions to be successful is guaranteeing that the

vehicles within the formations do not fly apart from each other. Yet, ensuing bounded relative

motion is a nontrivial task considering all of the forces and sources of error that typically affect the

motion of space vehicles. Fortunately, techniques from Dynamical Systems Theory (DST) can be

leveraged to identify trajectories that mitigate the effects of perturbations and the need for correc-

tive maneuvers. This search is hereby referred to as the Bounded Relative Motion Problem and is

one of several focuses of Spacecraft Formation Flying (SFF), which is defined by NASA’s Goddard

Space Flight Center as “the tracking or maintenance of a desired relative separation, orientation,

or position between or among spacecraft” [1]. In this thesis, we are primarily concerned with the

maintenance aspect of a formation, as we will recurrently seek for initial conditions that guarantee

bounded relative motion in spite of the complex dynamical environments being investigated.
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1.2 The Bounded Relative Motion Problem

Since the pioneering work of Clohessy and Wiltshire [23], research on relative motion has

addressed the reduction of the fuel requirements of a distributed spacecraft mission by identifying

trajectories that minimize the relative drift between a reference spacecraft (the chief ) and its

companions (deputies). In the validity regime of the Clohessy-Wiltshire equations, such drift can

be nullified if the initial relative velocity of the deputy in the along-track direction is equal to twice

the initial displacement in the radial direction multiplied by the mean motion of the chief [95, 101].

This relationship between the component of the initial state vector ensures that the semi-major

axes of the chief and deputy spacecraft are equivalent, a condition that guarantees bounded relative

motion in the Keplerian case even when the trajectory of the chief is non-circular [46].

Unfortunately, straightforward analytical relationships between the initial conditions of the

spacecraft are no longer valid when perturbations to the two-body dynamics are incorporated in the

equations of motion. For spacecraft formations about the Earth, the main challenges are associated

with the differential rates in the Right Ascension of the Ascending Node (RAAN), argument of

perigee, and mean anomaly at epoch induced by the oblateness of the planet. Schaub and Alfriend

realized this fact and developed first-order differential mean orbit element initial conditions that

nullify the difference in RAAN and mean argument of latitude rates between two neighbouring orbits

[94]. Specifically, the authors showed how differences in the mean semi-major axes, eccentricity, and

inclination of two satellites can be applied to establish bounded relative motion over a few orbital

revolutions. Similar results were also obtained by other authors using different orbit element rates

[35, 107] and/or numerically corrected initial conditions [13, 93, 115] that ensure bounded relative

motion over a few days in spite of the linearization and mean-to-osculating orbit element mapping

errors that limit the size and accuracy of the computed relative orbits.

An alternate approach developed by Koon et al. studies the problem of the relative mo-

tion in a J2-perturbed environment via Poincaré mappings, surfaces of section, and other tools

imported from DST [65]. Their approach was based on the pioneering work of Broucke, who first
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demonstrated that the majority of trajectories about an axisymmetric body are either periodic or

quasi-periodic in the 2 DOF Routh Reduced System (RRS) derived from the Lagrangian of the

Earth zonal problem [17]. There, satellites can be initialized on periodic and quasi-periodic orbits

to achieve bounded relative motion over indefinite time spans. Although the strategy proposed

by Koon and co-authors does not rely on either linearization or mean-to-osculating orbit element

mappings, it no longer works as soon as the same initial conditions are translated to the full six-

dimensional problem. Here, differences in the nodal periods and RAAN drifts per nodal period

between the different satellites cause a natural drift that destroys the formation within a few days.

Xu et al. [114] noted this fact and combined the dynamical system theory approach with a nu-

merical searching method based on ergodic maps and contour plots to enforce a weaker version of

the constraints originally derived by Martinusi and Gurfil [72]. This resulted in bounded relative

trajectories that last for more than a year.

A similar searching method has also been adopted by Chu et al., who studied the J2 bounded

relative motion problem from a completely analytical point of view [22]. Albeit subject to some

limiting assumptions, their method succeeds in generating bounded relative trajectories using

Hamilton-Jacobi theory to calculate the natural frequencies of motion and matching the aver-

age of the nodal and sidereal periods of two satellites in different orbits. Unfortunately, the lack of

numerical simulations that test the boundedness of their relative trajectories for extended periods

of time prevents a rigorous comparison with previously discussed techniques, thereby leaving the

Bounded Relative Motion Problem still open to debate.

1.3 A Dynamical Systems Theory Approach

In this thesis, the work of Koon and coauthors is leveraged to study the problem of bounded

relative motion from a dynamical systems theory point of view. Differently from the majority of

previous research, we design trajectories for spacecraft formations using the surface of quasi-periodic

invariant tori that are explicitly calculated with numerical procedures imported from DST. This

approach enables the investigation of the deployment of spacecraft formations in complex nonlinear
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dynamical environments such as the Earth zonal problem or the vicinity of small irregular bodies

without the need of the expensive grid searches proposed in Ref. [22] & [114].

The idea of using quasi-periodic invariant tori for spacecraft formation flying is not novel and

was originally proposed by Barden & Howell in 1998 [5]. In their paper, the authors leveraged the

knowledge of the center subspace of an unstable halo orbit to initialize a multitude of spacecraft and

study their relative dynamics for planet-finding applications. Since then, many other authors have

studied the possibility of using quasi-periodic tori to guarantee bounded relative motion between

multiple vehicles, including [42] and [83]. However, it was not until recently that powerful numerical

techniques to extend the computation of these dynamical structures beyond the center subspace

became available.

Currently, numerical procedures for computing quasi-periodic invariant tori can be classified

into two main categories: methods that compute invariant tori of flows, and methods that calculate

invariant curves of maps (Fig. 1.1). Both strategies aim at calculating diffeomorphisms whose

images are invariant for the considered dynamics. However, differences between these classes of

methodologies arise when comparing the performance and limitations of these two approaches.

In the first case, invariant tori of flows are usually computed by translating the conditions for

quasi-periodic motion into a set of Partial Differential Equations (PDE) that can be solved with

standard procedures available in the literature. For instance, Schilder et al. propose to approximate

the solution over an equally spaced grid of points while using Central Differences (CD) to replace

partial derivatives with linear combinations of neighboring points [99]. This approach is hereby

referred to as the PDE(CD) algorithm and produces a large system of nonlinear algebraic equations

that can be solved via Newton’s method to get a full parametrization of the torus whose accuracy

depends on the spacing between consecutive mesh points. A finer mesh recovers a more accurate

result at the expense of a higher computational cost. This increase in the computational time is

particularly problematic for alternative formulations of the PDE approach, where central differences

are substituted by more performing methods such as the Discrete Fourier Transform (DFT) (see

PDE(DFT), Section 3.1.2).
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In contrast with the previous strategies, methods that compute invariant curves of maps are

less susceptible to the curse of dimensionality because they deal with objects of dimension one

less. Gómez and Mondelo derived a numerical method for calculating the Fourier coefficients of

Lissajous and halo orbits in the Circular Restricted Three-Body Problem (CRTBP) based upon

the invarinat curves of a stroboscopic mapping [44]. Olikara and Scheeres modified this approach

to operate directly on orbit states and to incorporate general-purpose constraints that generalize

the algorithm to other systems and orbit families [86]. The resulting procedure, hereby referred

to as GMOS, calculates families of quasi-periodic invariant tori by solving a Two-Point Boundary

Value Problems (TPBVP) for the invariant curves of a stroboscopic mapping, and represents an

alternative with respect to the methodology of Kolemen, Kasdin, and Gurfil (KKG), who built on

similar ideas to calculate invariant curves of Poincaré maps [63].

Although both map strategies have been successfully tested in astrodynamics (see, e.g., [8,

15, 36]), it is unclear whether KKG or GMOS should be preferred for extensive studies as well as

to establish bounded relative motion in complex dynamical environments. Furthermore, neither

Numerical Computation of
Quasi-periodic Invariant Tori

Invariant
Tori of Flows

Invariant
Curves of Maps

PDE: TPBVP:

CD DFT KKG GMOS

Figure 1.1: Methods for calculating quasi-periodic invariant tori. From left to right: Partial Dif-
ferential Equation (PDE) solver based on Central Differences (CD), PDE solver based on Discrete
Fourier Transform (DFT), Two-Point Boundary Value Problem (TPBVP) for invariant curves of
Poincaré maps (KKG), and TPBVP for invariant curves of stroboscopic maps (GMOS).
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of these methods has ever been compared with PDE approaches, which also succeed in generating

families of quasi-periodic invariant tori in relevant astrodynamics problems [85].

For all these reasons, a comparison between different numerical procedures is first offered

in this thesis. This will help us identify which of the proposed methodology should be preferred

for formation flying purposes as well as to identify key features that proved to be useful for the

remainder of this research. Next, we focus on the design of spacecraft formations starting from the

zonal problem about axisymmetric bodies. This and other applications of quasi-periodic invariant

tori are further discussed in the following research summary.

1.4 Organization

This thesis begins with a brief overview of dynamical systems theory techniques that are used

for calculating low-dimensional invariant sets, i.e., fixed points and periodic orbits. This discussion

allows us to introduce some of the notation and terminology used throughout the remainder of

this work. For example, we review the predictor-corrector approach proposed by Seydel [100] to

continue along family branches of periodic orbits, noting that a similar procedure can be also

applied in the quasi-periodic case. We also discuss different approaches for solving Boundary Value

Problem (BVP) as this may affect the implementation of some of the numerical procedures adopted

for this research. Lastly, we introduce the definition of quasi-periodic invariant tori and highlight

some of the fundamental features that may be relevant for our future analyses.

Chapter 3 of this thesis deals with the numerical procedures available in the literature for

continuing families of quasi-periodic invariant tori. After reviewing the different methodologies, we

propose a simple accuracy test so as to determine which of the candidate procedures should be

preferred for practical studies of astrodynamics problems, including the establishment of bounded

relative motion in complex dynamical environments. It is found that GMOS gives the most accurate

results in the shortest amount of time, making it our preferred choice for our dynamical investiga-

tions. Additional benefits offered by this methodology are the possibility of carrying out stability

analyses of quasi-periodic trajectories as well as the opportunity to calculate three-dimensional
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invarinat tori.

Using these results, the GMOS algorithm is applied in the fourth chapter of this research to

calculate quasi-periodic invariant tori in the zonal problem. It is demonstrated that modifications

of the numerical procedure are necessary in order to mitigate the issues encountered by Koon et al.

when trying to establish bounded relative motion about an axisymmetric model of the Earth [65].

Consequently, we adapt the GMOS algorithm for the numerical computation of entire families of

bounded relative trajectories about stable periodic orbits of the RRS.

Moving beyond Earth orbit, Chapter 5 of this thesis explores the computation of bounded

relative trajectories in highly perturbed dynamical environments such as the vicinity of asteroids

and small planetary satellites. To start off, we consider the asymmetric case of a uniformly rota-

ting tri-axial ellipsoid shaped as the slowly rotating asteroid (4179) Toutatis. The realism of our

simulation is further enhanced in second part of this chapter by adding the irregular shape and

tumbling motion of the chosen asteroid into our analysis. Lastly, we investigate the possibility of

deploying spacecraft formations in the vicinity of Phobos, as this is probably one of the most chal-

lenging dynamical environments that are of interest to the astrodynamics community nowadays. It

is found that quasi-periodic invariant tori may be extremely useful in understanding the dynamics

in the proximity of the Martian moon, as quasi-periodic solutions are much more dominant in the

system than resonant periodic orbits considered thus far in the literature.

Finally, Chapter 6 of this thesis deals with dynamical perturbations that have the potential

to impact on the bounded relative trajectories identified throughout this thesis. We begin by

demonstrating how satellites in LEO, MEO, and GEO formations tend to drift apart due to luni-

solar attraction and radiation pressure (SRP). For spacecraft formations at low altitudes, we also

model the nonconservative action of atmospheric drag and study the disruptive effects of this

dynamical perturbation on the relative motion between two satellites. Lastly, we move beyond

Earth’s orbit and continue our robustness analysis for spacecraft formations about (4179) Toutatis

and Phobos. It is found that countering the effects of SRP would be mandatory for distributed space

systems near the complex rotator due to the impact of radiation pressure on the general dynamics
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of massless spacecraft. In contrast, spacecraft formations about Phobos seem to be resilient to the

oblateness of the Red planet and the eccentricity of the Martian moon, thereby suggesting that

DSS could be flown in the vicinity of the small planetary satellite.

1.5 Contributions

The main contributions of this reaserch are divided by topic and summarized in the following

list.

• Numerical computation of quasi-periodic invariant tori:

∗ Comparison between several numerical procedures for computing quasi-periodic invariant

tori;

∗ Identify which of the existing methodologies should be preferred for practical studies of as-

trodynamics problems;

∗ Adapt the GMOS algorithm for the calculation of three-dimensional tori;

• Bounded relative motion about axisymmetric bodies:

∗ Understand the dynamics near rotationally symmetric bodies;

∗ Modify existing procedures for QP tori to ensure bounded relative motion;

∗ Design of spacecraft formations in the Earth’s zonal problem;

• Spacecraft Formation Flying in extreme dynamical environments:

∗ Studying quasi-periodic motion near small bodies;

∗ Use quasi-periodic tori to establish bounded relative motion about uniformly rotating tri-axial

ellipsoids, complex rotators, and small planetary satellites;

• Robustness Analysis

∗ Include perturbations to evaluate the impact of unmodeled dynamics on the relative motion;
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Chapter 2

Preliminaries

In order to better understand the methodologies implemented to calculate quasi-periodic

invariant tori in this research, it is useful to briefly review standard techniques available in the

literature to compute low-dimensional invariant sets, i.e., fixed points and periodic orbits. To

support the discussion, examples of fixed points and periodic orbits in the Hill approximation of

the CRTBP (also known as the Hill Problem (HP)) are shown. Accordingly, the chapter begins

with a short discussion of the HP equations of motion along with key properties that are useful

to interpret the plots displayed in the following pages. It is important to note, however, that the

procedures hereby presented are general in nature and can be applied to a variety of astrodynamics

problems with minor adjustments. Because of this, we will try to keep the discussion as more general

as possible and without referring to the explicit form of the HP equations for the calculation of its

equilibrium points and periodic orbits (Section 2.2 – 2.5). Section 2.6 finally introduces some of the

key aspects of quasi-periodic invariant tori that prepare the ground for the numerical procedures of

Chapter 3. A more rigorous discussion of tori in several classes of dynamical systems can be found

in [14].

2.1 The Hill Problem

Let x ∈ Rn be the state vector of a massless spacecraft with a dynamical evolution that is

modeled by the smooth Hamiltonian vector field f(x,p, t) : Rn × Rp × R→ Rn. Although f may

depend explicitly on the independent variable t, it is assumed that f is actually autonomous and



13

does not depend on any external parameters p. In this case, the system of first-order ordinary

differential equations reduces to

ẋ = f(x), (2.1)

where (−̇) denotes differentiation with respect to time.

A classical example in astrodynamics that falls into the category of problems represented by

(2.1) is offered by the Hill approximation of the CRTBP. This approximation applies when the

spacecraft is orbiting in the vicinity of a secondary body whose mass is significantly smaller than

the mass of the primary, i.e., (Ms/Mp) << 1 [49, 50, 98]. In this case, the equations of the CRTBP

can be conveniently rewritten in a rotating frame centered on the secondary and simplified in the

dimensional formulae of the HP:
ẍ = 2nS ẏ + 3n2

S x−
µS
r3

x,

ÿ = −2nS ẋ−
µS
r3

y,

z̈ = −n2
S z −

µS
r3

z,

(2.2)

where r =
√
x2 + y2 + z2 is the distance from the origin of the coordinate frame, µS is the gravi-

tational parameter of the secondary body, and nS is its mean motion. By scaling the length and

time units of the problem such that both nS and (µS/n
2
S)(1/3) are equal to 1, Eq. (2.2) eventually

reduces to the classical form of Hill’s equations:
ẍ = 2 ẏ + 3x− x

r3
,

ÿ = −2 ẋ− y

r3
,

z̈ = −z − z

r3
.

(2.3)

As it can be seen, Eq. (2.3) does not depend on any external parameter and can be easily
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rewritten in the form (2.1) via

ẋ = f(x) =



ẋ = vx,

ẏ = vy,

ż = vz,

v̇x = 2 vy + 3x− x

r3
,

v̇y = −2 vx −
y

r3
,

v̇z = −z − z

r3
,

(2.4)

where x =

[
x, y, z, vx, vy, vz,

]T
.

It is worth noting that the system (2.4) admits one integral of motion known as the Jacobi

constant:

C = T − V =
1

2
(v2
x + v2

y + v2
z)−

1

2
(3x2 − z2)− 1

r
(2.5)

where T =
1

2
(v2
x+v2

y+v2
z) represents the kinetic energy of the spacecraft and V =

1

2
(3x2−z2)+

1

r
is

referred to as the effective potential. Since kinetic energy is a positive-definite quantity, C+V must

also be positive, i.e., V ≥ −C. This inequality defines zones of admissible motion for each specified

value of the Jacobi constant. In particular, we are interested in the boundaries of these regions, i.e.,

the zero-velocity curves, as their study can immediately reveal the existence of trapping regions

where the motion of massless particles is confined. For the HP, these trapping regions are typically

found in the close proximity of the secondary body for low values of C (Fig. 2.1). As soon as the

Jacobi constant is allowed to increase, the area and ellipticity of the zero-velocity curves tend to

increment until the boundary is no longer close and the spacecraft is allowed to escape from the

vicinity of the secondary body. The gates open up as soon as the Jacobi constant reach the “energy”

value of the Lagrangian equilibrium points depicted in Fig. 2.1, thereby indicating that the study

and analysis of these particular solutions may be beneficial for the understanding of the system

dynamics. This situation is encountered in many other classes of dynamical problems, including the

infamous CRTBP as well as the motion of spacecraft in the vicinity of uniformly rotating asteroids

[96]. Accordingly, a brief overview of fixed points and their stability is first offered in the following
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Figure 2.1: The two collinar points of the Hill problem in normalized units. The figure also shows
zero-velocity curves defining zones of admissible motion and forbidden regions.

pages.

2.2 Fixed Points

By definition, fixed points x∗ are states of the phase space where the dynamics is constantly

equal to zero, i.e., f(x∗) = 0 [77]. Looking at the equations of the Hill problem, it is apparent

that–in order for f(x∗) = 0 to be satisfied–y, z, vx, vy, and vz must be equal to zero. The remaining

equation for x reads as 3x− x

|x|3
= 0 and gives the final expressions for the HP Lagrangian points:

x∗L1
=

[
−(1/3)1/3, 0, 0, 0, 0, 0

]T
; x∗L2

=

[
(1/3)1/3, 0, 0, 0, 0, 0

]T
.

Next, we can address the stability of these equilibrium points by studying the dynamics of

small perturbations about x∗. If x = x∗ +w is in a small neighborhood about x∗, then

ẋ∗ + ẇ = f(x∗ +w) ' f(x∗) +

[
∂f

∂x

]∗
w +H.O.T. (2.6)
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Since ẋ∗ = f(x∗) = 0, neglecting the high order terms yields the linear system

ẇ =

[
∂f

∂x

]∗
w = Aw, (2.7)

which can be solved using the State Transition Matrix (STM) Φ ∈ Rn×n given by the numerical

integration of

Φ̇(t, t0) = AΦ(t, t0), Φ(t0, t0) = In, (2.8)

where t and t0 denote the current and initial times, respectively.

Using the STM, one can prove that x∗ is stable whenever the real part of all the eigenvalues

of A is negative. Conversely, if at least one of the eigenvalues of A has positive real part, the

system is unstable as solutions along its associated eigenvector tend to escape from the vicinity of

the equilibrium points. Both of these behaviors hold in the original nonlinear system too for as

long as all of the eigenvalues of A have nonzero real part. Then, x∗ is hyperbolic and Hartman-

Grobman theorem can be applied to guarantee that the dynamics in the neighborhood of x∗ is

well represented by the linearization (2.7) [73]. A third option would be if some of the eigenvalues

of A are purely imaginary, e.g., ±i ν. If that is the case, linear analysis is inconclusive because

linear centers have seen to become nonlinear center, stable spiral, or unstable spiral depending on

the nonlinear terms appearing in the equations of motion (2.1). One could use nonlinear stability

analysis to prove the true nature of the fixed point x∗ [73, 77, 95]. However, if a system admits a

non-degenerate integral of motion like (2.5) and the purely imaginary eigenvalues are not multiple

of the other eigenvalues, then Lyapunov Center Theorem assures that there exists a one-parameter

family of periodic orbits emanating from x∗ with initial period T ' 2π/ν [78]. This is indeed

observed for the collinear libration points of the Hill problem, as these turn out to be of the saddle

× center × center type. In this case, for each pair of purely imaginary eigenvalues, there exist a

one-parameter family of periodic orbits known as the Lyapunov and vertical periodic orbit families.

These and other periodic orbit families may be calculated using the numerical procedures outlined

in the next section.
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2.3 Periodic Orbits

Periodic orbits are defined as those trajectories that repeat after a minimal period T . Defining

the flow of the dynamical system (2.1) to be ϕt(x0) for a generic time t and a generic initial condition

x0, then periodic orbits must satisfy the relationship

ϕT (x0)− x0 = 0. (2.9)

Together with (2.1), Eq. (2.9) defines a BVP that is better tackled as follows. To start off,

let us define a new time variable τ such that t = T τ [33]. With this new independent variable, the

dynamical system (2.1) reads as

x′ = T f(x), (2.10)

where (−)′ denotes differentiation with respect to the nondimensional time τ . Since t = T when

τ = 1, it is also easy to recast (2.9) as the boundary constraint

g(x0,x1) := x1 − x0 = 0 (2.11)

where x1 = x(τ = 1). This normalization limits the time domain of possible solutions on the

interval [0 , 1], thus enhancing the numerical robustness of the methodologies described in this

thesis. Unfortunately, this change in the time scale of the problem still does not prevent the BVP

to be ill-posed for a number of reasons.

First, note that, for autonomous systems such as (2.10), any point along the periodic orbit

could be a solution of the BVP. Because of this, standard shooting techniques are prone to fail

until extra constraints are included in the formulation of the problem. Doedel et al. [32] refer to

these constraints as phase conditions and propose

p(x0) := f(x̃0)T (x0 − x̃0) = 0, (2.12)

to anchor the initial conditions x0 in the plane perpendicular to f(x̃0)T . The same author refers to

x̃0 as a previously known solution of the BVP, and, for the purpose of this dissertation, it can either

be a linear approximation of the researched periodic orbit or a nearby periodic orbit previously
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computed. Although other forms exist, this is also the equation that we generally refer to when

talking about phase conditioning. Differences in the implementation of p(x0) will be noted when

opportune.

Second, observe that the period of the periodic orbit is generally not known a-priori and

needs to be solved for by our numerical procedure. To find values of T , we leverage the family

structure in which periodic orbits of autonomous systems are generally organized in. Consequently,

instead of fixing the period directly, we allow for changes in x0 and T along the curve representing

the periodic orbit family in the (x0, T ) plane, and that satisfy the pseudo-arclength continuation

constraint:

s(x0, T ) := x̃′T0 (x0 − x̃0) + T̃ ′ (T − T̃ )− δs = 0, (2.13)

where z′ =

[
x̃′0 T̃ ′

]T
denotes the family tangent computed in (x̃0, T̃ ), and δs represents the

continuation step-length [34]. The constraint (2.13) has been advocated by many authors including

[32, 62] for robustness and because local extrema such as the one portrayed in Fig. 2.4 are easily

handled and overcome. Thus, it also represents our preferred choice moving forward.

Ultimately, the computation of several members of a periodic orbit family can be formulated

as a BVP such that  x′ = T f(x),

T ′ = 0,

(2.14)

subject to the boundary constraints

F (x0, T ) =


g(x0,x1)

p(x0)

s(x0, T )

 = 0. (2.15)

To find a unique solution of (2.14)–(2.15), consider the predictor-corrector scheme proposed by

Seydel (Fig. 2.2, [100]) and outlined in the following subsections.
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Figure 2.2: Predictor-corrector scheme for computing families of periodic orbits.

2.3.1 Predictor

First, assume a nearby periodic orbit (x̃0, T̃ ) of a one-parameter family is either given or

initialized in the center subspace of an equilibrium point with T̃ ' 2π/ν as specified by Lyapunov

Center Theorem. In this case, one has that the periodicity constraint and the phase condition

(2.12) must be approximately equal to zero:

h(x̃0, T̃ ) =

x̃1 − x̃0

p(x̃0)

 ' 0. (2.16)

Now consider h(x̃0(s), T̃ (s)) to be a function of the arclength s, so that, by differentiation,

∂h

∂x

∣∣∣∣
(x̃0,T̃ )

x̃′0 +
∂h

∂T

∣∣∣∣
(x̃0,T̃ )

T̃ ′ =

[
hx(x̃0, T̃ ) hT (x̃0, T̃ )

]
z′ = [Dh] z′ = 0. (2.17)

Eq. (2.17) shows that the family tangent z′ ∈ ker([Dh]) with dim[ker([Dh])] = 1. Therefore, z′

can be computed using, for instance, the single value decomposition of [Dh]. Accordingly, an initial

guess for a new periodic orbit inside the family can be simply generated via

x0 = x̃0 + δs x̃′0,

T = T̃ + δs T̃ ′,

(2.18)

where δs is again the continuation step-length introduced in Eq. 2.13. These approximations give

a reliable initial guess for the second part of the algorithm, which aims at refining the values of

(x0, T ) until all of the boundary constraints (2.15) are met with satisfactory accuracy.
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2.3.2 Corrector

Since (x0, T ) are only predicted values, it is unlikely that all of the constraints in Eq. (2.15)

are immediately satisfied. Nevertheless, provided that (x0, T ) is sufficiently close to the true so-

lution, Newton’s method can be applied to update the initial guess until the L2-norm of (2.15) is

zero within some tolerated margin: ‖F (x0, T )‖ ≤ Tol. To that end, consider expanding F (x0, T )

to the first order in the vicinity of (x0, T ) such that

F (x0 + δx, T + δT ) ' F (x0, T ) + [DF ]

δx
δT

+H.O.T., (2.19)

where

[DF ] =


∂x1

∂x0
− In

∂x1

∂T
∂p(x0)

∂x0
0

∂s(x0, T )

∂x0

∂s(x0, T )

∂T

 =


M − In f(x1)

f(x̃0)T 0

x̃′T0 T̃ ′

 , (2.20)

and In is the n × n identity matrix. Also notice that
∂x1

∂x0
corresponds to the state transition

matrix integrated over one orbital period. Such a matrix is known as the monodromy matrix M

and turns out to be extremely useful in analyzing the stability of the periodic orbit (see Section

2.5). Similarly,
∂x1

∂T
describes variations of the terminal state with respect to T and is equivalent

to f(x1).

Now assume that F (x̄0 + δx, T̄ + δT ) ' 0, so that equation (2.19) can be rearranged and

solved for in terms of

[
δxT δT

]T
via

δx
δT

 = −[DF ]† F (x̄0, T̄ ), (2.21)

where [DF ]† is the left pseudo-inverse of the jacobian matrix [DF ] ∈ R(n+2)×(n+1). Iterating this

process yields a recursive formula that shall be repeated until the norm of F (x
(k)
0 , T (k)) is below

the chosen tolerance: x(k+1)
0

T (k+1)

 =

x(k)
0

T (k)

− [DF (k)]† F (x
(k)
0 , T (k)). (2.22)
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Upon convergence, the algorithm produces a solution to the BVP that can be used to reini-

tialize the predictor-corrector scheme and march along the branch of the considered periodic orbit

family. For continuing along the family, one needs to update the values of (x̃0, T̃ ) with the newly

found solution and recompute the family tangent as discussed in Sec. 2.3.1. From there, predicted

states can be generated and feed into the corrector part of the numerical procedure until a new pe-

riodic orbit is found. This solution can be given in input to the predictor part of the algorithm once

again, and the process repeated until the entire family branch is calculated or the corrector stops

converging. Fig. 2.3 shows an example of a periodic orbit family computed in the HP. Specifically,

the plot displays several members of the L1 southern Halo family obtained with one single iteration
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Figure 2.3: Examples of Southern Halo orbits about the first libration point of the Hill problem.
The trajectories in red are unstable, whereas the trajectory in blue is stable. See 2.5 for details.
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Figure 2.4: Continuation of the Southern Halo family branch.

of the algorithm. The same periodic orbits are finally organized in terms of orbital period and

Jacobi integral to demonstrate the effectiveness of the proposed methodology in handling turning

points and local extrema such as the one of Fig. 2.4.

2.4 Shooting vs Collocation techniques

Although representative of the numerical procedure considered in this thesis for computing

periodic orbits, the algorithm outlined in the previous section is just one of several approaches that

can be applied in order to solve BVPs. In that case, the equations of motion are integrated from

x0, τ0 = 0 until τ = 1 along with the variational equations

Φ̇(τ, τ0) = A(τ) Φ(τ, τ0), Φ(τ0, τ0) = In, (2.23)

so that x1 and M can be generated and plugged into F (x0, T ) and DF (x0, T ), respectively. Such

a procedure is usually referred to as single-shooting (Figure 2.5(a)), and despite being attractive for

its simplicity, it also suffers from stability issues when integrating trajectories near highly unstable

regions.
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(a) Single-shooting (b) Multiple-shooting

(c) Collocation

Figure 2.5: Shooting VS collocation techniques. The red arrows illustrate the direction of the
force field at different points along the trajectory, showing that the equations of motion are readily
satisfied in shooting approaches. Conversely, the vector field may not be necessarily tangent to
collocation iterations until convergence.

A straightforward solution to this problem is to split the integration interval into N̂ segments

so as to limit the growth of the round-off error below some acceptable threshold. This approach

is usually referred to as multiple-shooting (Figure 2.5(b)) and fall into the same category of Initial

Value Problems (IVP) where trajectories need to be integrated by means of standard numerical

integrators like Runge-Kutta or multistep methods [4].



24

Differently from the previous two approaches, collocation does not rely on any numerical

integrator. Rather, the solution is approximated with a piece-wise continuous polynomial using a

two-level discretization procedure (Figure 2.5(c)). First, the time domain is split in N subintervals

[τi, τi+1], i = 0, . . . , N − 1 for robustness and accuracy reasons. Second, the solution is evaluated in

correspondence of the roots of a m-th degree Legendre polynomial over each of the N subintervals.

Accordingly, let xi,j , j = 0, . . . ,m−1 be the collocation points for the i-th interval [τi, τi+1], so that

the solution over this entire subdomain may be approximated via Lagrange interpolation using

x(τ) =
m∑
j=0

xi,j Lj(τ), ∀ τ ∈ [τi, τi+1] (2.24)

with

Lj(τ) =
m−1∏
k=0
k 6=j

τ − τk
τj − τk

. (2.25)

From (2.24), it also follows that

x′(τ) =

m∑
j=0

xi,j L
′
j(τ), (2.26)

where

L′j(τ) = Lj(τ)

m−1∑
k=0
k 6=j

1

τ − τk
. (2.27)

However, there is no guarantee that the interpolating polynomial is actually satisfying the equations

of motion (2.1). To that end, one has to enforce the collocation constraints

x′(τ) = T f(x) (2.28)

for all of the N ×m collocation points xi,j , i = 0, · · · , N − 1, j = 1, . . . ,m. Furthermore, in order

for the solution to be continuous, the following must be true:

x(τi+1) =
m∑
j=0

xi,j Lj(τi+1). (2.29)

Eq. (2.26), (2.28), and (2.29) form the total set of [N (m + 1)]n continuity and collocation
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constraints that need to be appended to the error vector (2.15): cc(X) := xi+1,0 −
∑m

j=0 xi,j Lj(τi+1) = 0, i = 0, · · · , N − 1

cd(X, T ) := T f(xi,j)−
∑m

j=0 xi,j L
′
j(τj) = 0, i = 0, · · · , N − 1; j = 1, · · · ,m.

(2.30)

where X =

[
x0,0, x0,1, . . . , xN−1,m−1, xN,0

]T
is the collection of all of the collocation points

of a given periodic orbit, and n is the dimension of the state vector.

Typical values of N and m are between 50−100 and 6−9, respectively, illustrating the major

drawback of collocation: Newton’s method must be used to solve for [N (m + 1)]n + 1 variables,

rather than either n+ 1 or n N̂ + 1 as in the single-shooting and multiple-shooting cases.

Despite this increase in complexity, collocation techniques are still very attractive because

of their stability and large basin of attraction. This follows from the fact that the solution is

represented globally rather than through a set of a few discretized points, making it possible to

consider integral constraints such as

pcoll(x(τ)) :=

∫ 1

0
f(x̃(τ))T (x(τ)− x̃(τ)) dτ = 0, (2.31)

scoll(x(τ), T ) :=

∫ 1

0
x̃(τ)′T (x(τ)− x̃(τ)) dτ + T̃ ′ (T − T̃ )− δs = 0 (2.32)

that are found to be more robust than (2.12) and (2.13), respectively [33]. The reason for this being

that both of the phase condition and pseudo-arclength continuation constraints are now evaluated

over the entire trajectory rather than at a single point of the periodic orbit as in the single-shooting

technique.

Following these improvements, one has the total set of constraints for the collocation method

is given by

F coll(X, T ) =



g(x0,0,xN,0)

cc(X)

cd(X, T )

pcoll(X)

scoll(X, T )


. (2.33)
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From (2.33), the monodromy matrix associated with the researched periodic orbit can be

also inferred as a byproduct of the proposed methodology [83]. Specifically, if F coll(X, T ) = 0, the

same must be true for the periodicity, continuation, and collocation constraints only. Let G(X, T )

be the collection of (2.11) and (2.30), such that G(X, T ) = 0. By differentiation of this, one has

that

GX(X, T ) δX +GT (X, T ) δT = 0, (2.34)

which is also equivalent to

Gx0,0(X, T ) δx0,0 +Gx0,1,...,xN,0(X, T )

[
δx0,1, . . . , δxN,0

]T
+GT (X, T ) δT = 0 (2.35)

according to our previous definition of X.

Since δx0,0 = In δx0,0, the latter may be also rewritten in matrix form as

δX =

 In

−B†A

 δx0,0 +

 On

−B†C

 δT, (2.36)

which supplies a relationship between perturbations in δx0,0 and δT and state deviations at future

instances of time. Of course, A = Gx0,0 ∈ Rn [N (m+1)+1]×n, C = GT (X, T ) ∈ Rn [N (m+1)+1],

B = Gx0,1,...,xN,0 ∈ Rn [N (m+1)+1]×n [N (m+1)], whereas In, On denote the n × n identity and zero

matrices, respectively. Following this convention, one sees that the last n-th rows of −B†A are

responsible for mapping deviations in the initial state δx0,0 into deviations in the final state δxN,0,

thus proving that the monodromy matrix of the periodic orbit can be also calculated without

integrating the variational equations of the system. Such a matrix is fundamental in analyzing the

stability of periodic solutions, which is why the fundamental properties of M are further discussed

in the next section.

2.5 Stability of Periodic Orbits

The stability of periodic orbits is typically studied via the monodromy matrix M , i.e., the

STM integrated over one orbital period. To prove this, consider small perturbations about the
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initial state of the computed periodic orbit x0: w(t0) = δx0. Since the STM maps initial deviations

forward in time, after k orbital periods

w(T k) = Φ(T k, t0)w(t0) = Φ(T k, T k−1) . . . Φ(T, t0)w(t0) = Mkw(t0) (2.37)

Therefore, in order for the periodic orbit to be stable, all of the eigenvalues λi, i = 1, . . . , n of M

should have magnitude less than one, i.e.,

|λi| ≤ 1, ∀i = 1, . . . , n. (2.38)

Unfortunately, although applicable to different classes of dynamical systems, the latter con-

dition turns out to be weak when dealing with the Hamiltonian systems that are often encountered

in astrodynamics. In fact, according to the theory of Hamiltonian Dynamical Systems [98], for each

λ ∈ R, 1/λ is also an eigenvalue of M . Similarly, if λ ∈ C, then λ̄ and 1/λ̄ are both eigenvalues of

M . This means that for any eigenvalue λi such that |λi| < 1, there exist a reciprocal eigenvalue

with |1/λi| > 1, leaving us with the only possible conclusion that periodic orbits are stable if and

only if all of the eigenvalues of M have unity magnitude.

To calculate these eigenvalues, it is worth noting that autonomous Hamiltonian systems like

the HP offer additional advantages that can significantly reduce the computational burden of this

procedure. For instance, if ϕT (x0) = x0 is a periodic solution of (2.1), then

ϕT (x0 +w) ' ϕT (x0) +M w +H.O.T. = x0 +w. (2.39)

Neglecting the high-order terms finally yields (M − In)w = 0, thus proving that 1 is always an

eigenvalue of M . If that is the case, a second eigenvalue must also be equal to unity, meaning that

the characteristic polynomial of a 6-by-6 monodromy matrix can be further simplified in

det(M − λ In) = (λ− 1)2 (λ− λ1) (λ− 1/λ1) (λ− λ2) (λ− 1/λ2),

= (λ− 1)2 (λ2 + p λ+ 1) (λ2 + q λ+ 1), (2.40)

where λ1, 1/λ1, λ2, 1/λ2 are the remaining non trivial eigenvalues, p = −(λ1 + 1/λ1), and q =

−(λ2 + 1/λ2). Accordingly, in order for a periodic orbit to be stable, p and q must be real with
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k = max(|Re(p)|, |Re(q)|) < 2. The latter is referred to as the stability index and will be used

throughout this thesis to assess the stability of periodic orbits [51].

Following Bray and Goumas [12], the value of p and q can be calculated via

p, q =
α±

√
a2 − 4β + 8

2
, (2.41)

where α = 2− trace(M), and β =
α2 − trace(M2)

2
+ 1. Furthermore,

1/λ1, λ1 =
−p±

√
p2 − 4

2
1/λ2, λ2 =

−q ±
√
q2 − 4

2
, (2.42)

which provide the system dynamicist with a fast and reliable way to compute the eigenvalues of

the monodromy matrix of any periodic orbit of a six-dimensional autonomous Hamiltonian system.

Of course, once the eigenvalues of M have been determined, one can also look at the corres-

ponding eigenvectors to compute the invariant manifolds associated with the periodic orbit. For

instance, except for the stable blue trajectory of Fig. 2.3, all of Southern Halo orbits about the HP

L1 point have one pair of real reciprocal eigenvalues and one pair of complex conjugate eigenvalues

with unitary magnitude (plus, of course, the unitary pair, which is usually neglected for stability

analyses). By integrating perturbations along the stable or unstable eigenvectors for different loca-

tions along the periodic orbit backward and forward in time, one can trace out the two-dimensional

stable and unstable manifolds emanating from each of the Southern Halo orbits (Fig. 2.6).

As for the eigenvectors associated with the complex conjugate eigenvalue pair, one can also

integrate perturbations in this center subspace, thereby obtaining trajectories that not only never

depart from the neighborhood of the periodic orbit, but also never repeat exactly after one orbital

period.1 As it turns out, these trajectories are only quasi-periodic and tend to cover the surface

of a two-dimensional invariant torus as t → ∞ (Fig. 2.7). These invariant manifolds are the real

subject of this thesis and are formally introduced in the next section.

1 In practice, this is difficult to see because of the numerical integration errors that build up exponentially, causing
the integrated trajectory to leave along the unstable manifold
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Figure 2.6: Top view of the Unstable and Stable Invariant Manifolds emanating from a Southern
Halo orbit about the L1 point of the Hill problem.

Figure 2.7: Quasi-periodic invariant tori in the center manifold of a periodic orbit

2.6 Quasi-periodic Invariant Tori

As observed in Section 2.5, quasi-periodic trajectories tend to cover the surface of a mani-

fold whose topology resembles the one of a torus. Accordingly, in order to study quasi-periodic

motion, consider the general case of a d-dimensional torus parametrized by d angular variables

θ =

[
θ0, θ1, . . . θd−1

]T
∈ Td. By definition, the vector field f induces parallel motion on

T =
{
u(θ)|θ ∈ Td

}
if there exist a diffeomorphism u(θ) : Td → T ∈ Rn such that the restriction



30

of the vector field to the set T , namely f |T , is mapped by the inverse of the differential map Du−1

into a constant vector field on the torus [14]:

θ̇ = ω. (2.43)

If that is the case, trajectories initialized on the surface of the torus never depart from it, and the

manifold is invariant for the dynamical system (2.1). u is sometimes referred to as the torus function

(Fig. 2.8), whereas ω =

[
ω0, . . . , ωd−1

]T
∈ Rd is known as the frequency vector and, depending on

its form, it determines the nature of the torus. For instance, if k is a vector of d integer numbers

∈ Zd, then T is a quasi-periodic or non-resonant torus if and only if k ·ω 6= 0,∀k 6= 0. Conversely,

if k · ω = 0 for some k 6= 0, the torus is resonant and foliated by subtori of smaller dimension.

For the remaining of this thesis, we are going to tacitly assume that all of our invariant tori are

actually non-resonant, i.e., they meet the non-resonant condition discussed above. Note that this

is weaker than the Diophantine condition required by KAM theory for proving the existence and

persistence of quasi-periodic invariant tori of integrable systems under small nonlinear perturbations

[3, 28]. As such, we will not pursue the direct application of KAM theory to the classes of dynamical

Figure 2.8: Illustration of a torus function for a two-dimensional quasi-periodic invariant torus.
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problems being investigated in this manuscript. Nevertheless, some of the key results of KAM theory

remain applicable to our discussion. For example, it is relevant for us that quasi-periodic invariant

tori are generally organized in families that may be parametrized by Cantor sets of parameters. It is

also found that the gaps in these Cantor sets are usually very small and do not prevent continuation

scheme such as the predictor-corrector of Section 2.3 to be valid [42] & [83].

As for the number of parameters required to uniquely identify quasi-periodic tori within

their families, Jorba and Villanueva [60] propose the following rule of thumb: generally speaking, d-

dimensional quasi-periodic invariant tori of n-dimensional Hamiltonian systems that do not depend

on any external parameters are organized in d-parameter families. Therefore, two-dimensional

tori in the HP are organized in two-parameter families, three-dimensional tori in three-parameter

families, and so on until d = n̄, where n̄ are the problem’s degrees of freedom. The authors also

discuss the non-autonomous case, which is relevant for some of the applications that are going

to be investigated within this research. Specifically, if the vector field change periodically with

time, it can be shown that one of the torus frequencies must be resonant with the forcing term

of f . This effectively reduces the number of external parameters by one, thereby implying that

two-dimensional tori of time-periodic Hamiltonian systems are actually organized in 1-parameter

families, three-dimensional tori in 2-parameter families, and so forth.

In the next chapter, we shall see how these external parameters can be identified by different

numerical procedures without making any assumptions on the internal frequencies of the torus.

After that, the application of quasi-periodic invariant tori to spacecraft formation flight is studied

with the goal of developing systematic approaches for establishing bounded relative motion in

practical astrodynamics problems.



Chapter 3

Numerical Computation of Quasi-periodic Invariant Tori

In this chapter, we review some of the methodologies developed throughout the last decades

to compute quasi-periodic invariant tori in astrodynamics. Even though there exist analytical and

semi-analytical methods [39, 43, 47, 58, 59, 92], we focus on fully numerical procedures that have

been successfully tested in restricted three-body contexts [7, 63, 85, 86]. The algorithms were in-

troduced in Section 1.3 and are more rigorously discussed in the following pages (Section 3.1–3.2).

Furthermore, PDE solvers based on either CD or DFT are hereby compared with the KKG and

GMOS algorithms in order to determine which of the different procedures should be preferred for

the remainder of this thesis. As a case study, we consider the motion of a planar satellite in the

co-rotating frame of the Earth (ECEF). Here, planar eccentric orbits wind around the surface

of two-dimensional tori that can be explicitly calculated with the four different strategies (Sec.

3.3). Trajectories on the surface of these manifolds are generated and compared with the analyti-

cal solution of the two-body problem to assess the performance of the numerical approaches and

evaluate their advantages and drawbacks. In the end, two of the considered methodologies turn

out to significantly outperform the remaining strategies, thereby requiring for additional investiga-

tions. Because of this, Section 3.4 of this Chapter introduces the equations of motion of the Planar

Circular Restricted Three-Body Problem (PCRTBP) and apply the most promising approaches in

a more practical example. The results of this analysis show that GMOS should be our preferred

choice moving forward because of accuracy and runtime considerations. Consequently, the last

part of this chapter focuses on this procedure with the goal of highlighting some of the additional
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advantages offered by this strategy. In particular, we review how the stability of quasi-periodic

trajectories can be inferred as a byproduct of the method, and show how the numerical procedure

can be adapted to calculate families of three-dimensional tori. These and other features appear

consistently in the remainder of this research, making the flexibility and robustness of the GMOS

algorithm part of the enabling factors in designing bounded relative trajectories about a variety of

celestial bodies.

3.1 Partial Differential Equation Solvers

In this section, two methodologies that aim at calculating invariant tori of flows by sol-

ving a nonlinear system of PDE are summarized. Accordingly, let T2 be a two-dimensional torus

parametrized by the two angular variables θ =

[
θ0, θ1

]T
∈ [0, 2π)2, and let u : T2 → T ⊂ Rn be

a torus function satisfying the properties outlined in Sec. 2.6. If this is the case, one can replace

x with u(θ) into the equations of motion (2.1), obtaining a system of partial differential equations

for the unknown torus function u and frequencies w =

[
ω0, ω1

]T
:

1∑
i=0

∂u

∂θi
θ̇i =

∂u

∂θ0
ω0 +

∂u

∂θ1
ω1 = f(u(θ)), (3.1)

subject to the boundary conditions u(θ0, 0) = u(θ0, 2π), ∀θ0 ∈ [0, 2π),

u(0, θ1) = u(2π, θ1), ∀θ1 ∈ [0, 2π).

(3.2)

There exist several techniques for solving nonlinear systems of PDE such as the one of (3.1).

However, only few of these techniques have been successfully applied for the numerical continuation

of quasi-periodic invariant tori in astrodynamics. For instance, Schielder et al. [99] propose to

solve the nonlinear system arising from the evaluation of (3.1) over an evenly distributed grid of

points using central differences. This approach is hereby referred to as the PDE(CD) technique,

and is further discussed in Sec. 3.1.1. Alternatively, one can approximate the partial derivatives

appearing in (3.1) using the DFT. This seems particularly suitable for our problem given the
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periodic boundary conditions (3.2). As such, the PDE(DFT) approach is also included in our

analysis and further discussed in Sec. 3.1.2. To the best of our knowledge, such a procedure is yet

to be applied for the numerical continuation of quasi-periodic invariant tori in orbital mechanics

applications.

With this goal in mind, observe that both the PDE(CD) and PDE(DFT) approaches require

a reliable initial guess to be initialized. Hence, let x0 be the initial state of a periodic orbit whose

monodromy matrix M admits one pair of unitary magnitude complex conjugate eigenvalues as in

Sec. 2.5: λ1 = ei ρ, 1/λ1 = e−i ρ. Given M e = eiρ e, one can construct the one-dimensional curve

ϕ(θ1) = K [cos (θ1) Re(e)− sin(θ1) Im(e)] , (3.3)

where K is an arbitrary small scalar << 1. It is easy to demonstrate that M ϕ(θ1) = ϕ(θ1 − ρ),

thereby proving that (3.3) is indeed invariant under the application of the monodromy matrix M .

Because of this, the circle ϕ(θ1) is also known as invariant circle of the monodromy map and

considered as a good initial guess for initializing the grid of points utilized by the PDE methods

(Fig. 3.1).

Specifically, for each ϕj = ϕ(θ1,j) with θ1,j = 2π j/N1, j = 0, . . . , N1 − 1, one can map the

perturbations forward in time using the state transition matrix, i.e.,

ϕji = e−i ρ ti/T Φ(ti, t0)ϕj , (3.4)

where ti = i T/N0, i = 0, . . . , N0 − 1, and T is the orbital period of the underlying periodic orbit.

The factor e−i ρ ti/T is introduced to undo the effects of the winding frequency ω1, which acts in

the latitudinal direction of the torus and shall not be confused with the longitudinal frequency of

the torus ω0 (Fig. 2.8). By adding each of these perturbations to the value of the periodic orbit

at time ti, namely ϕti(x0) +ϕji , where ϕt is the solution flow of (2.1) up to time t, the skeleton of

the manifold, i.e., its initial approximation, can be finally generated. Fig. 3.2 shows an example of

this skeleton for a HP southern halo orbit with N0 = 25, N1 = 25.
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Figure 3.1: Mesh of discretization points utilized by PDE solvers. The blue and green lines illustrate
the periodic boundary conditions (3.2).

Figure 3.2: Skeleton of a two-dimensional quasi-periodic invariant torus. The black dots are used
to initialized the numerical continuation scheme.
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In order to be precisely on the surface of a quasi-periodic invariant torus, each of the mesh

points uji needs to satisfy (3.1). Accordingly, one has a set of N0 ×N1 vectorial relationships that

can be used to update the initial approximations uji ' ϕti(x0) + ϕji , ω0 ' 2π/T , ω1 ' ρ/T via

Newton’s method. That is, given z =

[
uji , ω

]T
and

F (z) = f(uji )−
∂uji
∂θ0

ω0 −
∂uji
∂θ1

ω1 = 0,
i = 0, . . . , N0 − 1,

j = 0, . . . , N1 − 1,

(3.5)

then

z(k+1) = z(k) −DF (z(k))† F (z(k)), (3.6)

where DF (z(k))† is the left pseudo-inverse of the Jacobian matrix of F .

The system (3.5) is made of (N0 ×N1) vectorial equations in (N0 ×N1 + 2) unknowns that

requires additional equations to be solved uniquely. This is very similar to what happens for periodic

orbits, where one phase condition and pseudo-arclength continuation constraints are added to the

list (2.15). In the quasi-periodic case, however, the choice of the mesh points is not unique in

both the θ0 and θ1 directions. Thus, two phase conditions are attached to the error vector (3.5) in

order to avoid these indeterminacies: one for each angular direction. Secondly, we now know that

two-dimensional tori of Hamiltonian autonomous systems that do not depend on any parameter

belong to two-parameter families. Therefore, differently from one-parameter families of periodic

orbits, two parametrizing equations are actually needed. This implies that a total of four extra

constraints are to be included in (3.5).

Schielder et al. [99] identify two of these equations with the phase conditions

p0(uji ) := < uji − ũ
j
i ,
∂ũji
∂θ0

>= 0, (3.7a)

p1(uji ) := < uji ,
∂ũji
∂θ1

>= 0, (3.7b)

which help anchor the solution points once a previously found solution ũji is available. For the first

family member, the latter is approximated with the skeleton of the torus itself. Also notice that

the operator < aji , b
j
i > denotes the inner product

1

N0N1

∑N0−1
i=0

∑N1−1
j=0 (aji )

T bji .
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As for the parametrizing equations, different choices are available. For instance, if the system

(2.1) admits an integral of motion such as the Jacobi integral in the HP or CRTBP problems, one

can require the quasi-periodic invariant torus to have the same energy level via

s0(uji ) :=
1

N0N1

N0−1∑
i=0

N1−1∑
j=0

C(uji )

− C = 0, (3.8)

where C(uji ) is the Jacobi integral evaluated at the mesh point uji . Alternatively, one could also fix

the value of a torus frequency, e.g.,

s0(ω0) := ω0 − 2π/T = 0, (3.9)

and obtain synchronous tori, i.e., tori of the same period.

Finally, the last equation s1(uji ,ω) may be covered by pseudo-arclength continuation as in

Section 2.3:

s1(z) :=< uji − ũ
j
i , ũ
′j
i > +(ω − ω̃)T ω′ − δs = 0, (3.10)

where

[
ũ′
j
i ω′

]T
is the family tangent evaluated at a previously known solution (ũji , ω̃), and δs

is again the continuation step-length.

The latter completes the set of constraints to be considered along with (3.5). Next, Newton’s

method can be applied to update the initial approximation of uji and ω until all of the constraints

are satisfied within some small tolerance of choice. If desired, the computed solution can be used

to replace the values of ũji , ω̃, ũ′
j
i , ω̃

′, and rerun the code to continue through different members

of the quasi-periodic invariant tori family. Following a predictor-corrector scheme such as the one

of Chapter 2, the initial guess of the new family member would be given by

uji = ũji + δs ũ′
j
i ,

w = ω̃ + δs ω̃′.

(3.11)



38

3.1.1 The PDE(CD) algorithm

In the examples shown in the original paper by [99], the partial derivatives of uji are appro-

ximated via second-order central differences [74]. In this case,

∂uji
∂θ0

=
uji−2 − 8uji−1 + 8uji+1 − u

j
i+2

12 ∆θ0
,

∂uji
∂θ1

=
uj−2
i − 8uj−1

i + 8uj+1
i − uj+2

i

12 ∆θ1
,

(3.12)

where ∆θ0 = 2π/N0, and ∆θ1 = 2π/N1. Note that the truncation error of such a local approxi-

mation is on the order of O(∆θ4), and decrease with the fourth power of 1/N .

3.1.2 The PDE(DFT) algorithm

Differently from the PDE(CD) method, in PDE(DFT) the partial derivatives appearing in

(3.1) are approximated via the DFT. That is, given

Ajk =

N0−1∑
i=0

uji e
i 2π k i/N0 , (3.13a)

Bl
i =

N1−1∑
j=0

uji e
i 2π l j/N1 , (3.13b)

then

uj(θ0) =
1

N0

(N0−1)/2∑
k=−(N0−1)/2

Aj
k e

i k θ0 , (3.14a)

ui(θ1) =
1

N1

(N1−1)/2∑
l=−(N1−1)/2

Bl
i e

i l θ1 , (3.14b)

so that

∂uji
∂θ0

=
1

N0

(N0−1)/2∑
k=−(N0−1)/2

i kAj
k e

i k (2π j/N1), (3.15a)

∂uji
∂θ1

=
1

N1

(N1−1)/2∑
l=−(N1−1)/2

i lBl
i e

i l (2π i/N0). (3.15b)

Numerical experiments show that the approximation error using the information from the global

distribution of the mesh point is two-to-three orders of magnitude smaller than the truncation error

of (3.12).
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3.2 Two-Point Boundary Value Problem Solvers

Differently from the PDE approach, TPBVP occur whenever a solution of a system of ordi-

nary differential equations (ODE) needs to satisfy boundary conditions at two different points in

time. We have already seen an example of BVP when computing periodic orbits as in Sec. 2.3. The

main idea of this Section is that both of the map strategies considered in this thesis, namely the

KKG and GMOS algorithms, can be recast into this framework. Then, similar techniques to the

ones illustrated in Chapter 2 may be applied to calculate entire families of quasi-periodic invariant

tori.

First, let us recall the form of the system dynamics as a function of the dimensionless time

τ = t/T :

x′ = T f(x), (3.16)

where x′ denotes the first derivative of x with respect to the nondimensional time τ , and T is

hereby referred to as the reference time.

Next, observe that the KKG and GMOS algorithms aim at calculating invariant curves of a

Poincaré and stroboscopic mapping, respectively. Therefore, let X =

[
xT0 , xT1 , . . . , xTN1−1

]T
be the collection of N1 evenly distributed points along one of these curves. Of course, X ∈ RnN1 ,

where n is the dimension of the original Hamiltonian system (3.16). Furthermore, let F(X) be the

nN1-dimensional vector field given by

F(X,T ) =



T0 f(x0)

T1 f(x1)

. . .

TN1−1 f(xN1−1)


, (3.17)

where T =

[
T0, T1, . . . , TN1−1

]T
is a vector of constant reference times Ti, i = 0, . . . , N1 − 1.

Depending on the map strategy being considered, Ti is either the first return time of the i-th

trajectory, or the stroboscopic time T . In the latter case, Ti = T ∀i, and the constant vector T

may be reduced to a scalar parameter for the vector field (3.17).
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Nevertheless, the augmented system

X ′ = F(X,T ) (3.18)

describes the dynamical evolution of a curve with respect to the non-dimensional time τ . In this

case, a QP torus can be seen as a trajectory X(τ), τ ∈ [0, 1] satisfying quasi-periodic boundary

conditions g(X0,X1) = 0, where X0 = X(τ = 0), and X1 = X(τ = 1).

Depending on the particular methodology being considered, different choices of boundary

conditions emerge. Furthermore, phase conditions such as (3.7a)–(3.7b) may or may not be required

in order to correctly identify quasi-periodic invariant tori within their families. To that end, two

parametrizing equations are typically appended to the list of constraints that need to be satisfied

by the BVP solver. The first of these equations is either provided by an integral of motion or by

fixing one of the torus frequencies as in (3.9). Similarly, pseudo-arclength continuation may be

used to complete the list of constraints and allow the user to step through different members of a

quasi-peirodic invariant tori family as in Sec. 2.3 and 3.1. These and other implementation tips for

both of the map strategies are further discussed in the next subsections.

3.2.1 The KKG algorithm

In their paper, Kolemen et al. [63] derive a numerical procedure to compute families of

quasi-periodic invariant tori via invariant curves of a Poincaré map. Accordingly, consider the

intersection of the quasi-periodic invariant torus of Fig. 3.2 with the equatorial plane z = 0 where

the underlying periodic orbit is crossing from south to north. As described in Ref. [98], a Poincaré

map takes a point y0 on the chosen surface of section and gives the corresponding state y1 at the

next surface of section crossing. If y1 = g(y0) represents such mapping, one can linearize in the

neighborhood of a periodic orbit y∗ = g(y∗), obtaining the linearized Poincaré mapping:

δy1 =

[
∂g

∂y

]∗
δy0 = Φ10 δy0, (3.19)

where δy =

[
δx, δy, δẋ, δẏ, δż

]T
represents deviations of the reduced state vector y, and Φ10

is hereby referred to as the reduced monodromy matrix.
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As soon as Φ10 is calculated, a linear approximation of an invariant curve of the Poincaré map-

ping g may be found. Specifically, if Φ10 admits at least one pair of complex conjugate eigenvalues,

e.g., Φ10 e10 = eiρ e10, then

ψ(φ) = K [cos (φ) Re(e10)− sin(φ) Im(e10)] , (3.20)

is invariant with respect to Φ10.

Now consider the N1 perturbations δx0,i = ψ(φi) found in correspondence of the N1 angular

values φi = 2π (i− 1)/N1, i = 1, . . . , N1. Fig. 3.3 shows how this initial guess appears in different

coordinate spaces for the example torus of Fig. 3.2. It can be seen that the projection of this

curve in the x–y coordinate plane is actually the most circular and therefore the most suited to

parametrize the intersection between the torus and the considered surface of section ζ(x) := z = 0,

ż > 0 via Fourier analysis. Let R =
√
δx2 + δy2, and consider a DFT such that

X0 −X∗ = δX0 =


δx0,1

...

δx0,N1

 = A(θ0)Q, (3.21)

where X∗ is the representation of the considered periodic orbit in the augmented system (3.17),

δx0,i =

[
δx0,i, δy0,i, δz0,i = 0, δẋ0,i, δẏ0,i, δż0,i

]T
, and Q =

[
QT
R QT

ẋ QT
ẏ QT

ż

]T
is the

vector of Fourier coefficients obtained from (3.21)1 . Furthermore, A(θ) is the matrix defined by

A(θ0) =


A(θ0,1)

...

A(θ0,N1)

 , A(θ0,i) =



cos (θ0,i)S(θ0,i) 0 0 0

sin (θ0,i)S(θ0,i) 0 0 0

0 0 0 0

0 S(θ0,i) 0 0

0 0 S(θ0,i) 0

0 0 0 S(θ0,i)


, (3.22)

where

S(θ0,i) =

[
1, cos (θ0,i), sin (θ0,i), . . . , cos (N1 θ0,i), sin (N1 θ0,i)

]
, (3.23)

1 since z = 0 on the surface of section, there is no need to compute the corresponding Fourier coefficients



42

(a) (b)

(c) (d)

Figure 3.3: An invariant circle of the Poincaré map as seen in different coordinate planes.
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and

θ0,i = arctan

(
δy0,i

δx0,i

)
, i = 1, . . . , N1. (3.24)

It is now possible to propagate each of the N1 points till the next surface of section crossing

via (3.17), and obtain the corresponding angles in terms of the chosen coordinate variables at the

next surface of section crossing:

θ1,i = arctan

(
δy1,i

δx1,i

)
. (3.25)

If the δX0 points were initialized exactly on the surface of a QP invariant torus, the points obtained

after one revolution, namely δX1 = X1 −X∗, should satisfy the boundary conditions

g(X0,X1) := δX1 −A(θ1)Q(δX0) = 0 (3.26)

That is, the propagated points should end up on the same curve of the Poincaré map. Since this

is not the case–at least for the very first iteration of the algorithm–consider updating the Fourier

coefficients of X0 via Newton’s method. The vectorial quantity to be nullified corresponds to

F (Q) = δX1 −A(θ1)Q = 0, (3.27)

so that a Newton’s update reads as

Q(k+1) = Q(k) −DF (Q(k))† F (Q(k)), (3.28)

where DF † is the left pseudo-inverse of the Jacobian matrix of F (Q) (see [63] for details).

Also recall that phase conditions and parametrizing equations may or may not be needed

in order to have a unique solution of the BVP. As it turns out, the KKG algorithms only needs

two parametrizing equations to be appended to the error vector (3.27). This is because working

with surfaces of section and projections in coordinate planes as in (3.24)–(3.25) effectively avoid

the indeterminacies that would otherwise affect the Fourier representation of X0. Consequently,

no phase constraints are needed, whereas the remaining two parametrizing equations are given by

either

s0(Q) :=
1

N1

(
N1∑
i=1

C(A(θ0,i)Q)

)
− C, (Jacobi) (3.29)
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or

s0(Q) :=
1

N1

(
N1∑
i=1

τ(A(θ0,i)Q)

)
− T, (Period) (3.30)

where τ(x) is the first return time for point x, and

s1(Q) =< Q− Q̃, Q̃′ > −δs. (Pseudo-arclength) (3.31)

By appending Eq, (3.31) and either Eq. (3.29) or (3.30) to the error vector (3.27), Newton’s

method can be correctly applied until convergence to the desired quasi-periodic torus. Specifically,

the numerical procedure outputs invariant curves of the Poincaré mapping such as the one of Fig.

3.4(b), which proves the good agreement between the propagated points and their projection on the

final estimate of the invariant curve. If desired, the KKG solution points can be finally integrated

with the full nonlinear system of equations of motion to obtain a representation of the corresponding

quasi-periodic invariant torus in the phase space.

(a) (b)

Figure 3.4: First (a) and last iteration (b) of the KKG algorithm. The propagated points are shown
in blue, whereas the points projected on the current estimate of the invariant circle of the Poincaré
map are shown in black.



45

3.2.2 The GMOS algorithm

In contrast to the KKG method, Gómez, Mondelo [44], Olikara, and Scheeres [86] (GMOS)

compute families of QP tori via invariant curves of a stroboscopic map. To illustrate this metho-

dology, recall that a torus function defines a diffeomorphism between the phase space and a torus

space Td. Accordingly, one can integrate trajectories in Td and use the conjugacy illustrated in Fig.

3.5 to obtain the final state vector in the original phase space. The advantage of this approach is

that the dynamics in torus coordinates is indeed trivial and can be solved analytically without the

need of numerical methods. For instance, the image of a T -stroboscopic mapping on a torus reads

as GT (θ) = θ̄ = θ + ω T , where GT : Td → Td, and ω is the frequency vector introduced in Sec.

2.6. In the case of a two-dimensional torus with T = 2π/ω0, this corresponds to

θ̄ =


θ0 + 2π = θ0,

θ1 + 2π
ω1

ω0
= θ1 + ρ,

(3.32)

Figure 3.5: Conjugacy between GT and ϕT
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where ρ = 2π ω1/ω0 is known as the rotation number and is an intrinsic property of the manifold

[61]. Furthermore, since u ◦GT = ϕT ◦u, the following must be true for the images of a stroboscopic

mapping ϕT in phase space:

ϕT (u(θ)) = u(GT (θ)), (3.33a)

= u(

[
θ0, θ1 + ρ

]T
). (3.33b)

Following Eq. (3.33), it is clear that for any given value of θ0, v(θ) = u(

[
θ0, θ

]T
) must be

an invariant curve of ϕT . To calculate this curve, observe that

ϕT (v(θ)) = v(θ + ρ) = v(θ̄). (3.34)

Therefore, by defining an operator R−ρ that acts on the space of the diffeomorphisms V = {v(·) |v :

T1 → T ⊂ R6} such that

(R−ρ ◦ v)(θ) = v(θ − ρ), (3.35)

one has the invariance relationship

R−ρ[ϕT (v(θ))]− v(θ) = 0. (3.36)

Eq. (3.36) establish a relationship between the unknowns v(θ), T and ρ that may be used to refine

these quantities via Newton’s method once a reliable initial guess is provided.

It turns out that such an initial approximation can be provided by the invariant circle of

the monodromy map as in Sec. 3.1. Consequently, assume a periodic orbit is given along with its

monodromy matrix M admitting at least one pair of complex conjugate eigenvalues, i.e., M e =

eiρ e. It is easy to demonstrate that, after one orbital period T , the rotation number ρ should

approximately be equal to the phase of the complex conjugate eigenvalue pair. This follows from

the fact that M ϕ(θ) = ϕ(θ − ρ) as in Eq. (3.3).

Next, consider N1 points v(θj), j = 0, . . . , N1 − 1 along ϕ(θ) such that

X0 =

[
v(θ0)T , v(θ1)T , . . . , v(θN1−1)T

]T
. (3.37)
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After propagating each of these points for one orbital period T , one obtains the image of the

stroboscopic map X1 =

[
v(θ̄0)T = ϕT (v(θ0))T , v(θ̄1)T , . . . , v(θ̄N1−1)T

]T
. Furthermore, by

means of the DFT of X0, i.e.,

ck =

N1∑
j=1

v(θ̄j) e
i2π k (j−1)/N1 , (3.38)

a realization of R−ρ immediately follows: since

v(θ̄j) =
1

N1

(N1−1)/2∑
k=−(N1−1)/2

ck e
i k (2π (j−1)/N1), (3.39)

then

R−ρ[v(θ̄j)] =
1

N1

(N1−1)/2∑
k=−(N1−1)/2

ck e
i k (2π (j−1)/N1−ρ),

=
1

N1

(N1−1)/2∑
k=−(N1−1)/2

c′k e
i k 2π (j−1)/N1 . (3.40)

The invariance relationship (3.36) can be now translated into a set of nN1 boundary condi-

tions in the (nN1 + 2) unknowns X0, T , ρ:

g(X0,X1) = [D]−1 [R(−ρ)] [D]X1 −X0 = 0, (3.41)

where [D] and [D]−1 are the DFT and inverse DFT operators rewritten in matrix form, and [R(−ρ)]

is the diagonal matrix that rotates the Fourier coefficients from ck to c′k = ck e
−i k ρ.

It is worth noting that the boundary conditions (3.41) would still be satisfied for all the

possible choices of θ0 = φ ∈ [0, 2π]. Besides, for each value of α ∈ [0, 2π], v(θ+α) would also be a

solution of (3.36). To prevent these indeterminations to occur, two phase conditions are appended

to the error vector (3.41). In particular, Olikara and Scheeres [86] define the phase condition for

θ1 by minimizing the distance between the researched curve v(θ) and a previously found solution

ṽ(θ). The distance between two solutions is defined as

1

2π

∫ 2π

0
‖v(θ)− ṽ(θ)‖2 dθ, (3.42)

yielding

p1(X0) :=<X0,
∂X̃0

∂θ1
>=

1

N1

N1∑
j=1

v(θj)
T ∂ṽ(θj)

∂θ1
= 0, (3.43)
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with

∂ṽ(θj)

∂θ1
=

1

N1

(N1−1)/2∑
k=−(N1−1)/2

i k ck e
i k (2π (j−1)/N1) (3.44)

as it follows from (3.39).

A similar formula, i.e.,

p0(X0) :=<X0 − X̃0,
∂X̃0

∂θ0
>=

1

N1

N1∑
j=1

[v(θj)− ṽ(θj)]
T ∂ṽ(θj)

∂θ0
= 0, (3.45)

is also found for the phase condition of θ0 recalling that, from (3.1),

∂ṽ

∂θ0
=

1

ω̃0

[
f(ṽ(θ))− ω̃1

∂ṽ

∂θ1

]
, (3.46)

As for the parametrizing equations, one can either use the value of the Jacobi integral of the

underlying periodic orbit C and seek for invariant tori that satisfy the relationship

s0(X0) :=
1

N1

N1∑
j=1

C(v(θj))− C = 0, (3.47)

or fix the stroboscopic time via

s0(T ) := T − P, (3.48)

where P is a user-defined value (usually corresponding to the period of the underlying periodic

orbit). Lastly, pseudo-arclength continuation can be used to step through different family members:

s1(z) :=<X0 − X̃0, X̃
′
0 > +(T − T̃ )T ′ + (ρ− ρ̃) ρ′ − δs = 0, (3.49)

where z̃′ =

[
X̃
′
0, T ′, ρ′

]T
is the family tangent evaluated in z̃ =

[
X̃0, T̃ , ρ̃

]T
.

In the end, the numerical calculation of a quasi-periodic invariant torus can be formulated

as a BVP defined by 
X ′ = T F(X),

T ′ = 0,

ρ′ = 0,

(3.50)
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and subject to the boundary constraints

F (z) =



g(X0,X1)

p0(X0)

p1(X0)

s0(X0) or s0(T )

s1(z)


= 0. (3.51)

The combination of (3.50)–(3.51) forms a well posed BVP that can be solved with shooting

techniques and Newton’s method:

z(k+1) = z(k) −DF (z(k))† F (z(k)), (3.52)

where DF (z)† denotes the left pseudo-inverse of the Jacobian of (3.51) (see Ref. [86] for details).

Upon convergence, the GMOS algorithm outputs invariant curves of the stroboscopic map such as

the one illustrated in Fig. 3.6(b). This curve can be used to reinitialize the algorithm and step

through entire family branches by following the standard predictor-corrector scheme of Sec. 2.3.

(a) (b)

Figure 3.6: First (a) and last iteration (b) of GMOS.
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3.3 Accuracy Test

In order to test the numerical procedures outlined in the previous sections, consider the

equations of motion of the planar Earth problem in the co-rotating frame of the planet:
ẍ− 2ω⊕ ẏ = −µ⊕

r3
x+ ω2

⊕ x,

ÿ + 2ω⊕ ẋ = −µ⊕
r3

y + ω2
⊕ y,

(3.53)

where x =

[
x, y, ẋ, ẏ

]T
is the state of a satellite with respect to the ECEF frame, r =

√
x2 + y2

is the norm of the spacecraft position vector, µ⊕ = 398600.4418 km3/s2 is the Earth gravitational

parameter, and ω⊕ = 7.2921× 10−5 rad/s is the Earth’s spin rate . In what follows, we normalize

the units of the problem such that the length and time units correspond to LU = R⊕ = 6378.137

km and TU =
√
R3
⊕/µ⊕ = 806.8111 s, respectively. Following this convention, µ⊕ = 1, whereas

ω⊕ = 0.05883.

Next, consider a Planar Circular Orbit (PCO) with semi-major axis ā = 10000 km = 1.5679

LU. As shown in Fig. 3.7, the trajectory is also periodic in the co-rotating frame of the Earth

with period T = 2π/(n − ω⊕) = 13.9457 TU, where n =
√
µ⊕/ā3 is the mean motion of the

satellite. Moreover, computing the monodromy matrix and corresponding eigenvalues indicate that

Figure 3.7: Planar Circular Orbit (PCO) in both the ECEF and ECI frames.
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the periodic orbit is stable and surrounded by a family of two-dimensional tori.

Several members of the quasi-periodic invariant tori family can be then computed via the nu-

merical procedures outlined in the previous sections. During this procedure, we fix the longitudinal

frequency of the torus to match the period of the PCO via (3.9), (3.30), and (3.48), respectively.

This selection ensures that the quasi-periodic trajectories initialized on the surface of the computed

tori have, in principle, the same orbital period/semi-major axis of the planar circular trajectory. If

differences occur, these are due to the approximations and accuracy limitations of the numerical

procedures.

To estimate the accuracy of each method, we proceed in the following fashion. First, we

rotate each of the solution points in the ECI frame and compute the corresponding Keplerian orbit

elements. Next, we accumulate the differences between the semi-major axes and the nominal value

before averaging over the number of points used by the considered methodology. For instance, if

a quasi-periodic invariant torus has been computed with GMOS using N1 points, the final error

is given by
∑N1−1

i=0 |ai − ā|/N1, where ai are the semi-major axes obtained from each of the N1

solution points. The outcome of our numerical investigation is illustrated in Fig. 3.8.

As it can be seen, the errors are shown as a function of the eccentricity e. This is possible

because quasi-periodic trajectories in the ECEF frame are actually eccentric periodic orbits in the

Earth-centered inertial frame (Fig. 3.9). What differs between trajectories on the surface of the

same QP torus is just the phasing of the perigee with respect to the body-fixed frame of the Earth

at epoch. Therefore, each QP torus can be related to a unique value of e and eventually compared

with similar solutions produced with different algorithm. The inspection of the results indicates

that GMOS and the PDE solver based on DFT (PDE(DFT)) significantly outperform the KKG

and PDE(CD) algorithms.

Given that the DFT uses the full representation of either the torus or a curve on its surface, it

is not surprising that the accuracy of PDE(DFT) and GMOS is considerably better than PDE(CD),

which is rather based on the local approximation of the partial derivatives appearing in (3.5). That

being said, it is still worth noting that the Jacobian matrix of F (z) in the PDE(CD) algorithm is
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Figure 3.8: Accuracy test for several QP tori computed with the numerical procedures outlined in
this Chapter. GMOS uses N1 = 25 solution points, KKG uses N1 = 25 with Nmax = 12, whereas
PDE(DFT) and PDE(CD) use an evenly distributed grid of (N1 = 25)× (N0 = 25) points.

(a) (b)

Figure 3.9: (a) Quasi-periodic invariant torus and sample trajectory in the ECEF frame of the
Earth. (b) Sample trajectory as seen in the ECI frame. e = 0.2334.
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still much sparser than the Jacobian matrix for the PDE(DFT) case (Fig. 3.10). With the proper

implementation, this can save computational time when the number of solution points becomes

significantly larger than the 25× 25 grid used for the accuracy test.

(a) (b)

Figure 3.10: Sparsity of the Jacobian matrix for the PDE algorithms using central differences (a)
and DFT (b). Both the matrices consist of (nN0N1 + 4)× (nN0N1 + 2) ' 6.26× 106 entries.

As for the KKG method, it is fairly clear that the algorithm suffers from the lack of explicit

dependency on the frequencies of the torus. Indeed, KKG is probably the least suitable method

for computing families of QP tori with the same longitudinal frequency as the constraint (3.30) is

certainly weaker than (3.9) and (3.48). A second disadvantage is that the algorithm works with

the Fourier representation of the invariant curves of a Poincaré map rather than a finite set of

satellite states. As it can be seen, this tends to decrease the accuracy of the solution points when

the intersection of the torus with the surface of section becomes larger. Notably, such a trend is not

observed in GMOS, probably because the DFT is applied to a set of n-dimensional states rather

than on the projection of this curve onto a suitable coordinate plane. Speaking of this projection,

it is also worth noting that the final choice of coordinates in the KKG algorithm is not unique
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and ultimately depends on the topology of the QP tori family to be computed with the algorithm.

Even different families of the same problem may require different coordinate choices, making the

implementation of the KKG algorithm certainly more complicated and case dependent.

As far as GMOS and PDE(DFT) are concerned, it is difficult to distinguish between the per-

formances of the two algorithms. Both of these strategies are well below the satisfactory tolerance

used to check the convergence of Newton’s method and none of them seem to decrease in accuracy

when the eccentricity of the torus becomes larger. For all these reasons, we propose to further

assess the accuracy and runtime of these methodology in a more practical astrodynamics problem

such as the PCRTBP. The result of this analysis are summarized in the next sections, along with

additional techniques that are relevant for the remainder of this thesis.

3.4 Further Remarks on GMOS and PDE(DFT)

Following the results of Fig. 3.8, it appears as GMOS and PDE(DFT) are the most accurate

methodologies currently available in the astrodynamics literature. Therefore, it is interesting to

further investigate these strategies in order to establish which of the candidate procedures should

be preferred for practical studies of astrodynamics problems.

With this goal in mind, we now switch to the equations of motion of the PCRTBP with

Earth-Moon masses [104, 103]:
ẍ− 2 ẏ = x− (1− µ)

(x+ µ)

r3
1

− µ (x− 1 + µ)

r3
2

,

ÿ + 2 ẋ = y − (1− µ)
y

r3
1

− µ y

r3
2

.

(3.54)

As usual, the mass, length, and time units of the problem are normalized such that total mass of the

system, the mean motion of the secondary about the primary, and the total distance between the

two are all equal to one. Furthermore, x =

[
x, y, ẋ, ẏ

]T
is the state of a massless spacecraft

in the co-rotating frame of the two primaries, r1 is the distance from the larger body, r2 is the

distance from the secondary body, and µ = 0.01215 is the mass ratio parameter.

Next, consider a distant retrograde orbit (DRO) such as the one of Fig. 3.11. As it is well



55

established in the literature [50], DROs are stable and surrounded by a family of two-dimensional

quasi-periodic invariant tori. Therefore, fifty members of the family are computed using different

combination of points with both the GMOS and PDE(DFT) algorithms (Figure 3.12).

Specifically, GMOS implementations based on multiple-shooting are hereby considered and

compared with the single-shooting algorithm used for the results of Sec. 3.3. This should make the

comparison more fair with the PDE(DFT) approach in terms of the size of the Jacobian matrix

to be inverted via Newton’s method. As for the PDE(DFT) methodology, the number of points

in both the longitudinal and latitudinal directions is changed between N0 = 25, 51, and N1 = 25,

51, so as to verify the implications of using a finer mesh on the performance of the algorithm. For

similar reasons, the number of GMOS points is also changed between 25 and 51.

The performance of the numerical procedures is assessed in terms of accuracy and runtime.

For GMOS, the former is obtained by propagating a set of midpoints for one stroboscopic time

and checking the invariant relationship (3.36). That is, once an invariant circle is calculated with

the algorithm, a set of new initial conditions is obtained from the rotation of the solution points

0 0.5 1 1.5

x (-)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
(-
)

Earth

Moon

L1 L2

Figure 3.11: Example of DRO for the Earth-Moon system.
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Figure 3.12: (a) Fiftieth member of the quasi-DRO family of invariant tori computed with GMOS
and PDE(DFT). (b) Fifty invariant circles of the stroboscopic mapping generated with the algo-
rithms.

by an angle α = π/N1, where N1 is the number of points used for the discretization of the curve.

These midpoints are subsequently propagated forward in time using the equations of motion (3.54)

until T = 2π/ω0, and eventually rotated backwards by an angle ρ = ω1 T via DFT. In theory,

the rotated states should match the initial conditions generated for the accuracy test, whereas, in

practice, discretization and numerical errors eventually start to degrade the quality of the computed

solutions. This can be seen in the plot of Fig. 3.13, which illustrates the norm of the GMOS error

vector normalized by the number of points for each of the different cases, i.e.,

EGMOS(z) =

√√√√N1−1∑
i=0

δ2
i

N1
, (3.55)

where δi = ‖R−ρ [ϕT (v(θi + α))]− v(θi + α)‖.

Differently from the previous algorithm, PDE(DFT) does not compute invariant curves of

stroboscopic maps. Therefore, the accuracy test proposed for GMOS cannot be applied to the

PDE(DFT) approach. Instead, consider generating a set of midpoints along the first circle output

by the algorithm, namely u(θ0 = 0, θi + β), where β = π/N1, and evaluate the force field in

correspondence of this new set of points. Following the definition of quasi-periodic invariant tori
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Figure 3.13: Norm of the error vector (3.55) computed from fifty GMOS solutions. It is worth
noting that multiple-shooting trajectories have been generated using 5 segments.

(3.1), the force field should match the linear combination given by the partial derivatives of u(θ0 =

0, θi + β) with respect to the parametrizing angles θ0, θ1, scaled by the torus frequencies ω0 and

ω1.

Thus, let us define the error of the PDE(DFT) method as

EPDE(z) =

√√√√N1−1∑
i=0

ε2i
N1

, (3.56)

where

εi =

∥∥∥∥∥f(u(0, θ1 + αi))− ω0
∂u

∂θ0

∣∣∣∣
θ0=0,θ1=θi+α

− ω1
∂u

∂θ1

∣∣∣∣
θ0=0,θ1=θi+α

∥∥∥∥∥ . (3.57)

The values of EPDE(z) are plotted in Fig. 3.14 for all of the fifty members of the quasi-DRO family

obtained with different combinations of points, namely (N0 = 25) × (N1 = 25), 25 × 51, 51 × 25,

and 51× 51.

It turns out that GMOS is slightly more accurate than PDE(DFT). Not surprisingly, quasi-

periodic trajectories obtained via multiple-shooting are also found to be more accurate than single-



58

0 10 20 30 40 50

Member No.

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

P
D
E
(D

F
T
)
E
rr
or

N0 = 25, N1 = 25
N0 = 25, N1 = 51
N0 = 51, N1 = 25
N0 = 51, N1 = 51

Figure 3.14: Norm of the PDE(DFT) error vector computed for fifty members of the quasi-DRO
family with (N0 = 25)× (N1 = 25), 25× 51, 51× 25, and 51× 51, respectively.

Table 3.1: Analysis of the runtime for the numerical computation of fifty quasi-DRO tori via
GMOS and PDE(DFT). The data were collected for different combinations of N1, N , and m using
MATLAB’s profiler on a System76 laptop running Ubuntu 15.04 with a quad-core i7-6700K CPU.

Runtime
Total ODE Integration Newton’s Update

GMOS, N1 = 25 72.765 s 70.661 s 0.050 s
GMOS, N1 = 51 135.263 s 132.958 s 0.189 s
GMOS(MS), N1 = 25 138.493 s 137.284 s 0.615 s
GMOS(MS), N1 = 51 647.153 s 642.978 s 3.027 s
PDE(DFT), N0 = 25, N1 = 25 67.682 s N/A 49.671 s
PDE(DFT), N0 = 51, N1 = 25 453.530 s N/A 405.130 s
PDE(DFT), N0 = 25, N1 = 51 459.413 s N/A 411.188 s
PDE(DFT), N0 = 51, N1 = 51 3429.504 s N/A 3324.771 s

shooting ones. Finally, doubling the number of discretization points significantly reduce the error

up to the fortieth member of the family. Unfortunately, this also affects the runtime of the consider

algorithms as observed in Table 3.1.

In Table 3.1, runtimes measured with MATLAB’s profiler are summarized and compared
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among each other. As it can be seen, PDE(DFT) turns out to be not only less accurate but

also appreciably less efficient than GMOS. In particular, the algorithm spends ' 90 % of its time

solving Newton’s equation as no numerical integration is needed between different mesh points.

Yet, the algorithm still comes out short as the total runtime is either comparable or greater than

GMOS. In partial defense of the PDE(DFT) approach, it is worth noting that Newton’s update is

performed via MATLAB’s backslash operator. For non-square matrices such as the Jacobians of

the error vectors (3.5) and (3.41), this corresponds to a sparse QR-factorization based on Givens

rotations that becomes particularly slow for large nonsparse matrices. Following [27], the speed of

the algorithm could be significantly improved by making the Jacobian matrix square as in [83]. In

the meantime, it should also be mentioned that the numerical integration of trajectories for the

single-shooting and multiple-shooting GMOS cases has been performed using MATLAB’s ode113.

Appreciable speed-up is also expected by replacing this function with a pre-compiled numerical

integrator, meaning that different implementations of the algorithms could hardly overthrow the

outcome of our comparative analysis.

For all these reasons, it appears as the GMOS algorithm should be the method of investigation

for the remainder of this thesis. Such a decision is also motivated by the possibility to carry

out stability analyses on quasi-periodic trajectories and investigate novel design opportunities like

ballistic lunar transfers [90] or formation deployment via quasi-periodic invariant manifolds. In

addition to that, the algorithm is found to be applicable for calculating three-dimensional quasi-

periodic invariant tori [7], as well as to be recast in collocation form for situations in which the

instability of shooting techniques may become problematic. These and other advantages are further

discussed in the following sections.

3.5 Collocation

As for all of the boundary value problems of the form (3.50)–(3.51), the GMOS algorithm

can be also implemented with collocation. The benefit of this technique is that families of quasi-

periodic invariant tori may be calculated even when poor initial guesses are available. This situation
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is not uncommon and often occurs when dealing with time-periodic systems such as the Bicircular

Problem (BCP) [24, 20, 42, 102] or the Elliptical Hill Problem (EHP) [40, 109] that is later discussed

in this thesis. In addition to this, it is found that this particular implementation of GMOS allows

for a very efficient solution of the system of algebraic equations arising from Newton’s method.

This makes the collocation version of GMOS particularly attractive and a valid alternative to the

PDE(DFT) approach even when the global representation of a quasi-periodic invariant torus is

needed.

To further investigate into this comparison, consider the boundary value problem given by

(3.50) and subject to the boundary constraints

F (z) =



g(X0,X1)

cc(X0)

cd(X0, T )

p0(X0)

p1(X0)

s0(X0) or s0(T )

s1(z)



= 0, (3.58)

where cc(X0), cd(X0, T ) are the continuity and collocation constraints defined in Eq. (2.30)

adapted for the quasi-periodic case: cc(X0) := Xi+1,0 −
∑m

j=0Xi,j Lj(τi+1) = 0, i = 0, · · · , N − 1

cd(X0, T ) := T F(Xi,j)−
∑m

j=0Xi,j L
′
j(τj) = 0, i = 0, · · · , N − 1; j = 1, · · · ,m.

(3.59)

As it can be seen, the only difference with respect to (2.30) is that the states Xi,j ∈ RnN1 are now

representative of a whole curve on the torus at the N × (m+1) collocation points defined in Sec. 2.4

rather than single samples of a periodic orbits at these instants. For the four-dimensional problem

of Sec. 3.4, this means that the Jacobian matrix of (3.58) consists of, at least, 1 × 109 entries.

This number assumes that an invariant curve of a stroboscopic mapping would be represented by

N1 = 25 discretization points, that the time domain would be split in N = 50 segments, and that
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the solution X(τ) would be evaluated in m = 6 collocation points on each of these subintervals.

These are generally accepted as the minimum values for which the global error of the collocation

method would be reasonable. However, depending on the application and accuracy requirements,

it may be possible that the Jacobian matrix to be inverted via Eq. (3.52) could be even larger than

this.

Fortunately, the sparsity of the Jacobian matrix portrayed in Fig. 3.15 is significantly better

than the sparsity derived from the PDE(DFT) approach shown in Fig. 3.10(b). The consequences

of this appear explictly in the numerical results of Table 3.2, where MATLAB’s profiler has been

applied to measure the performance of the collocation version of GMOS (GMOS(C)) with exactly

the same setup of the previous section. In spite of the larger number of unknowns, GMOS(C)

turns out to be quite efficient and fast, not only with respect to the PDE(DFT) approach, but

also with respect to shooting versions of the same algorithm. The latter follows from the fact

Figure 3.15: Jacobian matrix for the collocation version of GMOS. In this case, the GMOS(C)
algorithm was launched with N1 = 25 discretization points, N = 51 segments, and m = 6.
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that the Jacobian matrix of (3.58) can be made squared by unfolding the parameters of a quasi-

periodic invariant torus as advocated in Ref. [83]. Although a detailed discussion of this technique

is beyond the scope of this manuscript, it is interesting to note that, in this case, MATLAB’s

backslash operator proceeds with a very efficient LU factorization that reduces the runtime of

Newton’s update by several factors [27]. For comparison, the application of Newton’s method on a

non-square Jacobian matrix in the GMOS(C) case with N1 = 25, N = 50, m = 6 would take more

than 3600 seconds to compute the same fifty members of the quasi-DRO family of Tables 3.1–3.2.

Considering this appreciable speed-up, it goes without saying that the implementation strategy

outlined in Ref. [83] should be preferred for thorough investigations of astrodynamics problems.

Moving forward, it is interesting to note that the accuracy of the GMOS(C) algorithm with

N1 = 25, N = 50, m = 7 remains within the tolerance of Newton’s method (10−12) for only several

members of the quasi-DRO family. This is evident in the plot of Fig. 3.16, which displays the

GMOS error of the collocation method in a similar fashion to Fig. 3.13. For future use of the

GMOS(C), we will tacitly assume that the order of the Legendre polynomials used to interpolate

the solution over each of the subintervals [τi, τi+1] is m = 7. It also seems as N = 50 segments are

enough to accurately represent a quasi-periodic solution in a class of dynamical problems that are

as nonlinear as the PCRTBP. In particular, this configuration appears to be the best compromise

between runtime and accuracy, even though the latter strongly depends on the number of solution

points utilized for the discretization of the invariant curves. In this case, the plot of Fig. 3.16

Table 3.2: Analysis of the runtime for the numerical computation of fifty quasi-DRO tori via the
collocation version of GMOS. The data were collected using MATLAB’s profiler on a System76
laptop running Ubuntu 15.04 with a quad-core i7-6700K CPU.

Runtime
Total ODE Integration Newton’s Update

GMOS(C), N1 = 25, N = 50, m = 7 104.038 s N/A 66.758 s
GMOS(C), N1 = 35, N = 50, m = 7 166.558 s N/A 117.331 s
GMOS(C), N1 = 51, N = 50, m = 7 311.413 s N/A 232.662 s
GMOS(C), N1 = 51, N = 50, m = 9 394.937 s N/A 269.256 s
GMOS(C), N1 = 51, N = 100, m = 6 650.574 s N/A 527.149 s
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Figure 3.16: GMOS(C) error computed for fifty members of the quasi-DRO family with several
combination of N1, N , and m values.

suggests that more than N1 = 35 points should be considered for accurate representations of

several QP tori family members. Therefore, a value of N1 = 51 is typically assumed for the

numerical investigations presented in Sec. 5.4.

3.6 Stability of Quasi-periodic Invariant Tori

A second advantage offered by the GMOS algorithm is that the stability of quasi-periodic

invariant tori can be calculated as a byproduct of the method. To support this claim, observe that

if a solution of the BVP (3.50)–(3.51) is found, one has that the invariance relationship (3.36) is

readily satisfied. Therefore, all of the GMOS solution points must be fixed points for the mapping

S−ρ ≡ R−ρ ◦ ϕT . Following the latter, one might be tempted to infer the stability of a quasi-

periodic torus from the differential map of S−ρ evaluated in v(θj). However, if N solution points

are used to approximate an invariant curve of the stroboscopic map ϕT , the Jacobian of S−ρ,

namely DS−ρ(v(θj)) = R−ρ ◦ DϕT (v(θj)), becomes a nN × nN matrix with nN eigenvalues. In
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order to identify which of the eigenvalues of DS−ρ are representative of the stability of torus, a

criterion of selection needs to be established.

As explained in Ref. [57], such a criterion exists if the torus is reducible, i.e, if there is a

coordinate transformation such that the differential of the stroboscopic map does not depend on

the value of θ. To illustrate this statement, consider the linearization of (3.34) in the neighborhood

of v(θ), i.e.,

δv(θ + ρ) = DϕT (v(θ)) δv(θ), (3.60)

and let δv(θ) = L(θ)γ(θ) be a general coordinate transformation such that

L(θ + ρ)γ(θ + ρ) = DϕT (v(θ))L(θ)γ(θ),

γ(θ + ρ) = L(θ + ρ)−1DϕT (v(θ))L(θ)γ(θ),

γ(θ + ρ) = J(θ)γ(θ). (3.61)

As it can be seen, if L(θ) is such that

J = L(θ + ρ)−1DϕT (v(θ))L(θ) (3.62)

no longer depends on θ, then J would be the same for all of the possible solution points v(θj).

This is of course ideal and in good agreement with the fact that the stability properties of the

torus should be independent from the particular invariant curve being considered. This property

is guaranteed by coordinate transformations based on the eigenfunctions Lj(θ) of the generalized

eigenvalue problem

DϕT (v(θ))Lj(θ) = λj Rρ[Lj(θ)]. (3.63)

In this case, one also finds that the nN eigenvalues µjk of DS−ρ can be immediately related to the

n eigenvalues λj of J via

µjk = λj e
−i k ρ (3.64)

where k = 0, · · · , N − 1. Consequently, the eigenvalues of DS−ρ lie on concentric circles of the

complex plane, and each of these circles is representative of one eigenvalue λj , j = 1, · · ·n of J .
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It is worth noting that, due to the Hamiltonian structure of typical astrodynamics problems,

concentric circles always come in pairs. That is, if one of the concentric circles has radius greater

than one, say Ru, a second circle must exist with magnitude less than one, i.e., Rs = 1/Ru. Such a

situation occurs when quasi-periodic invariant tori are hyperbolic. Then, global unstable and stable

manifolds emanating from the torus can be generated via integration of quasi-periodic trajectories

along any of the unstable and stable eigendirections found with this method. An example of these

manifolds is disclosed in Fig. 3.17 along with the eigenvalues of a quasi-periodic invariant torus

computed in the center manifold of HP L1 Halo orbit (Fig. 3.18). The interested reader may find

additional applications of quasi-periodic invariant manifolds in Olikara’s thesis [83] and [84].

(a) (b)

Figure 3.17: Stable (a) and Unstable manifolds (b) emanating from a L1 quasi-Halo invariant torus
of the Hill problem.
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Figure 3.18: Eigenvalues of DS−ρ.

3.7 Three-Dimensional Tori

As a final remark on the GMOS algorithm, it is worth mentioning that the numerical pro-

cedure can be easily adapted to compute quasi-periodic invariant tori of dimension three. These

manifolds are usually found about stable periodic orbits of six-dimensional systems such as the

HP or CRTBP problems, or in time-periodic systems such as the EHP discussed in Chapter 5.

Therefore, it is relevant to briefly overview the changes in the GMOS algorithms needed to account

for a third dimension. For instance, one finds that the output of the stroboscopic map after time

T in torus coordinates corresponds to

θ̄ =

[
θ0 + ω0 T, θ1 + ω1 T, θ2 + ω2 T

]T
,

=

[
θ0, θ1 + ρ, θ2 + ν

]
, (3.65)

where ν = 2π ω2/ω0. Accordingly, let ρ =

[
ρ, ν

]T
be the rotation vector and consider the

diffeomorphism v : T2 → Rn given by v(ψ) = u(θ0,ψ), where ψ =

[
θ1, θ2

]T
.
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From (3.34) it follows that

v(ψ̄) = v(ψ + ρ) = ϕT (v(ψ)), (3.66)

so that a new set of algebraic equations can be found from the invariance relationships

R−ρ[ϕT (v(ψ))]− v(ψ) = 0, (3.67)

where R−ρ is a new rotation operator, now acting on the space of the diffeomorphisms V = {v(·) |v :

T2 → T ⊂ R6}.

Given the images of the stroboscopic map v(ψ̄j,k) = v(θ1,j + ρ, θ2,k + ν) for the N1 × N2

solution points v(ψj,k), one can apply the two-dimensional DFT [91]

cl,m =
∑
j

∑
k

v(ψ̄j,k) e
i l,θ1,j eim,θ2,k , (3.68)

and obtain a realization of R−ρ via

R−ρ[v(θ1,j , θ2,k)] =
1

N1

1

N2

∑
l

∑
m

c′l,m e
i l θ1 eimθ2 , (3.69)

where c′l,m = e−i l ρ e−imν cl,m. Furthermore, if X1 =

[
v(ψ̄0,0), v(ψ̄0,1), . . . , v(ψ̄N1,N2

)

]
and

X0 =

[
v(ψ0,0), v(ψ0,1), . . . , v(ψ)1,0, . . . , v(ψN1,N2

)

]T
, the quasi-periodic boundary con-

straints become

g(X0,X1) := [D]−1 [R(−ρ,−ν)] [D]X1 −X0 = 0 (3.70)

where D is now the two-dimensional DFT operator written in matrix form, and [R(−ρ,−ν)] is the

matrix that rotates the Fourier coefficients from cl,m to c′l,m.

Of course, in order to find solution of the BVP given by (3.18)–(3.70), one has to update (3.70)

via Newton’s method. However, solutions are not unique until phase conditions and parametrization

equations are added to the system of algebraic equations derived from (3.70). For three-dimensional

tori of autonomous Hamiltonian system, it turns out that two phase conditions of the form (3.43)
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need to be included, namely

p1(X0) :=<X0,
∂X̃0

∂θ1
>,

=
1

(2π)2

∫ 2π
0

∫ 2π
0

[
v(α, β)T

∂ṽ(α, β)

∂θ1

]
dα dβ,

' 1

N1N2

∑
j

∑
k v(ψj,k)

T
∂ṽ(ψj,k)

∂θ1
= 0,

(3.71)

and

p2(X0) :=<X0,
∂X̃0

∂θ2
>,

' 1

N1N2

∑
j

∑
k v(ψj,k)

T
∂ṽ(ψj,k)

∂θ2
= 0.

(3.72)

Then, the last of the phase conditions can be given by

p0(X0) :=<X0 − X̃0,
∂X̃0

∂θ0
>, (3.73)

where

∂ṽ

∂θ0
=

1

ω̃0

[
f(ṽ(ψ))− ω̃1

∂ṽ

∂θ1
− ω̃2

∂ṽ

∂θ2

]
. (3.74)

As for the parametrization equations, recall that three-dimensional tori of autonomous Hamiltonian

systems generally live in three-parameter families. Therefore, to identify unique members within

a 3D tori family, three additional equations are needed, namely s0(X0, T,ρ), s1(X0, T,ρ), and

s2(X0, T,ρ).

In the end, one has the BVP given by

X ′ = T F(X),

T ′ = 0,

ρ′ = 0,

ν ′ = 0,

(3.75)
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and subject to the boundary constraints

F (z) =



g(X0,X1)

p0(X0)

p1(X0)

p2(X0)

s0(X0, T,ρ)

s1(X0, T,ρ)

s2(X0, T,ρ)



= 0, (3.76)

where z now corresponds to

[
X0, T, ρ

]T
.

As usual, s0(X0, T,ρ) may be used to specify either the energy level of the torus, i.e.,

s0(X0) :=
1

N1N2

∑
j

∑
k

C(wj,k)− C = 0 (3.77)

or its period :

s0(T ) := T − P = 0. (3.78)

To find an expression for s1(X0, T,ρ) and s2(X0, T,ρ), consider the following generalized

pseudo-arclength continuation approach [48]. First, assume z̃ is a previously known solution of the

BVP (3.75)–(3.76) such that

h(z) =



g(X0,X1)

p0(X0)

p1(X0)

p2(X0)


(3.79)

is also equal to 0. Also assume that such a solution is found in correspondence of the unfolding

parameters r∗ and s∗, i.e., h(z̃) = h(z(r∗, s∗)) = 0. Looking for nearby solutions in correspondence



70

of r∗ + δr and s∗ + δs, one finds that

0 ' h(z(r∗ + δr, s∗ + δs)),

' h(z(r∗, s∗)) +Dh(z(r∗, s∗)) [z′r(r
∗, s∗) δr + z′s(r

∗, s∗) δs],

= Dh(z̃) [z̃′r δr + z̃′s δs], (3.80)

where z̃′r and z̃′s denote the family tangent with respect to r and s, respectively, evaluated in (r∗, s∗).

From Eq. (3.80), it follows that z̃′r and z̃′s form a basis for the kernel of Dh(z̃). Therefore, z̃′r and

z̃′s can be easily computed via the singular value decomposition of Dh(z̃) or similar methods. In

addition to that, observe that

z(r∗ + δr, s∗ + δs) ' z̃ + z̃′r δr + z̃′s δs, (3.81)

so that

(z − z̃) =

[
z̃′r, z̃′s

] δr
δs

 (3.82)

also needs to be satisfied. Specifically,z̃′Tr
z̃
′T
s

 (z − z̃) =

‖z̃′r‖2, z̃
′T
r z̃

′
s

z̃
′T
s z̃

′
r, ‖z̃′s‖2


δr
δs

 , (3.83)

yielding

s1(z) := < z̃′r , z − z̃ > −δr − z̃
′T
r z̃

′
s δs = 0, (3.84a)

s2(z) := < z̃
′
s , z − z̃ > −z̃

′T
s z̃

′
r δr − δs = 0, (3.84b)

when ‖z̃′r‖2 = ‖z̃′s‖2 = 1.

Eq. (3.84) completes the list of boundary constraints (3.76) to be satisfied with Newton’s

method once a reliable initial guess is provided. The latter is found via the eigenvalue and eigen-

vector pairs obtained from the monodromy matrix M of a periodic orbit such as the blue trajectory

of Fig. 2.3. If e12 and e34 are the eigenvectors associated with λ12 = e±iρ and λ34 = e±iν , one can
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construct an invariant torus of the monodromy map:

ϕ(θ1, θ2) =K12 [cos (θ1) Re(e12)− sin(θ1) Im(e12)] + . . .

K34 [cos (θ2) Re(e34)− sin(θ2) Im(e34)] , (3.85)

where K12 and K34 are two arbitrary small scalars << 1. Indeed, the torus (3.85) is invariant

under the application of the monodromy matrix M as

M ϕ(θ1, θ2) = ϕ(θ1 + ρ, θ2 + ν). (3.86)

Therefore, consider taking N1 × N2 points along the invariant torus of the monodromy map in

correspondence of the N1×N2 angular values (θ1,j = 2π j/N1)×(θ2,k = 2π k/N2), j = 0, 1, . . . , N1−

1, k = 0, 1, . . . , N2−1. Eq. (3.86) also suggests that the phases of the complex conjugate eigenvalues,

namely ρ and ν, may be used to approximate the components of the rotation vector ρ. For this to

be true, the stroboscopic time T should be also initialized as the period of the underlying periodic

orbit. This completes the initial guess z̃ = (X̃0, T̃ , ρ̃) since the points w̃(θ1,j , θ2,k) ' ϕ(θ1,j , θ2,k)

can be also integrated and rotated to generate a reliable approximation of the family tangents z̃
′
r

and z̃
′
s via the singular value decomposition of Dh(z̃). Then, Newton’s method can be applied

and embedded into a predictor-corrector scheme that allows to march along entire family branches.

An example of this is shown in Fig. 3.19, which illustrates a three-dimensional quasi-halo torus

belonging to the center manifold of the aforementioned stable periodic orbit.

Finally, observe that stability analysis can be also carried out as a byproduct of the algorithm

in the three-dimensional case. The only difference with respect to the analysis of Sec. 3.6 is that

the nN1N2 eigenvalues µjkl of DS−ρ are now related to the n eigenvalues λj of J via

µjkl = λj e
−i k ρ e−i l ν (3.87)

where k = 0, . . . , N1 − 1, and l = 0, . . . , N2 − 1. As it can be seen, this does not change the fact

that eigenvalues of DS−ρ are still distributed along concentric circles of the complex plane, thereby

proving the validity of the results of Sec. 3.6 for tori of arbitrary dimension.
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Figure 3.19: Quasi-Halo 3D torus(a) obtained by numerical integration of the invariant torus of
the stroboscopic mapping shown in (b). The 3D version of GMOS was launched with N1 = 31 and
N2 = 21 points, respectively.

3.8 Conclusions

This chapter has presented some of the numerical procedures involved with the astrodynam-

ics applications of quasi-periodic invariant tori explored in the next chapters. Specifically, after

reviewing the different methodologies available in the literature (Section 3.1–3.2), we have identified

GMOS as our preferred approach for future studies. Such a conclusion was drawn after comparing

the output of the code with the analytical solution of the Two-Body Problem (TBP) (Section 3.3),

as well as by numerically investigating the accuracy of fifty quasi-DRO tori generated with the algo-

rithm in the PCRTBP (Section 3.4). Remarkably, the strategy was also found to be solvable using

collocation techniques, as well as to enable stability analysis and handle quasi-periodic invariant

tori of dimension three (Section 3.5–3.7).

Starting from Chapter 4, we will see how the GMOS algorithm can be useful in space mission

design contexts. This begins by studying how the stroboscopic mapping approach can be slightly

modified to compute entire families of bounded relative trajectories about axisymmetric bodies.



Chapter 4

Bounded Relative Trajectories about Axisymmetric Bodies

In this chapter, we shall see how the GMOS algorithm can be adjusted to compute entire

families of bounded relative orbits without the need for the numerically expensive grid searches

proposed in Ref. [114] & [22]. We begin by reviewing the equation of motion for a mass particle

subject to the gravitational attraction of an axisymmetric body and demonstrate how Routh re-

duction can be applied to lower the dimensionality of the problem (Sec. 4.1). Next, we discuss the

dynamics of satellites in this force field and introduce three fundamental periods whose averaged

values can be accurately computed through numerical integration. First is the nodal period, which

is commonly defined as the time elapsed between two consecutive equatorial plane crossings at the

ascending node. Next is the sidereal period, which is a function of the drift in the right ascension of

the ascending node per nodal period. Lastly, there is the anomalistic period, which depends on the

difference between the argument of pericenter of a satellite at consecutive equatorial plane crossings.

To ensure bounded relative motion over long periods of time, at least two of these fundamental

quantities need to be matched on average.

Based on this observation, we consider a formation of two satellites–a chief and a deputy

spacecraft–and introduce a numerical procedure to ensure that the nodal and sidereal periods of

the deputy match, on average, the values of the chief. The so-called revised GMOS algorithm is

illustrated in Sec. 4.4 along with simulations showing that families of bounded relative trajectories

can be generated once a stable periodic orbit of the Routh-reduced system is found. This holds

at a range of altitude and inclination values, including MEO and geostationary orbits, as well as
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beyond Earth orbit (Sec. 4.5). These and other remarks on the proposed numerical approach are

finally summarized in Sec. 4.6.

4.1 Equations of Motion

Consider a spacecraft subject to the gravitational attraction of an axisymmetric body. As

illustrated in Ref. [79], the zonal part of the gravitational potential is given by

U(R,Θ) =
µ⊕
R

[
1−

∞∑
l=2

Jl

(
R⊕
R

)l
Pl(sin Θ)

]
, (4.1)

where µ⊕ denotes the gravitational parameter of the body, R⊕ is its reference radius, Jl are the

zonal harmonics coefficients, and Pl are the Legendre’s polynomials (Table 4.1). Furthermore, if

x =

[
x, y, z, ẋ, ẏ, ż

]T
represents the six-dimensional state of the satellite in a body-centered inertial

frame (BCI) where ẑ is parallel to the body’s spin axis, x̂ is directed towards the vernal equinox,

and ŷ = ẑ × x̂, then R =
√
x2 + y2 + z2 is the distance from the gravity center to the spacecraft,

Θ = arcsin
( z
R

)
is its latitude, and φ = arctan−1 (y/x) is its longitude.

Following the latter convention, the Lagrangian of the system can be rewritten in spherical

coordinates as

L(R,Θ, Ṙ, Θ̇, φ̇) =
1

2
(Ṙ2 +R2 Θ̇2 +R2 φ̇2 cos Θ2) + U(R,Θ), (4.2)

thereby showing that L does not depend on the spacecraft longitude, i.e., φ is a cyclic variable. It

is then possible to apply Routh reduction and simplify the dynamics in the four-dimensional RRS

Table 4.1: Legendre polynomials used for the simulations.

Legendre Polynomials

P2(x)
1

2

(
3x2 − 1

)
P3(x)

1

2

(
5x3 − 3x

)
P4(x)

1

8

(
35x4 − 15x2 + 3

)
P5(x)

1

8

(
63x5 − 70x3 + 15x

)
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discussed in Ref. [17]:

ẏ = f(y, Hz) =



ṙ,

ż,

H2
z

r3
+
∂U

∂r
,

∂U

∂z
,

(4.3)

where y =

[
r, z, ṙ, ż

]T
is the reduced state vector, and (r, z) = (R cos Θ, R sin Θ) are the

rectangular coordinates of the spacecraft.

Observe that the equations of motion (4.3) conserve the energy integral

E(y) = U − 1

2

H2
z

r2
− 1

2
(ṙ2 + ż2) = E, (4.4)

which is later used to distinguish between zones of admissible motion and forbidden regions as in

Sec. 2.1. Furthermore, Hz =
∂L
∂φ̇

= R2 cos2 Θ φ̇ = r2 φ̇ =const is also conserved and corresponds

to the third component of the angular momentum vector. Since Hz is constant, the quadrature

φ(t) = φ0 +Hz

∫ t

t0

1

(r(t′))2
dt′ (4.5)

can be utilized to find the instantaneous longitude of the satellite at arbitrary times t, and generate

a trajectory in BCI via 

x(t) = r(t) cosφ(t),

y(t) = r(t) sinφ(t),

z(t) = z(t),

ẋ(t) = ṙ(t) cosφ(t)−Hz sinφ(t)/r(t)

ẏ(t) = ṙ(t) sinφ(t) +Hz cosφ(t)/r(t)

ż(t) = ż(t).

(4.6)

φ0 is the initial longitude of the spacecraft and its value does not affect the solution (r(t), z(t)) of

the reduced system (4.3) nor the possibility of generating bounded relative trajectories in the full

six-dimensional space. On the contrary, even though Hz is only a parameter for (4.3), its choice has

remarkable impacts on the relative motion between two neighboring trajectories as demonstrated

in the following sections.
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4.2 Spacecraft Dynamics

As demonstrated by Chu et al. [22], the motion of a mass particle subject to the gravitational

attraction of an axisymmetric body is characterized by three fundamental frequencies or periods:

the nodal period, the sidereal period, and the anomalistic period. First is the nodal period Td,

which is conventionally defined as the time between two consecutive crossings of the equatorial

plane from south to north [11]. If we define ζ(y) := z = 0, ż > 0 as the surface of section and ϕt

as the solution flow of (4.3), then Td is defined as the first return time such that y∗2 = ϕTd(y∗1),

where y∗1 and y∗2 are the spacecraft reduced state vectors at the first and second intersection with

ζ(y). By converting these states into osculating orbit elements, one can also infer the values of the

sidereal and anomalistic periods as follow:

Ts = 2π Td/(2π + ∆Ωd), and Ta = 2π Td/(2π −∆$d), (4.7)

where ∆Ωd = Ω2 − Ω1 and ∆$d = $2 −$1 are the differences in RAAN and argument of perigee

at consecutive ζ(y) crossings. Consequently, the sidereal period is related to the RAAN drift per

nodal period caused by the non-spherical shape of the central body, whereas the anomalistic period

Figure 4.1: ∆Ωd and ∆ωd drifts due to zonal harmonics perturbations.
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Ta is related to the pericenter drift per nodal period due to the same perturbations. Knowing this

fact, one can numerically integrate any arbitrary trajectory and obtain the time histories of the

fundamental periods over multiple revolutions about the central body. In particular, we will focus

on the time histories of ∆Ωd, ∆$d as these are directly related to Ts and Ta through (4.7).

Fig. 4.1 shows the described methodology for a spacecraft in orbit about an Earth-like

spheroid. In this case and aside from orbits at critical inclinations1 [66],the periods are either

constants of motion or exhibit oscillations about their time averaged value. The first case is typical

of trajectories that are periodic in the Routh-reduced system (4.3), whereas the second case is

representative of quasi-periodic trajectories that populate the center manifolds about RRS periodic

orbits. Following the nomenclature of Broucke [17], the latter are referred to as pseudo-elliptic

trajectories, whereas the former are referred to as pseudo-circular orbits and can be calculated as

illustrated in the following subsection.

4.2.1 Pseudo-circular Orbits

For the sake of illustration, consider the motion of a mass particle about an Earth-like axi-

symmetric body. In this case, µ⊕ = 398600.4418 km3/s2, R⊕ = 6378.1374 km, and the zonal

harmonics coefficients up to the fifth order are given as in Table 4.2. It is also possible to normali-

zed the length and time units of the problem such that the reference radius R⊕ and
√
R3
⊕/µ⊕ are

equal to 1. For an Earth-like planet, this corresponds to LU = 6378.137 km and TU = 806.11 s,

respectively.

Table 4.2: Earth’s zonal harmonics coefficients up to the fifth order.

Zonal Coefficients

J2 1.08263× 10−3

J3 −2.53241× 10−6

J4 −1.6198976× 10−6

J5 −0.22775359× 10−6

Next, observe that by fixing the value of Hz, the system (4.3) becomes an autonomous

1 The inclination of a satellite is considered critical when cos2 i ' 1/5
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Hamiltonian system that does not depend on any external parameter. In this case, one can proceed

to specify a phase condition and a parametrizing constraint as in Sec. 2.3, and formulate a well-

posed boundary value problem to look for periodic solutions of the RRS, i.e., pseudo-circular

trajectories. The BVP reads as  y′ = T f(y, Hz),

T ′ = 0,

(4.8)

subject to the boundary constraints

F (y0, T ) =


g(y0,y1)

p(y0)

s(y0, T )

 = 0, (4.9)

where y0 =

[
r0, z0, ṙ0, ż0

]T
, y1 is the terminal state of the satellite, and T is the period of the

pseudo-circular orbit.

Because of (4.7), we are interested in finding periodic orbits on the surface of section ζ(y).

This constraint is enforced by replacing (2.12) with the phase condition:

p(y0) := z0 = 0, (4.10)

which guarantees that the initial state of our periodic orbit would lie on the equatorial plane of

the central body. Furthermore, as no information on the family tangent is currently available, it is

better to initially replace the pseudo-arclength continuation constraint with

s(y0) := E(y)− E = 0, (4.11)

where E(y) is defined as in (4.4). In this case, one can initialize the predictor-corrector scheme of

Sec. 2.3 by picking any arbitrary circular two-body trajectory defining the constant values of Hz

and E and using Newton’s method to converge on the first family member.

Figure 4.2 shows an example of a pseudo-circular orbit obtained after initializing the BVP

solver with a two-body trajectory defined by the Keplerian orbit elements a = 1.1 LU, e = 0.0,

i = 28.5 deg, Ω = $ = M = 0 deg, and providing the constant values of Hz = 0.9217,
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E = 0.4549. After a few iterations, the algorithm converges on a periodic-orbit with y0 =[
1.0987, 0 −4.4411× 10−4, 0.4554

]T
, T = 7.2252 TU, and characterized by the constant nodal,

sidereal, and anomalistic periods disclosed in Fig. 4.3.

First, observe that ∆ωd is expected to be zero such that Ta = Td. If this was not the

case, then y(t) would cease to be periodic even in the RRS and violate the boundary constraint

g(y0,y1) := y1 − y0 = 0. Such a constraint does not prevent the longitude of the satellites to

change in the full six-dimensional problem, which is why the RAAN drift per nodal period are

allowed to be nonzero (Fig. 4.3).

A second thing to note is that, upon convergence, the family tangent can be evaluated in

(y0, T ) to produce a reliable initial guess for a different pseudo-circular trajectory at the same Hz

level. By iterating this process, one obtains entire family branches such as the ones of Fig. 4.4. The

figure shows several family members obtained with the algorithm after replacing the parametrizing

equations (4.11) with (2.13). The colors correspond to the different values of energy calculated

in correspondence of the different periodic orbits, whereas the lines represent different families of

pseudo-circular trajectories obtained after repeating the whole procedure for different values of Hz.

Differently from the previous chart, Fig. 4.5 shows the nodal and sidereal periods found for a

range of E and Hz values. This is a useful plot for the purpose of designing pseudo-circular orbits

with specified input values of Td and Ts–namely T̄d and ∆Ω̄d–even though arbitrary combinations

of these quantities may not admit valid pseudo-circular trajectories. This is evident from the figure

as not all of the different contours of T̄d and ∆Ω̄d overlap in one point.

Finally, Fig. 4.6 shows the evolution of the stability index2 of several pseudo-circular families

with changes in r and third component of the angular momentum vector. As it can be seen, the

closer we are to critical inclinations, the closer we get to the instability limit of k = 2. Nevertheless,

all of the computed pseudo-circular trajectories are stable and surrounded by a two-parameter

family of quasi-periodic invariant tori [17]. These tori are filled by pseudo-elliptical trajectories,

which are further discussed in the next subsection.

2 see Section 2.5 for details
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Figure 4.2: Pseudo-circular orbit about the Earth for the case E = −0.4549, Hz = 0.9217. Starting
from the equatorial plane, the spacecraft moves upwards until it touches the zero-velocity curves.
Then, it turns around and move downwards passing through the equatorial plane from north to
south, and finally completes its revolution around the planet in T = 7.2252 TU.
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Figure 4.3: Nodal, sidereal, and anomalistic Periods for a pseudo-circular orbit about the Earth for
the case E = −0.4549, Hz = 0.9217.
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circular orbits displayed above.
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Figure 4.6: Evolution of the stability index with changes in r and Hz.

4.2.2 Pseudo-elliptic Trajectories

As predicted by Broucke, periodic orbits of the RRS are stable everywhere except at cri-

tical inclinations [17]. Since this is not the case for the periodic orbit of Fig. 4.2, consider the

monodromy matrix M obtained from the numerical integration of the variational equations of

(4.3). As expected, the monodromy matrix admits one pair of complex conjugate eigenvalues with

unitary magnitude, meaning that the periodic orbit is surrounded by a two-parameter family of

two-dimensional invariant tori.

To compute these manifolds, consider the BVP developed in Sec. 3.4
Y ′ = T F(Y , Hz),

T ′ = 0,

ρ′ = 0,

(4.12)
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and subject to the terminal constraints

F (z) =



g(Y 0,Y 1)

p0(Y 0)

p1(Y 0)

s0(Y 0) or s0(T )

s1(z)


= 0, (4.13)

where z =

[
Y 0, T, ρ

]T
, Y =

[
yT0 , yT1 , . . . , yTN1−1

]T
is the nN1-dimensional vector derived

from the discretization of the invariant curve of the stroboscopic mapping ϕTd : R4 → R4 in N1

solution points, and F(Y , T ) is the nN1-dimensional vector field given by

F(Y , T ) = T



f(y0, Hz)

f(y1, Hz)

. . .

f(yN1−1, Hz)


, (4.14)

with f(y, Hz) as in (4.3). p0(Y 0), p1(Y 0), and s1(z) are given as in (3.45), (3.43), and (3.49),

respectively. However, depending on the choice of s0, the numerical procedure produces quasi-

periodic invariant tori of either the same energy (E Tori) or the same “period” (P Tori). As

described in Sec. 4.3, this leads to different relative motion behaviors when a formation of two

satellite with a chief on the pseudo-circular trajectory of Fig. 4.2 and a deputy on one of these

quasi-periodic trajectories is considered. Therefore, it is important to distinguish between the two

different cases as follows.

4.2.2.1 E Tori

In the first case, one has that

s0(Y 0) :=

N1−1∑
i=0

E(yi)− E = 0, (4.15)

which ensures that all of the computed quasi-periodic invariant tori have the same value of energy

E of the underlying pseudo-circular trajectory (E Tori). This leads to the invariant curves of the
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stroboscopic map ϕTd shown in Fig. 4.7(a), and obtained with the GMOS algorithm of Sec. 3.2.2.

Each of these solutions can be propagated till the first surface of section crossing to produce the

meaningful plot of Fig. 4.7(b) where pairs (r, ṙ) completely specify the states of the satellites. The

bold curve correspond to the quasi-periodic invariant torus of Fig. 4.8, illustrating a collection of

N1 = 51 pseudo-elliptical trajectories being initialized on the surface of this manifold. Finally, the

nodal, sidereal, and anomalistic periods change periodically over time as disclosed in Fig. 4.9.

4.2.2.2 P Tori

Alternatively, one can compute tori of the same period by setting the stroboscopic time to

s0(T ) = T − P = 0. (4.16)

P is the desired periodicity and may be conveniently set to the nodal period of the underlying

pseudo-circular trajectory, i.e., P = Td,c. Fig. 4.10(a) displays the invariant curves of the strobo-

scopic mapping obtained with the former selection, whereas Fig. 4.10(b) shows the same invariant

curves after propagating each of the GMOS solutions points till the first crossing with the surface

of section ζ(y). Perhaps, the most evident difference with respect to the E tori case is that we are

(a) (b)

Figure 4.7: GMOS invariant curves as seen in configuration space (a) and on the surface of section
ζ(y) (b). The bold curve corresponds to the quasi-periodic invariant torus shown below.



85

Figure 4.8: Pseudo-elliptical trajectories about the Earth being initialized on the surface of a
quasi-periodic E Torus with E = −0.4549, Hz = 0.9217.
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Figure 4.9: Nodal, sideral, and anomalistic Periods for a pseudo-ellitpical trajectory on the surface
of a E torus about the Earth with E = −0.4549, Hz = 0.9217.
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no longer allowed to represent the entire state of a spacecraft on a two-dimensional plot like Fig.

4.7(b). The reason for this being that the energy of the pseudo-elliptical trajectories is no longer

conserved throughout the family, but slowly increases the farther we move from the pseudo-circular

orbit. Next is an example of a quasi-periodic invariant P torus corresponding to the bold curve of

Fig. 4.10(a) and 4.10(b). By selecting a pseudo-elliptical trajectory on the surface of this manifold,

it is found that the nodal, sidereal, and anomalistic periods vary over time as disclosed in Fig.

4.12. This matches the observations of Xu et al. [114], who also noted that the time averages of

Td and ∆Ωd do not necessarily match with the nodal and sidereal periods of the pseudo-circular

orbit. This may lead to unbounded relative motion as observed in the next section.

4.3 Formation Flying

The goal of this section is to study the relative motion between two or more spacecraft being

initialized on either pseudo-circular or pseudo-elliptical trajectories. To that end, we integrate the

equations of motion (4.3) for all of the satellites, convert into BCI coordinates via (4.5) & (4.6),

and rotate the relative states in the LVLH frame of the reference spacecraft, i.e., the chief.

As a first example, we consider the relative motion between a chief and a deputy being

initialized on the surface of the same quasi-periodic invariant E torus. Fig. 4.13 displays the

(a) (b)

Figure 4.10: GMOS invariant curves as seen in configuration space (a) and on the surface of section
ζ(y) (b). The bold red curve corresponds to the quasi-periodic invariant torus shown below.
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Figure 4.11: Pseudo-elliptical trajectories about the Earth being initialized on the surface of a
quasi-periodic P Torus with Hz = 0.9217.
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Figure 4.12: Nodal, sidereal, and anomalistic Periods for a pseudo-ellitpical trajectory on the surface
of a P torus about the Earth with Hz = 0.9217.
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relative motion in the LVLH frame of the chief, as well as the inter-satellite distance between the

two vehicles. Despite some oscillations in the relative distance, the deputy remains within 350

km from the chief for more than a year, thus proving that quasi-periodic invariant tori can be

successfully utilized for establishing bounded relative motion over long intervals of time. Indeed,

the same occurs whenever the two satellites are initialized on the surface of the same P torus, which

leaves us with the more interesting question of what happens whenever the deputy and the chief

are no longer placed on the surface of the same manifolds.

(a)

(b) (c)

Figure 4.13: Relative motion between a chief and a deputy spacecraft on the surface of the same
E torus. a) Initial conditions in configuration space. b) Relative trajectory in the LVLH frame of
the chief. c) Inter-satellite distance over one year.
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Fig. 4.14 portrays the relative motion between a chief on the pseudo-circular orbit of Fig.

4.2 and a deputy on the cyan pseudo-elliptical trajectory of Fig. 4.8. The initial conditions of

the two satellites correspond to rc = 1.09874650952774, zc = 0, ṙc = −0.000441104004566637,

żc = 0.455473605978406, and r
(E)
d = 1.15685184543499, z

(E)
d = 0.0137239525985908, ṙ

(E)
d =

0.00588501453123112, ż
(E)
d = 0.429734647361727 respectively, and yield the inter-satellite distance

of Fig. 4.14(c). As it can be seen, the satellites seem to be no longer bounded to each other, and

tend to slowly drift apart mostly in the along-track and cross-track directions.

(a) (b)

(c)

Figure 4.14: Relative motion between a satellite on the surface of a E torus and a pseudo-circular
chief. a) Initial conditions in configuration space. b) Relative trajectory in the LVLH frame of the
chief. c) Inter-satellite distance over one year.
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Similarly, Fig. 4.15 shows the relative motion between the same chief and a deputy on

the green pseudo-elliptic orbit of Fig. 4.11. In this case, r
(P )
d = 1.15686604307968, z

(P )
d =

0.0137242998088076, ṙ
(P )
d = 0.00588468477904195, ż

(P )
d = 0.429741583983593, and the relative

motion exhibits less drift in the along-track direction, but still fails to remain bounded over time.

(a) (b)

(c)

Figure 4.15: Relative motion between a satellite on the surface of a P torus and a pseudo-circular
chief. a) Initial conditions in configuration space. b) Relative trajectory in the LVLH frame of the
chief. c) Inter-satellite distance over one year.

Considering that the evolution of any spacecraft subject to the gravitational attraction of an

axisymmetric bodies can be characterized by the three fundamental periods identified in Section 4.2,

the cause for this drifting has to be researched in the time averaged value of these quantities. From

this point of view, it is straightforward to demonstrate that if the satellites within the formation

have the same values of Td, Ts, and Ta, then bounded relative motion is achieved. This is indeed

the situation of Fig. 4.13 as the frequencies of a torus (and therefore its periods) are fundamentally
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defined for each state on the manifold and do not vary with the location of the satellites on its

surface.

Conversely, if the chief and the deputy satellites are placed on different quasi-periodic invari-

ant tori, it is no longer guaranteed that the values of the nodal, sidereal, and anomalistic periods are

actually conserved within the formation. In order to establish bounded relative motion, however, at

least two of the three fundamental frequencies need to be shared on average. The final choice falls

on the nodal and sidereal periods as this is the only combination where the inter-satellite distance

remains within reasonable ranges. In fact, bounded relative motion is technically achieved even

when two satellites share either the nodal and anomalistic periods or the sidereal and anomalistic

ones. However, in these cases, the inter-satellite distance can grow as large as twice the mean semi-

major axis of the formation, thereby nullifying the utility of these relative trajectories for formation

flying applications. It is also worth noting that the average values of the nodal and sidereal periods

roughly correspond to

T̄d =
2π
˙θM

=
2π

ω̇ + Ṁ
, ∆Ω̄d = Ω̇ T̄d = 2π

Ω̇

ω̇ + Ṁ
, (4.17)

where θM = ω + M is the mean argument of latitude, and Ω̇, ω̇, and Ṁ are the secular drift in

the mean RAAN, argument of perigee, and mean anomaly due to the zonal perturbations [18, 95].

Accordingly, requiring that T̄d and ∆Ω̄d are shared among the chief and deputy vehicles essentially

implies that the secular rates in θM and Ω must be the same for all of the satellites in the formation.

Such a condition is not novel and can be considered as a stronger version of the J2-invariant relative

orbit constraints [94], which successfully yield bounded relative motion in the linear regime about

the chief.

Moving beyond this validity region, let us focus on the time average of Td and ∆Ωd as

these are the actual key parameters that yield bounded relative motion over long intervals of time

[6, 22, 114]. By definition, the averaged values of Td(k) and ∆Ωd(k) would be given by

T̄d = lim
N→∞

1

N

N∑
k=0

Td(k), ∆Ω̄d = lim
N→∞

1

N

N∑
k=0

∆Ωd(k), (4.18)
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meaning that spacecraft trajectories should be integrated for a very large number of orbital revo-

lutions in order to correctly predict the means of the nodal and sidereal period. This is, of course,

impractical due to the accumulation of the truncation and round-off error that limit the accuracy

of our results over long intervals of time.

Alternatively, since trajectories on the surface of a quasi-periodic torus are ergodic Fig.

4.10(a), i.e., fill the whol [14], the expressions (4.18) can be replaced by the spatial average of Td(k)

and ∆Ωd(k) over one cycle [2]:

T̄d =
1

2π

∫ 2π

0
Td(ξ) dξ, ∆Ω̄d =

1

2π

∫ 2π

0
∆Ωd(χ) dχ. (4.19)

This requires us to compute the number of orbital revolutions NT and NΩ such that Td(k) =

Td(k+NT ) and ∆Ωd(k) = ∆Ωd(k+NΩ). To that end, we can pick the values of Td and ∆Ωd at the

first surface of section crossing, namely Td(1), ∆Ωd(1), and subtract them from the time histories

of the nodal period and RAAN drift per nodal period. This yields two sinusoidal functions that

pierce the zero axis at multiple locations. Therefore, by interpolating between neighboring data

points in the vicinity of the first zero crossing, one obtains a numerical approximation of the desired

values:

NT = k∗ +
Td(1)− Td(k∗)

Td(k∗ + 1)− Td(k∗)
, NΩ = j∗ +

∆Ωd(1)−∆Ωd(j
∗)

∆Ωd(j∗ + 1)−∆Ωd(j∗)
, (4.20)

where k∗ and j∗ represent the number of orbital revolutions before the first zero crossings in

Td(k)− Td(1) and ∆Ωd(k)−∆Ωd(1), respectively. Next, the time averaged values of Td and ∆Ωd

may be calculated with a trapezoidal rule as

T̄d =' 1

2π

{
1

2
[2π − ξ(k∗ − 1)] [Td(1) + Td(k

∗)] +

k∗−1∑
k=2

[ξ(k)− ξ(k − 1)]Td(k)

}
, (4.21)

∆Ω̄d =' 1

2π

1

2
[2π − χ(j∗ − 1)] [∆Ωd(1) + ∆Ωd(j

∗)] +

j∗−1∑
j=2

[χ(j)− χ(j − 1)] ∆Ωd(j)

 , (4.22)

where ξ(k) = 2π (k − 1)/(NT − 1), and χ(j) = 2π (j − 1)/(NΩ − 1).

Table 4.3 summarizes the averaged values of Td and ∆Ωd measured from the trajectories of

Fig. 4.2, 4.8, and 4.11, thereby proving that the T̄d and ∆Ω̄d values for the deputy satellites of Fig.



93

Table 4.3: Nodal periods and RAAN drifts per nodal period of a pseudo-circular chief, a pseudo-
elliptic deputy on the surface of a E torus, and a pseudo-ellitpic deputy on the surface of a P
torus.

T̄d (TU) ∆Ω̄d (deg)

Pseudo-circular Chief 7.22518505463333 −0.42562399818902
Pseudo-elliptic Deputy (E Torus) 7.22504604288588 −0.428793535175085
Pseudo-elliptic Deputy (P Torus) 7.22518506976361 −0.42877978243654

4.14 & 4.15 are actually different from the constant periods of the pseudo-circular chief observed in

Fig. 4.3. This is particularly true for the deputy spacecraft on the surface of the E torus as both

of T̄d and ∆Ω̄d do not seem to match the desired values. In contrast, the deputy on the surface

of a P torus shares the value of the nodal period within the numerical precision of both GMOS

and (4.21), thereby explaining the better performance observed in Fig. 4.15. This improvement

indicates a possible path to establish bounded relative motion about axisymmetric bodies, even

though more work needs to be done in order to correct for the difference in ∆Ω̄d. This final step

is accomplished in the next section by reformulating the boundary value problem of the GMOS

algorithm to accommodate extra constraints that fix the time average of the RAAN drift per nodal

period in addition to (4.16).

4.4 GMOS revised

Although Hz rules the evolution of the spacecraft longitude φ, its value has never been

changed throughout the computation of the P and E quasi-periodic invariant tori illustrated in the

previous sections. Yet, changing the value of Hz does affect the average value of the RAAN drift

per nodal period, thus creating the possibility to match the value of the chief. This condition is

achieved by appending the Hz parameter to the boundary value problem (4.12)–(4.13), along with

the extra constraint

l(Y 0, Hz) :=
1

N1

N1−1∑
i=0

∆ Ωi −∆Ωd = 0, (4.23)

where ∆ Ωi denotes the RAAN drift per nodal period of the i-th GMOS solution point.
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To compute the values of ∆ Ωi, consider the augmented system

y′φ = fφ(yφ, Hz) =


y′ = f(y, Hz),

φ′ =
Hz

r2

(4.24)

where yφ =

[
r z ṙ ż φ

]T
, f(y, Hz) is given by (4.3), and φ is the longitude of the i-th GMOS

solution point. Assuming that the initial longitude of the N1 solution points is always equal to

zero, one can integrate the system (4.24) for each of the sample trajectories and record the values

of yφ at three different points in time. These instants are shown in Fig. 4.16 and identified as

A) when the trajectory first crosses the equatorial plane from south to north and t > T/2;

B) at t = T for storing the output of the stroboscopic map ϕT ;

C) when the trajectory recrosses the equatorial plane from south to north after event A;

Eventually, the values of ∆Ωi are computed as the difference between the longitude in C and the

longitude in A of the i-th trajectory, i.e., ∆Ωi = φC,i − φA,i.
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Figure 4.16: Integration events for the trajectory of a sample solution point yi in the revised GMOS
algorithm.
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The evaluation of Eq. (4.23) completes the revised GMOS BVP, which reads as

Y ′ = T F(Y , Hz),

T ′ = 0,

ρ′ = 0,

H ′z = 0,

(4.25)

subject to the boundary constraints

F (Z) =



g(Y 0,Y 1)

l(Y 0, Hz)

p0(Y 0)

p1(Y 0)

s0(T )

s1(Z)


= 0, (4.26)

with Z =

[
Y 0 T ρ Hz

]T
.

As usual, once a reliable initial guess is given, the solution of the BVP can be found via

Newton’s method. Specifically, one has to iterate

Z(k+1) = Z(k) −
[
DF(Z(k))

]†
F(Z(k)) (4.27)

until the L2-norm of F (Z) is below some user-defined tolerance (typically 10−10 for the normalized

problem). Note that DF(Z(k)) represents the Jacobian matrix of (4.26) and is calculated as in

Ref. [6].

Upon convergence, the numerical procedure recovers invariant curves of the stroboscopic

mapping such as the ones illustrated in Fig. 4.17. The different colors of the invariant curves

correspond to the different values of Hz that guarantee that the average of the RAAN drift over one

nodal period matches the value of the chief. Accordingly, points on different curves have different

values of energy and Hz, and yet they are all guaranteed to remain bounded over indefinite time

spans.
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(a) (b)

Figure 4.17: Invariant curves output by the revised GMOS algorithm and projected onto the
configuration space (a) and on the surface of section ζ(y) (b). The bold green curve corresponds
to the quasi-periodic invariant torus shown below.

To distinguish between previous solutions, we denote these new family of quasi-periodic

invariant tori as “HP” and display a random family member in Fig. 4.18 & 4.19). Observe that the

evolution of the nodal and sidereal periods effectively match, on average, the target values derived

from the chief.

Figure 4.18: Pseudo-elliptical trajectories about the Earth being initialized on the surface of a
quasi-periodic HP Torus.
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Figure 4.19: Nodal, sidereal, and anomalistic Periods for a pseudo-ellitpical trajectory on the surface
of a HP torus about the Earth.

It is also worth noting that the differences in energy and polar component of the angular

momentum vector of this and other tori within the family are found to be in good agreement with

the first-order analytical relationship derived in Ref. [94] & [107] for J2 formations:

δE =
J2

5

(1 + 5 cos2 ī)

ā3 (1− ē2)2Hz,c
δHz, (4.28)

where ā, ē, ī are the mean semi-major axis, eccentricity, and inclination of the chief in normalized

units [18], and Hz,c is the polar component of its angular momentum vector. The agreement is

demonstrated with the plot of Fig. 4.20, which compares the analytical expression of Eq. (4.28)

with the δE and δHz values obtained with the revised GMOS algorithm. The overlap suggests that

all of the pseudo-elliptical trajectories generated via the revised GMOS algorithm shown in Fig.

4.17 belong to a family of J5-invariant relative orbits that guarantee bounded relative motion with

the selected pseudo-circular chief.
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Figure 4.20: δE vs δHz for two-hundred quasi-periodic HP tori computed with the revised GMOS
algorithm.

To support this claim, consider the plots of Fig. 4.21, which portrays the relative motion

between a chief on the pseudo-circular orbit of Fig. 4.2 and the red pseudo-elliptic trajectory of Fig.

4.18–4.19. In this case, the ICs of the deputy spacecraft are given by r
(HP )
d = 1.1552645635828,

z
(HP )
d = 0.0136692999855168, ṙ

(HP )
d = 0.0054772484569905, ż

(HP )
d = 0.440673756862056 and yield

a relative trajectory with an in-plane ellipse of size 800 × 1200 km, i.e., well beyond the reach

of standard analytical methods based on linearization (e.g., [94], [35]). Nevertheless, the deputy

remains in the vicinity of the chief for more than one year without any sign of secular drifts in both

the along track and cross-track directions (Fig. 4.21(c)).

The same outcome is achieved for any formation of two or more satellites being randomly

initialized on the invariant curves of Fig. 4.17. For example, consider the plots of Fig. 4.22–4.23,

which displays the relative trajectory between two deputies on two different quasi-periodic invariant

tori of the same HP family. In spite of the fact that the spacecraft are no longer on the surface

of the same quasi-periodic torus, it is still found that the inter-satellite distance between the two

remains bounded. This is clearly visible from the plots of the relative motion between the same
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(a) (b)

(c)

Figure 4.21: Relative motion between a satellite on the surface of a HP torus and a pseudo-circular
chief. a) Initial conditions in configuration space. b) Relative trajectory in the LVLH frame of the
chief. c) Inter-satellite distance over one year.

(a) (b)

Figure 4.22: Relative motion between two deputies being initialized on the surface of two different
HP tori of the same family.
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(a) (b)

Figure 4.23: Nodal periods and RAAN drifts per nodal period of two deputies being initialized on
the surface of two different HP tori.

deputies and a chief on the pseudo-circular trajectory disclosed in Fig. 4.24. What differs from the

previous simulation scenarios is that the mutual distance between Deputy 1 and 2 now exhibits

long-periodic oscillations due to the incommensurate winding frequencies at which the two satellites

evolve around their corresponding HP tori, i.e., their anomalistic period (Fig. 4.25). Because of

that, the two spacecraft are never in the same configuration with respect to the pseudo-circular
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Figure 4.24: Relative motion in the LHLV frame of the pseudo-circular chief (a) and inter-satellite
distances (b) over 365 days.
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Figure 4.25: Argument of perigee drift per nodal period for all of the HP tori computed with the
revised GMOS algorithm. Interestingly, the values of ∆ω̄d are found to match the rotation number
of the computed quasi-periodic invariant HP tori within the numerical precision of the revised
GMOS algorithm.

trajectory, and evolve with respect to each other as in Fig. 4.22(b). This is still acceptable, however,

as many formation flying and cluster flight applications only demands for the inter-satellite distance

between the vehicles to remain bounded within some operational threshold [19].

In conclusion, regardless of some long-periodic oscillations, the revised GMOS algorithm suc-

ceeds in generating entire families of bounded relative trajectories about axisymmetric bodies once

a stable pseudo-circular trajectory of the RRS system is found. This is further demonstrated with

the numerical simulations of Fig. 4.26 and 4.27, which demonstrate the validity of our numerical

procedure at a range of altitude and inclination values. Specifically, Fig. 4.26 shows a bounded

relative trajectory in MEO, whereas Fig. 4.27 exhibits the relative motion between a chief and

a deputy in GEO. The initial conditions of the satellites for these simulations are summarized in

Table 4.4 & 4.5.
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(a)

(b) (c)

(d)

Figure 4.26: Relative motion between a satellite on the surface of a HP torus and a pseudo-circular
chief in MEO. a) Pseudo-circular trajectory in rectangular coordinates. b) Initial conditions of the
chief and deputy spacecraft in configuration space. c) Relative trajectory in the LVLH frame of the
chief. d) Inter-satellite distance over one year.
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(a)

(b) (c)

(d)

Figure 4.27: Relative motion between a satellite on the surface of a HP torus and a pseudo-circular
chief in GEO. a) Pseudo-circular trajectory in rectangular coordinates. b) Initial conditions of the
chief and deputy spacecraft in configuration space. c) Relative trajectory in the LVLH frame of the
chief. d) Inter-satellite distance over one year.
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Table 4.4: Chief and deputy initial conditions for bounded relative motion in MEO

Chief Units Deputy Units

rc 4.16416789734246 (LU) rd 4.06089015784987 (LU)
zc 0.0000 (LU) zd −3.0735978332768× 10−6 (LU)
ṙc −6.52508565223192× 10−5 (LU/TU) ṙd −6.52934204408809× 10−5 (LU/TU)
żc 0.233838507959416 (LU/TU) żd 0.240708173039751 (LU/TU)

Table 4.5: Chief and deputy initial conditions for bounded relative motion in GEO

Chief Units Deputy Units

rc 6.61048408889448 (LU) rd 6.44619132908859 (LU)
zc 0.0000 (LU) zd −2.88103715743783× 10−5 (LU)
ṙc −1.194226726868× 10−6 (LU/TU) ṙd −3.6293650524379× 10−6 (LU/TU)
żc 0.00678809221761716 (LU/TU) żd 0.0209829766592374 (LU/TU)

4.5 1999 KW4α formations

Due to the success of the revised GMOS algorithm, we now investigate the problem of esta-

blishing bounded relative motion in a 5× 0 gravity field about the primary of the binary asteroid

(66391) 1999 KW4 [89]. Table 4.6 summarizes the value of the zonal coefficients used for the simu-

lations, whereas Fig. 4.28–4.30 display the output of the numerical procedures introduced in Sec.

4.4.

Table 4.6: Zonal coefficients and Legendre polynomials used for the simulations in the proximity
of (66391) 1999 KW4α.

Zonal Coefficients

J2 4.609160× 10−2

J3 0.517254× 10−2

J4 −2.355357× 10−2

J5 −0.582910× 10−2

Specifically, Fig. 4.28 illustrates the pseudo-circular orbit obtained as in Sec. 4.2.1 with

E = −0.4, H2
z = 0.5. It turns out that the periodic orbit is still stable and surrounded by a family

of two-dimensional quasi-periodic invariant tori. These tori are computed by means of the revised

GMOS algorithm to ensure that the nodal and sidereal periods of any deputy on the surface of these
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Figure 4.28: Pseudo-circular orbit in a 5× 0 gravity field about KW4α. E = −0.4, H2
z = 0.5. The

orbital period is 8.6871 TU.

manifolds would match, on average, the values of the chief. As a consequence of this requirement,

a deputy being initialized on the greenest invariant curve of Fig. 4.29 (H2
z = 0.5044) remains in

the vicinity of a pseudo-circular chief for more than one year. The computed relative trajectory

is shown in Fig. 4.30) with respect to the Local Vertical, Local Horizontal (LVLH) frame of the

reference spacecraft. The ICs of the chief and deputy satellites are given by rc = 1.26262389714496,

zc = 0, ṙc = −0.0245993331834527, żc = 0.705809935382072, and rd = 1.25989761907113, zd =

0.0207767003772756, ṙd = −0.00974737945454383, żd = 0.705900859223141 respectively, with

LU = 765.70 m and TU = 5346.68 s as the new length and time scale factors. Also notice

that the chief has been initialized with two different initial longitude values to highlight the strong

non-linear effects of the zonal harmonics and increase the minimum inter-satellite distance above

100 m (Fig. 4.31. These and other design considerations are further discussed in the conclusive

section.
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Figure 4.29: Revised GMOS invariant curves in configuration space for the 5× 0 gravity field case.
Note the non-linear effects of the symmetric gravity field, which cause significant distorsions and
drifting in the distribution of the curves.

Figure 4.30: Relative motion between a pseudo-circular chief and a deputy on the surface of a HP
torus in a 5 × 0 gravity field about KW4α. The difference between the red and blue trajectories
lies in the initial value of the chief longitude (φ0 = 0 deg and φ0 = 10 deg, respectively).
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Figure 4.31: Inter-satellite distance between a pseudo-circular chief and a deputy on the surface of a
HP torus in a 5×0 gravity field about KW4α. The difference between the red and blue trajectories
lies in the initial value of the chief longitude (φ0 = 0 deg and φ0 = 10 deg, respectively).

4.6 Conclusions

The numerical simulations of this chapter demonstrate the validity of the revised GMOS

algorithm at a range of altitudes and inclination values, as well as beyond Earth’s orbit. Whether

the spacecraft formation is in LEO, MEO, GEO, or close to a small irregular axisymmetric body,

the proposed strategy successfully manages to generate families of quasi-periodic invariant tori

that share, on average, the values of the nodal and sidereal periods. Because of this, groups of

satellites being initialized on the invariant curves of the stroboscopic mapping displayed in Fig. 4.21,

4.26, 4.27, and 4.29 are guaranteed to never drift apart despite the zonal harmonics perturbations

considered in the dynamical model.

It is worth recalling that such a procedure is applicable to any cluster flight and formation

flying mission except at critical inclinations. Here, pseudo-circular orbits become unstable and lack

center manifolds to be exploited by the algorithm [17]. Consequently, future research should be

aimed in characterizing the phase space in the neighbourhood of these very peculiar trajectories

and fill the last gap of our design space.
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Also notice that less attention has been given to the geometry of the formation in spite

of the practical implications that this may have on the success of the mission. Future research

should be also looking at ways to establish which of the invariant curves generated with the revised

GMOS algorithm satisfy given input geometrical constraints, including finding the optimal initial

longitudes of the satellites φ0 for collision avoidance.



Chapter 5

Spacecraft Formation Flight about Small Bodies

The results of the previous Chapter have demonstrated that quasi-periodic invariant tori can

establish bounded relative motion in complex dynamical environments. Continuing along this line

of work, we now explore the same approach in even more extreme dynamical systems and investigate

whether it is possible to design spacecraft formations about small bodies such as asteroids, comets,

and small planetary satellites. It is worth noting that this concept has already been proposed as a

potential benefit for several asteroid mitigation strategies, including gravity tractors and asteroid

ablation [45, 70]. In many of these papers, however, the gravitational attraction of the central

body is typically neglected or oversimplified, meaning that passive relative orbits about strongly

irregular and asymmetric gravity fields are yet to be found and described.

For all these reasons, Chapter 5 of this thesis is dedicated to the numerical computation of

quasi-periodic invariant tori in dynamical systems that are representative of the dynamics near

asteroids and small planetary satellites. As a first example, we explore the existence of invariant

sets about slowly rotating tri-axial ellipsoids and leverage analytical techniques to compute a family

of stable periodic orbits about an asteroid shaped as (4179) Toutatis. Then, we demonstrate that

bounded relative motion can indeed be established via dynamical systems techniques by selecting

initial conditions in the center manifold of these periodic solutions. Based on this result, we switch

to a constant density polyhedron gravity model and witness how the irregular shape of an asteroid

manages to complicate the relative motion dynamics. Next, we move to a higher-fidelity model of

(4179) Toutatis, and include its complex rotational state in the equations of motion. This higher-
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fidelity model gives us the opportunity to practice with three-dimensional quasi-periodic invariant

tori and demonstrate the validity of the GMOS algorithm in time-periodic systems. Finally, we

move to Mars and study the deployment of spacecraft formations near Phobos. Considering all

of the dynamical perturbations acting on a satellite in the vicinity of the Martian moon, this

is probably one of the most challenging dynamical problems up to date, and yet, we are still

able to compute quasi-periodic trajectories that can serve as nominal orbits for formation flying

applications. This capability is illustrated with numerical simulations that account for the irregular

shape of the planetary satellite, the gravitational attraction of Mars, as well as kinematic spin-orbit

coupling effects due to the eccentricity of the moon’s orbit.

5.1 Slowly Rotating Tri-axial Ellipsoids

To start off, consider the motion of a mass particle subject to the gravitational attraction of

a slowly rotating tri-axial ellipsoid with principal axes given by ᾱ = 2250 m, β̄ = 1200 m, γ̄ = 950

m. The values are derived from the actual shape of the complex rotator (4179) Toutatis since the

same asteroid is further throughout the remainder of this Chapter. However, differently from Sec.

5.3, it is currently assumed that the central body is uniformly spinning about its maximum axis

of inertia with wb = 1.34× 10−5 rad/s. In this case, the equations of motion in the body-centered

body-fixed frame (BCF) of the asteroid are given by [96]
ẍ = ω2

b x+ 2ωb ẏ + Ux,

ÿ = ω2
b y − 2ωb ẋ+ Uy,

z̈ = Uz,

(5.1)

where X =

[
x, y, z, ẋ, ẏ, ż

]T
denotes the state of the spacecraft in BCF, and

Ux =
∂U

∂x
= −3

2
µb x

∫ ∞
0

(
1

ᾱ2 + Λ + v

)
dv

∆(v + Λ)
, (5.2a)

Uy =
∂U

∂y
= −3

2
µb y

∫ ∞
0

(
1

β̄2 + Λ + v

)
dv

∆(v + Λ)
, (5.2b)

Uz =
∂U

∂z
= −3

2
µb z

∫ ∞
0

(
1

γ̄2 + Λ + v

)
dv

∆(v + Λ)
, (5.2c)
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are the partial derivatives of the gravitational potential

U = −µb
3

4

∫ ∞
0

φ(x, y, z, v + Λ)
dv

∆(v + Λ)
, (5.3)

with

∆(v + Λ) =
√

(ᾱ2 + Λ + v)(β̄2 + Λ + v)(γ̄2 + Λ + v), (5.4a)

φ(x, y, z, v + Λ) =
x2

ᾱ2 + Λ + v
+

y2

β̄2 + Λ + v
+

z2

γ̄2 + Λ + v
− 1. (5.4b)

Observe that µb = 1792.60 m3/s2 is the gravitational parameter of the simulated ellipsoid,

whereas Λ is defined to be either zero or the positive root of φ(x, y, z,Λ) = 0 depending on whether

U is computed inside or outside of the target asteroid. Also notice that both of (5.2) and (5.3)

can be evaluated via the Carlson elliptic integrals described in Ref. [91], which provides an elegant

and computationally efficient way of estimating the potential, acceleration, and gravity gradient

derived from this gravity model.

The knowledge of the gravitational acceleration allows us to integrate the equations of motion

(5.1) and obtain trajectories such as the one of Figure 5.1(a), which results from the implementa-

tion of the partially frozen orbit initial conditions derived by Hu and Scheeres for slowly rotating

asteroids [52]. As it can be seen, the sample trajectory is very close to be periodic and can be suc-

cessfully refined via the predictor-corrector scheme of Sec. 2.3 to obtain a fully periodic solution.

Fig. 5.1(b) displays the result of Newton’s algorithm along with several family members obtained

through numerical continuation (Fig. 5.2).

As it can be seen from the root locus of the monodromy matrix eigenvalues shown in Fig.

5.2(b), all of the periodic orbits computed about this uniformly rotating tri-axial ellipsoid turn out

to be stable and surrounded by a family of three-dimensional quasi-periodic invariant tori. Although

it is possible to apply the numerical procedure of Sec. 3.7 and compute three-dimensional manifolds,

it is actually instructive to numerically calculate the two families of two-dimensional subtori that

exist in the center manifold of each periodic orbit (Figure 5.3). Our motivation for this reasoning

is that two very distinctive relative motion behaviors arise.
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(a) (b)

Figure 5.1: First periodic orbit about a slowly rotating tri-axial ellipsoid. a) Initial guess obtained
via the numerical integration of partially frozen orbit initial conditions. b) First periodic solution
computed via Newton’s method. All plots are shown in normalized units with LU = 21.532 km.

(a) (b)

Figure 5.2: a) Family of periodic orbits about a slowly rotating tri-axial ellipsoid. b) Eigenvalues
of the monodromy matrices calculated for the different family members.

In the case of Fig. 5.3(a), selecting initial conditions on the surface of this two-dimensional

quasi-periodic invariant subtorus yields in-plane relative orbits that resemble the standard 2 : 1

ellipse observed for circular formations about spherically symmetric bodies [95]. Differences in the
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(a) (b)

Figure 5.3: Two-dimensional subtori projected onto the configuration space. a) “In-plane” quasi-
periodic trajectories. b) “Out-of-plane” quasi-periodic trajectories.

relative orbit shape are caused by the irregularities of the ellipsoidal gravity field, which also induces

out-of-plane oscillations on the order of several meters (Fig. 5.4).

Differently from the previous case, spacecraft formations initialized on the surface of the

second family of two-dimensional subtori show large oscillations in both the along-track and cross-

track directions (Fig. 5.5). These “out-of-plane” relative orbits are indeed more complicated than

the previous ones and certainly less predictable. However, the inter-satellite distance between a

chief and a deputy spacecraft being initialized on this manifold never exceeds the upper bound of

1 km circa, thus proving that passive relative orbits can be also found in this second scenario.

Based on this result, we now switch our equations of motion to account for the irregular shape

of the central asteroid. This is further discussed in the next section, along with a brief overview of

the constant density polyhedron gravity model that is constantly adopted for the remainder of this

Chapter.
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Figure 5.4: In-plane relative orbit obtained for a constant density ellipsoidal gravity field.

5.2 Slowly Rotating Constant Density Polyhedra

According to Werner [111], the gravity field of a constant density polyhedron with v vertices,

f = 2 v − 4 facets, and e = 3 (v − 2) edges can be approximated by two summations: one over the

number of edges, and one over the number of facets. This gives the expression of the gravitational

potential reported in [98], i.e.,

U(r) =
G σ
2

 ∑
e∈ edges

re [Ee] re −
∑

f ∈ facets

rf [Ff ] rf ωf

 , (5.5)
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Figure 5.5: Out-of-plane relative orbit obtained for a constant density ellipsoidal gravity field.

from which the formulae for the gravity acceleration and gradient gradient immediately follow:

ag =
∂U

∂r
= −G σ

 ∑
e∈ edges

[Ee] re Le −
∑

f ∈ facets

[Ff ] rf ωf

 , (5.6)

[G] =
∂2U

∂r2
= G σ

 ∑
e∈ edges

[Ee]Le −
∑

f ∈ facets

[Ff ]ωf

 . (5.7)

In Eq. (5.5)–(5.7), G is the gravitational constant, whereas σ is the constant density of the central

body. Furthermore, r denotes the position vector of a mass particle subject to the gravitational

attraction of the polyhedron, re is the relative position vector of the spacecraft with respect to any
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point along the e-th edge, and rf is the relative position vector of r with respect to an arbitrary

point on the f -th facet. Finally, [Ee], Le, [Ff ], and ωf are defined as

[Ee] = n̂f (n̂fe )T + n̂f ′ (n̂
f ′
e )T , (5.8)

Le = ln
re1 + re2 + |re2 − re1|
re1 + re2 − |re2 − re1|

, (5.9)

[Ff ] = n̂f n̂
T
f , (5.10)

ωf = 2 arctan
rf1 · (r

f
2 × r

f
3)

rf1 r
f
2 r

f
3 + (rf2 · r

f
3) rf1 + (rf1 · r

f
3) rf2 + (rf1 · r

f
2) rf3

(5.11)

where n̂f denotes the unit vector perpendicular to the f -th facet and pointing away from the central

body, n̂fe is the unit vector perpendicular to both the edge e and n̂f , re1, re2 are the position vector

of the first and second vertices defining the edge e, and rf1 , rf2 , rf3 are the first, second, and third

vertices defining the facet f (Fig. 5.6).

Figure 5.6: Unit vectors for Polyhedron gravity model

By summing over the edges and triangular facets, one has a better representation of the

gravity field of a target asteroid. This is especially true when the resolution of shape model is high

enough to account for the irregularities in the mass distribution of the central body. As an example,

consider the plot of Fig. 5.7, which shows a 1600-vertex shape model of (4179) Toutatis along with

the relative differences of its gravitational potential with respect to the ellipsoidal case [53, 81].

Considering that these differences can be as large as 12%, it is not surprising that periodic
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Figure 5.7: (4179) Toutatis shape model and reference frames.

(a) (b) (c)

Figure 5.8: Relative differences between the constant density polyhedron and ellipsoid gravity
potentials

and quasi-periodic trajectories behave quite differently from Sec.5.1. For instance, it is found that

the family of periodic orbits arising from partially frozen orbit initial conditions eventually change

in stability and become unstable as observed in Fig. 5.9. This occurs as soon as the periapsis of

the orbits become small enough to place the spacecraft in a region where the difference between the

gravitational attractions of the larger and smaller lobes of (4179) Toutatis becomes appreciable.
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(a) (b)

(c) (d)

Figure 5.9: Family of periodic orbits about a slowly rotating constant density polyhedron. The
blue orbits are stable, whereas the red ones are unstable.

Nevertheless, there is still a number of periodic orbits that remain stable and surrounded

by a family of three-dimensional tori in spite of the asymmetries in the gravitational field of the

asteroid. For these periodic orbits, we can proceed as in Sec. 5.1 and calculate the two-dimensional

subtori that populate their center manifold. In this case, the relative trajectories are much more

complicated than before and certainly more similar with respect to each other. Regardless of

this complexity, however, bounded relative motion is still maintained for more than a month and

without signs of divergence over the long term (Fig. 5.10–5.11). This encouraging result provides

the motivation to further improve the realism of our simulations. In fact, as observed by the Chinese
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Figure 5.10: In-plane relative orbit obtained for a constant density polyhedron gravity field.

spacecraft Chang’E-2 and radar measurements from Earth [53, 117, 118], it turns out that (4179)

Toutatis is actually a complex rotator, spinning about its minimum axis of inertia. Because of this,

the equations of motion (5.1) are no longer autonomous and prompt small changes in the GMOS

algorithm as described in the following section.
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Figure 5.11: Out-of-plane relative orbit obtained for a constant density polyhedron gravity field.

5.3 Complex Rotators

Since Toutatis is a complex rotator, its angular velocity changes periodically over time as

described by Euler’s equations:

I Ω̇ = −Ω× [IΩ], (5.12)

where I = diag(Ix, Iy, Iz) is the inertia tensor in the principal axis frame of the asteroid, and Ω is

its angular velocity vector.

Assuming that no external torques are acting on the system, Eq. (5.12) admits an analytical
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solution in terms of the Jacobi elliptic functions sn(τ), cn(τ), dn(τ) as described in [69]. Specifically,

let B = {O, b̂1, b̂2, b̂3} be the BCF shown in Fig. 5.7 and such that b̂1 is always aligned with

Toutatis’ longest axis, b̂3 is parallel to the shortest axis, and b̂2 = b̂3 × b̂1 completes the right-

handed triad. In this frame,

Ω(τ) = ωl



√
ID (Iz − ID)

Ix (Iz − Ix)
dn(τ − τ0)√

ID (ID − Ix)

Iy (Iy − Ix)
sn(τ − τ0)√

ID (ID − Ix)

Iz (Iz − Ix)
cn(τ − τ0)


, (5.13)

where

τ − τ0 =

√
ID (Iz − ID) (Iy − Ix)

Ix Iy Iz
ωl (t− t0), (5.14)

Ix, Iy, and Iz are the principal moments of inertia, ID = Ω I IΩ/(Ω IΩ) = const, and ωl =

Ω IΩ/|IΩ| = const. For Toutatis, Ix/Iz = 0.31335, Iy/Iz = 0.94471, ID/Iz = 0.51983, and

ωl = 1.8548× 10−5 rad/s [97].

Next, observe that the equations of motion of a mass particle subject to the gravitational

attraction of a tumbling asteroid, namely

ẋ = f(t,x) =

 v,

ag − Ω̇× r − 2 Ω× v −Ω× (Ω× r),

(5.15)

also change periodically over time with period P = 4Kk ωl
√
Ix Iy Iz/[ID (Iz − ID) (Iy − Ix)] = 5.42

days. Kk is the complete Jacobi integral of the first kind [91], whereas ag represents the gravity of

the small body and is obtained via the constant density polyhedron model of Sec. 5.2. Furthermore,

r =

[
x, y, z

]T
and v =

[
ẋ, ẏ, ż

]T
are the position and velocity vectors of the spacecraft

expressed in BCF components.

Due to the explicit dependence on time, periodic orbits of (5.15) must have periodicity k P ,

where k ∈ N+ is an integer multiple. For instance, consider the 1:1 direct orbit displayed in

Figure 5.12 and computed via Newton’s method while following the analytical derivations of Ref.

[97]. Table 5.1 shows the eigenvalues of the monodromy matrix M , thereby illustrating that the
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Figure 5.12: 1:1 direct periodic orbit as seen from Toutatis’ body-fixed frame.

displayed periodic orbit is actually unstable. Also notice that no unitary eigenvalues pairs are

obtained as the system is no longer autonomous. Instead, two complex conjugate eigenvalues pair

are found, meaning that the periodic orbit still has a center component populated by a family of

three-dimensional quasi-periodic invariant tori.

Table 5.1: Monodromy matrix eigenvalues for the 1:1 direct orbit about (4179) Toutatis.

Eigenvalue Value

λ1 −0.0667 + i 0.9978
λ2 = λ̄1 −0.0667− i 0.9978

λ3 −0.0382 + i 0.9993
λ4 = λ̄3 −0.0382− i 0.9993

λ5 1.7388
λ6 = 1/λ5 0.5751

In this case, one can initialize the GMOS algorithm of Sec. 3.7 via the invariant torus of the

monodromy map (3.85) and select N1×N2 points along this two-dimensional surface, i.e., v(ψj,k).

Also recall that the period of the underlying periodic orbit as well as the phases of the two complex

conjugate eigenvalue pairs may be used to approximate the initial values of the stroboscopic time T

and the rotation vector ρ. Furthermore, the points X0 =

[
v(ψj,k)

]T
, j = 0, · · · , N1, k = 0, . . . , N2

can be integrated and rotated to generate a reliable approximation of the family tangents z̃
′
r and

z̃
′
s as proposed in Sec.3.7.

The latter completes all of the pieces of information required to run the GMOS algorithm
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and converge on the invariant torus of the stroboscopic mapping ϕT (x0, t0) : Rn × R → Rn. The

only difference with respect to previous BVPs is that time now appears explicitly in the equations

of motion (5.15). Assuming that θ0 = τ , the vector field would depend explicitly on one of the

angle variable of the torus θ0. Because of this, the indeterminacy in the θ0 angular value observed

in Chapter 3 is effectively removed, meaning that the phase condition for the θ0 angle is no longer

necessary. Also recall that three-dimensional quasi-periodic invariant tori of time-periodic systems

live in two-parameter families (Section 2.6, [59]). This follows from the fact that ω0 = 2π/T must

be resonant with the periodicity of the time-periodic term Ω(t) appearing in (5.15). Accordingly,

the stroboscopic time T is already specified as a multiple integer of P and does not need to be

solved for by our numerical procedure. This reduces the number of parametrizing equations to two,

yielding the final list of boundary constraints

F (z) =



g(X0,X1)

p1(X0)

p2(X0)

s1(X0,ρ)

s2(X0,ρ)


= 0, (5.16)

where z =

[
X0, ρ

]T
, and p1(X0), p2(X0), s1(X0,ρ), s1(X0,ρ) are specified as in Sec. 3.7.

Fig. 5.13 illustrate the convergence of Newton’s method for the first member of the 3D quasi-

periodic invariant tori family with N1 = 31, N2 = 21. As it can be seen, the N1×N2 solution points

v(ψj,k) overlap with the images of the stroboscopic mapping ϕT obtained after the integration of

(5.15), followed by a rotation via the two-dimensional rotational operator defined in Eq. (3.69).

As soon as the norm of F (z) is below some user-defined tolerance, the singular value de-

composition of DF(z) can be applied to update the family tangents and produce a new initial

guess for the next member of the family. The process can be iterated multiple times to generate

three-dimensional invariant tori of increasing size as prescribed by the predictor-corrector approach

of Sec. 2.3. As an example, consider the plot of Fig. 5.14, which illustrates the 25th member of
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Figure 5.13: GMOS solution points for the first 3D quasi-periodic invariant torus.

the three-dimensional QP tori family obtained with the algorithm.

The manifold of Fig. 5.14 gives plenty of initial conditions to establish bounded relative

motion over long intervals of time. For instance, we can place a chief on the 1:1 direct periodic

orbit and a deputy on one of the GMOS solution points output by the three-dimensional version

of the algorithm to obtain the bounded relative trajectory of Fig. 5.15. Alternatively, we can

also place both of the chief and deputy satellites on the surface of the same torus and obtain the

relative motion of Fig. 5.16. Once again, no secular drifts in both the along-track and cross-track

Figure 5.14: 25th member of the three-dimensional quasi-periodic invariant tori family computed
with the GMOS algorithm.
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Figure 5.15: Relative motion between a chief on a 1:1 direct periodic orbit and a deputy on the
surface of a three-dimensional torus about the complex rotator (4179) Toutatis. a) Satellite orbits
in the BCF frame. b) Relative trajectory in the LVLH frame of the chief. c) Inter-satellite distance
over three months.

directions are observed, meaning that bounded spacecraft formations can indeed be initialized with

the proposed methodology.

5.4 Formation Flight near Phobos

As a final example of a challenging dynamical problem where spacecraft formations can be

deployed through quasi-periodic invariant tori, consider the motion of two satellites in the vicinity

of the Martian moon Phobos [31, 37]. The small planetary satellite is modeled as a constant density
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Figure 5.16: Relative motion between a chief and a deputy spacecraft on the surface of the same
three-dimensional torus about the complex rotator (4179) Toutatis. a) Satellite orbits in the BCF
frame. b) Relative trajectory in the LVLH frame of the chief. c) Inter-satellite distance over three
moths.

polyhedron with 2456 triangular facets and follows an ellipse around Mars with eP = 0.01515 [41].

Knowing that the gravitational attraction exerted by the planetary satellite is considerably smaller

than the tidal forces generated by Mars, it is safe to assume that the equations of motion of the
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spacecraft can be well approximated by the EHP [40, 109]:

x′ = f(ν,x) =



u,

v,

w,

1

1 + eP cos ν
(gx + 3x) + 2 v,

1

1 + eP cos ν
gy − 2u,

1

1 + eP cos ν
gz − z,

(5.17)

where x =

[
x, y, z, u, v, w

]T
represents the state of any massless particle in a pulsating

reference frame S centered on Phobos and such that x̂ is constantly aligned with the separatrix

between the two barycenters of the primaries, ẑ is parallel to the orbital angular momentum of

Phobos, and ŷ = ẑ × x̂ complets the right-handed triad.

Note that the time and length units of Eq. (5.17) are normalized such that one orbital revolu-

tion of Phobos around Mars corresponds to 2π and such that the resonance radius aP (µP /µ♂)(1/3)

is equal to 1 with µP as the gravitational parameter of Phobos, µ♂ as the gravitational parameter

of Mars, and aP = 9377.2 km as the semi-major axis of the planetary satellite [98]. It is also

assumed that the effects of Mars’ oblateness are negligible, so that the trajectory of Phobos around

Mars can be simply described by its two-body dynamics. Furthermore, ν is the true anomaly of

the planetary satellite as well as the independent variable of (5.17), whereas

[
gx, gy, gz

]T
are

the components of Phobos’ gravity in the S frame, obtained from the rotation of the gravitational

acceleration ag computed in the principal axes frame of the small body. This rotation accounts for

kinematic librations due to the eccentricity of Phobos’ orbit. In particular, knowing that Phobos

is in a synchronous state and assuming that the principal axes of the small body are oriented such

that x̂P is pointing towards the anti-Mars direction, ẑP is aligned with ẑ, and ŷP = ẑP × x̂P , the
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direction cosine matrix that maps vectors in B to vectors in S can be simply given by

[S B] =


cosφP , sinφP , 0

− sinφP , cosφP , 0

0, 0, 1

 (5.18)

where φP is the libration angle corresponding to the instantaneous difference between ν and Phobos’

mean anomaly. An illustration of the reference frames as seen from the leading edge of the planetary

satellite is disclosed in Fig. 5.17.

Figure 5.17: S and B reference frames as seen from the leading edge of Phobos.

Since

[
gx, gy, gz

]T
= [S B]ag, the equations of motion (5.17) depends explicitly on the

independent variable ν, meaning that the EHP is a non-autonomous system of ordinary differential

equations that change periodically with the true anomaly of the planetary satellite. Following

Broucke [16], periodic orbits are expected to be isolated at best and must be resonant with the

orbital period of Phobos around Mars. As an example, consider the family of Quasi-Satellite

Orbits (QSO) obtained in the circular case when eP = 0 and [S B] is also equal to the identity

matrix I3. Fig. 5.18 displays the chart of the periodic orbit period versus the x-axis crossing with

v < 0, illustrating that only those solutions whose period is resonant with 2π actually survive when

the eccentricity of Phobos is taken into account [112].
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Figure 5.18: Period vs positive x-crossing for the family of quasi-satellite orbits with e = 0. Only
the periodic orbits whose period is resonant with 2π survive when e 6= 0.

Different from periodic orbits, quasi-periodic invariant tori of a six-dimensional time-varying

Hamiltonian system like (5.17) are still organized in one-parameter families [58]. Accordingly, entire

families of solutions are available to help us understand and organize the system dynamics. This is

better illustrated with the plots of Fig. 5.19, which displays a sample of QSO orbits along with their

corresponding two-dimensional tori in the eP 6= 0 case. It is worth noting that these manifolds have

been computed through the collocation algorithm of Sec. 3.5 after setting the stroboscopic time T

to match the orbital period of Phobos around Mars, i.e., 2π. The reason for this being that one of

the torus frequencies, namely ω0, must be resonant with the periodicity of the equations of motion

(5.17) in order to ensure that the computed manifolds are indeed invariant for the time-varying

field f(ν,x).

As for the initial guesses of the invariant curves of the stroboscopic mapping, observe that the

only periodic orbits available to initialize the algorithm are the ones computed in the circular case.

Accordingly, all of the N1 = 51 GMOS solutions points have been initialized along a predetermined

QSO orbit obtained in the eP = 0 case. This initial guess is quite far from the true form of the
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(a) (b)

Figure 5.19: a) Family of QSO periodic orbits in the circular Hill problem. b) Family of quasi-QSO
invariant tori in the elliptic Hill problem.

invariant curve and definitely less reliable than the invariant circle of the monodromy map used for

autonomous systems. For this reason, collocation is actually mandatory to ensure convergence.

The boundary value problem that needs to be solved for generating the two-dimensional tori

of Fig. 5.19(b) reads as 
X ′ = T F(Θ0,X),

T ′ = 0,

ρ′ = 0,

(5.19)

and is subject to the boundary constraints

F (z) =



g(X0,X1)

cc(X0)

cd(X0, ρ)

p1(X0)

s1(ρ)


= 0, (5.20)
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Once again, one of the phase condition is dropped because of the time-dependency appearing in the

equations of motion (5.17). Specifically, it is assumed that ν = θ0, meaning that a phase condition

for the θ0 angle is no longer required. Moreover, since the stroboscopic time is already specified

as T = 2π, only one of the two parametrizing equations is needed. We choose to constrain the

rotation number ρ via s1(ρ) := ρ − ω1 T = ρ − ω1 2π = ρ − 4π2/P = 0 and search for the quasi-

periodic invariant torus that emerges from the QSO orbit with period P when the eccentricity of

the moon’s orbit is considered. Also notice that the quantity Θ0 introduced in Eq. (5.19) is defined

as Θ0 =

[
ν0, · · · , νN1−1

]T
, with νi = 2π i/N1, i = 0, . . . , N1 − 1, whereas F(Θ0,X) reads as

F(Θ0,X) =


f(ν0,x0)

· · ·

f(νN1−1,xN1−1)

 (5.21)

with f(ν,x) as in (5.17). This gives a well-posed BVP that can be solved with Newton’s method

as described in Chapter 3.

Following the convergence of the GMOS algorithm, bounded relative orbits about Phobos can

be found by selecting arbitrary initial conditions on the surface of the same quasi-periodic torus.

Differently from previous cases, care must be taken in specifying initial states with the same value

of true anomaly. This condition is satisfied by placing both of the chief and deputy spacecraft on

the same invariant curve of the stroboscopic mapping ϕ2π. An example of this is shown in Fig.

5.20, where a chief and a deputy spacecraft are placed on the surface of a quasi-periodic invariant

Table 5.2: Chief and deputy initial conditions for bounded relative motion about M1 Phobos. The
initial conditions are expressed in the pulsating synodic reference frame S with LU = 23.9257 km
and TU = 4387.77 s.

Chief Units Deputy Units

xc 0.740495878892368 (LU) xd 0.7372237734449 (LU)
yc 0.00184411657803554 (LU) yd −0.0800684058209446 (LU)
zc −0.00631901696767579 (LU) zd −0.0063644451885002 (LU)
uc −0.00801860969426209 (LU/TU) ud −0.163735093218928 (LU/TU)
vc −2.16560744054813 (LU/TU) vd −2.15290345625889 (LU/TU)
wc −0.00155739474288585 (LU/TU) wd −0.00077243779717515 (LU/TU)
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(a) (b)

Figure 5.20: Bounded relative trajectory about Phobos. a) Relative trajectory in the LVLH frame
of the chief. b) Inter-satellite distance over 90 days.

torus with P = 2.7524 TU when Phobos is at perimartem. This yields the relative trajectory of

Fig. 5.20(a), as well as the bounded inter-satellite distance of Fig. 5.20(b). The initial conditions

of the two satellites are reported in Table 5.2.

5.5 Conclusions

In this Chapter, several dynamical systems involving the dynamics of mass particles near

small bodies have been investigated. Starting from the simple case of a slowly rotating tri-axial

ellipsoid, we demonstrated that bounded relative motion can be achieved in spite of the complex

shape of the central body. To that end, we computed the two families of two-dimensional subtori

that populate the center manifold of “partially frozen orbits” and placed multiple-satellites on

their surface. It turns out that two very distinctive relative motion behaviors arise, leading to in-

plane and out-of-plane formations that could be useful for scientific investigations of slowly rotating

elongated asteroids.

Differently from the ellipsoidal case, two-dimensional subtori about a constant density poly-

hedron shaped as the (4179) Toutatis do not lead to particularly distinct relative trajectories, but

still succeed in ensuring boundedness over long intervals of time. Consequently, we investigated a
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more realistic representation of the dynamics near the target asteroid, and included its complex

rotational state in the equations of motion. This brought us to computing three-dimensional quasi-

periodic invariant tori about unstable 1:1 direct periodic orbits by means of the 3D version of the

GMOS algorithm described in Sec. 3.7. To the author’s knowledge, this was the first attempt of

computing higher dimensional objects with the GMOS algorithm and while testing the generalized

pseudo-arclength continuation algorithm of Chapter 3.

Lastly, we considered the equations of motion of the elliptical Hill problem and discussed

about the numerical computation of quasi-periodic invariant tori in time-periodic systems. As a

case study, we considered the dynamics of satellites near the Martian moon Phobos and tried to

deploy spacecraft formations in the vicinity of its surface. Eventually, we were able to numerically

converge on the two-dimensional quasi-periodic invariant tori that exist in the phase space when

the eccentricity of the moon is modeled, and used these manifolds to establish bounded relative

motion regardless of the strong nonlinear forces acting on the satellites within the formation. This

proved the utility of quasi-periodic invariant tori not only for formation flying applications, but also

for developing a better understanding of the system dynamics in the vicinity of the small planetary

satellite.



Chapter 6

Robustness Analysis

In the final Chapter of this thesis, we propose a robustness analysis to validate the numerical

results presented throughout this manuscript. We begin by reviewing the different sources of

perturbation that may affect the relative motion between two or more satellites in the vicinity

of one of the target bodies considered in this research. For example, Section 6.2 of this chapter

deals with spacecraft formations in LEO and assess the impact of atmospheric drag, solar radiation

pressure, luni-solar perturbations, and non-zonal spherical harmonics gravity terms on the relative

trajectories of Chapter 4. A similar investigation is performed for satellite clusters in MEO & GEO,

where luni-solar perturbations tend to dominate over radiation pressure and non-zonal coefficients.

Next, we move beyond Earth’s orbit and assess the robustness of the initial conditions found in

Chapter 5 to design bounded relative trajectories about (4179) Toutatis and Phobos (Sections 6.4

& 6.5). In the first case, we find that Solar Radiation Pressure (SRP) has devastating effect on the

satellites’ orbits, thereby suggesting that its effects should be modeled in the equations of motion

for practical realizations of this mission scenario. Conversely, the gravitational effects due to Mars’

asymmetric shape are found to be more indulgent on the relative dynamics around Phobos, making

it possible to envision distributed space systems for future explorations of the Martian moon.

6.1 Dynamical Perturbations

Consider a spacecraft formation in orbit about one of the target bodies considered in this

thesis, i.e., either the Earth, (4179) Toutatis, or Phobos. Let us also recall the definition of the BCI
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frame as the pseudo-inertial coordinate system N centered on one of these objects and described

by the triad {ê1, ê2, ê3}, where ê3 is constantly aligned with the body’s angular momentum vector,

ê1 is pointing towards the vernal equinox, and ê2 = ê3 × ê1.

In BCI, the equations of motion for each satellite in the formation are given by
ẍi = ax,

ÿi = ay,

z̈i = az,

(6.1)

where xi, yi, zi, ẋi, ẏi, żi are the components of the position and velocity vectors of the i-th

satellite in the N frame, and ax, ay, az are the components of its inertial acceleration. Such an

acceleration is given by the sum of the different forces acting on each satellite and its formulation

changes depending on the target body being considered. For this reason, we first proceed with

a brief overview of the dynamical perturbations that may have significant effects on the relative

trajectories presented in this thesis. After that, we continue with our numerical investigations

and show how unmodeled dynamics affects the long-term evolution of spacecraft formations on

quasi-periodic invariant tori.

6.1.1 Tesseral and Sectorial Harmonics

As a first source of perturbation, recall that the asymmetric part of the geopotential was

entirely neglected for all of the numerical simulations about axisymmetric bodies. This assumption

enabled Routh reduction and allowed us to focus on the four-dimensional system derived from

the Lagrangian of the Earth’s zonal problem. However, the non-zonal part of the geopotential

still plays an important role on the orbital mechanics of spacecraft about the Earth and explain

dynamical effects such as the geostationary equilibrium points or the equilibrium longitude of

semisynchronous circular and Molniya orbits [21]. Accordingly, it is interesting to estimate the

impact of these additional accelerations on the relative dynamics between two or more satellites

and verify whether these terms manage to destroy the relative motion within reasonable time. To

that end, observe that the gravitational potential of the Earth up to a certain order, e.g., the fifth,
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reads as

U(R,Θ, φ) =
µ⊕
R

{
1−

∞∑
l=2

Jl

(
R⊕
R

)l
Pl(sin Θ) + . . . (6.2)

∞∑
l=2

l∑
m=1

(
R⊕
R

)l
Plm(sin Θ) [Clm cos (mφ)− Slm sin (mφ)]

}
, (6.3)

where Plm are the associated Legendre functions satisfying the differential equation

Plm(sin Θ) = (1− sin2 Θ)m/2
dm

d(sin Θ)m
Pl(sin Θ). (6.4)

Clm and Slm are the Stokes’ coefficient and determine the strength of both tesseral (l 6= m) and

sectorial (l = m) harmonics [38, 56, 108]. The values of the unnormalized Earth’s coefficients

used for the simulations are summarized in Table 6.1. We also note here that the acceleration and

gravity gradient derived from the full 5 × 5 gravitational potential are obtained by means of the

recursive formulae described by Cunningham in Ref. [25]. The advantage of this approach is that

the acceleration is immediately expressed in Cartesian coordinates and only needs to be rotated in

the reference frame of choice.

Table 6.1: Unormalized Earth coefficients used for the simulations. More values can be found in
Ref. [82]

Coefficient Value ×10x Coefficient Value ×10x

C21 −2.414 −10 S21 1.5431 −9
C22 1.57446037456 −6 S22 −9.03803806639 −7
C31 2.19263852917 −6 S31 2.68424890297 −7
C32 3.08989206881 −7 S32 −2.11437612437 −7
C33 1.00548778064 −7 S33 1.97222559006 −7
C41 −5.08799360404 −7 S41 −4.49144872839 −7
C42 7.84175859844 −8 S42 1.48177868296 −7
C43 5.92099402629 −8 S43 −1.20077667634 −8
C44 −3.98407411766 −9 S44 6.5257142537 −9
C51 −5.31803015007603 −8 S51 −8.0858694766073 −8
C52 1.05587168390898 −7 S52 −5.23291936216342 −8
C53 −1.49300637492288 −8 S53 −7.09734236889537 −9
C54 −2.29930029012696 −9 S54 3.86712335850938 −10
C55 4.3082246205179 −10 S55 −1.64818262628074 −9
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6.1.2 Third-body Attraction

The gravitational perturbation due to a third attracting mass is given by

a3rd = µ3

(
r3,s

r3
3,s

−
r3,b

r3
3,b

)
, (6.5)

where µ3 is the gravitational parameter of the third body, r3,s is its position vector with respect

to the i-th spacecraft, and r3,b is the position vector of the perturbing object with respect to the

center of the primary body, i.e., either the Earth, (4179) Toutatis, or Phobos.

Since r3,s can be rewritten as the difference r3,b − r, where r is the position vector of the

spacecraft with respect to the central body, only r3,b needs to be computed. However, depending

on the simulation scenario, two different approaches are adopted in this thesis. In the case of

Earth formations, we consider the third-body acceleration due to the gravity of the Sun and the

Moon, and model their position vectors in the geocentric inertial frame with a 0.1% - 1% level of

accuracy using the fast approximations discussed in Section 3.3.2 of Ref. [79]. For the numerical

simulations about (4179) Toutatis and Phobos, instead, the heliocentric orbit of the target body

is calculated via two-body dynamics. Thus, if H = {�, êe, êp, êh} is the perifocal frame of either

(4179) Toutatis or Mars such that êe is constantly pointing towards perihelion, êh is aligned with

the orbital angular momentum vector, and êp = êh × êe, then the coordinates of the central body

with respect to the Sun can be simply expressed by

rb,3 = −r3,b =

[
Rb cos νb Rb sin νb 0

]T
, (6.6)

where Rb = ab (1− e2
b)/(1 + eb cos νb), and ab, eb, νb are the semi-major axis, eccentricity, and true

anomaly of the target body, respectively.

6.1.3 Solar Radiation Pressure

Whenever illuminated by the Sun, any satellite in the formation is affected by SRP. Although

high-fidelity models exist [75], the acceleration due to solar radiation pressure can be roughly
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approximated via the cannonball model:

aSRP = − Kr

r3
�,s
r�,s, with Kr =

(
Φ�
c

)
Cr,S/C R

2
AU

BS/C
. (6.7)

r�,s is the relative position vector of the Sun with respect to the considered satellite, RAU =

149 597 871 000 m is the value of the astronomical unit, Φ� = 1367 W/m2 is the solar irradiance,

c = 299 792 458 m/s is the value of the speed of light, Cr,S/C is the reflectivity coefficient, and

BS/C is the mass to area ratio of the spacecraft. For the numerical simulations of this Chapter,

it is assumed that all of the satellites in the formation share the same values of Cr,S/C = 1.3 and

BS/C = 50 kg/m2. Also notice that aSRP is always directed in the opposite direction of r�,s,

whereas the magnitude aSRP always scales as the inverse of the distance between the spacecraft

and the Sun squared.

6.1.4 Atmospheric Drag

As a final source of perturbation, atmospheric drag is included in the robustness analysis for

spacecraft formations in LEO so as to study the effects of the Earth’s atmosphere on the relative

dynamics. The classical formulation of the drag acceleration is described by many authors as

adrag = −1

2
Cd,S/C ρatm

vrel
BS/C

vrel (6.8)

where BC = BS/C/Cd,S/C is the ballistic coefficient of a satellite and depends on both its mass-to-

cross sectional area ratio, BS/C , and drag coefficient, Cd,S/C = 2.1. Furthermore, if ω⊕ = ω⊕ ê3 =

7.292115× 10−5 ê3 (rad/s) is the Earth’s spin rate, one finds that the velocity of a satellite relative

to the Earth’s atmosphere is

vrel = v −w⊕ × r, (6.9)

where r and v are the position and velocity vector of the spacecraft, respectively. Lastly, ρatm

is the atmospheric density, which can be assumed to change exponentially with the altitude h as

according to

ρatm ' ρatm,0 e
−
h− h0

H . (6.10)
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In this thesis, ρatm,0 = 6.967×10−13 kg/m3 and h0 = 500 km are the reference values for the density

and altitude of the spacecraft, respectively, whereas the scale factor H is specified by H = 63.822

km as suggested in Ref. [108].

6.2 LEO Formations

We now start our analysis by investigating the robustness of the spacecraft formations in LEO

generated with the revised GMOS algorithm. The unperturbed case was shown in Fig. 4.21 – 4.22

and proved that bounded relative motion can indeed be established about the Earth while placing

multiple satellites on the surface of quasi-periodic invariant HP tori (Fig. 4.17(b)). Differently from

Section 4.4, we now integrate the initial conditions of the satellites after including atmospheric drag,

solar radiation pressure, luni-solar third body attraction, and sectorial/tesseral harmonics to the

equations of motion (6.1).

As shown in Fig. 6.1, the inclusion of these additional forces results in secular drifts that tend

to destroy spacecraft formations in LEO very quickly. Specifically, it is found that atmospheric

drag has the most significant impact on the relative dynamics of spacecraft at these altitudes

due to the large differences in the nodal and sidereal periods of the vehicles introduced by this

perturbation (Fig. 6.2). It is also worth noting that all of the other perturbations have minor

effects on the relative trajectory, with luni-solar attraction, solar radiation pressure, and C22 effects

causing deviations of only a few kilometers per month in the radial and along-track directions. This

result suggests that spacecraft formations being initialized with the revised GMOS algorithm may

actually survive at higher altitudes where the effects of atmospheric drag become negligible.

6.3 MEO & GEO Formations

We now consider the case of a chief and a deputy satellite being initialized in MEO and

GEO as in Fig. 4.26 and 4.27. Fig. 6.3 and 6.4 display the relative motion and periods of a

MEO formation under the effects of an asymmetric gravity field, SRP, and luni-solar attraction.

Similarly, Fig. 6.5 and 6.6 illustrate the same quantities at geostationary altitudes.
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(a) (b)

(c)

Figure 6.1: LEO formations under luni-solar, atmospheric drag, SRP, and asymmetric gravitational
perturbations over one day. a) Relative trajectory in the LHLV frame of the chief. b) Inter-satellite
distance over one day. c) Differences in radial, along-track, and cross-track directions with respect
to the unperturbed case.

It is observed that the gravitational attractions of the Sun and the Moon are the dominant

forces at these orbital regimes. Most notably, these sources of perturbations create a relative

difference between the nodal periods of the two satellites that cause them to slowly drift apart in

the radial and along-track directions. After one month, the total drift from the unperturbed case

can be quantified in tens and hundreds of kilometers for the MEO and GEO cases, respectively.

Therefore, it seems reasonable to maintain the spacecraft in the formation with only a few burns

per month and without a significant amount of fuel.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Monthly changes in the nodal and sideresiderealal periods of two satellite in a LEO
formation due to external perturbations. a) - b) luni-solar third body attraction. c) - d) luni-solar
plus SRP. e) - f) luni-solar plus SRP and spherical harmonics coefficients. g) - h) drag included.
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(a) (b)

(c)

Figure 6.3: MEO formations under luni-solar attraction, SRP, and asymmetric gravitational per-
turbations over one month. a) Relative trajectory in the LHLV frame of the chief. b) Inter-satellite
distance over one month. c) Differences in radial, along-track, and cross-track directions with
respect to the unperturbed case.

6.4 (4179) Toutatis Formations

Moving beyond Earth’s orbit, let us now consider a formation of two satellites being de-

ployed on the three-dimensional quasi-periodic invariant torus of Fig. 5.14. Recall that the three-

dimensional manifold has been computed in the principal axes frame of (4179) Toutatis while using

a constant density polyhedron model to simulate its gravitational attraction. Meanwhile, Jacobi’s

elliptic functions have been used to evaluate the analytical solutions of Euler’s equations and ac-

count for the complex rotational state of the small body. This leaves us with external perturbations

that mostly depends on the presence of the Sun and its activity.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Monthly changes in the nodal and sidereal periods of two satellite in a MEO formation
due to external perturbations. a) - b) spherical harmonics coefficients. c) - d) spherical harmonics
plus SRP. e) - f) spherical harmonics plus SRP and solar gravity. g) - h) Moon gravity included.
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(a) (b)

(c)

Figure 6.5: GEO formations under luni-solar attraction, SRP, and asymmetric gravitational per-
turbations over one month. a) Relative trajectory in the LHLV frame of the chief. b) Inter-satellite
distance over one month. c) Differences in radial, along-track, and cross-track directions with
respect to the unperturbed case.

For example, Fig. 6.7 shows the equivalent of the bounded relative trajectory illustrated

in Fig. 5.15 after including the Sun’s third body attraction and solar radiation pressure to the

equations of motion (5.15). The relative position vector of the Sun as seen from the center of

the asteroid is found via (6.6) with ab = 2.5445 AU and eb = 0.6241 as the semi-major axis

and eccentricity values produced by NASA JPL’s HORIZON on Nov, 10th, 1992 at 1:42:05 UTC

[80]. It is also found that the asteroid’s inclination, RAAN, argument of perihelion, and mean

anomaly at this epoch correspond to ib = 0.4481 deg, Ωb = 125.1982 deg, ωb = 277.9992 deg, and

Mb = 359.1509 deg, respectively. This information allows to correctly build the direction cosine
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Monthly changes in the nodal and sidereal periods of two satellite in a GEO formation
due to external perturbations. a) - b) spherical harmonics coefficients. c) - d) spherical harmonics
plus SRP. e) - f) spherical harmonics plus SRP and solar gravity. g) - h) Moon gravity included.
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matrix that rotates from the perifocal frame to the BCI frame of (4179) Toutatis. From there, the

position of the vector of the Sun can be expressed in BCF frame components via rB�,c = [BN ] rN�,c,

where B is the body-fixed frame of the asteroid defined in Sec. 5.3 and

[BN ] = R3(γ)R1(β)R3(α),

=


cos γ sin γ 0

− sin γ cos γ 0

0 0 1




1 0 0

0 cosβ sinβ

0 − sinβ cosβ




cosα sinα 0

− sinα cosα 0

0 0 1

 (6.11)

is the rotation matrix obtained from the 3-1-3 sequence of Euler’s angles α =

[
α, β, γ

]T
adopted

in Ref. [105] & [117]. Following the same references, the values of the Euler’s angles α and the

body’s angular momentum vector Ω are generated through the numerical integration of

α̇ =
1

sinβ


sin γ cos γ 0

cos γ sinβ − sin γ sinβ 0

− sin γ cosβ − cos γ cosβ sinβ

 Ω, (6.12)

and

Ω̇ = I−1 (−Ω× IΩ +L�) (6.13)

with α = −160.3761 (deg), β = 143.0380 (deg), γ = −30.1492 (deg), Ωx = 98.9717 (deg/day),

Ωy = 0.0 (deg/day), and Ωz = 36.1577 (deg/day) as the initial conditions. I is the inertia matrix

defined in Chapter 5, whereas L =
µ�
r5
�,c
r�,c × I r�,c is the solar torque acting on Toutatis. We

do not model the gravitational force and torque generated by the Earth, even though the selected

epoch is close to the Earth flyby occurred in December 1992. The interested reader may find

detailed discussions of these and subsequent close encounters with the Earth in Ref. [87, 88].

Differently from those papers, our goal is to assess the impact of solar radiation pressure

and Sun third body attraction on the relative dynamics between a chief and a deputy spacecraft.

It is found that SRP is the major source of perturbation as its magnitude is 1% circa of the

gravitational attraction exerted by the small body. Because of this, both of the satellites tend
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(a) (b)

(c)

Figure 6.7: Perturbed relative motion between a chief on a 1:1 direct periodic orbit and a deputy
on the surface of a three-dimensional torus about the complex rotator (4179) Toutatis. a) Satellite
orbits in the body-fixed frame. b) Relative trajectory in the LVLH frame of the chief. c) Inter-
satellite distance over two weeks.

to quickly deviate from their unperturbed trajectories and separate from each other in less than

a month. Conversely, only a tiny fraction of this drift seems to be caused by solar gravity as

the magnitude of this perturbation turns out to be two-to-three orders of magnitude smaller than

(6.7). Numerical simulations prove that, with the gravity of the Sun as the only perturbation, the

two satellites would remain within reasonable distances from each other for more than a month.

Accordingly, future designs of spacecraft formations about (4179) Toutatis should focus on adding

SRP to the equations of motion and potentially leverage the attitude of the spacecraft to control

the relative positioning of the satellites within the cluster.
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6.5 Phobos Formations

As a final example, let us consider the relative motion between a chief and a deputy spacecraft

being initialized on the surface of the quasi-periodic invariant torus computed in the synodic frame

of an eccentric Phobos around Mars (Sec. 5.4). According to previous research [116], the main

perturbations in the vicinity of the small planetary satellite are caused by the non-spherical shape

of Mars. Specifically, the gravitational accelerations due to the oblateness and ellipticity of the

planet seem to impact the most on the relative dynamics of artificial satellites near the Martian

moon. Including these terms, the equations of motion for a massless spacecraft near Phobos can

be rewritten in the synodic reference frame of Chapter 5 as

r̈ + Ω̇ × r + 2 Ω× v + Ω× (Ω× r) = ∇U − aP,♂, (6.14)

where r and v are the position and velocity vectors of a satellite with respect to Phobos, respectively,

Ω is the angular velocity vector of the S frame as seen from an inertial coordinate system, and

aP,♂ is the gravitational acceleration of Phobos due to Mars. Furthermore, U is the gravitational

potential of a massless spacecraft and is given by

U =
µ♂
R

[
1− J2

(
R♂
R

)2

P2(sin Θ) +

(
R♂
R

)2

P22(sin Θ) (C22 cos (2φ)− S22 sin (2φ))

]
+ U(r),

(6.15)

where U(r) is the same as (5.5), µ♂ = 4.282837 × 104 (km3/s2) is the gravitational parameter of

Mars, R, Θ, φ are the spherical coordinates of the satellite with respect to Mars’ body-fixed frame,

and J2 = 1.960450×10−3, C22 = −5.463228×10−5, S22 = 3.158708×10−5 as specified in Ref. [64].

It is also assumed that the position of Phobos with respect to Mars can be identified via its two-

body dynamics. This enables some useful simplifications that do not degrade the accuracy of the

numerical simulations over short intervals of time because of the small inclination and eccentricity

of the Martian moon. For example, we assume that the angular velocity vector Ω can be simply

expressed as ν̇P ẑ, where ν̇P = hP /r
2
P , hP =

√
µ♂ aP (1− e2

P ), and rP = aP (1−e2
P )/(1+eP cos νP ).

aP = 9377.2 km and eP = 0.0151 are the semi-major axis and eccentricity of Phobos, respectively.
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Lastly, we neglect second-order spin-orbit coupling effects that affect the libration angle of the

planetary satellite as discussed in Ref. [30, 76].

Regardless of these assumptions, we find that the spacecraft of Fig. 6.8 are still bounded

for more than a week in spite of the secular component appearing in the along-track separation

between the two vehicles. Such a time frame would satisfy the operational requirements of past

and future missions to Phobos [71, 55], and enable future investigations of the Martian moon based

on distributed space systems.
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Figure 6.8: Perturbed relative dynamics between a chief and a deputy spacecraft near M1 Phobos.
a) Satellite orbits in the sinodic reference frame S. b) Relative trajectory in the LVLH frame of
the chief. c) Inter-satellite distance over one weeks.
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6.6 Conclusions

This Chapter presented a robustness analysis of the different initial conditions identified

throughout this thesis to establish bounded relative motion at a variety of celestial bodies. Starting

from spacecraft formations about an axisymmetric Earth, we simulated the effects of atmospheric

drag, SRP, luni-solar perturbations, and tesseral plus sectorial harmonics up to the fifth order to

quantify the error in the relative motion introduced by unmodeled dynamics. As it turns out,

atmospheric drag seems to utterly degrade the quality of our initial conditions by causing a secular

drift in the nodal period of the deputy spacecraft that destroys the formation within a few orbital

revolutions. Such a behavior is not observed at higher altitudes, where luni-solar perturbations seem

to have only minor effects on the relative distance between satellites in MEO and GEO formations.

Differently from these orbital regimes, it was found that SRP plays a major role in disturbing

the orbital mechanics of vehicles near (4179) Toutatis. Specifically, solar radiation pressure causes

the chief and deputy spacecraft to quickly deviate from the surface of the three-dimensional quasi-

periodic invariant torus that was found to guarantee bounded relative motion in the unperturbed

case. Because of that, the satellites in the formation tend to slowly drift apart from each other in

the along-track direction and eventually separate in less than a month.

Lastly, the robustness of initial conditions yielding bounded relative motion about Phobos

was tested under the effects of J2, C22, and S22 spherical harmonics coefficients derived from the

non-spherical shape of Mars. A simplified model was implemented to include these additional

perturbations in the equations of motion and assess their impact on the relative dynamics between

the chief and deputy spacecraft of Fig. 5.20. Despite the limitations of the model, it was found

that the two satellites remain in the close proximity of the Martian moon for more than a week

and without significant deviations from the unperturbed relative orbit.



Chapter 7

Conclusions and Future Work

This dissertation investigates the benefits of using quasi-periodic invariant tori for formation

flying applications. By explicitly calculating these manifolds, sets of initial conditions that naturally

yield bounded relative motion are found and used to design bounded relative trajectories in a variety

of astrodynamics problems such as the dynamics of satellites about axisymmetric bodies and the

motion of mass particles near asteroids and small planetary satellites.

In preparation for our numerical investigations, we started our discussion by reviewing some

of the tools available in DST for computing fixed points and periodic orbits. This helped us

introduce some of the terminology that recurred throughout this thesis, and lay out the foundation

for the numerical procedures of Chapter 3. For example, we introduced the predictor-corrector

scheme that was later applied for numerical continuation, and formally defined quasi-periodic tori

as the images of diffeomorphisms that satisfy the non-resonant conditions discussed in Sec. 2.6.

Chapter 3 of this thesis dealt with the numerical computation of quasi-periodic invariant tori

and outlined some of the modern methodologies available in the literature for calculating these

dynamical structures. Specifically, we distinguished between PDE and TPBVP approaches and

proposed a simple numerical test for assessing the accuracy of the reviewed methodologies. By

studying quasi-periodic motion in the body-fixed frame of the Earth, we identified GMOS as our

method of investigation for future analysis. This conclusion was drawn not only from accuracy and

runtime considerations, but also because the algorithm provides easy accessibility to the stability

of quasi-periodic trajectories, can be recast into multiple-shooting or collocation form, and can be
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successfully adapted to handle the numerical computation of three-dimensional tori.

Another important feature of GMOS is that it can be conveniently modified to incorporate

additional constraints for fixing the external parameters of a dynamical system. This turned out

to be a crucial aspect for the design of bounded relative orbits about axisymmetric bodies, where

the dynamics of spacecraft can be fundamentally described by three periods. First is the nodal

period, which is commonly defined as the time elapsed between two consecutive equatorial plane

crossings at the ascending node. Second is the sidereal period, which depends on the drift in the

right ascension of the ascending node per nodal period. Lastly, there is the anomalistic period,

which is a function of the difference between the argument of pericenter of a satellite at consecutive

equatorial plane crossings. In order to ensure bounded relative motion between a chief and a

deputy spacecraft, at least two of their fundamental periods need to be matched on averaged. This

condition was enforced by adding extra constraints to the GMOS algorithm and fix the averaged

values of the nodal and sidereal periods of a torus. The resulting procedure, hereby referred to as

the revised GMOS algorithm, manages to produce entire families of bounded relative orbits at a

range of altitude and inclination values such as LEO, MEO, and GEO orbital regimes.

Moving beyond Earth’s orbit, the fifth Chapter of this dissertation investigated the problem

of establishing bounded relative motion about small irregular bodies. As a first example, we

considered the asteroid (4179) Toutatis and build from 1:1 direct periodic orbits found in the

literature to identify a whole family of three-dimensional quasi-periodic invariant tori. To the best

of the author’s knowledge, this was the first attempt to compute higher-dimensional tori about

asteroids and the manifolds successfully gave initial conditions for bounded relative motion in spite

of the irregular shape and complex rotational state of the target asteroid. Next, we considered the

case of the Martian moon Phobos and applied GMOS to calculate the quasi-periodic invariant tori

that populate the phase space when the eccentricity of the planetary satellite is taken into account.

Once again, bounded relative trajectories were obtained by placing a chief and a deputy satellite

on the surface of a quasi-periodic invariant torus found in a high-fidelity model of the orbital

environment near Phobos. Specifically, we modeled the moon as a constant density polyhedron
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with 2456 triangular facets and included the libration of the planetary satellite around Mars to

simulate first-order spin-orbit coupling effects and improve the realism of our simulations.

The last Chapter of this dissertation covered the main sources of perturbation that have

the potential to significantly impact on the relative dynamics of spacecraft near the Earth, (4179)

Toutatis, and Phobos. Although atmospheric drag and solar radiation pressure were found to

quickly destroy the formations in LEO and near Toutatis, luni-solar perturbations and SRP seem

to have less of an impact on the relative dynamics in MEO and GEO. The same can be said for

the J2, C22, and S22 harmonics of Mars near Phobos, giving us hope that quasi-periodic invariant

tori could represent a robust design option for flying multiple vehicles around this object.

Moving forward, it is worth noting that all of the numerical simulations of Chapter 6 assumed

perfect knowledge of the initial conditions of the chief and deputy spacecraft. Unfortunately,

such an assumption is usually too optimistic due to navigation errors and the introduction of

stochastic components in the states of the satellites. Accordingly, future research should be dealing

with the development of guidance and control laws that mitigate the effects of navigation and

perturbation errors. This topic seems particularly attractive for spacecraft formations near the

Earth and Toutatis, where atmospheric drag and solar radiation pressure can be effectively leveraged

to propellentless maneuver the satellites in the formation [9, 29, 68].

Another interesting idea to pursue would be the design of quasi-periodic invariant tori about

asteroids with SRP in the equations of motion. Current research has already identified dynamical

substitutes that replace certain equilibrium points with periodic orbits, and it seems feasible to

further expand on this result by calculating the quasi-periodic trajectories that populate the center

manifold around these periodic solutions [113].

Lastly, the design of bounded relative trajectories about axisymmetric bodies warrants further

investigation. In addition to trajectories at critical inclinations, we did not discuss the case of other

periodic orbits that bifurcate from the pseudo-circular trajectories of Chapter 4. Yet, the study of

other periodic and quasi-periodic solutions could open the door to new formation geometries and

help us better organize the system dynamics. It would also be interesting to further explore the
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limits of the revised GMOS algorithm by trying to design bounded relative orbits about arbitrary

trajectories. While this poses some numerical challenges, ongoing research seems to suggest the

validity of our technique even for highly eccentric orbits. If that is the case, a ubiquitous design

strategy for spacecraft formations about the Earth would be possible and not far from reality.
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• body-centered inertial frame (BCI)

• body-centered body-fixed frame (BCF)

• Boundary Value Problem (BVP)
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• Discrete Fourier Transform (DFT)

• Distributed Space Systems (DSS)

• Dynamical Systems Theory (DST)
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• Partial Differential Equations (PDE)
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